MATH 131B
2ND PRACTICE MIDTERM

Problem 1. State the book’s definition of:
(@) A complete metric space
(b) lim sup and lim inf
(c) Convergence of a series of real numbers
(d) Normed vector space; Banach space
Solution. See book.
Problem 2. Let X be a metric space with a metric p. Let z,, and y,, be two Cauchy sequences in
X. Show that lim,,_, o p(xn, y,) eXists. Note: we do not assume that X is complete.

Solution. Let & > 0 be given. Choose N so that for all n,m > N, p(zn,zm) < £/2 and
p(Yn, ym) < €/2. This is possible because the two sequences are Cauchy.
By the triangle inequality, we have that

p(z,y) + ply, 2) < p(z, 2)
for all z, y, z; this means that
p(z,y) — p(z,2) < p(y, 2).
Since z, y, z are arbitrary, we can switch rhe roles of y and z and obtain that

p(z,y) — p(z,2)| < p(y, 2)-
Thus:

|p($n: yn) - p(xm, ym)| = |p($na yn) - p(xnv ym) + p(ym: xn) - p(xm, ym)|
< p(@ns Yn) = Py Ym)| + | 0(Ts Ym) — (T Y|
< p(Yn, Ym) + p(Tn, Tm) < e/2+¢e/2 =¢.
It follows that the sequence of numbers {p(x,, y,)} is Cauchy, and so converges.
Problem 3. Let p be the usual Eucledian metric on R. We say that a subset X C R is closed if
whenever z,, € X and z,, — = € R, then z € X. Show that a subset X C R is complete with
respect to p if and only if it is closed.

Assume that X is closed. Let z,, € X be a Cauchy sequence. Then z,, is Cauchy when regarded
as a sequence in R. Since R is complete, z,, — z in R. Since X isclosed, x € X and z,, — z in
X. Thus X is complete.

Assume that X is not closed. Thus there is a sequence z,, € X sothatz, — z inR, butz ¢ X.
Since z,, — z, it is Cauchy. Also, z,, does not converge in X: if z,, — 2z’ with 2’ € X, it would
follow by uniqueness of the limitthat z = 2’ € X, butz ¢ X. Thus z,, is a Cauchy sequence with
no limitin X. Thus X is not complete.

Problem 4. Let f : R?2 — R? be given by
f(z,y) = (34 0.5z + 0.1y,4 + 0.6x).
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Show that there is a unique point (x4, yo) € R? with the property that f(zo, yo) = (o, ¥o).
Solution. Let p be the metric on R? given by p((x, ), (z',4")) = max(|z — 2’|, |y — ¥'|). Then
o(f(z,y), f(',y)) max(|0.5z + 0.1y — 0.5z — 0.1y'[, 0.6z — 0.62"|)
max(|0.5(z — z') — 0.1(y — ¢')], 0.6|z — 2'])
max(0.5|z — z'| + 0.1]y — ¢'[, 0.6]|z — z'|)
max (0.5 max(|z — 2|, |y — ¢'|) + 0.1 max(|y — ¢/'|, |z — 2'|), 0.6|z — z'|)

IN A

= max(0.6 max(|z — 2’|, |y — ¥'|), 0.6|x — z'|)

0.6 max(|lz — 2|, |y — ¢'|)

= 0.6p((z,y), (=", ¥)).
It follows that f is a contraction. Since R? is complete, we can apply the Banach contraction
principle to conclude that f has a unique fixed point (zo, ¥o).
Problem 5. State and prove that Banach contraction principle.
Solution. See book.
Problem 6. Let || f||« and || f|| be norms on the space C|0, 1] of continuous functions on the
interval [0, 1], given by:

[flle = sup |f(z)]

z€[0,1]

i = [ 17

Show that the two norms are not equivalent.

Solution. If the two norms were equivalent, being a Cauchy sequence with respect to one of
them would imply being a Cauchy sequence with respect to the other. We’ll show that this is not
the case.

Let f, be given as follows. For z € [0,0.5—1/n], f,(z) = 0. Forz € [0.5+1/n,1], fu(z) = 1.
Forz € (0.5—-1/n,0.5+1/n), f(z) = 0.5n(x — 0.5) + 0.5. Then f,, € C|0,1].

Let f be givenby: f(z) =0ifz € [0,0.5] and f(z) = 1 if z € (0.5,1].

Then

I = fulh = [ 150) - o)l
Since f(z) = f,(z) outside of (0.5 — 1/n, 0.5 + l/n) we get that
15 =sli= [ @) - f@ls

2

Note that |f,,(z)| < 1and |f(z)| < 1 forall z. Thus |f,(z) — f(z)| < 2 for all z. Hence

wl'-'

-I-l 4
||fn—f||1§/ 21z =" 0.

1_1
2 n

N[

It follows that f,, — fin]|| - ||:. In particular, f, are a Cauchy sequence for || - ||.
On the other hand, it is not hard to see that f,, — ¢ pointwise, where g(z) = 0 on [0, 0.5),
g(x) = 1on (0.5,1] and g(0.5) = 0.5. Thus f, cannot be Cauchy for || - ||, since this would
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imply that f,, — hin || - || for some k and that & is continous; but since f, — g pointwise, it
follows that A = g, which is not possible, since g is not continuous.

Problem 7. Let A = limsupa,, and ¢ = lim inf a,,. Show that A = a if and only if a,, converges,
and moreover that if this is the case, then a,, — a.

Solution. Assume that A = a. The for any € > 0, there is an N so that for all n» > N, one has
liminfa, —e < a, < limsupa, + ¢
Since lim inf a,, = lim sup a,, = a in this case, we have that for all n > NV,
a—e<ap,<a-+e.

But then
la —a,| < e.
Thus by the definition of limit, a,, — a.
Conversely, suppose that a, — a. Then for any ¢ > 0, there is an N so that for all n >
N,la — a,| < €. Hence for n > N, we have

a—e<a,<a-+e.
It follows that for any M > N,
a—e<inf{a, :n> M} <sup{a,:n>M} <a+e.
Thus by the definitionof lim inf and lim sup, we have
a — ¢ < liminfa, <limsupa, < a+e¢.
Since ¢ > 0 was arbitrary, it follows that lim inf a,, = lim sup a,, = a.

Problem 8. State and prove the comparison test.
Solution. See book.



