
MATH 31B/2 PRACTICE FINAL EXAM SOLUTIONS.

Please note:the aim of this practice final is to give you several problems on the material not
covered by the first two midterms and practice midterms.You should therefore treat the first two
midterms and practice midterms as a part of the practice final.

(1) Let f (x) = sinx. Find n so that Taylor’s polynomial of degreen around 0 approximates
sin(1) to within 10−2. Justify your answer.

Solution.Using Taylor’s remainder formula, if we keepn terms in Taylor’s polynomial,
the error is at most

En ≤
M(x−a)n+1

(n+1)!
,

whereM is the maximal value of then+ 1-st derivative of sin(x) on the interval[0,1].
HenceM = 1 and

En ≤
1n+1

(n+1)!
=

1
(n+1)!

.

Hence we wantn so that 1
(n+1)! ≤

1
100, i.e.,(n+1)! ≥ 100. Since 4!= 4·3·2·1= 24< 100

and 5!= 5·4! = 120> 100, we get thatn = 4 works.
(2) Let

f (x) =
2x+4
x3−1

.

Expressf (x) as a sum of terms using partial fractions. Use this to evaluate
Z

f (x)dx.

Solution.Sincex3−1 = (x−1)(x2 +x+1), we will try to find A,B,C so that

2x+4
x3−1

=
A

x−1
+

Bx+C
x2 +x+1

.

We then have

2x+4 = A(x2 +x+1)+(Bx+C)(x−1) = x2(A+B)+x(A−B+C)+(A−C).

Equating coefficients, we get 0= A+ B, 2 = A−B+C and 4= A−C. From the first
equation we get thatB = −A and from the last thatC = A−4. Substituting this into the
second equation gives 2= A− (−A)+ A−4 = 3A−4. Hence 3A = 6 andA = 2. Thus
B =−2 andC =−2. We conclude that

2x+4
x3−1

=
2

x−1
+

−2x−2
x2 +x+1

.

To evaluate the integral, we need to evaluate the integrals
R 2

x−1dx= 2ln(x−1)+C andR −2x−2
x2+x+1dx. In the latter integral, we complete the square:x2 + x+ 1 = (x+ 1

2)2 + 3
4 =

1
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3
4(( 2√

3
x+ 1√

3
)2 +1). Hence the integral becomesZ −2(x+1)

3
4(( 2√

3
x+ 1√

3
)2 +1)

dx.

If we let y = 2√
3
x+ 1√

3
,we have thatdy = 2√

3
xdx and x =

√
3

2 y− 1
2; hence the integral

becomesZ −2(
√

3y+1)√
3(y2 +1)

dy = −2
Z

y
y2 +1

dy−
Z

2√
3(y2 +1)

dy

= − ln(y2 +1)− 2√
3

tan−1(y)+C

= − ln(
3
4
(x2 +x+1))− 2√

3
tan−1(

2x+1√
3

)+C

= − ln(x2 +x+1)− 2tan−1(2x+1)/
√

3)√
3

+C− ln(3/4).

Hence the final answer isZ
2x+4
x3−1

dx= ln(x2 +x+1)− 2tan−1(2x+1)/
√

3)√
3

+2ln(x−1)+C.

(3) Find the Taylor series for the functionf (x) = ln |x−1|. Determine its radius and interval
of convergence.

Solution.Since ln|x−1|=
R 1

x−1dx=−
R 1

1−xdx=−
R
(∑xn)dx, we can integrate term-

by-term to obtain

ln |x−1|=−
∞

∑
n=0

1
n+1

xn+1 =−
∞

∑
n=0

xn

n
.

The ratio test gives us

L = lim
n→∞

∣∣∣ xn+1

n+1
· n
xn

∣∣∣ = |x|.

Thus the series is convergent if|x|< 1 and divergent if|x|> 1. Thus the radius of conver-
gence is 1. We check for convergence at the endpoints. Ifx = 1, we get−∑ 1

n, which is
divergent; ifx =−1, we get−∑(−1)n1

n, which is convergent by the alternating series test.
Hence the interval of convergence is[−1,1).

(4) Find the power series representation of the function
1

(1−x)2 . Determine its radius and

interval of convergence.
Solution.We note that

1
(1−x)2 =− d

dx
1

1−x
=− d

dx

∞

∑
n=0

xn.
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Differentiating term-by-term gives us

1
(1−x)2 =−

∞

∑
n=0

nxn−1 =
∞

∑
n=0

(n−1)xn.

Using the ratio test gives us

L = lim
n→∞

∣∣∣∣ nxn+1

(n−1)xn

∣∣∣∣ = |x|,

so the series is convergent for|x| < 1 and divergent for|x| > 1. Hence the radius of con-
vergence is 1. Checking at endpoints, ifx = ±1, then-th term has absolute valuen− 1
and thus does not go to zero; the series is therefore divergent by the test for divergence. It
follows that the interval of convergence is(−1,1).

(5) Find the limit of the sequencean = n1/n.
Solution.Using the logarithm trick, we get

lim
n→∞

an = lim
n→∞

elnan = lim
n→∞

e
1
n lnn.

Let f (x) = 1
x lnx. Then by L’Hospital’s rule, we get

lim
x→∞

lnx
x

= lim
x→∞

1/x
1

= 0.

Hence lim1
n lnn = 0. Thus liman = e0 = 1.

(6) Is the improper integral
Z ∞

0
sin(ex)dx convergent or divergent? Explain.

Solution.Let t = ex, dt = exdx. Then the integral becomesZ ∞

1

1
t

sintdt.

Integrating by parts withu = 1
t anddv= sintdt, du=− 1

t2dt andv = costdt, we getZ ∞

1

1
t

sintdt = lim
L→∞

(
1
t

cost
∣∣∣L
1
)+

Z ∞

1

1
t2 costdt =−cos1+

Z ∞

1

1
t2 costdt.

Now we must decide if
R ∞

1
1
t2 costdt is convergent or divergent. If the integral

R ∞
1

∣∣∣ 1
t2 cost

∣∣∣dt

is convergent, so is the integral
R ∞

1
1
t2 costdt. Since

∣∣∣ 1
t2 cost

∣∣∣≤ 1
t2 , and the integral

R ∞
1

1
t2dt =

limL→∞−1
L + 1 exists, we know that

R ∞
1

∣∣∣ 1
t2 cost

∣∣∣dt is convergent by the comparison test.

Hence the original integral is convergent. (If you go on to learn some complex analysis,
you will be able to compute that

R ∞
−∞ sin(ex)dx= π/2, so actually our integral must be less

than that.)
(7) Find the surface area of the surface of revolution obtained by rotating the parabolay = x2,

0≤ x≤ 1, about they-axis.
Solution.We have

S=
Z 1

0
2πx

√
1+

(
dy
dx

)2

dx=
Z 1

0
2πx

√
1+4x2dx.
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Lettingu = 1+4x2, we have thatdu= 8xdx, so that

S=
Z 5

1

π
4

√
udu=

π
6

u3/2
∣∣∣5
1
=

π
6
(5
√

5−1).

(8) Use the arclength formula to find the length of the circle of radius 1.
Solution. The formulay =

√
1−x2, −1≤ x≤ 1 gives us a semicircle. We compute

dy
dx = −x√

1−x2 so that 1+(dy/dx)2 = 1+x2/(1−x2) = 1/(1−x2). Hence

L =
Z 1

−1

1√
1−x2

dx= sin−1x
∣∣∣1
−1

= π/2+π/2 = π.

Thus the length of the circle is 2π.
(9) Determine whether the following series are absolutely convergent, conditionally conver-

gent, or divergent: (a)∑(−1)n 1
n+sin(n) ; (b) ∑(−1)n 1

n2+sin(n) ; (c) ∑e−n.

Solution.(a) Let f (x) = 1
x+sinx. Then f ′(x) =− 1+cosx

(x+sinx)2 ≤ 0; furthermore, the derivative

is zero only atx = π + 2kπ. It follows that on each interval[n,n+ 1], f ′(x) < 0 except
possibly at one point; hencef (n+ 1) < f (n). Since the series is alternating and forn≥
1, 0≤ 1

n+sinn ≤
1

n−1 → 0, we have that the series is convergent by the alternating series
test. The series is conditionally convergent: if we consider the series of absolute values,

∑ | (−1)n

n+sinn| = ∑ 1
n+sinn, we get that 1

n+sinn ≥
1

n+1; since∑ 1
n+1 is divergent, the series of

absolute values is also divergent, by the comparison test.
(b) Since 1

n2+sin(n)/
1
n2 → 1 asn→ ∞and the series∑ 1

n2 is convergent, it follows that the

series of absolute values∑ 1
n2+sinn

is also convergent, by the limit comparison test. Hence
the series in (b) is absolutely convergent.
(c) The series is a geometric series withr = e−1 = 1/e < 1 and is therefore absolutely
convergent.


