Math 170E Lecture 1, Winter 2020

Name:

- Some exercises are taken from R.V. Hogg, E. Tanis, D. Zimmerman, *Probability and Statistical Inference*, 10th Ed., Pearson.
- The questions marked with a star (*) are either more difficult or of the form that is not intended for an exam. Nonetheless, they are worth thinking about.

Exercises

1. Let *X* have the PDF

 $f_X(x) = \begin{cases} 4x^3, & 0 < x < 1, \\ 0, & \text{elsewhere.} \end{cases}$

Find the PDF of $Y = X^2$.

Due March 13, in class

$f_X(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{elsewhere.} \end{cases}$

(a) Find the CDF of X.

2. The PDF of *X* is

(b) Describe how an observation of *X* can be simulated using a uniform distribution over (0, 1).

Name:

3. Let *X* have a **logistic distribution** with PDF

$$f_X(x) = \frac{e^{-x}}{(1+e^{-x})^2}, \qquad -\infty < x < \infty.$$

Show that

$$Y = \frac{1}{1 + e^{-X}}$$

has a uniform distribution over (0, 1).

4. Let *X* have the uniform distribution over (-1, 3). Find the PDF of

UID:

 $Y = X^2.$

Hint: The function $u(x) = x^2$ is **not** one-to-one over (-1,3), and so, the change of variables technique as described in the class does not work directly to this case. However, the CDF technique still applies.

Math 170E Lecture 1, Winter 2020	Homework 9	Due March 13, in class
Name:		UID:
Let X_1 and X_2 be independent random v ive binomial distributions $b(3, \frac{1}{2})$ and $b(5, \frac{1}{2})$	ariables with respec- 6. Let X_1 a bility dens	and X_2 be independent random variables with proba- ity functions
(a) Find $P(X_1 = 2, X_2 = 4)$.	$f_{X_1}(x) =$	$\begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{elsewhere,} \end{cases} f_{X_2}(x) = \begin{cases} 4x^3, & 0 < x < 1, \\ 0, & \text{elsewhere.} \end{cases}$
	(a) Comp	pute $P(0.5 < X_1 < 1, 0.4 < X_2 < 0.8)$.
b) Find $P(X_1 + X_2 = 7)$.		
	(b) Find	$E(X_1^2 X_2^3).$
	3	

Г

Name:

7. Suppose two independent claims are made on two insured homes, where each claim has PDF

$$f(x) = \begin{cases} \frac{4}{x^5}, & 1 < x < \infty, \\ 0, & \text{elsewhere,} \end{cases}$$

in which the unit is \$1000. Find the expected value of the larger claim.

Hint: If X_1 and X_2 are independent claims and $Y = \max\{X_1, X_2\}$, then the CDF of Y satisfies

$$F_Y(y) = P(Y \le y) = P(X_1 \le y)P(X_2 \le y) = F_X(y)^2,$$

where X is another independent claim. Using this, determine the PDF of Y and then compute E(Y).

UID:

8. A device contains three components, each of which has a lifetime in hours with the PDF

$$f(x) = \begin{cases} \frac{2x}{10^2} e^{-(x/10)^2}, & 0 < x < \infty, \\ 0, & \text{elsewhere.} \end{cases}$$

The device fails with the failure of one of the components. Assuming independent lifetimes, what is the probability that the device fails in the first hour of its operation?

Hint: If X_1 , X_2 , and X_3 are three independent lifetimes and $Y = \min\{X_1, X_2, X_3\}$, then

$$P(Y \le 1) = 1 - P(Y > 1)$$

= 1 - P(X₁ > 1)P(X₂ > 1)P(X₃ > 1).

Name:

9. Let X_1, \ldots, X_n be independent Poisson random variables with respective means $\lambda_1, \ldots, \lambda_n$. Show that the sum

$$Y = \sum_{i=1}^{n} X_i$$

is Poisson with mean

$$\lambda = \sum_{i=1}^n \lambda_i$$

Hint: Recall that X is Poisson with mean λ *if and only if its MGF is given by* $M_X(t) = \exp(\lambda(e^t - 1))$ *.*

10. The number *X* of sick days taken during a year by an employee follows a Poisson distribution with mean 2. Let us observe four such employees. Assuming independence, compute the probability that their total number of sick days exceeds 10.

UID:

Hint: Use Problem 9 to determine the distribution of the total number of sick days.

Math 170E Lecture 1, Winter 2020	Homework 9	Due March 13, in class
Name:	UID:	
1. Let X_1 , X_2 , X_3 denote a random sam gamma distribution with $\alpha = 7$ and $\theta = 5$.	ple of size 3 from a	
(a) Find the MGF of $Y = X_1 + X_2 + X_3$. (b) How is Y distributed?		
<i>Lint: Recall that X has a gamma distribution w</i> f and only if its MGF is given by $M_X(t) = (1 + 1)^{-1}$	ith parameters α and θ $(-\theta t)^{-\alpha}$.	