Dirichlet Forms on C^{*}-algebras

A Review

Jean-Luc Sauvageot

Berkeley, march 25, 2007

Part 1.

Dirichlet Forms.

Data (60's)

A is a C^{*}-algebra, τ l.s.c. semifinite faithful trace on A $\left(\tau\left(a^{*} a\right)=\tau\left(a a^{*}\right)\right) ;$
$L^{2}(A, \tau)=$ G.N.S. space $=$ completion of $\mathcal{N}_{\tau}=\left\{a \in A / \tau\left(a^{*} a\right)<+\infty\right\}\left(=A \cap L^{2}(A, \tau)\right)$
$\Lambda_{\tau}: \mathcal{N}_{\tau} \rightarrow L^{2}(A, \tau)$ tautological embedding;
$J: L^{2}(A, \tau) \rightarrow L^{2}(A, \tau)$ canonical antilinear isometric involution : $J\left(\Lambda_{\tau}(a)\right)=\Lambda_{\tau}\left(a^{*}\right)$.
$\pi_{\tau}: A \rightarrow \mathcal{L}\left(L^{2}(A, \tau)\right)$ left action of A on $L^{2}(A, \tau):$
$\pi_{\tau}(a) \Lambda_{\tau}(b)=\Lambda_{\tau}(a b)$ shortly denoted $\pi_{\tau}(a) \xi=a \xi$;
$\pi_{\tau}(A)^{\prime \prime}=$ von Neumann algebra generated by A in $\mathcal{L}\left(L^{2}(A, \tau)\right)$.

Fact: $\quad \pi_{\tau}(A)^{\prime}=J \pi_{\tau}(A)^{\prime \prime} J$.

Functional calculus in $L^{2}(A, \tau)$:

$$
\begin{aligned}
& \xi \in L^{2}(A, \tau), \xi=J \xi: \xi=\int_{-\infty}^{+\infty} \lambda d E(\lambda) \\
& f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(\xi)=\int_{-\infty}^{+\infty} f(\lambda) d E(\lambda)
\end{aligned}
$$

Symmetric semigroups

Semigroup means Markov semigroup, i.e
σ-weakly pointwise continuous semigroup of completely positive contractions of $\pi_{\tau}(A)^{\prime \prime}$.

Symmetric semigroup $=$ semigroup symmetric $/ \tau$:

$$
\tau\left(b \varphi_{t}(a)\right)=\tau\left(\varphi_{t}(b) a\right), \forall a, b \in \pi_{\tau}(A)_{+}^{\prime \prime}, \forall t \in \mathbb{R}_{+} .
$$

L^{2}-generator:
$\left\{\varphi_{t}\right\}_{t \in \mathbb{R}_{+}}$extends as a semigroup of s.a. contractions
in $L^{2}(A, \tau) \rightarrow$ (Hille-Yoshida)

$$
\varphi_{t}=e^{-t L}
$$

L self-adjoint densely defined nonnegative in

$$
L^{2}(A, \tau)
$$

N.B.
$\left\{\varphi_{t}\right\}$ acts in the von Neumann algebra.
L acts in the Hilbert space $L^{2}(A, \tau)$.
Note the - sign in definition of L.

Dirichlet forms

E closed densely defined nonnegative quadratic form on $L^{2}(A, \tau)$.

Definition. E is a Dirichlet form if one of the two equivalent properties hold:
(a) $\forall \xi \in L^{2}(A, \tau)$ s.t. $\xi=J \xi, E[\xi \wedge 1] \leq E[\xi]$.
(b) $\forall \xi \in L^{2}(A, \tau)$ s.t. $\xi=J \xi$, $\forall f \in C^{1}(\mathbb{R})$ with $f(0)=0$, one has $E[f(\xi)] \leq\|f\|_{C^{1}}^{2} E[\xi]$, with $\|f\|_{C^{1}}=\sup \left\{\left|f^{\prime}(t)\right| / t \in \operatorname{sp}(\xi)\right\}$.
E is a complete Dirichlet form if, $\forall n \geq 1$,

$$
E_{n}: E_{n}\left[\left(\xi_{i j}\right)\right]=\sum_{i, j} E_{n}\left[\xi_{i j}\right]
$$

is a Dirichlet form on $L^{2}\left(A \otimes M_{n}(\mathbb{C}), \tau \otimes \tau_{n}\right)$.

Basic Theorem.

Complete Dirichlet forms \longleftrightarrow symmetric semigroups

Beurling/Deny (59), Albeverio/Hoegh-Krohn (77), S. (90), Lindsay-Davies (92), Cipriani (97), etc.

Correspondance :

From the semigroup to the Dirichlet form :

$$
\varphi_{t}=e^{-t L} \text { in } L^{2}(A, \tau) \longrightarrow E[\xi]=\left\|L^{1 / 2} \xi\right\|_{L^{2}}^{2} .
$$

From the Dirichlet form to the semigroup :

1/ Resolvents on $M=\pi_{\tau}(A)^{\prime \prime}$: show
$\frac{\lambda I}{\lambda I+L}: M \cap L^{2}(A, \tau) \rightarrow M \cap L^{2}(A, \tau), \forall \lambda \in \mathbb{R}_{+}^{*}$

+ (complete) positivity on $M+$ contractivity on M.

2/ Family of resolvents \rightarrow semigroup by TrotterKato formula.

Part 2.

Associated differential calculus.

Definitions.

1. Dirichlet algebra: $\mathcal{B}=A \bigcap \mathcal{D}(E)$.

Proposition. [LD] E complete Dirichlet form. Then \mathcal{B} is a $*$-subalgebra of A.
2. Regular Dirichlet form: \mathcal{B} is $\left\{\begin{array}{c}\text { dense in } A \\ \text { a core for } E .\end{array}\right.$
3. Symetric differential calculus:

- \mathcal{H} a $A-A$-bimodule (possibly degenerate),
- $\mathcal{J}: \mathcal{H} \rightarrow \mathcal{H}$ antilinear involution,

$$
\mathcal{J}(a \xi b)=b^{*} \mathcal{J}(\xi) a^{*},
$$

- $B \subset A \cap L^{2}(A, \tau)$ dense $*$-algebra,
- $\partial: B \rightarrow \mathcal{H}$ a symmetric derivation:

$$
\begin{gathered}
\partial\left(a^{*}\right)=\mathcal{J}(\partial(a)), a \in B, \\
\partial(a b)=a \partial(b)+\partial(a) b, a, b \in B
\end{gathered}
$$

closable from $L^{2}(A, \tau)$ into \mathcal{H}.

Theorem 1. [S]
If $(\mathcal{H}, \mathcal{J}, B, \partial)$ is a symmetric differential calculus, then the closure of

$$
L^{2}(A, \tau) \supset B \rightarrow E[b]=\|\partial(b)\|_{\mathcal{H}}^{2}
$$

is a regular complete Dirichlet form on $L^{2}(A, \tau)$.

Theorem 2. [CS]

And vice versa.
i.e. if E is a regular complete Dirichlet form on $L^{2}(A, \tau)$, then there exists a symmetric differential calculus with $B=\mathcal{B}$ and $E[b]=\|\partial(b)\|_{\mathcal{H}}^{2}, \forall b \in \mathcal{B}$.

Remarks.

1/ Dirichlet forms are related to the von Neumann algebra $\pi_{\tau}(A)^{\prime \prime}$, while regular Dirichlet forms are related to the C^{*}-algebra A.
2/ The left (resp. right) representation of A in $\mathcal{L}(\mathcal{H})$ can be disjoint form the left (resp. right) of A in $\mathcal{L}\left(L^{2}(A, \tau)\right)$.
This happens for harmonic structures on fractals.
This does not happen if $\mathcal{D}(L) \cap A$ contains a dense *-subalgebra of A.
3/ The left or right representation of A in $\mathcal{L}(\mathcal{H})$ can have a degenerate part (related to killing).

Relationship with the "carré du champ"

$\mathcal{D}(L) \cap A$ needs not to contain a dense algebra, but, for $a, b \in \mathcal{B}$,

$$
\Gamma(b, a)=\frac{1}{2}\left[-L\left(b^{*} a\right)+b^{*} L(a)+L\left(b^{*}\right) a\right]
$$

makes sense in the dual space A^{*}. Moreover
$\forall n, \forall a_{1}, \cdots, a_{n} \in \mathcal{B}:$

$$
\left[\Gamma\left(a_{j}, a_{i}\right)\right]_{i, j=1 . . n} \in M_{n}\left(A^{\circ}\right)_{+}^{*} .
$$

\mathcal{H} is generated by the $\partial(\alpha) a, \alpha \in \mathcal{B}, a \in A$, with scalar product

$$
(\partial(\beta) b \mid \partial(\alpha) a)=\left\langle\Gamma\left(\beta^{*}, \alpha\right), a b^{*}\right\rangle_{A^{*}, A} .
$$

+ obvious right action

$$
(\partial(\alpha) a) b=\partial(\alpha)(a b), \alpha \in \mathcal{B}, a, b \in A,
$$

+ left action (much less obvious)

$$
b(\partial(\alpha) a)=\partial(b \alpha) a-\partial(b) \alpha a, \alpha, b \in \mathcal{B}, a \in A .
$$

n.B. For defining $\Gamma(b, a)$, write

$$
\begin{aligned}
L & =\lim _{\varepsilon \downarrow 0} L^{\varepsilon}=\frac{L}{I+\varepsilon L}=\frac{1}{\varepsilon}\left(I-\frac{I}{I+\varepsilon L}\right) \\
\Gamma^{\varepsilon}(b, a) & =\frac{1}{2}\left[-L^{\varepsilon}\left(b^{*} a\right)+b^{*} L^{\varepsilon}(a)+L^{\varepsilon}\left(b^{*}\right) a\right] \in L^{1}(A, \tau) \subset A^{*}
\end{aligned}
$$

$$
\text { and make } \varepsilon \downarrow 0: \Gamma^{\varepsilon}(b, a) \rightarrow \Gamma(b, a) \text { weakly in } A^{*} .
$$

Useful both ways:

1/ Start with a differential calculus
\rightarrow Dirichlet form ;
\rightarrow Markov semigroup;
\rightarrow Stochastic process.

2/ Start with a symmetric semigroup or a Dirichlet form
\rightarrow Tangent bundle ${ }_{A} \mathcal{H}_{A}\left(=" L^{2}(T M) "\right)$
\rightarrow Gradient operator $\partial: \mathcal{B} \rightarrow \mathcal{H}$
$\mathcal{D}(\bar{\partial})=" H^{1}$ (non commutative Riemannian manifold) $"$.
$\rightarrow L=\partial^{*} \partial=$ divergence of the gradient.

Part 3.

Examples.

General examples.

Pure jump Dirichlet forms (classical):
 $$
A=C(X), \tau=m
$$

μ symmetric Radon measure on $X \times X \backslash\{$ diagonal $\}$

$$
\begin{gathered}
E[f]=\int_{X \times X}|f(x)-f(y)|^{2} d \mu(x, y) \\
\mathcal{H}=L^{2}(X \times X, \mu) ; \\
\partial f(x, y)=f(x)-f(y): \partial f=f \otimes 1-1 \otimes f=\left[1_{X \times X}, f\right] .
\end{gathered}
$$

(if μ unbounded, use an approximate unit.)

Local Dirichlet forms (classical) :

$$
A=C(X), \tau=m
$$

Proposition. E is local iff, on the bimodule \mathcal{H}, the left and right actions coincide:

$$
\begin{gathered}
f \xi=\xi f, \forall \xi \in \mathcal{H}, \forall f \in C(X) . \\
\mathcal{H}=\int_{X}^{\oplus} \mathcal{H}_{x} d \nu(x) .
\end{gathered}
$$

∂ ?

14
Negative type functions on groups:

$$
A=C_{r}^{*}(G)
$$

G locally compact group, d negative type function

$$
\varphi_{t}(\lambda(f))=\lambda\left(e^{-t d} f\right) \text { symmetric semigroup }
$$

$$
E[\lambda(f)]=\int_{G} d(g)|f(g)|^{2} d g
$$

$$
\exists H,, \exists \pi: G \rightarrow U(H), \exists \xi: G \ni g \rightarrow \xi(g) \in H
$$

$$
\xi\left(g_{1} g_{2}\right)=\xi\left(g_{1}\right)+\pi\left(g_{1}\right) \xi\left(g_{2}\right) g_{1}, g_{2} \in G
$$

$$
\text { s.t. } d(g)=\|\xi(g)\|_{H}^{2}, \quad \forall g \in G .
$$

Then

$$
\begin{aligned}
& \mathcal{H}={ }_{\pi \otimes \lambda} H \otimes L^{2}(G)_{i \otimes \rho}, \\
& =L^{2}(G, H) \\
& f \in C_{c}(G): \partial f=\{g \rightarrow f(g) \xi(g)\} \in L^{2}(G, H) .
\end{aligned}
$$

Bounded Dirichlet form :

Any A, τ.
ψ completely positive contraction of A, symmetric $/ \tau$

$$
\begin{gathered}
L=I-\psi, \varphi_{t}=e^{-t} e^{t \psi} \\
\mathcal{H}=\text { imprimitivity bimodule of } \psi: \\
\left\langle b \otimes_{\psi} \eta, a \otimes_{\psi} \xi\right\rangle_{\mathcal{H}}=\left\langle\eta, \psi\left(b^{*} a\right) \xi\right\rangle_{L^{2}(\tau)}, \\
\xi, \eta \in L^{2}(A, \tau), a, b \in A \\
\partial(a)=a \otimes_{\psi} 1_{A}-1_{A} \otimes_{\psi} \Lambda_{\tau}(a) \\
=\left[a, 1_{A} \otimes_{\psi} 1_{A}\right]
\end{gathered}
$$

(if A has no unit, use an approximate unit)
\rightarrow (approximately) inner derivation.

Remember: for any L,

$$
\begin{aligned}
L & =\lim _{\varepsilon \downarrow 0} \frac{1}{\varepsilon}\left(I-\frac{I}{I+\varepsilon L}\right)=\lim _{e \downarrow 0} \frac{1}{\varepsilon}(I-\text { c.p. contraction }) . \\
& \rightarrow \mathcal{H}=\lim _{\varepsilon \downarrow 0} \mathcal{H}^{\varepsilon}
\end{aligned}
$$

with $\mathcal{H}^{\varepsilon}$ imprimitivity bimodule, weakly in the category of representations of $A \otimes_{\max } A^{\circ}$.

Examples related to Riemannian geometry

Heat semigroup on functions : $A=C_{0}(M)$
M Riemannian manifold, $L=-\Delta, \varphi_{t}=e^{t \Delta}$

$$
\mathcal{H}=L^{2}(T M), \partial=\nabla, E(f)=\int_{M}|\nabla f|^{2} d v .
$$

+ other examples with perturbated Δ and measure.

Transverse heat semigroup of a Riemannian

 folitaions : $A=C^{*}(M, \mathcal{F})$$\mathcal{T}$: transverse bundle. Build $\nabla^{\mathcal{T}}$ an appropriate transverse connexion :

$$
\nabla^{\mathcal{T}}: C_{c}^{\infty}(M) \rightarrow C_{c}^{\infty}\left(M, \mathcal{T}^{*}\right)
$$

Extend it on the holonomy graph \mathcal{G} of the foliation

$$
\nabla^{\tau}: C_{c}^{\infty}(\mathcal{G}) \rightarrow C_{c}^{\infty}\left(\mathcal{G}, \mathcal{T}^{*}\right)
$$

Proposition: $\nabla^{\mathcal{T}}$ can be chosen s.t. it acts as a derivation from $C_{c}^{\infty}(\mathcal{G})$ into $C_{c}^{\infty}\left(\mathcal{G}, \mathcal{T}^{*}\right)$.
C^{*}-algebra: $C^{*}(M, \mathcal{F})=$ completion of $C_{c}^{\infty}(\mathcal{G})$ acting in $L^{2}(\mathcal{G})$.
\rightarrow derivation $\nabla^{\tau}: C_{c}^{\infty}(\mathcal{G}) \rightarrow L^{2}\left(C_{c}^{\infty}\left(\mathcal{G}, \mathcal{T}^{*}\right)\right)$
\rightarrow Dirichlet form, transverse Laplacian, semigroup.

Bochner Laplacian on the Clifford C*-algebra (Davies-Rothaus) :

M Riemannian manifold, $T M$ tangent bundle, Cliff $(T M)$ bundle of Clifford algebras of the tangent bundle:

$$
\operatorname{Cliff}(T M)_{x}=\operatorname{Cliff}\left(T_{x} M\right), x \in M .
$$

Clifford algebra of E, f.d. euclidean real vector space $=$ algebra generated by 1 and E as a vector subspace + relations $\quad \xi \cdot \eta+\eta \cdot \xi+2(\eta \mid \xi)_{E} 1=0, \xi, \eta \in E$.

Levi-Civita connexion

$\nabla: C_{c}^{\infty}(M, \operatorname{Cliff}(T M)) \rightarrow C_{c}^{\infty}\left(M, \operatorname{Cliff}(T M) \otimes T^{*} M\right)$
Fact: ∇ acts as a derivation.
Take
C*-algebra: $C_{0}(M, \operatorname{Cliff}(T M))=C_{C l i f f}^{*}(M)$;
Bimodule: $L^{2}\left(\operatorname{Cliff}(T M) \otimes T^{*} M\right)$;
Derivation: $\nabla=$ Levi-Civita connexion
\rightarrow Dirichlet form
\rightarrow Bochner heat semigroup $\varphi_{t}=e^{-t \nabla^{*} \nabla}$ on the Clifford C*-algebra of M.

Dirac heat semigroup on the Clifford C^{*}-algebra :

Same context.

Dirac operator :

$D: C_{c}^{\infty}(M, \operatorname{Cliff}(T M)) \rightarrow C_{c}^{\infty}(M, \operatorname{Cliff}(T M))$

$$
D(\xi)=\sum_{i} e_{i} \cdot \nabla_{e_{i}} \xi
$$

$\nabla=$ Levi-Civita connexion ;
$\left\{e_{1}, . ., e_{m}\right\}=$ any field of orthonormal basis of $T M$.
Fact: D is not a derivation.

Theorem. [CS]

$1 /\left\{e^{-t D^{2}}\right\}$ extends as a semigroup of completely bounded endomorphisms of $C_{C l i f f}^{*}(M)$.
2/ It extends as a semigroup of completely positive contractions of $C_{\text {Cliff }}^{*}(M)$, if and only if the curvature operator is nonnegative.

Curvature tensor R :

$$
R\left(v_{1}, v_{2}\right) v=-\left(\nabla_{v_{1}} \nabla_{v_{2}} v-\nabla_{v_{2}} \nabla_{v_{1}} v-\nabla_{\left[v_{1}, v_{2}\right]} v\right)
$$

Curvature operator \widehat{R} :

$$
\begin{aligned}
& \left(R\left(v_{1}, v_{2}\right) v_{3} \mid v_{4}\right)_{T_{x} M}=\left(\widehat{R}\left(v_{1} \wedge v_{2}\right) \mid v_{3} \wedge v_{4}\right)_{\Lambda_{x}^{2}(T M)} \\
& \widehat{R} \in C^{\infty}\left(M, \Lambda^{2}(T M)\right) \text { field of s.a. operators. }
\end{aligned}
$$

N.B. $\quad D^{2} \longleftrightarrow \Delta_{\text {Hodge }}=d^{*} d+d d^{*}$

Harmonic structures on fractals.

Classical Dirichlet forms constructed by J. Kigami on "Post-critically finite self-similar sets".

Interest:

$\sharp\{$ eigenvalues of $\Delta \leq x\}=C \cdot x^{d_{S} / 2}+o\left(x^{d_{S} / 2}\right), x \rightarrow+\infty$
(Kigami-Lapidus-Fukushima) with $1<d_{s}<2$
to be compared with Weyl expansion formula for a d-dimensional Riemannian manifold $\sharp\{$ eigenvalues of $\Delta \leq x\}=c_{d} \cdot v o l(M) x^{d / 2}+o\left(x^{d / 2}\right)$
\rightarrow a lot of noncommutative geometry
Fredholm modules, integrability, conformal geometry with help of the Dixmier trace, and so on.

References

[AHK] S. Albeverio, R. Hoegh-Krohn, Dirichlet Forms and Markovian semigroups on C*-algebras, Comm. Math. Phys. 56 (1977), 173-187.
[BeDe] A. Beurling and J. Deny, Dirichlet Spaces, Proc. Nat. Acad. Sci. 45 (1959), 208-215.
[Ci] F. Cipriani, Dirichlet Forms and Markovian semigroups on Standard forms of von Neumann algebras, J. Funct. Anal. 147 (1997), 259-300.
[CS1] F. Cipriani, J.-L. Sauvageot, Derivations as square roots of Dirichlet forms, J. Funct. Anal. 201 (2003), no. 1, 78-120.
[CS2] F. Cipriani, J.-L.Sauvageot, Noncommutative Potential Theory and the Sign of the Curvature Operator in Riemannian Geometry, to appear in Geom. Funct. Anal. (2003).
[CS3] Cipriani-Sauvageot Fredholm modules and Conformal Geometry on Self-Similar Fractals Preprint (2005).
[Co] A. Connes, "Noncommutative Geometry", Academic Press, 1994.
[DL] E.B. Davies, J.M. Lindsay, Non-commutative symmetric Markov semigroups, Math. Z. 210 (1992), 379-411.
[DR] E.B. Davies, O.S. Rothaus, Markov semigroups on C*-bundles, J. Funct. Anal. 85 (1989), 264-286.
[FOT] M. Fukushima, Y. Oshima, M. Takeda, "Dirichlet Forms and Symmetric Markov Processes", de Gruyter Studies in Mathematics, 1994.
[GI] D. Guido, T. Isola, Fractals in noncommutative geometry, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 30 (2001), 171-186.
[Ki] J. Kigami, "Analysis on Fractals", Cambridge Tracts in Mathematics vol. 143, Cabridge: Cambridge University Press, 2001.
[LM] H.B. Lawson JR., M.-L. Michelson, "Spin Geometry", Princeton University Press, Princeton, New Jersey, 1989.
[S2] J.-L. Sauvageot, Quantum differential forms, differential calculus and semigroups, Quantum Probability and Applications V, Lecture Notes in Math. 1442 (1990), 334-346.
[S3] J.-L. Sauvageot, Semi-groupe de la chaleur transverse sur la C*-algèbre d'un feullletage riemannien, J. Funct. Anal. 142 (1996), 511-538.
[W] N. Weaver, Lipschitz algebras and derivations II: exterior differentiation, J. Funct. Anal. 178 (2000), 64-112.

