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Introduction to Random Matrices
from a physicist’s perspective

Jean-Bernard Zuber

Berkeley March 2007

Random matrices: a major theme in theoretical physics since Wigner (1951);

a major theme in mathematical physics and mathematics for the last 20 years.
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Plan of talk

• A short history of the subject

– Random systems, from nuclear Hamiltonians to mesoscopic systems to
financial markets. . .

– LargeN limit of U(N) gauge theory⇒ “Topological expansion” and the
counting of maps and other “planar” objects⇒ Stat mech models on
“random lattices”

– Double scaling limit and 2D quantum gravity

– QCD, Dijkgraaf-Vafa, etc

• Feynman diagrams and largeN limit

• Counting of maps or triangulations (cf Edouard Maurel-Segala’s talk)

• Computational methods: saddle point; [loop equations (cfEMS)];
[orthogonal polynomials (cfPaul Zinn-Justin)]
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A short history of the subject

1. Random systems[Wigner 1951]

Study of spectrum of large size Hamiltonians of big nuclei, regarded as

Gaussian random matrices, subject to some symmetry or reality property

(GOE, GUE, GSE, . . .)

Eugene P. Wigner Freeman Dyson Madan Lal Mehta

1902 - 1995 1923 - 1932 - 2006



Free Probability and Large N Limit 5

Statistics of energy levels of random Hamiltonians

Level spacing histogram

for a large set of nuclear

levels

(“Nuclear Data Ensemble”,

[O. Bohigas et al]).

Other random systems and random matrices : from transport properties (for

ex. universal fluctuations of electric conductivity) in disordered mesoscopic

systems to financial markets. . .
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2. LargeN limit of U(N) gauge theories

Gauge theories : quantum field theories ba-

sed on a principal fibre bundle with a compact

groupG. “Gauge field”A (connection) lives in

Lie algebra ofG. ForG = U(N), A is aN×N

(anti-Hermitian) matrix.

In the search of a non-trivial approximation, it

is natural to look at largeN limit, expansion

parameter 1/N2, [’t Hooft 1974], see below.

Indeed,major simplification in the largeN limit of Feynman expansions of
matrix field theories. . .

Consider toy field theories : integrals over a finite number of(large size)
matrices.
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Basics of Feynman diagrams

Consider a Gaussian integral overn real variablesxi , A= AT > 0 def. matrix

Z

dnxe−
1
2 ∑xiAi j x j =

(2π)n/2

det
1
2 A

Z

dnxe−
1
2 ∑xiAi j x j +∑bixi =

(2π)n/2

det
1
2 A

e
1
2 ∑biA

−1
i j b j

Differentiate w.r.t.bi

〈xk1xk2 · · ·xkℓ
〉 :=

R

dnx xk1xk2 · · ·xkℓ
e−

1
2x.A.x

R
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1
2x.A.x

=
∂

∂bk1

· · · ∂
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Wick theorem also applies to monomials (n = 1 variable for simplicity):
p vertices propagatorA−1

〈(x4)p〉 = Σ
graphs

Non Gaussian integrals (g < 0): power series “perturbative” expansions

Z =
Z

dxe−
1
2Ax2 + g

4!x
4

=
(2π

A

) 1
2

∞

∑
p=0

gp

p!

Z

dx
(x4

4!

)p
e−

1
2Ax2

=
(2π

A

) 1
2

∞

∑
p=0

∑
graphsG with 2p lines
and p 4−valent vertices

gp

|AutG |A
−2p

logZ = connectedFeynman diagrams

=
g

8A2 +
g2

A4

( 1
2.4!

+
1
24

)
+ · · ·

= + · · ·



Free Probability and Large N Limit 9

Matrix Integrals: Feynman Rules

N×N Hermitean matricesM, dM = ∏i dMii ∏i< j dℜeMi j dℑmMi j

Z =: eF =
R

dM eN[−1
2trM2 + g

4trM4]

Feynman rules: propagatori
j

l
k=

1
N δiℓδ jk [’t Hooft]

4-valent vertex :
j

i
k
l

mnp
q

= gNδ jkδℓmδnpδqi

For each connected diagram contributing

to logZ: fill each closed index loop with a

disk⇒ discretized closed 2-surfaceΣ
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Power ofN in a connected diagram

• each vertex→ N;

• each double line→ N−1;

• each loop→ N.

ThusN#vert.−#lines+#loops= NχEuler(Σ)

[’t Hooft (1974)]. For example, compare

gN
0gN

2

A topological expansion : F = logZ = ∑
conn. surf.Σ

N2−2genus(Σ) g#vert.(Σ)

symm. factor

=
∞

∑
h=0

N2−2hF(h)(g).



Free Probability and Large N Limit 11

Thus largeN limit of matrix integral
R

DMe−Ntr(M2+ g
4M4) = generating

function ofplanar4-valent graphs. . .(cf census of planar maps by Tutte)
[Brézin, Itzykson, Parisi, Z. 1978]

limN→∞
1

N2 logZ = ∑ planar diagrams
with n 4−vertices

gn

symm.factor

or in a dual way, ofquadrangulationsof 2D surfaces of genus 0

[Kazakov; David; Kazakov-Kostov-Migdal; Ambjørn-Durhuus-Fröhlich ’85]
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Thus largeN limit of matrix integral
R

DMe−Ntr(M2+ g
3M3) = generating

function of planar3-valent graphs. . .[Brézin, Itzykson, Parisi, Z. 1978]

or in a dual way, oftriangulationsof 2D surfaces of genus 0

[Kazakov; David; Kazakov-Kostov-Migdal; Ambjørn-Durhuus-Fröhlich ’85]

Triangulated surfaces and discrete 2D gravity

Thus : LargeN limit of matrix integrals⇒ Counting of planar objects :

maps, triangulations, “alternating” knots and links[P Z-J & J-B Z], etc, or

of objects of higher topology . . .
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LargeN limit of matrix integral
R

DADBe−Ntr (A2+cAB+B2+gA4+gB4)=

generating function of bicolored planar4-valent graphs. . .
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LargeN limit of matrix integral
R

DADBe−Ntr (A2+cAB+B2+gA4+gB4)=
generating function of bicolored planar4-valent graphs. . .

i.e. describes Ising model on a random quadrangulated sphere
[Boulatov-Kazakov 1985]

+ +
++++

++

+ + +
+

+
+

+

++
etc etc, many variations on that theme

“Statistical mechanics models on a random lattice”
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Two remarks useful in connection with free probabilities. . .

• Factorization property〈 1
N trP1

1
N trP2〉 = 〈 1

N
trP1〉〈

1
N

trP2〉
︸ ︷︷ ︸
disconnected diagrams

+O( 1
N2 )

• Compare (in Gaussian theorye−tr(M2
1+M2

2))

〈 1
N trM2

1M2
2〉 and 〈 1

N trM1M2M1M2)〉

M1 M2

gN
0gN

2

Similar behavior in non Gaussian theorye−tr(V1(M1)+V2(M2)) provided

〈M1〉 = 0, 〈M2〉 = 0.
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If 〈M1〉 6= 0, 〈M2〉 6= 0,
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Compareτ(a1a2a1a2) = τ(a2
1)τ

2(a2)+ τ2(a1)τ(a2
2)− τ2(a1)τ2(a2) for two

free variables
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3. Double scaling limit

[Brézin-Kazakov; Douglas-Shenker; Gross-Migdal 1989, . . .]

F(0)(g) and more generallyF(h)(g) have a singularity atg = gc,

F(h)(g) ∼ (gc−g)(2−γstr)(1−h)

with γstr, the “string susceptibility”, typically equal to−1/2 (for the

simplest modelsM3 or M4 above), see below.

As g→ gc, 〈# triangles〉 = ∂ logF
∂g diverges. Expect to make contact with

continuum2D gravity. Keep all generah in ∑h=0N2−2hF(h)(g) by letting

gc−g→ 0 asN → ∞ in such a way that(gc−g)(2−γstr)/2N = κ fixed.

Very interesting limit : appearance of integrable equations (KdV . . .),

solutions to Painlev́e equations . . .

Thus, double scaling limit⇒ models of 2D quantum gravity
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4. Other physical applications

• Cell decomposition of moduli space of Riemann surfaces, intersection

numbers . . .

[Witten, Kontsevich, 1991 . . .]

• QCD, the Dirac operator/D = /∂+/A in the presence of a gauge field and

RMT [Verbaarschot et al.]

• Dijkgraaf-Vafa 2002: computing the effective action of supersymmetric

gauge theories in terms of matrix integrals

etc etc
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Computational techniques

Consider integral overN×N Hermitian matrices

Z =
Z

dMe−Ntr V(M) ,

V(M) a polynomial of degreed+1. For ex.V3(M) = (1
2M2 + g

3M3) and
V4(M) = (1

2M2 + g
4M4). Note that multi-traces are excluded, for example

(trM2)2.

Integrand and measure are invariant underU(N) transformations
M →UMU†. Express both in terms ofeigenvaluesλ1, · · · ,λN of M :

Z =
Z N

∏
i=1

dλi ∏
i< j

(λi −λ j)
2e−N∑N

i=1V(λi) ,

Several ways to treat this integral: saddle point approximation ; orthogonal
polynomials; “loop equation”. . .
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1. Saddle point approximation

Rewrite

Z =
Z N

∏
i=1

dλi exp

(
2∑

i< j
log|λi −λ j |−N

N

∑
i=1

V(λi)

)

In the largeN limit, if λ ∼ O(1), both terms in exponential are of orderN2.

Look for the stationary point, i.e. the solution of

2
N ∑

j 6=i

1
λi −λ j

= V ′(λi) . (∗)

To solve this problem, introduce the resolvent

G(x) =
1
N

〈
tr

1
x−M

〉
=
〈 1

N

N

∑
i=1

1
x−λi

〉
.
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Computing its square leads after some algebra to

G2(x) =
1

N2

〈
∑

i, j=1,···,N

1
(x−λi)(x−λ j)

〉
= · · · = − 1

N
G′(x)+V ′(x)G(x)−P(x)

with P(x) := 1
N

〈
∑N

i=1
V′(x)−V′(λi)

x−λi

〉
apolynomialin x of degreed−1, i.e.

G2(x)−V ′(x)G(x)+
1
N

G′(x)+P(x) = 0 .

(Beware ! Not exact forN finite!) For N large, neglect the 1/N term⇒
quadratic equation forG(x), with yet unknown polynomialP, hence

G(x) =
1
2

(
V ′(x)−

√
V ′(x)2−4P(x)

)

(minus sign in front of√ dictated by the requirement that for large|x|,
G(x) ∼ 1/x.)

In that largeN limit, the λ’s form a continuous distribution with density
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ρ(λ) on a supportS ,
R

Sdλρ(λ) = 1, andG(x) =
R 2a′′
−2a′

dµρ(µ)
x−µ .

For a purely Gaussian potentialV(λ) = 1
2λ2, Wigner’s “semi-circle law”:

ρ(λ) = 1
2π
√

4−λ2 on the segmentλ ∈ [−2,2].
For more general potentials, assume firstS to be still a finite segment
[−2a′,2a′′], in such a way that (*) becomes

2P.P.
Z 2a′′

−2a′

dµρ(µ)

λ−µ
= V ′(λ) if λ ∈ [−2a′,2a′′] .

(P.P.= principal part), expressing that, along its cut,

G(x± iε) =
1
2

V ′(λ)∓ iπρ(x) x∈ [−2a′,2a′′] . Thus

G(x) =
1
2

V ′(x)−Q(x)
√

(x+2a′)(x−2a′′)

where the coefficients of the polynomialQ(x) anda′, a′′ are determined by
the condition thatG(x) ∼ 1/x for large|x|. Q is of degreed−1. The
solution is unique (under the one-cut assumption).
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Example For the quartic potentialV(λ) = 1
2λ2 + g

4λ4, by symmetry
a′ = a′′ =: a,

G(x) =
1
2
(x+gx3)− (

1
2

+
g
2

x2 +ga2)
√

x2−4a2

with a2 the solution of

3ga4 +a2−1 = 0 (EQa2)

which goes to 1 asg→ 0 (a limit where we recover Wigner’s semi-circle
law). From this we extract

ρ(λ) =
1
π

(
1
2

+
g
2

λ2 +ga2)
√

4a2−λ2

and we may compute all invariant quantities like the free energy or the
moments

G2p :=
〈 1

N
trM2p

〉
=

Z

dλ λ2pρ(λ) .

For exampleG2 = (4−a2)a2/3, G4 = (3−a2)a4, etc. All these functions
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of a2 are singular as functions ofg at the pointgc = − 1
12 where the two

roots of(EQa2) coalesce. For example the genus 0 free energy

F(0)(g) : = lim
N→∞

(1/N2) log

(
Z(g)

Z(0)

)
=

1
2

loga2− 1
24

(a2−1)(9−a2)

= ∑
p=1

(
3g
t2 )p (2p−1)!

p!(p+2)!
[Tutte 62,BIPZ 78]

...

has a power-law singularity

F(0)(g) ≈
g→gc

|g−gc|5/2

which reflects on its series expansion

F(0)(g) =
∞

∑
n=0

fngn , fn ≈
n→∞

const|gc|−nn−7/2 .
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Comments

i) Nature of the 1/N2 and of theg expansions, algebraic singularity at

finite gc

ii) “Universal” singular behavior atgc

iii) Extension to several cuts, the rôle of the algebraic curve (cf Eynard).

iv) Connected correlation functions and “free (or non crossing) cumulants”

v) Factorization property, localization of the matrix integral and the

“master field” [. . .]
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2. Orthogonal polynomials

Z

dλPm(λ)Pn(λ)e−NV(λ) = hnδmn

[Mehta, Bessis, . . .]

cf Paul Z-J . . .

3. Loop (or Schwinger-Dyson) equations

Z

dM
∂

∂Mi j
{· · ·e−NtrV(M)} = 0

and make use of factorization property . . .

cf Edouard M-S . . .
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Comments on “Free” or “non-crossing” cumulantsfn
[BIPZ 78, Cvitanovic 81, Voiculescu 85, Speicher 94, Biane,PZ-J]
Generating function of momentsmn = 1

N trMn

Z( j) = 〈 1
N

tr
1

1− jM
〉 =

∞

∑
n=0

jnmn

or G(u) = u−1Z(u−1) = ∑∞
n=0u−n−1mn. The generating function of free

cumulants

W(z) = 1+
∞

∑
n=1

zn fn = 1+W̃(z)

or P(z) = z−1W(z), is defined by the relations

W(z) = Z( j(z)) with j(z) = z/W(z)

or equivalently

Z( j) = W(z( j)) with z( j) = jZ( j)
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Graphically[Cvitanovic]

Z( j) =

...

���������
���������
���������
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���������
���������
���������

1  +   

...

~

Z(j)
Z Z Z

W(j)

= W( jZ( j))

These relations amount to saying thatP etG are functional inverses of one

anotherP◦G(u) = u. Indeed

P(G(u)) = G−1(u)W(G(u)) = uZ−1(u−1)W(u−1Z(u−1)) = u, since

Z(u−1) = W(u−1Z(u−1)).

Using Lagrange formula, one computes

mk = ∑α⊢k
k!

(k+1−∑αq)!
f

α1
1

α1!
f

α2
2

α2! · · ·

or converselyfk = −∑α⊢k
(k−2+∑αq)!

k!
(−m1)

α1

α1!
(−m2)

α2

α2! · · ·
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End of Act I
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