MATH 131B 1ST PRACTICE MIDTERM

Problem 1. State the book's definition of:

(a) Uniform convergence of a sequence of function

(b) A metric

(c) Pointwise convergence of a sequence of functions

(d) A continuously differentiable function of two variables

(e) A continuous function of two variables

(f) The supremum norm $||f||_{\infty}$

Problem 2. Prove that a uniform limit of a sequence of continuous functions is also continuous.

Problem 3. Let f_n be a sequence of functions that converges uniformly on [a, b] to a function f. Show that

$$\int_{a}^{b} f_{n}(x)dx \to \int_{a}^{b} f(x)dx$$

Give an example which shows that the conclusion does not hold if we only assume pointwise convergence.

Problem 4. Let $C^{1}[0,1]$ be the space of functions on [0,1] which have a continuous derivative. Let

$$||f|| = ||f||_{\infty} + ||f'||_{\infty}.$$

(a) Show that ||f|| is a norm

(b) Show that $C^{1}[0, 1]$ is complete in this norm.

Problem 5. Endow \mathbb{R} with the following metric ρ : $\rho(x, y) = 1$ if $x \neq y$ and $\rho(x, y) = 0$ if x = y. (a) Show that ρ is a metric. (b) Show that a sequence $x_n \in \mathbb{R}$ is Cauchy for this metric if and only if it is eventually constant; i.e., for some N, $x_n = x_m$ whenever n, m > N. (c) Show that \mathbb{R} is complete with respect to this metric.

Problem 6. Show that $f_n = \frac{n^2 x}{1 - n^4 x^2}$ converges pointwise to 0 on [0, 1], but does not converge uniformly.

Problem 7. Let $f : [0, 1] \rightarrow [0, 1]$ be a continuously differentiable function. Suppose that |f'(x)| < 1 for all $x \in [0, 1]$. Show that f is a "uniform contraction": there is a constant $0 \le C < 1$ so that for all $x, y \in [0, 1], |f(x) - f(y)| \le C|x - y|$.