Math 31B Homework 8 Solutions

Christina Oran

November 5, 2005

Section 12.4

3. CONVERGENT

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n + 1} \le \sum_{n=1}^{\infty} \frac{1}{n^2}$$

The right hand sum converges by p-series (p = 2 > 1), so the original series must also converge by the comparison test.

5. CONVERGENT

$$\sum_{n=1}^{\infty} \frac{5}{2+3^n} = 5 \sum_{n=1}^{\infty} \frac{1}{2+3^n} \le 5 \sum_{n=1}^{\infty} \frac{1}{3^n} = 5 \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$$

The rightmost sum converges because it is a geometric series with $|r| = \left|\frac{1}{3}\right| < 1$. Therefore the original series must converge as well.

7. DIVERGENT

$$\sum_{n=1}^{\infty} \frac{n+1}{n^2} \ge \sum_{n=1}^{\infty} \frac{n}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n}$$

The rightmost sum diverges by p-series (p = 1), so the original series must also diverge.

9. CONVERGENT

$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2 + 1} \le \sum_{n=1}^{\infty} \frac{1}{n^2 + 1} \le \sum_{n=1}^{\infty} \frac{1}{n^2}$$

The rightmost sum converges by p-series, so the original sum must also converge.

Section 12.5

5. CONVERGENT

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}; \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$$

By alternating series test, this series converges.

7. DIVERGENT

$$\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{2n+1}; \lim_{n \to \infty} \frac{3n-1}{2n+1} = \frac{3}{2}$$

In fact, $\lim_{n\to\infty} (-1)^n \frac{3n-1}{2n+1}$ does not converge, so by the divergence test, this series diverges.

9. CONVERGENT

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{4n^2+1}; \lim_{n \to \infty} \frac{1}{4n^2+1} = 0$$

By alternating series test, this series converges.

23.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}, |\text{error}| < .01$$

We see that the sum converges by the alternating series test: $\lim_{n\to\infty} \frac{1}{n^2} = 0$. For a convergent alternating series, $|\text{error}| \leq |b_n|$ for s_n , so we need to find the smallest n for which $|b_n| < .01$.

$$|b_n| = \left| \frac{(-1)^{n-1}}{n^2} \right| = \frac{1}{n^2} < .01$$

$$\Rightarrow 100 < n^2 \Rightarrow n > 10$$

Therefore, we will need 11 terms.

25.

$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n!}$$
, $|\text{error}| < .01$

We see that the sum converges by the alternating series test: $\lim_{n\to\infty} \frac{2^n}{n!} = 0^1$. We now need to find the smallest n for which $|b_n| < .01$.

$$\left| \frac{(-2)^n}{n!} \right| = \frac{2}{n!} < .01$$

$$\Rightarrow \frac{n!}{2^n} > 100$$

Computing $\frac{n!}{2^n}$ for increasing values of n, we see that when n=7, $\frac{7!}{2^7}=\frac{5040}{128}=39.375$ and when n=8, $\frac{8!}{2^8}=\frac{40320}{256}=157.5$. Therefore, we will need 8 terms.

$$0 \le \frac{2^n}{n!} \le \frac{2^n}{n \cdot 2^{n-2}}$$
 for large n

Now,
$$\lim_{n\to\infty}0=0\ \text{ and }\ \lim_{n\to\infty}\frac{2^n}{n\cdot 2^{n-2}}=\lim_{n\to\infty}\frac{4}{n}=0.$$
 Therefore, $\lim_{n\to\infty}\frac{2^n}{n!}=0$

¹To see this, we use the squeeze theorem: