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Random matricesa major theme in theoretical physics since Wigner (1951);

a major theme in mathematical physics and mathematicsddagt 20 years.
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Plan of talk

e A short history of the subject

— Random systems, from nuclear Hamiltonians to mesoscgpterss to
financial markets. ..

— LargeN limit of U(N) gauge theory= “Topological expansion” and the
counting of maps and other “planar” objeets Stat mech models on
“random lattices”

— Double scaling limit and 2D quantum gravity
— QCD, Dijkgraaf-Vafa, etc
e Feynman diagrams and larelimit
e Counting of maps or triangulations (cf Edouard Maurel-3&gdalk)

e Computational methods: saddle point; [loop equation&(¢6)];
[orthogonal polynomials (cPaul Zinn-Justi)i
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A short history of the subject

1. Random systen{8Vigner 1951]

Study of spectrum of large size Hamiltonians of big nuclegarded as
Gaussian random matrices, subject to some symmetry otyrgadiperty
(GOE, GUE, GSE, ..))

Eugene P. Wigner Freeman Dyson Madan Lal Mehta
1902 - 1995 1923 - 1932 - 2006
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Statistics of energy levels of random Hamiltonians

10 : — —

Poisson NDE _
" 1726 spacings -

- ‘ | Level spacing histogram
05k 7 coF - for a large set of nuclear
- | - 7 levels

(“Nuclear Data Ensemble”,

[O. Bohigas et al]).

Other random systems and random matrices : from transpopepties (for
eX. universal fluctuations of electric conductivity) in olidered mesoscopic
systems to financial markets. ..
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2. LargeN limit of U(N) gauge theories

Gauge theories : quantum field theories ba
sed on a principal fibre bundle with a compact
groupG. “Gauge field”A (connection) lives in
Lie algebra ofG. ForG=U(N), AisaN x N
(anti-Hermitian) matrix.

In the search of a non-trivial approximation, it
IS natural to look at larg®N limit, expansion
parameter IN?, ['t Hooft 1974], see below.

Indeed,major simplification in the larg®&l limit of Feynman expansions of
matrix field theories. ..

Consider toy field theories : integrals over a finite numbeilage size)
matrices.
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Basics of Feynman diagrams

Consider a Gaussian integral overeal variables;, A= AT > 0 def. matrix

(Zn)n/z
det%A

/dnxe_% XAX]

/dnxe_%ZXiAinj + > bix _ (Zn)n/z 1ZblAljle
det2A

Differentiate w.r.t.b;

d"x o e—%x.A.x 1h Aol
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[ dnx g 2xAX ob,,  dby, b=0
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Wick theorem also applies to monomiars=€ 1 variable for simplicity):
p vertices propagatoh 1

KK XD =,

Non Gaussian integralg) & 0): power series “perturbative” expansions

g
Z = /dxe_iAX +ax Z—T[ /dx p __AX
o D! 4!
1

(0]

p=0 graphsg with 2p lines |AUt g‘
and p 4—valent vertices

logZ = connected~eynman diagrams
2
_ 9 J ( 1 1)
- 8A? Tai\oa AT

- 0 S OO +--
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Matrix Integrals. Feynman Rules

N x N Hermitean matrice™, dM = [7; dM; [ ; dUeM; dmM;
7= & = [ameNl—atrM*+GtrM]

Feynman rules: propagatk: = =810k ['t Hooft]
R\/”m

4-valent vertex ?->/\<k' = gNO{kO¢mOn pQy;

For each connected diagram contributing

to logZ.: fill each closed index loop with a
disk = discretized closed 2-surface

i
Jl/

\// 2
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Power ofN in a connected diagram
e each vertex— N;

e each double lines N—1:

e each loop— N.

ThusN#vert —#lines+#loops__ NXEuIer(Z)

't Hooft (1974)]. For example, compare

g#ve ()

NZ—denu$Z)

logZ =

conn surf.z

_ i NZ_ZhF(h)(g).
h=0

A topological expansion: F
POI0 ¥ symm. factor
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Thus largeN limit of matrix integral [ DMe~ Nt (M*+3M%) = generating

function ofplanar4-valent graphs. . .(cf census of planar maps by Tutte)
[Brézin, Itzykson, Parisi, Z. 1978]
1 g"

lim N—o0 N2 |OgZ = Z planar diagrams symmifactor
with n 4—vertices

or in a dual way, ofjuadrangulation®f 2D surfaces of genus 0O

[Kazakov; David; Kazakov-Kostov-Migdal; Ambjgrn-Durhuus-Frohlich ’85]

11
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Thus largeN limit of matrix integral [ DMe~Nt (M*+3M°) = generating
function of planai3-valent graphs. [Brézin, Itzykson, Parisi, Z. 1978]

or in a dual way, otriangulationsof 2D surfaces of genus 0O

[Kazakov; David; Kazakov-Kostov-Migdal; Ambjgrn-Durhuus-Frohlich ’85]

Thus : LargeN limit of matrix integrals= Counting of planar objects :
maps, triangulations, “alternating” knots and lirflisZ-J & J-B Z], etc, or
of objects of higher topology ...
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LargeN limit of matrix integral [ DADB e Nt (A°+cAB+B*+gA™+gB")
generating function of bicolored planétvalent graphs. ..

13
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LargeN limit of matrix integral [ DADB e Nt (A°+cAB+B*+gA™+gB")
generating function of bicolored plan&ivalent graphs. ..

l.e. describes Ising model on a random quadrangulated spher
[Boulatov-Kazakov 1985]

etc etc, many variations on that theme
“Statistical mechanics models on a random lattice”

14



Free Probability and Large N Limit

Two remarks useful in connection with free probabillities. . .

. 1 1
e Factorization property%tr Plﬁtr P) = (Ntr P1>(Ntr P) +O($)

\ 7

"~

disconnected diagrams
. . 2 2
» Compare (in Gaussian theogy!" (Mi+M2))

(ZFtrMZ2M2)  and  (ZFtrMiMaMiMy))

Nngz @ gN®

Similar behavior in non Gaussian theay" V1(M1)+V2(M2)) provided
(M) = 0, (M) = 0.

15
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If (My) # 0, (Mp) # O,

{rMiMpMIMp ) = (X ) = @Jr@ +
CHGN

- = -+ e e

Comparer (gapa1ap) = 1(a%)1%(ap) + 14(a1)1(ad) — 1%(a1)1%(ayp) for two
free variables

16
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3. Double scaling limit

[Brézin-Kazakov; Douglas-Shenker; Gross-Migdal 1989, .. ]
F(©(g) and more generall (M (g) have a singularity aj = gc,

F(h)(g) ~ (ge — g)(2—vstr>(1—h)

with ysyr, the “string susceptibility”, typically equal te1/2 (for the
simplest model$12 or M* above), see below.

dlogF
dag

continuum2D gravity. Keep all generain 3 N2-2hE (M) (g) by letting
gc —g— 0 asN — o in such a way thatg. — g)?~¥st)/2N = K fixed.

As g — Qc, (# triangles = diverges. Expect to make contact with

Very interesting limit : appearance of integrable equati@QdV .. .),
solutions to Painle¥ equations ...
Thus, double scaling limis- models of 2D quantum gravity
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4. Other physical applications

e Cell decomposition of moduli space of Riemann surfacesysaiction
numbers ...
[Witten, Kontsevich, 1991 .. ]

e QCD, the Dirac operatdd = @+ A in the presence of a gauge field and
RMT [Verbaarschot et al.]

e Dijkgraaf-Vafa 200Z computing the effective action of supersymmetric
gauge theories in terms of matrix integrals

etc etc

18
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Computational techniques

Consider integral oveN x N Hermitian matrices
:Z::://(jhﬂer$MrV(M):

V(M) a polynomial of degred + 1. For exV3(M) = (3M?+ IM3) and
Va(M) = (M2 + IM?). Note that multi-traces are excluded, for example
(trM?)2.

Integrand and measure are invariant uidéeN) transformations

M — UMUT. Express both in terms @figenvalued\,---,An of M :

N
7 — / d\. ()\. _)\.)Ze—N zf\'zlvo\i) 7
i|:| IiE! | |

Several ways to treat this integral: saddle point approiiong orthogonal
polynomials; “loop equation”. ..
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1. Saddle point approximation
Rewrite

N N
7 - /ﬂd)\i exp <2_z og|Ai — Aj| — NiZV(Ai)>

i<]

In the largeN limit, if A ~ O(1), both terms in exponential are of ordsf.
Look for the stationary point, i.e. the solution of

N =V ()

To solve this problem, introduce the resolvent

o=l = (N 2w

).

20
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Computing its square leads after some algebra to

1

1 1 _, ,
SH= W<i,j:%_,N R == TRV Pk

with P(x) := %< N, V/(X))(:;\/i/()‘” > a polynomialin x of degreed — 1, i.e.

G2(x) — V' (X)G(x) + %G’(x) +P(x)=0.

(Beware ! Not exact foN finite!) For N large, neglect the /N term=-
quadratic equation foB(x), with yet unknown polynomiaP, hence

G(x) = % (V’(x) N 4P(x))

(minus sign in front of /— dictated by the requirement that for larpe,
G(X) ~ 1/x.)

In that largeN limit, the A’s form a continuous distribution with density
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p(A) on asuppor, [cdAp(A) =1, andG(x) = [%2, d%(u“).

For a purely Gaussian potentM(A) = %)\2 Wigner's “semi-circle law”:
P(A) = 3v/4— A2 on the segmerit € [—2,2)].

For more general potentials, assume fﬁab be still a finite segment

[—2&,2a"], in such a way that (*) becomes

2a
2PP/ d“p _V’()\) if A e [—2a,2d"] .

2a/

(P.P.= principal part), expressing that, along its cut,

G(x=*ig) = %V’()\) Fimp(x)  xe[-2da,2a"]. Thus

G(x) = V() ~ QUX)v/(x+ 2a) (x 20

where the coefficients of the polynomi@(x) anda’, a” are determined by
the condition thaG(x) ~ 1/x for large |x|. Q is of degreed — 1. The
solution is unique (under the one-cut assumption).
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Example For the quartic potential (A) = A% + %)\4, by symmetry

ad=a"=:a
1 3 9.2 2 2
G(X) = = (Xx+gx’) — ( + 2x% +gaf)V/x2 —4a
2 2 2
with a2 the solution of
3ga*+a°—1=0 (EQ&)

which goes to 1 ag — 0 (a limit where we recover Wigner's semi-circle
law). From this we extract

P(A) = 1( ; g)\2+ga2)\/4a2 22

and we may compute all invariant quantities like the freegyer the
moments

Gap = <%trM2p> - /d)\ AZP (M) .

For exampleG, = (4—a%)a?/3, G4 = (3— a®)a*, etc. All these functions
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of a? are singular as functions gfat the pointg, = —%2 where the two

roots of(E Q&) coalesce. For example the genus 0 free energy

FOg): — m (1/N?)log (53 ) = Jloge — 5. (a2~ 19— a)
B 30., (2p—1)!
_ p;(t2>pp!(p+2)! Tutte 62BIPZ 78

has a power-law singularity

EO) ~ lg—a.|5?
(9) >, 19— 9l

which reflects on its series expansion

N—oo

FOg = fag" ., fa ~ constge| "n~ "2
n=0
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Comments

i) Nature of the ¥N? and of theg expansions, algebraic singularity at
finite gc

1) “Universal” singular behavior at).
i) Extension to several cuts, théle of the algebraic curve (cf Eynard).
Iv) Connected correlation functions and “free (or non cnogscumulants”

V) Factorization property, localization of the matrix igtal and the
“master field” [. . .]
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2. Orthogonal polynomials

/ A\ P(A) PN e VD — i
[Mehta, Bessis, ...]
cf Paul Z-J ...

3. Loop (or Schwinger-Dyson) equations

M f. e NIV(M)y

and make use of factorization property ...

cf Edouard M-S ...

26
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Comments on “Free” or “non-crossing” cumularfts
[BIPZ 78, Cvitanovic 81, Voiculescu 85, Speicher 94, Bidp2g;J]
Generating function of moments, = StrM"

1 1 >

20) = (=) = 3. 1"

orG(u) =u1zZ(ut) =52 _yu"""!m,. The generating function of free
cumulants .
W(2) =1+ Y Z'fa=1+W(2)
n=1
or P(z) = z 'W(2), is defined by the relations
W(z) =Z(j(z))  with j(z2) =2z/W(2)

or equivalently

27
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Graphically[Cvitanovic]

2(j)=| 40 = 1+

Z Z
e ] il

These relations amount to saying tIﬁ’a&th e‘lre functional inverses of one
anotherP o G(u) = u. Indeed

P(G(u)) = G Y (uW(G(u)) =uz t(uHw(u1z(u 1)) = u, since

Zu )y =w(utz@u1)).

Z

Using Lagrange formula, one computes

Kl ffl fgz
M¢ = 3 ark (k+1-yag)! az! ag!

(k=245 ag)! (—my)%1 (—mp)“2
or converselyfy = — 5 41« e ( o ol

28
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End of Act |

29
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