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Section 12.4

3. CONVERGENT

> 1 1
;nQ%—n—l—lS;E

The right hand sum converges by p-series (p = 2 > 1), so the original series
must also converge by the comparison test.
5. CONVERGENT
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The rightmost sum converges because it is a geometric series with |r| = |é| <1

Therefore the original series must converge as well.
7. DIVERGENT
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The rightmost sum diverges by p-series (p = 1), so the original series must also
diverge.
9. CONVERGENT
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The rightmost sum converges by p-series, so the original sum must also converge.

Section 12.5

5. CONVERGENT

By alternating series test, this series converges.
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In fact, lim,_,o(—=1)"32
series diverges.
9. CONVERGENT

o +1 does not converge, so by the divergence test, this

4n2 n—>oo 4n? + 1

n=1

By alternating series test, this series converges.
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We see that the sum converges by the alternating series test: lim,, # =0.
For a convergent alternating series, |error| < |b,| for s,, so we need to find the
smallest n for which |b,| < .01.
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Therefore, we will need 11 terms.
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We see that the sum converges by the alternating series test: lim,, 31_'
We now need to find the smallest n for which |b,| < .01.
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Computing 2 2n for 1ncreasmg values of n, we see that when n =7, 7 27 = % =

39.375 and when n = 8, & = 4820 = 157.5. Therefore, we will need 8 terms.

ITo see this, we use the squeeze theorem:
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