1. CHANGE OF BASIS FORMULAS.

1.1. Notation. Old basis \mathfrak{B} , new basis \mathfrak{B}' . Usually, the old basis is $\mathfrak{B} = (e_1, \ldots, e_n)$ (i.e., it is the "standard basis"), and the new basis is $\mathfrak{B}' = (v_1, \ldots, v_n)$, where v_1, \ldots, v_n are some *n* linearly independent vectors.

Recall that
$$[w]_{\mathfrak{B}'} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$
 means that $w = a_1v_1 + \dots + a_nv_n$. Also recall

that

$$_{\mathfrak{B}'}[T]_{\mathfrak{B}'} = [[Tv_1]_{\mathfrak{B}'}, \dots, [Tv_n]_{\mathfrak{B}'}]$$

is the matrix whose columns are the coordinates in the basis \mathfrak{B}' of *T* applied to the elements of \mathfrak{B}' .

1.2. **Goal.** We assume that we know how to compute coordinates with respect to the old basis (this is very easy indeed if \mathfrak{B} is the standard basis: in

this case if
$$w = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$
, then $[w]_{\mathfrak{B}} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$, and if *T* is the linear trans-

formation T(v) = Av, where A is some $n \times n$ matrix, then $\mathfrak{B}[T]_{\mathfrak{B}} = A$). The goal is to compute $[w]_{\mathfrak{B}'}$ and $\mathfrak{B}'[T]_{\mathfrak{B}'}$ in terms of $[w]_{\mathfrak{B}}$ and $\mathfrak{B}[T]_{\mathfrak{B}}$.

1.3. Change of basis matrix.

$${}_{\mathfrak{B}}S_{\mathfrak{B}'} = \begin{bmatrix} | & | \\ v_1 & \cdots & v_n \\ | & | \end{bmatrix} = [[v_1]_{\mathfrak{B}}, \dots, [v_n]_{\mathfrak{B}}].$$

Thus columns of ${}_{\mathfrak{B}}S_{\mathfrak{B}'}$ are elements of the new basis expressed in terms of the old basis.

Fact. $({}_{\mathfrak{B}}S_{\mathfrak{B}'})^{-1} = {}_{\mathfrak{B}'}S_{\mathfrak{B}}$, *i.e.*, *it is the matrix whose columns are elements of the old basis* \mathfrak{B} *expressed in terms of the new basis* \mathfrak{B}' .

From this, you get many nice formulas:

$$[w]_{\mathfrak{B}'} = \mathfrak{B}' S_{\mathfrak{B}}[w]_{\mathfrak{B}}$$

$$\mathfrak{B}'[T]_{\mathfrak{B}'} = \mathfrak{B}' S_{\mathfrak{B}} \mathfrak{B}[T]_{\mathfrak{B}} \mathfrak{B} S_{\mathfrak{B}'} = \mathfrak{B}' S_{\mathfrak{B}} \mathfrak{B}[T]_{\mathfrak{B}} (\mathfrak{B}' S_{\mathfrak{B}})^{-1}$$

Exercise. (do not turn in). (a) Check that $[Tw]_{\mathfrak{B}'} = \mathfrak{B}'[T]_{\mathfrak{B}'}[w]_{\mathfrak{B}'}$ (use the fact that $[Tw]_{\mathfrak{B}} = \mathfrak{B}[T]_{\mathfrak{B}}[w]_{\mathfrak{B}}$).

(b) Make sense of $\mathfrak{B}[T]_{\mathfrak{B}'}$ and $\mathfrak{B}'[T]_{\mathfrak{B}}$ along the lines of the definition of $\mathfrak{B}'[T]_{\mathfrak{B}'}$ (the first of these has as columns the coordinates in \mathfrak{B} of the vectors obtained by applying *T* to the elements of \mathfrak{B}'). Find formulas for these in terms of $\mathfrak{B}T_{\mathfrak{B}}$ and $\mathfrak{B}'S_{\mathfrak{B}}$.

(c) What are $\mathfrak{B}[I]_{\mathfrak{B}'}$ and $\mathfrak{B}'[I]_{\mathfrak{B}}$, where *I* denotes the identity transformation Iv = v?