Matrix Models with convex interaction

Alice Guionnet

UMPA, CNRS, Ecole Normale Supérieure de Lyon,France and
UC Berkeley
Joint works with E. Maurel Segala and D. Shlyakhtenko
UC Berkeley, March 25, 2007

Plan

- From 't Hooft expansion to some questions in free probability.
- Some arguments from free probability to analyze the first order of 't Hooft expansion and the associated (planar) combinatorial problem.

Reminder on Jean-Bernard Zuber's talk

Let μ_{N} be the law of a $N \times N$ complex Gaussian Wigner matrix (GUE). Let $V=\sum_{i=1}^{n} \beta_{i} x^{i}$ be a polynomial.

Then, 't Hooft expansion reads as the equality between formal series

$$
\begin{aligned}
& F_{N}(V):=\frac{1}{N^{2}} \log \int e^{-N \operatorname{tr}(V(X))} d \mu_{N}(X) \\
& =\sum_{g \in \mathbb{N}} \frac{1}{N^{2 g}} \sum_{k_{1}, \cdots, k_{n} \in \mathbb{N}} \prod_{i=1}^{n} \frac{\left(-\beta_{i}\right)^{k_{i}}}{k_{i}!} M_{g}\left(\left(k_{i}, i\right)_{1 \leq i \leq n}\right)
\end{aligned}
$$

with $M_{g}\left(\left(k_{i}, i\right)_{1 \leq i \leq n}\right)$ the number of maps with genus g (i.e connected graphs embedded in a surface of genus g) with k_{i} vertices of degree i (all half-edges labelled)

Several matrices generalization
Let μ_{N} be the law of a $N \times N$ complex Gaussian Wigner matrix (GUE). Let $V=\sum_{i=1}^{n} \beta_{i} q_{i}\left(X_{1}, \cdots, X_{m}\right)$ be a polynomial in m non-commutative variables. q_{i} monomials.

Then, 't Hooft expansion reads

$$
\begin{aligned}
& \frac{1}{N^{2}} \log \int e^{-N \operatorname{tr}\left(V\left(X_{1}, \cdots, X_{m}\right)\right)} d \mu_{N}\left(X_{1}\right) \cdots d \mu_{N}\left(X_{m}\right) \\
& =\sum_{g \in \mathbb{N}} \frac{1}{N^{2 g}} \sum_{k_{1}, \cdots, k_{n} \in \mathbb{N}} \prod_{i=1}^{n} \frac{\left(-\beta_{i}\right)^{k_{i}}}{k_{i}!} M_{g}\left(\left(k_{i}, q_{i}\right)_{1 \leq i \leq n}\right)
\end{aligned}
$$

with $M_{g}\left(\left(k_{i}, q_{i}\right)_{1 \leq i \leq n}\right)$ the number of maps with genus g (i.e connected graphs embedded in a surface of genus g) with k_{i} stars of type q_{i}.

Several matrices generalization
Let μ_{N} be the law of a $N \times N$ complex Gaussian Wigner matrix (GUE). Let $V=\sum_{i=1}^{n} \beta_{i} q_{i}\left(X_{1}, \cdots, X_{m}\right)$ be a polynomial in m non-commutative variables.

Then, 't Hooft expansion reads, for any monomial q

$$
\begin{aligned}
& \frac{1}{N^{2}} \log \int e^{-N \operatorname{tr}\left(V\left(X_{1}, \cdots, X_{m}\right)+t q\left(X_{1}, \cdots, X_{m}\right)\right)} d \mu_{N}\left(X_{1}\right) \cdots d \mu_{N}\left(X_{m}\right) \\
& =\sum_{g \in \mathbb{N}} \frac{1}{N^{2 g}} \sum_{k_{1}, \cdots, k_{n}, k \in \mathbb{N}} \prod_{i=1}^{n} \frac{\left(-\beta_{i}\right)^{k_{i}}}{k_{i}!} \frac{(-t)^{k}}{k!} M_{g}\left(\left(k_{i}, q_{i}\right)_{1 \leq i \leq n},(k, q)\right)
\end{aligned}
$$

with $M_{g}\left(\left(k_{i}, q_{i}\right)_{1 \leq i \leq n},(k, q)\right)$ the number of maps with genus g (i.e connected graphs embedded in a surface of genus g) with k_{i} stars of type q_{i} and q stars of type q.

Several matrices generalization
Let μ_{N} be the law of a $N \times N$ complex Gaussian Wigner matrix (GUE). Let $V=\sum_{i=1}^{n} \beta_{i} q_{i}\left(X_{1}, \cdots, X_{m}\right)$ be a polynomial in m-non-commutative variables. Let q be a monomial.

Then, 't Hooft expansion reads

$$
\begin{aligned}
& \bar{\mu}_{N}^{V}(q):=\int \frac{1}{N} \operatorname{tr}\left(q\left(X_{1}, \cdots, X_{m}\right)\right) d \mu_{N}^{V}\left(X_{1}, \cdots, X_{m}\right) \\
& \quad=\sum_{g \in \mathbb{N}} \frac{1}{N^{2 g}} \sum_{k_{1}, \cdots, k_{n} \in \mathbb{N}} \prod_{i=1}^{n} \frac{\left(-\beta_{i}\right)^{k_{i}}}{k_{i}!} M_{g}\left(\left(k_{i}, q_{i}\right)_{1 \leq i \leq n},(1, q)\right)
\end{aligned}
$$

with

$$
d \mu_{N}^{V}\left(X_{1}, \cdots, X_{m}\right)=\frac{e^{-N \operatorname{tr}\left(V\left(X_{1}, \cdots, X_{m}\right)\right)} d \mu_{N}\left(X_{1}\right) \cdots d \mu_{N}\left(X_{m}\right)}{\int e^{-N \operatorname{tr}\left(V\left(X_{1}, \cdots, X_{m}\right)\right)} d \mu_{N}\left(X_{1}\right) \cdots d \mu_{N}\left(X_{m}\right)}
$$

From formal series to large N limit

Let μ_{N} be the law of a $N \times N$ complex Gaussian Wigner matrix (GUE). Let $V=\sum_{i=1}^{n} \beta_{i} q_{1}\left(X_{1}, \cdots, X_{m}\right)$ be a polynomial and q be a monomial.

Then, a large N limit of 't Hooft expansion gives, for any monomial q (GMaurel Segala, Alea 06)

$$
\lim _{N \rightarrow \infty} \bar{\mu}_{N}^{V}(q)=\sum_{k_{1}, \cdots, k_{n} \in \mathbb{N} i=1} \prod_{i=1}^{n} \frac{\left(-\beta_{i}\right)^{k_{i}}}{k_{i}!} M_{0}\left(\left(k_{i}, q_{i}\right)_{1 \leq i \leq n},(1, q)\right)
$$

It holds if

1. $V=V^{*}$ with $\left(z X_{i_{1}} \cdots X_{i_{k}}\right)^{*}=\bar{z} X_{i_{k}} \cdots X_{i_{1}}$.
2. $\exists c>0, V+\frac{1-c}{2} \sum_{i=1}^{m} X_{i}^{2}$ is convex in the sense that $X_{i}^{N}(k l) \in \mathcal{H}^{N}, 1 \leq i \leq m \rightarrow \operatorname{tr}\left(V\left(X_{1}^{N}, \cdots, X_{m}^{N}\right)\right)$ convex $\forall N$.
3. The $\beta_{i}^{\prime} s$ are small enough (depending on c).

From formal series to large N limit:removing the convexity hypothesis
Let $\bar{\mu}_{N}^{V}$ be the Gibbs measure with potential V wrt (GUE). Let $V=\sum_{i=1}^{n} \beta_{i} q_{1}\left(X_{1}, \cdots, X_{m}\right)$ be a polynomial in m-non-commutative variables. Let q be a monomial.

Then, a large N limit of 't Hooft expansion reads (G- Maurel Segala 06)

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \int_{\cap_{i}\left\{\left\|X_{i}\right\|_{\infty} \leq L\right\}} \frac{1}{N} \operatorname{tr}\left(q\left(X_{1}, \cdots, X_{m}\right)\right) d \mu_{N}^{V}\left(X_{1}, \cdots, X_{m}\right) \\
=\sum_{k_{1}, \cdots, k_{n} \in \mathbb{N}} \prod_{i=1}^{n} \frac{\left(-\beta_{i}\right)^{k_{i}}}{k_{i}!} M_{0}\left(\left(k_{i}, q_{i}\right)_{1 \leq i \leq n},(1, q)\right)
\end{gathered}
$$

It holds if

1. $V=V^{*}$ with $\left(z X_{i_{1}} \cdots X_{i_{k}}\right)^{*}=\bar{z} X_{i_{k}} \cdots X_{i_{1}}$.
2. There exists $\epsilon_{0}>0$ for all $\epsilon<\epsilon_{0}, \max _{i}\left|\beta_{i}\right|<\epsilon$ and

$$
L_{0}(\epsilon) \leq L \leq L_{1}(\epsilon), \lim _{\epsilon \rightarrow 0} L_{0}(\epsilon)=2 \text { and } \lim _{\epsilon \rightarrow 0} L_{1}(\epsilon)=+\infty
$$

Idea of the proof.
Assume $V+(1-c) / 2 \sum X_{i}^{2}$ convex. The limit points τ of $\bar{\mu}_{N}^{V}$, as a linear functional on $\mathbb{C}\left\langle X_{1}, \cdots, X_{m}\right\rangle$, are such that

1. There exists $R=R(c)<\infty$ s.t. $\left|\tau\left(X_{i_{1}} \cdots X_{i_{k}}\right)\right| \leq R(c)^{k}$.
2. τ is solution to Schwinger-Dyson equation : For all

$$
P \in \mathbb{C}\left\langle X_{1}, \cdots, X_{m}\right\rangle, \text { all } i \in\{1, \cdots, m\}
$$

$$
\tau\left(\left(X_{i}+D_{i} V\right) P\right)=\tau \otimes \tau\left(\partial_{i} P\right)
$$

with $\partial_{i} P=\sum_{P=P_{1} X_{i} P_{2}} P_{1} \otimes P_{2}, D_{i} P=\sum_{P=P_{1} X_{i} P_{2}} P_{2} P_{1}$.
Thm:There exists a unique solution for β_{i} 's small enough. It is such that

$$
\tau(q)=\sum_{k_{1}, \cdots, k_{n} \in \mathbb{N}} \prod_{i=1}^{n} \frac{\left(-\beta_{i}\right)^{k_{i}}}{k_{i}!} M_{0}\left(\left(k_{i}, q_{i}\right)_{1 \leq i \leq n},(1, q)\right)
$$

Free probability issues

- Being given $V \in \mathbb{C}\left\langle X_{1}, \cdots, X_{m}\right\rangle$, is there a unique tracial state τ, i.e $\tau \in \mathbb{C}\left\langle X_{1}, \cdots, X_{m}\right\rangle^{\prime}$ such that

$$
\tau\left(P P^{*}\right) \geq 0, \tau(P Q)=\tau(Q P), \tau(1)=1
$$

so that for all $P \in \mathbb{C}\left\langle X_{1}, \cdots, X_{m}\right\rangle$, all $i \in\{1, \cdots, m\}$,

$$
\tau\left(D_{i} V P\right)=\tau \otimes \tau\left(\partial_{i} P\right)
$$

i.e. $\xi=\left(D_{i} V\right)_{1 \leq i \leq m}$ is the conjuguate variable of τ.

Recall: Voiculescu(00):if ξ is polynomial, then it belongs to the cyclic gradient space, G-Cabanal Duvillard (03): Such τ 's are dense.

- If $V=\frac{1}{2} \sum X_{i}^{2}+\sum \beta_{i} q_{i}, \tau_{V}(q)=\tau_{\left(\beta_{i}\right)_{1 \leq i \leq m}}(q)$ depends analytically on the parameters $\left(\beta_{i}\right)_{1 \leq i \leq m}$ small enough. When does analyticity breaks down? How (study of the critical exponents)? What does it mean about the related algebras ?

Result 1:Uniqueness

Thm: Assume that V is 'sufficiently locally convex'. There exists a unique τ, law of m non-commutative variables bounded by b_{V}, s.t

$$
\tau\left(D_{i} V P\right)=\tau \otimes \tau\left(\partial_{i} P\right)
$$

Def: Let $*$ be an involution and set

$$
X . Y=\frac{1}{2} \sum_{i=1}^{m}\left(X_{i} Y_{i}^{*}+Y_{i} X_{i}^{*}\right)
$$

V is (c, M)-convex iff for any $X=\left(X_{1}, \ldots, X_{m}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{m}\right)$ in some C^{*}-algebra $\left(\mathcal{A},\|\cdot\|_{\infty}\right)$ such that $\left\|X_{i}\right\|_{\infty},\left\|Y_{i}\right\|_{\infty} \leq M, i=1, \ldots, m$ we have

$$
\begin{equation*}
[D V(X)-D V(Y)] \cdot(X-Y) \geq c(X-Y) \cdot(X-Y) \tag{1}
\end{equation*}
$$

'sufficiently locally convex' $=\mathrm{V}(c, M)$-convex with $M \geq M(c), c>0$ $\left(b_{V}=b(c)\right)$.

Remarks on Result 1

- We did not assume $V=V^{*}$
- If $V=V^{*}, \tau_{V}$ is the law of m self-adjoint non-commutative variables, i.e if $X_{i}=X_{i}^{*},\left(z X_{i_{1}} \cdots X_{i_{k}}\right)^{*}=\bar{z} X_{i_{k}} \cdots X_{i_{1}}$,

$$
\tau_{V}\left(P P^{*}\right) \geq 0, \tau(P Q)=\tau(Q P), \tau(1)=1
$$

- Otherwise, there exists $\nu=\nu_{V}$ the law of $\left(X_{i}, X_{i}^{*}\right)_{1 \leq i \leq m}$ so that $\tau_{V}(P)=\nu_{V}\left(P\left(X_{1}, \cdots, X_{m}\right)\right)$.
- If $V=\frac{1}{2} \sum_{i=1}^{m} X_{i}^{2}+\sum_{i=1}^{n} \beta_{i} q_{i}, V$ is $\left(\frac{1}{2}, M\right)$ convex for any M provided the β_{i} 's are small enough (depending on M).

Result 2:Analyticity

Let $V=V_{\beta}=\sum_{i=1}^{n} \beta_{i} q_{i}$ where $\left(q_{i}\right)_{1 \leq i \leq n}$ are monomials. Let
$T(c, M) \subset \mathbb{C}^{n}$ be the interior of the subset of parameters $\beta=\left(\beta_{i}\right)_{1 \leq i \leq n}$ such that V_{β} is (c, M)-convex. Assume $M \geq M(c)$.

Then, for any $P \in \mathbb{C}\left\langle X_{1}, \cdots, X_{m}\right\rangle$,

$$
\beta \in T(c, M) \rightarrow \tau_{V_{\beta}}(P) \text { is analytic. }
$$

In particular,

$$
\beta \rightarrow \sum_{k_{1}, \cdots, k_{n}} \prod \frac{\left(-\beta_{i}\right)^{k_{i}}}{k_{i}!} M_{0}\left(\left(k_{i}, q_{i}\right)\right)
$$

extends analytically to the interior of the set of β_{i} 's where $\frac{1}{2} \sum_{i=1}^{m} X_{i}^{2}+\sum \beta_{i} q_{i}$ is (c, M)-convex for $M \geq M_{0}(c)$.

Result 3: Algebras are similar to those generated by semi-circulars
Assume that V is (c, M)-convex with $M \geq M(c)$.
Let Z with law τ_{V} (or Z, Z^{*} with law ν_{V} if $V \neq V *$).
The C^{*}-algebra generated by Z is exact, projectionless (in particular any $P\left(Z, Z^{*}\right)$ has a connected support).

The von Neumann algebra associated with $\left(Z, Z^{*}\right)$ has the Haagerup approximation property and admits an embedding into the ultrapower of the hyperfinite II_{1} factor.

Reminder about Jean-Bernard Zuber's talk
When $m=1$, to solve explicitly $\tau_{\left(t_{i}\right)_{1 \leq i \leq m}}\left(x^{p}\right)$ it is enough

- To use Schwinger-Dyson equation to find that $G(z)=\tau_{\left(t_{i}\right)_{1 \leq i \leq m}}\left((z-x)^{-1}\right)$ satisfies

$$
G(z)=\frac{1}{2}\left(W(z)-\sqrt{W(z)^{2}-R(z)}\right) \quad W(z)=z+V^{\prime}(z)
$$

with R a polynomial of degree smaller to $\operatorname{deg}(V)-2$.

- To determine R by proving that $\tau_{\left(t_{i}\right)_{1 \leq i \leq m}}$ is a probability measure with a connected compact support in \mathbb{R}.

Norm convergence
Haagerup and Thorbjornsen (02) proved

$$
\lim _{N \rightarrow \infty}\left\|P\left(X_{1}^{N}, \ldots, X_{m}^{N}\right)\right\|_{\infty}=\left\|P\left(X_{1}, \ldots, X_{m}\right)\right\|_{\infty} \text { a.s. }
$$

if $X_{1}^{N}, \cdots, X_{m}^{N}$ follows the GUE and X_{1}, \cdots, X_{m} are free semi-circular. Thm: If V is (c, ∞)-convex, $V=V^{*}$, the limit holds with $X_{1}^{N}, \cdots, X_{m}^{N}$ with law μ_{N}^{V} and X_{1}, \cdots, X_{m} with law τ_{V}.

Idea of the proof: Le coup du Processus

1. See μ_{N}^{V} has an invariant measure of

$$
d X_{t}^{N}=d H_{t}^{N}-\frac{1}{2} D_{i} V\left(X_{t}^{N}\right) d t
$$

with H^{N} a Hermitian Brownian motion.
2. See τ_{V} has an invariant measure of

$$
d X_{t}=d S_{t}-\frac{1}{2} D_{i} V\left(X_{t}\right) d t
$$

with S a free Brownian motion.
3. Show that if V is (c, M) convex, $M \geq M(c)$, such a process
(a) Stays below the treshold M if X_{0} has norm below some b.
(b) Has any solution of Schwinger-Dyson has an invariante measure.
(c) Has a unique invariante measure uniformly bounded by $B<b$.
(d) Converges in the uniform norm to Z with law τ_{V} when $X_{0}=0$.

Conclusion

1. The generating function of maps is given as the solution of Schwinger-Dyson equation which stays sufficiently bounded.
2. It is also given as the invariant measure of a free SDE.
3. What happens at the phase transition ?
