Quantized free convolution via representations of classical Lie groups.

Vadim Gorin MIT (Cambridge) and IITP (Moscow)

March, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Overview

Classical real Lie groups

- unitary matrices U(N)
- orthogonal SO(2N+1)
- symplectic Sp(2N)
- orthogonal SO(2N)

All depend on an integral parameter *N*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Overview

Classical real Lie groups

- unitary matrices U(N)
- orthogonal SO(2N+1)
- symplectic Sp(2N)
- orthogonal SO(2N)

All depend on an integral parameter N.

ション ふゆ く 山 マ チャット しょうくしゃ

What can we say about their irreducible representations when $N \gg 1$?

For example, what about

A Restrictions to subgroups (e.g. $U(k) \subset U(N)$)

- Of finite rank
- Of growing rank

B Tensor products

Overview

Classical real Lie groups

- unitary matrices U(N)
- orthogonal SO(2N+1)
- symplectic Sp(2N)
- orthogonal SO(2N)

All depend on an integral parameter N.

What can we say about their irreducible representations when $N \gg 1$?

For example, what about

A Restrictions to subgroups (e.g. $U(k) \subset U(N)$)

- Of finite rank
- Of growing rank

B Tensor products

Semistandard Young tableaux

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Littlewood-Richardson coefficients

Irreducible representations and characters of U(N)

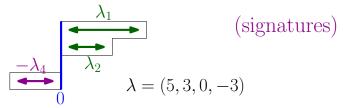
U(N) — group of all $N \times N$ unitary matrices. T — representation of U(N), i.e. homomorphism

 $T: U(N) \mapsto GL(V).$

ション ふゆ アメリア メリア しょうくの

T is irreducible if V has no nontrivial U(N)-invariant subspaces.

Irreducible representations and characters of U(N)Theorem. (E. Cartan, H. Weyl, 1920s) Irreducible representations of U(N) are parameterized by *N*-tuples of integers $\lambda = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N$.



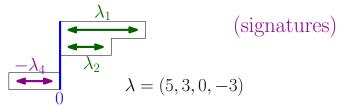
The character of representation T_{λ} is given by

$$\chi_{\lambda}(U) = \operatorname{Trace} T_{\lambda}(U) = s_{\lambda}(u_1, \dots, u_N) = \frac{\det \left(u_i^{\lambda_j + N - j}\right)_{i,j=1}^N}{\prod_{i < j} (u_i - u_j)},$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

where u_i are eigenvalues of unitary matrix U.

Irreducible representations and characters of U(N)Theorem. (E. Cartan, H. Weyl, 1920s) Irreducible representations of U(N) are parameterized by *N*-tuples of integers $\lambda = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N$.



The character of representation T_{λ} is given by

$$\chi_{\lambda}(U) = \operatorname{Trace} T_{\lambda}(U) = s_{\lambda}(u_1, \dots, u_N) = \frac{\operatorname{det} \left(u_i^{\lambda_j + N - j}\right)_{i,j=1}^N}{\prod_{i < j} (u_i - u_j)},$$

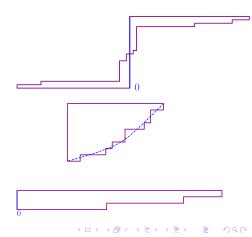
where u_i are eigenvalues of unitary matrix U. **Remark**. Very similar formulas exist for groups Sp(2N) and SO(N). All later results are also proved for these groups as well.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

We want signature $\lambda = \lambda(N)$ to somehow grow as $N \to \infty$.

1. The rows stabilize except for the tail of 0s. ("finite" signatures)

2. *Some* of the rows grow linearly. ("thin" signatures)

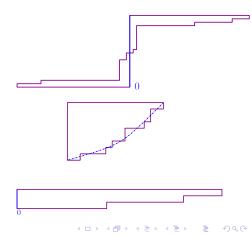


3. All rows grow linearly in *N*. ("thick" signatures)

4. Rows grow superlinearly, i.e. $\lambda_i(N) \gg N$. ("very thick" signatures)

1. ("finite" signatures) Degeneration into the symmetric group. (Schur-Weyl duality)

2. *Some* of the rows grow linearly. ("thin" signatures)



3. All rows grow linearly in *N*. ("thick" signatures)

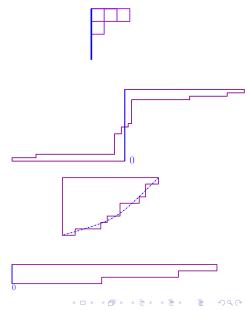
4. Rows grow superlinearly, i.e. $\lambda_i(N) \gg N$. ("very thick" signatures)

1. ("finite" signatures) Degeneration into the symmetric group. (Schur–Weyl duality)

2. ("thin" signatures) Representation theory of $U(\infty)$. (Voiculescu, Vershik–Kerov, etc)

3. All rows grow linearly in *N*. ("thick" signatures)

4. Rows grow superlinearly, i.e. $\lambda_i(N) \gg N$. ("very thick" signatures)



1. ("finite" signatures) Degeneration into the symmetric group. (Schur–Weyl duality)

2. ("thin" signatures) Representation theory of $U(\infty)$. (Voiculescu, Vershik–Kerov, etc)

3. All rows grow linearly in *N*. ("thick" signatures)

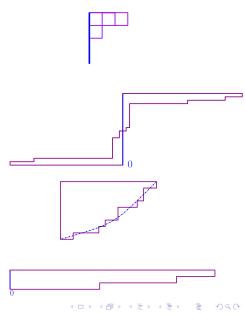
4. ("very thick" signatures) "Semiclassical limit" to RMT. (Biane, Collins–Sniady)

1. ("finite" signatures) Degeneration into the symmetric group. (Schur–Weyl duality)

2. ("thin" signatures) Representation theory of $U(\infty)$. (Voiculescu, Vershik–Kerov, etc)

 All rows grow linearly in N. ("thick" signatures)
 Our topic today

4. ("very thick" signatures) "Semiclassical limit" to RMT. (Biane, Collins–Sniady)



Our limit regime for today

All rows grow linearly in *N*. Rescaled profile approximates a **limit shape**.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Preserves natural symmetry between rows and columns
- No degeneration to S(n), random matrices or $U(\infty)$.
- Connections to statistical mechanics models: lozenge tilings, six-vertex model, percolation in a strip.

All rows grow linearly in *N*. Rescaled profile approximates a **limit shape**.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э

$$T_{\lambda(N)}\otimes\,T_{\lambda'(N)}=igoplus_{\mu}c_{\mu}^{\lambda(N),\lambda'(N)}\,T_{\mu}$$

How does signature of typical irreducible component look like?

All rows grow linearly in *N*. Rescaled profile approximates a **limit shape**.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э

$$T_{\lambda(N)}\otimes T_{\lambda'(N)} = igoplus_{\mu} c_{\mu}^{\lambda(N),\lambda'(N)} T_{\mu}$$

How does signature of typical irreducible component look like?

$$\operatorname{Prob}(\mu) = \frac{c_{\mu}^{\lambda(N),\lambda'(N)} \operatorname{dim}(\mu)}{\operatorname{dim}(\lambda(N)) \operatorname{dim}(\lambda'(N))}.$$

$$T_{\lambda(N)} \otimes T_{\lambda'(N)} = \bigoplus_{\mu} c_{\mu}^{\lambda(N),\lambda'(N)} T_{\mu}$$
$$\operatorname{Prob}(\mu) = \frac{c_{\mu}^{\lambda(N),\lambda'(N)} \operatorname{dim}(\mu)}{\operatorname{dim}(\lambda(N)) \operatorname{dim}(\lambda'(N))}.$$

Assumption. Suppose that for bounded piecewise continuous f, g

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\lambda_i(N) + N - i}{N} - f\left(\frac{i}{N}\right) \right| = 0, \qquad \sup_{i,N} \left| \frac{\lambda_i(N)}{N} \right| < \infty$$
$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\lambda_i'(N) + N - i}{N} - g\left(\frac{i}{N}\right) \right| = 0, \qquad \sup_{i,N} \left| \frac{\lambda_i'(N)}{N} \right| < \infty.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$T_{\lambda(N)} \otimes T_{\lambda'(N)} = \bigoplus_{\mu} c_{\mu}^{\lambda(N),\lambda'(N)} T_{\mu}$$
$$\operatorname{Prob}(\mu) = \frac{c_{\mu}^{\lambda(N),\lambda'(N)} \operatorname{dim}(\mu)}{\operatorname{dim}(\lambda(N)) \operatorname{dim}(\lambda'(N))}.$$

Assumption. Suppose that for bounded piecewise continuous f, g

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\lambda_i(N) + N - i}{N} - f\left(\frac{i}{N}\right) \right| = 0, \qquad \sup_{i,N} \left| \frac{\lambda_i(N)}{N} \right| < \infty$$
$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\lambda_i'(N) + N - i}{N} - g\left(\frac{i}{N}\right) \right| = 0, \qquad \sup_{i,N} \left| \frac{\lambda_i'(N)}{N} \right| < \infty.$$

Theorem. (Bufetov–Gorin–2013) Then (scaled by N) random profile of μ converges to the deterministic function h.

$$T_{\lambda(N)} \otimes T_{\lambda'(N)} = \bigoplus_{\mu} c_{\mu}^{\lambda(N),\lambda'(N)} T_{\mu}$$
$$\operatorname{Prob}(\mu) = \frac{c_{\mu}^{\lambda(N),\lambda'(N)} \operatorname{dim}(\mu)}{\operatorname{dim}(\lambda(N)) \operatorname{dim}(\lambda'(N))}.$$

Assumption. Suppose that for bounded piecewise continuous f, g

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\lambda_i(N) + N - i}{N} - f\left(\frac{i}{N}\right) \right| = 0, \qquad \sup_{i,N} \left| \frac{\lambda_i(N)}{N} \right| < \infty$$
$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\lambda_i'(N) + N - i}{N} - g\left(\frac{i}{N}\right) \right| = 0, \qquad \sup_{i,N} \left| \frac{\lambda_i'(N)}{N} \right| < \infty.$$

Theorem. (Bufetov–Gorin–2013) Then (scaled by *N*) random profile of μ converges to the deterministic function *h*.

The convergence and the operation $(f,g) \mapsto h$ will be explained.

$$T_{\lambda(N)}\Big|_{U(k)} = \bigoplus_{\mu} c_{\mu}^{\lambda(N)} T_{\mu} \quad \to \quad \operatorname{Prob}(\mu) = \frac{c_{\mu}^{\lambda(N)} \operatorname{dim}(\mu)}{\operatorname{dim}(\lambda(N))}.$$
$$N \to \infty. \quad 1) \ k \text{ is fixed.} \quad 2)k = \alpha N.$$

Assumption. Suppose that for bounded piecewise continuous f

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^{N}\left|\frac{\lambda_i(N)+N-i}{N}-f\left(\frac{i}{N}\right)\right|=0,\qquad \sup_{i,N}\left|\frac{\lambda_i(N)}{N}\right|<\infty$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$$T_{\lambda(N)} \bigg|_{U(k)} = \bigoplus_{\mu} c_{\mu}^{\lambda(N)} T_{\mu} \quad \to \quad \operatorname{Prob}(\mu) = \frac{c_{\mu}^{\lambda(N)} \operatorname{dim}(\mu)}{\operatorname{dim}(\lambda(N))}$$
$$N \to \infty. \quad 1) \ k \text{ is fixed.} \quad 2)k = \alpha N.$$

Assumption. Suppose that for bounded piecewise continuous f

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^{N}\left|\frac{\lambda_i(N)+N-i}{N}-f\left(\frac{i}{N}\right)\right|=0,\qquad \sup_{i,N}\left|\frac{\lambda_i(N)}{N}\right|<\infty$$

Theorem. (Gorin-Panova-2013, Bufetov-Gorin-2013) Then (scaled by *N*) random profile of μ converges to the deterministic 1. Constant $-\frac{1}{2} + \int_0^1 f(t)dt$ if *k* is fixed. 2. Limit profile f_{α} if $k = \alpha N$.

うして ふゆう ふほう ふほう うらつ

The convergence and the operation $f \mapsto f_{\alpha}$ will be explained.

Assumption. Suppose that for bounded piecewise continuous f

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^{N}\left|\frac{\lambda_i(N)+N-i}{N}-f\left(\frac{i}{N}\right)\right|=0,\qquad \sup_{i,N}\left|\frac{\lambda_i(N)}{N}\right|<\infty$$

Theorem. (Gorin–Panova–2013, Bufetov–Gorin–2013) Then (scaled by N) random profile of μ converges to the deterministic

- 1. Constant $-\frac{1}{2} + \int_0^1 f(t) dt$ if k is fixed.
- 2. Limit profile f_{α} if $k = \alpha N$.

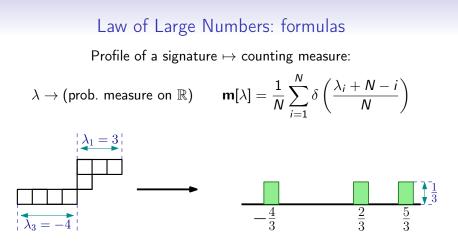
The convergence and the operation $f \mapsto f_{\alpha}$ will be explained.

Remark. For restrictions (but not for tensor products!) concentration of measure can be also deduced from the variational principle of Cohn–Kenyon–Propp and Kenyon–Okounkov–Sheffield for random lozenge tilings.

Law of Large Numbers: formulas

Our aim is to explain the operations $(f,g) \mapsto h$ and $f \mapsto f_{\alpha}$ on the limit profiles, arising from tensor products and restrictions, respectively.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()



The convergence of $\lambda(N)$ to f implies weak convergence of $\mathbf{m}[\lambda(N)]$ to the limit measure $\mathbf{m}[f]$.

Remark. This definition *depends* on the group. We present the case of the unitary group U(N) here.

うして ふゆう ふほう ふほう うらつ

Law of Large Numbers: formulas

The convergence of $\lambda(N)$ to f implies weak convergence of $\mathbf{m}[\lambda(N)]$ to the limit measure $\mathbf{m}[f]$.

$$m_k(\mathbf{m}) = \int_{\mathbb{R}} x^k \mathbf{m}(dx).$$

$$S_{\mathbf{m}(u)} = z + m_1(\mathbf{m})z^2 + m_2(\mathbf{m})z^3 + \dots,$$

$$R_{\mathbf{m}}^{quant}(u) = \frac{1}{(S_{\mathbf{m}}(u))^{-1}} - \frac{1}{1 - e^{-u}},$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Law of Large Numbers: formulas

The convergence of $\lambda(N)$ to f implies weak convergence of $\mathbf{m}[\lambda(N)]$ to the limit measure $\mathbf{m}[f]$.

$$m_k(\mathbf{m}) = \int_{\mathbb{R}} x^k \mathbf{m}(dx).$$

$$S_{\mathbf{m}(u)} = z + m_1(\mathbf{m})z^2 + m_2(\mathbf{m})z^3 + \dots,$$

$$R_{\mathbf{m}}^{quant}(u) = \frac{1}{(S_{\mathbf{m}}(u))^{-1}} - \frac{1}{1 - e^{-u}},$$

Remark. $R_{\mathbf{m}}^{quant}(u) = R_{\mathbf{m}}(u) + \frac{1}{u} - \frac{1}{1-e^{-u}},$ where $R_{\mathbf{m}}(u)$ is Voiculescu *R*-function (a free probability analogue of characteristic function) and $\frac{1}{1-e^{-u}} - \frac{1}{u}$ is *R*-function for the uniform measure on [0, 1].

$$T_{\lambda(N)} \otimes T_{\lambda'(N)} = \bigoplus_{\mu} c_{\mu}^{\lambda(N),\lambda'(N)} T_{\mu} \quad \rightarrow$$
$$\operatorname{Prob}(\mu) = \frac{c_{\mu}^{\lambda(N),\lambda'(N)} \operatorname{dim}(\mu)}{\operatorname{dim}(\lambda(N)) \operatorname{dim}(\lambda'(N))}.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$T_{\lambda(N)} \otimes T_{\lambda'(N)} = \bigoplus_{\mu} c_{\mu}^{\lambda(N),\lambda'(N)} T_{\mu} \quad \rightarrow$$
$$\operatorname{Prob}(\mu) = \frac{c_{\mu}^{\lambda(N),\lambda'(N)} \dim(\mu)}{\dim(\lambda(N)) \dim(\lambda'(N))}.$$

Theorem. (Bufetov–Gorin–2013) Suppose that $\lambda(N)$, $\lambda'(N)$ converge to the limit profiles encoded by the measures \mathbf{m} , \mathbf{m}' . Then the random probability measure corresponding to μ converges to the deterministic measure $\mathbf{m} \otimes \mathbf{m}'$, such that

$$R_{\mathbf{m}\otimes\mathbf{m}'}^{quant}(u) = R_{\mathbf{m}}^{quant}(u) + R_{\mathbf{m}'}^{quant}(u).$$

(日) (伊) (日) (日) (日) (0) (0)

$$T_{\lambda(N)}\Big|_{U(k)} = \bigoplus_{\mu} c_{\mu}^{\lambda(N)} T_{\mu} \quad \to \quad \operatorname{Prob}(\mu) = \frac{c_{\mu}^{\lambda(N)} \operatorname{dim}(\mu)}{\operatorname{dim}(\lambda(N))},$$
$$N \to \infty, \ k = \alpha N.$$

Theorem. Suppose that $\lambda(N)$ converges to the limit profile encoded by the measure **m**. Then the **random probability measure** corresponding to μ (scaled by αN) converges to the **deterministic measure** \mathbf{m}_{α} , such that

$$R_{\mathbf{m}_{\alpha}}^{quant}(u) = \frac{1}{\alpha} R_{\mathbf{m}}^{quant}(u).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Law of Large Numbers for Restrictions: example.

Restrictions of rep. with signature $\lambda(N) = ((N/2)^{N/2}, 0^{N/2})$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

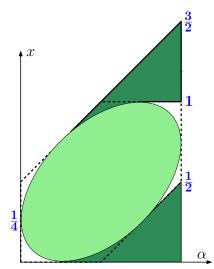
Law of Large Numbers for Restrictions: example.

Restrictions of rep. with signature $\lambda(N) = ((N/2)^{N/2}, 0^{N/2})$.

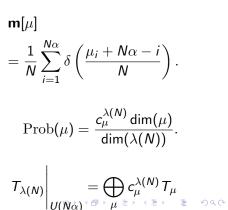
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \mathbf{m}_1 has density 1 on [0, 1/2] and [1, 3/2].

Law of Large Numbers for Restrictions: example. Restrictions of rep. with signature $\lambda(N) = ((N/2)^{N/2}, 0^{N/2})$.



Plot of support of pushforward of $\alpha \mathbf{m}_{\alpha}$ under $x \mapsto \alpha x$, i.e. limit for the random measure



Law of Large Numbers for Restrictions: example. Restrictions of rep. with signature $\lambda(N) = ((N/2)^{N/2}, 0^{N/2}).$

 \boldsymbol{m}_1 has density 1 on [0,1/2] and [1,3/2].

For 0 < lpha < 1, density of \mathbf{m}_{lpha} is

$$\begin{cases} 0, & x > 1 + \frac{1}{2\alpha}, \\ 1, & x < 1 + \frac{1}{2\alpha}, x > \frac{1}{\alpha}, \\ 1, & x > 0, x < 1 - \frac{1}{2\alpha}, \\ 0, & x < 0, \\ \frac{1}{\pi} \arccos(\phi), \quad \text{otherwise.} \end{cases}$$

$$\phi = \frac{3/4 - (1 - \alpha x)((\frac{1}{2} + \alpha) - \alpha x) - \alpha x(\alpha x + (\frac{1}{2} - \alpha))}{2\sqrt{\alpha x(1 - \alpha x)((\frac{1}{2} + \alpha)1 - \alpha x)(\alpha x + (\frac{1}{2} - \alpha))}}.$$

(\$\phi\$ is set to 0 or \$\pi\$ if argument is out of [-1, 1])

Tensor products and restrictions

Summary. (Bufetov–Gorin–2013) As $N \to \infty$ the random probability measures corresponding to tensor products and restrictions to smaller subgroups of irreducible representations of U(N) converges to deterministic measures $\mathbf{m} \otimes \mathbf{m}'$, \mathbf{m}_{α} , such that

$$R_{\mathbf{m}\otimes\mathbf{m}'}^{quant}(u) = R_{\mathbf{m}}^{quant}(u) + R_{\mathbf{m}'}^{quant}(u), \qquad R_{\mathbf{m}_{\alpha}}^{quant}(u) = rac{1}{lpha} R_{\mathbf{m}}^{quant}(u).$$

うして ふゆう ふほう ふほう うらつ

Tensor products and restrictions

Summary. (Bufetov–Gorin–2013) As $N \to \infty$ the random probability measures corresponding to tensor products and restrictions to smaller subgroups of irreducible representations of U(N) converges to deterministic measures $\mathbf{m} \otimes \mathbf{m}'$, \mathbf{m}_{α} , such that

$$R^{quant}_{\mathbf{m}\otimes\mathbf{m}'}(u) = R^{quant}_{\mathbf{m}}(u) + R^{quant}_{\mathbf{m}'}(u), \qquad R^{quant}_{\mathbf{m}_{\alpha}}(u) = rac{1}{lpha} R^{quant}_{\mathbf{m}}(u).$$

Remark 1. Tensor powers are related to restrictions through

$$\mathbf{m}^{\otimes k} = \mathbf{m}_{1/k}$$

うして ふゆう ふほう ふほう うらつ

Tensor products and restrictions

Summary. (Bufetov–Gorin–2013) As $N \to \infty$ the random probability measures corresponding to tensor products and restrictions to smaller subgroups of irreducible representations of U(N) converges to deterministic measures $\mathbf{m} \otimes \mathbf{m}'$, \mathbf{m}_{α} , such that

$$R_{\mathbf{m}\otimes\mathbf{m}'}^{quant}(u) = R_{\mathbf{m}}^{quant}(u) + R_{\mathbf{m}'}^{quant}(u), \qquad R_{\mathbf{m}_{\alpha}}^{quant}(u) = \frac{1}{\alpha}R_{\mathbf{m}}^{quant}(u).$$

Remark 2. The linearization function R^{quant} is not unique. One of its forms can be guessed as a limit

$$\lim_{\mathsf{V}\to\infty}\frac{1}{\mathsf{N}}\log\left(\frac{s_{\lambda(\mathsf{N})}(x,1^{\mathsf{N}-1})}{s_{\lambda(\mathsf{N})}(1^{\mathsf{N}})}\right)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

computed in (Guionnet-Maida-2005), (Gorin-Panova-2013).

Summary. (Bufetov–Gorin–2013) As $N \to \infty$ the random probability measures corresponding to tensor products and restrictions to smaller subgroups of irreducible representations of U(N) converges to deterministic measures $\mathbf{m} \otimes \mathbf{m}'$, \mathbf{m}_{α} , such that

$$R_{\mathbf{m}\otimes\mathbf{m}'}^{quant}(u) = R_{\mathbf{m}}^{quant}(u) + R_{\mathbf{m}'}^{quant}(u), \qquad R_{\mathbf{m}_{\alpha}}^{quant}(u) = \frac{1}{\alpha} R_{\mathbf{m}}^{quant}(u).$$

Remark 3. (Borodin–Bufetov–Olshanski–2013) In the context of the limit shape theorem for the restrictions of characters of the **infinite–dimensional** unitary group $U(\infty)$ the same operation on the measures corresponds to the unions of the Voiculescu parameters for extreme characters.

Tensor products and restrictions

Summary. (Bufetov–Gorin–2013) As $N \to \infty$ the random probability measures corresponding to tensor products and restrictions to smaller subgroups of irreducible representations of U(N) converges to deterministic measures $\mathbf{m} \otimes \mathbf{m}'$, \mathbf{m}_{α} , such that

$$R_{\mathbf{m}\otimes\mathbf{m}'}^{quant}(u) = R_{\mathbf{m}}^{quant}(u) + R_{\mathbf{m}'}^{quant}(u), \qquad R_{\mathbf{m}_{\alpha}}^{quant}(u) = \frac{1}{lpha} R_{\mathbf{m}}^{quant}(u).$$

Remark 4. We call the operation $(m, m') \mapsto m \otimes m'$ quantized free convolution. Why?

ション ふゆ く 山 マ チャット しょうくしゃ

Free Convolution

Let A[N] and B[N] be independent *uniformly random* Hermitian matrices with fixed eigenvalues $\{a_i[N]\}, \{b_i[N]\}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Free Convolution

Let A[N] and B[N] be independent *uniformly random* Hermitian matrices with fixed eigenvalues $\{a_i[N]\}, \{b_i[N]\}$. **Theorem–Definition.** (Following Voiculescu and others) Suppose

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N\delta(a_i[N])\to\mathbf{m}_A,\quad \lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N\delta(b_i[N])\to\mathbf{m}_B,$$

Let C[N] = A[N] + B[N] and $D_{\alpha}[N] =$ "top left αN corner of A[N], then their spectral measures converge to deterministic free convolution $\mathbf{m}_A \boxplus \mathbf{m}_B$ and free projection $\mathbf{m}_{\alpha A}$. Moreover,

$$R_{\mathbf{m}_{A}\boxplus\mathbf{m}_{B}}(u) = R_{\mathbf{m}_{A}}(u) + R_{\mathbf{m}_{B}}(u), \quad R_{\mathbf{m}_{\alpha A}}(u) = \frac{1}{\alpha}R_{\mathbf{m}_{A}}(u).$$

Tensor products and restrictions

Summary. (Bufetov–Gorin–2013) As $N \to \infty$ the random probability measures corresponding to tensor products and restrictions to smaller subgroups of irreducible representations of U(N) converges to deterministic measures $\mathbf{m} \otimes \mathbf{m}'$, \mathbf{m}_{α} , such that

$$R_{\mathbf{m}\otimes\mathbf{m}'}^{quant}(u) = R_{\mathbf{m}}^{quant}(u) + R_{\mathbf{m}'}^{quant}(u), \qquad R_{\mathbf{m}_{\alpha}}^{quant}(u) = \frac{1}{\alpha} R_{\mathbf{m}}^{quant}(u).$$

Remark 3. We call the operation $(\mathbf{m}, \mathbf{m}') \mapsto \mathbf{m} \otimes \mathbf{m}'$ quantized free convolution.

It replaces the free convolution when one replaces random matrices with representations of classical Lie groups.

ション ふゆ く 山 マ チャット しょうくしゃ

Tensor products and restrictions

Summary. (Bufetov–Gorin–2013) As $N \to \infty$ the random probability measures corresponding to tensor products and restrictions to smaller subgroups of irreducible representations of U(N) converges to deterministic measures $\mathbf{m} \otimes \mathbf{m}'$, \mathbf{m}_{α} , such that

$$R_{\mathbf{m}\otimes\mathbf{m}'}^{quant}(u) = R_{\mathbf{m}}^{quant}(u) + R_{\mathbf{m}'}^{quant}(u), \qquad R_{\mathbf{m}_{\alpha}}^{quant}(u) = \frac{1}{\alpha} R_{\mathbf{m}}^{quant}(u).$$

Remark 3. We call the operation $(\mathbf{m}, \mathbf{m}') \mapsto \mathbf{m} \otimes \mathbf{m}'$ quantized free convolution.

It replaces the free convolution when one replaces random matrices with representations of classical Lie groups.

There is a way to **degenerate** quantized free convolution into (conventional) free convolution.

$\mathsf{q}.\mathsf{FC}\to\mathsf{Free}\ \mathsf{Convolution}$

Quantized free convolution can be degenerated into free convolution.

1. "Semiclassical limit": Large representations of a (fixed) Lie group behave as group-invariant measures on (dual to) the Lie algebra. (*N* is kept finite)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

$\mathsf{q}.\mathsf{FC}\to\mathsf{Free}\ \mathsf{Convolution}$

Quantized free convolution can be degenerated into free convolution.

- 1. "Semiclassical limit": Large representations of a (fixed) Lie group behave as group-invariant measures on (dual to) the Lie algebra. (*N* is kept finite)
- 2. Limit transition between quantized free convolution and free convolution by measure scaling:

$$\lim_{L \to +\infty} \frac{R_{\mathbf{m} \cdot L}^{quant}\left(\frac{z}{L}\right)}{L} = R_{\mathbf{m}}(z),$$
$$(\mathbf{m} \cdot L)(A) = \mathbf{m} (A/L), \quad A \subset \mathbb{R}, \quad L > 0.$$

$\mathsf{q}.\mathsf{FC}\to\mathsf{Free}\ \mathsf{Convolution}$

Quantized free convolution can be degenerated into free convolution.

- 1. "Semiclassical limit": Large representations of a (fixed) Lie group behave as group-invariant measures on (dual to) the Lie algebra. (*N* is kept finite)
- 2. Limit transition between quantized free convolution and free convolution by measure scaling:

$$\lim_{L\to+\infty}\frac{R_{\mathbf{m}\cdot L}^{quant}\left(\frac{z}{L}\right)}{L}=R_{\mathbf{m}}(z),$$

$$(\mathbf{m} \cdot L)(A) = \mathbf{m} (A/L), \quad A \subset \mathbb{R}, \quad L > 0.$$

 Law of Large Numbers for tensor products of representations with superlinearly growing ("very thick") signatures (Biane-1996, Collins-Sniady-2009).

$$R_{\mathbf{m}}^{quant}(z) = R_{\mathbf{m}}(z) - R_{u[0,1]}(z)$$

 $R_{m^1 \otimes m^2}^{quant}(z) = R_{m^1}^{quant}(z) + R_{m^2}^{quant}(z)$ Can we guess the appearance of u[0, 1]? The following heuristics is due to Biane.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$R_{\mathbf{m}}^{quant}(z) = R_{\mathbf{m}}(z) - R_{u[0,1]}(z)$$

$$R_{\mathbf{m}^1\otimes\mathbf{m}^2}^{quant}(z) = R_{\mathbf{m}^1}^{quant}(z) + R_{\mathbf{m}^2}^{quant}(z)$$

$$R_{\mathbf{m}^1}(z) + R_{\mathbf{m}^2}(z) = R_{\mathbf{m}^1 \otimes \mathbf{m}^2}(z) + R_{u[0,1]}(z)$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$R_{\mathbf{m}}^{quant}(z) = R_{\mathbf{m}}(z) - R_{u[0,1]}(z)$$

$$R_{\mathbf{m}^1}(z) + R_{\mathbf{m}^2}(z) = R_{\mathbf{m}^1 \otimes \mathbf{m}^2}(z) + R_{u[0,1]}(z)$$

$$\chi_{\lambda}(U) = \operatorname{Trace} T_{\lambda}(U) = s_{\lambda}(u_1, \dots, u_N) = \frac{\operatorname{det} \left(u_i^{\lambda_j + N - j}\right)_{i,j=1}^N}{\prod_{i < j} (u_i - u_j)},$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$R_{\mathbf{m}}^{quant}(z) = R_{\mathbf{m}}(z) - R_{u[0,1]}(z)$$

$$R_{\mathbf{m}^1}(z) + R_{\mathbf{m}^2}(z) = R_{\mathbf{m}^1 \otimes \mathbf{m}^2}(z) + R_{u[0,1]}(z)$$

$$\chi_{\lambda}(U) = \operatorname{Trace} T_{\lambda}(U) = s_{\lambda}(u_1, \dots, u_N) = \frac{\operatorname{det} \left(u_i^{\lambda_j + N - j}\right)_{i,j=1}^N}{\prod_{i < j} (u_i - u_j)},$$
$$s_{\lambda^1}(u_1, \dots, u_N) \cdot s_{\lambda^2}(u_1, \dots, u_N) \approx s_{\mu}(u_1, \dots, u_N).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

$$R_{\mathbf{m}}^{quant}(z) = R_{\mathbf{m}}(z) - R_{u[0,1]}(z)$$

$$R_{\mathbf{m}^{1}}(z) + R_{\mathbf{m}^{2}}(z) = R_{\mathbf{m}^{1} \otimes \mathbf{m}^{2}}(z) + R_{u[0,1]}(z)$$

$$\chi_{\lambda}(U) = \operatorname{Trace} T_{\lambda}(U) = s_{\lambda}(u_1, \dots, u_N) = \frac{\operatorname{det} \left(u_i^{\lambda_j + N - j}\right)_{i,j=1}^N}{\prod_{i < j} (u_i - u_j)},$$

$$s_{\lambda^1}(u_1,\ldots,u_N)\cdot s_{\lambda^2}(u_1,\ldots,u_N)\approx s_{\mu}(u_1,\ldots,u_N).$$

$$\det\left(u_{i}^{\lambda_{j}^{1}+N-j}\right)\cdot\det\left(u_{i}^{\lambda_{j}^{2}+N-j}\right)\approx\det\left(u_{i}^{\mu_{j}+N-j}\right)\cdot\det\left(u_{i}^{N-j}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

$$R_{\mathbf{m}}^{quant}(z) = R_{\mathbf{m}}(z) - R_{u[0,1]}(z)$$

$$R_{\mathbf{m}^{1}}(z) + R_{\mathbf{m}^{2}}(z) = R_{\mathbf{m}^{1} \otimes \mathbf{m}^{2}}(z) + R_{u[0,1]}(z)$$

$$\chi_{\lambda}(U) = \operatorname{Trace} T_{\lambda}(U) = s_{\lambda}(u_1, \ldots, u_N) = \frac{\operatorname{det} \left(u_i^{\lambda_j + N - j}\right)_{i,j=1}^N}{\prod_{i < j} (u_i - u_j)},$$

$$s_{\lambda^1}(u_1,\ldots,u_N)\cdot s_{\lambda^2}(u_1,\ldots,u_N)\approx s_{\mu}(u_1,\ldots,u_N).$$

$$\det\left(u_{i}^{\lambda_{j}^{1}+N-j}\right)\cdot\det\left(u_{i}^{\lambda_{j}^{2}+N-j}\right)\approx\det\left(u_{i}^{\mu_{j}+N-j}\right)\cdot\det\left(u_{i}^{N-j}\right)$$
$$\left\{\frac{\lambda_{j}^{1,2}+N-j}{N}\right\}\rightarrow\mathbf{m}^{1,2},\ \left\{\frac{\mu_{j}+N-j}{N}\right\}\rightarrow\mathbf{m}^{1}\otimes\mathbf{m}^{2},\ \left\{\frac{N-j}{N}\right\}\rightarrow\mathbf{u}[0,1].$$

$$R_{\mathbf{m}}^{quant}(z) = R_{\mathbf{m}}(z) - R_{u[0,1]}(z)$$

$$R_{\mathbf{m}^1}(z) + R_{\mathbf{m}^2}(z) = R_{\mathbf{m}^1 \otimes \mathbf{m}^2}(z) + R_{u[0,1]}(z)$$

$$\chi_{\lambda}(U) = \operatorname{Trace} T_{\lambda}(U) = s_{\lambda}(u_1, \dots, u_N) = \frac{\operatorname{det} \left(u_i^{\lambda_j + N - j}\right)_{i,j=1}^N}{\prod_{i < j} (u_i - u_j)},$$

$$s_{\lambda^1}(u_1,\ldots,u_N) \cdot s_{\lambda^2}(u_1,\ldots,u_N) \approx s_{\mu}(u_1,\ldots,u_N).$$

$$\det \left(u_i^{\lambda_j^1 + N - j} \right) \cdot \det \left(u_i^{\lambda_j^2 + N - j} \right) \approx \det \left(u_i^{\mu_j + N - j} \right) \cdot \det \left(u_i^{N - j} \right)$$
$$\left\{ \frac{\lambda_j^{1, 2} + N - j}{N} \right\} \rightarrow \mathbf{m}^{1, 2}, \left\{ \frac{\mu_j + N - j}{N} \right\} \rightarrow \mathbf{m}^1 \otimes \mathbf{m}^2, \left\{ \frac{N - j}{N} \right\} \rightarrow u[0, 1].$$
$$\mathbf{This is only heuristics} = \mathbf{h} \cdot \mathbf{h} \in \mathbb{R}$$

Quantized Free Convolution and asymptotic freeness The direct connection to free probability is restored if we slightly change a point of view.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Representation of the group U(N) of unitary matrices..

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

- Representation of the group U(N) of unitary matrices..
- .. can be extended to representation of $GL(N, \mathbb{C})$..

ション ふゆ く 山 マ チャット しょうくしゃ

- Representation of the group U(N) of unitary matrices..
- .. can be extended to representation of $GL(N, \mathbb{C})$..
- .. defines the representation of Lie algebra $\mathfrak{gl}(N)$..

- Representation of the group U(N) of unitary matrices..
- .. can be extended to representation of $GL(N, \mathbb{C})$..
- .. defines the representation of Lie algebra $\mathfrak{gl}(N)$..
- **Reminder**: Lie algebra $\mathfrak{gl}(N)$ is spanned by matrix units E_{ij} , $1 \le i, j \le N$.

E.g. for
$$N = 4$$
 $E_{23} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

ション ふゆ く 山 マ チャット しょうくしゃ

- Representation of the group U(N) of unitary matrices..
- .. can be extended to representation of $GL(N, \mathbb{C})$..
- .. defines the representation of Lie algebra $\mathfrak{gl}(N)$..
- **Reminder**: Lie algebra $\mathfrak{gl}(N)$ is spanned by matrix units E_{ij} , $1 \le i, j \le N$.

E.g. for
$$N = 4$$
 $E_{23} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

 .. representation of gl(N) extends to the representation of the associative universal envelopping algebra U(gl(N)).

- Representation of the group U(N) of unitary matrices..
- .. can be extended to representation of $GL(N, \mathbb{C})$..
- .. defines the representation of Lie algebra $\mathfrak{gl}(N)$..
- **Reminder**: Lie algebra $\mathfrak{gl}(N)$ is spanned by matrix units E_{ij} , $1 \le i, j \le N$.

E.g. for
$$N = 4$$
 $E_{23} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

- .. representation of $\mathfrak{gl}(N)$ extends to the representation of the associative **universal envelopping algebra** $\mathcal{U}(\mathfrak{gl}(N))$.
- Reminder: Associative algebra U(gl(N)) is spanned by formal generators E_{ij} subject to

$$E_{ij}E_{kl} - E_{kl}E_{ij} = \delta_j^k E_{il} - \delta_i^l E_{kj}.$$

Definition. $\mathcal{E}(N) - N \times N$ matrix over $\mathcal{U}(\mathfrak{gl}(N))$.

$$\mathcal{E}(N) = \begin{pmatrix} E_{11} & E_{12} & \dots & E_{1N} \\ E_{21} & \ddots & & E_{2N} \\ \vdots & & \vdots \\ E_{N1} & E_{N2} & \dots & E_{NN} \end{pmatrix} \in \mathcal{U}(\mathfrak{gl}(N)) \otimes \operatorname{Mat}_{N \times N}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition. $\mathcal{E}(N) - N \times N$ matrix over $\mathcal{U}(\mathfrak{gl}(N))$.

$$\mathcal{E}(N) = \begin{pmatrix} E_{11} & E_{12} & \dots & E_{1N} \\ E_{21} & \ddots & & E_{2N} \\ \vdots & & \vdots \\ E_{N1} & E_{N2} & \dots & E_{NN} \end{pmatrix} \in \mathcal{U}(\mathfrak{gl}(N)) \otimes \operatorname{Mat}_{N \times N}$$

Lemma. (Perelomov–Popov–68) **Center** of $\mathcal{U}(\mathfrak{gl}(N))$ is spanned by

$$X_p = \operatorname{Trace} \left(\mathcal{E}(N)^p \right) = \sum_{i_1, \dots, i_p=1}^N E_{i_1 i_2} E_{i_2 i_3} \cdots E_{i_p i_1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition. $\mathcal{E}(N) - N \times N$ matrix over $\mathcal{U}(\mathfrak{gl}(N))$.

$$\mathcal{E}(N) = \begin{pmatrix} E_{11} & E_{12} & \dots & E_{1N} \\ E_{21} & \ddots & & E_{2N} \\ \vdots & & \vdots \\ E_{N1} & E_{N2} & \dots & E_{NN} \end{pmatrix} \in \mathcal{U}(\mathfrak{gl}(N)) \otimes \operatorname{Mat}_{N \times N}$$

Lemma. (Perelomov–Popov–68) **Center** of $\mathcal{U}(\mathfrak{gl}(N))$ is spanned by

$$X_p = \operatorname{Trace} \left(\mathcal{E}(N)^p \right) = \sum_{i_1, \dots, i_p = 1}^N E_{i_1 i_2} E_{i_2 i_3} \cdots E_{i_p i_1}$$

Later $\mathcal{E}(N)$ played an important role in representation theory. It appears in our problem as well.

Quantized Free Convolution and asymptotic freeness Assumption. Suppose that for bounded piecewise continuous f, g

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\lambda_i(N) + N - i}{N} - f\left(\frac{i}{N}\right) \right| = 0, \qquad \sup_{i,N} \left| \frac{\lambda_i(N)}{N} \right| < \infty$$
$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\lambda_i'(N) + N - i}{N} - g\left(\frac{i}{N}\right) \right| = 0, \qquad \sup_{i,N} \left| \frac{\lambda_i'(N)}{N} \right| < \infty.$$

Conjecture. Suppose $\mathcal{E}(\lambda; N)$ is $\mathcal{E}(N)$ acting in the first component of $T_{\lambda(N)} \otimes T_{\lambda'(N)}$ and similarly for $\mathcal{E}(\lambda'; N)$. Then the elements $\frac{1}{N}\mathcal{E}(\lambda(N))$ and $\frac{1}{N}\mathcal{E}(\lambda'(N))$ are asymptotically free.

(日) (伊) (日) (日) (日) (0) (0)

(As elements of $\operatorname{End}_{\mathbb{C}}(\mathcal{T}_{\lambda(N)}) \otimes \operatorname{End}_{\mathbb{C}}(\mathcal{T}_{\lambda'(N)}) \otimes \operatorname{Mat}_{N \times N}$.)

Quantized Free Convolution and asymptotic freeness Assumption. Suppose that for bounded piecewise continuous f, g

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\lambda_i(N) + N - i}{N} - f\left(\frac{i}{N}\right) \right| = 0, \qquad \sup_{i,N} \left| \frac{\lambda_i(N)}{N} \right| < \infty$$
$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\lambda_i'(N) + N - i}{N} - g\left(\frac{i}{N}\right) \right| = 0, \qquad \sup_{i,N} \left| \frac{\lambda_i'(N)}{N} \right| < \infty.$$

Conjecture. Suppose $\mathcal{E}(\lambda; N)$ is $\mathcal{E}(N)$ acting in the first component of $T_{\lambda(N)} \otimes T_{\lambda'(N)}$ and similarly for $\mathcal{E}(\lambda'; N)$. Then the elements $\frac{1}{N}\mathcal{E}(\lambda(N))$ and $\frac{1}{N}\mathcal{E}(\lambda'(N))$ are asymptotically free.

Theorem. (Bufetov–Gorin–2013) Asymptotically the measure describing the spectrum of the sum $\frac{1}{N}\mathcal{E}(\lambda(N)) + \frac{1}{N}\mathcal{E}(\lambda'(N))$ is given by the **free convolution** of those of $\frac{1}{N}\mathcal{E}(\lambda(N))$ and $\frac{1}{N}\mathcal{E}(\lambda'(N))$.

Conjecture. Suppose $\mathcal{E}(\lambda; N)$ is $\mathcal{E}(N)$ acting in the first component of $T_{\lambda(N)} \otimes T_{\lambda'(N)}$ and similarly for $\mathcal{E}(\lambda'; N)$. Then the elements $\frac{1}{N}\mathcal{E}(\lambda(N))$ and $\frac{1}{N}\mathcal{E}(\lambda'(N))$ are asymptotically free.

Theorem. (Bufetov–Gorin–2013) Asymptotically the measure describing the spectrum of the sum $\frac{1}{N}\mathcal{E}(\lambda(N)) + \frac{1}{N}\mathcal{E}(\lambda'(N))$ is given by the free convolution of those of $\frac{1}{N}\mathcal{E}(\lambda(N))$ and $\frac{1}{N}\mathcal{E}(\lambda'(N))$.

Remark. Related results appeared

- (Biane-1998) For representations of symmetric groups.
- (Biane-1996, Collins-Sniady-2009) For reps of U(N) with "very thick" signatures, which are well-approximated by the random matrix objects.

$$\operatorname{Trace}_{\mathbb{C}^{N}}\operatorname{Trace}_{\mathcal{T}_{\lambda}}\left(\frac{1}{N}E(\lambda(N))\right)^{k} = \int_{\mathbb{R}}x^{k}d\mathbf{m}_{PP}[\lambda],$$
$$\mathbf{m}_{PP}[\lambda] = \frac{1}{N}\sum_{i=1}^{N}\left(\prod_{j\neq i}\frac{(\lambda_{i}-i)-(\lambda_{j}-j)-1}{(\lambda_{i}-i)-(\lambda_{j}-j)}\right)\delta\left(\frac{\lambda_{i}+N-i}{N}\right).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

$$\operatorname{Trace}_{\mathbb{C}^{N}}\operatorname{Trace}_{T_{\lambda}}\left(\frac{1}{N}E(\lambda(N))\right)^{k} = \int_{\mathbb{R}}x^{k}d\mathbf{m}_{PP}[\lambda],$$
$$\mathbf{m}_{PP}[\lambda] = \frac{1}{N}\sum_{i=1}^{N}\left(\prod_{j\neq i}\frac{(\lambda_{i}-i)-(\lambda_{j}-j)-1}{(\lambda_{i}-i)-(\lambda_{j}-j)}\right)\delta\left(\frac{\lambda_{i}+N-i}{N}\right).$$

Recall that
$$\mathbf{m}[\lambda] = \frac{1}{N} \sum_{i=1}^{N} \delta\left(\frac{\lambda_i + N - i}{N}\right)$$
.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Definition. $\rho \mapsto Q(\rho)$ is $N \to \infty$ limit of $\mathbf{m}[\lambda] \mapsto \mathbf{m}_{PP}[\lambda]$.

$$\operatorname{Trace}_{\mathbb{C}^{N}}\operatorname{Trace}_{\mathcal{T}_{\lambda}}\left(\frac{1}{N}E(\lambda(N))\right)^{k} = \int_{\mathbb{R}}x^{k}d\mathbf{m}_{PP}[\lambda],$$
$$\mathbf{m}_{PP}[\lambda] = \frac{1}{N}\sum_{i=1}^{N}\left(\prod_{j\neq i}\frac{(\lambda_{i}-i)-(\lambda_{j}-j)-1}{(\lambda_{i}-i)-(\lambda_{j}-j)}\right)\delta\left(\frac{\lambda_{i}+N-i}{N}\right).$$

Recall that
$$\mathbf{m}[\lambda] = \frac{1}{N} \sum_{i=1}^{N} \delta\left(\frac{\lambda_i + N - i}{N}\right)$$
.

Definition. $\rho \mapsto Q(\rho)$ is $N \to \infty$ limit of $\mathbf{m}[\lambda] \mapsto \mathbf{m}_{PP}[\lambda]$.

Theorem. (Bufetov-Gorin) Q intertwines FC and qFC

$$Q(\rho_1) \boxplus Q(\rho_2) = Q(\rho_1 \otimes \rho_2).$$

$$\operatorname{Trace}_{\mathbb{C}^{N}}\operatorname{Trace}_{\mathcal{T}_{\lambda}}\left(\frac{1}{N}E(\lambda(N))\right)^{k} = \int_{\mathbb{R}}x^{k}d\mathbf{m}_{PP}[\lambda],$$
$$\mathbf{m}_{PP}[\lambda] = \frac{1}{N}\sum_{i=1}^{N}\left(\prod_{j\neq i}\frac{(\lambda_{i}-i)-(\lambda_{j}-j)-1}{(\lambda_{i}-i)-(\lambda_{j}-j)}\right)\delta\left(\frac{\lambda_{i}+N-i}{N}\right).$$
Recall that $\mathbf{m}[\lambda] = \frac{1}{N}\sum_{i=1}^{N}\delta\left(\frac{\lambda_{i}+N-i}{N}\right).$

Definition. $\rho \mapsto Q(\rho)$ is $N \to \infty$ limit of $\mathbf{m}[\lambda] \mapsto \mathbf{m}_{PP}[\lambda]$.

Theorem. (Bufetov–Gorin) Q intertwines FC and qFC $Q(\rho_1) \boxplus Q(\rho_2) = Q(\rho_1 \otimes \rho_2).$

In addition to being highly non-linear/non-trivial, $\rho \mapsto Q(\rho)$ is injective, but not surjective. Thus q.FC and FC are not reduced one to another.

$$\operatorname{Trace}_{\mathbb{C}^{N}}\operatorname{Trace}_{T_{\lambda}}\left(\frac{1}{N}E(\lambda(N))\right)^{k} = \int_{\mathbb{R}}x^{k}d\mathbf{m}_{PP}[\lambda],$$
$$\mathbf{m}_{PP}[\lambda] = \frac{1}{N}\sum_{i=1}^{N}\left(\prod_{j\neq i}\frac{(\lambda_{i}-i)-(\lambda_{j}-j)-1}{(\lambda_{i}-i)-(\lambda_{j}-j)}\right)\delta\left(\frac{\lambda_{i}+N-i}{N}\right).$$

Recall that
$$\mathbf{m}[\lambda] = \frac{1}{N} \sum_{i=1}^{N} \delta\left(\frac{\lambda_i + N - i}{N}\right)$$

Definition. $\rho \mapsto Q(\rho)$ is $N \to \infty$ limit of $\mathbf{m}[\lambda] \mapsto \mathbf{m}_{PP}[\lambda]$.

Theorem. (Bufetov–Gorin) Q intertwines FC and qFC $Q(\rho_1) \boxplus Q(\rho_2) = Q(\rho_1 \otimes \rho_2).$

Q is a relative of the map between Markov moment problem and Hausdorff moment problem.

Further directions.

- 1. Characters of the infinite-dimensional unitary group $U(\infty)$ and (quantized free convolution-) infinitely-divisible measures.
- 2. Perelomov-Popov operators and measures \leftrightarrow results of Biane on operations on reps of S(n) and Kerov transition measure.
- 3. Results for SO(2N + 1), Sp(2N), SO(2N): one needs to double the signatures by reflection. (Mysterious identities.)
- 4. Restrictions of representations can be linked to random lozenge tilings of planar domains.
- 5. Our methods: asymptotics of characters via *integral representations* and steepest descent; use of *differential operators* diagonalizable by characters.

Our method

$$T_{\lambda(N)} \otimes T_{\lambda'(N)} = \bigoplus_{\mu} c_{\mu}^{\lambda(N),\lambda'(N)} T_{\mu} \rightarrow$$

$$\operatorname{Prob}(\mu) = \frac{c_{\mu}^{\lambda(N),\lambda'(N)} \operatorname{dim}(\mu)}{\operatorname{dim}(\lambda(N)) \operatorname{dim}(\lambda'(N))}.$$

$$T_{\lambda(N)} \otimes T_{\lambda'(N)} = \bigoplus_{\mu} c_{\mu}^{\lambda(N),\lambda'(N)} T_{\mu} \rightarrow$$

$$\operatorname{Prob}(\mu) = \frac{c_{\mu}^{\lambda(N),\lambda'(N)} \operatorname{dim}(\mu)}{\operatorname{dim}(\lambda(N)) \operatorname{dim}(\lambda'(N))}.$$

Can be encoded via

$$\frac{s_{\lambda(N)}(x_1,\ldots,x_N)s_{\lambda'(N)}(x_1,\ldots,x_N)}{s_{\lambda(N)}(1^N)s_{\lambda'(N)}(1^N)} = \sum_{\mu} \operatorname{Prob}(\mu) \frac{s_{\mu}(x_1,\ldots,x_N)}{s_{\mu}(1^N)}$$

Can be encoded via

$$\frac{s_{\lambda(N)}(x_1,\ldots,x_N)s_{\lambda'(N)}(x_1,\ldots,x_N)}{s_{\lambda(N)}(1^N)s_{\lambda'(N)}(1^N)} = \sum_{\mu} \operatorname{Prob}(\mu) \frac{s_{\mu}(x_1,\ldots,x_N)}{s_{\mu}(1^N)}$$

Apply the differential operator $(D_k)^m$ and evaluate at $x_i = 1$.

$$D_k = \prod_{i < j} \frac{1}{x_i - x_j} \sum_{i=1}^N \left(x_i \frac{\partial}{\partial x_i} \right)^k \prod_{i < j} (x_i - x_j),$$

using

$$s_{\mu}(x_1,\ldots,x_N) = rac{\det\left(x_i^{\mu_j+N-j}
ight)_{i,j=1}^N}{\prod_{i< j}(x_i-x_j)}$$

(These are radial parts of certain elements of the center of $\mathcal{U}(\mathfrak{gl}(N))$.)

$$D_{k} = \prod_{i < j} \frac{1}{x_{i} - x_{j}} \sum_{i=1}^{N} \left(x_{i} \frac{\partial}{\partial x_{i}} \right)^{k} \prod_{i < j} (x_{i} - x_{j}),$$

$$\operatorname{Prob}(\mu) = \frac{c_{\mu}^{\lambda(N), \lambda'(N)} \dim(\mu)}{\dim(\lambda(N)) \dim(\lambda'(N))}.$$

We obtain:

$$(D_k)^m \frac{s_{\lambda(N)}(x_1,\ldots,x_N)s_{\lambda'(N)}(x_1,\ldots,x_N)}{s_{\lambda(N)}(1^N)s_{\lambda'(N)}(1^N)}\bigg|_{x_i=1}$$
$$= \sum_{\mu} \left(\sum_{i=1}^N (\mu_i + N - i)^k\right)^m \operatorname{Prob}(\mu).$$

$$egin{aligned} D_k &= \prod_{i < j} rac{1}{x_i - x_j} \sum_{i=1}^N \left(x_i rac{\partial}{\partial x_i}
ight)^k \prod_{i < j} (x_i - x_j), \ ext{Prob}(\mu) &= rac{c_\mu^{\lambda(N),\lambda'(N)} \dim(\mu)}{\dim(\lambda(N)) \dim(\lambda'(N))}. \end{aligned}$$

We obtain:

$$(D_k)^m \frac{s_{\lambda(N)}(x_1,\ldots,x_N)s_{\lambda'(N)}(x_1,\ldots,x_N)}{s_{\lambda(N)}(1^N)s_{\lambda'(N)}(1^N)}\bigg|_{x_i=1}$$
$$= \sum_{\mu} \left(\sum_{i=1}^N (\mu_i + N - i)^k\right)^m \operatorname{Prob}(\mu).$$

Remark. An approach to study of measures through difference operators was used in (Borodin–Corwin–2011+), (Borodin–Corwin–Gorin–Shakirov–2013) in the framework of Macdonald processes.

$$(D_k)^m \frac{s_{\lambda(N)}(x_1,\ldots,x_N)s_{\lambda'(N)}(x_1,\ldots,x_N)}{s_{\lambda(N)}(1^N)s_{\lambda'(N)}(1^N)}\bigg|_{x_i=1}$$
$$=\sum_{\mu} \left(\sum_{i=1}^N (\mu_i + N - i)^k\right)^m \operatorname{Prob}(\mu).$$

<□> <圖> < E> < E> E のQ@

$$(D_k)^m \frac{s_{\lambda(N)}(x_1,\ldots,x_N)s_{\lambda'(N)}(x_1,\ldots,x_N)}{s_{\lambda(N)}(1^N)s_{\lambda'(N)}(1^N)}\bigg|_{x_i=1}$$
$$=\sum_{\mu} \left(\sum_{i=1}^N (\mu_i + N - i)^k\right)^m \operatorname{Prob}(\mu).$$

Now the right side divided by N^{km} approximates expectations of the moments of (a priori random) limit measure.

$$\mathbb{E}\left(\int x^k \mathbf{m}(dx)\right)^m$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$(D_k)^m \frac{s_{\lambda(N)}(x_1,\ldots,x_N)s_{\lambda'(N)}(x_1,\ldots,x_N)}{s_{\lambda(N)}(1^N)s_{\lambda'(N)}(1^N)}\bigg|_{x_i=1}$$
$$=\sum_{\mu} \left(\sum_{i=1}^N (\mu_i + N - i)^k\right)^m \operatorname{Prob}(\mu).$$

Asymptotic analysis of normalized polynomials in the left side is based on integral representation (Gorin–Panova–2013).

$$\frac{s_{\lambda}(x,1^{N-1})}{s_{\lambda}(1^{N})} = \frac{(N-1)!}{(x-1)^{N-1}} \frac{1}{2\pi \mathbf{i}} \oint_{C} \frac{x^{z}}{\prod_{i=1}^{N} (z-(\lambda_{i}+N-i))} dz,$$

And classical steepest descent method for the analysis of

$$\oint F(z) \exp(NG(z)) dz, \quad N \to \infty$$

$$(D_k)^m \frac{s_{\lambda(N)}(x_1,\ldots,x_N)s_{\lambda'(N)}(x_1,\ldots,x_N)}{s_{\lambda(N)}(1^N)s_{\lambda'(N)}(1^N)}\bigg|_{x_i=1}$$
$$=\sum_{\mu} \left(\sum_{i=1}^N (\mu_i + N - i)^k\right)^m \operatorname{Prob}(\mu).$$

Asymptotic analysis of normalized polynomials in the left side is based on **determinantal formulas** of (Gorin–Panova–2013).

$$\frac{s_{\lambda}(x_1,\ldots,x_k,1^{N-k})}{s_{\lambda}(1^N)} = \frac{1}{\prod_{i< j}(x_i-x_j)} \prod_{i=1}^k \frac{(N-i)!}{(x_i-1)^{N-k}}$$
$$\times \det\left[\left(x_i\frac{\partial}{\partial x_i}\right)^{k-j}\right]_{i,j=1}^k \left(\prod_{j=1}^k \frac{s_{\lambda}(x_j,1^{N-1})}{s_{\lambda}(1^N)} \frac{(x_j-1)^{N-1}}{(N-1)!}\right),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Asymptotics of **restrictions** and **tensor products** of representations of classical Lie groups as the dimension of the group tends to infinity.

Asymptotics of **restrictions** and **tensor products** of representations of classical Lie groups as the dimension of the group tends to infinity.

1. Concentration phenomena for random measures via *deformed* free convolution and free projection.

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Asymptotics of **restrictions** and **tensor products** of representations of classical Lie groups as the dimension of the group tends to infinity.

- 1. Concentration phenomena for random measures via *deformed* free convolution and free projection.
- 2. "very thick" representations: Original free convolution and free projection (semiclassical limit)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Asymptotics of **restrictions** and **tensor products** of representations of classical Lie groups as the dimension of the group tends to infinity.

- 1. Concentration phenomena for random measures via *deformed* free convolution and free projection.
- 2. "very thick" representations: Original free convolution and free projection (semiclassical limit)
- 3. Conjectural asymptotic freeness of images of Perelomov–Popov elements $\mathcal{E}(N)$ in irreducible representations.

ション ふゆ く 山 マ チャット しょうくしゃ

Asymptotics of **restrictions** and **tensor products** of representations of classical Lie groups as the dimension of the group tends to infinity.

- 1. Concentration phenomena for random measures via *deformed* free convolution and free projection.
- 2. "very thick" representations: Original free convolution and free projection (semiclassical limit)
- 3. Conjectural asymptotic freeness of images of Perelomov–Popov elements $\mathcal{E}(N)$ in irreducible representations.
- 4. Our analysis: novel integral formulas and determinantal formulas for normalized symmetric polynomials of representation-theoretic origin + use of differential operators.

Asymptotics of **restrictions** and **tensor products** of representations of classical Lie groups as the dimension of the group tends to infinity.

- 1. Concentration phenomena for random measures via *deformed* free convolution and free projection.
- 2. "very thick" representations: Original free convolution and free projection (semiclassical limit)
- 3. Conjectural asymptotic freeness of images of Perelomov–Popov elements $\mathcal{E}(N)$ in irreducible representations.
- 4. Our analysis: novel integral formulas and determinantal formulas for normalized symmetric polynomials of representation-theoretic origin + use of differential operators.

The theory is intrinsically connected to 2d statistical mechanics models, e.g. to lozenge tilings.

Asymptotics of **restrictions** and **tensor products** of representations of classical Lie groups as the dimension of the group tends to infinity.

- 1. Concentration phenomena for random measures via *deformed* free convolution and free projection.
- 2. "very thick" representations: Original free convolution and free projection (semiclassical limit)
- 3. Conjectural asymptotic freeness of images of Perelomov–Popov elements $\mathcal{E}(N)$ in irreducible representations.
- 4. Our analysis: novel integral formulas and determinantal formulas for normalized symmetric polynomials of representation-theoretic origin + use of differential operators.

The theory is intrinsically connected to 2*d* statistical mechanics models, e.g. to lozenge tilings.

Alexey Bufetov, V.G., Representations of classical Lie groups and quantized free convolution, arXiv:1311.5780