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Homological algebra and derived functors

Let R be a ring and M be a R-module.

Lemma
There exists a module C0 = ⊕αR and a surjection φ : C0 → M.

If M is not free, then φ cannot be an isomorphism and we can
apply the Lemma to ker (φ). Iterating the process, we obtain an
exact sequence:

· · · → Cn → · · · → C1 → C0 → M → 0.

The sequence

C∗
def
= · · · → Cn → · · · → C1 → C0 → 0

is called a free resolution of the R-module M.
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Lemma
Any two free resolutions of the R-module M are homotopy
equivalent.

Remark
Most of the time, C∗ is a suitable and tractable replacement of M.

A functor F is called right-exact, if it maps short exact sequences

0 → M1 → M2 → M3 → 0

to right-exact sequences

F (M1) → F (M2) → F (M3) → 0.
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Corollary

Let F be any right-exact functor from the category of R-modules
into some abelian category. The left-derived functors

(LiF )(M)
def
= Hi (F (C∗))

are well defined.

These functors are very useful and carry a lot of interesting
information about the module M and the functor F .
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Example

For any extension of modules 0 → M1 → M2 → M3 → 0, there
exists a long exact sequence

· · · → (LkF )(M1) → (LkF )(M2) → (LkF )(M3) → (Lk−1F )(M1) → . . .

ending with

· · · → (L1F )(M3) → F (M1) → F (M2) → F (M3) → 0.
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Example

Let K be a right R-module. The functor M 7→ K ⊗R M is
right-exact. We set:

Tor R
k (K ,M) = (Lk(K⊗R?))(M) = Hk (K ⊗R C∗) .

Remark
If the functor F is exact, then (LiF )(M) = 0, for i ≥ 1.
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Dimension of modules over a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra and τ be a faithful
tracial state.

W. Lück defined a dimension function:

dim : M-modules → [0,∞]

which shares the following properties:

1. dim M⊕np = τ(p) ∈ [0, n], for p = p2 = p∗ ∈ Mn(M).

2. If
0 → L1 → L2 → L3 → 0

is exact, then dim L2 = dim L1 + dim L3.

3. If L = ∪αLα, then dim L = supα dim Lα.



Dimension of modules over a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra and τ be a faithful
tracial state.
W. Lück defined a dimension function:

dim : M-modules → [0,∞]

which shares the following properties:

1. dim M⊕np = τ(p) ∈ [0, n], for p = p2 = p∗ ∈ Mn(M).

2. If
0 → L1 → L2 → L3 → 0

is exact, then dim L2 = dim L1 + dim L3.

3. If L = ∪αLα, then dim L = supα dim Lα.



Dimension of modules over a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra and τ be a faithful
tracial state.
W. Lück defined a dimension function:

dim : M-modules → [0,∞]

which shares the following properties:

1. dim M⊕np = τ(p) ∈ [0, n], for p = p2 = p∗ ∈ Mn(M).

2. If
0 → L1 → L2 → L3 → 0

is exact, then dim L2 = dim L1 + dim L3.

3. If L = ∪αLα, then dim L = supα dim Lα.



Dimension of modules over a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra and τ be a faithful
tracial state.
W. Lück defined a dimension function:

dim : M-modules → [0,∞]

which shares the following properties:

1. dim M⊕np = τ(p) ∈ [0, n], for p = p2 = p∗ ∈ Mn(M).

2. If
0 → L1 → L2 → L3 → 0

is exact, then dim L2 = dim L1 + dim L3.

3. If L = ∪αLα, then dim L = supα dim Lα.



Dimension of modules over a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra and τ be a faithful
tracial state.
W. Lück defined a dimension function:

dim : M-modules → [0,∞]

which shares the following properties:

1. dim M⊕np = τ(p) ∈ [0, n], for p = p2 = p∗ ∈ Mn(M).

2. If
0 → L1 → L2 → L3 → 0

is exact, then dim L2 = dim L1 + dim L3.

3. If L = ∪αLα, then dim L = supα dim Lα.



A map φ : L1 → L2 is called dimension isomorphism if ker (φ) and
coker(φ) are zero dimensional.

Theorem
Let F ,G be two (right-exact) functors from an abelian category to
the category of M-modules. If a natural transformation H : F → G
consists of dimension isomorphisms, then so do the induced natural
transformations

LkH : LkF → LkG .
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The dimension can be used to extract numbers from homological
data.

W. Lück showed:

β
(2)
k (Γ) = dim Tor CΓ

k (LΓ, C),

where β
(2)
k (Γ) denotes the k-th L2-Betti number in the sense of

Atiyah and Cheeger-Gromov.

Example

Let M be an aspherical Riemannian manifold with fundamental
group Γ.

β
(2)
k (Γ) = lim

t→∞

∫
F

tr
(
e−t∆k (x , x)

)
dx ,

where F is a fundamental domain of the Γ, acting on the universal
covering.
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Connes-Shlyakhtenko L2-Betti numbers for tracial algebras

Let (M, τ) be a finite von Neumann algebra with fixed tracial state
and let A ⊂ M be a dense ∗-sub-algebra.

β
(2)
k (A, τ) = dim Tor A⊗Ao

k (M ⊗Mo ,A)

Here,

I A is a left A⊗ Ao-module, and

I M ⊗Mo is both a right A⊗ Ao-module and a left
M ⊗Mo-module.

I The dimension is computed with respect to that left module
action.
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Lemma (Shlyakhtenko-Connes)

Let Γ be a discrete group.

Then,

β
(2)
k (CΓ, τ) = β

(2)
k (Γ).

Question
Can we hope for β

(2)
k (LΓ, τ) = β

(2)
k (CΓ, τ) ?

A related quantity is

∆
(2)
k (A, τ) = dim Tor M⊗Mo

k (M ⊗Mo ,M ⊗A M) .

It is better suited to approximate ∆
(2)
k (M, τ) = β

(2)
k (M, τ).
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Rank metric completion of bi-modules over a finite von
Neumann algebra

Let K be a bi-module over M and ξ ∈ K .

[ξ] = inf
{

τ(p) + τ(q) : p, q ∈ Proj(K ), p⊥ξq⊥ = 0
}
∈ [0, 1].

d(ξ, η) = [ξ − η]

defines a pseudo-metric on K .

Lemma
All M-module maps are contractions and completion defines a
functor from bi-modules to bi-modules.

Lemma
The functor of completion is exact.
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Lemma
Let K be a M-bi-module. Let c : K → K̂ be the canonical map
from K to its completion.

The induced map

(M ⊗Mo)⊗M⊗Mo K → (M ⊗Mo)⊗M⊗Mo K̂

is a dimension isomorphism.

Corollary

The induced map

Tor M⊗Mo

k (M ⊗Mo ,K ) → Tor M⊗Mo

k (M ⊗Mo , K̂ ).

is a dimension isomorphism for all k.
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Pedersen’s result and applications

Theorem (Pedersen)

Let (M, τ) be a finite von Neumann algebra with faithful tracial
state τ and let A ⊂ M be a dense C ∗-subalgebra.

For ε > 0 and
x ∈ M, there exists a ∈ A and a projection p of trace τ(p) ≥ 1− ε,
such that

px = pa.

Corollary

The natural map φ : M ⊗A M → M is an isomorphism after
completion in the rank metric.
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Corollary

Let (M, τ) be as above and let A be a dense C ∗-subalgebra. Then,

Tor M⊗Mo

k (M ⊗Mo ,M ⊗A M) → Tor M⊗Mo

k (M ⊗Mo ,M).

is a dimension isomorphism for all k ∈ N

and hence

∆
(2)
k (A, τ) = ∆

(2)
k (M, τ).

Previously, this was only known for k = 1, using completely
different techniques.

Question
Can one make this approach work using LΓ⊗CΓ LΓ or LΓ⊗C∞Γ LΓ
rather than LΓ⊗CrΓ LΓ?
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Gaboriau’s Theorem on invariance of L2-Betti numbers of
groups under orbit equivalence

Let Γ1, Γ2 be discrete groups. They are called orbit equivalent, if
there exists a probability space (X , µ) and free m.p. actions of Γ1

and Γ2, so that the orbits agree (up to measure zero).

Theorem (Gaboriau)

Orbit equivalent groups have the same L2-Betti numbers.
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Idea of the Proof

1. W. Lück’s description of L2-Betti numbers:

β
(2)
k (Γi ) = dim Tor CΓi

k (LΓi , C)

2. R. Sauer’s computation:

β
(2)
k (Γi ) = dim Tor L∞(X )oalgΓi

k (L∞(X ) o Γi , L
∞(X ))

3. Use the work of Feldman-Moore to show that the rings

L∞(X ) oalg Γi

have isomorphic completions as L∞(X )-modules.

4. Completing everything with respect to L∞(X ) preserves the
dimension and the result depends only on the equivalence
relation.
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