MATH 132 PRACTICE MIDTERM

Problem 1. State the book's definition of:

(a) The functions $\sin z$, $\cos z$, $\log(z)$ (principal branch), \sqrt{z} (Principal branch), e^z

(b) Continuity of a function at z_0

(c) Analytic function

Solution: see book.

Problem 2. Show that if a function f(z) is analytic, it is continuous. Prove that the function $f(z) = \cos z$ is analytic (use Cauchy-Riemann equations). Conclude that f(z) is continuous.

<u>Solution:</u> See book, theorem on p. 43. We have that

 $\cos(x+iy) = \cos x \cosh y - i \sin x \sinh y.$

We now verify the Cauchy Riemann equations with $u = \cos x \cos y$ and $v = -\sin x \sinh y$:

$$\frac{\partial u}{\partial x} = -\sin x \cos y = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = \cos x \sinh y = -\frac{\partial v}{\partial x}.$$

Problem 3. For each of the following functions, find the image of the indicated regions: $f(z) = \frac{1+z}{1-z}$, $g(z) = \sqrt[4]{z}$ (principal branch), $h(z) = \operatorname{Arg}(z)$: (a) The unit disk $|z| \le 1$; (b) the upper half-plane $\operatorname{Im} z > 0$; (c) the real axis $\operatorname{Im} z = 0$.

f(z) = (1+z)/(1-z): this is a fractional linear transformation and so it takes circles to circles. (a) We take 3 points on the unit circle, 1, i, -1. These are taken to ∞ , $(1+i)/(1-i) = (1+i)^2/(1-i)(1+i) = i$ and 0. Hence the image of the circle is the imaginary axis (circle through $0, i, \infty$). Since the unit disk is connected, it must be mapped to a connected region, i.e., to the upper or lower half-plane. Since f(0) = 1, the image is the upper half-plane. (b) f maps the real axis to a circle. Since $f(1) = \infty$, f(0) = 1 and f(-1) = 0, the real axis is taken to the real axis. Since the upper half-plane is connected, it is taken to the upper or lower half-plane. Since f(i) = (1+i)/(1-i) = i, the upper half-plane is taken to itself; (c) we already saw that the real axis is taken to itself. $g(z) = \sqrt[4]{z}$: The unit disk is taken to the wedge $-\pi/4 < Arg(z) \le \pi/4$ and $|z| \le 1$; the upper half-plane to the wedge $-\pi/4 < Arg(z) \le \pi/4$; the real axis to the positive reals and the ray $Arg(z) = \pi/4$.

 $h(z) = \operatorname{Arg}(z)$: the unit disk is taken to the interval $(-\pi, \pi]$, the upper half plane to $(0, \pi)$ and the real axis to $\{0\} \cup \{\pi\}$.

Problem 4. Let $u(x + iy) = \log |x + iy|$. Find a harmonic conjugate to u.

<u>Solution.</u> See book, example on p. 84. (You can just notice that since $\text{Log}(z) = \log |z| + i\text{Arg}(z)$, Arg(z) is a harmonic conjugate to $\log |z|$).

Problem 5. Let *D* be a region bounded by a simple closed curve γ . Express the integral $\int_{\infty} x dy - y dx$ in terms of the area of *D*.

Solution. Using Green's theorem we find that

$$\int_{\gamma} x dy - y dx = \int \int_{D} (\partial x / \partial x - (-\partial y / \partial y)) dx dy = \int \int_{D} 2 dx dy = 2A,$$

if A is the area of D.

Problem 6. Prove the identity $\cos(z+w) = \cos z \cos w - \sin z \sin w$ using the definition of $\cos z$ in terms of complex exponentials and the properties of complex exponentials.

Solution. See book, p. 7.

Problem 7. Let f(z) = z(z - 1). Show from the definition that f(z) is continuous. (Hint: prove an estimate of the form $|f(z) - f(z_0)| < C|z - z_0|$ for z near z_0).

Solution. We have

$$f(z) - f(z_0) = z^2 - z - z_0^2 + z_0 = (z^2 - z_0^2) - (z - z_0)$$

= $(z - z_0)(z + z_0) - (z - z_0) = (z - z_0)(z + z_0 - 1).$

Hence

$$|f(z) - f(z_0)| \le |z - z_0| |z + z_0 - 1|.$$

If z is near z_0 (say $|z - z_0| < 1$), then $|z| \le |z_0| + 1$ and $|z + z_0 - 1| \le |z| + |z_0| + 1 \le 2|z_0| + 2$. Hence

$$|f(z) - f(z_0)| \le 2(|z_0| + 2)|z - z_0|.$$

Now given an $\epsilon > 0$ choose $\delta > 0$, so that $\delta < 1$ and $2(|z_0|+2)\delta < \varepsilon$. Then if $|z - z_0| < \delta$, we have that

$$|f(z) - f(z_0)| \le 2(|z_0| + 2)|z - z_0| \le 2(|z_0| + 2)\delta < \epsilon.$$