MATH 31B LECTURE 1 AND 3 2ND MIDTERM VERSION A

Key 27

Please note: Show your work. Correct answers not accompanied by sufficent explanations will receive little or no credit. Please call one of the proctors if you have any questions about a problem. No calculators, computers, PDAs, cell phones, or other devices will be permitted. If you have a question about the grading or believe that a problem has been graded incorrectly, you must bring it to the attention of your professor within 2 weeks of the exam.

#1	#2	#3	#4	#5	#6	Total
				·		

Section	1	3	meets:	Tuesday	Thursday
		TA nar	ne:		
		SID:_			
Nam	e:	ru, (267b-	Chung	

Problem 1. (Multiple choice, 10 pts) Evaluate the integral

$$\int_0^{e-1} \frac{2x^2 + x + 3}{(x^2 + 1)(x + 1)} dx$$

Indicate your answer in the box below:

(a)
$$-\tan^{-1}(e-1)+2$$
; (b) $\tan^{-1}(e-1)+2$; (c) $\tan^{-1}(e-1)+4$ (d) $\tan^{-1}(e-1)-4$; (e) None of the above.

$$\frac{2x+x+3}{(x^{2}+1)(x+1)} = \frac{Ax+B}{x^{2}+1} + \frac{C}{x+1}$$

$$= 2x^{2}+x+3 = Ax^{2}+Ax+Bx+B+Cx^{2}+C$$

$$= (A+C)x^{2}+(A+B)x+B+C$$

$$= A+C=2$$

$$A+B=1 = A+C=2$$

$$A+B=1 = A+C=2$$

$$= \frac{1}{x^2 + 1} + \frac{3}{x + 1}$$

$$\int_{0}^{e-1} \frac{2x + x + 3}{(x^{2} + 1)(x + 1)} dx = \int_{0}^{e-1} \frac{1}{x^{2} + 1} dx + 2 \int_{0}^{e-1} \frac{d!}{x + 1} dx$$

$$= \int_{0}^{e-1} \frac{1}{x^{2} + 1} dx + 2 \int_{0}^{e-1} \frac{d!}{x + 1} dx$$

$$= \int_{0}^{e-1} \frac{1}{x^{2} + 1} dx + 2 \int_{0}^{e-1} \frac{d!}{x + 1} dx$$

$$= \int_{0}^{e-1} \frac{1}{x^{2} + 1} dx + 2 \int_{0}^{e-1} \frac{d!}{x + 1} dx$$

$$= \int_{0}^{e-1} \frac{1}{x^{2} + 1} dx + 2 \int_{0}^{e-1} \frac{d!}{x + 1} dx$$

$$= \int_{0}^{e-1} \frac{1}{x^{2} + 1} dx + 2 \int_{0}^{e-1} \frac{d!}{x + 1} dx$$

$$= \int_{0}^{e-1} \frac{1}{x^{2} + 1} dx + 2 \int_{0}^{e-1} \frac{d!}{x + 1} dx$$

$$= \int_{0}^{e-1} \frac{1}{x^{2} + 1} dx + 2 \int_{0}^{e-1} \frac{d!}{x + 1} dx$$

Problem 2. (Multiple choice, 10 pts) Find the length of the curve $y = \frac{2}{3}x^{3/2}$, $0 \le x \le 3$.

(a) ∞ ; (b) $\frac{14}{3}$; (c) $\frac{(3\sqrt{3}-1)}{2}$; (d) $\frac{2}{3}(3\sqrt{3}-1)$; (e) None of the above.

$$y' = Jx$$

$$\int_{0}^{3} J(t + y') dx$$

$$= \int_{0}^{3} J(t + x) dx$$

$$= \frac{2}{3} J(t + x)^{3} \Big|_{0}^{3}$$

$$= \frac{2}{3} (8 - 1) = \frac{14}{3}$$

Problem 3. (Multiple choice, 10 pts) Let the sequence $\{a_n\}$ be defined by: $a_n = n^{1/n}$. Find the limit $\lim_{n\to\infty} a_n$, if the limit exists. Indicate your answer in the box below:

B

(a) 0; (b) 1; (c) π ; (d) limit does not exist; (e) None of the above.

let
$$f(x) = x^{\frac{1}{x}}$$

 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x^{\frac{1}{x}}$
 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x^{\frac{1}{x}}$
 $\lim_{x \to \infty} (x) = \lim_{x \to \infty} \frac{1}{x}$
 $\lim_{x \to \infty} (x) = \lim_{x \to \infty} \frac{1}{x} = 0$
 $\lim_{x \to \infty} (x) = \lim_{x \to \infty} \frac{1}{x} = 0$
 $\lim_{x \to \infty} (x) = \lim_{x \to \infty} \frac{1}{x} = 0$
 $\lim_{x \to \infty} (x) = \lim_{x \to \infty} \frac{1}{x} = 0$

5

Problem 4. (25 pts) Consider the series $\sum_{n=2}^{\infty} \frac{2}{3^n}$.

- (a) Determine if the series is convergent;
- (b) If the series is convergent, find its limit.

$$\sum_{n=2}^{\infty} \frac{1}{3^n} = 2 \left(\sum_{n=2}^{\infty} \frac{1}{3^n} \right)$$
 Geometric series wi
$$= 2 - \frac{1}{4}$$

$$= 2 - \frac{1}{4}$$

$$= 2 - \frac{1}{4}$$

$$= 3 - \frac{1}{4}$$

$$= 3 - \frac{1}{4}$$

Problem 5. (20 pts) Determine if the series $\sum_{n=1}^{\infty} ne^{-n}$ is convergent or divergent. Justify your answer by referring to a theorem from the course.

Since
$$a_n = ne^n > 0$$
 for all n .

We may apply integral test on

 $f(x) = xe^x$ (Note that $f(x)$ is decreasing)

$$\int_0^\infty xe^x dx = (xe^x - e^x) / e^x$$

$$= \lim_{t \to \infty} \{te^t - e^t\} - (-e^t - e^t)$$
Note
$$-\lim_{t \to \infty} te^t$$

$$-\lim_{t \to$$

Problem 6. (25 pts) Let $a_n = \frac{n!}{(2n)!}$. Determine if the sequence a_n is convergent, and if it is, find its limit.

slimit.

obviously
$$0 \le a_n$$
, for all n .

Also note that,
$$a_n = \frac{n!}{(2n)!} = \frac{p!}{n!(n+1)\cdots(2n)}$$

$$\le \frac{1}{n+1} \left(\frac{\sin ce}{n+2, n+3, \dots, 2n}\right)$$

$$> 1$$

by squeeze theorem. $a_n \to 0$.

•			
-		1	
		!	
			ı

•				
	\			
	,			

•		
•		

\

•						
•						