MATH 132 PRACTICE MIDTERM

Problem 1. State the book's definition of:

(a) The functions $\sin z$, $\cos z$, $\log(z)$ (principal branch), \sqrt{z} (Principal branch), e^z

(b) Continuity of a function at z_0

(c) Analytic function

Problem 2. Show that if a function f(z) is analytic, it is continuous. Prove that the function $f(z) = \cos z$ is analytic (use Cauchy-Riemann equations). Conclude that f(z) is continuous.

Problem 3. For each of the following functions, find the image of the indicated regions: $f(z) = \frac{1+z}{1-z}$, $g(z) = \sqrt[4]{z}$ (principal branch), $h(z) = \operatorname{Arg}(z)$: (a) The unit disk $|z| \leq 1$; (b) the upper half-plane $\operatorname{Im} z > 0$; (c) the real axis $\operatorname{Im} z = 0$.

Problem 4. Let $u(x + iy) = \log |x + iy|$. Find a harmonic conjugate to u.

Problem 5. Let *D* be a region bounded by a simple closed curve γ . Express the integral $\int xdy - ydx$ in terms of the area of *D*.

Problem 6. Prove the identity $\cos(z+w) = \cos z \cos w - \sin z \sin w$ using the definition of $\cos z$ in terms of complex exponentials and the properties of complex exponentials.

Problem 7. Let f(z) = z(z - 1). Show from the definition that f(z) is continuous. (Hint: prove an estimate of the form $|f(z) - f(z_0)| < C|z - z_0|$ for z near z_0).