Math 170E Lecture 1, Winter 2020	Homework 6		Due February 14, in class	
Name:			UID:	
- Some exercises are taken from R.V. Hogg, E Probability and Statistical Inference, 10th Ed., Pea	Tanis, D. Zimmerman, arson.	2. Let <i>X</i> be a continu	ious random variable with PDF	
3.1 Random Variables of the Continuous Type		$f_X(x) = \begin{cases} cx(1-x), & 0 < x < 1, \\ 0, & \text{elsewhere.} \end{cases}$		
1. Let <i>X</i> has a uniform distribution $U(a, b)$ for $a < b$. Do the following:		(a) Find the value of <i>c</i> such that $f_X(x)$ is indeed a PDF.		
(a) Compute the mean $E(X)$.				
(b) Compute the variance $Var(X)$		(b) Find $P(-0.5 <$	<i>X</i> < 0.3).	
(c) Compute the moment generating function $Hint$: Treat the cases $t = 0$ and $t \neq 0$ set	tion $M_X(t) = E[e^{tX}].$	(c) Find the median	n of X.	
11000 - 0.000	pulutely.			
		1		

Math 170E Lecture 1, Winter 2020	Homework 6	Due February 14, in class	
Name:	·	UID:	
3. Let <i>X</i> be a continuous random variable w $f_X(x) = \frac{c}{\sqrt{x}}, \qquad 0 < x < \frac{c}{\sqrt{x}}$	rith PDF(c) Compute eac $< 1.$ (i) $P(X > 0.5)$	h of the following:	
 Do the following: (a) Find the value of <i>c</i> such that <i>f</i>_X(<i>x</i>) is PDF bounded? 	indeed a PDF. Is this		
	(ii) $P(X = 0)$		
(b) Determine and sketch the graph of the	CDF of X.		
	(ii) The med	an of X.	
	(ii) The mean	n of X.	

Math 170E Lecture 1, Winter 2020	Homework 6		Due February 14, in class
Name:			JID:
4. The logistic distribution is associated with the CDF		(b) Determine the CDF of <i>X</i> and sketch its graph.	
$F_X(x) = \frac{1}{1 + e^{-x}}, \qquad -\infty <$	$x < \infty$.		
Find the PDF of the logistic distribution and is symmetric about $x = 0$.	d show that its graph	(c) Find $P(X < 1.5)$	
5. Let <i>X</i> be a continuous random variable w $f_X(x) = \begin{cases} c(2+x), & -2 < x \\ c(2-x), & 1 < x < \\ 0, & \text{elsewhet} \end{cases}$ Do the following: (a) Find the value of <i>c</i> such that $f_X(x)$ is in	rith PDF < -1, < 2, ere ndeed a PDF.		
		(d) Find $m = \pi_{0.5}$ of	f X. Is it unique?

3.2 The Exponential, Gamma, and Chi-Square Distributions

6. Suppose that *X* has the MGF of the form

$$M_{\rm X}(t) = rac{1}{1-4t}, \qquad t < 1/4.$$

What are the PDF, the mean, and the variance of *X*?

7. Telephone calls arrive at a doctor's office according to a Poisson process on the average of two every 3 minutes. LetX denote the waiting time (in minutes) until the first call that arrives after 10 a.m.

(a) What is the PDF of *X*?

(b) Find P(X > 2).

Math 170E Lecture 1, Winter 2020	Homework 6		Due February 14, in class
Name:			UID:
8. Let <i>X</i> has an exponential distribution v $c > 0$ be a positive constant. We will show exponential distribution with mean $c\theta$ in tw (a) Compute the MGF $M_Y(t)$ of <i>Y</i> by notin	with mean θ , and let w that $Y = cX$ has an wo ways.9. In an experiment counted by a Geiger ber of emissions follo per second. Let W e count is made.		ment, alpha particle emissions of carbon-14 are iger counter each second. Suppose that the num- follows a Poisson process with rate of 16 counts W equal the time in seconds until the seventh
$M_Y(t) = E[e^{tY}] = E[e^{ctX}] =$	$=M_X(ct),$	(a) Give the di	stribution of W.
where $M_X(\cdot)$ is the MGF of X . Detern of Y by identifying $M_Y(t)$ as the MGF of tion.	nine the distribution of a familiar distribu-		
(b) Find the CDF $F_Y(y)$ of <i>Y</i> by noting that $F_Y(y) = P(Y \le y) = P(X \le y/a)$ Determine the distribution of <i>Y</i> by ide CDF of a familiar distribution.	$f(x) = F_X(y/c).$ ntifying $F_Y(y)$ as the	(b) Find P(W Hint: Comp ing. As in th Poisson proc	\leq 0.5). uting this by integrating the PDF will be excruciat- be class, interpret the event $\{W \leq 0.5\}$ in terms of the bess involved.

Math 170E Lecture 1, Winter 2020	Homework 6		Due February 14, in class	
Name:		UID:		
10. A bakery sells rolls in units of a dozen. 1000 units) for rolls has a gamma distribution $\alpha = 3, \theta = 0.5$, where θ is in units of days per It costs \$2 to make a unit that sells for \$5 on the rolls are fresh. Any leftover units are sold for \$1. If <i>w</i> denotes the number of units to be main information suggests that the net profit $u(x)$ demand <i>x</i> (in units of days per 1000 units of role by $u(x) = \frac{5000}{x} + \left(w - \frac{1000}{x}\right) - \frac{1000}{x}$ where we conveniently ignored the case 1000 ity. Compute $E[u(X)]$ and determine the number of walls should be made to maximize the expected values of the second s	The demand <i>X</i> (in on with parameters r 1000 units of rolls. the first day when d on the second day ade, then the above as a function of the olls) can be modeled $-2w$, $/x \ge w$ for simplicumber of units that lue of the net profit.	 11. Suppose that X (a) P(14.85 < X < Note: Table IV selected values of the values	is $\chi^2(23)$. Find the following: (32.01). in Appendix B provides the value $\chi^2_{\alpha}(r)$ for some of the parameters r and α .	
		(b) The mean and	variance of X.	
		(c) $\chi^2_{0.05}(23)$ and γ	$\chi^2_{0.95}(23).$	
		5		

Math 170E Lecture 1, Winter 2020	Homework 6		Due February 14, in class
Name:	UID:		JID:
3.3 The Normal Distribution		14. If <i>X</i> is <i>N</i> (650, 20 ²), find a constant $c > 0$ such that
12. If <i>Z</i> is $N(0,1)$, write each of the following probabilities in terms of $\Phi(z)$ and find its value.		I	P(X - 650 > c) = 0.05.
(a) $P(0.47 < Z \le 2.13)$			
(b) $P(Z > -1.56)$			
(a) $P(Z < 1.00)$			
(c) $P(Z < 1.96)$			
		15. If the MGF of <i>X</i> is	S
(d) $P(Z > 3)$		$M_X(t)$ =	$=e^{166t+200t^2}, \qquad -\infty < t < \infty,$
		find the mean and th	e variance of X.
12 If Y is $N(6, 5^2)$ write each of the follow	wing probabilities in		
terms of $\Phi(z)$ and find its value.	wing probabilities in		
(a) $P(6 \le X \le 14)$			
(b) $P(X > 15)$			
		16. If <i>X</i> is $N(0, \sigma^2)$, fi	nd the distribution of $W = X^2$.
(c) $P(X-6 < 5)$			
(d) $P(X-6 > 12.4)$			
	:	7	

Math 170E Lecture 1, Winter 2020	Homework 6	Due February 14, in class	
Name:		UID:	
17. Suppose that <i>X</i> is $N(\mu, \sigma^2)$. If <i>a</i> and <i>b</i> are $a \neq 0$, show that $Y = aX + b$ is $N(a\mu + b, a^2)$. <i>Hint: Compute the MGF of Y by noting that</i>	e constants such that σ^2).		
$M_{Y}(t) = E[e^{tY}] = E[e^{atX+bt}] = e^{bt}$	$b^{t}M_{X}(at),$		
where $M_X(\cdot)$ is the MGF of X. Identify $M_Y(t)$ a distribution.	s the MGF of a familiar		