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Homological algebra and derived functors

Let R be a ring and M be a R-module.

Lemma
There exists a module Cy = R and a surjection ¢: Co — M.

If M is not free, then ¢ cannot be an isomorphism and we can
apply the Lemma to ker (¢). Iterating the process, we obtain an
exact sequence:

=== G—-CG—-M—0.
The sequence
.Y ... C—-nCG—C—0

is called a free resolution of the R-module M.



Lemma
Any two free resolutions of the R-module M are homotopy
equivalent.



Lemma
Any two free resolutions of the R-module M are homotopy
equivalent.

Remark
Most of the time, C, is a suitable and tractable replacement of M.



Lemma
Any two free resolutions of the R-module M are homotopy

equivalent.

Remark
Most of the time, C, is a suitable and tractable replacement of M.

A functor F is called right-exact, if it maps short exact sequences
00— M — M, - M3 -0
to right-exact sequences

F(My) — F(My) — F(M3) — 0.
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Let F be any right-exact functor from the category of R-modules
into some abelian category. The left-derived functors

(LiF)(M) < H; (F(C.))

are well defined.

These functors are very useful and carry a lot of interesting
information about the module M and the functor F.
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exists a long exact sequence

o+ = (LkF)(M1) — (LkF)(M2) — (LkF)(M3) — (Lx-1F)(M1) — ...
ending with

cor = (L1F)(M3) — F(My) — F(M,) — F(Ms3) — 0.
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Example

Let K be a right R-module. The functor M — K Qg M is
right-exact. We set:

Tor R(K, M) = (Li(K®&r?))(M) = Hi (K ®r C.).

Remark
If the functor F is exact, then (L;F)(M) =0, for i > 1.
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Dimension of modules over a finite von Neumann algebra

Let (M, 7) be a finite von Neumann algebra and 7 be a faithful

tracial state.
W. Lick defined a dimension function:

dim: M-modules — [0, 0]
which shares the following properties:
1. dim M®"p = 7(p) € [0, ], for p = p? = p* € Mp(M).

2. 1f
0—Li—>1lr—1L3—0

is exact, then dim Ly, = dim L + dim Ls.
3. If L=U,Ly, then dim L = sup, dim L,.
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A map ¢: L1 — Ly is called dimension isomorphism if ker (¢) and
coker(¢) are zero dimensional.

Theorem
Let F, G be two (right-exact) functors from an abelian category to
the category of M-modules. If a natural transformation H: F — G
consists of dimension isomorphisms, then so do the induced natural
transformations

LkHZ LkF — LkG.
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The dimension can be used to extract numbers from homological
data.
W. Liick showed:

I(<2)(r) = dim Tor (EF(LF,(C),

where 5£2)(r) denotes the k-th L2-Betti number in the sense of
Atiyah and Cheeger-Gromov.

Example

Let M be an aspherical Riemannian manifold with fundamental

group I'.
@y = —thy
(M) = tllm /Ftr (e (X,X)) dx,

where F is a fundamental domain of the I', acting on the universal
covering.
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Connes-Shlyakhtenko L2-Betti numbers for tracial algebras

Let (M, ) be a finite von Neumann algebra with fixed tracial state
and let A C M be a dense x-sub-algebra.

ﬁ,((z)(A, 7) = dim Tor 1% (M @ M°, A)

Here,
> Ais a left A® A°-module, and
» M ® M° is both a right A® A°-module and a left
M & M°-module.
» The dimension is computed with respect to that left module
action.
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Lemma (Shlyakhtenko-Connes)
Let I be a discrete group. Then,

82 cr,r) = g2(n).

Question
Can we hope for 82 (LT, 7) = pP(Cr,r) 7
A related quantity is

AP(A, ) = dim Tor VoM (ME M°, M @4 M).

. . . 2 2
It is better suited to approximate Ai )(I\/I, T) = ﬂ,(( )(I\/l, ).
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Lemma
Let K be a M-bi-module. Let c: K — K be the canonical map
from K to its completion. The induced map

(M@ MO) QM Me K — (M@ MO) KMo Me /’A(
is a dimension isomorphism.

Corollary
The induced map

~

Tor MM (M@ M°, K) — Tor ¥*M* (M & M°, K).

is a dimension isomorphism for all k.
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Pedersen’s result and applications

Theorem (Pedersen)

Let (M, 1) be a finite von Neumann algebra with faithful tracial
state T and let A C M be a dense C*-subalgebra. For ¢ > 0 and

x € M, there exists a € A and a projection p of trace T(p) > 1 —,
such that

px = pa.

Corollary

The natural map ¢: M @4 M — M is an isomorphism after
completion in the rank metric.
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Corollary
Let (M, 1) be as above and let A be a dense C*-subalgebra. Then,

Tor MM (M@ M°, M @4 M) — Tor MEM* (M M°, M).
is a dimension isomorphism for all k € N and hence

AP A7) = 2P (m, 7).

Previously, this was only known for k = 1, using completely
different techniques.

Question
Can one make this approach work using LT Qcr LT or LT Qoo LT
rather than LT ®c,r LT'?
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Gaboriau’s Theorem on invariance of L2-Betti numbers of
groups under orbit equivalence

Let I'1, > be discrete groups. They are called orbit equivalent, if
there exists a probability space (X, ) and free m.p. actions of 'y
and Iy, so that the orbits agree (up to measure zero).

Theorem (Gaboriau)

Orbit equivalent groups have the same L?-Betti numbers.
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Idea of the Proof

1. W. Liick's description of L2-Betti numbers:
BA(r;) = dim Tor € (LT}, C)
2. R. Sauer’s computation:
BA(r;) = dim Tor & 76T (120(X) % T;, L(X))

3. Use the work of Feldman-Moore to show that the rings
LOO(X) Nalg F,-

have isomorphic completions as L°(X)-modules.

4. Completing everything with respect to L°°(X) preserves the
dimension and the result depends only on the equivalence
relation.



