Math 170E Lecture 1, Winter 2020	Homew	ork 8	Due March 2, in class
Name:	,		UID:
Some exercises are taken from R.V. Hogg, E. Tanis Probability and Statistical Inference, 10th Ed., Pearson.	s, D. Zimmerman,	(b) Find $p_{X Y}(x y)$) and $P(X = 2 Y = 3)$.
4.3 Conditional Distribution	ons		
. Let X and Y have the joint PMF			
$p(x,y) = \frac{x+y}{32}, \qquad x = 1, 2, y = 1,$	2, 3, 4.		
(a) Find the marginal PMFs $f_X(x)$ and $f_Y(y)$.			
) $\sum I D(1 < Y < 2 \mid Y = 1)$
		(c) Find $p_{Y X}(y x)$) and $P(1 \le Y \le 3 \mid X = 1)$.

Math 170E Lecture 1, Winter 2020	Homey	work 8	Due March 2, in class
Name:			JID:
2. Let <i>W</i> equal the weight of laundry soap that is distributed in Southeast Asia. Suppos P(W < 1) = 0.02 and $P(W >Call a box of soft light, good, or heavy, dep\{W < 1\}, \{1 \le W \le 1.072\}, \text{ or } \{W > 1.072\}, o$	e that 1.072) = 0.08. pending on whether 72}, respectively. In oxes, let s],	linear in <i>x</i> , i.e., for some constants <i>a</i> mine the values of <i>a</i> a (a) Compute $\mu_Y =$	onditional expectation of <i>Y</i> , given $X = x$, is $E(Y X = x) = a + bx$ and <i>b</i> . The aim of this exercise is to deter- and <i>b</i> . E(Y) using the law of total expectation and ad <i>b</i> satisfy $a + b\mu_X = \mu_Y$.
(b) Given that $X = 3$, how is Y distributed	conditionally?	(b) Compute <i>E</i> (<i>XY</i> duce that <i>a</i> and) using the law of total expectation and de- b satisfy $a\mu_X + bE(X^2) = E(XY)$.
(c) Determine $E(Y X = 3)$.		the values of a at tion leads to $E(Y)$	aded) Using the previous parts, determine and <i>b</i> , then verify that the linearity assump- $ X = x) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X} (x - \mu_X),$) is the least square regression line.
	2		

Math 170E Lecture 1, Winter 2020	Homework 8		Due March 2, in class
Name:			UID:
4. A fair six-sided die is rolled 30 independent the number of ones and <i>Y</i> the number of tw(a) What is the joint PMF of <i>X</i> and <i>Y</i>?	dent times. Let X be os.	(c) Compute <i>E</i> [2	$X^2 - 4XY + 3Y^2].$
(b) Find the conditional PMF of <i>X</i> , given <i>Y</i>	f = y.		

Homework 8

Name:

5. Suppose that *X* has a Poisson distribution with the rate λ and suppose the conditional distribution of *Y*, given *X* = *x*, is binomial with parameters *x* and *p*.

(a) Find E(Y).

UID:

(c) Let Z = X - Y and q = 1 - p. Verify that

$$p_{Y,Z}(y,z) = \left(\frac{(p\lambda)^y}{y!}e^{-p\lambda}\right) \left(\frac{(q\lambda)^z}{z!}e^{-q\lambda}\right)$$

for non-negative integers *y* and *z*. This shows that *Y* and *Z* are independent Poisson random variables of rates $p\lambda$ and $q\lambda$, respectively.

Hint: For non-negative integers y and z, note that

$$p_{Y,Z}(y,z) = P(Y = y, Z = z) = P(Y = y, X = y + z) = P(Y = y | X = y + z)P(X = y + z).$$

Compute each probability appearing in the last line using the assumption.

(b) Find Var(Y).

Math 170E Lecture 1, Winter 2020	Homework 8		Due March 2, in class	
Name:	·		UID:	
4.4 Bivariate Distributions of the Continuous Type		(c) Compute $P(X)$	< Y).	
1. Let				
$f_{X,Y}(x,y) = \frac{3}{16}xy^2, \qquad 0 \le x \le 2,$	$0 \le y \le 2$,			
be the joint PDF of X and Y . (a) Find the marginal PDFs $f_X(x)$ and $f_Y(x)$	y).			
		(d) Compute <i>E</i> (<i>Y</i>)).	
		(e) Compute Cov((X, Y). <i>the fact that</i> $E(X) = \frac{4}{3}$.)	
(b) Are two random variables independen	t? Why or why not?	(100 muy use th	$L(X) = \frac{1}{3}$	
	Ę	5		

Math 170E Lecture 1, Winter 2020	Homework 8	Due March 2, in class
Name:		UID:
2. Let X and Y be independent random varia ous type. Then X and Y have the joint PDF: $f_{X,Y}(x,y) = f_X(x)f_Y(y).$	bles of the continu- $f_{X,Y}(x, y)$ be the joint PDF of	$(y) = \frac{3}{2}, 0 \le x \le 1, x^2 \le y \le 1$
Prove that events $\{a \le X \le b\}$ and $\{c \le Y $ dent, i.e.,		
$P(a \le X \le b, c \le Y \le d) = P(a \le X \le b)$	$P(c \le Y \le d).$	
holds true, for any numbers <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> .		
	(b) Find $P(\frac{1}{2} \leq$	$Y \leq 1$).
	(c) Find $P(0 \leq 2)$	$X \le \frac{1}{2}, \ \frac{1}{2} \le Y \le 1$).
	(d) Are X and Y	´ independent? Why or why not?

Math 170E Lecture 1, Winter 2020	Homework 8 Due March 2, in class
Name:	UID:
4. Let <i>S</i> be the shadowed region as in the figure below: y 4 2 -3 -1 1 3 x	(c) Calculate E(Y X = x). Does this make sense to you intrividual itively?
Suppose that (X, Y) have a uniform distribution over S , joint PDF is given by $f_{X,Y}(x,y) = \frac{1}{16}, \qquad (x,y) \in S.$	i.e., their
(a) Find the marginal PDF $f_X(x)$ of X.	
(b) Determine the conditional PDF $f_{Y X}(y x)$.	(d) Calculate <i>E</i> (<i>Y</i>).

Math 170E Lecture 1, Winter 2020	Homework 8	Due March 2, in class
Name:		UID:
5. Let <i>X</i> have the uniform distribution $U(0, 1)$ tional distribution of <i>Y</i> , given $X = x$, be $U(0)$ $P(X + Y \ge 1)$.	<i>(x</i>). Find 1. Let <i>X</i> and <i>Y</i> hav	ivariate Normal Distribution we a bivariate normal distribution with param $= 10, \sigma_X^2 = 25, \sigma_Y^2 = 9$, and $\rho = 3/5$. Find on of <i>X</i> .
	(b) The condition	al distribution of X , given $Y = 13$.
	(c) $P(-5 < X < X)$	5 $Y = 13$), in terms of $\Phi(\cdot)$.
	(d) The distributi	on of Y.
	(e) The condition	al distribution of Y , given $X = 2$.
	(f) P(7 < Y < 16	$ X = 2$), in terms of $\Phi(\cdot)$.
	(g) Cov(<i>X</i> , <i>Y</i>).	
	8	