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SERRE’S MODULARITY CONJECTURE (I)
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to Jean-Pierre Serre

ABSTRACT. This paper is the first part of a work which proves Serre’s
modularity conjecture. We first prove the cases p # 2 and odd conduc-
tor, and p = 2 and weight 2, see Theorem 1.2, modulo Theorems 4.1 and
5.1. Theorems 4.1 and 5.1 are proven in the second part, see [23]. We
then reduce the general case to a modularity statement for 2-adic lifts
of modular mod 2 representations. This statement is now a theorem of
Kisin [28].
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1. INTRODUCTION

Let Gg = Gal(Q/Q) be the absolute Galois group of Q. Let p : Gg —
GL3(F) be a continuous, absolutely irreducible, two-dimensional, odd (detp(c) =
—1 for ¢ a complex conjugation), mod p representation, with I a finite field
of characteristic p. We say that such a representation is of Serre-type, or
S-type, for short.

We denote by N(p) the (prime to p) Artin conductor of p, and k(p) the
weight of p as defined in [38]. It is an important feature of the weight k(p),
for p > 2, that if X, is the mod p cyclotomic character, then for some i € Z,
2 <k(p®X,") <p+ 1. In the case of p = 2, the values of k(p) can either
be 2 or 4, with the former if and only if p is finite at 2.

We fix embeddings ¢, : Q— @p for all primes p hereafter, and when we
say (a place above) p, we will mean the place induced by this embedding.

Serre has conjectured in [38] that such an p of S-type is modular, i.e.,
arises from (with respect to the fixed embedding ¢, : Q — Q,) a newform
f of some weight k and level N. By arises from f we mean that there is an
integral model p : Gg — GL2(O) of the p-adic representation py associated
to f, such that p is isomorphic to the reduction of p modulo the maximal
ideal of O, and with O the ring of integers of a finite extension of Q,. Serre
conjectured further that p arises from a newform f of weight k(p) and level
N(p). In these circumstances we also say that p arises from Sy (I'1 (N (p)))-

1.1. Main result. The case of the conjecture for conductor one, i.e., the
level one conjecture, was proved in [24].

Theorem 1.1. A p of S-type with N(p) = 1 arises from Sy ;) (SL2(Z)).

This built on the ideas introduced in [22].
In this paper we first extend Theorem 1.1, and the methods of its proof,
and prove the following theorem.

Theorem 1.2. 1. Let p be an odd prime. Then a p of S-type with N(p) an
odd integer arises from Sy (L1(N(p)))-
2. Letp=2. Then a p of S-type with k(p) = 2 arises from Sa(T'1(N(p))).

We note that Theorem 1.2(2) also completes the work that the qualitative
form of Serre’s conjecture implies the refined form by filling in a missing case
in characteristic 2: control of the level for pp, scalar when the projectve
image of p is not dihedral (see [6] and [42]). Nevertheless, we do not know
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for p = 2 the strong form of the conjecture in the sense of Edixhoven: we
do not know in general that p is unramified at 2 if and only if it arises from
a Katz form of weight 1 ([15]).

We reduce in Theorem 9.1 the general case of Serre’s conjecture to a
certain hypothesis (H) which is now a theorem of Kisin, see [28]. In Theorem
9.1, assuming (H), we first prove the case p = 2,k(p) = 4, and then we
deduce from it the case p # 2 and N(p) even.

In this part we will prove Theorem 1.2 modulo two lifting theorems, The-
orem 4.1 (closely related to Theorem 6.1 of [24]) and Theorem 5.1 (closely
related to Theorem 5.1 of [24]) below, which we will only state here. Theo-
rems 4.1 and 5.1 are proved in the second part, cf. [23].

1.2. The nature of the proof of Theorem 1.2. The proof of Theorem
1.2 can be viewed as a double induction via theorems 3.1 and 3.2 on the
complexity of p as measured by two parameters: (i) the number of prime
divisors of the level N(p), and (ii) the residue characteristic p of p (or,
more or less equivalently, the weight k(p)). A raising levels argument (see
Theorem 3.4) is used to reduce proving Theorem 1.2 to representations which
are locally good-dihedral. The ideas used in the proofs of Theorems 3.2 and
3.1 are those of weight reduction of [24] (see Theorem 3.2), which then allows
one to use the killing ramification idea of [22] restricted to weight 2 (see
Theorem 3.1). Theorem 3.3, which is a corollary of Theorem 1.1, is used to
get the induction started.

The main new ideas of this paper, as compared to [22] and [24], are as
follows:

(i) The reduction of Serre’s conjecture to proving it for locally good-
dihedral p. This is crucial as it allows us to avoid invoking any modularity
lifting theorems in the residually degenerate cases (i.e., ﬁ‘G@(up) reducible)
beyond the use of such in the proof of Theorem 1.1, and which are due to
Skinner-Wiles (see [39] and [40], and also [41]).

(ii) The weight cycles used in the proof of Theorem 1.1 (see [25] for the
terminology) are completed so that they start at weight 2 (see Theorem 3.2).

(iii) This allows one to use the killing ramification idea of [22] in a way
(see Theorem 3.1) so that the modularity lifting theorems needed here are
in the weight 2 case, i.e., the results of Kisin in [26].

1.3. A comparison to the approach of [22]. The path we tread in the
proof of our main theorem has many twists and turns (see diagram in Section
3) some of which could be straightened as modularity lifting techniques
become more versatile. It might even be possible eventually to tread the
very direct path outlined in Section 5 of [22].

The rather strong use made of various types of lifts (congruences between
Galois representations) of a given residual representation is the main distinc-
tion between the approach here as well as in [24], and the approach sketched
in Section 5 of [22]. The latter sought to prove Serre’s conjecture using only
minimal lifts and the compatible systems these live in.
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The use of congruences between Galois representations, which allows one
to be very conservative in the modularity lifting results used, we believe will
be of help when proving modularity in other contexts. To be conservative
in this matter seems like a virtue to us!

One of the subtleties in the approach we adopt here is that we make serious
use of modularity lifting theorems for 2-adic lifts (see Theorem 4.1 (1)). As
we believe that for the general case of Serre’s conjecture, modularity lifting
theorems for 2-adic lifts are unavoidable (see Theorem 9.1 and Hypothesis
(H)), this seems fitting.

1.4. Description of the paper. In Section 2 we single out a class of p that
we call locally good-dihedral (see Definition 2.1) which is easier for us to deal
with. In Section 3 we reduce the proof of Theorem 1.2 to some auxiliary
theorems. In Sections 4 and 5 we state the Theorems 4.1 and 5.1 which are
proved in [23]. In Section 6 we prove some easy lemmas needed for the proof
of Theorem 1.2. In Section 7 some estimates on prime numbers are given that
are needed for the proof of Theorem 3.2. The auxiliary theorems stated in
Section 3 are proved in Section 8, modulo Theorems 4.1 and 5.1. In Section
9 we reduce the general case to a certain Hypothesis (H). In Section 10 we
spell out a consequence of our main theorem for 2-dimensional, irreducible
compatible systems of odd representations of Gg.

1.5. Notation. For F a field, Q C F C Q, we write G for the Galois
group of Q/F. For X\ a prime/place of F, we mean by Dy (resp., I if ) is
finite) a decomposition (resp., inertia) subgroup of Gg at A. Recall that for
each place p of Q, we have fixed an embedding ¢, of Q in its completions Q,.
Denote by X, the p-adic cyclotomic character, and w;, the Teichmiiller lift of
the mod p cyclotomic character Y, (the latter being the reduction mod p of
Xp)- By abuse of notation we also denote by w), the f-adic character vot, ! (wp)
for any prime £: this should not cause confusion as from the context it will be
clear where the character is valued. We also denote by w2 a fundamental
character of level 2 (valued in IF;Q) of I,: it factors through the unique
quotient of I, that is isomorphic to IF;‘)Q. We denote by the same symbol

its Teichmiiller lift, and also all its f-adic incarnations v, ' (wp2) . For a
number field F' we denote the restriction of a character of Gal(Q/Q) to
GF by the same symbol. A continuous irreducible representation Gg —
GLy(F,) or Gg — GLo(K), with K/Q, a finite extension, is said to be
modular if it arises from a newform. A reducible continuous representation

Gg — GLy(F,) that is odd is also said to be modular.

2. A CRUCIAL DEFINITION

Define the function @ : N — N such that Q(1) = 1, and for n > 2, Q(n)
is the largest prime that divides n.

Definition 2.1. Let p: Gg — GLa(F,) be a continuous representation.
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We say that q # p is a good dihedral prime for p if
(i) pl1, is of the form

v 0

0 o7 )’

where ¥ is a non-trivial character of I, of order a power of an odd prime t,

such that t divides ¢+ 1, and t > max(Q(A;(f)), 5,p);

(ii) q is 1 mod 8, and 1 mod r for every prime r such thatr < max(Q(%),p).

If there exists a good dihedral prime q for p we say that p is locally good-
dihedral (for the prime q), or q-dihedral.

3. PROOF OF THEOREM 1.2

In this section we state four theorems and derive Theorem 1.2 from them.
The proofs of the theorems stated here, modulo Theorems 4.1 and 5.1, will
be given in Section 8.

3.1. Auxiliary theorems. Consider the following hypotheses (for integers
r>1):

(Ly) All p of S-type which satisfy the following three conditions are mod-
ular: (a) p is locally good-dihedral; (b) k(p) = 2 if p = 2; (c) N(p) is odd
and divisible by at most r primes.

(W,) All p of S-type which satisfy the following three conditions are
modular: (a) p is locally good-dihedral; (b) k(p) = 2; (¢) N(p) is odd and
divisible by at most r primes.

Theorems 3.1 and 3.2 exhibit relations between the (L,)’s and (W,.)’s (be-
sides the obvious one that (L, ) implies (W;)!). Diagramatically the relations
in Theorems 3.1 and 3.2 may be summarised as:

W —— 1

WT+1 — Lr+1

The following theorem is the idea of killing ramification of [22].
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Theorem 3.1. (killing ramification in weight 2) For a positive integer r,
(L, ) implies (W41 ).

The following theorem is the idea of weight reduction of [24] (or weight
cycles as they are called in [25]).

Theorem 3.2. (reduction to weight 2) For a positive integer r, (W, ) implies
(L)

In 8.3, the following theorem is deduced from Corollary 1.2 of [24]. The
theorem provides a starting point from which to apply Theorem 3.2 and 3.1.

Theorem 3.3. The hypothesis (W, ) is true if r = 1.

The following theorem uses an analog, for Galois representations, of a
result for modular forms due to Carayol (see Section 5 of [8]) that is provided
by Theorem 5.1 (4). It is used to reduce the proof of Theorem 1.2 to the
proofs of Theorems 3.1, 3.2 and 3.3.

Theorem 3.4. (raising levels)

Assume the following hypothesis for a given integer r > 0:

(D,) All p of S-type which satisfy the following three conditions are mod-
ular: (a) p is locally good-dihedral; (b) the residue characteristic of p is an
odd prime; (c) N(p) is not divisible by 2" 1.

Then any p of S-type of residue characteristic p of conductor not divisible
by 2" L, and with k(p) =2 if p =2 and r = 0, is modular.

Remark: Note that by Theorem 3.4, (Dg) implies Serre’s conjecture for
p of S-type in odd characteristic with N(p) odd, and for p of S-type in
characteristic 2 with k(p) = 2. Further (D;) implies Serre’s conjecture for p
of S-type in characteristic 2, and for p of S-type in odd characteristic with
N (p) not divisible by 4.

3.2. Proof of Theorem 1.2. We will explain how hypothesis (Dy) follows
from Theorems 3.1, 3.2 and 3.3. Then by Theorem 3.4, and the remark after
it, we get Theorem 1.2.

Notice that hypothesis (Dp) will be satisfied if we prove (L,) for each
r > 1. We do this by induction on r.

(L1): Theorem 3.3 fulfills the hypothesis (W7) of Theorem 3.2. Thus
Theorem 3.2 gives that (L1) is true.

Induction step: Assume we have proved (L,) for »r > 1, and we want
to prove (L,11). The hypothesis (L,) implies the hypothesis (W,4+1) by
Theorem 3.1. This by Theorem 3.2 yields (L;11).

4. MODULARITY LIFTING RESULTS

Consider p : Gg — GLy(F) with F a finite field of characteristic p and
2 < k(p) <p+1 when p > 2. We assume that p has non-solvable image
when p = 2, and ﬁ\Q(#p) is absolutely irreducible when p > 2. We assume
that p is modular.
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A continuous representation p : Gg — GL2(0O), for O the ring of integers
of a finite extension of Q,, is said to be a lift of p if the reduction of p
modulo the maximal ideal of O is isomorphic to p. We say that p is odd if
det(p(c)) = —1 for ¢ a complex conjugation. If p is Hodge-Tate of weights
(k—1,0) at p (for k € N,k > 2), we say that p is of weight k.

We will need the following key result whose proof is postponed to the
second part, cf. [23]. It is a generalization of the Wiles, Taylor-Wiles mod-
ularity lifting theorem ([46],[43]). Our main improvement concerns p = 2,
for which there were some earlier results of Dickinson ([13]) (see also §9).
We also treat some new cases for k = p,k = p+ 1 (see also [30]). For p # 2,
the case potentially crystalline of weight 2 is the main result of [26]. In the
proof, we use the improvements of the Wiles, Taylor-Wiles method intro-
duced by Diamond and Fujiwara ([11], [16]), and by Kisin ([26]). For more
technical comments, see the introduction of our second part.

Theorem 4.1. Consider p : Gg — GL(F) with F a finite field of char-
acteristic p. We assume that p has non-solvable image when p = 2, and
ﬁ’@(up) s absolutely irreducible when p > 2. We assume that p is modular.

1. (p = 2) Let p be an odd lift of p to a 2-adic representation that is
unramified outside a finite set of primes and is either crystalline of weight 2
at 2, or semistable of weight 2 at 2 with the latter case considered only when
k(p) = 4. Then p is modular.

2. (p>2) Let p be a lift of p to a p-adic representation that is unramified
outside a finite set of primes and is either (i) crystalline of weight k at p
with 2 < k < p+ 1, or (ii) potentially semistable at p of weight 2. Then p
is modular.

5. COMPATIBLE SYSTEMS OF GEOMETRIC REPRESENTATIONS

Let F' C Q be a number field and let p : Gp — GL4(Q) be a (continuous)
Galois representation. We recall that it is called geometric if it is unramified
outside a finite set of primes of F' and its restrictions to the decomposition
groups at primes above ¢ are potentially semi-stable ([17]). Such a repre-
sentation defines for every prime g of F' a representation of the Weil-Deligne
group WD,, with values in GL4(Qy), well defined up to conjugacy. For ¢ of
characteristic # /¢, this comes from the theory of Deligne-Grothendieck; for
q of characteristic ¢, this comes from the theory of Fontaine ([9], exp. 8 of
32], [17)).

For a number field E, we call an E-rational, 2-dimensional strictly com-
patible system of geometric representations (p,) of G the data of:

(i) for each prime ¢ and each embedding ¢ : E < Q , a continuous, semisim-
ple representation p, : G — GL2(Qy) that is geometric :

(ii) for each prime ¢ of F', an F-semisimple (Frobenius semisimple) repre-
sentation 7, of the Weil-Deligne group WD, with values in GL2(E) such
that:

- a) 14 is unramified for all ¢ outside a finite set,



8 CHANDRASHEKHAR KHARE AND J-P. WINTENBERGER

- b) for each ¢ and each ¢+ : E — Qy, the Frobenius-semisimple Weil-
Deligne parameter WD, — GLa(Qy) associated to p,| D, is conjugate to rq
(via the embedding E — Q).

(iii) there are two integers a, b, a > b, such that p, has Hodge-Tate weights
(a,b).

The primes of F' such that r, is unramified are called the unramified
primes of the compatible system. The restriction to I; x G, of r, is called
the inertial WD parameter at q. We refer to a,b, as the weights of the
compatible system and when a > 0,b = 0 we say that p, is of weight a + 1.
When a # b we say that the compatible system is regular and otherwise
irregular .

We shall say that the system (p,) is compatible if

- instead of (i) we only ask that p, is continuous, semisimple and finitely
ramified,

- we impose (ii) a),

- and impose (ii) b) only for primes ¢ not above ¢,

- we ask that for £>> 0, ¢ : E < Qy, ¢ above £, the restriction of p, to D,
is crystalline of Hodge-Tate weights a, b as in (iii).

Due to an hypothesis of irreducibility of the residual representation in the
corollary of the introduction of [27], in the following theorem, we will have
to consider compatible systems (p,) for which (i) b) is known to be true
for q of characteristic different from the characteristic £ of ¢, and one has
integers a,b,a > b such that for ¢ of characteristic £ we know :

- if p, is irreducible, p, is geometric of Hodge-Tate weights (a, b) and (ii)
b) is satisfied;

- if £ # 2 and 7, is unramified, the restriction of p, to Dy is crystalline of
Hodge-Tate weights (a,b).

We shall say that such a system is “almost strictly compatible” of Hodge-
Tate weights (a,b).

When we say that for some number field £ and an irreducible p : Gg —
GLy(F,), an E-rational compatible system (p,) of 2-dimensional representa-
tions of G lifts p we mean that the residual representation arising from p,,
is isomorphic to p (for the chosen embedding ¢,). We say that a compatible
system (p,) is odd if p, is odd for every ¢. For a prime ¢ we abuse notation
and denote by py the f-adic representation p, for ¢ the chosen embedding
above ¢. We say that a compatible system (p,) is irreducible if all the p, are
irreducible.

When we say that p := p, is a minimal lift at ¢ of the corresponding
residual mod p > 2 representation p, at primes ¢ of characteristic ¢ # p,
we mean that the condition in Section 3 of [12] is satisfied. For p = 2
see §3.3.1 of [23], but we briefly recall the definition here. Whenever p(I;)
is projectively not cyclic of order p, the reduction map p(I;) — p(Iy) is
bijective, unless p = 2 and pp, is induced from a wildly ramified character
v of a ramified quadratic extension L of Q, (see §3.3.1. of [23]). In this
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latter case, we define a minimal lift as a lift that coincides on inertia with
the induced representation from L to Q, of the product of the Teichmiiller
liftt of v with a ramified quadratic character  of Gy. For every p, the
restriction to inertia of the determinant of a minimal lift is the Teichmiiller
lift (this is the reason for the above 6). When p(I,) is projectively cyclic of

order p, pjy, is of the shape:
_ 17
& ( 0 1 ) 7

7 non trivial, and we ask that pj;, isomorphic to:

L n
g®<0 1)’

with 7 a lift of 77 and & the Teichmiiller lift of £ (§3.3.1. of [23]).
The proof of the following key technical result, close to Theorem 5.1 of
[24], is postponed to the second part, cf. [23].

Theorem 5.1. Consider a S-type representation p with 2 < k(p) < p+1
when p > 2. We assume that p has non-solvable image when p = 2, and
ﬁ|@(up) is absolutely irreducible when p > 2. Then p lifts to an E-rational
almost strictly compatible, irreducible, odd system (p,) for some number field
E. Furthermore we can ensure any one of the following holds:

1. Assume k(p) = 2 if p = 2. Then the p-adic lift p, of p is minimally
ramified at all primes # p and is crystalline of weight k(p) at p.

2. The p-adic lift p, of p is of weight 2 and is minimally ramified at
primes # p, and the inertial Weil-Deligne parameter at p is (w]],f(p)_2 ®1,0)
if k(p) # p+ 1 when p > 2 and k(p) # 4 when p = 2. In the case p >
2,k(p) =p+1orp=2and k(p) = 4 it is of the form (id, N) with N a
non-zero nilpotent matriz € GL2(Q).

3. Assume q||N(p) with q an odd prime such that p|q — 1. Then p|z, is

of the form
X *
0 1)’

with X a character of I, that factors through its quotient (Z/qZ)*. Let x' =
wé (0 < i < q—2) be any non-trivial Z;—valued character of 1, that factors
though (Z/qZ)* and reduces to X, and such that when p =2, i is even.
Then, p, is minimally ramified at primes # p, q, is of weight 2 , and at p
the Weil-Deligne parameter is as in item 2. Further pyl1, is of the form

(b 1)

If the residual representation py is irreducible, it has, up to twisting by
some power of X,, Serre weight either i +2 or ¢ +1 —1i.
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4. Let q # p be a prime and assume p|p, (up to unramified twist) is of

the form
Xp *
0o 1)’

and assume that p|lqg+1. Let {x', X'} be any pair on;—valued characters of
I, of level 2 (i.e., that factors though F 2™, but not through Fy;) and which
are of order a power of p. Thus, up to interchanging X' and x'?, we may
write X' as w372w2f2 for some 0 < j < i < q—1. We further assume that
when p =2, i+ j is even.

Then the p-adic lift p, of p is minimally ramified at primes # p,q, is of
weight 2, and at p the Weil-Deligne parameter is as in item 2. Further pylr,

is of the form
0 )"

If q is odd and the residual representation py is irreducible, it has, up to
twisting by some power of X,, Serre weight either ¢ +1 — (i —j) ori—j
when i > 7+ 1, and ¢ when i = j + 1.

Remarks: The computation of the weights of the residual representations
in Theorem 5.1 (3) and (4) is done by Savitt in Corollary 6.15 (1) and (2)
and remark 6.17 of [37]. The conditions of parity when p = 2 guarantee
that the lift p is odd. It is not difficult to see that if ¢||N(p) and p does not
divide g — 1, every geometric lift p of p such that ¢||N(p) is minimal at q.
Let r = vp(g + 1). One sees easily that there exist characters x’ as in
4) except if p =2 and r = 1. If p # 2, the possible x’ are the non trivial

2_ T
characters which are powers of wé?Q D/ g p =2 and r > 2, the possible

X' are the powers of wé?;_l)/grﬂ which are of order 2¢ with 2 < a < r.
F. Diamond pointed out to us that the list of corresponding (i, j) is given
by: j =m(g+1)/p"—1,i=q—1—j for m with 0 < m < p"/2. In
particular, ¢ = j + 1 does not occur.

6. SOME UTILITARIAN LEMMAS

We recall Dickson’s theorem (see [20], I1.8.27): for any prime p a finite
subgroup of GLa(F,) that acts irreducibly on FTP has projective image that is
either isomorphic to a dihedral group, Ay, S4, As, PSLa(F") or PGLo(F') for
F’ a finite subfield of F,. Note also that PSLy(F’) is a simple (non-abelian)
group as soon as |F’| > 4. Although the lemma below, which refines the
above statement for p = 2, is also a part of Dickson’s theorem it is often
not stated as such, and we give the easy proof. (We thank Serre for some
correspondence about this.)

Lemma 6.1. Let G be a finite, solvable subgroup of GLa(F2) which acts
irreducibly on ?22. Then the projective image of G is dihedral.
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Proof. By Dickson’s theorem, the projective image of G is isomorphic to a
dihedral group, A4 or S;. The possibility of S4 can be ruled out as any
element in GLo(F2) of order a power of 2 is forced to be of order 1 or 2.
The possibility of A4 can be ruled out by using the facts that A4 has a
normal subgroup of order 4, and that a Sylow 2-subgroup of GLo(F) for F a
finite field of characteristic 2 is given by the unipotent matrices. This forces
a G with projective image A4 to be conjugate to a subgroup of the upper
triangular matrices of GLy(FF2). This contradicts the hypothesis that G acts

irreducibly on ﬁgz. O

Lemma 6.2. (i) Let p : Gg — GLo(F,) be an S-type representation whose
projective image is dihedral. Then p is modular. Furthermore, it arises from
Sk (T1(N(p)))-
(ii) If p is of S-type, p > 3, 2 < k(p) < p+1, and ﬁ|GQ(up) 1s reducible,
then p has weight either % or %.
Proof. (i) If p > 2 this is well-known. If p = 2 we first address the modularity
of such p. This follows from the method of proof of Proposition 10 of [38]:
see [34], where this is alluded to as the “trick of Serre”, or Lemma 2 of [42].
Further, it follows from Theorem 1 of [42] that p arises from Syz (I'1(N(p))).
(ii) As p > 2 the projectivisation pproj of the representation p is tamely
ramified at p, and thus pproj(fp) is cyclic. As the quadratic subfield of Q(,)
is ramified at p, pproj(Ip) is of order 2. From this the result follows by the
definition of k(p) in Section 2 of [38].
[l

Lemma 6.3. Let p be a locally good-dihedral representation (for a prime q).
(i) The image of p is not solvable and not projectively isomorphic to As.
(ii) Let (p,) be any compatible system lifting of p such that the ramified

primes of the compatible system are contained in the prime divisors of N(p)p

and py|p, is a minimal lift of p|p,. Then for any primer < max(Q(l\;(f) ), D),
any mod r representation p, that arises from (p,) is locally good-dihedral
(for the prime q) and hence has non-solvable image (which is projectively
not isomorphic to As).

Proof. Part (ii) follows from compatibility, part (i) and the following obser-
vations :

- let @ > 1 be an integer, let t # 2 and r be distinct primes. Let Dot C
PGL2(Q,) be the dihedral group of order 2¢t* which we may assume to be a
subgroup of PGL2(O) with O the valuation ring of Q,. Then the reduction
map is bijective on Doy,

-forr < max(Q(%),p), we have max(Q(%),r) < max(Q(l\;(f)),p).

Let us prove (i). By definition p|;, is of the form

v 0
0 i )
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where ¢ is a character of I, of order a power of a prime t|g + 1, and ¢ is
bigger than max(r, p,5) where r # ¢ ranges over primes that divide N(p).
As t does not divide ¢ — 1, p[p, is irreducible, and hence so is p. Ast > 5,
we see that the projective image cannot be As.

We see that if the image of p is solvable, as ¢ > 5, then by Dickson’s the-
orem the projective image of p is dihedral. Note that the primes s different
from ¢ at which p is ramified are such that ¢ is 1 mod s (and 1 mod 8 if
s = 2). Suppose p is induced from Gg with K a quadratic extension of Q.
Then K is unramified outside the primes that are ramified in p. Thus the
prime q either splits in K or is ramified in K: both possibilities lead to a con-
tradiction. If ¢ splits in K, this contradicts the fact that p|p, is irreducible.
If K is ramified at ¢ we again get a contradiction as ¢ is odd. O

7. ESTIMATES ON PRIMES

In the arguments below we need to check, that for each prime p > 5, there
is a prime P > p (for instance the next prime after p) and either
(i) an odd prime power divisor ¢"||(P — 1) so that

P  2m+1 m 1
(1) =< — )(=)
14 m—+1 m+1""p
where we have set {" = 2m + 1 with m > 1, or
(i) 2"||(P — 1) (with r > 4) so that
P 2 |

(2) P S o +2 (2T—1 +2)(;§)'

This can be checked as in [24] using the estimates on primes of [35] as
follows:
We check this by hand for p < 31. From [35] one deduces (see [24]) that

for p > 31, % < %— (%) = 1.46. This establishes (1) and (2) above as 2;;%11

and ﬁ are > % and miﬂ and % are <1 (for m > 1,7 > 4).
For later reference we note that it follows from (1) that
m+1 m
1> P-1)+2=(P+1)— P-1
() pH1z o (PoD)+2= (P41 e (P-1),
and it follows from (2) that
27142 1
(4) p—l—lzT(P—1)+22(P+1)—§(P—1).

Remark : It is proven in [24] that in fact one can always find P such that
(i) holds (for example P the smallest non Fermat prime > p).

8. PROOFS OF THE AUXILIARY THEOREMS

8.1. Proof of Theorem 3.1. Assume (L,).

Consider p of S-type which is locally good-dihedral for a prime ¢, with
k(p) = 2, and such that N(p) is odd and at most divisible by r + 1 primes.
Choose a prime s # ¢ that divides N(p).
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By Theorem 5.1 (1) construct an almost strictly compatible lift (p,) and
consider ps. Then pg is a S-type representation, is ¢-dihedral and hence
has non-solvable image (by Lemma 6.3 (ii)) , and N(ps) is divisible by at
most r primes: the prime divisors of N(ps) are a subset of the set of the
prime divisors of the prime-to-s part of N(p). Thus by (L,) we know p; is
modular, and then by Theorem 4.1 we are done.

8.2. Proof of Theorem 3.2. Assume (WV,). Then we have to prove that
any p of S-type which is locally good-dihedral (for a prime ¢), such that p
is odd, N(p) is odd, and divisible by at most r primes, is modular.

We do this by induction on the prime p as in the paper [24].

We first do the case p = 3 and p = 5 as the arguments in these cases are
a little different from the general inductive step of the proof.
Mod 3: Consider p of S-type which is locally good-dihedral (for a prime
q), k(p) < 4 in residue characteristic 3, N(p) is odd, and at most divisible
by r primes. Using Theorem 5.1 (2) lift it to an almost strictly compatible
system (p,) and consider ps. The residual representation py is ¢-dihedral
and hence has non-solvable image (see Lemma 6.3), k(p2) = 2 by almost
strictly compatibility as ps is irreducible and N(p2) is divisible by at most
r + 1 primes, namely the primes dividing N(p) and 3. If py is unramified at
3, N(p2) is divisible by at most r primes, and then po is modular by (W,.).
Theorem 4.1 yields that (p,) is modular and hence p is modular in this case.

Otherwise, note that pa|s, is non-trivial and unipotent, as ws is of order
2. Thus by the group-theoretic structure of the tame quotient of D3, pa|p,
up to unramified twist is of the form

(V1)

(Of course Xy = 1.) Thus we may use Theorem 5.1 (4) to lift p2 to an odd
almost strictly compatible system (p!), choosing x' = w§,2. Consider pf and
the residual representation p4 which by Lemma 6.3 is ¢-dihedral and hence
has non-solvable image. By Theorem 5.1 (4), a twist of pj has weight 2,
and N(pjs) is odd and divisible by at most r primes. Thus pj is modular by
(W;), and we are done by applying Theorem 4.1 to ps and then to pa.
Mod 5: Consider p of S-type which is locally good-dihedral (for a prime q),
in residue characteristic 5, k(p) < 6, and N(p) is odd and at most divisible
by r primes. Using Theorem 5.1 (2) lift it to an almost strictly compatible
system (p,) and consider ps. The residual representation py is g-dihedral
and hence has non-solvable image (see Lemma 6.3), k(p2) = 2 and N(p2) is
divisible by at most 7+ 1 primes. If pa is unramified at 5, N (p2) is divisible
by at most r primes, and then po is modular by (W,). Theorem 4.1 yields
that (p,) is modular and hence p is modular.

Suppose p2 ramified at 5. As ws has order 4, (p2)z, is non-trivial and
unipotent. We use Theorem 5.1 (3) to lift g2 to an odd almost strictly

compatible system (p]), choosing x' = w2. Consider p§ and the residual
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representation pi: by Lemma 6.3, p; is g-dihedral and has non-solvable
image. By Theorem 5.1 (3) (after twisting by a suitable power of X5) pf has
weight 4. The conductor N(pf) is odd and divisible by at most r primes.
It will be enough to prove that g is modular, as then Theorem 4.1 yields
that (p]) is modular. The compatible systems (p,) and (p]) are linked at 2
(we have pa ~ pl). Another application of Theorem 4.1 yields that (p,) is
modular, and hence p is modular.

It remains to prove that g} is modular. There are 2 cases:

(i) either 3 divides N(py), or

(ii) 3 does not divide N(pf) .

In the case of (i) we use Theorem 5.1 (2) to get an almost strictly compat-
ible lift (p') of p; and then observe that N(p5) is odd and is divisible by at
most r primes: note that the set of primes that divide the odd integer N(p%)
is a subset of the set of prime divisors of the prime-to-3 part of 5N (pf). As
we know the modularity of such a g4 (which is again g-dihedral) by the case
p = 3, we may apply Theorem 4.1 to conclude that the compatible system
(p!) is modular, and hence that g is modular.

In the case of (ii) we use Theorem 5.1 (1) to get an almost strictly com-

patible lift (p!) of pf which is of weight 4. We know the modularity of pf
by the case p = 3 : in this case the set of primes that divide the odd integer
N(ph) is a subset of the set of prime divisors of N(p5). Then we may apply
Theorem 4.1 to conclude that (p!') is modular (note that pj is crystalline of
weight 4). Hence pf is modular.
The inductive step: Our inductive assumption is that all p of S-type
which are locally good-dihedral, in residue characteristic < p, for p a prime
with p > 5, such that N(p) is odd, and at most divisible by r primes are
modular. Let P be the next prime after p. We will prove modularity of all p
of S-type which are good-dihedral (for a prime ¢), in residue characteristic
P, such that N(p) is odd, and at most divisible by r primes.

Consider p of S-type which is locally good-dihedral (for a prime ¢), in
residue characteristic P, k(p) < P+1, and N(p) is odd and at most divisible
by r primes. Choose a prime divisior ¢"||(P — 1) that satisfies one of the
estimates (1) or (2) of Section 7. Using Theorem 5.1 (2) lift p to an almost
strictly compatible system (p,) and consider py. The residual representation
pe is g-dihedral and hence has non-solvable image (see Lemma 6.3), and
N (pg) is odd and divisible by at most r 4+ 1 primes. If p, is unramified at
P, N(pg) is divisible by at most r primes, and then py is modular by our
inductive assumption as ¢ < p. Theorem 4.1 yields that (p,) is modular and
hence p is modular.

Otherwise we apply Theorem 5.1 (3) to a twist p, of py by a character
unramified outside ¢ such that if ¢ # 2 we have 2 < k(p;) < 1+ 1. We
get an odd almost strictly compatible system (p]) that lifts pj, choosing

X = wh with i € [5mg (P — 1), 2%111 (P —1)] when ¢ > 2, and an even

i € [3(P—1), 21q;#(P —1)] when ¢ = 2. Consider p’» and the residual
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representation pjp. By Lemma 6.3, p)» is ¢g-dihedral and hence has non-
solvable image. By choice of i, the estimates (3) and (4) of Section 7, and
Theorem 5.1 (3), we deduce that (after twisting by a suitable power of Y p)
k(pls) < p+ 1, and the conductor N(p’) is odd and divisible by at most
r primes. (Note that if ¢|N(pp), then ¢|N(p).) It will be enough to prove
that p’» is modular, as then Theorem 4.1 yields that (p]) is modular. The
compatible systems (p,) and (p]) are linked at ¢, and another application of
Theorem 4.1 yields that (p,) is modular, and hence p is modular.

It remains to prove that g, is modular. There are 2 cases:

(i) either p divides N(pp), or

(ii) p does not divide N(p’p).

In the case of (i) we use Theorem 5.1 (2) to get an almost strictly com-
patible lift (p;') of pp and then observe that N(pj) is odd and divisible by
at most r primes: note that the set of primes that divide N(p;) is a subset
of the set of prime divisors of the prime-to-p part of PN (p/5). As we induc-
tively know the modularity of such a ,F)Z (which is again ¢-dihedral), we may
apply Theorem 4.1 to conclude that the compatible system (p!') is modular,
and hence that p/p is modular.

In the case of (ii) we use Theorem 5.1 (1) to get an almost strictly com-
patible lift (p;) of plp. We inductively know the modularity of pj: in this
case the set of primes that divide the odd integer N(pj) is a subset of the set
of prime divisors of N(p’5). Then we may apply Theorem 4.1 to conclude
that (p)') is modular, and hence that p» is modular.

Remarks:

1. It is possible to present the general inductive step slightly differently
by at the outset dividing into 2 cases: (i) p is ramified at some prime < P,
(ii) p is unramified at all primes < P.

2. As seen above all the residual representations considered in the proofs
of Theorem 3.1 and 3.2 are locally good-dihedral which avoids problems of
(global) residual degeneracy. Also, starting with a g-dihedral p in charac-
teristic P, that is ramified at a set of primes S, the proofs of Theorems 3.1
and 3.2 need to consider residual representations in characteristic at most
maxgeg\ (g} (P, ¢). This is what motivates our Definition 2.1.

8.3. Proof of Theorem 3.3. Theorem 3.3 follows from Corollary 8.1 (ii)
below, which in turn follows from Corollary 8.1 (i). The latter (in the case
p > 2) is stated as Corollary 1.2 in [24].

Corollary 8.1. (i) If p is an irreducible, odd, 2-dimensional, mod p rep-
resentation of Gg with k(p) = 2, N(p) = q, with q a prime, then it arises
from S2(I'1(q)).

(i) If p is an irreducible, odd, 2-dimensional, mod p representation of
Gq with k(p) = 2, unramified outside p and another odd prime q, tamely
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ramified at q, such that the order of p(1,) is the power of an odd primet > 5,
then p arises from Sa(T'1(q?)).

Proof. The first statement is Corollary 1.2 of [24] (for p > 2). Let us take
the opportunity to give a correct reference for the proof (the reference to 3
of Theorem 5.1 of [24] is not enough as p may not divide g —1). We suppose
that g # 2 as the case ¢ = 2 is treated in [22], and we may assume that the
projective image of p is not dihedral as otherwise we are done by Lemma
6.2. We use Theorem 5.1 (1) to get an almost strictly compatible system
(p,) of Galois representation which lifts p, is of weight 2, has unramified
Weil-Deligne parameter at all primes # ¢ and such that p, is a minimal lift
of p (at g). Note that p = 2 is included. The Weil-Deligne parameter r, at
q is either semistable or unramified after restriction to Qg(x,). We choose
a ¢ of characteristic ¢ and we write p, for p,. If r4 is semistable with non
trivial monodromy, we have that p, is semistable of weight 2 by [36]. If r, is
unramified after restriction to Q4(4), we have as in the proof of Theorem
5.1 (3 1ii) in [24], that p, is geometric of weight 2, crystalline after restriction
to the Galois group of Qq(sq). We already know by Serre’s conjecture for
level 1 that p, is modular (maybe reducible). We then use (2) of Theorem
6.1 of [24] (the references there to [39] and [40] should also be augmented to
[41] which is a correction to [40]), to get that p, is modular, and prove (i).

We reduce (ii) to (i). We may assume that ¢t # p, as otherwise this is
covered by the first statement. Also as p is tamely ramified at ¢, we deduce
that t # q. We may also assume that the projective image of p is not dihedral
as otherwise we are done by Lemma 6.2 (the case of projective image A4 or
S4 reduces to the level 1 case as t > 5).

Using Theorem 5.1 (1) we construct an almost strictly compatible system
lift (p,) of p. Thus p, unramified outside {p, ¢}, is crystalline of weight 2 at
s lpp(Ig)| = |pp(Ig)l-

If the reduction p; of an integral model of p; is reducible, or unramified at
¢ (which implies reducibility by the proof in [22] of the level 1 weight 2 case
of Serre’s conjecture), then we are done by applying the modularity lifting
theorems of [39], which allow us to conclude that p; is modular, hence (p,)
is modular and hence so is p. Note that p; is crystalline of weight 2 as (p,)
is almost strictly compatible of weight 2 and ¢ # 2.

Finally, suppose that p; is irreducible and ramified at q. As (p,) is almost
strictly compatible, k(p;) = 2. Part (i) implies that the representation is
modular (as in fact the ramification will be unipotent at ¢), and then by
modularity lifting results in [46], [43], we again conclude that p; is modular,
hence (p,) is modular and hence so is p. The lifting theorems apply as one
easily checks that pt|g(,,) is irreducible using that |p:(;)| = t (or using
k(pt) = 2 in conjunction with Lemma 6.2 (ii)).

O
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8.4. Proof of Theorem 3.4. Consider p : Gg — GLy(F) of S-type, F a
finite field of characteristic p, with k(p) = 2 if p = 2 and r = 0, and of
conductor not divisible by 271,

Let S be the primes other than p at which p is ramified. We may assume
that ﬁ|Q(#p) is absolutely irreducible by Lemma 6.2 and has non solvable
image if p = 2 by Lemma 6.1.

Using Theorem 5.1 (2), construct an almost strictly compatible system
(pa), that is E-rational for some number field E, and lifts p.

As (py) is an irreducible compatible system, almost all the residual rep-
resentations that arise from it are absolutely irreducible, and we consider
only such representations.

Note that for p’ ¢ SU{p,2}, py is of weight 2 by almost strict compatibil-
ity. If there is a p’ ¢ SU{p} and p’ > 5 at which the mod p’ representation
pp has projectively dihedral image we are done after using Lemma 6.2 and
then applying the modularity lifting theorem of [12] (Th. 4.1). Note that
for p’ ¢ SU{p}, p’ > 5, ppy cannot be irreducible and induced from the
quadratic subfield of Q(uy) (as k(py) =2 and p’ > 5: see Lemma 6.2 (ii)).
Further as k(py) = 2, and p’ > 5 by considering the projective image of
pp (Iy), we deduce that the projective image of p,y has an element of order
> 6. Then using Dickson’s classification, we see that if the projective image
of py is solvable, then it is dihedral, a case we have already dealt with.

Thus we may choose p’ > 5 that is congruent to 1 modulo 4, p’ larger
than all the primes in S U {p}, and p’ splits completely in F, and such that
pp : Gg — GLa(F,y) has non-solvable image.

We have the following general lemma:

Lemma 8.2. Let p be a prime that is congruent to 1 modulo 4, and p : Gg —
GL2(F,) a representation of S-type. Assume that im(p) is not solvable.
Denote by pproj the projectivisation of p, and ¢ € Gg a complex conjugation.
There is a set of primes {q} of positive density that are unramified in p such
that:
(i) pproj(Froby) and pproj(c) define the same conjugacy class in pproi(Go)
(ii) q is congruent to 1 modulo all primes < p—1 and is 1 modulo 8,
(iii) q is —1 mod p.

Remark: In an earlier version of this lemma we allowed p with values in
GL3(F,). L. Dieulefait and G. Wiese pointed out that some hypothesis on
the rationality of p may be necessary to warrant the conclusion of the lemma.

Proof. By Dickson’s theorem, and as p has non-solvable image, the image
of pproj is either PSLa(F)) or PGLo(IF,), or is isomorphic to As. When the
image is PGL2(F)p), note that as p is congruent to 1 mod 4, pproj(c) is inside
PSLy(Fp). As PSLy(F,) (for p > 3) and As are simple (and non-cyclic),
and as p is congruent to 1 modulo 4, we may appeal to the Cebotarev
density theorem as follows. We choose ¢ satisfying the following conditions:
q = 1mod(8), x¢(Froby) = 1 for £ odd < p, X, (Frob,) = —1, and pprej(Froby)
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conjugate to Pproj(€) In Pproj(Gg). We explain why the conditions are com-
patible. Let L be the intersection of the field M defined by the kernel of
Pproj and the cyclotomic field generated by usg, p¢ for £ odd < p and p,. The
degree of L over Q is either 1 or 2. If it is of degree 1, the compatibility is
clear. If L is quadratic, the image of pproj is PGL2(F,), and L is the fixed
subfield of M by PSLy(F,). The first three conditions, as well as the fourth,
impose that ¢ is split in L. For the third condition, note that as p is 1 mod
4, —1 is a square mod p. This proves the lemma.

O

Apply Lemma 8.2 to our p,y, and choose a prime ¢ as in the lemma. Next
one uses Theorem 5.1 (4) to lift p,y to an almost strictly compatible system
(pY) such that p,|, is of the shape there for some x’ a p’-adic character of
I, level 2 and order a power of p'. Let s be the largest prime < p': consider
p., and the corresponding residual representation p/,. Note that s > 2, gl is
good-dihedral (for the prime ¢), and N(p,) is not divisible by 2"*1. Thus,
by hypothesis (D,), p, is modular and we know by Lemma 6.3 that g, has
non-solvable image. Hence by Theorem 4.1 the compatible system (p)) is
modular. Observe that the compatible systems (py) and (p)) are linked at
pp- Applying the modularity lifting theorem of [46] , [43] (cf. Theorem
4.1) again we conclude that that (py) is modular, and hence p is modular,
proving the theorem.

9. THE GENERAL CASE

Consider the following hypothesis:
Hypothesis (H): Let p : Gg — GL2(O) be a continuous, odd, irreducible,
p-adic representation, such that:

(i) the residual representation p has non-solvable image, and p is modular;

(ii) p is unramified outside a finite set of primes, is of weight 2 and
potentially crystalline at p.

Then p is modular.
Remark: Breuil (in case p # 2) and Kisin have proved that, if K is a finite
extension of Q, a crystalline representation of G i with Hodge-Tate weights
0 and 1 arises from a p-divisible group ([4], [29]). We see that we can replace
in (ii) the condition at p by p being potentially Barsotti-Tate.

We show using essentially all the results and methods of this paper:

Theorem 9.1. Assume Hypothesis (H). Then Serre’s conjecture is true.

Proof. We will prove (D)) for all non-negative integers r, thus proving Serre’s
conjecture (under (H)) by Theorem 3.4.

We begin by proving (D7) and Serre’s conjecture in residue characteristic
2. By Theorem 3.4 it is enough to prove (Dp). Thus we wish to show that
a p of S-type in odd residue characteristic p, which is locally good-dihedral,
and with N(p) not divisible by 4, is modular.
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The argument we give for this is analogous to that given for going from
residue characteristic 3 to residue characteristic 2 in the proof of Theorem
3.2 except that the roles of 2 and 3 are reversed. Using Theorem 5.1 (2),
construct an almost strictly compatible system lift (py) of p such that p,, is a
minimal weight 2 lift. Consider ps. This has non-solvable image by Lemma
6.3, and if it is unramified at 2 we are done by applying Theorem 1.2 and
Theorem 4.1. If p3 is ramified at 2, then p3([2) is unipotent and thus p3(D3)
is up to unramified twist of the form

(¥1)

Consider the two 3-adic characters x/, X' of I5 of order 3, and using Theorem
5.1 (4), construct an almost strictly compatible system lift (p) of p such
that in particular p4(l2) has the form

X x
0x’2'

Note that the WD parameter of p4 at 2 is of the form (7, 0) with 7 irreducible.
Consider p,. We claim that k(p,) = 2. If so we would be done by Theorem
1.2(ii) and Hypothesis (H), as we know by Lemma 6.3 that p, has non-
solvable image, and by Theorem 5.1 (4) that p), is potentially crystalline of
weight 2 at 2.

To prove the claim (we give this ad hoc argument as the reference [37]
does not consider the case p = 2), note that if k(p,) = 4, then it is treés
ramifiée and thus for a finite extension K of Qo of odd ramification index,
P5(G k) cannot be finite flat. On the other hand we do know by Theorem
5.1(2) that we may take a finite extension K of Q2 of ramification index 3 (=
order of x'), such that p,,(Gk) is finite flat which is plainly a contradiction
thus proving the claim. (We can take K for instance to be the field cut out
by X’ over the quadratic unramified extension of Q5.)

Having proved Serre’s conjecture in residue characteristic 2 and (D7), we
deduce from this (D,) for all integers r > 1. Thus we wish to show that a
p of S-type in odd residue characteristic p, which is locally good-dihedral,
and with N(p) not divisible by 2!, is modular. As we have proved (D),
we may assume that p(l2) does not have, up to a twist, unipotent image.
Using Theorem 5.1 (2), construct an almost strictly compatible system lift
(px) of p such that p, is a minimal weight 2 lift. Consider py. This has non-
solvable image by Lemma 6.3, and we know it is modular, and by Theorem
5.1 (2) that po is potentially crystalline of weight 2 at 2. Thus we are done
by applying Hypothesis (H).

O

10. MODULARITY OF COMPATIBLE SYSTEMS

10.1. Characterisation of compatible systems that arise from new-
forms. We formulate the following corollary of Serre’s conjecture (Theorem
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1.2 and 9.1 of this paper, and Theorem 0.1 and Corollary 0.2 of [28]). For
the definition of compatible systems and their regularity, see Section 5. The
proof is similar to the arguments in Sections 4.7 and 4.8 of [38], but we also
use the argument of [21].

Theorem 10.1. (i) A two-dimensional reqular compatible system that is
irreducible and odd arises up to twist from a newform of weight > 2.

(i) A two-dimensional irregular compatible system that is irreducible and
odd arises up to twist from a newform of weight 1.

It is well-known that newforms of weight > 2 (resp. weight 1) give rise
to two-dimensional, regular (resp. irregular), irreducible, compatible sys-
tems of representations of Gg. The theorem thus characterises compatible
systems that arise from newforms.

Proof. We only sketch the proof.

In both cases it is easy to see that p) is irreducible for almost all \ using
the fact that the conductor of py is bounded independently of A and the
Hodge-Tate weights of py are fixed.

After twisting we may assume that the Hodge-Tate numbers (a,b) of the
compatible system are such that b =0 and a > 0.

In the case of (i), when a > 0, we see that Serre’s conjecture applies
to py for infinitely many A and that these arise from a fixed newform f €
Sk(T'1(N)) for some fixed integers k = a + 1, N. This proves (i).

In the case of (ii), when a = b = 0, by a theorem of Sen and Fontaine for
all but finitely many A, py is unramified at £(\), where £()) is the residue
characteristic of the residue field arising from A. Then arguing as in [21],
which uses the results of Gross and Coleman-Voloch, [19] and [7] (see also
3.4 of [14]), we conclude from Serre’s conjecture, that py for almost all A
arise from the space S1(I'1(V)) of classical forms of weight 1 and level N
with NV independent of . This proves (ii). O

10.2. Artin’s conjecture and abelian varieties of GLo-type. Artin’s
conjecture (cf. [2]) is the assertion that the L-series L(p,s), that Artin
attached (cf. [1]) to a non-trivial, irreducible, continuous, complex repre-
sentation p : Gxg — GL,(C), for Gk the absolute Galois group of a number
field K, has an analytic continuation to the entire complex plane. Artin
proved the n = 1 case of the conjecture as a consequence of his reciprocity
law, which yields that L(p,s) = L(x, s) for a character x of a suitable ray
class group of K.

Langlands has made the stronger conjecture that p arises from a cuspidal,
automorphic representation 7 of GL,(Ag). Thus L(p,s) = L(m,s) and
as one knows, by results of Godement-Jacquet (cf. [18]), that L(m,s) has
an analytic continuation to the entire complex plane, one deduces Artin’s
conjecture. There are few known cases of these conjectures for n > 2. Brauer
(cf. [3]) proved that L(p, s) has a meromorphic continuation to the complex
plane.
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For n = 2, the celebrated results of Langlands [31] and Tunnell [45] proved
the conjecture when the image of p is solvable.

Part (ii) of Theorem 10.1 implies Langlands’ conjecture, and hence that
of Artin, for odd, irreducible, complex representations p : Gg — GL2(C). It
provides a converse to the theorem of Deligne and Serre in [10] that attaches
such complex representations to newforms of weight one. (Note that part (ii)
is not implied by Langlands’ conjecture as we do not assume in its statement
that the compatible system arises from an Artin representation, and only
deduce this a posteriori.) Given the results in [31] and [45], the new cases
are when the projective image of p is non-solvable and is thus isomorphic to
the alternating group As. Many cases of Langlands’ conjecture, and hence
Artin’s conjecture, were known earlier in the case when the projective image
is A5 (using a different strategy) thanks to the work in [5] and [44]. The
proof here makes essential use of Serre’s conjecture in infinitely many residue
characteristics.

Part (i) of Theorem 10.1 combined with Faltings’ isogeny theorem yields
modularity of abelian varieties of GLa-type over Q (see Theorem 4.4 of
[33]). This is sometimes referred to in the literature as the generalised
Shimura—Taniyama—Weil conjecture, and characterises the simple quotients
of the Jacobian J; (V) of the modular curve X;(N) over Q. We recall than
an abelian variety A over Q is said to be of GLa-type if it is simple and
Endg(A) ® Q contains a number field £ with [E : Q] = dim(A). (This is
in the terminology of [33] a primitive abelian variety of GLa-type.) The
simple quotients of Ji(N) over Q are abelian varieties over Q of GLa-type.
An abelian variety A over Q of GLa-type is said to be modular if it is
isomorphic to a quotient of Ji(N) for some positive integer N. We may
take N to be M™ where M is the conductor of A, and n its dimension.

Thus we finally have:

Corollary 10.2. (i) An abelian variety A over Q of GLa-type is modular.
(ii) A continuous, odd, irreducible representation p : Gg — GL2(C) arises
from a newform of weight one.
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