Rank metric completion and L^{2}-invariants

Andreas Thom
University of Göttingen

Berkeley, March 26, 2007

Overview

Overview

1. Homological algebra and derived functors

Overview

1. Homological algebra and derived functors
2. Dimension of modules over a finite von Neumann algebra

Overview

1. Homological algebra and derived functors
2. Dimension of modules over a finite von Neumann algebra
3. Connes-Shlyakhtenko L^{2}-Betti numbers for tracial algebras

Overview

1. Homological algebra and derived functors
2. Dimension of modules over a finite von Neumann algebra
3. Connes-Shlyakhtenko L^{2}-Betti numbers for tracial algebras
4. Rank metric completion of bi-modules over a finite von Neumann algebra

Overview

1. Homological algebra and derived functors
2. Dimension of modules over a finite von Neumann algebra
3. Connes-Shlyakhtenko L^{2}-Betti numbers for tracial algebras
4. Rank metric completion of bi-modules over a finite von Neumann algebra
5. Pedersen's Theorem and applications

Overview

1. Homological algebra and derived functors
2. Dimension of modules over a finite von Neumann algebra
3. Connes-Shlyakhtenko L^{2}-Betti numbers for tracial algebras
4. Rank metric completion of bi-modules over a finite von Neumann algebra
5. Pedersen's Theorem and applications
6. Gaboriau's Theorem on invariance of L^{2}-Betti numbers of groups under orbit equivalence

Homological algebra and derived functors

Let R be a ring and M be a R-module.

Homological algebra and derived functors

Let R be a ring and M be a R-module.
Lemma
There exists a module $C_{0}=\oplus_{\alpha} R$ and a surjection $\phi: C_{0} \rightarrow M$.

Homological algebra and derived functors

Let R be a ring and M be a R-module.
Lemma
There exists a module $C_{0}=\oplus_{\alpha} R$ and a surjection $\phi: C_{0} \rightarrow M$.
If M is not free, then ϕ cannot be an isomorphism and we can apply the Lemma to $\operatorname{ker}(\phi)$.

Homological algebra and derived functors

Let R be a ring and M be a R-module.
Lemma
There exists a module $C_{0}=\oplus_{\alpha} R$ and a surjection $\phi: C_{0} \rightarrow M$.
If M is not free, then ϕ cannot be an isomorphism and we can apply the Lemma to $\operatorname{ker}(\phi)$. Iterating the process, we obtain an exact sequence:

$$
\cdots \rightarrow C_{n} \rightarrow \cdots \rightarrow C_{1} \rightarrow C_{0} \rightarrow M \rightarrow 0
$$

Homological algebra and derived functors

Let R be a ring and M be a R-module.
Lemma
There exists a module $C_{0}=\oplus_{\alpha} R$ and a surjection $\phi: C_{0} \rightarrow M$.
If M is not free, then ϕ cannot be an isomorphism and we can apply the Lemma to $\operatorname{ker}(\phi)$. Iterating the process, we obtain an exact sequence:

$$
\cdots \rightarrow C_{n} \rightarrow \cdots \rightarrow C_{1} \rightarrow C_{0} \rightarrow M \rightarrow 0
$$

The sequence

$$
C_{*} \stackrel{\text { def }}{=} \quad \cdots \rightarrow C_{n} \rightarrow \cdots \rightarrow C_{1} \rightarrow C_{0} \rightarrow 0
$$

is called a free resolution of the R-module M.

Lemma
Any two free resolutions of the R-module M are homotopy equivalent.

Lemma

Any two free resolutions of the R-module M are homotopy equivalent.

Remark
Most of the time, C_{*} is a suitable and tractable replacement of M.

Lemma

Any two free resolutions of the R-module M are homotopy equivalent.

Remark
Most of the time, C_{*} is a suitable and tractable replacement of M.
A functor F is called right-exact, if it maps short exact sequences

$$
0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0
$$

to right-exact sequences

$$
F\left(M_{1}\right) \rightarrow F\left(M_{2}\right) \rightarrow F\left(M_{3}\right) \rightarrow 0
$$

Corollary

Let F be any right-exact functor from the category of R-modules into some abelian category. The left-derived functors

$$
\left(L_{i} F\right)(M) \stackrel{\text { def }}{=} H_{i}\left(F\left(C_{*}\right)\right)
$$

are well defined.

Corollary

Let F be any right-exact functor from the category of R-modules into some abelian category. The left-derived functors

$$
\left(L_{i} F\right)(M) \stackrel{\text { def }}{=} H_{i}\left(F\left(C_{*}\right)\right)
$$

are well defined.
These functors are very useful and carry a lot of interesting information about the module M and the functor F.

Example

For any extension of modules $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$, there exists a long exact sequence
$\cdots \rightarrow\left(L_{k} F\right)\left(M_{1}\right) \rightarrow\left(L_{k} F\right)\left(M_{2}\right) \rightarrow\left(L_{k} F\right)\left(M_{3}\right) \rightarrow\left(L_{k-1} F\right)\left(M_{1}\right) \rightarrow \ldots$

Example

For any extension of modules $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$, there exists a long exact sequence
$\cdots \rightarrow\left(L_{k} F\right)\left(M_{1}\right) \rightarrow\left(L_{k} F\right)\left(M_{2}\right) \rightarrow\left(L_{k} F\right)\left(M_{3}\right) \rightarrow\left(L_{k-1} F\right)\left(M_{1}\right) \rightarrow \ldots$
ending with

$$
\cdots \rightarrow\left(L_{1} F\right)\left(M_{3}\right) \rightarrow F\left(M_{1}\right) \rightarrow F\left(M_{2}\right) \rightarrow F\left(M_{3}\right) \rightarrow 0 .
$$

Example

Let K be a right R-module. The functor $M \mapsto K \otimes_{R} M$ is right-exact. We set:

$$
\operatorname{Tor}_{k}^{R}(K, M)=\left(L_{k}\left(K \otimes_{R} ?\right)\right)(M)=H_{k}\left(K \otimes_{R} C_{*}\right) .
$$

Example

Let K be a right R-module. The functor $M \mapsto K \otimes_{R} M$ is right-exact. We set:

$$
\operatorname{Tor}_{k}^{R}(K, M)=\left(L_{k}\left(K \otimes_{R} ?\right)\right)(M)=H_{k}\left(K \otimes_{R} C_{*}\right) .
$$

Remark
If the functor F is exact, then $\left(L_{i} F\right)(M)=0$, for $i \geq 1$.

Dimension of modules over a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra and τ be a faithful tracial state.

Dimension of modules over a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra and τ be a faithful tracial state.
W. Lück defined a dimension function:

$$
\operatorname{dim}: M \text {-modules } \rightarrow[0, \infty]
$$

which shares the following properties:

Dimension of modules over a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra and τ be a faithful tracial state.
W. Lück defined a dimension function:

$$
\operatorname{dim}: M \text {-modules } \rightarrow[0, \infty]
$$

which shares the following properties:

1. $\operatorname{dim} M^{\oplus n} p=\tau(p) \in[0, n]$, for $p=p^{2}=p^{*} \in M_{n}(M)$.

Dimension of modules over a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra and τ be a faithful tracial state.
W. Lück defined a dimension function:

$$
\operatorname{dim}: M \text {-modules } \rightarrow[0, \infty]
$$

which shares the following properties:

1. $\operatorname{dim} M^{\oplus n} p=\tau(p) \in[0, n]$, for $p=p^{2}=p^{*} \in M_{n}(M)$.
2. If

$$
0 \rightarrow L_{1} \rightarrow L_{2} \rightarrow L_{3} \rightarrow 0
$$

is exact, then $\operatorname{dim} L_{2}=\operatorname{dim} L_{1}+\operatorname{dim} L_{3}$.

Dimension of modules over a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra and τ be a faithful tracial state.
W. Lück defined a dimension function:

$$
\operatorname{dim}: M \text {-modules } \rightarrow[0, \infty]
$$

which shares the following properties:

1. $\operatorname{dim} M^{\oplus n} p=\tau(p) \in[0, n]$, for $p=p^{2}=p^{*} \in M_{n}(M)$.
2. If

$$
0 \rightarrow L_{1} \rightarrow L_{2} \rightarrow L_{3} \rightarrow 0
$$

is exact, then $\operatorname{dim} L_{2}=\operatorname{dim} L_{1}+\operatorname{dim} L_{3}$.
3. If $L=\cup_{\alpha} L_{\alpha}$, then $\operatorname{dim} L=\sup _{\alpha} \operatorname{dim} L_{\alpha}$.

A map $\phi: L_{1} \rightarrow L_{2}$ is called dimension isomorphism if $\operatorname{ker}(\phi)$ and $\operatorname{coker}(\phi)$ are zero dimensional.

A map $\phi: L_{1} \rightarrow L_{2}$ is called dimension isomorphism if $\operatorname{ker}(\phi)$ and $\operatorname{coker}(\phi)$ are zero dimensional.
Theorem
Let F, G be two (right-exact) functors from an abelian category to the category of M-modules. If a natural transformation $H: F \rightarrow G$ consists of dimension isomorphisms, then so do the induced natural transformations

$$
L_{k} H: L_{k} F \rightarrow L_{k} G .
$$

The dimension can be used to extract numbers from homological data.

The dimension can be used to extract numbers from homological data.
W. Lück showed:

$$
\beta_{k}^{(2)}(\Gamma)=\operatorname{dim} \operatorname{Tor}_{k}^{\mathbb{C}\ulcorner }(L \Gamma, \mathbb{C})
$$

where $\beta_{k}^{(2)}(\Gamma)$ denotes the k-th L^{2}-Betti number in the sense of Atiyah and Cheeger-Gromov.

The dimension can be used to extract numbers from homological data.
W. Lück showed:

$$
\beta_{k}^{(2)}(\Gamma)=\operatorname{dim} \operatorname{Tor}_{k}^{\mathbb{C}}(L \Gamma, \mathbb{C})
$$

where $\beta_{k}^{(2)}(\Gamma)$ denotes the k-th L^{2}-Betti number in the sense of Atiyah and Cheeger-Gromov.

Example

Let M be an aspherical Riemannian manifold with fundamental group Γ.

$$
\beta_{k}^{(2)}(\Gamma)=\lim _{t \rightarrow \infty} \int_{F} \operatorname{tr}\left(e^{-t \Delta_{k}}(x, x)\right) d x
$$

where F is a fundamental domain of the Γ, acting on the universal covering.

Connes-Shlyakhtenko L^{2}-Betti numbers for tracial algebras

Connes-Shlyakhtenko L^{2}-Betti numbers for tracial algebras

Let (M, τ) be a finite von Neumann algebra with fixed tracial state and let $A \subset M$ be a dense $*$-sub-algebra.

Connes-Shlyakhtenko L^{2}-Betti numbers for tracial algebras

Let (M, τ) be a finite von Neumann algebra with fixed tracial state and let $A \subset M$ be a dense $*$-sub-algebra.

$$
\beta_{k}^{(2)}(A, \tau)=\operatorname{dim} \operatorname{Tor}_{k}^{A \otimes A^{\circ}}\left(M \bar{\otimes} M^{\circ}, A\right)
$$

Connes-Shlyakhtenko L^{2}-Betti numbers for tracial algebras

Let (M, τ) be a finite von Neumann algebra with fixed tracial state and let $A \subset M$ be a dense $*$-sub-algebra.

$$
\beta_{k}^{(2)}(A, \tau)=\operatorname{dim} \operatorname{Tor}_{k}^{A \otimes A^{\circ}}\left(M \bar{\otimes} M^{\circ}, A\right)
$$

Here,

- A is a left $A \otimes A^{\circ}$-module, and

Connes-Shlyakhtenko L^{2}-Betti numbers for tracial algebras

Let (M, τ) be a finite von Neumann algebra with fixed tracial state and let $A \subset M$ be a dense $*$-sub-algebra.

$$
\beta_{k}^{(2)}(A, \tau)=\operatorname{dim} \operatorname{Tor}_{k}^{A \otimes A^{\circ}}\left(M \bar{\otimes} M^{\circ}, A\right)
$$

Here,

- A is a left $A \otimes A^{\circ}$-module, and
- $M \bar{\otimes} M^{\circ}$ is both a right $A \otimes A^{\circ}$-module and a left $M \bar{\otimes} M^{\circ}$-module.

Connes-Shlyakhtenko L^{2}-Betti numbers for tracial algebras

Let (M, τ) be a finite von Neumann algebra with fixed tracial state and let $A \subset M$ be a dense $*$-sub-algebra.

$$
\beta_{k}^{(2)}(A, \tau)=\operatorname{dim} \operatorname{Tor}_{k}^{A \otimes A^{\circ}}\left(M \bar{\otimes} M^{\circ}, A\right)
$$

Here,

- A is a left $A \otimes A^{\circ}$-module, and
- $M \bar{\otimes} M^{\circ}$ is both a right $A \otimes A^{\circ}$-module and a left $M \bar{\otimes} M^{o}$-module.
- The dimension is computed with respect to that left module action.

Lemma (Shlyakhtenko-Connes)

Let Γ be a discrete group.

Lemma (Shlyakhtenko-Connes)
Let Γ be a discrete group. Then,

$$
\beta_{k}^{(2)}(\mathbb{C} \Gamma, \tau)=\beta_{k}^{(2)}(\Gamma)
$$

Lemma (Shlyakhtenko-Connes)
Let Γ be a discrete group. Then,

$$
\beta_{k}^{(2)}(\mathbb{C} \Gamma, \tau)=\beta_{k}^{(2)}(\Gamma)
$$

Question
Can we hope for $\beta_{k}^{(2)}(L \Gamma, \tau)=\beta_{k}^{(2)}(\mathbb{C} \Gamma, \tau) \quad$?

Lemma (Shlyakhtenko-Connes)

Let Γ be a discrete group. Then,

$$
\beta_{k}^{(2)}(\mathbb{C} \Gamma, \tau)=\beta_{k}^{(2)}(\Gamma)
$$

Question
Can we hope for $\beta_{k}^{(2)}(L \Gamma, \tau)=\beta_{k}^{(2)}(\mathbb{C} \Gamma, \tau) \quad$?
A related quantity is

$$
\Delta_{k}^{(2)}(A, \tau)=\operatorname{dim} \operatorname{Tor}_{k}^{M \otimes M^{\circ}}\left(M \bar{\otimes} M^{\circ}, M \otimes_{A} M\right)
$$

Lemma (Shlyakhtenko-Connes)

Let Γ be a discrete group. Then,

$$
\beta_{k}^{(2)}(\mathbb{C} \Gamma, \tau)=\beta_{k}^{(2)}(\Gamma)
$$

Question
Can we hope for $\beta_{k}^{(2)}(L \Gamma, \tau)=\beta_{k}^{(2)}(\mathbb{C} \Gamma, \tau) \quad$?
A related quantity is

$$
\Delta_{k}^{(2)}(A, \tau)=\operatorname{dim} \operatorname{Tor}_{k}^{M \otimes M^{\circ}}\left(M \bar{\otimes} M^{\circ}, M \otimes_{A} M\right)
$$

It is better suited to approximate $\Delta_{k}^{(2)}(M, \tau)=\beta_{k}^{(2)}(M, \tau)$.

Rank metric completion of bi-modules over a finite von Neumann algebra

Let K be a bi-module over M and $\xi \in K$.

Rank metric completion of bi-modules over a finite von Neumann algebra

Let K be a bi-module over M and $\xi \in K$.

$$
[\xi]=\inf \left\{\tau(p)+\tau(q): p, q \in \operatorname{Proj}(K), p^{\perp} \xi q^{\perp}=0\right\} \in[0,1] .
$$

Rank metric completion of bi-modules over a finite von Neumann algebra

Let K be a bi-module over M and $\xi \in K$.

$$
\begin{gathered}
{[\xi]=\inf \left\{\tau(p)+\tau(q): p, q \in \operatorname{Proj}(K), p^{\perp} \xi q^{\perp}=0\right\} \in[0,1]} \\
d(\xi, \eta)=[\xi-\eta]
\end{gathered}
$$

defines a pseudo-metric on K.

Rank metric completion of bi-modules over a finite von Neumann algebra

Let K be a bi-module over M and $\xi \in K$.

$$
\begin{gathered}
{[\xi]=\inf \left\{\tau(p)+\tau(q): p, q \in \operatorname{Proj}(K), p^{\perp} \xi q^{\perp}=0\right\} \in[0,1]} \\
d(\xi, \eta)=[\xi-\eta]
\end{gathered}
$$

defines a pseudo-metric on K.
Lemma
All M-module maps are contractions and completion defines a functor from bi-modules to bi-modules.

Rank metric completion of bi-modules over a finite von Neumann algebra

Let K be a bi-module over M and $\xi \in K$.

$$
\begin{gathered}
{[\xi]=\inf \left\{\tau(p)+\tau(q): p, q \in \operatorname{Proj}(K), p^{\perp} \xi q^{\perp}=0\right\} \in[0,1]} \\
d(\xi, \eta)=[\xi-\eta]
\end{gathered}
$$

defines a pseudo-metric on K.
Lemma
All M-module maps are contractions and completion defines a functor from bi-modules to bi-modules.

Lemma
The functor of completion is exact.

Lemma
Let K be a M-bi-module. Let $c: K \rightarrow \hat{K}$ be the canonical map from K to its completion.

Lemma
Let K be a M-bi-module. Let $c: K \rightarrow \hat{K}$ be the canonical map from K to its completion. The induced map

$$
\left(M \bar{\otimes} M^{\circ}\right) \otimes_{M \otimes M^{\circ}} K \rightarrow\left(M \bar{\otimes} M^{\circ}\right) \otimes_{M \otimes M^{\circ}} \hat{K}
$$

is a dimension isomorphism.

Lemma

Let K be a M-bi-module. Let $c: K \rightarrow \hat{K}$ be the canonical map from K to its completion. The induced map

$$
\left(M \bar{\otimes} M^{\circ}\right) \otimes_{M \otimes M^{\circ}} K \rightarrow\left(M \bar{\otimes} M^{\circ}\right) \otimes_{M \otimes M^{\circ}} \hat{K}
$$

is a dimension isomorphism.
Corollary
The induced map

$$
\operatorname{Tor}_{k}^{M \otimes M^{o}}\left(M \bar{\otimes} M^{\circ}, K\right) \rightarrow \operatorname{Tor}_{k}^{M \otimes M^{o}}\left(M \bar{\otimes} M^{\circ}, \hat{K}\right)
$$

is a dimension isomorphism for all k.

Pedersen's result and applications

Theorem (Pedersen)
Let (M, τ) be a finite von Neumann algebra with faithful tracial state τ and let $A \subset M$ be a dense C^{*}-subalgebra.

Pedersen's result and applications

Theorem (Pedersen)
Let (M, τ) be a finite von Neumann algebra with faithful tracial state τ and let $A \subset M$ be a dense C^{*}-subalgebra. For $\epsilon>0$ and $x \in M$, there exists $a \in A$ and a projection p of trace $\tau(p) \geq 1-\epsilon$, such that

$$
p x=p a
$$

Pedersen's result and applications

Theorem (Pedersen)

Let (M, τ) be a finite von Neumann algebra with faithful tracial state τ and let $A \subset M$ be a dense C^{*}-subalgebra. For $\epsilon>0$ and $x \in M$, there exists $a \in A$ and a projection p of trace $\tau(p) \geq 1-\epsilon$, such that

$$
p x=p a
$$

Corollary

The natural $\operatorname{map} \phi: M \otimes_{A} M \rightarrow M$ is an isomorphism after completion in the rank metric.

Corollary

Let (M, τ) be as above and let A be a dense C^{*}-subalgebra. Then,

$$
\operatorname{Tor}_{k}^{M \otimes M^{o}}\left(M \bar{\otimes} M^{\circ}, M \otimes_{A} M\right) \rightarrow \operatorname{Tor}_{k}^{M \otimes M^{\circ}}\left(M \bar{\otimes} M^{0}, M\right) .
$$

is a dimension isomorphism for all $k \in \mathbb{N}$

Corollary

Let (M, τ) be as above and let A be a dense C^{*}-subalgebra. Then,

$$
\operatorname{Tor}_{k}^{M \otimes M^{\circ}}\left(M \bar{\otimes} M^{\circ}, M \otimes_{A} M\right) \rightarrow \operatorname{Tor}_{k}^{M \otimes M^{\circ}}\left(M \bar{\otimes} M^{0}, M\right) .
$$

is a dimension isomorphism for all $k \in \mathbb{N}$ and hence

$$
\Delta_{k}^{(2)}(A, \tau)=\Delta_{k}^{(2)}(M, \tau)
$$

Corollary

Let (M, τ) be as above and let A be a dense C^{*}-subalgebra. Then,

$$
\operatorname{Tor}_{k}^{M \otimes M^{\circ}}\left(M \bar{\otimes} M^{0}, M \otimes_{A} M\right) \rightarrow \operatorname{Tor}_{k}^{M \otimes M^{\circ}}\left(M \bar{\otimes} M^{\circ}, M\right) .
$$

is a dimension isomorphism for all $k \in \mathbb{N}$ and hence

$$
\Delta_{k}^{(2)}(A, \tau)=\Delta_{k}^{(2)}(M, \tau)
$$

Previously, this was only known for $k=1$, using completely different techniques.

Corollary

Let (M, τ) be as above and let A be a dense C^{*}-subalgebra. Then,

$$
\operatorname{Tor}_{k}^{M \otimes M^{o}}\left(M \bar{\otimes} M^{\circ}, M \otimes_{A} M\right) \rightarrow \operatorname{Tor}_{k}^{M \otimes M^{\circ}}\left(M \bar{\otimes} M^{0}, M\right) .
$$

is a dimension isomorphism for all $k \in \mathbb{N}$ and hence

$$
\Delta_{k}^{(2)}(A, \tau)=\Delta_{k}^{(2)}(M, \tau)
$$

Previously, this was only known for $k=1$, using completely different techniques.
Question
Can one make this approach work using $L \Gamma \otimes_{\mathbb{C}} L \Gamma$ or $L \Gamma \otimes_{C^{\infty} \Gamma} L \Gamma$ rather than $L \Gamma \otimes c_{r} \Gamma L \Gamma$?

Gaboriau's Theorem on invariance of L^{2}-Betti numbers of groups under orbit equivalence

Gaboriau's Theorem on invariance of L^{2}-Betti numbers of groups under orbit equivalence

Let Γ_{1}, Γ_{2} be discrete groups. They are called orbit equivalent, if there exists a probability space (X, μ) and free m.p. actions of Γ_{1} and Γ_{2}, so that the orbits agree (up to measure zero).

Gaboriau's Theorem on invariance of L^{2}-Betti numbers of groups under orbit equivalence

Let Γ_{1}, Γ_{2} be discrete groups. They are called orbit equivalent, if there exists a probability space (X, μ) and free m.p. actions of Γ_{1} and Γ_{2}, so that the orbits agree (up to measure zero).
Theorem (Gaboriau)
Orbit equivalent groups have the same L^{2}-Betti numbers.

Idea of the Proof

Idea of the Proof

1. W. Lück's description of L^{2}-Betti numbers:
$\beta_{k}^{(2)}\left(\Gamma_{i}\right)=\operatorname{dim} \operatorname{Tor}_{k}^{\mathbb{C} \Gamma_{i}}\left(L \Gamma_{i}, \mathbb{C}\right)$

Idea of the Proof

1. W. Lück's description of L^{2}-Betti numbers:
$\beta_{k}^{(2)}\left(\Gamma_{i}\right)=\operatorname{dim} \operatorname{Tor}_{k}^{\mathbb{C} \Gamma_{i}}\left(L \Gamma_{i}, \mathbb{C}\right)$
2. R. Sauer's computation:

$$
\beta_{k}^{(2)}\left(\Gamma_{i}\right)=\operatorname{dim} \operatorname{Tor}_{k}^{L^{\infty}(X) \rtimes_{a l g} \Gamma_{i}}\left(L^{\infty}(X) \rtimes \Gamma_{i}, L^{\infty}(X)\right)
$$

Idea of the Proof

1. W. Lück's description of L^{2}-Betti numbers:
$\beta_{k}^{(2)}\left(\Gamma_{i}\right)=\operatorname{dim} \operatorname{Tor}_{k}^{\mathbb{C} \Gamma_{i}}\left(L \Gamma_{i}, \mathbb{C}\right)$
2. R. Sauer's computation:

$$
\beta_{k}^{(2)}\left(\Gamma_{i}\right)=\operatorname{dim} \operatorname{Tor}_{k}^{L^{\infty}(X) \rtimes_{a l g} \Gamma_{i}}\left(L^{\infty}(X) \rtimes \Gamma_{i}, L^{\infty}(X)\right)
$$

3. Use the work of Feldman-Moore to show that the rings

$$
L^{\infty}(X) \rtimes_{a l g} \Gamma_{i}
$$

have isomorphic completions as $L^{\infty}(X)$-modules.

Idea of the Proof

1. W. Lück's description of L^{2}-Betti numbers:
$\beta_{k}^{(2)}\left(\Gamma_{i}\right)=\operatorname{dim} \operatorname{Tor}_{k}^{\mathbb{C} \Gamma_{i}}\left(L \Gamma_{i}, \mathbb{C}\right)$
2. R. Sauer's computation:

$$
\beta_{k}^{(2)}\left(\Gamma_{i}\right)=\operatorname{dim} \operatorname{Tor}_{k}^{L^{\infty}(X) \rtimes_{a l g} \Gamma_{i}}\left(L^{\infty}(X) \rtimes \Gamma_{i}, L^{\infty}(X)\right)
$$

3. Use the work of Feldman-Moore to show that the rings

$$
L^{\infty}(X) \rtimes_{a l g} \Gamma_{i}
$$

have isomorphic completions as $L^{\infty}(X)$-modules.
4. Completing everything with respect to $L^{\infty}(X)$ preserves the dimension and the result depends only on the equivalence relation.

