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Overview

Classical real Lie groups
• unitary matrices U(N)
• orthogonal SO(2N + 1)
• symplectic Sp(2N)
• orthogonal SO(2N)

All depend on an integral
parameter N.

What can we say about their irreducible
representations when N � 1?

For example, what about
A Restrictions to subgroups (e.g. U(k) ⊂ U(N))

• Of finite rank
• Of growing rank

B Tensor products
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Classical real Lie groups
• unitary matrices U(N)
• orthogonal SO(2N + 1)
• symplectic Sp(2N)
• orthogonal SO(2N)

All depend on an integral
parameter N.

What can we say about their irreducible
representations when N � 1?

For example, what about
A Restrictions to subgroups (e.g. U(k) ⊂ U(N))

• Of finite rank Semistandard Young tableaux
• Of growing rank

B Tensor products Littlewood–Richardson coefficients



Irreducible representations and characters of U(N)

U(N) — group of all N × N unitary matrices. T — representation
of U(N), i.e. homomorphism

T : U(N) 7→ GL(V ).

T is irreducible if V has no nontrivial U(N)–invariant subspaces.



Irreducible representations and characters of U(N)
Theorem. (E. Cartan, H. Weyl, 1920s) Irreducible representations
of U(N) are parameterized by N–tuples of integers
λ = λ1 ≥ λ2 ≥ · · · ≥ λN .

0

λ1

λ2−λ4
λ = (5, 3, 0,−3)

(signatures)

The character of representation Tλ is given by

χλ(U) = TraceTλ(U) = sλ(u1, . . . , uN) =
det
(
u
λj+N−j
i

)N
i ,j=1∏

i<j(ui − uj)
,

where ui are eigenvalues of unitary matrix U.

Remark. Very similar formulas exist for groups Sp(2N) and
SO(N). All later results are also proved for these groups as well.
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Different ways to grow λ(N)
We want signature λ = λ(N) to somehow grow as N →∞.

1. (“finite” signatures)

2. (“thin” signatures)

0

3. All rows grow linearly in N.
(“thick” signatures)

4. (“very thick” signatures)

0



Different ways to grow λ(N)
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4. Rows grow superlinearly, i.e.
λi (N)� N. (“very thick”
signatures) 0
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Different ways to grow λ(N)

1. (“finite” signatures)
Degeneration into the symmetric
group. (Schur–Weyl duality)

2. (“thin” signatures)
Representation theory of U(∞).
(Voiculescu, Vershik–Kerov, etc)

0

3. All rows grow linearly in N.
(“thick” signatures)
Our topic today

4. (“very thick” signatures)
“Semiclassical limit” to RMT.
(Biane, Collins–Sniady) 0



Our limit regime for today

All rows grow linearly in N.
Rescaled profile approximates a
limit shape.

• Preserves natural symmetry between rows and columns
• No degeneration to S(n), random matrices or U(∞).
• Connections to statistical mechanics models: lozenge tilings,
six–vertex model, percolation in a strip.



Law of Large Numbers for tensor products

All rows grow linearly in N.
Rescaled profile approximates a
limit shape.

Tλ(N) ⊗ Tλ′(N) =
⊕
µ

cλ(N),λ′(N)
µ Tµ

How does signature of typical irreducible component look like?

Prob(µ) =
c
λ(N),λ′(N)
µ dim(µ)

dim(λ(N)) dim(λ′(N))
.
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Law of Large Numbers for tensor products

Tλ(N) ⊗ Tλ′(N) =
⊕
µ

cλ(N),λ′(N)
µ Tµ

Prob(µ) =
c
λ(N),λ′(N)
µ dim(µ)

dim(λ(N)) dim(λ′(N))
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Assumption. Suppose that for bounded piecewise continuous f , g

lim
N→∞

1

N

N∑
i=1

∣∣∣∣λi (N) + N − i

N
− f

(
i

N

)∣∣∣∣ = 0, sup
i ,N

∣∣∣∣λi (N)

N

∣∣∣∣ <∞
lim

N→∞

1

N

N∑
i=1

∣∣∣∣λ′i (N) + N − i

N
− g

(
i

N

)∣∣∣∣ = 0, sup
i ,N

∣∣∣∣λ′i (N)

N

∣∣∣∣ <∞.

Theorem. (Bufetov–Gorin–2013) Then (scaled by N) random
profile of µ converges to the deterministic function h.

The convergence and the operation (f , g) 7→ h will be explained.
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Law of Large Numbers for Restrictions

Tλ(N)
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cλ(N)
µ Tµ → Prob(µ) =

c
λ(N)
µ dim(µ)

dim(λ(N))
.

N →∞. 1) k is fixed. 2)k = αN.

Assumption. Suppose that for bounded piecewise continuous f

lim
N→∞

1

N

N∑
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∣∣∣∣λi (N) + N − i
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− f

(
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∣∣∣∣λi (N)

N
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Theorem. (Gorin–Panova–2013, Bufetov–Gorin–2013) Then
(scaled by N) random profile of µ converges to the deterministic
1. Constant −1

2 +
∫ 1
0 f (t)dt if k is fixed.

2. Limit profile fα if k = αN.
The convergence and the operation f 7→ fα will be explained.

Remark. For restrictions (but not for tensor products!)
concentration of measure can be also deduced from the variational
principle of Cohn–Kenyon–Propp and Kenyon–Okounkov–Sheffield
for random lozenge tilings.
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Law of Large Numbers: formulas
Our aim is to explain the operations (f , g) 7→ h and f 7→ fα on the
limit profiles, arising from tensor products and restrictions,
respectively.

The convergence of λ(N) to f implies weak convergence of
m[λ(N)] to the limit measure m[f ].

mk(m) =

∫
R
xkm(dx).

Sm(u) = z +m1(m)z2 +m2(m)z3 + . . . ,

Rquant
m (u) =

1

(Sm(u))−1
− 1

1− e−u
,

Remark. Rquant
m (u) = Rm(u) +

1
u
− 1

1−e−u ,

where Rm(u) is Voiculescu R–function (a free probability
analogue of characteristic function) and 1

1−e−u − 1
u is R–function

for the uniform measure on [0, 1].



Law of Large Numbers: formulas
Profile of a signature 7→ counting measure:

λ→ (prob. measure on R) m[λ] =
1

N

N∑
i=1

δ

(
λi + N − i

N

)

−4
3

2
3

5
3

λ1 = 3

λ3 = −4

1
3

The convergence of λ(N) to f implies weak convergence of
m[λ(N)] to the limit measure m[f ].

Remark. This definition depends on the group. We present the
case of the unitary group U(N) here.

mk(m) =

∫
R
xkm(dx).

Sm(u) = z +m1(m)z2 +m2(m)z3 + . . . ,

Rquant
m (u) =

1

(Sm(u))−1
− 1

1− e−u
,

Remark. Rquant
m (u) = Rm(u) +

1
u
− 1

1−e−u ,

where Rm(u) is Voiculescu R–function (a free probability
analogue of characteristic function) and 1

1−e−u − 1
u is R–function
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Law of Large Numbers for Tensor products

Tλ(N) ⊗ Tλ′(N) =
⊕
µ

cλ(N),λ′(N)
µ Tµ →

Prob(µ) =
c
λ(N),λ′(N)
µ dim(µ)

dim(λ(N)) dim(λ′(N))
.

Theorem. (Bufetov–Gorin–2013) Suppose that λ(N), λ′(N)
converge to the limit profiles encoded by the measures m, m′. Then
the random probability measure corresponding to µ converges to
the deterministic measure m⊗m′, such that

Rquant
m⊗m′(u) = Rquant

m (u) + Rquant
m′ (u).



Law of Large Numbers for Tensor products
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Prob(µ) =
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Theorem. (Bufetov–Gorin–2013) Suppose that λ(N), λ′(N)
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Law of Large Numbers for Restrictions

Tλ(N)

∣∣∣∣∣
U(k)

=
⊕
µ

cλ(N)
µ Tµ → Prob(µ) =

c
λ(N)
µ dim(µ)

dim(λ(N))
.

N →∞, k = αN.

Theorem. Suppose that λ(N) converges to the limit profile
encoded by the measure m. Then the random probability
measure corresponding to µ (scaled by αN) converges to the
deterministic measure mα, such that

Rquant
mα (u) =

1

α
Rquant
m (u).



Law of Large Numbers for Restrictions: example.

Restrictions of rep. with signature λ(N) = ((N/2)N/2, 0N/2).
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m1 has density 1 on [0, 1/2] and [1, 3/2].



Law of Large Numbers for Restrictions: example.
Restrictions of rep. with signature λ(N) = ((N/2)N/2, 0N/2).

α

x

1
4

1
2

1

3
2

Plot of support of pushforward
of αmα under x 7→ αx , i.e. limit
for the random measure

m[µ]

=
1

N

Nα∑
i=1

δ

(
µi + Nα− i

N

)
.

Prob(µ) =
c
λ(N)
µ dim(µ)

dim(λ(N))
.

Tλ(N)

∣∣∣∣∣
U(Nα)

=
⊕
µ

cλ(N)
µ Tµ



Law of Large Numbers for Restrictions: example.
Restrictions of rep. with signature λ(N) = ((N/2)N/2, 0N/2).

m1 has density 1 on [0, 1/2] and [1, 3/2].

For 0 < α < 1, density of mα is

0, x > 1 + 1
2α ,

1, x < 1 + 1
2α , x >

1
α ,

1, x > 0, x < 1− 1
2α ,

0, x < 0,
1
π arccos(φ), otherwise.

φ =
3/4− (1− αx)((12 + α)− αx)− αx(αx + (12 − α))
2
√
αx(1− αx)((12 + α)1− αx)(αx + (12 − α))

.

(φ is set to 0 or π if argument is out of [−1, 1])



Tensor products and restrictions

Summary. (Bufetov–Gorin–2013) As N →∞ the random
probability measures corresponding to tensor products and
restrictions to smaller subgroups of irreducible representations of
U(N) converges to deterministic measures m⊗m′, mα, such that

Rquant
m⊗m′(u) = Rquant

m (u) + Rquant
m′ (u), Rquant

mα (u) =
1

α
Rquant
m (u).



Tensor products and restrictions

Summary. (Bufetov–Gorin–2013) As N →∞ the random
probability measures corresponding to tensor products and
restrictions to smaller subgroups of irreducible representations of
U(N) converges to deterministic measures m⊗m′, mα, such that

Rquant
m⊗m′(u) = Rquant

m (u) + Rquant
m′ (u), Rquant

mα (u) =
1

α
Rquant
m (u).

Remark 1. Tensor powers are related to restrictions through

m⊗k = m1/k .



Tensor products and restrictions

Summary. (Bufetov–Gorin–2013) As N →∞ the random
probability measures corresponding to tensor products and
restrictions to smaller subgroups of irreducible representations of
U(N) converges to deterministic measures m⊗m′, mα, such that

Rquant
m⊗m′(u) = Rquant

m (u) + Rquant
m′ (u), Rquant

mα (u) =
1

α
Rquant
m (u).

Remark 2. The linearization function Rquant is not unique. One of
its forms can be guessed as a limit

lim
N→∞

1

N
log

(
sλ(N)(x , 1

N−1)

sλ(N)(1N)

)

computed in (Guionnet–Maida–2005), (Gorin–Panova–2013).



Tensor products and restrictions

Summary. (Bufetov–Gorin–2013) As N →∞ the random
probability measures corresponding to tensor products and
restrictions to smaller subgroups of irreducible representations of
U(N) converges to deterministic measures m⊗m′, mα, such that

Rquant
m⊗m′(u) = Rquant

m (u) + Rquant
m′ (u), Rquant

mα (u) =
1

α
Rquant
m (u).

Remark 3. (Borodin–Bufetov–Olshanski–2013) In the context of
the limit shape theorem for the restrictions of characters of the
infinite–dimensional unitary group U(∞) the same operation on
the measures corresponds to the unions of the Voiculescu
parameters for extreme characters.



Tensor products and restrictions

Summary. (Bufetov–Gorin–2013) As N →∞ the random
probability measures corresponding to tensor products and
restrictions to smaller subgroups of irreducible representations of
U(N) converges to deterministic measures m⊗m′, mα, such that

Rquant
m⊗m′(u) = Rquant

m (u) + Rquant
m′ (u), Rquant

mα (u) =
1

α
Rquant
m (u).

Remark 4. We call the operation (m,m′) 7→ m⊗m′ quantized
free convolution. Why?



Free Convolution

Let A[N] and B[N] be independent uniformly random Hermitian
matrices with fixed eigenvalues {ai [N]}, {bi [N]}.

Theorem–Definition. (Following Voiculescu and others) Suppose

lim
N→∞

1

N

N∑
i=1

δ(ai [N])→ mA, lim
N→∞

1

N

N∑
i=1

δ(bi [N])→ mB ,

Let C [N] = A[N] + B[N] and Dα[N] =“top left αN corner of A[N],
then their spectral measures converge to deterministic free
convolution mA �mB and free projection mαA. Moreover,

RmA�mB
(u) = RmA

(u) + RmB
(u), RmαA(u) =

1

α
RmA

(u).
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1
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Remark 3. We call the operation (m,m′) 7→ m⊗m′ quantized
free convolution.

It replaces the free convolution when one replaces random matrices
with representations of classical Lie groups.

There is a way to degenerate quantized free convolution into
(conventional) free convolution.
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q.FC → Free Convolution
Quantized free convolution can be degenerated into free
convolution.
1. “Semiclassical limit” : Large representations of a (fixed) Lie

group behave as group-invariant measures on (dual to) the Lie
algebra. (N is kept finite)

2. Limit transition between quantized free convolution and free
convolution by measure scaling:

lim
L→+∞

Rquant
m·L

(
z
L

)
L

= Rm(z),

(m · L)(A) = m (A/L) , A ⊂ R, L > 0.
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Quantized Free Convolution

Rquant
m (z) = Rm(z)− Ru[0,1](z)

Rquant
m1⊗m2(z) = Rquant

m1 (z) + Rquant
m2 (z)

Can we guess the appearance of u[0, 1]?

The following heuristics is due to Biane.

Rm1(z) + Rm2(z) = Rm1⊗m2(z) + Ru[0,1](z)

χλ(U) = TraceTλ(U) = sλ(u1, . . . , uN) =
det
(
u
λj+N−j
i

)N
i ,j=1∏

i<j(ui − uj)
,

sλ1(u1, . . . , uN) · sλ2(u1, . . . , uN) ≈ sµ(u1, . . . , uN).

det

(
u
λ1j +N−j
i

)
· det

(
u
λ2j +N−j
i

)
≈ det

(
u
µj+N−j
i

)
· det

(
uN−ji

)
{
λ1,2j +N−j

N

}
→ m1,2,

{
µj+N−j

N

}
→ m1 ⊗m2,

{
N−j
N

}
→ u[0, 1].

This is only heuristics.
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Quantized Free Convolution and asymptotic freeness
The direct connection to free probability is restored if we slightly
change a point of view.

• Representation of the group U(N) of unitary matrices..
• .. can be extended to representation of GL(N,C) ..
• .. defines the representation of Lie algebra gl(N) ..
• Reminder: Lie algebra gl(N) is spanned by matrix units Eij ,
1 ≤ i , j ≤ N.

E.g. for N = 4 E23 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


• .. representation of gl(N) extends to the representation of the
associative universal envelopping algebra U(gl(N)).

• Reminder: Associative algebra U(gl(N)) is spanned by formal
generators Eij subject to

EijEkl − EklEij = δkj Eil − δliEkj .
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Quantized Free Convolution and asymptotic freeness

Definition. E(N) — N × N matrix over U(gl(N)).

E(N) =


E11 E12 . . . E1N

E21
. . . E2N

...
...

EN1 EN2 . . . ENN

 ∈ U(gl(N))⊗MatN×N

Lemma. (Perelomov–Popov–68) Center of U(gl(N)) is spanned by

Xp = Trace (E(N)p) =
N∑

i1,...,ip=1

Ei1i2Ei2i3 · · ·Eip i1

Later E(N) played an important role in representation theory.
It appears in our problem as well.
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Quantized Free Convolution and asymptotic freeness
Assumption. Suppose that for bounded piecewise continuous f , g

lim
N→∞

1

N

N∑
i=1

∣∣∣∣λi (N) + N − i

N
− f

(
i

N

)∣∣∣∣ = 0, sup
i ,N

∣∣∣∣λi (N)

N

∣∣∣∣ <∞
lim

N→∞

1

N

N∑
i=1

∣∣∣∣λ′i (N) + N − i

N
− g

(
i

N

)∣∣∣∣ = 0, sup
i ,N

∣∣∣∣λ′i (N)

N

∣∣∣∣ <∞.
Conjecture. Suppose E(λ;N) is E(N) acting in the first
component of Tλ(N) ⊗ Tλ′(N) and similarly for E(λ′;N). Then the
elements 1

N E(λ(N)) and 1
N E(λ′(N)) are asymptotically free.

(As elements of EndC(Tλ(N))⊗ EndC(Tλ′(N))⊗MatN×N .)

Theorem. (Bufetov–Gorin–2013) Asymptotically the measure describing
the spectrum of the sum 1

N E(λ(N)) + 1
N E(λ′(N)) is given by the free

convolution of those of 1
N E(λ(N)) and 1

N E(λ′(N)).

Remark. Related results appeared

• (Biane–1998) For representations of symmetric groups.

• (Biane–1996, Collins–Sniady-2009) For reps of U(N) with “very
thick” signatures, which are well-approximated by the random
matrix objects.
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Quantized Free Convolution and asymptotic freeness
Theorem. (Perelomov–Popov–1968) Description of the spectrum

TraceCNTraceTλ

(
1

N
E (λ(N))

)k

=

∫
R
xkdmPP [λ],

mPP [λ] =
1

N

N∑
i=1

∏
j 6=i

(λi − i)− (λj − j)− 1

(λi − i)− (λj − j)

 δ

(
λi + N − i

N

)
.

Recall that m[λ] = 1
N

∑N
i=1 δ

(
λi+N−i

N

)
.

Definition. ρ 7→ Q(ρ) is N →∞ limit of m[λ] 7→ mPP [λ].

Theorem. (Bufetov–Gorin) Q intertwines FC and qFC

Q(ρ1)� Q(ρ2) = Q(ρ1 ⊗ ρ2).



Quantized Free Convolution and asymptotic freeness
Theorem. (Perelomov–Popov–1968) Description of the spectrum

TraceCNTraceTλ

(
1

N
E (λ(N))

)k

=

∫
R
xkdmPP [λ],

mPP [λ] =
1

N

N∑
i=1

∏
j 6=i

(λi − i)− (λj − j)− 1

(λi − i)− (λj − j)

 δ

(
λi + N − i

N

)
.

Recall that m[λ] = 1
N

∑N
i=1 δ

(
λi+N−i

N

)
.

Definition. ρ 7→ Q(ρ) is N →∞ limit of m[λ] 7→ mPP [λ].

Theorem. (Bufetov–Gorin) Q intertwines FC and qFC

Q(ρ1)� Q(ρ2) = Q(ρ1 ⊗ ρ2).



Quantized Free Convolution and asymptotic freeness
Theorem. (Perelomov–Popov–1968) Description of the spectrum

TraceCNTraceTλ

(
1

N
E (λ(N))

)k

=

∫
R
xkdmPP [λ],

mPP [λ] =
1

N

N∑
i=1

∏
j 6=i

(λi − i)− (λj − j)− 1

(λi − i)− (λj − j)

 δ

(
λi + N − i

N

)
.

Recall that m[λ] = 1
N

∑N
i=1 δ

(
λi+N−i

N

)
.

Definition. ρ 7→ Q(ρ) is N →∞ limit of m[λ] 7→ mPP [λ].

Theorem. (Bufetov–Gorin) Q intertwines FC and qFC

Q(ρ1)� Q(ρ2) = Q(ρ1 ⊗ ρ2).



Quantized Free Convolution and asymptotic freeness
Theorem. (Perelomov–Popov–1968) Description of the spectrum

TraceCNTraceTλ

(
1

N
E (λ(N))

)k

=

∫
R
xkdmPP [λ],

mPP [λ] =
1

N

N∑
i=1

∏
j 6=i

(λi − i)− (λj − j)− 1

(λi − i)− (λj − j)

 δ

(
λi + N − i

N

)
.

Recall that m[λ] = 1
N

∑N
i=1 δ

(
λi+N−i

N

)
.

Definition. ρ 7→ Q(ρ) is N →∞ limit of m[λ] 7→ mPP [λ].

Theorem. (Bufetov–Gorin) Q intertwines FC and qFC

Q(ρ1)� Q(ρ2) = Q(ρ1 ⊗ ρ2).

In addition to being highly non-linear/non-trivial, ρ 7→ Q(ρ) is
injective, but not surjective. Thus q.FC and FC are not reduced
one to another.
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Theorem. (Perelomov–Popov–1968) Description of the spectrum
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Q is a relative of the map between Markov moment problem and
Hausdorff moment problem.



Further directions.

1. Characters of the infinite–dimensional unitary group U(∞)
and (quantized free convolution–) infinitely–divisible measures.

2. Perelomov–Popov operators and measures ←→ results of
Biane on operations on reps of S(n) and Kerov transition
measure.

3. Results for SO(2N + 1), Sp(2N), SO(2N): one needs to
double the signatures by reflection. (Mysterious identities.)

4. Restrictions of representations can be linked to random
lozenge tilings of planar domains.

5. Our methods: asymptotics of characters via integral
representations and steepest descent; use of differential
operators diagonalizable by characters.
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m and evaluate at xi = 1.
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.

(These are radial parts of certain elements of the center of
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Prob(µ).

Remark. An approach to study of measures through difference
operators was used in (Borodin–Corwin–2011+),
(Borodin–Corwin–Gorin–Shakirov–2013) in the framework of
Macdonald processes.
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Now the right side divided by Nkm approximates expectations of
the moments of (a priori random) limit measure.

E
(∫

xkm(dx)
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Asymptotic analysis of normalized polynomials in the left side is
based on integral representation (Gorin–Panova–2013).

sλ(x , 1
N−1)

sλ(1N)
=

(N − 1)!

(x − 1)N−1
1

2πi

∮
C

xz∏N
i=1(z − (λi + N − i))

dz ,

And classical steepest descent method for the analysis of∮
F (z) exp(NG (z))dz , N →∞



Our method
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=
∑
µ

(
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(µi + N − i)k

)m

Prob(µ).

Asymptotic analysis of normalized polynomials in the left side is
based on determinantal formulas of (Gorin–Panova–2013).

sλ(x1, . . . , xk , 1
N−k)

sλ(1N)
=

1∏
i<j(xi − xj)

k∏
i=1

(N − i)!

(xi − 1)N−k

× det

[(
xi
∂

∂xi

)k−j
]k
i ,j=1

 k∏
j=1

sλ(xj , 1
N−1)

sλ(1N)

(xj − 1)N−1

(N − 1)!

 ,
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Asymptotics of restrictions and tensor products of
representations of classical Lie groups as the dimension of the
group tends to infinity.

1. Concentration phenomena for random measures via deformed
free convolution and free projection.

2. “very thick” representations: Original free convolution and free
projection (semiclassical limit)

3. Conjectural asymptotic freeness of images of Perelomov–Popov
elements E(N) in irreducible representations.

4. Our analysis: novel integral formulas and determinantal
formulas for normalized symmetric polynomials of
representation–theoretic origin + use of differential operators.

The theory is intrinsically connected to 2d statistical mechanics
models, e.g. to lozenge tilings.
Alexey Bufetov, V.G., Representations of classical Lie groups
and quantized free convolution, arXiv:1311.5780



Summary
Asymptotics of restrictions and tensor products of
representations of classical Lie groups as the dimension of the
group tends to infinity.

1. Concentration phenomena for random measures via deformed
free convolution and free projection.

2. “very thick” representations: Original free convolution and free
projection (semiclassical limit)

3. Conjectural asymptotic freeness of images of Perelomov–Popov
elements E(N) in irreducible representations.

4. Our analysis: novel integral formulas and determinantal
formulas for normalized symmetric polynomials of
representation–theoretic origin + use of differential operators.

The theory is intrinsically connected to 2d statistical mechanics
models, e.g. to lozenge tilings.
Alexey Bufetov, V.G., Representations of classical Lie groups
and quantized free convolution, arXiv:1311.5780



Summary
Asymptotics of restrictions and tensor products of
representations of classical Lie groups as the dimension of the
group tends to infinity.

1. Concentration phenomena for random measures via deformed
free convolution and free projection.

2. “very thick” representations: Original free convolution and free
projection (semiclassical limit)

3. Conjectural asymptotic freeness of images of Perelomov–Popov
elements E(N) in irreducible representations.

4. Our analysis: novel integral formulas and determinantal
formulas for normalized symmetric polynomials of
representation–theoretic origin + use of differential operators.

The theory is intrinsically connected to 2d statistical mechanics
models, e.g. to lozenge tilings.
Alexey Bufetov, V.G., Representations of classical Lie groups
and quantized free convolution, arXiv:1311.5780



Summary
Asymptotics of restrictions and tensor products of
representations of classical Lie groups as the dimension of the
group tends to infinity.

1. Concentration phenomena for random measures via deformed
free convolution and free projection.

2. “very thick” representations: Original free convolution and free
projection (semiclassical limit)

3. Conjectural asymptotic freeness of images of Perelomov–Popov
elements E(N) in irreducible representations.

4. Our analysis: novel integral formulas and determinantal
formulas for normalized symmetric polynomials of
representation–theoretic origin + use of differential operators.

The theory is intrinsically connected to 2d statistical mechanics
models, e.g. to lozenge tilings.
Alexey Bufetov, V.G., Representations of classical Lie groups
and quantized free convolution, arXiv:1311.5780



Summary
Asymptotics of restrictions and tensor products of
representations of classical Lie groups as the dimension of the
group tends to infinity.

1. Concentration phenomena for random measures via deformed
free convolution and free projection.

2. “very thick” representations: Original free convolution and free
projection (semiclassical limit)

3. Conjectural asymptotic freeness of images of Perelomov–Popov
elements E(N) in irreducible representations.

4. Our analysis: novel integral formulas and determinantal
formulas for normalized symmetric polynomials of
representation–theoretic origin + use of differential operators.

The theory is intrinsically connected to 2d statistical mechanics
models, e.g. to lozenge tilings.
Alexey Bufetov, V.G., Representations of classical Lie groups
and quantized free convolution, arXiv:1311.5780



Summary
Asymptotics of restrictions and tensor products of
representations of classical Lie groups as the dimension of the
group tends to infinity.

1. Concentration phenomena for random measures via deformed
free convolution and free projection.

2. “very thick” representations: Original free convolution and free
projection (semiclassical limit)

3. Conjectural asymptotic freeness of images of Perelomov–Popov
elements E(N) in irreducible representations.

4. Our analysis: novel integral formulas and determinantal
formulas for normalized symmetric polynomials of
representation–theoretic origin + use of differential operators.

The theory is intrinsically connected to 2d statistical mechanics
models, e.g. to lozenge tilings.

Alexey Bufetov, V.G., Representations of classical Lie groups
and quantized free convolution, arXiv:1311.5780



Summary
Asymptotics of restrictions and tensor products of
representations of classical Lie groups as the dimension of the
group tends to infinity.

1. Concentration phenomena for random measures via deformed
free convolution and free projection.

2. “very thick” representations: Original free convolution and free
projection (semiclassical limit)

3. Conjectural asymptotic freeness of images of Perelomov–Popov
elements E(N) in irreducible representations.

4. Our analysis: novel integral formulas and determinantal
formulas for normalized symmetric polynomials of
representation–theoretic origin + use of differential operators.

The theory is intrinsically connected to 2d statistical mechanics
models, e.g. to lozenge tilings.
Alexey Bufetov, V.G., Representations of classical Lie groups
and quantized free convolution, arXiv:1311.5780


