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Eigenvalue distributions and the transpose

» Let Xy be the N x N GUE. (dotted curves show limit
distributions)

X1000 + X300 X100 + (X34)" X1000 + (X3900)f

» if we let Yyy be the N x N GOE then Yy + (Y%)f = Yy + Y%;
so we would not get different pictures

» let Uy be the N x N Haar distributed unitary matrix

Uno + Ujy + (Lo + Uyp)'
sampled 100 times




Unitary Case
For a unitary matrix let UMD = U, u=11 = uT, ut—bv =1,
u=t=u =y,
If whenever we have a reduced word
utermgrleama) .. plennn) (ie. (e, M) # —(€xy1,Mks1) for all k),
we can show that

E(Tr(u(elxm)u(ezlﬂz) .. u(emﬂn))) —0(1)

then we will have shown that {U, U*} is free from {U7, U}.
For a N x N Haar distributed unitary matrix

E(Tr(ulern)ylezm2) .. ylenmn)y)
= > Wglpq) [{j: [E=n] — NI pdgd V eydy~'e < ker(j))
pAEP; (n)

S Y Welpg NIEVery e
pgePy (1)



E(Tr(u(ellnl)u(ez,ﬂz) A U(enzﬂn)))

B Z Wg(p,q) N#(P‘S%\/ey@y—l
pAEPy (n)

€)

Weglp,q) = O(N*"Jr#(PVfJ))

so we must show that
#(pV q) +#(pdgd V eydy te) <n
or, since #(p V q) < n/2, that
#(pdqd \V eydyte) <n/2

or that the permutation &y~ !e(pd96)eys has no fixed points,
which can be easily checked since (ex, i) # —(€x41, Nk+1)



Wigner Matrices (with R. Speicher)

LetX = X* =L (xji)ij be a N x N complex Wigner matrix:

N
> E(Xi]‘) =0
» E(lx;?) =1
> E(xizj) =0

> {xi}i U{xjj}i<j independent
» {x;;}; identically distributed
> {xij}i<; identically distributed

then X and X! are asymptotically free

the proof is very different from the unitary case as there is no
equivalent to the Weingarten calculus



Wishart Random Matrices

» Suppose Gy, ..., Gy, are d; x p random matrices where
Gi=( g}]j) )jk and g].(,? are complex Gaussian random
variables with mean 0 and (complex) variance 1, i.e.

E(] g].(,z) 2) = 1. Moreover suppose that the random variables

{8 -(;f : }ijx are independent.

j
(i
Gy,

is a dydy x dyd, Wishart matrix. We write W = (Wj;);; as
dy x dq block matrix with each entry the d x d, matrix
G;Gr.

]

Gy

144

1
5 ""G§1>=(G1G}k)i;




Partial Transposes

>

>

>

G; ady x p matrix

Wij = %GiG;‘, a d, x dp matrix,

W = (W) is a d1 x d block matrix with entries Wj;
WT = (Wﬁ)i]- is the “full” transpose

Wil = Wii)ij is the “left” partial transpose

Wg)i]- is the “right” partial tarnspose

we assume that dl]% —aand 0 < & < o0
eigenvalue distributions of W and WT converge to
Marchenko-Pastur with parameter «

eigenvalues of W'and W' converge to a shifted
semi-circular with mean 1 and variance 1/ (Aubrun)

W and WT are asymptotically free (M. and Popa)
what about W™ and W2



Semi-circledand Marchenko-Pastur Distributions
Suppose Rt BN 1 and —= — 1 and o = oy (c =1/«x.)

1 VP x

» limit eigenvalue distribution of W (Marchenko-Pastur)

1 #(o)—1 1 #(yo1)—1
lim E(tr(W") = Y ((X> -y <a>

o€eNC(n) o€eNC(n)

(here #(0) is the number of blocks of o,y = (1,...,n) and
vo~!is the “other” Kreweras complement)
» limit eigenvalue distribution of W' (semi-circle)

1 #yo1)—1
li Mn — -
im E(tr((W")")) > <“)
0€NCy2(n)
NCj»(n) is the set of non-crossing partitions with only

blocks of size 1 and 2. (c.f. Fukuda and Sniady (2013) and
Banica and Nechita (2013))



main theorem

» tum: The matrices {W, W1, W', WT} form an asymptotically
free family

» let (e,m) € {—1,17 = Z%.

W if (e,m) =(1,1)
W1 if (e,n) = (—1,1)
(em) — ’ ’
> letW WE i () = (1, 1)
WL if (e,m) = (—1,—-1)

> let (€1/n1)1~ sy (en/nn) € ZZ

E(Tr(W(elfnl) e W(enﬁ‘ln)))

e(0) (o)
-y (‘7’1>f (d2>f” O3 e (@) (o))
O'GSn \/ﬁ \/ﬁ

where fe (o) = #(edy15yde V 660~ 1) ( “\V” means the sup of
partitions and # means the number of blocks or cycles)



Computing Moments via Permutations, I

» [di] =1{1,2,...,d1},

v

v

v

v

giveniy, ..., i, € [d1] we think of this n-tuple as a function
i:[n] — [dq]
ker(i) € P(n) is the partition of [n] such that i is constant on

the blocks of ker(7) and assumes different values on
different blocks

if 0 € S, we also think of the cycles of ¢ as a partition and
write 0 < ker(i) to mean that i is constant on the cycles of o

given o € S, we extend o to a permutation on
[£n] —{ n,...,—1,1,...,n} by setting o(—k) = —k for k > 0

vy=(012...,n ) 5(k) = —k
5Y_15Y5=(1,— )(2,-1)---(n,—(n—1))



Computing Moments via Permutations, 11
> &y 1oyd = (1,—n)(2,—1) -+ (n,—(n— 1))
» if Ay = (ai(jk)),-j then

N
_ (1) (2) (n) _ (1) (n)
Tr(Al .. An) — Z ailizai2i3 .. .al},il — Z ai1i71 N ainl;n

i yein=1 I41 sl
5y 16vys<ker(i)



Computing Moments via Permutations, III

Tr(W(EI’m) o W(Gn,ﬂn)) = Z Tr<wh] 1 W](n?jn))
jil ~~~~~ ] +n

with e&y~16yde < ker(j). Lets = r om then for &y 18y8 < ker(r)

]n] n
_ (Mn)
- Z ]1] 1 r1r71 (anrj}jn)rnhn
41, 40
- Z ]1] 1 s15_1 (I/v]‘n]?n)s,,s_,1
St1se54n
= p_n Z (G]1 G]* l)SlS 1 T (ijlG;‘k—n)SnS,n
S41s0/5+n

=p" ) ngmgs )L gl

S41,-/54n t1,m



Gaussian entries

E(Tr(Wlerm) ... wleim)y)

Z Z Z E gsﬂl)gs(]:ltl) gsntngs],n';n)

Ja£ 1y en SEL/Skn Ee.
Z Z Z E( () o Un) (J;n))
gsltl gs,,t,, gs 1t1 gs,ntn
]in 541540 H,eeertn

[subject to the condition that ey 18yde < ker(j) and
ndy'oyom < ker(s)]

Z Y D Bt 8«mEp) 8B

wosfbn SE1sSn Fecsbn

(k)
where g i) = g1t/ and gg 1) = g./4). Using
E(§x(1) " 8am)8p(1) " 8pm)) =Ho €Sy | B = oo}




Thus
E(Tr(w(el,m) . Wletmy)

Z Z Z {o € S, | “various conditions”}|

]in S41,e/54n t,estn

where “various conditions” means

v

edy 1oyde < ker())
ndy'oydn < ker(s)
j—k = jo(x) Which is equivalent to 060! < ker(j)

v

v

v

S_k = Sg(k) Which is equivalent to b0 < ker(s)
ty = to) which is equivalent to o < ker(t)

v

E(Tr(W(elfﬂl) e W(enﬂ'ln) ))

felo) falo)
-y (”ll> ’ (”b) " MO o)+ ()
Uesn \/ﬁ \/ﬁ

where f. (0) = #(edy 16yde V odo 1) (“\V” means the sup of
partitions)



finding the highest order terms

>

general fact: if p and g are pairings then #(p \V q) = %#(pq).
In fact we can write the permutation pg as a product of
cycles cicf - - cxcf where ¢! = gc; 'q and the blocks of p \/ g
are c; U/

#(edy 16yde V odo 1) = %#(6}/*161/ - edodole)

if T, 0 € S, and (7, 0) (the subgroup generated by 7 and o)
has only one orbit then there is an integer g (the “genus”)
such that

#(m0) + #( o) + #(o) =n+2(1 —9)

and ¢ = 0 only when 7t is planar or non-crossing with
respect to o.

&y~ 18y has two cycles so (5y '8y, 5080 Le) can have
either 1 or 2 orbits

if (5y~18y, 080~ L€) has one orbit then

#(edy16yde V odo ) +#(0) <n



E(tr(W(etm) .. wlenmnly)

)1/ g N\ falo)—1 )
— Z < ) <2> p#(G)Jrz(fe(Uan(U))f(nH)-
VP VP

oES,

» o will not contribute to the limit unless
(6y~15y, e5050 €) has two orbits, i.e. € is constant on the
cycles of o (write e5060 e = deoed(eoe) ™)

» if € is constant on the cycles of o there is 0 € S, such that
edodole = édeécrgl (if o =cicp -, then o = ci‘l ,i"‘
where A is the sign of € on ;)

» then 1#(6}/*161/ edodole) = #(yo )

> ) + fe(0) = #(0c) + #(yos!) < n+ 1 with equality only
1f O¢ is non- crossmg

» #(0) + frn(0) =#(0on) + #(ycr;l) < n + 1 with equality only
if oy, is non-crossing



E(tr(w(el’TH) .. W(enﬁ]n)))

_ Z (dl>fe(0)—1<dz>fn(0)—1+o<1>
o€ES, \/ﬁ \/ﬁ p2

where the sum runs over o such that
» ¢ and n are constant on the cycles of o and
» both o and oy, are non-crossing.
» if € # 11 on a cycle of o then this cycle must be either a fixed
point or a pair; 0e = 0y and so fe(0) = f,,(0)
» o can only connect WD) to another W(I'D, a Wi=11) to

another W11 a W(L=1) {5 another W1 =1 and a
W11 to another W(—1—1)



