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Introduction

The class group Clr of a number field F is an object of central importance in number theory.
It is a finite abelian group, and its order hr is known as the class number. In general, the explicit
determination of Ap, let alone the structure of Cly as a finite abelian group, can be a difficult and
computationally intensive task.

In the late 1950’s, Iwasawa initiated a study of the growth of class groups in certain towers of
number fields. Given a tower F = Fy C F1 C F, C --- of Galois extensions of F, one asks if there
is any regularity to the growth of hg,. The knowledge of this growth, in turn, can be used to say
something about the structure of Clf, as a finite abelian group. Iwasawa was concerned with towers
such that Gal(F../F) = Z, for some prime p, where F.. = |J, F,, known as Z,-extensions. He set
I' = Gal(F./F) and I';, = Gal(F,/F), and let us suppose that F, is chosen to be (cyclic) of degree p”
over F. For example, for odd p, the cyclotomic Z,-extension F. of F is the largest subextension of
F(up=)/F with pro-p Galois group.

The question of how hf, grows in the tower defined by a Z,-extension is quite difficult, in particular
as the order away from p of Clg, has little to do with the order away from p of Clf,_ , other than the
fact that the latter order is a multiple of the former. On the other hand, if we concentrate on the order

h,(v[: ) of the Sylow p-sugroup A, of F,, we have the following theorem of Iwasawa.

THEOREM (Iwasawa). There exist nonnegative integers A and |1 and an integer V such that

hl(VI:) — pn/ler u+v

for all sufficiently large n.

In the case that F., is the cyclotomic Z,-extension, Iwasawa conjectured that the invariant  in the
theorem is 0. Ferrero and Washington later proved this result for abelian extensions of Q.

We have maps between the p-parts of class group in the tower in both directions j,: A, — A,+1,
which takes the class of an ideal a to the class of the ideal it generates, and N,,: A,,11 — A, which

takes the class of an ideal to the class of its norm. Iwasawa considered the direct and inverse limits

Ao :li_n;An and X. :@An
n n
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6 INTRODUCTION

under the j, and N, respectively. As each A, has the structure of a finite Z,[I',]-module through the
standard action of I, on ideal classes, both X.. and the Pontryagin dual AY, = Homcs (Aw, Qp / Zp) of

A are finitely generated torsion modules over the competed Z,-group ring of I':
Zp[T'] = lim Z, L]

The ring A = Z,[I'] is known as the Iwasawa algebra, and it has a very simple structure. In fact, a

choice of a topological generator y of I gives rise to an isomorphism
Z,[T] = A, T—y—1.

The following result on the structure of A-modules allowed Serre to rephrase the theorem of Iwa-

Sawa.

THEOREM (Serre). For any finitely generated torsion A-module M, there exists a homomorphism
of A-modules
s t
M — @A/ HT A EPA/PIA,
i=1 j=1
with finite kernel and cokernel, for some nonnegative integers s and t, irreducible fi(T) € Z,[T| with

£i(T) = T2/ mod p, and positive integers k; and £ .

From Serre’s theorem, we are able to deduce several important invariants of a finitely generated

A-module M. For instance, in the notation of the theorem, let us set

N t
A(M):Zkidegf,- and u(M)= Zﬁj.

i=1 j=1
These are known as the A and p-invariants of M. Serre showed that these invariants for X.. and AY, agree
with the A and p of Iwasawa’s theorem. An even more interesting invariant of M is its characteristic

ideal, given by
N
chara M = (p“(M) Hfi(T)k’) A,
i=1

which we shall consider in a specific case shortly.

It is worth remarking here that one usually thinks of X., as a Galois group. Recall that the Artin
reciprocity map provides an isomorphism between A, and the Galois group of the Hilbert p-class field
L, of F,, which is to say the maximal unramified abelian p-extension of F,. Setting L. = U, Lx,
we have a canonical isomorphism X.. = Gal(Le/Fs). The resulting action on I' on Gal(L«/Fs) is a
conjugation action, given by a lift of I' to a subsgroup of Gal(Le/F).

Let us focus now on the specific case that F = Q(u,), and let us take F., to be the cyclotomic

Zp-extension of F for an odd prime p. In this setting, Iwasawa proved that his u = p(X) is zero.
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We define the Teichmiiller character @: A — Z; by setting ®(5) for 6 € A to be the unique
(p — 1)st root of unity in Z, such that

5(¢y) = ¢

for any primitive pth root of unity (.
As with T, the Galois group A = Gal(F/Q) will act on X.. For any i, we may consider the
eigenspace XY of X.. on which every 8 € A acts through multiplication by @'(8). We have the fol-

lowing theorem of Herbrand and Ribet.

THEOREM (Herbrand-Ribet). Let k be an even with2 < k < p—3. Then x40 # 0 if and only if
p divides the Bernoulli number By.

The interesting fact is that Bernoulli numbers and their generalizations appear as values of L-
functions. Kubota and Leopoldt showed how that the L-values of certain characters at negative integers
can be interpolated, in essence, by a function of Z,,, denoted L, (¥ ,s) and known as a p-adic L-function.

Let us fix the particular generator y of I" such that y({) = {1*7 for every p-power root of unity £,
and in particular the isomorphism of A with Z,[T]. Iwasawa made the following conjecture on the

characteristic ideal of an eigenspace of X, which was later proven by Mazur and Wiles.

THEOREM (Main conjecture of Iwasawa theory, Mazur-Wiles). Let k be an even integer. Then
charpy X\ ™M = (fo),

where fi((14p)* —1) = L,(@k,s) for all s € Z,,.

In fact, Mazur and Wiles proved a generalization of this to abelian extensions F' of Q, and Wiles
proved a further generalization to abelian extensions of totally real fields. This line of proof was
primarily geometric in nature, and came by studying the action of the absolute Galois group of F
on the cohomology groups of modular curves. Rubin gave a proof of a rather different nature of a
main conjecture for abelian extensions of imaginary quadratic fields, following work of Kolyvagin and
Thaine, using a Galois cohomological tool known as an Euler system.

Let us end this introduction by mentioning the two of the major directions in which Iwasawa theory
has expanded over the years. As a first and obvious course of action, one can replace our limits of class
groups with more general objects. Via class field theory, we note that the Pontryagin dual XY may be
identified with the kernel of the map

ker (HI(GFOQ,&@[)/ZP) - @HI(IVa@p/Zp)>,
ves
where G, s denotes the Galois group of the maximal extension of F.. unramified outside S and S in

this case is the set of primes of F., lying over p, and where I, is the inertia group at v € S in the absolute
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Galois group of F... That is, we have realized X_/ as what is known as a Selmer group. This generalizes
nicely.

By way of the most interesting example, let £ be an elliptic curve over F' with ordinary reduction
at p, and let E[p™] denote its p-power torsion (over Q). The Selmer group of E over F.. is exactly

Sel(E/F..) = ker (H'(Gr 5, E[p™]) — D H' (1, E[p™) ).
ves
where S is now the set of primes of F., over p or any primes of bad reduction of E. In the case that
F = Q, there is a corresponding main conjecture for the structure of Sel(E/F.)" in terms of a p-adic
L-function of E. Great progress has been made on this particular main conjecture, due to successively
more recent work of Rubin (for CM curves), Kato, and Skinner and Urban.

In the second generalization, one allows the Galois group I" of the tower to take a more general
form than Z,. The case that I" is a p-adic Lie group, which is to say isomorphic to an open subgroup
of GL,,(Z,) for some m > 1, has come under the greatest consideration. In this case, main conjectures
become more difficult to formulate, as the structure theory of A = Z,[I']-modules is no longer simple.
Still, in the past decade, such main conjectures have been formulated using K-theory as one of several
tools. In the classical setting of limits of class groups, the corresponding main conjecture has been

proven by Kakde and Ritter-Weiss.!

IThe reader should be aware that parts of these notes were hurriedly written and, at present, have not been proofread
or checked. Also, references and attributions of results have not been properly made. We hope to rectify these issues in

later versions. Comments pointing out errors are welcome.



CHAPTER 1

Class groups and units

1.1. Notation and background

Throughout, we will let F' be a number field. We recall a number of objects attached to F' and finite

Galois extensions thereof and results regarding them.

NOTATION 1.1.1. To a number field, we attach the following objects:

e the ring of integers OF of F,

e the unit group & of F, which is to say the unit group of O,

e the ideal group Ir of F, i.e., the group of nonzero finitely generated &z-submodules of F,

e the prinicipal ideal group Pr of F, i.e., those &p-submodules () of F' generated by a single
element @ € F*, and

e the class group Clp = Ir/Pr of F.
REMARK 1.1.2. The class group ClF is a finite abelian group.

These objects fit into the following nice commutative diagram

PF\
F* Ir

1 oF Clp —— 0

in which the lower row is exact.
DEFINITION 1.1.3. The absolute norm Na of a nonzero ideal a of OF is the index Na = [OF : a.

NOTATION 1.1.4. The number of real places of F is denoted r|(F'), and the number of complex
places of F is denoted ry(F).

REMARK 1.1.5. Since each complex places consists of a pair of complex conjugate embeddings of
F, the degree formula tells us that r (F) 4 2r,(F) = [F : Q).

THEOREM 1.1.6 (Dirichlet’s unit theorem). The unit group Oy, is a finitely generated abelian group
of rank r\(F) + r2(F) — 1 with torsion subgroup the group WL(F) of roots of unity in F.

Next, we turn quickly to the zeta function of a number field.

9



10 1. CLASS GROUPS AND UNITS

DEFINITION 1.1.7. The Dedekind {-series {r of a number field F is

Cr(s) =Y,

aCOF

(Na)s”’
for s € C with real part Res > 1, where the sum is taken over nonzero ideals of OF.

THEOREM 1.1.8. The Dedekind {-series of F converges absolutely on s with Res > 1. It has a
unique mermomorphic continuation to C which is holomorphic outside 1 and has a simple pole at

s=1.

With this in hand, we define the Dedekind zeta function to be the meromorphic continuation of {g
to C.

DEFINITION 1.1.9. The Dedekind zeta function {p of a number field F' is the meromorphic contin-
uation to C of the Dedekind {-series (.

The Dedekind zeta function has the following functional equation relating its values at s and 1 — .

THEOREM 1.1.10. Let
Ap(s) = (272F) g Qg |12y (s /2) 1 )T (5)2F) g (),

where I is the gamma function and dp denotes the discriminant of F. Then Ap(s) is analytic on C and
satisfies

AF(S) :AF(l —S).

For any Galois extension E/F and prime p of F, let ¢ denote a Frobenius at a prime 3 over p.
We have

op(a) = o"? mod P
for a € 0. If E /F is unramified, its conjugacy class in Gal(E /F) depends only on p, and let us denote
it by [@y]. If E/F is abelian and unramified, we denote the unique Frobenius more simply by ¢.

THEOREM 1.1.11 (Cebotarev density theorem). Let E/F be a finite Galois extension of number
fields with group G. Let X be the set of unramified primes in E/F. Let C be a conjugacy class in G.

Then

. {peX|[p]eCandNp <N} |C|
lim = —.
N—reo {peX|Np <N} |G|

We will denote the class of a fractional ideal a € Ir by [a] € Clg. The class group has an other
description in terms of the Hilbert class field Hr of F, which is to say the maximal unramified abelian

extension of F. We recall the following classical result of class field theory.
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THEOREM 1.1.12. The Artin map
(PFZ ClF — Gal(Hp/F),

defined by ¢ ([p]) = @y for all primes p of F, is an isomorphism.

1.2. Regulators

Let F' be a number field. We will shorten our notation for units slightly as follows.
NOTATION 1.2.1. We set Ep = 0.

DEFINITION 1.2.2. We say that a set of r units of F is independent if it generates a subgroup of Er

isomorphic to Z'.
We will use the following notation.

NOTATION 1.2.3. Set r = r{(F)+r2(F) — 1. Let 01,...,0, (r): F — R be the real embeddings
of F and O, (r)11;---,0r+1: F < C be representatives of the distinct complex conjugacy classes of
complex embeddings of F. Let V = @:‘:(f P Re; and

r+1 r+1
Vo = ZaiGiEV| Zai:O .
i=1 i=1

We define an R-linear homomorphism k: F* ®g R — V by

r+1
Zc,log|6, )| o,

where

1 if o;real
C;i =

2 if o; complex.
The following is typically proven in the course of a proof of Dirichlet’s unit theorem. Let Ky denote

the restriction of k to a map Ky: Er ®g R — Vj, the image landing in Vj by the product formula.
PROPOSITION 1.2.4. The map Ky: Er ®g R — Vy is an isomorphism.

DEFINITION 1.2.5. The regulator Rp(oy,0p,..., ;) of a set {ot,00,...,0a,} of r independent
units is |detR|, where R = R(0y, oy, . .., o) is the r-by-r matrix with (i, j)-entry c;log|o;(c;)|.

REMARK 1.2.6. Exactly one archimedean place is omitted in the definition of the regulator. For

any o € Er, one has
r+1 r+1

Zci10g|6, |—10gH|G, )=0
i=1
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by the product formula, so the rows of the matrix determining the regulator sum to the what would have
been the row corresponding to the embedding that is omitted. The choice of o; and their ordering are
then seen by the usual rules for the effect of row operations on determinants to not affect the absolute

value of the determinant of the matrix in question.
In particular, we have the following.

LEMMA 1.2.7. Fora set {0q,0p,...,0a,} of r =ranky, Ep independent units, Rp(0,0p, ..., Q) is

the absolute value of the determinant of the linear transformation Ky: Er Q@7 R — Vj relative to the

basis of Er @7, R given by the o and the basis of Vi given by 0 — r}r—l Z,r;i orfor1 < j<r.

DEFINITION 1.2.8. Let A and B be subgroups of an abelian group.

a. We say that A and B are commensurable if A and B are of finite index in A + B.

b. If A and B are commensurable, then we define the relative index of A in B by
(B:A)=[A+B:A]-[A+B:B|"..

The following is easily verified.

LEMMA 1.2.9. Let A and B be finitely generated subgroups of a vector space V over a subfield E
of C. If A and B are commensurable, then there exists an E-linear automorphism T of V such that
T(A) = B, and for any such T, we have (B : A) = |det(T)|.

LEMMA 1.2.10. Suppose that {o,ap, ..., o} and {P1,Ba,...,Br} are independent sets of r units
in F, where r =ranky Er. Let

A=u(F)-(01,00,....05) and B=p(F)-(B1.Ba,....B).

Then

R e
F(ﬁhﬁZa 7ﬁl’) :(BA)
Rp(ay, ap,. .., o)
PROOF. Let V = Er ®z R. There exists an automorphism 7 of V carrying the image of A in V to
the image of B. Since both A and B contain (F), we have (B : A) = |detT|. On the other hand, ky is

an R-linear isomorphism, so

Re(Bi,Ba, - Br) _ |det(kooT)| |det 7|

Rr(ou,00,...,0) | detko|

with the determinant taken relative to the bases of Lemma 1.2.7. O

COROLLARY 1.2.11. If {ay, ,..., 0} and {B1,Bs,- .., B} are independent sets in Er with im-
ages generating the same subgroup of Ep /W(F), then

RF(OQ,OCQ,...,OC,) :RF(ﬁl,ﬁz,...,ﬁr).
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We may then make the following definitions.

DEFINITION 1.2.12. A fundamental set of units of a number field F is a set {qy, ..., } of r units
in Er such that

Er =u(F)-{o1,00,...,04).

DEFINITION 1.2.13. The regulator Rr of a number field F is Rr (¢, &, . . ., @,) for any fundamen-
tal set of units {;, 0,..., 04} of F.

We also need the following notation.
NOTATION 1.2.14. Let wr denote the number of roots of unity in a number field F'.

Now that we have defined the regulator, we can describe the residue at s = 1 of the Dedekind zeta
function.
THEOREM 1.2.15 (Analytic class number formula). For a number field F, one has

. 21 () (2m)2(F)pp Ry
lim (s —1)Cr (s) = wrlde |12

1.3. Finite Galois extensions

Suppose that E/F is a finite Galois extension, and let G = Gal(E/F). Then Clg becomes a G-

module via the action o([a]) = [oa] for 6 € G and a € I, where
ca={o(a)|aca} €lg.
The Galois group Gal(Hg/E) is a G-module too, but to see this requires a little bit of work.

PROPOSITION 1.3.1. Let E be a finite Galois extension of F. Then Hg /F is Galois.

PROOF. Let Hg denote the Galois closure of Hg as an extension of F. Let G = Gal(E/F). For
o € G, let 6 denote a lift of o to Gal (I—E /F). Note that the field 6 (Hg) is independent of the choice
of lift 6 of o, as any element in Gal (HNE JE ) necessarily preserves the subfield Hg of HNE, as Hg /E is
Galois.

Next, we claim that

Hg = [] 6(Hg).
ocG

It suffices to show that [[ycg 6 (Hg)/F is Galois by the minimality of Hg as a Galois extension of F.
For this, note that for any § € Gal (ﬁ]; /F ) , one has

86(Hg) = ¢/ (Hg),
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where 6/ = 8|0 € G, by the independence of conjugates of Hg from the choice of lift. This proves the
claim. It then follows that Hg /E is abelian, since each & (Hg)/E is. That is, any T € Gal(&(Hg)/E)
has the property that 6\;1216| H; € Gal(Hg/E), and the latter group is abelian.

Now, let I, be the inertia group at a prime v of E in the abelian extension Gal (1-71; /E) If 1,
is nontrivial, then its image in some Gal(&(Hg)/E) must be as well. Then 6~'1,6 has nontrivial
image in Gal(Hg/E). Since the former group equals the inertia group /51, and Hg /E is unramified,
this image must be trivial. Therefore 7, = 0, and so ﬁ;; /E is an unramified abelian extension of E

containing Hg. By the maximality of Hg, we have PE = Hp, as desired. O

Consequently, if E/F is finite Galois with group G, then Gal(Hg /E) becomes a G-module for the

1

conjugation action: ¢ € G acts on T € Gal(Hg/E) by sending it to cto~'. The following is then a

consequence of class field theory.

PROPOSITION 1.3.2. For E /F finite Galois with Galois group G, then Artin map Qg is G-equivariant

(i.e., a G-module homomorphism), which is to say that
9r([oa)) = o¢g ()0~
foralloc € Gand a € IE.
DEFINITION 1.3.3. For E/F finite Galois, we define a map
jep: Clr = Clg, jg/p([a]) = [a0F]

and the norm map

ceG

NE/F: Clg — Clp, NE/F([CL]): [(H G(a))ﬂﬁp

Our goal in this section will be to study these maps.

LEMMA 1.3.4. Let p be a prime, and let Ax denote the p-part of the class group of any number
field K. If the order of G is prime to p , then the maps

Afp —)Ag and (AE)G — Af
defined by jgr and Ng p, respectively, are isomorphisms.

PROOF. Note that Ng/r o jg/r = |G|, so Je/F 1s injective on Ar and the image of N p contains
Ar. Let Z = Z[|G|~1], and note that Ag is a Z'[G]-module. Define an idempotent

1
&6 = —Ng € Z'[G].
=gt e E1d
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Since €GAE = Ag, the group Ag is both a submodule and a quotient of Ag. Note that |G|eg = jg JF©
Ng . which forces jp,r to have image Ag on Ar. The map Ap — Ag induced by jg  is therefore an
isomorphism. As Ag is finite, both Ag and (Ag )¢ have the same order, so therefore now the same order
as Ap. Since Ngr induces a surjective map (Ag)g — Af, that map must also be an isomorphism. [J

For instance, we have that Aa( ) = 0 for any prime p, as p is prime to [Q(u,) : Q) = p— 1.

PROPOSITION 1.3.5. Let E/F be a finite Galois extension of number fields with Galois group G.

There is a canonical exact sequence
0 — ker jg/p — H'(G,00) = If /Ir — CIg / jg /¢ (Clp) — H' (G, Pg).

PROOF. By Hilbert’s Theorem 90, we have a commutative diagram

0 7 F~ Pr 0
0 oy F* P¢ — HY(G,0;) — 0,

and it provides an isomorphism H'(G, 0 ) = PEG /Pr. Noting this and applying the snake lemma to

the commutative diagram

0 PF 1 F CIF — 0
0 Pg 18 Cl¢ — H'(G,P),
we obtain the desired exact sequence. 0

Note that the map ker jg/r — H Y(G, 0)) is given explicitly by taking [a] to a cocycle 6 — a®~ !,
where a € E* satisfies () = a0g. The map H'(G,0}) — IZ /IF is given by taking a cocycle f to
the image of an element (a) € IS with f(0) = a® ! forall 0 € G.

DEFINITION 1.3.6. An ideal in /r with class in the kernel of jg,r is said to capitulate in the

extension E /F. The kernel of jg /F 1s known as the capitulation kernel.

LEMMA 1.3.7. Let E/F be a Galois extension of number fields with Galois group G. The cokernel
of Ng r is canonically isomorphic to the Galois group of the maximal unramified abelian subextension
of F inside E.

PROOF. The norm map on ideal classes factors the the G-coinvariant group (Clg)g of Clp. We

consider the complex

Ng/r
(ClE)G ——Clg — COkeI'NE/F — 0.
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Using the Artin map, we may write the latter complex as
Gal(Hg /E)G — Gal(HF /F) — cokerNg /p — 0,
where the first map is restriction, and therefore has image Gal(Hr /E N HF). It follows that
coker N /p = Gal(Hr NE/F),
as desired. OJ

Lemma 1.3.7 has the following immediate corollary.
COROLLARY 1.3.8. IfE/F is totally ramified at any prime, then Ng /F IS surjective.

Now suppose that E /F is abelian. Let I, denote the inertia group in G = Gal(E /F) at a prime v of
F, and let

ZE/F . @Iv -G
v
denote the map that is the product of the natural inclusions.

PROPOSITION 1.3.9. Let E /F be an abelian extension of number fields with Galois group G. Then

there is an exact sequence
Ng/r
kerZE/F — QE/F — ClF — COkCrZE/F — O,

where Qg p is the quotient of Clg by its subgroup that is taken to the commutator subgroup of
Gal(Hg /F) under the Artin map.

PROOF. The exactness outside of (Clg)’ follows from Lemma 1.3.7, since cokerXg /r = Gal(HF N
E /F) by definiton.
We define
kerZE/F — OF/F

as follows. Employing the Artin map, we have canonical isomorphisms
Qp/r = Gal(Hg /E)/|Gal(Hg /F),Gal(Hg /F)] = Gal(L/E),

where L is the maximal unramified extension of E that is abelian over F'. Let J,, denote the inertia group
at a prime w over v in Gal(L/F). As L/E is unramified, J, maps isomorphically to /, under restriction.

We have a map
& — Gal(L/F)
v

given by the product of the canonial inclusions, and the map from €, 1, is then given by the identifi-

cations I, = J,. Since kerX /p lands in Gal(L/E) under this map, we have the desired map.
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It remains to check exactness at Qg /. Again, we use the Artin isomorphism to see that the kernel
of the map to Clp is precisely Gal(L/E - Hp). On the other hand, the image of ker¥ /r in Gal(L/E) is
the intersection with Gal(L/E) of the subgroup of Gal(L/F) generated by its inertia groups. As L/F
is abelian and Hp is the Hilbert class field of F, this is precisely Gal(L/E - Hr). O

We have the following interesting corollary.

COROLLARY 1.3.10. Let E/F be a cyclic p-extension, and suppose that there is at most one prime
of F that ramifies in it. Then the map (Clg)c — Clg induced by N /F IS injective.

PROOF. Since E/F is cyclic, the quotient O/ of Proposition 1.3.9 equals (Clg)g. Since D, 51y

is either /, at the unique ramified prime, or 0 if there is no ramified prime, the map X /5 is injective. [

In the case that |G| divides the order of p, we can give another nice consequence. First, we require

the following lemma.

LEMMA 1.3.11. Suppose that E/F is a finite Galois p-extension ramified at no more than one
prime of F. If E/F is nonabelian, suppose further that, if there is such a prime, that it is nonsplit in

the extension. Then if A = 0, we have Ag = 0 as well.

PROOF. We begin with the case that G = Gal(E/F) is abelian. By Corollary 1.3.10, the map
(Ag)g — AF is injective, and therefore (Ag)g = 0. Thus, we have

Ag/mGAE = (Ag)6/p(AE)G = 0.

Noting Proposition 2.3.7, Nakayama’s lemma then tells us that A = 0.
Since any finite p-group has a finite filtration with abelian (or even cyclic) graded quotients, the
result in general follows from the abelian case by recursion, noting that by assumption there is at most

one prime that ramifies in each intermediate extension. 0

We illustrate the use of this with the following interesting example.

EXAMPLE 1.3.12. Let F = Q(u,) and E = F(p'/?). Then this extension is totally ramified of
degree p at the unique prime above p in F, which is (1 — ;) for a primitive pth root of unity {,.
Therefore, we have that (Ag)c = A via the norm map. For a prime p such that A = 0, which is
known as a regular prime (e.g., all primes less than 37), Lemma 1.3.11 implies that Az = 0. When
p =37, it turns out that Ar = Clp = Z/377Z, and in fact we have that A is isomorphic to Z/37Z as

well.

To go even further, it is useful to restrict to the case of a cyclic extension. We begin with the

following useful result.
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PROPOSITION 1.3.13. Let E/F be a cyclic extension of number fields. Then

Ng/rE* = F*N(\Ng,/rEx,
Vv

where v runs over all primes of F' and w is some prime of E above v.

PROOF. Let G, denote the decomposition group in G at any w over v. Choose a set S of represen-
tatives of G,\G. For a € E*, we have

Ng/r(a) = Ng, /F, (H Ga)

ces

so every global norm is a local norm everywhere.
Recall the following exact sequence for the Brauer group of E /F:

1
— —17]Z,

0— H*(G,E*) — @HZ(GV,Ej) G

where G, denotes the decomposition group in G at any w over v. By the periodicity of Tate cohomology
of a cyclic group, this becomes

1
—7/7.

0— H%G,E*) - PHG,,E}) — G
v

In particular, we have an injection
F* [NgrE* — EDF /Ng, /rEn -
1%

Therefore, if a € F* is a local norm everywhere, it is a global norm, as desired. 0

Note that an element @ € F* is automatically a local norm at any prime where E /F is unramified
and the valuation of a at that prime is trivial. Hence, there are actually only finitely many places to
check that a is a local norm to see that it is a global one.

We now derive a nine-term exact sequence that gives us information on the behavior of class groups
in cyclic extensions. A proof is possible by making use of Tate cohomology, as found in the appendix

to [HS], but we give a more explicit proof.

THEOREM 1.3.14. Let E/F be a cyclic extension of number fields, and let G be its Galois group.
Let I, denote the inertia group in G at a prime v of F, and let

ZE/F: @Iv -G
14
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denote the map that is the product of the natural inclusions. Then we have an exact sequence
0 — ker jg/p — H'(G,0%) = If /Iy — C1¢ / jg 1 (ClF)
— Op [Ng/pOyp —kerLgp — (Clg)g M Clr — cokerXy /p — 0.
Moreover, the group Ig /I is noncanonically isomorphic to @, I,.

PROOF. By Proposition 1.3.5, we have an exact sequence
0 — ker jg/p — H'(G,07) = If /Ir — CIZ / jg/p(Clp) — H' (G, Pg)

including the first row. By Proposition 1.3.9, the final part of the sequence beginning with kerXg r is
exact.

Let o be a generator of G. Define
. d
CIZ /je/r(ClF) = OF /N p OF

as the map that takes image of an ideal class [a] € Clg to the image of N r, where « is any generator
of a®~!. To see that this is well-defined, note that if & is replaced by another generator ¢/, then o’ = au
with u € O, and

Ngpd' - (Ngjpot) ™' € NgpOF.
Moreover, if a is replaced by an ideal a’ with the same class, then a’ = a- b for some b € E*. We then
have

(ab)c—l — ao—lba—l — (aba—l)'
It follows that

Ngp(ab® ") = Ngp(a).
Finally, if b € jg/r(ClF), then b1 = (1), so 0 takes [b] to 1.
We check exactness at C1¢ /je/r(Clp). If b € IZ, then again 6! = (1), so d maps [b] to 1. On

the other hand, if d takes the image of [a] to Ng /ro =1, and therefore ot = B°~! with 6 € G. We then

have

(@B~ =(1),
which means aff~! € I¢. As [a8~!] = [a], we have that the image of [a] is in the image of the map
from IS /IF.

Next, we define
ﬁ;’f/NE/Fﬁg — ker(@lv — G)
v

by the direct sum of the local reciprocity maps pg, /,. (We remark that /, = 0 for all but finitely many

v, so the map Xz, makes sense.) Since the product of the reciprocity maps at all places on a global
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element is trivial, the image of this map is indeed contained in kerXg /r Also, the map is well-defined
since every global norm is a local norm. Note that the image of d is the set of Ny JFOE Oy with a €
E”. Again, such elements are local norms, and map to zero under each pg /.. Conversely, if ¢ € & e
satisfies PEW/E,(C> =1 for every v, then ¢ € NEW/Fvaf for all v, since c is a unit. By Theorem 1.3.13,
we have that ¢ = Ng /pa for some o € F* with (a) = a®~! for some a € Iz and 6 € G. In other words,
c is the image of the image of the class of [a] under d.

We check exactness at kerXp p. Let L denote the maximal abelian extension of E' that is abelian

over F. For ¢ € 0, we have
HpLW//FV(C) - 1’
Vv

with w’ lying over w. Since Pr,, k. (c)|E = PE,F,(c), the image of cin Jy is py ,/r,(c), and the resulting
product in Gal(L/E) is trivial. On the other hand, suppose that &, € J,, lifts some o, € I, and

[Io =1
v

Then there exist local units ¢, € ﬁﬁv for each v with py r,(cv) = 0,. We take ¢, = 1 if 6, = 1. By
global class field theory, the idele ¢ with ¢, = ¢, for each v is the product of the norm of an idele b of
L with an element ¢ € F*. Recall that

Cr/Nh, /rChj = Clp,
so we have that
F*Ny, /plg, = F* Hﬁj,
v

where we take OF, = F, if v is archimedean. Since L contains Hr, the idele b may be taken to be a unit

at all places. But, as each c, is a local unit at all v and
(NL/Fb Cly=¢,=cy

for all v, this means that ¢ must be a unit at all places as well. That is, ¢ € 0. As Np/pb is a local

norm from E everywhere, we have

PE,, /FV(C) = PE, /FV(CV) =0y

for every v, as desired.

Finally, recall that I is the free abelian group generated by the prime ideals of &. For an element
of I to be fixed under G, every prime in its decomposition must appear with the same exponent as
its conjugates. That is, Ig is generated by the Hle‘ﬁ,-, where Pi,...B, are the primes of E lying
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over a prime p of F. Of course, (H‘f: 1 Bi)® = pOk, where e, is the ramification index of the place v

corresponding to p, so we have

Ig/Ir = PZ/e,7.= P,
v veS

O

REMARK 1.3.15. Every map but the map between the two rows is canonical in the exact sequence
of Theorem 1.3.14. The remaining map depends only upon a choice of generator of G. It can be made

canonical by considering instead the map

CIZ /jg/r(Clr) ®2G — OF [N /pOF
given on the image of a tensor of [a] € CI¢ and 6 € G by writing a®°~! = a0} and taking the image
of Ng/p@ € O in the quotient.

Next, we generalize the situation slightly.

NOTATION 1.3.16. For a set S of places in a number field F, we let Sy denote its subset of finite

places and S.. its subset of infinite places.

DEFINITION 1.3.17. Let S denote a set of places of F.

a. The S-class group Clg s of F is the quotient of the class group by the subgroup generated by the

classes of the finite primes in S.

b. The Hilbert S-class field Hrg of F is the maximal unramified abelian extension of F' in which

all primes in S split completely.
c. The ring of S-integers OF s of F is
Ops={a€F |vy(a)>0forallp &S},
where p is used to denote a finite prime of F and vy its additive valuation.

d. The S-ideal group Irs is the group of nonzero fractional ideals in OF g, and the S-principal ideal

group Prs is the subgroup of principal fractional ideals.

e. The S-unit group in F is 0.

NOTATION 1.3.18. If S is a set of primes of F and let E/F is a finite extension, then we let Sg
denote the set of places of E lying over those in S. For brevity, we denote 0 s,., Clgs,, and so on
more succinctly by Og g, Clg g, and so on similarly. That is, we use S in the subscript to denote Sg.
If E/F is algebraic, we may still speak of its S-integers Of s as the union of S-integers in the finite

subextensions of F' in E.
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Let us fix a set of places of S for the rest of this section.

REMARK 1.3.19. The Artin isomorphism ¢ induces an isomorphism
(PF.,S: CIF,S — Gal(HF’S/F).

We have an analogue of the exact sequence of Theorem 1.3.14 for S-class groups and S-units. The

proof is much as before, and is therefore omitted.

THEOREM 1.3.20. Let E/F be a cyclic extension of number fields, and let G be its Galois group.
Let I, (resp., G,) denote the inertia group (resp., decomposition group) in G at a prime v of F, and let
% PLoc. —»G6
veS veS

denote the map that is the product of the natural inclusions. Then we have an exact sequence

JE/F

0 — ker(Clgs — Clgs) = H'(G,0F ) = If /Ir;s = Clg  / jg r (Clrs)

N,
— Ops/NejpOf s = kerZy, . — (Clgs)g s Clpg — cokerZy, - — 0.

1.4. Kummer theory

For a set of § primes of F, we let Sy denote the set of finite places of F' in §, we let S.. denote the
set of archimedean places, and for any n > 1, we let S,, denote the set of primes of S above p for any
prime p dividing n. If E is an extension of F', we generally also use the symbol S to denote the set of
primes Sg of E above those in S. We will let V denote the set of all primes of F, so we may speak of
Ve and so forth. For brevity, let us set V.o =V, U V..

DEFINITION 1.4.1. We say that an extension E of F is S-ramified if it is unramified outside of the

places in S.
LEMMA 1.4.2. There exists a maximal S-ramified extension Fg of F, and it is Galois over F.

PROOF. A union of S-ramified extensions is S-ramified, so the existence of Fy is clear. If E is an
S-ramified finite degree extension of F, then so is any conjugate of E over F in an algebraic closure F
of F containing E, as the inertia degrees at conjugate primes above p in E and o (E) are the same (and
similarly for real places). The product

[1 o
o: E—F
is Galois (in fact, it is the Galois closure of E in F) and also S-ramified as a compositum of S-ramified

extensions. Therefore, Fg is a union of finite Galois subextensions, hence itself Galois. O
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DEFINITION 1.4.3. We use G to denote the Galois group Gal(Fs/F), i.e., the Galois group of

the maximal S-ramified extension Fg of F.
Kummer theory in S-ramified extensions has as its basis the following proposition.
PROPOSITION 1.4.4. Let S be a set of primes of F. We have a canonical isomorphism
Clgs = H'(Grs, Ops)s

given by taking an ideal class [a] to the cocycle that takes 6 € G to %~ where a is a generator
Of al Fg,S-

PROOF. To reduce clutter in the notation, let us set 4 = Grs and Q = Fs. A similar argument to

that of the proof of Proposition 1.3.5 produces an isomorphism
Py s/Prs = H'(9,0%)

that takes (&) to o — &~ !. Again similarly to before, we have the commutative diagram

(141) 0 PF,S IF,S ClF’S — 0

I

% % %
00— PFPos— 15— Clgg

The lower row arises as a direct limit of like sequences for intermediate finite extensions E of F in
Q. However, since S contains the finite primes that are ramified in any such extension E/F, the map
Irs — Ig s 1s not merely an injection, but an isomorphism. Moreover, jqo r is the zero map, since Q
contains Hr by definition, and every ideal in Ir becomes principal in Hr. Hence, the snake lemma

provides an isomorphism

C1F75 — PgS/PES
taking [a] to (o) where (&) = a0gq s. O
PROPOSITION 1.4.5. Suppose that S contains V.. Then there is a canonical exact sequence
1= 07/ 07— H' (GEs, tta) — Clgs[n] = 0.

PROOF. For any o € ﬁ,?s ¢» the extension Fs(o'/™) /F is unramified outside of S and therefore
trivial, as the only primes that can ramify in such a Kummer extension are the real places, those p with

vp(a) # 0, and those primes dividing n, all of which are contained in S. We then have that

x n X
L=y = Op, s = Op s — 1
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is exact, and the result follows immediately from the exact sequence

HY(Grs, 0 ) = H*(Grs, O 5) = H' (GEs, tn) — H' (Grs, OF ) = H' (GEs, OF, ).

In the case that § = &, we have the following.
LEMMA 1.4.6. Fix n > 1 such that F contains [, and let B, < Oy be the subgroup
B,={ae O} | F(a"/")/F is unramified}.
There is a canonical exact sequence
1= B,/0;" — H' (Gr.z, ) — Clg[n].
PROOF. From the short exact sequence
1=y — OF = OF" — 1,

we obtain an exact sequence
(1.4.2) Oop 5 05" N OF — H (Grg,itn) = H' (Grg,0F) % H' (Gr o, OF)).

As the nth power map O LN Oy takes values in 0", the kernel of the rightmost map in (1.4.2) is

contained in the kernel of
H'(Grp,0F) % H' (Gre, 0F),
which is isomorphic to Clr[n] by Proposition 1.4.4. Noting that
B,=F;"NOp =0p"'NO,
equation (1.4.2) yields the result. 0
DEFINITION 1.4.7. A number field F is said to be abelian if it is an abelian extension of Q.

DEFINITION 1.4.8. A number field F is said to be totally real if it has no complex places.

REMARK 1.4.9. There exits a maximal totally real subfield F* of any number field F, as the

compositum of any two totally real fields is totally real.

DEFINITION 1.4.10. A number field F is CM if it has no real places and is a degree 2 extension of
FT.
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EXAMPLE 1.4.11. Let n > 3. Then the cyclotomic field Q(u,) is CM, and

Qua)* = QG+ &),

where {, is a primitive nth root of unity. As a consequence of this and the Kronecker-Weber theorem,

every abelian field is either totally real or CM.

Fix a CM field F, and let 7 be the nontrivial element of Gal(F/F™). Given a Z[Gal(F/F™)]-

module A, we have submodules
A*={acA|1(a) = +a}.
Note that
ATNAT =A[2].
and A/(A* 4+ A7) is 2-torsion. If multiplication by 2 is invertible on A, then

a+1t(a) a—1(a)
2 + 2

AZAT QA a—

LEMMA 1.4.12. The groups O} and (O7)" have the same Z-rank, and (O} )~ is the group W(F)
of roots of unity in F.

PROOF. The first statement is an immediate consequence of Dirichlet’s unit theorem. Since it
holds, (07)~ consists only of elements of finite order, which is to say, roots of unity. Since every root

of unity & satisfies (&) = £, we have the result. O

We note that for an odd prime p, the map jr -+ provides a canonical identification of Ap+ with A;E
by Lemma 1.3.4.

LEMMA 1.4.13. The map Clp+ — Cl;f induced by jpp+ has kernel of order dividing 2.

PROOF. Note that if t(x)x =1 forx € & ~, then x must be a root of unity. On the other hand,
the group of 7(y)y~! with y € 0} contains p(F)* = u(F)* . Thus HY(G,0;) 2 H1(G,0F) is
isomorphic to a quotient of 1 (F)/u(F)?. The result then follows from Proposition 1.3.5. O

REMARK 1.4.14. If L and M are Galois extensions of a field K with L contained in M, then
Gal(L/K) acts on H'(Gal(M/L),A) for any Z,[Gal(M/K)]-module A. The action is induced by the
following action of 7 € Gal(M/K) on a cochain f € C'(Gal(M/L),A):

(t-f)(o1,...,0) =7-f(r 'oy7,..., 7 LoiT).

On cohomology, this action factors through an action on Gal(L/K) since, on Gal(M /L), this action is

the conjugation action on cohomology, which is trivial.
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For a finitely generated abelian group A, let us use r(A) to denote its rank and
rp(A) = dimg, A[p]
to denote its p-rank for a prime p.

THEOREM 1.4.15. Let F be a CM field such that u, C F for an odd prime p. We then have
rp(CIf) =8 < rp(Clg) < rp(CE) +r(OF),
where 8 = 0 if F(1(F)'/P)/F is ramified at p and 1 otherwise.

PROOF. Note that
H" (Gr.,1tp) 2 Hom (Gal(Hy /F), ),
and

Hom(Gal(HF /F), u,)* = Hom(Clr, 1t,)* = Hom(CIE, 1),

as T acts on [, by inversion. Combining this with Lemma 1.4.6, with B = B), as in said lemma, we

have
rP(Cl:FF) = ”p(HI(GE@,lJp)i) < ”p(Cl%) "‘rp((B/ﬁ;p)i)-
By Lemma 1.4.12, we have that ) = O} - u(F) and

rp((B/Op")7) = rp(BOu(F)) =6,
while
rp((B/O")") < rp((OF | Op")T) = r((OF)T) = r(0F).

The result follows. O

1.5. Leopoldt’s conjecture

For each place v of F, Let

I;V\X =lim F*JF}P",
e
and consider its subgroup

Uy =1im 07 |07

If v 1s finite, then Ij"} = Zp ® U, and %, is the group of p-power roots of unity in F, if v does not lie
over p while %, is the group of 1-units if v lies over p. If v is infinite, then %, = I*/“v;, and both groups
are trivial unless v is real and p = 2, in which case they are Z /27Z.
Let us set
Er = OF @12, =1im 07 | 67"
n
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We may consider the natural map

r = ()vev,: &8 — EP %.
veV,
Clearly, the kernel of 0 — O g is trivial for v € V,,. Yet, the problem may arise that there exist, for
instance, two units x,y € &} generating a rank two subgroup and a,b € Z,, such that 1,(x)1,(y)? = 1.

So, in theory, 1r could have a kernel. This brings us to Leopoldt’s conjecture.
CONJECTURE 1.5.1 (Leopoldt). The map 1r: & — @vevp U, is injective.

REMARK 1.5.2. We could, equivalently, consider the map

i & — P %,
VEV oo
that includes the archimdean places, setting %, = I*/“V\X for such v. The point is that %4, = 1 for
archimedean v unless p = 2 and v is real, in which case %, = R*/ R*2,
We have that ker lll; C kerir by definition. On the other hand, we have (ker lp)2 C ker 11’;. In
particular, the two kernels have the same Z,-rank. Moreover, the 2-torsion in &% is Uy, and —1 is not

in the kernel of 1, for any v, so kertr = 0 if and only if ker1; = 0.

EXAMPLE 1.5.3. For F' = Q, Leopoldt’s conjecture holds as &g = 1 for p # 2 and & = uy for
p=2.

Let S denote a finite set of primes of F' containing V... We wish to state several equivalent forms

of this conjecture. For this, we set
gF,S = ﬁ;«és Xz Zpa
and extend 1 to a map

ks = (W)ves: &rs — PR
ves

Let Xf s denote the Galois group of the maximal abelian pro-p unramified outside S extension of F'.
Let G2 denote the Galois group of the maximal abelian pro-p extension of F, for each v. The following

exact sequences will be useful.

THEOREM 1.5.4. There are two exact sequences fitting into a commutative diagram

(1.5.1) 00— kerlp @@F ®VES% e %Fyg AF 0

R l

F,S —= PEs
0 — keriggs Ers D es B — Xrs AFs 0,
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where pFS is the product over v € S of the composztton of the p-completion of the local reciprocity
map py: F Gab with the natural map j, from Gab onto the decomposition group at v in Xfs, and
where the maps Xrs — Ar — Afs are the natural quotient maps (under the indentifications given by
the Artin map).

PROOF. In the horizontal sequences in the diagram (1.5.1), we note that im pg g (resp., the corre-
sponding map in the upper sequence) is the compositum of the decomposition groups (resp., inertia
groups) at all v € S in Xrg. Being that Xr g already has trivial inertia groups at v € S, the quotient
coker prs is therefore the Galois group of the maximal unramified abelian p-extension of F' in which
all primes in S split completely (resp., maximal unramified abelian p-extension of F'), and is therefore
canonically isomorphic to Ags (resp., Ar) via Artin reciprocity.

For the upper horizontal sequence, the exactness at ,.¢ %, will follow from the exactness at
D, SI;V; in the lower horizontal sequence by noting that &7 consists exactly of the elements of &g
that have image under 15 lying in @, 5 %,. We are therefore reduced to proving the latter exactness.

Recall that H!(Grg, 1) is identified via Kummer theory with the quotient %, /F*?", where %,
is the subgroup of x € F* such that xOF g = a?" for some fractional ideal a of & F.s- In other words, we

have an exact sequence
1 — ﬁ’;s/ﬁ’;g’” — B |F*P" = Aps[p"] — 0.
It then follows from the finiteness of Ar g that

lim %n/FXpn = égFjs,
o

We claim that there is an exact sequence

c%,,/FXPH — @FVX /vap” — %Es/pn%[«jg,
ves
where the first map is induced by the localization maps and the second map is pr s taken modulo p".
In that all of the terms of this sequence are finite, we can take the inverse limit as we vary n to obtain

an exact sequence

(1.5.2) 6F,s LN FVX £, XFs,

ves
finishing the verification of the exactness of the lower sequence.
Let us use p,, and j,, to denote the modulo p" reductions of p, and j, for any v. Any a € %,
has valuation a multiple of p/"\at v ¢S, so py(a) lies in the compositum of the inertia group and the

subgroup of p"th powers in G2°. In particular, we have that j, ,(p,.v(a)) =1 for such v. Global class
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field theory then tells us that
va(pv(a)) = va(pv<a>) =1,
ves v
which tells us that (1.5.2) is a complex.
Let M, be the maximal S-ramified abelian extension of F of exponent p”. Its Galois group
Gal(M,/F) = Xrs/p"XFs is the quotient of Gal(F/F) by the composition of all inertia groups
at primes v ¢ S and the p"th powers of all of the decomposition groups. By global class field theory,

we therefore have an isomorphism

Ir
F> ']Ign 'HV¢S ﬁVX

= Gal(M,/F).

where for simplicity of notation, we have set 0, = OF,. Similarly, if we let L, be the maximal un-
ramified abelian extension of F of exponent p” in which every prime in S splits completely, so that

Gal(L,,/F) = Ars/p"Ar,s, class field theory again provides an isomorphism

Ir
Fx ]Ilpi"n ’ (HVES FV>< X HV¢S ﬁvx)

We see, then, that we have isomorphisms

= Gal(L,,/F).

Hf«“ ) (HVGS va X Hv%S ﬁvx) ~ F H? ) (HvES Fv>< X vaéS ﬁvx)
(FX N I[llj" (HVESFVX X Hv%S oy )) ’ HI;“ [Ties Z - Hz 'HVQS 7z

where in the first step, we have used the second isomorphism theorem. Since

>~ Gal(M,/L},),

@FX/F ><pn ~ ]Ig ) (HVGS I;'V>< X HV%S ﬁ\?)
v v - n
ves ]P]?“ HveS ﬁvx

and
By =F*NIL (HFVX X Hﬁj) :
ves véeS
we have an exact sequence
By — @PF*JF*P" — Gal(M,/L}),
ves

where the maps agree with the maps in question, hence the result. 0
REMARK 1.5.5. Theorem 1.5.4 can also be derived using Poitou-Tate duality and Kummer theory.

PROPOSITION 1.5.6. The kernel of 1 s is contained in &. In particular, Leopoldt’s conjecture is

equivalent to the injectivity of 1rs.
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PROOF. Let o € kerigs. Then o@ may be written as

=) a;dc,

m
i=1

were a; € 6’;5 and ¢; € Z, for each 1 <i < m, for some m > 0. For each v € ¢, we then have

v(ai)c;i =0,
i=1

which means that the ¢; € Z,, are Z-linearly dependent if some v(a;) # 0. If v(a,) # 0, without loss
of generality, then or"(@m) may be written as a sum of m — 1 tensors. Continuing in this way, we obtain
that some nonzero integer power of « is a Z,-linear combination of units at v. Since there are only

finitely many v € S, we have a¢ € &F for some ¢ € Z, which forces o € &F. O

The following theorem is also a corollary of Theorem 1.5.4 and Proposition 1.5.6, which gives in
particular equivalent conditions for Leopoldt’s conjecture to hold (noting that &% is p-torsion free). Let

rankz, A denote the Z-rank of a finitely generated Z,-module A.

THEOREM 1.5.7. The following are equivalent for a given 6 > 0:
i. rankZp kerip = 6,

ii. rankz, imip = r|(F)+r(F)—1-34,

iii. rankz, kerips =6, and

iv. rankZP %F»S = I’z(F) +1+9.
PROOF. For v € §, we have that

— F,: ifvev,,
rankzp%: £ QP] b
0 ifveS-V,.

We also have
rankzpé”p :r](F)—I—rz(F)—l

by Dirichlet’s unit theorem, and Ar is finite. Note that

r(F)+2r(F)=[F:Q = Y [F:Qp.

vevY,

Hence, Proposition 1.5.6 and the exactness of the upper exact sequence in (1.5.1) yield the result. [

COROLLARY 1.5.8. The Z,-module X is finitely generated of Z,-rank independent of S contain-
ing Vye.

The 6 in Theorem 1.5.7 is known as the Leopoldt defect of F
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DEFINITION 1.5.9. The Leopoldt defect 6(F ) is the Z,-rank of kerif.

Leopoldt’s conjecture for F is equivalent to the statement that the Leopoldt defect §(F) is 0. We
may also phrase Leopoldt’s conjecture for F in terms of the nonvanishing of a p-adic regulator of F,

which replaces the always nonzero complex regulator.

DEFINITION 1.5.10. For a p-adic field E, the p-adic logarithm of E is the unique homomorphism
log,: E* — E such that log,,(p) = 0 and such that for any x in the maximal ideal of O, one has

Xk

_ - k—1
logp(1+x)—]§1(—l) =
REMARK 1.5.11. The kernel of log,, on a p-adic field E is u(E).

NOTATION 1.5.12. We use C,, to denote the completion of the algebraic closure of Q,, with respect

to the unique extension of the p-adic absolute value on Q,. We have a p-adic absolute value

| 1p: Cp = R

with |p|, = p~".

REMARK 1.5.13. The p-adic logarithm extends to a continuous homomorphism log,: C; — C),.
It turns out that C and C,, are abstractly isomorphic (being algebraically closed of characteristic 0
and having the same cardinality), and we can fix an embedding 1: C — C,,. Let d = [F : Q], and let

T;: F — Cj, for 1 <i <r+ 1 be the compositions T = 1 o ¢; of the real and complex embeddings o; of

F previously chosen in Section 1.2.

DEFINITION 1.5.14. Let @y, ..., be r independent units in Er. The p-adic regulator R,(F) of
Er is the determinant of the r-by-r matrix Z, (0, ..., ) = (¢ log,, Ti(@;}))i,j, where ¢; is 1 if o; is real

and 2 if o; is complex.
REMARK 1.5.15. The p-adic regulator is well-defined up to sign, so as an element of C; /(—1).
The following is immediate.

PROPOSITION 1.5.16. Leopoldt’s conjecture for a number field F is equivalent to the statement the
nonvanishing of the p-adic regulator R,(F).

Baker proved thatif o,... o, € @X are such that 27i,log &y, . . ., log a, are Q-linearly independent,

then they are Q-linearly independent. Via Baker’s method, Brumer proved a p-adic analogue.

THEOREM 1.5.17 (Brumer). Let By,..., B, be algebraic numbers that are also p-adic units, and
suppose that the p-adic logarithms log, Bi,... ,log,, Bn are Q-linearly independent. Then these loga-

rithms are also Q-linearly independent.
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Using this result, Brumer was able to prove Leopoldt’s conjecture for an abelian extensions of
number fields with » = 0. Note that the only fields with » = 0 are Q and the imaginary quadratic fields.
We need several preliminary results. We begin with the following result, only the first part of which is

needed at the moment.

PROPOSITION 1.5.18. Let G be a finite abelian group and f: G — C be a function. Let G denote
the group of characters G — C*.

a. We have

H ( Z %(G)f(6)> = det(f(67_1)>6,reG~

XEG ocG
In fact, the rank of (f(67"))s.1eG is the number of § € G such that ¥ gc x(0)f(c) #0.

b. We have
I (Z X(G)f(6)> = det(f(677") = £(0))or21-

Xeé oceG
271

PROOF. We compare two bases of the complex vector space V of functions G — C: the set of

characters G and the set of 8-functions
1 =0,

0 t#0

06(T) =

for o € G. Consider the linear transformation 7: V — V given by

T(g)(t)= ). f(o)g(oT).

ocG
Applied to g = x, we obtain
T(x)= ) flo)x(o)x.

ocG
so x is an eigenvector with eigenvalue Y s x(0) f(0). It follows that det T is the product of the latter

sums over all y. On the other hand,

T(3)(p) = Y, f(D)ds(pT) =} f(T)86c1(p) =) f(7"'0)8:(p)

17€G TeG TeG
SO

T(80)= Y. flo7)s;

teG
so the (7, 0)-entry of the matrix of T with respect to this basis is f(67~!). In that the determinant and

rank of 7" are independent of the choice of basis, we have part a.
For part b, we consider the codimension 1 subspace W of V that consisting of the g: G — C with

Y 6cc&(0) =0. One basis of these functions is given by G- {1}, and another is given by the functions



1.5. LEOPOLDT’S CONJECTURE 33

86— |G|~! for 6 # 1. Also, we see immediately that T(W) C W. The determinant of T |y with respect
to the character basis is clearly the left-hand side of the desired equality. On the other hand, noting that

Y (8:—[G|"") =0,
1eG
we have
T(6s—|G|™") =Y flot)(8:—IGI"") =Y (flot™") = f(0))(8: — |G| ),
1eG 1eG
T#1
which has the desired coefficients. O

We omit a proof of the following.

LEMMA 1.5.19. For a field K and a finite group G, let V. and W be K|G|-modules of finite K-
dimension. Suppose that there is a field extension L of K such that V Qg L =W ®k L as L|G|-modules.
ThenV =W as K[G]-modules.

PROPOSITION 1.5.20. Let F be an abelian extension with Galois group G of either QQ or an imag-
inary quadratic field. Then Er @7 Q = I ®7Q as Q[G]-modules.

PROOF. By Proposition 1.2.4, we have Er @7 R =V}, where V) is as in Notation 1.2.3. That is
Vo is a hyperplane in the R-span of the archimedean places of F, in this case consisting of the formal
sums with coefficients summing to zero (since F' is either totally real or purely imaginary). Since E
has just one archimedean place, all of the places of F' are conjugate under the action determined by
precomposition of a representative by the inverse of an element of G. Fixing an embedding ¢: F — C
then provides an isomorphism V = I ®7 R, so EF @7 R = I @7 R. By Lemma 1.5.19, we then have
that Er ®7 Q = I ®7 Q. OJ

THEOREM 1.5.21 (Brumer). Leopoldt’s conjecture holds for all finite abelian extensions of Q and

all finite abelian extensions of any imaginary quadratic field.

PROOF. By Proposition 1.5.20, we may pick @ € Er be such that {o(a) | c € G—{1}} is an
independent set of 7 units of . Let ¢ =10¢: K — C,, and consider the function f: G — C, defined
by f(o) = logp(p(c_la). Since

[]o 'a==+1,
oeG
we have

Y. f(o)=0.

ocG
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If Y5 x(0)f(0) = 0 for some nontrivial character y € G, then
). (1-x(0)f(o)=0.
ceG—{1}
Since 1 — x(o) € Q. By Theorem 1.5.17, we then have that the quantities f(o) for 6 € G— {1} are
Q-linearly dependent, and hence Z-linearly dependent. That is, there exist elements ks € Z, not all

zero, such that

(ca)'e € u(F).
ceG—{1}

This, however, contradicts our choice of .

Now choose an ordering of G and form the matrix (f(07~!))s.ccG, the (0,7)-entry of which is
log,(¢ o 7)(c~'a). It then follows from Proposition 1.5.18a that this matrix has rank r = |G| — 1,
and the 0 = 1 row and 7 = 1 column are linearly dependent on the others. If we remove them, the
resulting 7-by-r minor is the p-adic regulator matrix attached to the basis 6~ 'a with 6 € G— {1} and
the embeddings ¢ o 7 for T € G — {1}. Thus R,(F) # 0, so Leopoldt’s conjecture holds for F. O



CHAPTER 2

Module theory

2.1. Pseudo-isomorphisms

DEFINITION 2.1.1. For an integral domain R, a pseudo-null R-module is an R-module M with
annihilator Anng(M) of height at least 2.

DEFINITION 2.1.2. Let R be an integral domain. An R-module homomorphism f: A — B is a

pseudo-isomorphism if it has pseudo-null kernel and cokernel.

The existence of a pseudo-isomorphism from one object to another is not in general an equivalence

relation on the category of finitely generated R-modules, as it is not symmetric.

EXAMPLE 2.1.3. The quotient of F,[x,y] by the maximal ideal (x,y) of height 2 is pseudo-null.

However, as (x,y) is not principal, there is no pseudo-isomorphism [F,[x,y] = (x,y).
Nevertheless, we can make the following definition, which does provide an equivalence relation.

DEFINITION 2.1.4. We say that two modules A and B over an integral domain R are pseudo-
isomorphic if A, = By, for all height one prime ideals p of R.

NOTATION 2.1.5. We write A ~ B if A and B are pseudo-isomorphic modules over an integral

domain R.

If there exists a pseudo-isomorphism from one R-module to another, then they are pseudo-isomorphic.

Recall that a prime ideal p of R lies in the support of a R-module A if and only if A, # 0.

LEMMA 2.1.6. Let f: A — B be a pseudo-isomorphism of R-modules, where R is an integral

domain. Then A and B are pseudo-isomorphic.

PROOF. Since localization is an exact functor, for any height one prime ideal p of R, we have an
exact sequence
0 — (ker f), — Ay — By — (coker f), — 0.

Since any prime ideal q in the support of Anng(ker f) or Anng(coker f) has height at least 2, while R),

has Krull dimension one, we have qR, = Ry,. Since (ker f), and (coker f), then have no prime ideals

in their support, they are both zero. 0J
35
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LEMMA 2.1.7. Let A and B be modules over a commutative ring R with A finitely presented, and

let S be a multiplicative subset of R. Then we have a canonical isomorphism
Homg 1,(S7'A,57'B) = S~ Homg(A, B).
PROOF. As
ST1A~ S TR®RA,
adjointness of Hom and & yields
(2.1.1) Homg-1,(S™'A,S7'B) = Homg(A,S™'B).
The result now follows from (2.1.1) and
(2.1.2) Homg(A,S 'R®@g B) = S~ 'R ®g Homg(A, B).

To see that (2.1.2) holds, note first that it holds if A = R. It then holds for every free R-module A of
finite rank, as finite direct sums commute with Hom in the first variable and direct sums commute with

tensor products. In general, choose a resolution
P — P() —A

with Py and P; finitely generated free R-modules, and use the fact that the contravariant functors of A

in question are exact on right-exact sequences of R-modules, in particular as S~'R is R-flat. 0J

We recall from the theory of primary decomposition that every ideal / in a noetherian ring is a
minimal finite intersection of primary ideals, and the minimal ideals among the finitely many associated

primes of I that are the radicals of these primary ideals are the isolated primes of 1.

LEMMA 2.1.8. Any finitely generated torsion module over a noetherian ring R has only finitely

many height one prime ideals in its support.

PROOF. A prime ideal p is in the support of a finitely generated R-module M if and only if and
only if it contains I = Anng(M). Any height one prime ideal containing / is an isolated prime in its

primary decomposition, so there can be only finitely many. 0J

From now on in this section, we use A to denote an integrally closed noetherian domain. Note that
the localization of A at any height one prime is still a integrally closed noetherian domain, and it has a

unique nonzero prime, so it is a DVR.

LEMMA 2.1.9. Let A and B be torsion A-modules. Let X be the finite set of height one prime ideals
in the support of A or B. Set

S=A-{Jp.

pex
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Let f: A — B be a A-module homomorphism. Then f is a pseudo-isomorphism if and only if the
localized map
S1f.57'A— s !B

is an isomorphism.

PROOF. First, note that X is indeed finite by Lemma 2.1.8. Let X = {py,...,p,}, where the p;
are distinct. As localization is an exact functor, it suffices to show that a finitely generated torsion
A-module M with height one support in X is pseudo-null if and only if S~'M = 0.

If M is pseudo-null, then its annihilator has height at least 2, so is not contained in any prime ideal
of height one. Thus, for each 1 <i < r, there exists an element y; € Annp (M), with y; ¢ p;. Since there

also exists an element x; € p; with x; ¢ p; for all j # i, we have
X = Y1X2X3 -+ Xy +X1Y2X3 - Xp -+ X1 X2 X1y, € SNANNA (M)

and so S'M = 0.

Conversely, suppose that S~!M = 0. Then My, = 0 for all p € S, and hence for all height one prime
ideals p, which is to say that for each p, there exists s € Anny (M) with s ¢ p, from which it follows
that Anny (M) € p for any height one prime ideal p. Therefore, Anna (M) has height at least 2. O

PROPOSITION 2.1.10. Let A be a finitely generated, torsion A-module. Then A is pseudo-isomorphic
to a direct sum @;_; A/p;" with p; a height one prime of A and k; > 1 for all 1 <i < and for s > 0.

Moreover; this decomposition is unique up to ordering.

PROOF. Let S be the complement of the union of the height one prime ideals in the support of A.

Then S~!A is a torsion module over the principal ideal domain S™'A, so we have an isomorphism

g:SAS @S_I(A/pi")

i=1
with the p; and k; as in the statement. By Lemma 2.1.7, there exists a A-module homomorphism f: A —
A/ pf.‘i with S7' f = g. By Lemma 2.1.9, the map f is a pseudo-isomorphism. The uniqueness is

clear from the uniqueness in the structure theorem for finitely generated S~ A-modules. 0J

The following is now clear.

COROLLARY 2.1.11. Two finitely generated, torsion A-modules A and B are pseudo-isomorphic if
and only if there exists a pseudo-isomorphism f: A — B.

REMARK 2.1.12. A module M over an integral domain R is torsion if and only if M) = 0, which
is to say that its localization at O is trivial. In particular, the R-torsion submodule of such a module M

is the kernel of the localization map to Mg).
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LEMMA 2.1.13. Let A be a finitely generated A-module, let T denote its A-torsion submodule, and
set Z=A/T. Then there is a pseudo-isomorphism

A—-TaDZ.

PROOF. Supposing without loss of generality that 7 # 0, let S be the complement of the union of
the height one primes in the support of 7. Then S~'A is a principal ideal domain, and by the structure

theorem for finitely generated modules over principal ideal domains, we have a projection map
p': S lA— s,
which realizes the S~ A-torsion submodule S~!7 of S~'A as a direct summand. (To see that S~'T
is the S~!A-torsion submodule of S~'A, note that it is torsion and the quotient S~1Z = S~14/S~!T
is S~ A-torsion-free, as the fact that Z — Zp) is injective implies that S~z - S_]Z(O) =Z) 1s as
well.) In other words, if we let v: A — Z be the quotient map and Vv’ denote its localization, then
(p',v"): S7'A — S~'T ©S~'Z is an isomorphism.
By Lemma 2.1.7, there exist p € Hom(A,T) and s € S such that p = sp’. We consider the map

(p,v):A—>TaZ.

Its localization is an isomorphism as multiplication by s is an isomorphism on S~!7". Since the kernel
and cokernel are a subgroup and a quotient of 7, respectively, they are supported on S, and the triviality

of their localizations at S implies their pseudo-nullity. Thus, (p, V) is a pseudo-isomorphism. OJ

NOTATION 2.1.14. For a A-module A, let us use
A" =Homy (A, A)
to denote its A-dual.

Note that Lemma 2.1.7 tells us that (A*), = (A,)* for any prime ideal p of A, the latter module

being defined as
(Ap)* = Hom/\p (AP7AP)7

so we simply write A;. Let 2 denote the quotient field of A.

LEMMA 2.1.15. Let Z be a finitely generated, torsion-free A-module. The map Z — Z** is an

injective pseudo-isomorphism.

PROOF. For any height one prime ideal p, the modules Z, and Z;* are free, being finitely generated
torsion-free modules over the principal ideal domain Ay,. Moreover, the natural map Z, — Z;* is an
isomorphism, being identified with the map a finite rank free Ap-module to its Ap-double dual. That

is, Z — Z** is a pseudo-isomorphism, which is injective as Z is torsion-free. 0J
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LEMMA 2.1.16. Let A be a finitely generated A-module. Inside Az‘o), we have
A* — m A*,
peX;

where X| denotes the set of height 1 primes of A

PROOF. Since A* is torsion-free, it sits inside each A;, hence in the intersection. Let f € AZ*O) lie in
Ay for each p of height one. Then f: A — A, for all p, so f has image in A = ,cx, Ap. It follows that
f € A*, hence the result. O

DEFINITION 2.1.17. We say that a finitely generated A-module A is reflexive if the natural map

A — A™ is an isomorphism.

Note that a reflexive A-module is necessarily torsion-free, since the dual of a finitely generated

A-module is torsion-free.

LEMMA 2.1.18. A finitely generated, torsion-free A-module Z is reflexive if and only if Z is the

intersection of the Z, over all height one prime ideals p of A.

PROOF. We note that Lemma 2.1.16 implies that

Z** _ ﬂ Z>f<>c<7
peX;

and we recall that the natural map Z, — Z;* is an isomorphism. As the diagram
7 —— 7"
l |
Mpexi Zo — Mpexy 5°
commutes, we have the result. O

We have the following immediate corollary of Lemmas 2.1.16 and 2.1.18.
COROLLARY 2.1.19. Let A be a finitely generated A-module. Then A* is reflexive.

We recall that a noetherian local ring € is regular if its maximal ideal m is generated by the terms of
a regular sequence (xi)l‘f:1 , which is to say that x; is not a zero divisor in Q/(xy,...,x;—1) for 1 <i<d.
In this case, © has Krull dimension d. Equivalently, a noetherian local ring € is regular of Krull

dimension d if its maximal ideal can be generated by d elements, or if dimg /,, m /m?>=d.

PROPOSITION 2.1.20. Let Q be a regular local ring of Krull dimension 2. Then every finitely

generated, reflexive Q-module is free.
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PROOF. Let A be a finitely generated and reflexive Q2-module. As € is regular, it has a regular
sequence so a principal prime ideal p = (f). We first claim that A /pA is a free Q/p-module. As Q/p is
regular of Krull dimension 1, its maximal ideal is principal (and it is a domain), so it is a DVR. Thus,

it suffices to show that A /pA is torsion-free over Q/p. For this, note that the exact sequence
0 — Homg(A*, Q) £ Homg(A*,Q) — Homg(A*,Q/p)

implies that the map
A" [pA™ — Homg(A™,Q/p)
is injective. As
Homg (A", Q/p) = Homg ,(A"/pA", Q/p)

is Q/p-torsion free, the module A** /pA** is Q /p-torsion free. But A is reflexive, so A™ /pA*™ = A /pA,
proving the claim.

Next, let s = dimg /, A /mA, where m is the maximal ideal of Q. By Nakayama’s Lemma, there
exists a minimal Q-generating set of A with s elements, which is to say a surjective map w: Q° — A.
Since A/pA is Q/p-free, and by what we have just said of rank s, the induced surjection (Q/p)* — A/pA
is necessarily an isomorphism. Therefore, multiplication by f is surjective on ker 7, and Nakayama’s

lemma then tells us that kerr = 0. ]

REMARK 2.1.21. Any regular local ring is a UFD by a theorem of Auslander and Buchsbaum. In

particular, regular local rings are integrally closed domains.

THEOREM 2.1.22. Let A be a regular local ring of Krull dimension at most 2. Let A be a finitely

generated A-module. Then there exists a pseudo-isomorphism

N
A= AN e@A/pf
i=1
for some r,s > 0 and height one primes p; and integers ki > 1 for 1 < i <'s. Moreover, r and s are

unique, and the prime powers are unique up to ordering.

PROOF. Suppose first that A is torsion-free. By Lemma 2.1.15, the map A — A™* is an injective
pseudo-isomorphism, and by Proposition 2.1.20, we have that A** = A" for some r. This is then the
unique r for which there exists a pseudo-isomorphism A — A”, being that it is then the dimension of
A(g) over the quotient field of A.

The result for torsion modules is Proposition 2.1.10. We can combine the torsion-free and torsion
cases by applying Lemma 2.1.13 and the decompositions in each case. The uniqueness follows from

the uniqueness in the two cases. 0J
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2.2. Power series rings

Let & be a complete commutative local noetherian ring with maximal ideal m and finite residue
field of characteristic p. We study the ring A = O[T], beginning with the following analogue of the

division algorithm.

PROPOSITION 2.2.1 (Division algorithm). Letr f,g € A, and suppose that f ¢ mA. Let n be the
largest integer such that f € mA+ (T"). Then we may write

g=qf+r
for a unique q € A and r € O[T with degr < n.
PROOF. Suppose without loss of generality that n > 0. Let u € & be the coefficient of 7" in f.

Leta € A and b € O[T] be such that

f=aT" +b,
where degb < n. Note that b € mA by choice of n, and since a — u lies in the maximal ideal of A, we
have a € A*. Let g, € A and ry € O[T] be such that

8= Q6Tn + 70,
where degrg < n. Setting go = a~ ', we have

g =qoaT" +ro = qof + ro mod mA.

Let g1 = g —qof — ro € mA, and repeat the process to obtain ¢; € mA and r; € mO[T] with degr; <n
and

g1 = q1f +r1 mod m2A.
Note then that

g=(qo+q1)f + (ro+r1) mod m*A.
Recursively, we may then construct
g=q0+q1+q+---€A and r=ro+ri+rn+---€0[T]
such that g = gf +r and degr < n.
As for uniqueness, if g = ¢’ f + ' with ¥/ € O[T] and degr’ < n, then

(@=d)f+(r=1)=0.
We then need only show that if ¢ € A and d € O[T| with degd < n satisfy cf +d =0, then c =d = 0.
Suppose that this is not the case, and let k > 0 be such that ¢,d € mFA but not both ¢ and d are contained

in m*T1A. We see that cf is congruent to a multiple of 7" modulo m**!'A, which forces d € m*1A,
as degd < n. But then ¢f € m*T!A, and since f ¢ mA, this forces ¢ € mft1A, a contradiction. O
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DEFINITION 2.2.2. A distinguished (or Weierstrass) polynomial f € A is a polynomial with leading

coefficient 1 that satisfies

F(T) = T8/ mod mA.

THEOREM 2.2.3 (Weierstrass preparation). Let g € A with g ¢ mA. Then there exist a unique
distinguished polynomial f and unit u € A* such that

g=uf.

PROOF. We begin with existence. Let n be the maximal such that g € mA+ (7"), and let ug € 0

be the coefficient of 7" in g. Using the division algorithm, write
T"=qg+r

for some unique g € A and r € O'[T| with degr < n. Since all of the terms of g of degree less than n
lie in m, we have r € mA. If we set f =T" —r, then f is a distinguished polynomial. Moreover, the
constant coefficient g of g satisfies goug = 1 mod T, so is a unit in &, and therefore g € A*. Letting
u=q ', we have g = uf, as desired. The uniqueness of f and u is forced by the uniqueness of g and

r. O

We then have the following corollaries of the Weierstrass preparation theorem.
COROLLARY 2.2.4. Suppose that O is a PID. Then the ring A is a unique factorization domain.

PROOF. Let r € m be a generator. For g € 1"A — "1 A, we may apply the Weierstrass preparation
theorem to factor 77"g into a polynomial f times a unit, and then use the fact that &'[T] is a UFD to
factor f into a product of irreducible polynomials, each of which is a Weierstrass polynomial times a
unit. This gives the desired factorization of g as a product of a power of 7, finitely many irreducible
Weierstrass polynomials, and a unit. Clearly any other factorization is equivalent (up to unit and

ordering) to such a factorization. 0J

REMARK 2.2.5. In fact, it is more generally true that if & is a regular local ring, then so is A =
O[T]. For such O, the ring O[Ty, T>,...,T,] is then of course a UFD as well.

Suppose from now on that & is the valuation ring of a finite extension of Q,. Let & € & be
a uniformizer. We may view & as sitting inside C,. Given f € A and a € C,, with |a[, < I, the

evaluation f(a) converges to an element of C,,.

COROLLARY 2.2.6. Let g € A be nonzero. There exist only finitely many a € C, with |a|, < 1 such
that g(a) = 0.
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PROOF. By Weierstrass preparation, we have g = n*uf with u > 0, u € A*, and f a Weiserstrass
polynomial. As u is a unit, one cannot have a € C, with |a|, < I such that u(a) = 0. Therefore,

g(a) = 0if and only if f(a) = 0, and so the result follows from the fact that f is a polynomial. O

COROLLARY 2.2.7. Let g € O[T, and let f be a distinguished polynomial in O'[T| with f dividing
ginA. Theng/f € O[T].

PROOF. Let n = deg f. Suppose & € Cp, is aroot of f. If ||, > 1, then 0 = |f(@)|, = |a]} > 1,
which is impossible. If |a|, = 1, then

0= f(a)=o" mod mc,,

where mc, denotes the maximal ideal of C,, which is again impossible. If ||, < 1, thensetg=g/f €
A. Since g(o) converges, we have g(a) = 0. Let &” denote the valuation ring of the splitting field of
f. We divide g and f by T — « inside ¢”[T] and repeat the process with the resulting polynomials,
which we denote f| and g;. After n iterations, we have obtain f, = 1, and since f is monic, g, is the

polynomial g € O[T]. O
Next, let us consider ideals in A.

DEFINITION 2.2.8. Two elements f, g € A are said to be relatively prime if the only elements in A
that divide both f and g are units.

LEMMA 2.2.9. Suppose that f,g € A are relatively prime. Then (f,g) has finite index in A.

PROOEF. Suppose that i € (f,g) is a polynomial of minimal degree (which exists by Weierstrass
preparation), and suppose it is exactly divisible by a power " of . Assume first that 4 has positive
degree. Let i’ € A be defined by & = 7""h’. Without loss of generality, suppose that 4’ does not divide
f- The division algorithm produces g € A and r € O[T] with degr < degh’ such that f = gh’ +r. Then
m"r € (f,g), which forces r = 0 by the minimality of the degree of 4. But then 4’ divides f, which is a
contradiction, so & must be of degree O.

So now, suppose that n is minimal such that 7" € (f, g). At least one of f and g is not divisible by

7: suppose it is f, and assume without loss of generality that f is a distinguished polynomial. We have

(7", f) C (f,g), but
A/(".f) = (0/x"O)T]/(]),

where f is the image of f in & /7" O[T|, and the quotient ring is a finite ring by the division algorithm,
as O has finite residue field. OJ

PROPOSITION 2.2.10. Every prime ideal of A is one of 0, (n,T), (x), or (f), where f is an

irreducible distinguished polynomial.
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PROOEF. Suppose that p is a nonzero prime ideal in A with p # (7). By the primality of p, there
then exists a distinguished polynomial f in p that is irreducible and not divisible by 7w . So choose
such an f: if p = (f), we are done. Otherwise, there exists g € p with g ¢ (f), and therefore by
Lemma 2.2.9, there exists n”* € (f,g) for some n > 1. Since p is prime, we then have 7 € p, and since
f=T%e/ mod m, we have T9/ ¢ p. Again, primality of p then forces T € p, and finally, p = (7, T)
by the maximality of (7, T). O

REMARK 2.2.11. We have that A/(x) = (¢ /m)[T], while A/(f) for a distinguished polynomial
f is free of rank deg f over 0.

LEMMA 2.2.12. A finitely generated A-module is pseudo-null if and only if it is finite.

PROOEF. Suppose that M is a finitely generated, pseudo-null A-module. To say that Anny (M) has
height at least 2 is to say that it contains two relatively prime elements, hence has finite index in A. On
the other hand, if M is a finite A-module, then

Annp (M) = ﬂ Annp (m),
meM
and Anny (m) must be of finite index in A, since m generates a finite A-module isomorphic to A/ Anny (m).

It follows that Anny (M) has finite index in A, and therefore has height 2. O

It follows that a pseudo-isomorphism of A-modules, for &’ a valuation ring in a finite extension of

Qp, is a A-module homomorphism with finite kernel and cokernel.

THEOREM 2.2.13 (Structure theorem for finitely generated A-modules). Let M be a finitely gener-

ated A-module. Then there exists a pseudo-isomorphism
s
M~ N e DA/ () e DA/ ()
i=1 j=1
for some r,s,t >0, ki > 1 and f; a distinguished irreducible A-polynomial for 1 <i<s, andl; > 1 for

1 < j <t. Moreover, these quantities are unique up to reordering.

PROOF. This follows directly from Theorem 2.1.22 and the fact that the height one prime ideals in
A are () and the ideals (f) for f an irreducible distinguished polynomial. O

2.3. Completed group rings

For a profinite group G, we use U <° G to denote that U is an open normal subgroup of G.
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DEFINITION 2.3.1. Let G be a profinite group, and let &’ be a commutative ring. We define the

completed &-group ring of G to be the inverse limit

o[G] = lim 0[G/U]
U<eG

with respect to the quotient maps 0[G/V]| — C[|G/U] for V < U.
REMARK 2.3.2. In the case that G is finite, we have 0[G] = €[G], the usual group ring.

We shall study completed group rings only for certain very special classes of rings ¢ and profinite
groups G. In particular, let us assume that & is local and complete with respect to a maximal ideal m,
which is to say that

O=lim0/m"0.
i

REMARK 2.3.3. Since € is complete with respect to the maximal ideal m, we have

O[G] = lim (6/m"0)[G/U]
U<°G
n>0
DEFINITION 2.3.4. The augmentation ideal I of '[G] is equal to
ker(C[G] 5 0),
where € is the augmentation map, the inverse limit of the &-linear maps &[G/U| — © that take every

group element to 1.
REMARK 2.3.5. The map € is surjective, and therefore it induces an isomorphism
OlG)/Ic = O
We require the following lemma.

LEMMA 2.3.6. Let k be a field of characteristic p, and let G be a finite abelian p-group. Then k[G]

is a local ring with maximal ideal the augmentation ideal in k|G].

PROOF. Suppose that G = @!_,Z/p"Z for some n; > 1 and r > 0, and let g; be the inverse image

of a generator of the ith component under this isomorphism. It is easy to see that
k[G] & k[X] , X2, ... ,Xr]/(lem B I,sznz 1 ,ernr B 1)

under the map that takes g; to X;. Moreover, X lp "= (Xi — l)l’"i for each i since k has characteristic

p. Setting T; = X; — 1 the resulting ring

KT, Ta,..., T /(TP TP, TP

r
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is local with maximal ideal (71,75,...,7;). (This is well-known, but note that if f ¢ (T1,T»,...,T,),
then f has nontrivial constant coefficient, and we may construct an inverse by successive approxi-
mation, working modulo higher and higher total degrees.) The inverse image of this ideal under our

isomorphism is the augmentation ideal of k[G]. O

We now let &’ be a commutative noetherian local ring that is complete with the topology defined

by its maximal ideal m.

PROPOSITION 2.3.7. Let O be a complete commutative noetherian local ring with finite residue
field characteristic p, and let G be a topologically finitely generated abelian pro-p group. Then the
algebra O[G] is a local ring with maximal ideal mO'[G] + I.

PROOF. We note that
OIG]/(m+1g) = O /m,

so m+ I is maximal. If 9t is any maximal ideal of [G], then we have an injection
/(MmN o)— O[G] /M,

which forces &'/(9N €) to be a field, hence M N & to be maximal in &, and therefore NN & to be
equal to m.

Moreover, we have
O[G]/mO[G] = k[G],

where k = ¢ /m. This follows from the fact that m&[G] is an inverse limit of a countable inverse
system of modules m - (& /m")[G/U] with surjective maps, as this implies that ILn1 of the system
vanishes. (Here, the countability of the system is guaranteed by the assumption of finite generation on
G.)

The problem is reduced to showing that the augmentation ideal of k[G] is its only maximal ideal.
As the quotient of k[G] by a maximal ideal surjects onto the quotient of k[G /U] by the image of that
maximal ideal for every open normal subgroup U of G, it suffices to demonstrate our claim in the case

of a finite abelian p-group G. However, that result is just Lemma 2.3.6. OJ
For any r > 0, recall that

ﬁ[[Tl,Tz,...,Tr]] 2@1ﬁ[Tl,Tz,...,Tr]/(Tln,Tzn,...,Trn).
n

The latter &-modules in the inverse limit are free of finite rank over ¢, and so can be given the m-adic
topology, and the inverse limit then defines a topology on the power series ring itself.

The following lemma will be of use to us.
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LEMMA 2.3.8. Suppose that O is a complete commutative local noetherian ring with finite residue
field, and let m denote its maximal ideal. Let r > 1. The following sets of ideals provide bases of open
neighborhoods of 0 that all define the same topology on the ring R = O[T, T», ..., T,:

i. {I;|s,t>1}, where I, =m*R+(T{,T;,...,T}),
ii. {M"|n>1}, where M =mR+ (T1,T,...,T),
iii. {Js;|s,t> 1}, where

Sy =R+ (a0 (Th), ax(T2),. .., (7))

and we define
w0, (T) = (T+1)"" -1

forany T and any n > 0.

In particular, R is isomorphic to the inverse limit of the quotients modulo the ideals in any of these sets.

PROOF. To show that two of the sets of ideals define the same topology is exactly to show that

every ideal in each of the two sets contains an ideal in the other set. Note that
(T, Ts,..., T+ C (Tt Th, .. T.
We then see that
I,2 snt(f—l)’“ and Jis2 m(pt—l)r-i-l’
and from this we obtain that
Ly 21, 2D+ and gy, DU, D o =Drh),
On the other hand, we have
M' DL, and M" D Jyy,

where the latter containment uses that

p n 71
Z( > (p"T,p" TP, p™ 2TP LTy c(m+m" T4+ TR C M.

Therefore, the topology defined by the powers of 91 agrees both with the topologies defined by the
ideals I;; and by the ideals J ;. The final remark follows from the first part, as the set of Iy, defines the

natural topology on the power series ring. 0J
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THEOREM 2.3.9. Let O be a complete commutative local noetherian ring with finite residue field
of characteristic p. Suppose that G = Z, for some r, and let {7:| 1 <i<r} be a generating set of G.

Then there is a unique topological isomorphism
ﬁ[[G]] ; ﬁ[[Tl; n,..., Tr]]
that takes y; — 1 to T;.

PROOF. Let U, be the open subgroup of G generated by {7” ' | 1 <i<r} for somen > 0. We note
that

OlG/U,| — O[T\, T,...,T;|/(0,(T1), 0,(T3),...,0,(T}))

via the map that takes ¥; to 7; + 1. Moreover, note that w,,(7;) divides w,(7;) for m < n, and these
isomorphisms between group and polynomial rings are compatible with the canonical quotient maps

on both sides. Since the groups U, form a basis of open neighborhoods of 0 in G, we have
O[G] = lér_n Oh,nh,... T,/ (0,T),0,(D5),...,0,(T))
On the other hand, we have

ﬁ[[Tl,Tz,...,Tr]] g@lﬁ[Tl,TQ,...,Tr]/(Tln,Tzn...,Trn).
n

Since 0 = m O /m* as well, that the two inverse limits are isomorphic follows from the equality of

the topologies defined by the sets of ideals in (i) and (iii) of Lemma 2.3.8. ]

REMARK 2.3.10. We remark that the theorem implies that & [[Zf,]] is noetherian, as a power series
ring in finitely many variables over a noetherian ring is noetherian, and Lemma 2.3.8 implies that it is
complete with respect to its unique maximal ideal.

2.4. Invariants of A-modules

Let & be the valuation ring of a p-adic field, and let 7 be a uniformizer of the maximal ideal m
of 0. Set A = O[T]. We can use the structure theorem to construct invariants attached to a finitely

generated A-module.

DEFINITION 2.4.1. Let M be a finitely generated A-module, pseudo-isomorphic to
N t
N DA/ () e DA/ (")
i=1 j=1

for some r,s,t > 0, k; > 1 and f; a distinguished irreducible A-polynomial for 1 <i <s, and /; > 1 for
1<j<t
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i. The A and p-invariants of M are
s 13
A(M) =Y kidegfi and p(M)=Y 1,
i=1 j=1
respectively.

1. The characteristic polynomial of M is

S

char(M) = g#M) Hf-k",

i
i=1

and the characteristic ideal of M is the ideal chary (M) of A generated by char(M).

We remark that the characteristic polynomial is multiplicative in exact sequences, as follows from

the following lemma.

LEMMA 2.4.2. Let

0sASBEC—0

be a short exact sequence of finitely generated, torsion A-modules. Then char(B) = char(A) char(C).

PROOF. Let X be the set of height one prime ideals in the support of B, and let S = A — U,cx p.
Identifying S™'A, S~'B, and S~!C with direct sums of quotients of S~!A by height one prime ideals,
that the characteristic ideals of these modules are multiplicative in S~!'A is a standard result in the

theory of modules over a principal ideal domain. The lemma follows easily from this. U
We next consider the quotients of finitely generated, torsion A-modules. Recall that
w0, (T) = (T+1)"" —1
for any n > 0.

REMARK 2.4.3. Suppose I is a procyclic group isomorphic to Z, and let y € I" be a topological
generator. Let I',, denote the quotient of I” of order p”. Recall that we have an isomorphism &[] = A
that takes y— 1 to 7. Then y”" — 1 is taken to @,, so we have that

O] = A/ ().
We then have that
A=Z1lim A/ (@,).
% n

Moreover, the quotient M /@, M of a A-module M is identified with the I'”"-coinvariant group My of
M.
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LEMMA 2.4.4. If M is a finitely generated A-module, then the canonical maps

M = lim M / &,M — lim M/ (x", 0,)M
n m,n
are isomorphisms.

PROOF. Since A is noetherian and M is finitely generated, there exists a presentation of M as a
A-module:
AN —->N—->M—0
for some r,s > 0. Since tensor product is right exact and
A/(" 0,) AM =M/ (7™, 0,)M,
we have that
(A/ (7", @,)) — (A (7", 0,))" = M/ (7", ®,)M — 0.
is exact as well. As the inverse limit is exact on finite groups, the resulting inverse limit

A’—>As—>1£nM/(7r’",a)n)M—>O

m,n

is exact, so there is a canonical isomorphism

M = lim M /(7" &,)M.

m,n

Since the latter map factors as

M — @M/a)nM% @M/(nm,wn)M,

we are done if we can show the second of these maps is injective. By left exactness of the inverse limit,

this will follow from the injectivity of the maps

M, — lim M,/ "M,
o

where we have set M, = M / @,M. For this, note that Nakayama’s Lemma tells us that A =, 7'M, =
0, since TA = A. O

REMARK 2.4.5. The proof of Lemma 2.4.4 goes through with @, replaced by any sequence f; of
distinguished polynomials with f,, | f, for m <n and f,, # f, if m < n.

For n > m, we set @, », = W,/ ®,. Let us also set @, _| = W,.

LEMMA 2.4.6. Let M be a finitely generated torsion A-module containing no elements of finite
order. Then there exists an integer ny > —1 such that @, ,M = p" "M for all n > ny.
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PROOE. Since M has no p-torsion, we have p (M) = 0. The structure theorem implies the existence

of a pseudo-isomorphism
0: M~ DA/(fi)
i=1

with f; distinguished, and which must be injective as, again, M has no p-torsion. As [];_, f; annihilates
M, we have that T*™) annihilates M /M. It follows that (7 + 1)”" acts as the identity on M /zM for
any m with p” > A(M). Fix such an m, and let ny be an integer such that p"0 > p™(e+ 1), where e+ 1
is the ramification index of 7 in J.

For 6 € Ends (M) given by the action of T + 1, the exact sequence
0 — Endy (M) 5 Enda (M) — Endy (M /M)

implies that
67" —1 € TEndy(M).
For any n > ng, we then have
0r —1=((6"" —1)+1)"" " —1e(a” ", pr)Ends(M) = prEnds(M).

Let y € Enda (M) with 7" = 1+ pry. Since

p—1
W10 = Z (T + I)CP ’
c=0
we have that @, , acts on M as
p—1 p—1
Z (1+pry) ep+ Z cpmy + p*Ends (M) C p+ prEndy(M).
c=0 c=0

For M = M/pnM, we therefore have that @, ,-M = p-M. This forces
Opiip-M=p-M
by Nakayama’s lemma, which implies the result. 0

We now have the following result on the orders of quotients of finitely generated, torsion A-

modules.

THEOREM 2.4.7. Let M be a finitely generated, torsion A-module, and let no > —1 be such that
char(M) and @, ,, are relatively prime for all nonnegative n > ng. Set A = A(M) and u = p(M). Let g
denote the order of the residue field k of O, and let e denote the ramification index of O over Z,. Then

there exists an integer vV € 7 such that
_ P u+tned+v
M [ @ neM| = q

for all sufficiently large n > 0.
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PROOF. Our proof consists of four steps. In the first, we treat the case of finite M. In the second, we
reduce to the case of direct sums of quotients of A. In the third, we treat the quotients of A by powers
of 7, and in the fourth, we treat the quotients of A by distinguished polynomials. For simplicity of
notation, let us set @), = @y -

Step 1: Note first that if M is finite, then M/ a),’lM = M for n sufficiently large, as follows from
Lemma 2.4.4, noting Remark 2.4.5. In this case, ¢" is then just the order of M. To see that v is an
integer and not just a rational number, note that M has a filtration {7'M |i > 0} and the graded quotients

7'M /' M are finite-dimensional k-vector spaces, so of order a power of g. It follows that

M| =[Tl='m/a" M|
i=0

is a power of g as well.

Step 2: In the general case, consider the map

0: M —N=@PA(fHoPA/(n)
j=1

i=1

constructed in Theorem 2.2.13. It has finite kernel and cokernel, and the induced maps
On: M/w,M — N/o/N

fit into a commutative diagram

M—2 oy M/wM — 0
9 9 90
@,
0 N N N/@\N — 0

coker p —— coker —— coker ¢, — 0

0 0 0

where the map @),: N — N is injective since one cannot have @) g € ( fik" ) (or in (%)) for some i
(resp., j) unless g € ( ﬁki) (resp., (7!i)) as @) is relatively prime to each f; by assumption (and to 7 by

definition). Now, for sufficiently large n, we have that multiplication by @), is the zero map on ker ¢
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and coker ¢, as ker¢ and coker ¢ are finite. Therefore, the snake lemma tells us that, for such n, we

have coker ¢ = coker ¢, and an exact sequence
0 — ker ¢ — ker ¢, — coker ¢ — 0.

Defining 1 > 0 by | |
ker ¢,

n: k =

we have that

M/ opM| = q" [TIA/ (@), £ TT1A/ (@), 7))
i=1 j=1

for the same sufficiently large n. This reduces the theorem to modules of the form M = A/(n') for
some [ > 1 or M = A/(f) with f a (a power of an irreducible) distinguished polynomial relatively

prime to every .
Step 3: Suppose now that M = A/(x!) for some [/ > 1. We then have
M/oM = A/(o, ') = (0/7'0)[T]/(w,),

Since @/, is a distinguished polynomial of degree p" — p™, the latter ring is isomorphic to (& /x' €& )1’"

as an ¢-module. We therefore have that
Moy M| = "7
Note that u(M) = [, and we can take v = — p™] for this M.

Step 4: Finally, suppose that M = A/(f) for some distinguished polynomial f relatively prime to

every a),/i. By Lemma 2.4.6, we have that there exists n; > ng such that
Op M = p" "' M
for all n > ny. We also have an exact sequence
0—M/w, M Do, M/w,M — M /@y 0, M — 0,
and therefore we have
M@0 M=M/p"""M = (0)a¢") 0)*

the latter isomorphism being of &-modules. Defining v € Z by

q" =M/, M|-q",
we then have

M/ @] = ",

as desired.
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We next wish to consider results which give us conditions that allow us to compute invariants of

A-modules from their quotients. For this, the following lemma is useful.

LEMMA 2.4.8. Let ¢: M — N be a pseudo-isomorphism of A-modules, and let f € A be a distin-
guished polynomial. Then the induced map ¢y: M/fM — N/ fN is also a pseudo-isomorphism, and

moreover, we have
|ker¢r| < |ker¢||cokerd| and |coker¢s| < |cokerg]|.

Similarly, using A[f] to denote the kernel of f: A — A for any A-module A, the induced map ¢ : M[f] —

N[f] is also a pseudo-isomoprhism, and we have
|ker ;| < |ker¢| and |coker 9| < |ker¢||coker]|.

PROOF. Consider first the diagram

0 —— M/ker¢ L>N—>c0ker(]) —0

CLT

0 —— M/ker¢p —— N —— coker¢g —— 0.

The snake lemma then yields an exact sequence

(24.1) 0— (M/ker9)[f] = N|[f] — (coker¢)[f] = M/(fM+kerd) — N/fN — coker ¢y — 0.

The kernel of ¢ has order at most the products of the orders of the kernels of the maps M/fM —
M/(fM+Xker¢) and M/(fM +kerp) — N/fN. The first clearly has order at most |ker¢|, and by
(2.4.1), the second has order at most | coker ¢|. The statement on coker ¢y is also clear from the exact
sequence.

As for ¢¢, the snake lemma applied to

0 ker ¢ M i M/ker¢p —— 0
lf lf lf
0 ker ¢ M i M/ker¢p —— 0.

yields exactness of

0— (ker@)[f] — M[f] — (M/ker)[f] — ker¢/fker,

Together with (2.4.1), this implies that ¢ has finite kernel contained in ker ¢ and finite cokernel of
order at most | ker ¢| - | coker ¢|. O
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DEFINITION 2.4.9. Let A be a finitely generated ¢-module. The 7-rank r;(A) of A is the dimension
of A/TtA as a vector space over k = 0 /n0.

PROPOSITION 2.4.10. Let M be a finitely generated, torsion A-module. Then (M) = 0 if and only
if the quantities rz(M | w,M) are bounded as n varies.

PROOF. Consider a pseudo-isomorphism
N ‘ t
0: M—N=EPA/(f)e@PA/ ().
i=1 j=1

Then ¢y, : M/®,M — N/w,N has finite kernel and cokernel of bounded order by Lemma 2.4.8, so it
suffices to check the result for N. Note that the m-rank of A/(f, @,) for f a distinguished polynomial is
bounded by deg f, since A/(f) = ¢%2/ as an &-module. On the other hand, A/(x!, @,) is isomorphic
to (0/x!')P" as an €-module, so has unbounded 7-rank. O

Similarly, we have the following proposition for the A-invariant.

PROPOSITION 2.4.11. Let M be a finitely generated, torsion A-module. Then A (M) is equal to the

following quantities:

i. ranky M and

ii. the maximal integer A such that M has a quotient isomorphic to (O /"0 )7L as an O-module for

every n.

PROOF. Consider a pseudo-isomorphism

N t
0: M—N=EPA/(f)e@A/(x).
i=1 j=1

Letn > p(M). Then A/(x') has trivial &-rank and no quotient of the form &'/n" 0, since n > [;. On
the other hand, A /( fik") is isomorphic to &%i4%2/i a5 an ¢-module by Remark 2.2.11, so has a quotient
of the form (&' /n" 0')" for exactly those m < k;deg f;. Therefore, the result holds for N.

By definition, ¢-rank is not affected by pseudo-isomorphism, so A (M) = rank; M. Moreover,
if A = rankg M, then the quotient of M modulo its m-power torsion subgroup is a finitely gener-

ated torsion-free ¢-module of rank A, hence is isomorphic to O* and has a quotient isomorphic to
(O /" O)™ for exactly those m < A. O

Finally, for finitely generated A-modules which are not necessarily A-torsion, we have the follow-

ing result on A-ranks.



56 2. MODULE THEORY
PROPOSITION 2.4.12. Let M be a finitely generated A-module. Then we have
ranky (M) = rank (M /TM) —rank 5 (M[T]).
Moreover, we have
rank s (M /@,M) = p" ranky (M) + ¢

for some ¢ > 0 for all sufficiently large n.

PROOF. Again consider a pseudo-isomorphism
N t
0: M—N=No@PA () oPA/(x").
i=1 j=1
Then rank (M) = rank, (N), and by Lemma 2.4.8, we have
rankg(M/TM) =rankgs(N/TN) and rankgs(M|[T]) = rankg(N|[T)),

or more strongly, that M[T| — N[T] is a pseudo-isomorphism.
Given this, the proof of the first part is reduced to case that M = N. Since A/T A has O-rank 1 and
A/(f) for a distinguished polynomial f has

A/, T)=0/1(0)0,

we have that the &-rank of the latter module is nonzero, and then equal to 1, if and only if 7 divides
f. Finally, A/(T,n') = ¢ /7' € for | > 1 and so has trivial &-rank. It follows that rank,(N/TN) =
r+s, where s is the number of f; equal to 7. As for N[T], note that A[T] =0 and A/(x)[T] =0,
while A/(f)[T] is nonzero, and then of ¢-rank 1, if and only if T divides f. Therefore, we have
rank, N[T] = s, and part a follows.

We note that rank [, (M) = p" rank, (M), since A has rank p" over & ®,]. The first part applied
with T replaced by w, then implies

rankg (M /w,M) = p"ranks (M) + rank s (M[w,]).

It suffices then to show that rank;(M[w,]) is bounded in n. But this follows as w, ,, is relatively prime
to chary (M) for n sufficiently large for all m. O

2.5. Pontryagin duality
Let A be a locally compact, Hausdorff topological abelian group.

DEFINITION 2.5.1. The Pontryagin dual of A is defined to be the topological group

AY = Hom(A,R/7Z)
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with the compact-open topology, which is to say, with basis of open sets of the form
B(K,U)={f A" | f(K)C U},
where K C A is compact and U C R/Z is open.

Of course, if f: A — B is a continuous map of locally compact, Hausdorff abelian groups, then
there is a natural map fV: BY — A given by fV(¢) = ¢o f.

The following is the key theorem regarding the Pontryagin dual, which we state without proof.

THEOREM 2.5.2 (Pontryagin duality). Let .Z denote the category of locally compact, Hausdorff
topological abelian groups, let € denote the category of compact, Hausdorff topological abelian
groups, and let & denote the category of discrete topological abelian groups. Then the Pontryagin
dual provides a self-inverse contravariant functor from Z to its itself. Moreover, it induces contravari-

ant equivalences of categories between € and & in both directions.
REMARK 2.5.3. If A is a profinite or discrete torsion, then in fact
AY =Homgs(A,Q/Z),
while if A is pro-p or discrete p-torsion, then we have
AY = Homes(A,Qp/Z)).

Moreover, we note that if A is discrete, then every homomorphism from it is continuous. On the
other hand, if A is a finitely generated Z,-module, then every Z,-linear homomorphism is continuous,

SO
A" =Homyg, (A,Q,/Zy).

REMARK 2.5.4. If A has the additional structure of a topological G-module for a profinite group

G, then A" has the continuous G-action given by

(g-f)(a) = f(g"'a)
forge G, feAY anda € A.

REMARK 2.5.5. Pontryagin duality induces a nondegenerate continuous pairing

AXAY = Q,/Zp,  (a,f)— fla).

If A is also a topological G-module, then the latter pairing is G-equivariant.
Here is another interesting result.

PROPOSITION 2.5.6.
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a. If A is a compact, Hausdorff topological Z,-module, then A is profinite.

b. If A'is a discrete topological Z,-module, then A is Z,-torsion.

PROOF. Let us start with part b. Since A is discrete, every element a € A has p"a = 0 for some
n > 0 by continuity of the action. As for part a, we note that the dual of a compact Z,-module is A a
discrete Zj,-module, hence Z-torsion. Then AV is the direct limit of the finite submodules generated
by any finite set of its elements, so A is the topologically the inverse limit of the Pontryagin duals of

those submodules, and therefore A is profinite. 0J
COROLLARY 2.5.7. Every finite topological Z,-module has the discrete topology.

EXAMPLE 2.5.8. Since Z,, is procyclic, a continuous homomorphism from it is determined by

where 1 is sent. Since Z), is a free pro-p group, we can send 1 to any element. Therefore, we have
ZZ =Q,/Z,.

DEFINITION 2.5.9. We say an locally compact module over a profinite ring R is cofinitely generated

if its Pontryagin dual is a finitely generated right R-module.

2.6. Iwasawa adjoints

We continue to suppose that A = &'[T] for a valuation ring & of a p-adic field with uniformizer 7.

Let F denote the quotient field of &'. We will be most interested in Pontryagin duals of A-modules.

DEFINITION 2.6.1. Let 1: A — A be the unique continuous &-linear ring homomorphism satisfy-
ing 1(T)=(T+1)"' —1.

We can convert the canonical right action on the Pontryagin dual of a A-module to a left action

using an involution, as follows.

PROPOSITION 2.6.2. If M is a locally compact, Hausdorff topological A-module, then M" is as

well, with respect to the action
(2.6.1) (A-@)(m) = @(1(A)m)
forh e A, meM, and o € M".
Let s > 0 be such that 7* generates the different of &/Z,,. Then the &-balanced pairing
(2.6.2) O x 0 — Ty, (x,y) = Trp g, (T xy)

is perfect. For a locally compact, Hausdorff topological A-module M, we have a left A-module struc-
ture on Homg (M, F /0) as in (2.6.1), with ¢ now in Homg(M,F /0).
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PROPOSITION 2.6.3. For every finitely or cofinitely generated O'-module A, there exists an isomor-
phism
AY 2 Homy(A,F/0).
These can be chosen to be natural in A in a manner that is canonical up to the choice of uniformizer «

of 0. Moreover, if A is a A-module, then the isomorphism is of A-modules.

PROOF. The perfect pairing of (2.6.2) yields an isomorphism ¢ = Hom(&',Z,) and therefore the
composite &-module isomorphism

F/0=0®z,Qp/Z, = Homg, (0,Z;) ®z,Q,/Z, = Homg, (O,Qp/Zp).
Since A is (co)finitely generated over Z,, we have the following A-module isomorphisms
AY =Homy (A,Q,/Z,) = Hom(A,Homz (0,Q,/Z,)) = Homy(A,F /0),
and naturality is easily checked. 0J
We have the following analogue of Proposition 2.5.6.
PROPOSITION 2.6.4.
a. Every compact A-module is an inverse limit of finite A-modules.

b. Every discrete A-module is a direct limit of finite A-modules.

PROOF. By Pontryagin duality, it suffices to prove part b. For this, we again note that the continuity
of the A-action on a discrete module M ensures that, for any m € M, the annihilator Anny (m) is an
open ideal of A. But then M is the union of its finite A-submodules A -m form € M. 0J

Note that if M is a finitely generated A-module, we endow it with the topology under which
(1™, m,)M forms a basis of open submodules of M.

DEFINITION 2.6.5. Let M be a finitely generated, torsion A-module, and set M,, = M / @, ;,,M for

n > m and some fixed m > —1 with , ,, relatively prime to char(M) for all n. Set
a(M) = lim M, = (lim M,)",

where M, — M, is induced by the map m — @, ,m on M. Then the A-module o/(M) is called the

Iwasawa adjoint to M.

REMARKS 2.6.6.

a. We leave it to the reader to check that the definition of o/(M) does not depend on m.

b. If ¢: M — N is a A-module homomorphism, where M and N are finitely generated and A-
torsion, then we obtain a natural A module homomorphism & (¢): o(N) — a(M).
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LEMMA 2.6.7. The contravariant functor Q. is left exact.

PROOEF. To see the exactness, note that
Mn = M®AA/<a)n7m)a

the tensor product is right exact, the Pontryagin dual is an exact contravariant functor, and the inverse

limit is exact on finite abelian groups. U
LEMMA 2.6.8. If M is a finite A-module, then o.(M) = 0.

PROOF. Since M is finite, the map ®, ,,: M — M is zero for n sufficiently large relative to a fixed

m. The result follows. ]

LEMMA 2.6.9. If M is a finitely generated, torsion A-module with t(M) = 0, then there are natural
isomorphisms
a(M) = Homgz,(M,Z,) = Homg (M, 0)
as A-modules. Here, A acts on both Homg, (M,Z,) and Homg (M, O) by

(A-9)(m) = ¢ (1(A)m).
PROOF. Let N be the p-power torsion submodule of M. By Lemma 2.6.7 and Lemma 2.6.8, the
map o(M/N) — o(M) is an isomorphism, so we can and do suppose that M is p-torsion-free.
Since M is finitely generated over Z,,, we have that for sufficiently large m and n > m that @, ,, acts
on M by multiplication by p"~" by Lemma 2.4.6. Therefore, we see that
a(M) = lim (M/p"M)" = lim Homg, (M /p"M,Z/p"Z) = Homg, (M, Zy).

n

For the other isomorphism, we note that
Homg, (M, Z;) = Homgz,(M ®¢ 0,Z,) = Homg(M,Hom(0,Zy)) = Homg (M, 0),
the latter isomorphism using the pairing of (2.6.2), and all of these isomorphisms are of A-modules. [J

PROPOSITION 2.6.10. Let ¢ : M — N be a pseudo-isomorphism of finitely generated, torsion A-
modules. Then the induced map a(9): ot(N) — a(M) an injective pseudo-isomorphism.

PROOEF. As the inverse limit is exact on finite modules, in order to show that o/(¢) is a pseudo-
isomorphism it suffices to show that the maps N — M, have kernel and cokernel of bounded order.
By exactness of the Pontryagin dual, this reduces to proving that M,, — N,, has kernel and cokernel of
bounded order, which follows from Lemma 2.4.8.

Finally, by Lemma 2.6.7, we have that the sequence

0 — a(cokerp) — a(N) LGN o(M)
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is exact. The injectivity of (¢ ) then follows from Corollary 2.6.8. O

DEFINITION 2.6.11. For a A-module M, we let M* denote the A-module that is M as a set but on

which the A-action -; is
Aam=1(A)m

forA € Aandm e M.

LEMMA 2.6.12.
a. For any positive integer £, we have o(A/(n)) = A/ ().
b. For any distinguished polynomial f, we have ot(A/(f)) = A/(1(f)).
PROOF. For part a, set y=T + 1 and let M = A/(x'). Then any element in M,, = M/ ®,M (taking
m = —1) may be uniquely written as
pn_] .
f=3 av
i=0

modulo @, = y*" —1, for some a; € € /&' & for 0 <i < p" — 1. Letus identify MY with Homg(M,,, F/0)

as in Proposition 2.6.3. We define a map

Vo M, — M)
by setting
. a;
Vi) =55,

and extending O-linearly. Then v, is clearly an injective homomorphism, and it is also easily seen that

the y,, (") form a O-basis of M)/, so y, is surjective as well. Moreover, ¥, is a map of A-modules as

va(2A)(F) = S = w(N( ) = (- va()).
The diagram
Mn+lﬂ>M1;/+l
S

M, —— M

commutes since
wr\z/+1,n(ll/n+l(f))(7’i) = l//n+1(f)< Wn+1, n Z l//thl ,},H-p ]) (f)(y’)

In the inverse limit, we obtain (A /(') = A/(n).
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For part b, suppose that M = A/(f) with f a distinguished polynomial of degree d. Let us define
£: A — O by setting £(g) equal to the coefficient of 79~ ! in r, where r € &[T] is the unique polynomial
of degree less than d with g = gf 4 r for some g € A. We then define

0: A/(f) = Homg(A/(f),0)'
by

6(8)(h) = &(gh),
where g,h € A/(f) and g,h € A are lifts of g and h respectively. This is clearly well-defined, and

moreover it is a A-module homomorphism, since
0(A8)(h) = &(Agh) = 6(2)(Ah) = (A-6(3))(h).
If r € O[T] is nonzero of degree less k than d, then letting 7 denote the image of r in A/(f), we have
O(F) (T~ =e(T"17"r) £ 0,

which means that 7 ¢ ker 0, so 0 is injective. A count of &-ranks now tells us that & has finite cokernel.

In fact, 0 is surjective, as forany 0 <k <d—1and g = Z?:_o] aiTi, we have that

k d—1
Tkg — Z ad_ka_ff = Z a;_xT' mod 7,
j=1 i=k

since f is distinguished, and hence
9<Tk)<g) =a _1_r mod 7.

Since the functions ¢ € Homg (A/(f), 0)' with ¢x(g) = ag—1—i generate Hom4 (A/(f), 0)' and agree
with the 8(7T*) modulo 7, the 8(T*) do as well by Nakayama’s lemma. In other words, 6 is an
isomorphism A/(f) — o(A/(f))", and part b follows as (A/(f))* = A/(1(f)). O

THEOREM 2.6.13. Let M be a finitely generated, torsion A-module. Then o.(M) is a finitely gener-
ated, torsion A-module that is pseudo-isomorphic to M*. Moreover, (M) contains no nontrivial finite

A-submodules.

PROOF. Consider a pseudo-isomorphism
s t
0: N=PA/(fHoPAa/ () =M,
i=1 j=1

which exists by the structure theorem and Proposition 2.1.11. Note that &t(0): a(M) — a(N) is an
injective pseudo-isomorphism. If we can show that a(N) is pseudo-isomorphic to N', then clearly
o(M) will be pseudo-isomorphic to M*, as pseudo-isomorphism is an equivalence relation on finitely

generated, torsion A-modules. Moreover, if (N) has no nonzero finite A-submodules, then neither
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does a(M), being isomorphic to a submodule of &(N). By the additivity of the adjoint functor, it
then suffices to assume that M is a quotient of A by a height one prime ideal, but this is covered by
Lemma 2.6.12. O

2.7. The group ring of a cyclic p-group

Let us suppose that G is a cyclic group of order p. In this section, we wish to study the structure
theory of modules over Z,[G] that are finitely generated, free Z,-modules. From our study of modules
over A = Z,[T] (or representation theory over ), we are easily able to classify such modules up to
pseudo-isomorphism.

Let N € Z,|G] denote the norm element, and let X = Z,[G]/Ng, which is noncanonically isomor-

phic to the augmentation ideal I via the map x — (g — 1)x, for g € G a generator.

LEMMA 2.7.1. Let A be a finitely generated Z,[G)-module, where G is cyclic of order p. Then

there are s,t > 0 and a homomorphism
. t
P: A= XBZL,
with finite kernel and cokernel, and ker @ = 0 if and only if A is p-torsion free.

PROOF. We remark that for a given generator g of G, we have an isomorphism
v A/(o1) = Z[G]

determined by y(7') = g — 1. Any element of A generates a cyclic Z,|G|-module, which may then be
viewed as a quotient of A/(;). Since w; =T - w; o and o  is irreducible, we have A/(wy, f) is finite
for a power series f € A if f is not a unit times a product of a power of 7" and a power of @; o. This
leaves three possibilities for nontrivial p-torsion free quotients of A/(f), which are A/(f) = Z,[G],
A/(T) = Zp, and A/(wy ) = X, since y(w; o) = Ng. Therefore, the structure theorem for finitely
generated A-modules tells us that A is pseudo-isomorphic to a direct sum of copies of the latter two
Zp|G]-modules, Z, and X. O

REMARK 2.7.2. The Z,[G]-module Z,|G] is pseudo-isomorphic to X @ Z,. Explicitly, letting &

denote the augmentation map, we have
Ly|G] = X Zp, ar>((g—1)ae(a))
X®Z,— Zy[G), (x,b) —x+DbNg,

and both of these maps are injective with cokernel isomorphic to Z/pZ.

We now state the main result of the section.
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THEOREM 2.7.3. Let A be a finitely generated Z,|G|-module that is p-torsion free. Then there is
an isomorphism
¢:A—7,[G]" X DL,
of Zp|G)-modules for some r,s,t > 0.

PROOF. Since Z,[G] is Z,|G]|-projective, we also have that if B = Z,[G]" is the maximal Z,[G]-

free quotient of A, then setting A’ = ker(A — B), we have an isomorphism
A=A ®Z,G,

where A’ has no free Z,[G]-quotient. We may therefore assume that A itself has no free Z,[G|-quotient.

Consider the sequence

0—5A% 5 A 1A —0.

Since A is p-torsion free, we must have (IgA)® = 0, since there is an injective pseudo-isomorphism
. s t
V:A=X'0Z,

for some s,# > 0, and (IgX)° = 0, while IgZ, = 0. In particular, we have that A® 2 7 and there is
an injective pseudo-isomorphism from /A to X* for the above u, since IgX ~ X.

Let {xi,...,x,} be a minimal generating set of IGA as a Z,[G]-module. We note that Z,[G]x; is
1somorphic to a finite index submodule of X, and it is therefore a power IgX for some n. (Here, note
that pX € IX.) The map X — I, given by x — (g — 1)"x for a generator g € G, is an isomorphism, so
in fact we have Z,[Glx; = X.

If y € Z,|Glx; N Zp[G]x;, then by minimality we clearly must have
y € lgxiNIgx;
since Z,[G]x; = X has Igx; as its unique maximal improper submodule. We then have x} € Z,[G]x; and
x'; € Zp[Glx; with
y=(g—1)xi=(g—1)x],
which forces x; — x;- € (IgA)°. In other words, we have x; = x;, contradicting minimality. We therefore
have m = s and IA = I},
We now know that A fits in an exact sequence
0 Z A5 X =0,

which we claim splits. To see this, write X* = (x1,...,x;). Then z; = Ng%; is an element of Z;, and the
sequence splits if and only if z; € pZi7 for all i, since this means exactly that there exist y; € Z; with

zi = py; and therefore Ng(%; —y;) = 0, which tells us that (¥; —y;) = X. The Z,[G]-linear map taking
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X; to X; — y; then determines the splitting. If not, we have that some X; generates a direct summand of A

isomorphic to Z,[G], since z; (for some i) may be taken as part of a basis {z;,wa,...,w;} of Zi,, and
A= (X1, Ky Wayen,Wy) gZP[G]69<f1,...,)Zi_l,)fi_,_l,...7fs,W2,...,Wt>.

Since we have assumed that A has no Z,[G]-quotient, the latter cannot happen, so the sequence splits,

as desired. O

2.8. Eigenspaces

In this section, we suppose that A is a finite abelian group. For a fixed prime p, we consider the

group
A* =Hom(A,Q,”)

of p-adic characters of A. Let &' denote the Z,-algebra generated by the roots of unity of order dividing
the exponent of A, and let £ denote the quotient field of &'. For x € A*, we let 0, the Z,-algebra
generated by the values of y, and let £, denote its fraction field. Cearly, the ring &' contains 0.

What we shall call eigenspaces of a Z,|A]-module shall in general, in fact, be quotients. Note that
X € A" induces amap ¥ : O[A] — O, which restricts to a map Z,[A] = 0.

DEFINITION 2.8.1. Let A be an &'[A]-module, and let y € A*. We define the y-eigenspace of A as
AY =A ®ﬁ[A] 0,
where the map &'[A] — € in the tensor product is .

REMARK 2.8.2. If p1|A|, then the canonical map A — AY induces an isomorphism
{acA|da=wy(8)aforall § € A} =AY,

It is the former module that might more typically be called an eigenspace. It can be interpreted as the
A-invariant group of the twist A(y) of A that is A as an ¢-module but on which § € A acts as y(6)d

does on A. Our eigenspace AY is instead the A-coinvariant group of A(y).

NOTATION 2.8.3. For v € A*, set
ey= Y y(8)5 cE[A]
|A‘ 6€A
Note that
cey = y(0)ey
for every o € A, and in particular
O[Aley = Oey

as an O[A]-submodule of E[A].
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PROPOSITION 2.8.4. We have a canonical decomposition of rings and E|A]-modules

A= TT Eey.

yeA

, we similarly have a decomposition

O[A] = H Oey.
YEA*
PROOF. One need only remark that the ey, are mutually orthogonal idempotents that sum to 1, as

is a basic fact of character theory (in this case for a finitely generated abelian group). 0

The following lemma is useful to note.

LEMMA 2.8.5. Let y € A*. For any E[A]-module A (or O[A]-module A i
eyA.

PROOF. If a € eyA, then eya = a, as eq, is an idempotent. Conversely, if a € A("’), then

eya = Z v(8) '8a=a,
’A‘ 6€eA

as 6a = y(d)a. O

The following is a consequence of Proposition 2.8.4.

PROPOSITION 2.8.6. For every E[A]-module A, there is an internal direct sum decomposition

A @A"’.

WeA*

[A]-modules as well.
PROOF. We have
A~ AQu OIA 2 AQun D Oey = P AQppn Oey = P eyA R4 O1A] = P AY,
YEA* YEA* YEA* WEA*
with the second step being Proposition 2.8.4 and the last step following from Lemma 2.8.5. 0J

Eigenspaces of an ¢'|A]-module behave well under tensor products and homomorphism groups, as

seen in the following result.

LEMMA 2.8.7. Let A and B be O'[A]-modules with A = A* and B = BY for some x,y € A*. We
then have
A®sB=(A®sB)XY
and
Homg(A,B) = Homﬁ(A,B)fl"’.
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PROOF. Fora € A and b € B, we have
8(a®@b)=06(a)®6(b) =x(8)ar y(8)b=xy(d8) -a®b.
For ¢ € Homg (A, B), we have
(8-9)(a)=89(5'a) = w(8)p(x(8) 'a) = yx ' (8)¢(a).

We next consider a slightly different notion of eigenspaces, in this case for Z,[A]-modules.

DEFINITION 2.8.8. Let A be a Z,[A]-module, and let y € A*. The y-eigenspace AX) of A is defined
as

A =4 ®z,8) Ox»
where the map Z,[A] — O is given by J.

NOTATION 2.8.9. For y € A*, set
- 1 -
& =T Z TrEX/QP(x(S))S Le Zp[A],
| |6€A

where Trg, jq,: Ey — Q) denotes the trace map.

NOTATION 2.8.10. For a field E, let Gg denote its absolute Galois group, which is to say the Galois

group of the extension of E given by a fixed separable closure.

DEFINITION 2.8.11. We say that two p-adic characters x,y: A — @X are conjugate if there
exists 0 € G, such that y = coy.

REMARK 2.8.12. If ¥ and y are conjugate, then &y = 0.

REMARK 2.8.13. If A is also a Q,-vector space or p { |A|, then the canonical map &,A — A(%)

is an isomorphism. Note that while A%) has an &,-module structure, the Z,[A]-module &,A is only

endowed with such a structure when a choice of character y in the conjugacy class of ) is made.

Let X denote the set of conjugacy classes in A*. We let [x] denote the conjugacy class of y € A*.
We then have the following.

LEMMA 2.8.14. Let A be a Z,[A]-module, and let § € A*. We have
AW ®g, O = (A Rz, O)*.

, then we also have

If A is also a Q,-vector space or p{ |A

AW ®z, O = @ (A®z, 0)Y
velx]
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PROOF. For the first isomorphism, we merely note that
Al ®o, O=A ®ZP[A] exﬁx ®o, O=A ®Zp[A] exﬁ = (A ®z, ﬁ)%

Let Ay = A/ker x, which is a cyclic group, generated by an element we call J,. Note that y € A*
is conjugate to y if and only if y factors through Ay and there exists o € Gg, such that y(6y) =
0(x(6y))- Hence, the characters in [] are in one-to-one correspondence with the Gg,-conjugates of

x(8y). Let & = x(8y), and suppose that ® € Z,[X] is its minimal polynomial. We then have
02, 28] 052, )00 = 01X (000) = [T o)/ - §) =T
5/

where &’ runs over the Gg,-conjugates of &, and the composite map takes 1 ® & to &’ in the &'-

coordinate. Reinterpreting this, we have

ﬁ®Zp exﬁx g @ ewﬁ
velx]
as O[A]-modules, where the map takes 1 ® e, to ey in the y-coordinate. (Note that ey = oey if

Y = oy, if we let ¢ act on the coefficients of e,.) Therefore, we may conclude that

A% ®z, 0=A ®z, (A ex Oy ®z, 0= @ A ®z, () ey0 = EB (A ®z, o).
velxl velxl

PROPOSITION 2.8.15. For every Qp[A]-module A, and every 7, |A]-module A i

direct sum decomposition

A= AW

[x]ex
of Zp[A]-modules, where the sum is over the conjugacy classes in ¥.

PROOF. We define

D:A— P AW
[xlex
as the product of the surjective maps A — A ®z a] ¢y Oy that take a to a ® e,. We first show that ® is

an isomorphism after tensoring with &'. That is,
PRidg: ARz, 0~ P AW @y 0.
(xlex
By Lemma 2.8.14, the right-hand side is isomorphic to

D D “Aez,0)Y= DA 0)Y

(x]eX wely] yEA*
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under the map that takes (a®ey) ® 1 to (a® 1) ® ey,. The composite map is then the map that takes
a®1to (a®1)® ey, and this is an isomorphism by Proposition 2.8.6. Thus, we have that ® ® id is

an isomorphism, and as &' is a free Z,-module, we have that ® is an isomorphism. O

Evenif p||A

, we have a weaker direct sum decomposition of Z,[A]-modules.

NOTATION 2.8.16. Let T denote the set of maximal ideals of Z,[A].

REMARK 2.8.17. Every m € Y is the kernel of a composite map ¥ : Z,[A] LN/ N F,. Thus, T
may be identified with the set of equivalence classes of characters in A* under which two characters
are considered equivalent if the above compositions are Gy, -conjugate. We write y € mif y € A" lies

in the equivalence class corresponding to m.

The proof of the following is left to the reader. Perhaps the easiest way to think of it is that each
Ap 1s just AP) for p a p-adic character of the prime-to-p part of the group A.

PROPOSITION 2.8.18. For any Z,[A]-module A, there is a canonical direct sum decomposition

A= PAn

meY

We have AI(T{() ~ A for x € m, and ifptlA

Qp-vector space, then we have that

, then m = [x] and A, ~ AW forany y e m. IfAis a

An2 @ AW

[x]Cm






CHAPTER 3

Iwasawa theory

Throughout this chapter, F will denote a fixed number field, and we let p be a prime.

3.1. Z,-extensions
DEFINITION 3.1.1. A Galois extension F., of F is said to be a Z ,-extension if Gal(Fe/F) = Z,.

Fix a Zp-extension F., of F, and set I' = Gal(F../F). The fixed field of I'”" is a number field F,
with Gal(F,/F) = 7 /p"7Z. We set
[, =T/I7 =Gal(F,/F).
DEFINITION 3.1.2. The absolute Galois group of a field E is the Galois group Gg = Gal(E*P /E)

of a separable closure E*P of E over E.

For a field E of characteristic not p, let t,~ denote the group of p-power roots of unity in a separable
closure E*P of E.

DEFINITION 3.1.3. For a field E of characteristic not p, the p-adic cyclotomic character is the map
x: Gg — Z defined by 6(&) = {*(%) for all { € puy=.

Let us fix a primitive nth root of unity in Q for each n > 1, subject to the condition that ™ = {,
forall m > 1.

REMARK 3.1.4. For a number field F, the p-adic cyclotomic character ¥ : Gr — Z; induces an
injection of Gal(F (y~)/F) onto an open subgroup of Z . It is an isomorphism if F/ = Q.

It is easy to see that

(L+pZp) x tp-1(Zp) podd

(14+4Z) x (~1)  p=2,

Let g=pif pis odd and ¢ =4 if p = 2. Every element of 1+ ¢gZ, is a p-adic power of some

Z

I

X
p

topological generator u of 1+ gZ,, such as 1+ g, which is to say that the map that takes a € Z, to u®
is an isomorphism from Z, to 1+ gZ,. We therefore have

ZpxZ/(p—1)Z podd
T X 1)27. p=2.

I

(3.L1.1) Zy
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As a consequence, we have the following result.
LEMMA 3.1.5. Any open subgroup on; has a unique quotient isomorphic to Z, for any p.

PROOF. That the quotient of Z by its group of torsion elements is isomorphic to Z, follows from
(3.1.1). We then need only remark that any open subgroup of Z,, has the form p"Z,, for some n > 0, so
is itself isomorphic to Z,. O

Together, Remark 3.1.4 and Lemma 3.1.5 allow us to make the following definition.

DEFINITION 3.1.6. The cyclotomic Z,-extension Fey. of F is the unique subfield of F (u,=) that is

a Zp-extension of F.

In fact, if F is totally real, then its cyclotomic Z,-extension F¢y. will lie in the maximal totally real
subfield of F(1,~) (and therefore will equal it in the case that p = 2).

Next, we study ramification in Z,-extensions.

PROPOSITION 3.1.7. Suppose that v is a place of F not over p. Then v is unramified in any Z,-

extension F | F.

PROOF. The inertia subgroup of v in I = Gal(F./F) is a closed subgroup of I" and therefore equal
to I'?" for some n > 0, unless it is trivial. In the case that v is archimedean, only the latter case is
possible as an inertia group at v has order at most 2 in general. In general, in the former case, F;, is its
fixed field, and the completion of F, at a prime over v has a tamely, totally ramified Z,-extension that
is the completion of F... On the other hand, the completion of F; being a characteristic zero local field,

such an extension does not exist. ]

LEMMA 3.1.8. There exists a prime v over p in F and an n > 0 such that Fw / F,, is totally ramified

at v.

PROOF. By Proposition 3.1.7, no prime not over p ramifies in F../F, so if no primes over p ramify,
then F../F would be unramified everywhere. However, the Hilbert class field of F is of finite degree, so
this is not possible. That is, there exists a v over p such that that the inertia group at v in I" is nontrivial,

hence equal to some 7", O
In the case of the cyclotomic Z,-extension, we can say more.

PROPOSITION 3.1.9. Let Feyc be the cyclotomic Zy-extension of F. No finite prime splits com-
pletely in Foyc /F, and every prime over p is totally ramified in Feyc/F, for some n > 0.
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PROOF. If v split completely in Feyc/F, then it would also have to split completely in the extension
F(up=)/F(ug), since F(Up=) = Fou(lty), where g = p for p odd and g = 4 for p = 2. But this means
that F,(u,~) = F,(l44), which is to say that F,(,) contains [,=, which is impossible.

On the other hand, we know that @Cyc/ Q is totally ramified at p, so the resulting local extension
Qp.eye/Q) is totally ramified as well. But then the completion of F.yc at a prime above v is simply
the compositum F, - Q) cyc, and therefore its intersection with the maximal unramified extension of
Qp must be of finite degree over Q,. In particular, F, - Q, cyc/F, has an infinite inertia group, which
therefore must have the form I’ é’;c for some n > 0, where ey = Gal(Feye/F). O

We note the following interesting corollary.

COROLLARY 3.1.10. Let v be a prime of Feyc not lying above p. Suppose that E [ Feyc is a pro-p

extension in which it does not ramify. Then v splits completely in E | Fyc.

PROOF. Since F,cyc /F, is an unramified Zy-extension by Propositions 3.1.7 and 3.1.9, it is the
maximal unramified pro-p extension of F,. It follows that for any prime w of E lying over v, we must

have E,, = F, ¢y, since the Galois closure of E,, /F, is a pro-p extension of F, containing Feye. O

Finally, we consider the maximal number of independent Z,-extensions of F', which is to say the

Z,-rank of the Galois group of the maximal abelian V),-ramified extension of F.

PROPOSITION 3.1.11. Let F denote the compositum of all Z,-extensions of F. Then Gal(F /F) =
Z;,2+1+8, where 8 is the Leopoldt defect of F.

PROOF. This is a consequence of Theorem 1.5.7, since Proposition 3.1.7 tells us that the Z,-rank
of the maximal abelian V),.-ramified extension of F is the Z,-rank of Gal(F /F). O

3.2. Limits of class groups

Let F.. be a Z,-extension of F with I' = Gal(F../F). We define F, and I,, as before.
DEFINITION 3.2.1. We refer to A = Z,[I'] as the Iwasawa algebra of the extension F.,/F.

DEFINITION 3.2.2. A A-module, or module over the Iwasawa algebra, is also called an Iwasawa

module.

By definition, we have A = limZ,[I';]. Note that any Z,[I"]-module is automatically an Iwasawa
module, with A acting through the quotient map 7,: A — Z,[I',]. Therefore, given an inverse (resp.,
direct) system of Z,[I';]-modules M,, with respect to maps that are A-module homomorphisms, the

inverse (resp., direct) has the structure of a A-module.
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DEFINITION 3.2.3. Let F../F be a Zp-extension. For n > m > 0, let us set
Nom =Npg, /5, An = Am and  jum = jg, /5, Am — An.
With respect to the systems defined by these maps, we set

X =1imA, and A, =1limA,.
i i

TERMINOLOGY 3.2.4. The direct limit hﬂn Clg, contains A as its p-part and is called the class
group of F.

The maps N, , and j, ,, are Z,, [[',]-module homomorphisms, and so both X., and A. have canonical
structures of A-modules.

Recall that the Artin map sets up an isomorphism between A, and Gal(H, /F;), where H, is the
p-Hilbert class field of F;,. Under this identification, the norm map N, ,, becomes the map on Galois

groups that is restriction. We then have the following.

REMARK 3.2.5. Let E be an algebraic extension of F, and for a set of primes S of F, let Sg be
the set of primes of E lying above those in S. We will say that more simply that an extension of E is

S-ramified if it is Sg-ramified.

PROPOSITION 3.2.6. Let S be a set of primes of F. Let L, denote the maximal S-ramified abelian

pro-p extension of F, for n > 0 or n = oo, Then the inverse limit of restriction maps

Gal(Le./Feo) — lim Gal(Ly /Fy)
n
is an isomorphism of A-modules.

PROOE. Since L, /F, is an S-ramified abelian pro-p extension, so is L,Fw/Fw. Therefore, L, C L.
We claim that | J,, L, = Le. Let x € L. Then Fwo(x)/F is an S-ramified abelian p-extension. Let y be
a field generator of the Galois closure of F(x) as an extension of F. To show that x € L, for some n, it
therefore suffices to show that y € L,. Let m be such that F,(y) N Fo = F,,. Then F,(y) N Fo = F, as
well, and the restriction map

Gal(Fuo(y)/Fe) — Gal(F(y)/Fin)
is surjective, so Fy,(y)/F, is abelian.

Since Lo /Fe is S-ramified, and F.,/F is V)-ramified, we have that F,,(y)/Fy is SN V,-ramified. If
v is a place over p in F;, that is not in Sg,, then since Fu.(y)/F. is unramified over v, the same must be
true of F,(y)/F, for some n, and therefore y € L.

It now follows that the inverse limit of restriction maps

Gal(Le/Fe) — 1im Gal(Ly/Feo N Ly)
n
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is an isomorphism, and since | J,(Fe NL,) = Foo =, Fy,, we have that

lim Gal(L, /Fo NLy) — lim Gal(L,/F)
n n
is an isomorphism as well, as desired. O

COROLLARY 3.2.7. The inverse limit of Artin maps provides a canonical identification between

X and the Galois group of the maximal unramified abelian pro-p extension of F.
TERMINOLOGY 3.2.8. We call the A-module X., the unramified Iwasawa module.

REMARK 3.2.9. If K is an algebraic extension of (Q, we may speak of its primes as the valuations
on K extending the valuations of Q. To say that an extension L of K is unramified at a prime v is
exactly to say that every extension of v to a prime w of L is unramified in the sense that the extension
L,,/K, of completions is unramified, which is to say Galois with group restricting isomorphically to
the Galois group of the corresponding extension of residue fields. (If v is archimedean, this just means
that L,, = K,.)

More generally, we make the following definition.

DEFINITION 3.2.10. Let S be a set of primes of F'. The S-ramified Iwasawa module over F. is the

Galois group X.. 5 of the maximal S-ramified abelian pro-p extension of Fe.

Let us choose a topological generator y of I', which defines a unique continuous, Z,-linear iso-
morphism A = Zp[T] that takes y— 1 to T. Therefore, we may speak of characteristic ideals of A as

elements of Z,[T]. We have the following result on the structure of X...
PROPOSITION 3.2.11. The A-module X is finitely generated and torsion.

PROOF. Forn > m, set ¥, ,, =X, /5, in the notation of Theorem 1.3.14, which also provides exact

sequences fitting into commutative diagrams

an."‘l
kerX, ,, —— (An/)rp:n —— Ay — cokerXy ,, —— 0
n
[ J/Nn’,n ‘ l
Nn,m

ker%, , — (An)rpm A cokerX,,, — 0

n

of Z,[I'n)-modules for n’ > n. Let Iv(m) denote the inertia group at v in I'”", which can only be nontrivial
for v € V,, which do not split completely in F../F, and let

DFRas I U v
veV, (Fy)
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be the natural map given by inclusion and product. In the inverse limit over n, we obtain exact se-

quences
(3.2.1) kerE™ — (Xoo)ppn — Ay — cokerZ™ — 0.

Note that ker 2" is finitely generated over Z, and Ay, is finite. By Nakayama’s Lemma, we see that
X is a finitely generated A-module. Moreover, we see that (X. ) is of bounded Z,-rank for all
m. Were X. to have nontrivial A-rank, then since there would exist a pseudo-isomorphism from X.
to the direct sum M of A" and a torsion module, the ranks of (X..)p,» would necessarily have been

unbounded, since Apyn = Z,[I',], and
(Xeo ) ppm —> My

has finite cokernel. O

REMARK 3.2.12. If there exists a unique prime above p in F, and it is unsplit in F;,, then (3.2.1)
implies that the map (X.)p» — A, is an injection. If, moreover, p is totally ramified in F., then

(Xoo)ppm — Ay 18 an isomorphism for every m.
We have the following theorem of Iwasawa that was mentioned in the introduction.

THEOREM 3.2.13 (Iwasawa). Let A = A (Xo) and 4 = U (Xw). Then there exists v € Z such that

An| = pp”u—i—nl—kv
for all sufficiently large n.

PROOF. Let N,;: X — Ay, be the inverse limit of norm maps N, , for n' > n. Let us use Y, to
denote the kernel of N,, which is a A-submodule of X.. that is pseudo-isomorphic to X..

Fix m sufficiently large such that every prime over p that ramifies in F../F,, is totally ramified. In
particular, we have that N, is surjective. We consider n > m. Let S, be the set of primes (over p) in F;,
that ramify in F., and hence are totally ramified, and note that |S,| = |S,,| # 0 by Lemma 3.1.8. Then
the inertia group at v € S,, in I'?" is I'?" itself.

Let L, be the maximal unramified abelian pro-p extension of F;,, and let L. be the maximal
unramified abelian pro-p extension of F... We have X., = Gal(L./F.) and A, = Gal(L,/F,), so
Y, = Gal(Lw/L,F.). Let E be the maximal unramified p-extension of F; in L.. Since any v € S,
is totally ramified in F../F,, we have ENF., = F,. Since EF.,/F. is abelian, this tells us that E/F,
is abelian as well. Thus, E is equal to the maximal unramified abelian p-extension of F, in L.. Con-
sequently, Gal(L/L,) is topologically generated by the inertia groups Jv(") in Gal(Lw/F,) for primes
v € Sy, and Y, is the intersection of the latter group with Gal(L./F.), i.e., it consists of those elements

which restrict trivially to I
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In other words (for n = m), we have that Y, is topologically generated as a pro-p group by elements
g=07"" € Gal(L/F.), where ¢ € J™ and t € J{" for primes v,w € S, are such that o and 7 both
restrict to y”" for a fixed topological generator ¥ of I. We can compute the action of the element
Opm = f’:n(_)mfl y""i on g as follows:

n—m__ |

4 ; ; n—m
Onm-g= [] e =(gr)" TP " =o”
i=0
As the elements 6”" " 77P" " topologically generate Y,,, this implies that O ¥ = Y.
Since A, = X /Y,, we conclude that

|An| = ’Xm/Ym| ’ |Ym/wn,mYm|

for all n > m. Since Y}, is pseudo-isomorphic to Xe., we have A = A (¥,,) and u = p(Y,y,). Since |Xeo /Yy |

is a constant power of p, Theorem 2.4.7 yields the result. ([l

Finally, we compare X, and A.

PROPOSITION 3.2.14. The A-modules a(X..) and AY, are pseudo-isomorphic, and in particular AY,

is finitely generated and A-torsion. Moreover, AY, has no nonzero finite A-submodules.

PROOF. As in the proof of Theorem 3.2.13, we let ¥, denote the kernel of the inverse limit of norm
maps N, : Xeo — A, for each n > 0. We showed that there exists m > 0 sufficiently large so that N, is
surjective and @y Y, =Y, for all n > m. We consider a directed system of short exact sequences with

morphisms as in the following diagram

0 —— Y/ 0nm¥ — Xeo/ Op ¥ —— Xoo/Yip —— 0

J{ @y l @y J/ @y

0—b Ym/a)n/’mYm — Xm/a)n/7m1/,n N Xw/Ym — 50
for n’ > n > m. Since Xw /Yy, is a finite A-module, in the direct limit we obtain isomorphisms
a(Yn)" =l Y/ @p¥on = 0 Xeo/ @ n¥n = lim Ay = Ao,
n n n

Since Y,, injects into X.. with finite cokernel, Proposition 2.6.10 yields that the natural map a(Xw) —
a.(Y,,) is an injective pseudo-isomorphism. Since AY, = o/(Y,,), the final statement follows from Theo-
rem 2.6.13. 0J

Again noting Theorem 2.6.13, we have the following corollary.

COROLLARY 3.2.15. The A-module A, is is pseudo-isomorphic to X%, and in particular, X.. and

AY have the same A and [-invariants.
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We end with a still open conjecture of Iwasawa, which is known in the case of abelian fields by

work of Ferrero-Washington: see Theorem 6.2.1.

CONJECTURE 3.2.16 (Iwasawa’s p-conjecture). If F., is the cyclotomic Zy-extension Feye of F,
then [ (Xw) = 0.

We will also have cause to study two modules related to X. and A.
DEFINITION 3.2.17. Let F../F be a Z,-extension. For § =V, let us set A;, = Af, 5. We then define
X, = @A; and Al = h_n}A;
n n
with respect to the maps N, ,, and j, ,, on these groups.

DEFINITION 3.2.18. We call X/, the completely split Iwasawa module, while A._ is the p-part of
the p-class group l‘ngn Clg, v, of Fe.

We summarize without proof the results for X., and A.. that also hold for X/, and A/, by much the

same arguments.

PROPOSITION 3.2.19. The A-module X., is finitely generated and torsion. It is canonically isomor-
phic via an inverse limit of Artin maps to the Galois group of the maximal unramified abelian pro-p
extension of F. in which every prime over p splits completely. Moreover, (X.,)! is pseudo-isomorphic

to (AL)Y, and the latter module has no nonzero finite A-submodules.

For the cyclotomic Z,-extension, we note that we could just have well have chosen any set of

primes containing V, in defining X_,.
PROPOSITION 3.2.20. Let F../F be the cyclotomic Z,-extension. Then the natural maps

X, — limAp, s and Al — lim A, s
n n

are respectively an isomorphism and a surjective pseudo-isomorphism for any finite set S of primes of

F containing V.
3.3. The p-ramified Iwasawa module

In this section, we focus for simplicity on the case that § = V)., though there is no theoretical

obstruction to considering a larger finite set. We make the following definition.
DEFINITION 3.3.1. Let F.,/F be a Z,-extension. Let X,, = %Fmvpm for n > 0, and let
Xoo = l&n Xy
n

be the V),.-ramified Iwasawa module, which we refer to as the p-ramified Iwasawa module.
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Consider the following weakening of the Leopoldt conjecture.

CONJECTURE 3.3.2 (Weak Leopoldt conjecture). Let F.,/F be a Z,-extension. Then the Leopoldt
defects 6 (F,) are bounded in n > 0.

We will abbreviate §(F,) by J,.

The weak Leopoldt conjecture has the following consequence for the p-ramified Iwasawa module.

THEOREM 3.3.3. Let F../F be a Zp-extension for which the weak Leopoldt conjecture holds. Then
rankp Xo = r2(F).
PROOEF. Let M., be such that X. = Gal(M../F.), and define M,, for n > 0 by
X, = Gal(M, /F,).
We then have that (X.)r, = Gal(M, /F.), and therefore we have an exact sequence
0= (Xeo)r, > X =T, —0.

Since any archimedean place splits completely in a Z,-extension, we have r,(F,) = p"r,(F) and
hence rankz, X, = p"'r (F)+ 1+ 6,. It follows that rankzp(ffoo)rn = p"ry(F) + 6, for all n. Since 9§,

is bounded in n, the result then follows from Proposition 2.4.12. O

We prove the weak Leopoldt conjecture in the case of the cyclotomic Z,-extension. Let &, = &F,

for each n > 0, and let %, ,, be the p-completion of & ;n , for any prime v of F,.

THEOREM 3.3.4. Suppose that F., /F is the cyclotomic Z,-extension of F. Then the weak Leopoldt
conjecture holds for F../F. In fact, if F contains W, then 8, < A(X.,) for every n.

PROOF. Assume first that ' contains ). Let r = rankZp &, and choose units such that oy, ..., Q, €
ﬁ;ﬂ generate &, modulo its torsion subgroup as a Z,-module and such that the images of o5, ,1,...,
under

wién— B Uy
veV, (Fy)
generate 1,(&,) modulo its torsion subgroup.

Let p* be the exponent of the p-power torsion in 1,(&,). Then, for each 1 < i < §,, there exist
a;j € Zy for each 9, +1 < j < r such that

r

(o) [T w(o}”)

has trivial p*th power. Fix [ > 1. For every i and j as above, choose b; j € Z such that

bij = 4a;jj mod plZp,
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and then set

It follows that ln(ﬁi)pk € ln(@@n)l’w for each i.

Since a,..., 0, form a Z,-linear basis of the maximal p-torsion-free quotient of &, the images
of the elements fi,...,Bs, in F,*/F," l generate a subgroup isomorphic to (Z/p'Z)%. By Kummer
theory, the group FX NF2? is exactly ,upoanXp , and since the closed subgroup of &, generated by
Bi,...,Bs, is p-torsion-free, the images of these elements generate a subgroup of ./ F2P [ that is also
isomorphic to (Z/p'Z)%.

Now consider

K= Fuf 11/117],‘__,[3;}1/10’)7

!
and note that Gal(K /F..) is isomorphic to (Z/p'Z)%. Since ln(ﬁi)l’k € ln(@@n)ka and ﬁil/ P is a p'*kth
k
root of B/, we have that every prime of v over p splits completely in this extension. Since Gal(K /F..)

is already a quotient of X, it is then a quotient of X_.. In other words, we have surjections
X, — (2/p'2)>

for every [. Since X, is A-torsion, Proposition 2.2.13 tells us that §, < A(X7,).
Now, if F does not contain i, we still have 8 (F,) < 6(F,(l2),)), and since the latter numbers are

bounded, we have the result. ]

We next study sequences into which X.. fits. For this, we need to define several more A-modules.

DEFINITION 3.3.5. Let F. be the cyclotomic Z,-extension of F', and let S = V... We let

b =1im &, and &, = l%n &F, 5-

n

where the inverse limits are taken under norm maps. Letting %, , denote the pro-p-completion of & ;n ,
forv € S(F,), we set

%007\} = lé]’l] %,V and 9\007\} == lérll Fl’l>,<V7
n n

for v € S(F.), with the inverse limits taken with respect to the local norm maps. Set

U= [] Uop and Foo= [] Py
vES(Fw) VvES(Foo)

Let 1., and 1., denote the canonical maps

oo Ero— Yoo and 1,: & — Fu.
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PROPOSITION 3.3.6. Let F.. be the cyclotomic Zy-extension of F. Assume, moreover, that p is odd
or F has no real places. We have a map of canonical exact sequences of A-modules

lo

0 —— kerie oo U, Xeo Xoo 0

N

0 — kert, & — Fu, Xoo X 0.

PROOF. This is simply the inverse limit of the sequences of Theorem 1.5.4 for the fields F;,, which
remains exact as the modules in question are profinite. The assumptions are simply to insure that the
number of terms in the direct sum of local unit or multiplicative groups is finite: otherwise, one need

merely replace the direct sums by inverse limits of direct sums at the finite level. 0

DEFINITION 3.3.7. We set
A/M = lllll AFn Voo -
. 4

REMARK 3.3.8. An element y € I" acts on H' (G5, 1p~) through its action on cocycles: i.e., for
acocycle f, y€l', and 0 € Grg we have

(v (o) =7 f(7 'o9),

where ¥ is any lift of y to Grs. Giving this cohomology group the discrete topology, with respect to
which it is p-power torsion, we have that I" acts continuously and Z,-linearly, and hence we obtain a

A-action.
Kummer theory allows us to prove the following proposition.

PROPOSITION 3.3.9. Let F../F be the cyclotomic Z,-extension, and let S =V e. There is canonical

map of exact sequences

1 —— OF ®2,Qp/Z, —— H (Gp_ 5, lp=) — A —— 0

[ |

! Op. s@2Qp/Zp —— H' (G5, lp=) — ALy —— 0

of A-modules.
PROOF. Recall from Theorem 1.4.5 that we have exact sequences
1= O 5/ 05/ = H' (Gr,s,1p) = AL [p"] = 0,
where A}, = Af, 5. The direct limit as n heads towards infinity yields

1= O s/ 05" — H'(Gp.s, 1) — AL[p™] = 0.
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For any abelian group B, with respect to the maps B/p™B — B/p™ !B induced by multiplication by

p, we have

. ~ .1 ~

th/me =B®y (hg p_mZ/Z> = B®zQp/Zp,

m m
where the maps are the natural inclusion maps on the right-hand side of the middle term. Applying this
to B= 0} and noting that

AL =lim AL [p"]
i
since A/ is p-power torsion, we have the lower exact sequence. (Note that this did not require F., to be
the cyclotomic Z,-extension).
Now, note that H' (GF..s, Mp=) is isomorphic via Kummer theory to the direct limit of the groups

Bnm/ F, P, where PBn,m is the subgroup of x € F, such that xOF, s = a”” for some fractional ideal a
of OF, s. We then have maps

%)n,m/FnXpm — Ay [p"], x> [a]
where [a]’ denotes the class of a in A}, of which the map
0': H'(Gr, s, p~) — AL
is the direct limit. Given any x € %, ;. note that there exists n’ > n independent of x such that

xOF, = 67" for some fractional ideal b of & F, since every prime over p is totally ramified in Fe. /F; for

sufficiently large . We then have a map
Brn F;7" = Aglp™),  xr [0,
In this way, we obtain in the direct limit a map
6: H' (Gr_ s, lp~) — Awo

which is 8’ after composing with the natural projection A. — A’,, which implies that the diagram in
the statement of the proposition commutes.
We need only verify exactness in the upper sequence in the statement of the proposition. The kernel

of 6 is identified by Kummer theory with exactly those
x®@p mMeF;RQ,/Z,
such that xOF, is the p™th power of a principal ideal (z), which is to say that
x@p M=x " @p e O @7Q,/7,.

Moreover, if b € A, then b € A [p™] for some m > 1, and then b is the image of some element
b, € A,[p™] by definition of the direct limit. We have then that bﬁm = xOF, for some x € F,, and so
0(x® p~™) = [b]. Hence, 0 is surjective. O
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COROLLARY 3.3.10. Let F../F be the cyclotomic Z,-extension, and let S = Vjo. Then there is a

canonical exact sequence
1= 0F ®2Q,/Z, — OF (R7,Qp/Z, 8 A —AL =0
of A-modules.

PROOF. This follows from Proposition 3.3.9 via the snake lemma. 0J

DEFINITION 3.3.11. Let M be a Z,[Gg|-module for a field E of characteristic not p. For i € Z, the
ith Tate twist of M is the Z,[Gg|-module M (i) that is M as a Z,-module, but on which G acts via the

new action -; given by
c-im=y(c)om

foroce Ggandme M.

EXAMPLE 3.3.12. Given a field E of characteristic not p, a choice of compatible system {,» of
primitive p"th roots of unity in a separable closure, i.e., such that { 5 w1 = Cpn for each n > 1, gives rise

to isomorphisms
Zp(1) 1>@Hp”7 a = (Cpn)n,
n
Q/Zy(1) S te, e
of Z,|Gg]-modules.

REMARK 3.3.13. The Tate twist Z,(i) for i € Z may be viewed as a A-module that is isomorphic
to Z, as a Z,-module, and on which y € I' = Gal(F../F) acts by x(y)’, where x: I — Z, is the
homomorphism induced by the cyclotomic character. More generally, if B is any A-module, then we
may speak of its Tate twist B(i) = B®z, Z,(i), which is a new A-module that is B with a modified
action of I" given by y-;b = x(y)'vb.

COROLLARY 3.3.14. Suppose that [, C F and F../F is the cyclotomic Z,-extension. Then we

have an exact sequence
0—AL(l) = X — Homg, (OF ®@7zZ,,Z,(1)) =0
of finitely generated A-modules.
PROOF. By assumption, we have (- C F... Hence, we have

H' (GFOO,Sa.up"") = Homcts(%wa“p‘”) = x;/o(l)
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Taking the Tate twist of the Pontryagin dual of the sequence of Proposition 3.3.9, we obtain an exact
sequence

0—AL(1) = X — Homg (Of ®7Qp/Zp, ty-) — 0.
The result now follows from the following calculation for an abelian group B:
Homgz, (B®z Qp/Zp,Qp/Zp) =Homy, (B®z Ly 27, Qp/Lp,Qp/Lp)
= HOI'IIZP (B X7z Zp> HOIIIZP (QP/ZP> @P/ZP))
= HomZp (B Xz ZP7 ZP)a

where in the second-to-last step we have used the adjointness of Hom and ®. O

3.4. CM fields

In this subsection, we shall consider the behavior of inverse and direct limits of p-parts of class
groups in the cyclotomic Z,-extension F, of F in the case that F' is a CM field. We remark that F is
itself a CM field, and for the most part, we could take F.. to be any CM Z,-extension of F in this section
(though conjecturally, as we shall see later, there no others). We assume that p is odd throughout this

subsection.

PROPOSITION 3.4.1. The natural maps
Jn A, — AL
are injective for all n. Moreover, the natural maps
N, :Xo — A,
are all surjective.
PROOF. The second statement is easy, since the cokernel of N, is isomorphic as a A-module the
maximal unramified quotient of ['?", and I has trivial minus part.
For the first statement, it suffices to show that j,\, ,: A, — A, is injective for each n. Let G =

Gal(F,+1/F,), and let 0, denote the ring of integers of F,. As the maps in Proposition 1.3.5 are easily

seen to be Galois equivariant, we have that ker j, _, ; , is isomorphic to a submodule of H (G, ﬁnfr )

Let u(F,) denote the group of p-power roots of unity in F, for each n. The exact sequence
l— .u(Fn—H) — ﬁ;f-@-l - ﬁ;_g_l/u(Fn—H) — 1
of Zp|Gal(F,/F,")]-modules, gives rise to a long exact sequence in Tate cohomology

= H(G, O 1 u(Fut1)) — H' (G, u(Fy1)) — H' (G, O, 1) — H'(G, O /u(Faug1)) = -+,

also of Z,[Gal(F,/F,")]-modules, so it remains exact after taking minus parts.
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Now, for any Z,[Gal(F,+1/F,")]-module A, we have a canonical isomorphism
-1 -~ - ~ p7l -
A7Y(G.A)” = H'(G,A)” ©2,G=H'(G,A)

of Zp|Gal(F,/F,")]-modules, as Gal(F,/F,") acts trivially on G (as it acts by lifting and conjugating).
Since H'(G, 0., | /1(Fyy1))” is a p-group that is a subquotient of (&%, /p(Fu41))~ for i =0,—1,

and the latter group has trivial p-part, we have that there is an isomorphism
If]il (G7 “(Fn-i-l))i l> Hl (G7 ﬁnXJrl)i'

Note that p(F,+1)” = u(F,). The map Ng: (F,+1) — 1(F,+1) induced by the norm element is given
by raising to the pth power so has ker(Ng) = u,(F), while Igu(Fy+1) = Up(F), so we have

A (Ghu(Fn+1))_ =0,
finishing the proof. O

We also have the following fact regarding X, .
PROPOSITION 3.4.2. The A-module X_, has no nonzero finite A-submodules.

PROOF. Let M be a finite A-submodule of X_. Since M is finite, there exists m > 0 such that
M — Mpym is an isomorphism, which is to say that IP" acts trivially on M. Let x € M, and suppose
that x is an element of order p in M. Set x, = N,(x). Then x, # O for sufficiently large n, which we

may take be at least m. For such an n, note that j,1 ,(x,) # 0 by Proposition 3.4.1. We also have

jn—i—l,n(xn) = jn—i—Ln(Nn—i-l,n(xn—H)) = PXn+1

by the triviality of the action of I'”" on M. In particular, px,,; # 0, whch forces px # 0, contradicting

the existence of x. Hence M = 0. ]
Note that 4 (Xe) = (X)) +p(X5) and A (Xoo) = A (X)) + A (X)), since Xoo = X DX,

PROPOSITION 3.4.3. Suppose that i, C F. Then u(X.) =0 if and only if u(X; ) =0.

[ are bounded in
n. Since N, 1s surjective, the p-ranks of the A, are then bounded as well. By the reflection theorem,
the p-ranks of the A, are then bounded, as r,(A;}) < r,(A, )+ 1. In turn, this implies that the p-ranks

PROOF. If u(X;) =0, then Lemma 2.4.10 tells us that the p-ranks of the (X.)

of the (Xoo)ffpn are bounded (since the kernel to A, has p-rank less than or equal to the number of
ramified primes minus 1 in F../F,, and this number is bounded in n). Again applying Lemma 2.4.10,

we have that p(X;) = 0. O

CONJECTURE 3.4.4 (Greenberg). The Iwasawa module X is finite.
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REMARK 3.4.5. Greenberg’s conjecture means exactly that A (X.') = u (X)) = 0. Therefore, under
the assumption of Iwasawa’s p-conjecture, Greenberg’s conjecture is equivalent to the statement that
A(XE)=0.

PROPOSITION 3.4.6. Greenberg’s conjecture holds if and only if Af, = 0.

PROOF. This is an immediate consequence of Corollary 3.2.15, since (AJ)Y has no finite A-

submodules and hence can be finite if and only if it is zero. 0

PROPOSITION 3.4.7. Suppose that U, C F. We have an isomorphism
(A2)" (1) = X
and an exact sequence
0— (AL)Y(1) = X5 = Homg, (O ©zZp,Zy(1)) = 0.
In particular, Greenberg’s conjecture implies that
X = Homg, (Of ®@zZp,Zp(1)).
PROOF. Dirichlet’s unit theorem tells us that
O, @zLp = (0 @zLp) X Wy
as Zp|Gal(F /F*)]-modules. We have
HOInZ,,(ﬁE,O ®z Lp,Lp(1))” = HomZ,,(ﬁ;“; ®z Lp, Lp(1)),

and
Homgz, (0f ®z Zp,Zp(1))" = Homgz, (ty=,Zy(1)) = 0.
The first statement is then a consequence of Corollary 3.3.14, and the second is then a consequence of

Proposition 3.4.6. 0J

COROLLARY 3.4.8. The finitely generated, A-torsion modules (X3 )'(1) and X1 are pseudo-

isomorphic.
PROOF. This is an immediate consequence of Proposition 3.4.7 and Corollary 3.2.15. 0J

To obtain even finer information, we can pass to eigenspaces.

COROLLARY 3.4.9. Let F be totally real, let ¥ : GF — pr be a finite odd character of prime-to-p
order, and let E be an abelian extension of F of degree prime to p containing Fy(l,). Considering

Iwasawa modules for the cyclotomic Zp-extension E.,/E, we have

20D = (a2 (1) = (xE)' (1)
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as A|Gal(E /F)]-modules.

REMARK 3.4.10. In Corollary 3.4.9, the Iwasawa modules in question, X, A, and X., have an

action of Gal(E /F) that commutes with the A-action, since
Gal(E-./F) = Gal(F../F) x Gal(E /F)
in that E.,/F is abelian and Gal(E /F) has prime-to-p order.

3.5. Kida’s formula

Suppose that F is a number field and E is a cyclic extension with Galois group G. The exact
sequence of Theorem 1.3.14 is not quite canonical as written, since one of the maps depends on a

choice of generator of G, but it becomes canonical when written in the form
0 — ker jg/r ®7,G — H ' (G,00) = If /Ir 2,G — CIF / ji /¢ (Clp) ®7,G

— Op [Ng/pOyp —kerZgp — (Clg)g ﬁE/—F—> Clr — cokerXy/p — 0,
which is to say that the map
CIZ / jg/r(Clp) ®7,G — OF [Ngp Of
of Remark 1.3.15 is canonical, noting that there is a canonical isomorphism
H'(G,A)®2,G=HA"(G,A)

for any Z[G]-module A. Moreover, if E is Galois over Fy C F, the maps in the above sequence are all
Gal(F / Fp)-equivariant.

Suppose now that we consider the cyclotomic Z,-extensions F.,/F and E.,/F. Then we may
consider the inverse limit of the above exact sequences for the extensions E,/F,, and we obtain the
following result, in which we distinguish Iwasawa modules over F.. and E. by writing them in the
notation of functions of the base field; e.g., Xo(E) is the Galois group of the maximal unramified

abelian pro-p extension of E.

THEOREM 3.5.1. Let E /F be a cyclic of prime power order Galois extension of number fields with
G = Gal(E/F). Let F. denote the cyclotomic extension of F, and let E.. = EF. be the cyclotomic
Zp-extension of E. We suppose that ENF., = F, so we have G = Gal(Ew /F..). Let

Joo: Xeo(F) = Xoo(E)©
denote the direct limit of the maps jg, r,. Forv € V(F), let I, denote the inertia group of v in G. Let

Y: P L—G
veV (F.)
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denote the product of the inclusion maps. We then have a canonical exact sequence of A-modules:
0 = ke jou®7,G = H™ (G, Ew(E)) = lim If, /15, ©7,G — coker ju ©7,G
n
— H%(G,E0(E)) = kerZe — Xeo(E)G — Xoo(F) — cokerZe, — 0.

If F is a CM field and p is odd, then E is also CM, and the sequence of Theorem 3.5.1 is

Gal(F /FT)-equivariant. Taking minus parts, we are able to obtain the following.

LEMMA 3.5.2. Let E/F be a Galois extension of CM fields with G = Gal(E /F) = 7/ pZ, for p
odd. Suppose that L(X,(F)) =0. Let 6 =1 if u, C F and 0 otherwise. Let T denote the set of
primes of F that split in Fo /F, ramify in Ew/Fe, and do not lie over p. Then the Herbrand quotient
h(XZ (E)) exists and equals p®~\T|. Moroever, w(Xz (E)) = 0.

PROOF. Note that G = G* and &5 (E) = Z,(1)?, so
A'(G,6.(E))” = A'(G,&, (E)) = A'(G,Z,(1))°.

One checks immediately that #%(G,Z,(1)) = u, and H~1(G,Z,(1)) = 0. In particular j.. is injective
on minus parts.

We remark first that / gn /I, is generated by the classes of the ramified primes of E,, that are ramified
over F,, and is a direct sum of copies of Z/pZ, one for each such prime. Now, a norm compatible
sequence of nontrivial images of primes in the Ign /IF, as n varies must consist of primes above p, for
a prime ideal not over p in E,, is inert in E, | /E, for large enough n, and then therefore is not a norm
from the extension. On the other hand, those above p are totally ramified in E, | /E, for large enough
n, so do form part of a unique norm compatible sequence. We therefore have that

limIg /I, = €D .
W

veV,(F.)

Since G is of order p, we have either I, = G or I, = 0 if v is a prime of F... We note that I, =0 if
u € Vy+ does not split in F.,/F." and v lies above u while (1, &1,)~ = I, if u splits into v and v'. Noting
also that G~ = 0, we obtain an exact sequence
(3.5.1) 0= P G~ (X5 (E)/ ju(Xa (F)) = 1l - @G — X5 (E) — X (F) =0,

veS, ves

where S denotes the set of primes of F! that split in F../F. and ramify in E./F., and S, C S is the
subset of primes over p.

The exact sequence (3.5.1) tells us that u((X; (E))g) = 0, since u(X5 (F)) = 0. But if Ag is
finitely generated over Z,, then A is finitely generated over Z,[G], and hence over Z,, since G is finite.
Therefore, we have u (X, (E)) = 0.
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Since j: X2 (F) — X5 (E)Y is injective and N, : X (E) — X (F) is surjective, we have

o}

coker j; = =% — (9(G, X2 (E)),

ker N = ker(XZ (E)G ~% X2 (E)0) = A~ 1(G, X2 (E)).

Therefore, we have

- | coker j. | SesolsT| _ 6
h(X_ (E)):WZPISPH N \:p 7|

O

We are now ready to prove Kida’s formula. Kida’s formula may be thought of as an analogue of
the Riemann-Hurwitz formula, which describes the growth of genus of Riemann surfaces in branched

covers.

THEOREM 3.5.3 (Kida). Let p be an odd prime, and let E | F be a finite p-extension of CM-number
fields. Let E., (resp., F.) be the cyclotomic Z,-extension of E (resp., F), and suppose that ENF,. =F.
Assume that W(X; (F)) =0. Then u(X; (E)) =0, and we have

AXS(E) =8 =[E:FIAXS(F)—=8)+ Y (h]-1),

weQf

where 6 =1 if i, C F and 0 otherwise,
Qp ={weV(EL) =V, (EL) | wsplits in Ex/EL },
and 1, is the ramification group of w in Gal(E} /F.}).

PROOF. First, we reduce the result to cyclic groups of order p by induction on the order of G =
Gal(E /F1) = Gal(E/F). Let K be an intermediate field in E/F, let G’ = Gal(K/F), and let G" =
Gal(E /K) (which can be taken to be of order p). For v € Vy+, let I}, denote the ramification group of v
in G', and for w € Vg4, let I}] denote the ramification group of w in G”. The statement on -invariants

then follows immediately by induction and Lemma 3.5.2. Then, by induction, we have

A(X (E)) =6 = [E: K](A (X, (K)) = &) + % (51 =1)

= [E:K]([K: FIAXZ(F) = 8)+ ¥ (K1-1)+ ¥ (I/1-1)

veQk weQE

=[E:FIAXS(F)=8)+[E:K] )} (ILI-1+ ) (IK]-1).

veQk weQE
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For any v € Qg and w € Qg lying above v, Corollary 3.1.10 tells us that [G” : I!)] is the number of

primes of Qf lying above v. We then have
E:K] ), (LI-1)=I|6" ) (6" L] (5| -1)
veQk weQE
= ) (nl=I)=Y (n/-1D- Y (-1,

weQE weQE weQE
finishing the inductive step.
Now, we are reduced to the case that [E : F] = p. Note that in this case, a prime w € Qf is either
totally ramified (of degree p) or completely split in E/F, so
Y (=)=} (p-1)=(p-DIT],
weQE veT
where T is, as in Lemma 3.5.2, the set of primes of Qf that ramify in E;f /F,7. By Proposition 3.4.2
and the fact that u (X (E)) = 0, we have that X (E) is free of finite rank over Z,,. It is also a Z,[G]-
module, and therefore
X, (E) = Z,[G)" & X° O L),

for some r,s,¢. It follows immediately that

AXS(E))=pr+(p—1)s+i=pr+i)+(p—1)(s—1).
We compute, under these isomorphisms

X5 (E)° = (Ng) ®Z, and NgX.(E)= (Ng) & (pZp)'

X, (E)[Ng]=X"®X® and IGX,(E)=X"®(cX)’,

SO

r—s

_ |A°(G.X: (E))
A71(G. X2 (E))]

h(Xs (E))

By Lemma 3.5.2, we therefore have that

s—t=|T|—0.
One sees immediately from Theorem 3.5.1 that the inverse limit of norm maps
Xo(E)g — X (F)
is a pseudo-isomorphism. We then have that
A(Xo (F)) = AM(X5 (E)g) = rankg, (X (E)g) = r+1.
It follows that

A(Xz (E)) =8 = pA(Xo (F) +(p = D(IT| = 8) =& = p(A (X (F)) = 8) + (p— DT,



finishing the proof.
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CHAPTER 4

Cyclotomic fields

4.1. Dirichlet L-functions

In this section, we summarize, largely without proof, various results regarding L-functions of

Dirichlet characters.

DEFINITION 4.1.1. A multiplicative function }: Z — C is called a Dirichlet character if it is
periodic of some period n > 1 and x(a) # 0 for a € Z if and only if (a,n) = 1. The integer n is called
the modulus of x.

EXAMPLE 4.1.2. There is a unique Dirichlet character 1 which has value 1 at every a € Z, and it

is known as the trivial character.

DEFINITION 4.1.3.

a. The conductor f, of a Dirichlet character y is the smallest integer f dividing its period such that
there exists a Dirichlet character y of modulus f with ) (a) = y(a) for all a € Z with (a,n) = 1.

b. We say that a Dirichlet character is primitive if its conductor equals its modulus.

DEFINITION 4.1.4. We say that a Dirichlet character  is even (resp., odd) if x(—1) =1 (resp.,
x(=1)=-1)

Every character ¢: (Z/nZ)* — C* gives rise to a Dirichlet character y: Z — C of period n with
x(a) = ¢(a (mod n)) for a € Z with (a,n) = 1. The resulting character ) has conductor f, where f is
minimal such that ¢ factors through (Z/fZ)*.

DEFINITION 4.1.5. Let ¢: (Z/nZ)* — C*, and suppose that the induced Dirichlet character has
conductor f. The primitive Dirichlet character attached to ¢ is the primitive Dirichlet character of
conductor f that satisfies ¢(a) = x(d’) for a € Z, (a,f) = 1, where d’ € Z is any integer with a’ =
amod f and (d',n) = 1.

Let F/Q be an abelian field, and let n > 1 be such that F C Q(u,). The cyclotomic character then
allows us to identify Gal(F /Q) with a quotient of (Z/nZ)*.
93
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NOTATION 4.1.6. The set X (F) of primitive Dirichlet characters of F C Q(uy) consists of the

primitive characters of conductor dividing n attached to characters of (Z/nZ)* that factor through

Gal(F Q).

REMARK 4.1.7. A Dirichlet character y € X (F) is even if and only if the associated character on
Gal(F/Q) is even.

To any Dirichlet character, we can attach an L-series.

DEFINITION 4.1.8. Let x be a Dirichlet character. The Dirichlet L-series attached to x is the
complex-valued function on s € C with Res > 1 defined by

L(x.s) = i"li”)

EXAMPLE 4.1.9. For y = 1, one has L(1,s) = {(s), the Riemann {-function.

We note that Dirichlet L-series have Euler product expansions.

PROPOSITION 4.1.10. One has

L= ] —

p prime 1 _X(p)pis
forall s € C with Res > 1.

THEOREM 4.1.11. The L-series L(),s) has a meromorphic continuation to all of C that is analytic
if fy > 1, while {(s) is holomorphic aside from a simple pole at s = 1 with residue 1.

DEFINITION 4.1.12. The Dirichlet L-function L(x,s) of a Dirichlet character y is the meromorphic

continuation of the L-series L(,s) to C.
DEFINITION 4.1.13. The I'-function is the unique meromorphic function on C that satisfies
['(s)= /Owts_le_tdt
for all s € C with Res > 0 and
[(s+1)=sI(s)

for all s for which it is defined.

REMARK 4.1.14. The I'-function has poles, which are all simple, at exactly the nonpositive inte-

gers. It also satisfies I'(n) = (n— 1)! for any positive integer n.

DEFINITION 4.1.15. The Gauss sum attached to a Dirichlet character ¥ of modulus # is the value

T(x) = Zn‘,lx(akz’”"/ ".

a=
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DEFINITION 4.1.16. For a Dirichlet character y, we let } denote its complex conjugate, which
satisfies Y (a) = x(a) for all a € Z.

We mention a couple of basic lemmas regarding Gauss sums that will be of use.

LEMMA 4.1.17. Let ) be a primitive Dirichlet character. Then we have

fx .
(%) =) x(a)e™
forall b e Z.

PROOF. If x(b) = 0, then setting d = (b, f;) and m = d~' f,,, we have

f
Z)—C(a)eZEiab/fl _ Z Z a+mc 27riab/f%7

and

for all a. If % (b) # 0, then

fx .
2(b)e(x) = Y xlab™ ") x,
a=1
which gives the desired equality upon reordering the sum. 0

LEMMA 4.1.18. For a primitive Dirichlet character X, we have

()| = 1y

PROOF. Note that T(x) = x(—1)7()). We then have

() = 2(=1) ) x(@)7(R)e*™ /s,

and by Lemma 4.1.17, this equals

J; f
_1) ZX (Zx Z(b)ezm“b/f%> 62”i“/fx ZX Z 2mia( b+l)/fx
b=1 b=1 a=1

The latter sum of exponentials is zero unless b = f, — 1, in which case it is f,. Hence,

1T = 12(=1) P fr = fy-
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DEFINITION 4.1.19. For a primitive Dirichlet character )y, we set

T(%) f (518
€ = Wa and A(X“S‘) = <%) F( 2 X>L<X7S)a

THEOREM 4.1.20. Let ) be a primitive Dirichlet character. Then the L-functions of X and } satisfy

o = (1—-x(=1))/2,

the functional equation
A(%,S) = 8XA<Za 1 _S)
forall s € C.

We give the relationship between Dirichlet L-functions and the Dedekind zeta function of an abelian
field.

PROPOSITION 4.1.21. Let F be an abelian field. Then

Cr(s)= I L(x.9).
XEX(F)
PROOF. It suffices to check this on s with Res > 1 by uniqueness of the meromorphic continua-
tions. In turn, it suffices to check that for each prime p, we have
(4.1.1) [T a-tvp)y ™= ] (=x@)r™):
peVp(F) XEX(F)

As F/Q is Galois, we have Np = p~/, where f is the common residue degree of the primes over p
in F, so the lefthand side is just (1 — p~/%)8, where g = |V,(F)|. Note that x(p) = 0 if p ramified
in the fixed field of the kernel of ). Thus, the product reduces to y € X(E), where E is the maximal
subextension of F/Q that is unramified at p. Viewing ¥ € X(E) as a Galois character, so x(p) is the
value of y on the Frobenius at p, which is a generator of a cyclic subgroup of order f in Gal(E/Q).
Since fg = [E : Q, there are g characters ) such that y(f) = § J’c for a fixed primitive fth root of unity
{r and given integer i with 0 < i < f — 1. The righthand side of (4.1.1) is then simply

f-1

Q(l —p ) = (1—p )8,

i—

as required. 0J

COROLLARY 4.1.22. Let ) be a Dirichlet character with associated primitive character nontrivial.
Then L(x,1) #0.

PROOF. Since {r(s) has a simple pole at s = 1, as does L(xp,s), for xo the trivial character of
modulus [F : Q], while L(y,s) is analytic for y # o, this is a direct result of Proposition 4.1.21. [
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4.2. Bernoulli numbers

DEFINITION 4.2.1. For n > 0, the nth Bernoulli number B, is the value of the nth derivative of ettj
at 0.

In other words, B,, is the rational number appearing in the Taylor expansion

tn

-1 & 1" 1 )
= =1l4+zt4+-t"+-,
R TR I
soBp=1,B; = —%, and B, = % after inverting the series.

REMARK 4.2.3. Note that

-ttt L
et—1 e —1 e —1 "
SO
t 1
ef—1+§t

is an even function, and therefore we have B,, = 0 for all odd n > 2.
We shall require generalizations of these numbers attached to Dirichlet characters.

DEFINITION 4.2.4. Let x be a primitive Dirichlet character, and let m be any multiple of f). Then

the generalized Bernoulli number B,, 5 is the algebraic number appearing in the series expansions

ix(a)

REMARK 4.2.5. The independence from m in the definition of By, y is easily seen to boil down to
the fact that

at tn

te >
= B, ,—.
em — 1 n;) X !

r—1 i 1

X
l._zax’—lzx—l’

taking r = m/ f; and x = e/x'.
REMARK 4.2.6. We have B, | = B, foralln > 2, but By ; = 5 = —Bj.
REMARK 4.2.7. We have that B, , = 0 for n # 0, mod 2, aside from By ;.

We also have Bernoulli polynomials.
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DEFINITION 4.2.8. The nth Bernoulli polynomial B, (X) € Q[X] is the polynomial appearing in the
series expansion

EXAMPLE 4.2.9. We have By(X) = 1 and B;(X) =X — 3.

LEMMA 4.2.10. Let x be a primitive Dirichlet character, and let m be a multiple of f,. We have

Buy=m""Y x(a)B,(%)
a=1
forn>1.
PROOF. We have
e a\ 1" & e ay (m)" te
Lt Y atab () 1= Y™ Y b () 5 = Yoo g

COROLLARY 4.2.11. Let ) be a primitive, nontrivial Dirichlet character of conductor dividing m.

Then we have

1 m
By, = - Ztlx(a)a.

PROOF. We compute easily that By (x) = x — 1 /2. The result then follows from Lemma 4.2.10 and
the fact that the sum over all (a) for 1 < a < m is zero, since ) is nontrivial. O

DEFINITION 4.2.12. A value of L(), s) at s € Z is known as an L-value, or as a special value of the
L-function L(y,s).

The following proposition gives a relationship between L-values and generalized Bernoulli num-
bers.

PROPOSITION 4.2.13. Let ) be a primitive Dirichlet character. Then we have

B
L(%,l—fl) = _%X

for all positive integers n.

PROOF. Let x € R with 0 < x < 1, and consider the complex function

tel1—xt oo

f(t)= = ZBn(l—x)—.

r_ !
e—1 = n!
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For s € C, set
g(s) = lim f( )2t

e—0t
where the path 7, consists of the horizontal infinite path along the real axis to &, following by a coun-
terclockwise traversal around the circle C¢ of radius €, followed by the horizontal infinite path from €

2)logt

along the positive real axis. Here, 1572 = ols— , where we take the branch of the logarithm given

by the positive real axis. Then

g(s) = Jim ((em— 1) /g ) f(O)r2dr + /C 8 f(z)r”dz) :

If Res > 1, the second term vanishes in the limit, and this simplifies to
@ 1)) = [Tt = X [t = e ) =T 5.0,
0 =0

where we set {(s,x) = Y7 o(x+k)~*. The latter function can be meromorphically continued to all of

C which is again analytic away from s = 1. We therefore have

g(s) = (7™ — I(s){ (s,x)
foralls e C—{1}.

For s = 1 — n, we obtain
, B.(1—
lim (2™ — DI(s)E(s,x) = lim [ f(e)e " 7"dr = 2mi- Bu(1-x)
s—1—n e—=0t JC, n!
by Cauchy’s integral formula. We have
lim (2™ — 1)I'(s) = 2mi lim sT(s) = 277:iﬂ
s—1—n s—1—n (I’l — 1)! ’
so we obtain
B,(1— B
R e
n

Finally, setting f = f,, we need only note that

B,
=) = X 6= =4 ) = -2

n
a

THEOREM 4.2.14. Let x be a nontrivial primitive Dirichlet character. We have

B 4 if x is odd,

——22Y" 7(a)log|l — 2™/ fx| if y is even .
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PROOF. If x is odd, then the functional equation and the fact that ['(1/2) = x'/2 imply that

miT(x). ,_ TiT(X

oW (7,0 = FE2)
Tx fx

Now let ) be even, and set f = f),. By Lemma 4.1.17, we then have

L(%71):_ Bl,)(

e2mian/f

YOIyt _ 1 f-a _ 2mialf
L(X’l)_n; _,;T(Z)ag " = T(Z)a;%( )log (1 ).

n
By Lemma 4.1.18 (and Lemma 4.1.17), we have that 7())7(x) = f, and the evenness of }¥ plus the
fact that the sum is taken over all a mod f tell us that we may replace log (1 — e2mialf ) with
10g’1 277:za/f’ (log(l _e2m'a/f>_|_10g(1 27rz( )/f))
0

Combining the analytic class number formula with Proposition 4.1.21 and Theorem 4.1.11, we

obtain the following, which we will at times also refer to as the analytic class number formula.

COROLLARY 4.2.15. Let F be an abelian field. Then we have

2r1(F)2 n(F)h R
H L(x,1) an)?heRe

LEX(F) 1/2
x7#1

WF|dF|

We note the following.

LEMMA 4.2.16. Let F be a CM field. Set Qp = [EF : W(F)E]. Then QF € {1,2} and
[EF :Ef] = &wF

PROOF. Let T be the generator of Gal(F /F™). For o € Er, we have |a!~%| = 1 under any complex

embedding of F, so ! =% € u(F). Consider the commutative diagram

1

Ll




4.2. BERNOULLI NUMBERS

101

The snake lemma tells us that the cokernels K of the two maps T — 1 are isomorphic. The lower two

rows yield

WF

|[Ep:Ef]=— and [Ep:u(F)Ef]=—

K]

and the result follows.

We remark that for cyclotomic fields, Qf is computable.

LEMMA 4.2.17. Let F = Q(Wy,) for some m > 1 with m % 2 mod 4. Then

0 1  mis a prime power
F =

2 otherwise.
PROOF. Let 7 be the generator of Gal(F /F™). Note that

OF = 2|coker(Er —% u(F))|™

by the proof of Lemma 4.2.16. If m is not a prime power, then 1 — §,, is a unit, and (1 — &)

which generates u(F). Thus QF = 2 in this case. Conversely, if a! =7

_Cma

= —{,, generates U (F) for some

a € Er, we would have a~!(1 —¢,,) € FT. If m were a power of a prime p, then o~ (1 — {,,) would

generate the unique prime over p in F. Since this prime is ramified in F/F 7, its generator cannot lie

in F*. This forces QF to be 1 if m is a prime power.
NOTATION 4.2.18. For a CM field F, we set R} = Rp-+

LEMMA 4.2.19. Let F be a CM field. Then
WF

Rp =2nW)-2__"F
[Ep : E{]

R}

PROOF. Let
r=ry(F)—1=rankEp = rank E .
Suppose that oy, 0, ..., 0, € E;“ satsify
(L, ap,00,...,04) = Ef.

Then
.LL(F) ) <061,062,...,06r> ::u(F)E;«f?
which has index 2[Ep: E}]/wr in Ef, so Lemma 1.2.10 tells us that

wr
Rr=—""—Rrp(04,00,...,0,).
F 2Er: B} Flag, r)

O
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On the other hand, note that each ¢; in Definition 1.2.5 is 2 for F but 1 for F ', so
Rr(ay,00,...,0,) =2'R},
as desired. O

Corollary 4.2.15 implies the following.

THEOREM 4.2.20. Suppose that F is a CM abelian field. Then

f
—B 1 —1 & .
hn =2|Ep: E; X d ht=_— - loo |1 — o2%ia/fx| |
' [F F]XQF) 2 " " R; erXT(F) (2 ;X(a) °g| ‘ |
x odd x#1 even

PROOF. Let E be an arbitrary abelian field. We remark that for y € X(E), the quantity f, is the
conductor of the corresponding character (Z/f,Z)* — C*. Therefore, the conductor-discriminant
fomula tells us that
4.2.1) del = ] fr

XEX(E)
Moreover, a comparison of the functional equations of the Dirichlet L-functions and the Artin L-
functions yields that
H 8)( = 1,
XEX(E)
SO

4.2.2) [T =) =i"®lag|'>.
XEX(E)

Taking the quotient of the analytic class number formula for F by that for F* and applying Theo-

rem 4.2.14, we obtain

. r(F) R R+
(4.2.3) AL A - PR e
rexr) Jx |dr /dp+ |V wr [wp+
x odd

Applying (4.2.1) and (4.2.2) for E = F and E = F ", we see that

T mit(y) _ (—m)2")

wexiry fo ldr/dps |V
x odd

and Lemma 4.2.19 tells us that
Rr /R
WF/WF+
since wp+ = 2. Equation (4.2.3) is then immediately reduced to the desired form.

=2 gL,
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On the other hand, the analytic class number formula for F* and Theorem 4.2.14,

_ Jx r(FY)p+ pt
T(Xx _ i 2" hiR

I1 ( f( 'Y xla)tog - /fx|> =
XEX(F) X  a=1 | F+|

x#1 even

Applying (4.2.1) and (4.2.2) and noting that replacing ) (a) by x(a) in the resulting sum makes no

difference in the result, we obtain the formula for h;“. O

4.3. Cyclotomic units

The product appearing in the formula for 4} in Theorem 4.2.20 may appear itself something like a

regulator. This is essentially the case.

DEFINITION 4.3.1. If F is an abelian field contained in Q(u,,) for m > 1, we let S = V.. and
define the group of cyclotomic S-units Cr.s of F to be the subgroup

Crs=(1-Ca|1<a<m)NF~

of @’;7 ¢» Where {,, is a primitive mth root of unity. The group of cyclotomic units of F is then defined

as the intersection Cr = Er NCr.
REMARK 4.3.2. The definition of Cr is independent of the multiple m of the conductor of F .

We have the following result of Hasse, which is due to Kummer in the case of Q(u,,) for a prime

p. We will prove a generalization of this result to arbitrary cyclotomic fields in Theorem 4.7.1.
THEOREM 4.3.3 (Hasse). Let F = Q(,n) for an odd prime p and n > 1. Then we have
hi = [Ef : CE.

PROOF. The set

T
S =
Cp” - Cp"

forms an independent set of generators of CI}L. Let us let Rcyc denote the regulator of the latter set.
Then Ry is the absolute value of the determinant of the matrix with rows and columns indexed by the
integers a prime to p with 1 < a < p"/2 with entries in the row and column corresponding to (a,b)

given by log|o,(&y)|, where 04(Ep) = £ Now

log|o4(&)| = log |1 — {57 | —log |1 — 3.
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Proposition 1.5.18 applied to the group Gal(F ' /Q) yields
p/2-1 -
("L woneei-gh)| =) T 3T e -Gl
b=1 XEX(F*

+ c=1
P e AR A

Rcyc -

| =

As x has conductor dividing p" and
k—1

=g =TT -5

i=0
for n,k > 1 and ¢ # 0 mod n, we have

p'—1 Jr—1

x(c)log|l — G| = Z x(c)log|1—GCF |,

c=1
(c,p)=1 (c, p) 1
the middle step by Theorem 4.2.14. By Theorem 4.2.20, it then follows that Rcyc = hjéR];L On the
other hand, we have Reye = R} [E; : Cit] by Lemma 1.2.10. O

A standard choice of primitive mth roots of unity for m > 1, viewing @ as a subset of C, is to take
G = e¥™i/™ for m > 1. This choice has the advantage that /m _ Cn for m dividing n. Let us make
such a choice. We first remark that the elements 1 — ,, for m divisible by two distinct primes are in

fact units.

LEMMA 4.3.4. If m is divisible by two distinct primes, then 1 — {,, € Coum)-

PROOF. For a positive integer d, let @, denote the dth cyclotomic polynomial. We have

m

(= T (-6

1
(i;m)=1
so it suffices to show that ®,,(1) = £1. We have

= [ ®alx
d|m
d>1

m=[]®4(1)
dim
d>1

x—l a

Plugging in x = 1, we obtain

Note CIDPk(l) = p* for any power pX of a prime p. Expressing m = Hle pf" as a product of powers of
distinct primes p;, we then also have
g
m= HCD k;
i=1 i
Since each ®,4(1) is an integer, it follows that ®,,(1) = +1, as desired. 0J
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Next, we note the following the compatibility of the elements 1 — ,, under norms.

LEMMA 4.3.5. For m > 1 and a prime {, we have

1—-&n if €| m,
N m Q m( Cmg) - 1_ m .
Qttme)/Qt1m) B }5111_ il i 0t m.

PROOF. Note that
¢
H I_Cm€C€ _I_Cm
i=1
If ¢ divides m, then the left-hand side runs over the conjugates of 1 — {,,y under Gal(Q( L) /Q(tm)),
so the product equals the norm.
If ¢ does not divide m, then let a,b € Z with al +bm = 1. We then have {3{) = Gy, so the
conjugates of {,, have the form {,, &} with i # —b mod £. Note that b = m~! mod ¢, so moving this

term from the product to the other side, we have
1-Cn
-1
1-&°

-1 1=8y
_Cnl; -1
-G,

NQ (1) / Q) (1 = Gmt) =

4.4. Reflection theorems

We now refine Theorem 1.4.15 by working with eigenspaces. Start with a totally real field F. Let
x:Gr— Q"

be a character with finite image. Any embedding ¢ of F in C fixes an element cp € Gr that is the
restriction of complex conjugation in Gal(C/R), since F is taken to a subfield of R under the embed-
ding. All such complex conjugations in G arise in this way, and they form [F : Q] distinct conjugacy
classes in G for the real embeddings of F in F = Q. In G, these complex conjugations restrict to

exactly [F : Q] distinct elements, with the elements of the same class restricting to the same element.

DEFINITION 4.4.1. We say that a character x: Gr — @X of a totally real field F 1is fotally even if
X 1s trivial on all complex conjugations and fotally odd if ) is nontrivial on all complex conjugations.

If F = Q, we say more simply that ¥ is even or odd in the respective cases.

We let F), denote the extension of F that is the fixed field of the kernel of ), which will itself be
totally real if y is totally even and CM if ¥ is totally odd. If F = Q, these are the only cases.
We now suppose that  has order prime to a given odd prime p. We fix an embedding 1,,: Q— @,

. . . .o~ X . 75X
which allows us to view y as a character with values in Q,, ", and hence in Z,,
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One key character of interest to us is the Teichmiiller character
o: Gr —Q ;
which has image contained in p,_1(Z,) and is defined by the equality

()=

for any o € G and { € u,. Note that the Teichmiiller character is an odd character on Gr.

THEOREM 4.4.2 (Leopoldt’s Spiegelungsatz). Let F be a totally real field, and let ¥ : Gr — @px
be a totally odd character of finite order prime to p. Let E be an abelian extension of F of degree prime

to p that contains Fy(lL,). Then we have
-1 -1 -1
(A ) =8 <) <A ) (0 107 D),
where 8y is 0 unless Y = @ and the extension E(u(F)'/P)/E is unramified, in which case it is 1.

PROOF. Let A= Gal(E/F). Let O be the ring generated over Z,, by the character values of A. Let
k denote the residue field of &, and let ky, denote the residue field of &y, the ring of values of v, for
any ¥ € A*. As 0 is unramified over Z,, we have [0 : Oy = [k : ky].

For a Z,[A]-module B, we let By = B®z, 0. We remark that Lemma 2.8.7 implies that

rp(BY) = [k : kylr,(BY)).

Note also that we have
rp(By) = [k:F,)dimi((B/pB)}),

SO
(4.4.1) rp(BY)) = [ky : T ' dimy ((B/pB)Y).

Since ﬁx = ﬁwxq and since 595 = 0 unless ¥ = o, in which case ky = [F),, equation (4.4.1) tells us

that the desired inequalities are equivalent to

~1 —1 —1
dimg(A* ) — 8y < dimy(A%) < dim(AD* ) +dim (05 /057" ),
where we have set A = Ag / pAg to shorten notation.

Note that we have the following isomorphisms of groups

Homy, (Ag, up) o = Homy, (Ag, (Up) o) = Home ((Ag) o, (Up) o)

the first step following from the freeness of & over Z, and the second from the adjointness of Hom

and ®. Moreover, Lemma 2.8.7 implies that

Homy ((Ag) g, (1p)o)Y = Homy ((Ag) s ',(up)w
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for any y € A*. Recalling Lemma 1.4.6, we then have an exact sequence

0= ((BNOY)/ 657 — Homu((A0)2Y (p)o) — (Ar) YLD,

where B is the set of elements of E* that have pth roots that generate unramified extensions of E.

Since (U, )¢ is a one-dimensional k-vector space, we have

—1 -1
Homy((Ag)y’ . (Wp)e) = Hom(Ap" k),

-1
which as the k-dual of a k-vector space has dimension equal to dimy (AZW ).
In the case that y = y, we then have that

dimy (A% ) < dimy((BOu(E))/1(E)P)) + dimy(AD)) = 8, + dimy (A%,

since the p-power roots of unity in E have trivial y-eigenspace unless [¥| = [®], which happens if and

only if ¥ = @, as m takes its values in Z,. On the other hand, if we take y = oy~ then we have
. . 71 . 71
dimy(A%) < dimg (05 /Op7) " ) +dime(AQ* ),
finishing the proof. O

In the special case that F = Q and E = Q(L,), we remark that 6, = 0, as Q(,,2) /F is ramified at

the unique prime over p. Moreover, we have the following.

LEMMA 4.4.3. Let k be an even integer. Then

Z, kZ0mod (p—1
®ZZp)(wk)% p kF (p=1)

(6% .
Qlkp) 0 k=0mod(p—1)

COROLLARY 4.4.4. For any even integer k, we have

wk) (wl—k

( )
Q) = Tr(Ag(,) )

(@)

p (A Q(up

<rp(Agy,)) +1-

() _ 4 _
COROLLARY 4.4.5. We have A@(up) = AQ(up) =0.

PROOF. We know that

O GlQW)/D) o,
Ay =4, —Ae=0.

As Theorem 4.4.2 and Lemma 4.4.3 tell us that r,, (A(l) )=1p (A((@C‘ZL )), so we are done. O
P

Q(up)
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4.5. Stickelberger theory

Let us fix an integer m > 1 and a primitive mth root of unity {,, throughout this section.

DEFINITION 4.5.1. Let F = Q(W,,), and let G = Gal(F /Q).

a. For a € Z with (a,m) = 1, let 6, € G be such that 6,({,,) = {%. The Stickelberger element O

is the element of Q[G] given by
1
O = — 71.

m
(a
b. The Stickelberger ideal of F is the ideal .ZF

leMs
Q
a

Z[ 16 NZ[G] of Z[G).

LEMMA 4.5.2. Let J denote the ideal of |G| generated by elements of the form oy, — b for b € Z
with (b,m) = 1. Then J = {x € Z|G] | x6F € Z[G]}.

PROOF. Let us use (&) to denote the fractional part of o € Q. We note

a=1 M a=1
(a,m)=1 (a m)zl

Since (“2) — (4)b € 7Z, we have (0}, — b) 6 € I for all b € Z prime to m, and hence J6p C Z[G].
Now take x = Y, ¢,0), with x0r € Z[G]. Writing this out, we have

£ a()eema

(b,m)=1
which implies that
m
Z epb € mZ.
b=1
(b,m)=1
But note that m = (m+ 1) — o1 € J, so mZ C J. We then have

m m
X = Z ep(op —b) + Z epb € J,
b=1 b=1
(b,m)=1 (b,m)=1
finishing the proof. 0J

DEFINITION 4.5.3. Let g be a power of a prime £ and x: F; — C* be a character, which we
extend to a function y: F;, — C by x(0) = 0. The Gauss sum attached to y is

Z x 271:1Tr o)/l
oacky

where Tr = Try,_/p, is the trace map.
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LEMMA 4.5.4. Let q be a power of a prime { prime to m. Let X : qu — UWn be a character, so
2(x) € Q). Let b € Z be relatively prime to m, and let 6, € Gal(Q(Lyy)/Q(Ly)) be the unique lift
of op € G. Then

(0" € Qum).
In particular, we have g(x)™ € Q(tm).

PROOF. For 7 € Gal(Q(t¢m)/Q(tm)) with T(&y) = £, we have

g)"=— Y 2(0)P™ T/ = y(c) g (y).

o€l

On the other hand, we have g(x)% = g(x?) as o}, fixes f, so we see that

(g0 =(x")7e() ™" = x"(0) " x(e) P8 0) " =8 ()*,
as desired. U
LEMMA 4.5.5. Let g be a power of a prime { and X : IF; — C* be a character. Then
g(x)e(x) = x(=1)L.
We state Stickelberger’s theorem for F = Q(,,). A similar result holds for abelian fields in general.

THEOREM 4.5.6 (Stickelberger). Let F = Q(Uyy,), set G = Gal(F /Q). Then the Stickelberger ideal
of F annihilates the class group: 9 -Clp = 0.

PROOF. Fix C € Clg, and let [ be a prime ideal representing C in O that lies above a completely
split prime £ of Q. Note that £ = 1 mod m, and let ¢ € Z be a primitive root modulo ¢. Let x: F; —
C* denote the character with x(c) = e2™/™. There is unique prime £ of Q(i,) lying above [, and
gt-l=y. Z[s). We use ve to denote the additive valuation attached to £. For b € Z prime to m, and
op € Gal(Q(tsm)/Q(ue)) the unique lift of o, € Gal(F/Q), we set

Ip = Vcb—l,g)(g(%))'

By Lemma 4.5.5, we have that g(x) | (¢), sot, < ¢—1, and by Lemma 4.5.4, we have in the smaller
field F that
Vo (80 ) =1
In other words, we have the factorization
/-1 Or — - —1[ t
g(X) F H (Gb ) ’

b=1
(bym)=1
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SO
m

Y, 1o,
b=1
(b,m)=1
annihilates the class of [.
Now take 7 € Gal(F (u,)/F) given by ©({;) = {;. Then since every prime over / is totally ramified

F(uy)/F, we have that 7 is in the inertia group of all such primes. Note that
VGb’IS(Cf -1)=1
for all b. We calculate

s) _ s _ o)) oo

(Ge—1D)0n  (GF=1)n (G —1)

This forces e2%/™ = ¢~ mod o, ¢ and therefore modulo o, 1 [, since both sides of the latter congru-

ence lie in F. In other words, we have

e2mib/m — b od |,

On the other hand, there exists some a prime to m such that

Ami/m = c=(=Na/m pod 1,

We therefore have that
{—1)ab
= (=1)ab mod (£ —1),
m

forcing

It follows that

annihilates C.

Now suppose x € Z[G] is such that x0r € .#r. We then have
(g(x)daflx)é—lﬁ[: — [(Z—l)xep'
By Lemmas 4.5.2 and 4.5.4, we have g(x )% 'x € F. Therefore, the identity
(8(0)% ") oF =%

actually holds, and so we see that x6r annihilates C. So, .#F annihilates C, and we are done. O

This has an interesting application for the field Q(p,).



4.6. DISTRIBUTIONS 111

THEOREM 4.5.7 (Herbrand). Let p be an odd prime, and set F = Q(up). Let j#£ 1 mod p—1 be
an odd integer, and suppose that Agw]) # 0. Then B, (- € pZp. Moreover, we have Al(pw) =0.

PROOF. By Stickelberger’s theorem, we have that .#r - Ar = 0. In particular, we have that .%; =
e,i-/F annihilates Al(rwj), where e, € Z,,[G] is the idempotent attached to ®’. Note that for, b prime

to p, we have
: 1Pl . .
€wi(0p —b)OF = (@' (b) — b)]; Y aw7(a)eqi = (@ (b) —b)By 4-i€yi,
a=1

where we have applied Corollary 4.2.11 in the last step. It follows that (@/(b) — b)B, ,-; annihilates
Al(pw'l) for all b prime to p. Choosing b to be a primitive root of 1, we have that @/(b) #Z b mod p, so if

Ag,wj) is nontrivial, then B ,-; must be divisible by p. For j = 1, we note that

p

(@/(14p)—(14p))B) 1 = —pB) 1 =— Y ®(a)"'a=1mod p,
i=1

so we get that 1 annihliates A(Fw), hence the result. U

As with the plus part, the minus part of the class number of a cyclotomic field of prime power roots
of unit can be interpreted as an index, as in the following result of Iwasawa. The proof is deferred to

its generalization to arbitrary cyclotomic fields in Theorem 4.7.1.

THEOREM 4.5.8 (Iwasawa). Let F = Q(u,») for a prime p and n > 1. Then

4.6. Distributions

DEFINITION 4.6.1. Let {X; | i € I} be a collection of finite sets, were [ is a directed set under <,
and let 7;;: X; — X for i > j be a collection surjective maps. Let A be an abelian group. An A-valued
distribution on the collection (X;,7;;) is a set of maps y;: X; — A for i € I that satisfy the distribution

relation

vi)= Y vy

yenijl(x)

forall j <iandx € X;.
REMARK 4.6.2. Given a collection (X;, 7;j) as above, we may consider the inverse limit

X = I&HX,
icl
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Let m;: X — X; be the map induced by the system. Let Step(X,A) denote the set of A-valued step
functions on X. Supposing now that A is a ring, a distribution {y;: X; — A | i € I} on the collection

(X;, m;;) (or more simply, on X) gives rise to an A-module homomorphism
¥ Step(X,A) - A
as follows. If yy denotes the characteristic function of a compact-open subset Y of X, then we let

‘T/(Xﬁlfl (x)) = yi(x)

for any i € I and x € X;. We take ¥ as the A-linear extension of this map to the group of all step
functions. The distribution relation insures that it is well-defined. Conversely, given an A-module
homomorphism y: Step(X,A) — A, we may define y;(x) to be ¥(x, -1(x)), and the y; provide a

distribution on X.

EXAMPLE 4.6.3. Let I be the set of positive integers, ordered in the usual manner. Let X; =7/ p’Z,
and let ;; for j < i be the reduction modulo p/ map. Leta € Zp. Define

1 ifx=amod p,
Wi(x) = .
0 otherwise.

Then {y; | i > 0} is an R-valued distribution for any ring R, called the §-distribution at a. The corre-
sponding functional &, satisfies 8,(f) = f(a), where f € Step(Z,, R) is any congruence function.

Let us focus on a specific case of interest.

DEFINITION 4.6.4. Let A be an abelian group, and let D be a divisible abelian group with finitely
topologically generated Pontryagin dual.

a. By an A-valued distribution on D, we mean a function y: D — A with the property that

(4.6.1) y(d) =Y w(c)

for all positive integers n and d € D.

b. By an A-valued punctured distribution on D, we mean a function y: D — {0} — A satisfying
the distribution relation (4.6.1) for all positive integers n and d € D — {0}.

REMARK 4.6.5. For an abelian group A and a torsion divisible abelian group D, the A-valued distri-
butions on D are in one-to-one correspondence with the A-valued distributions {y;, | n > 1} on the col-
lection of n-torsion subgroups D[n] in D for n > 1, together with the transition maps 7, ,, : D[n| — D[m]

for m dividing n given by multiplication by . That is, y and the maps y;, take the same values on the
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elements of %Z /Z. If A is aring, then the maps y also give rise to a functional : Step(@lnD[n] JA) —

A, as noted above.

REMARK 4.6.6. Punctured distributions on D do not quite give rise to distributions on the sets

D[n] — {0}, since multiplication by - does not preserve these sets.

EXAMPLE 4.6.7. Let I be the set of positive integers, ordered by divisibility. Fix k£ > 0, and for
0<a<nwithn>1,set

For m dividing n, we have

n/m—1 . n—1
K (A _ k1p (4 _ —1p (at+jmY _ k) (b
o ()= m () = s ()= x (7).
b=a mod m

Thus, we can safely make the following definition.

DEFINITION 4.6.8. For k > 0, the kth Bernoulli distribution l[/(k) is the Q-valued distribution on

Q/Z defined by
vO () =rm ()
n n
where (@) denotes the smallest nonegative rational number representing o € Q/Z.

We also mention the following example of something close to a distribution.

EXAMPLE 4.6.9. Define y: Q/Z — {0} — Q(t«)™ by 1//(%) =1—C!. Ifm|nandiz%0modm,

we have

. n/m—1 n—1 .

I . ,

v(Z)=1-d= T a-am= 11 w(2).

m k=0 =0 n
Jj=i mod m

so Y satisfies the distribution relations under multiplication. Thus y is a punctured distribution on

Q/Z.
We will be interested in the following resulting distribution.

NOTATION 4.6.10. Let Wy be the R-valued punctured distribution on Q/Z given by

1 .
‘l/cyc:(a) =73 log|1 — €2m<a>‘

for o € Q/Z.
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REMARK 4.6.11. Note that an A-valued (punctured) distribution ¥ on Q/Z gives rise to an A-
valued map ¥ on (nontrivial) Dirichlet characters x in that Dirichlet characters are step functions on V)

(that are zero at zero). In particular, if ¥ has modulus dividing m, then
m—1
a
=Y 2@y (%),
EXAMPLE 4.6.12. By Lemma 4.2.10, we have

y (X) =Bny
for a primitive Dirichlet character . In particular, y(") (x)=0ifn# x(—1) mod 2, unless n = 1 and
x = 1. Similarly, Weyc(x) = 0 unless ¥ is even.
4.7. Sinnott’s theorem

In this section, we fix m > 1 with m # 2 mod 4. We set F = Q(u,,) and G = Gal(F /Q). The goal
of this section is to prove the following generalization of the results of Hasse and Iwasawa for F', which

is due to Sinnott.!

THEOREM 4.7.1 (Sinnott). Let F = Q(Uy) for m > 1 with m # 2 mod 4. Then we have

[Ef :Ci] =2} and [Z[G]” : 77| =2"hp,
where
0 ife=1 0 ife=1
a—= I8 and b= Is
2724 1—-g ifg>2 26721 ifg>2,

for g the number of primes dividing m.

NOTATION 4.7.2. For x € G, we have the idempotent

Z (a)o, ' € C[G].

We also have idempotents

2

The following is essentially immediate from the definitions.

€ Q[q].

LEMMA 4.7.3. We have e*A = 1Z[G]* inside Q[G). In particular, we see that
[eTZ[G) : Z|G]*] = 29/2,

IThis section is rou ghly written at present and might be safely skipped for now, aside from the statement of the theorem.
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NOTATION 4.7.4. For any Z|G]-module A, set Ag = ker(Ng: A — A).
REMARK 4.7.5. For a Z[G]-module A, we note that e~ (1 —e;)A = e A.

NOTATION 4.7.6. For each prime p dividing m, set
dp=Y (1~ Z(p)ey € QG
xeG
For each positive integer f dividing m, set Gy = Gal(Q(tn)/Q(uy)). Let U denote the Z[G|-module

generated by the elements

ur—= NGlep S Q[G]
plf
for positive integers f dividing m, where the product is taken over primes dividing f.

We briefly sketch a proof of the following proposition.

PROPOSITION 4.7.7. Let g be the number of primes dividing m. Then we have the following
equalities:
1 ifg=1
(e*Z[G] : e*U) = . A
227 ifg>2.

PROOF. If g = 1, then U is generated by Ng and A, for the unique prime p dividing m. We have
uy =Ng=|Gle; and u, = A, =1—ej. Then

[1Z[G] + Z[G] : U] = |G| = [e1 Z]G] + Z[G] - Z[G]],

so [Z[G] : U] = 1. Moreover, note that e~ e; = 0, and from this it is easily seen that e"Z[G] = e~ U,
and as a result, [e"Z[G] : e U] = 1 as well.

For g > 2, we indicate only a few details of the proof. One uses the fact that U is the product over
primes p dividing m of the modules U, generated by Nj, and A, where I, < Gal(F /Q) is the inertia
group at p, to see that (Z[G] : U) = 1. On the other hand,

(Z[G):U) = (e*Z|G] : eTU)(Z|G]” : U ™).
One checks that the order of
A YGal(F/F"),U)=U"/(6_1— U Z e Z[G] /e U

is 22", We then have
(e"Z[G]: etU) (e  Z[G] : e U) =22,
and the proof is finished upon showing that (e~ Z[G] : e U) = 22"? which we omit. O

Recall that /g denotes the augmentation ideal in Z[G].
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COROLLARY 4.7.8. Let g be the number of primes dividing m. Then

@(m)~! ifg=1

(€+IG . e+Uo) = )
2 To(m)~! ifg>2,

PROOF. The quotient e*Z[G]/e™ I is isomorphic to Z via the augmentation map, while e U /e U
is generated by the class of u; = Ng, and the image of Ng € e*Z[G] under the augmentation map is
|G| = @(M). 1t follows that

(e*Z[G] : e*U) = (M) (eT I : e Up),
and we apply Proposition 4.7.7. 0J

NOTATION 4.7.9. For a punctured C-valued distribution y on Q/Z, let Ty, be the subgroup of C[G]

generated by the elements

for positive integers ¢ with ¢ # 0 mod m.

REMARK 4.7.10. The group Ty, is a Z[G]-module, as 6,My(c) = Ny(ac) for a prime to m. As a
Z|G]-module, it is then generated by the elements 1y,(d) for d positive dividing m.

At times, we will view the elements of G also as primitive Dirichlet characters.

PROPOSITION 4.7.11. Let y be a punctured C-valued distribution on Q/Z. Then
(1 —el)Tw = a)wU,

where

oy= Y v(X)ey<cClGl
xeG—{1}

PROOF. For d > 1 dividing m, set f = 2. Let x be a nontrivial character of G. Then e,y /(d)
vanishes if f does not divide the conductor f; of x, and if f | f;, then

e =e 3 é X =e M —X ¥
£ (d) x(bbz)l_l v(%)ae = (H“ x@))) V@)
Noting that e, @y = e, y(X), that ey A, = e, (1 — ¥(p)), and that

ex% if fy | f

0 otherwise,
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we conclude that

exNy(d) = eyyuy.
This holds for all ¥ # 1, and we also ahve that e; @y = 0, so we obtain (1 — e )Ny (d) = @yuy. In that
this holds for all d, the result follows. O

LEMMA 4.7.12. Let y be a punctured C-valued distribution on Q/Z. In the notation of Proposi-
tion 4.7.11, if w(x) = O for all nontrivial x € G with y(—1) = F1, then

(e Up:(1—e)Ty)=| [] wx)|

xeG—{1}
x(—1)=x+1

PROOF. By our condition on %, the element @y, of Proposition 4.7.11 is
WOy = Z v(x)ey-
xeG—{1}
x(—1)==1
Then @y € (1 —e1)e™C[G] by assumption on y, and Proposition 4.7.11 implies that

Note that ejA, = 0 for any prime p dividing m, so ejuy = 0 if f is a positive divisor of m other than
1. Since the u s generate U as a Z[G]-module and u; = Ng, we therefore have U = Uy + NgZ. It follows
that (1 — 1)U = Up. Multiplication by @y, determines an C-linear endomorphism of (1 — e )e*C[G]
that takes e* Uy onto (1 —e1)Ty. The idempotent e, for nontrivial ¥ € G with x(—1) = %1 is an
eigenvector of this endomorphism with eigenvalue y(y). The determinant is of course the product of

these eigenvalues. The result then follows by Lemma 1.2.9. 0

REMARK 4.7.13. For any Z[G]-module A that is free over Z, we have Ag = AN (1 —e1)A, since
e1Ap = 0 and the kernel of Ng is the image of e; on A ®7 Q.

EXAMPLE 4.7.14. The R-vector space V spanned by the elements of G has V|, equal to the elements
with coefficients summing to 0. For § the set of primes above m in F, we have T' = Ty, = p(Crys) is

contained in V, and note that 7p = p(Cr) by the product formula.
LEMMA 4.7.15. For Y = Yeyc and T = Ty, we have
[(1—e)T : To] =2 8¢ (m).
PROOF. Note that

(1—e)T/To= ((1—e))T+T)/T = (e\T+T)/T = ey T/TC.
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We have

eT—;N (C )_;
1 = o(m) GP\CFs —(P(m)P

Note that |(1 — §;)Né| = 1 if f is not a prime power, and (1 — Cpk)NG = p?m/e(r") 1t follows that

N
(Crs)-

1 1
€1T:— —logp-N(;Z,
2 ,;n o (")
where k, > 1 is the additive p-adic valuation of m.
Next, note that a € Cr satisfies j(o) € TY if and only if j(a®~!) = 0 for all 6 € G, which is
equivalent to «®~! € p(F), which is in turn equivalent to &' *% € Q*, with T complex conjugation.
Let

P={acCrs|a' cQ”},
and note that T7¢ = p(P) = %p(PIH). For an odd prime p dividing m, set

p—1

(p-1)/2
op = (1_5;71)7
1

a=
and set ap = 1 — {4 if m is even. Then each o, for p dividing m lies in P, so P!*7 contains the group
H generated by all primes dividing m. Since P'*7 is a subgroup of the positive rationals, the quotient
P't7/H is torsion-free, and on the other hand (P'+/)9(") = (P1*+/)No C H, which forces P'*% = H.
Thus

TC = %%logp -NGZ.

It follows that

(1—e)T :T) = [T : T =] (p(é’k) _ olm).
plm

LEMMA 4.7.16. Let p: Epg — V' denote the Z|G|-module homomorphism

1 _
pla)=—3 ¥ loglo(a)lo".
oeG
Then
Ry

(eTlg: p(EF)) = OF
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PROOF. Let X = (1 —e;)etV, in which p(EF) forms a lattice of full rank r = @ — 1. The lattice

el has abasis e™ (1 — o0, ') for I < a <% with (a,m) = 1. Fix a complex embedding of F, hence an

absolute value. For an independent system of units ..., 0 € E}L generating Er /U, we have
[51-1 ) [51-1 |
plar)=— ), logloa(ai)lo,'= ) loglou(ai)le™(1-0,").
—1 =2
(aﬁn)zl (aflm)zl

Since the matrix with entries log|n%¢| has determinant 2Ry by definition and Ry = 5—;R}, we are

done. O

LEMMA 4.7.17. We have
[e_Z[G]GF . jF_] = WF.

PROOF. Let O = Z[G]6F for brevity. Since (6, —a)0F € FF for all a € Z, we have that
O = Ir + 6rZ,

and therefore @ / # = 7, /mZ. as m is minimal with m6F integral. From the fact that (a)+)1 — o) =1
for a ¢ Z, one see that e* 6p = 1NGZ. Since (0, —2)6F € Fr and e* (0, —2) = —3Ng, we then have
that e™@F = e™.#F and therefore (Z[G]6)} = .#;, which in turn implies that

@;/fl; §®F/f1: %Z/mZ.

If m is even, then o, 2 O = %NG = e @f. Therefore, we have et @ C O, and in turn this implies
that e~ ®f C Op. In other words, we have [¢”Of : @] = 1.
If m is odd, then e~ 6,0r = 6,0 — %NG, SO

e O +Op = $NGZ+ OF,
and therefore
e OF /Or = INGZ/(OF N3NGZ).
Note that Ng = (1+ /)6 € O but NG ¢ O since m®p C Z[G) and m is odd. Therefore, we have
(6" OF : O] =2.
For arbitrary m, we conclude that

e Z[G)0F : I5| =[e Op : O7][OF : 7] = % m = wp.

We are now ready to prove Sinnott’s theorem.



120 4. CYCLOTOMIC FIELDS

PROOF OF THEOREM 4.7.1. First consider Y = Yy, and set T = Ty,. Since Ty = p(Cr), we may

write our index as a product
[Ef - CFl=[p(Er) : p(Cr)] = (p(EF) : e"Ig)(e"Ig 1 e Up)(e Uy : (1—en)T)((1 —e)T : Tp).

The latter four relative indices are computed by Lemma 4.7.16, Lemma 4.7.12, Corollary 4.7.8, and

Lemma 4.7.15, respectively. Plugging in, we obtain

or (227)'2 o(m) _ ;
[E+ CI}L] R+ o(m) : Weye(X) ] % —+ H Veye(Xx) =2 h;f,
xeG—{1} F ye6-{1}
X even X even

where the last equality follows from Theorem 4.2.20.
Next, consider y = y/(l), the first Bernoulli distribution, which by definition has 7, yl) =€ ~Z[G|6F.

We write the index in question as a product as follows:
[Z]G]” : I5 | = (Z|G] :e Z[G])(e Z|G]: e U)(e U : e Z[G|6F)(e Z|G|OF : Ff ).

The latter four relative indices are computed by Lemmas 4.7.3, Proposition 4.7.7, 4.7.12, and 4.7.17,
respectively. Noting also that 2°QF = 227 f g >2and 2°Qr = 1 if g = 1, we obtain

_ _ 1 _
[Z[G]™ : 7] =279m/2.2b0 . [1 v ()| - wr =28 2EF : E}] X —2bp;
x<G x€G
X odd x odd

where the second equality uses that Qpwp = 2[EF : E;f] by Lemma 4.2.16, and the final equality
follows from Theorem 4.2.20. U



CHAPTER 5

Kubota-Leopoldt p-adic L-functions

5.1. p-adic measures

In this section, we study C,-valued distributions.

DEFINITION 5.1.1. We say that a C,,-valued distribution { y; };c; on an inverse system of finite sets
X; is bounded if there exists a constant B € R such that |y;(x)| < B for all x € X; for all i € I, where

| - | is the unique extension of the p-adic valuation on Q, to C,,.

REMARK 5.1.2. To say that {y;} is bounded is the same as saying the corresponding functional y

on step functions on the profinite space X = @i X; satisfies

lw(x)| <Bllxll

where ||x|| = sup,cx |x(x)| (Which is actually a maximum, as X is compact).

NOTATION 5.1.3. For a topological subring & of C,, let C(X, &) denote the space of continuous

functions from X to &', endowed with the compact-open topology.
REMARK 5.1.4. The set Step(X,C,) is dense in C(X,C,).

DEFINITION 5.1.5. For a topological subring &' of C,, and a profinite space X, an &-valued mea-

sure on X is a bounded linear functional

u:CX,0)— 0.

/ gdu
X

REMARK 5.1.6. Measures on X are in one-to-one correspondence with bounded distributions, since
Step(X,C,) is dense in C(X,C)).

We write

for the value u(g).

EXAMPLE 5.1.7. The §-distribution at x € X gives rise to the Dirac measure
/ gdd, = g(x).
X

121

We briefly discuss measures on Z,.
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REMARK 5.1.8. Let g: Z, — C,, be a continuous function, and let i be a C,-valued measure on
Zp, with corresponding distribution {u,}. Then

1

P
gdp = lim Z gn(a)tn(a).
Zp e a=0

Let &' denote the valuation ring of a finite extension of Q,,.

PROPOSITION 5.1.9. There is a canonical bijection between O-valued measures | on Z, and
elements A of O[Z,), seen explicitly as follows. Write A € O[Z,] as A = (Ay), with A, € O[Z/p"Z).
Then W is the measure associated to the distribution {, },> with l,: Z/p"Z — O corresponds to A
if and only if

pi—1
A=Y tn(a)laly
a=0
where |al, € OZ/p"Z)] is the group element attached to a.

PROOF. Clearly, the data of the A, determine the w, and conversely. One need only see that f
is well-defined if and only if the u, satisfy the distribution relations. But, from the definitions, the
element A, | maps to A, if and only if

"1

p
n(a) =Y Mari(a+p"b),
b=0

as required. 0

REMARK 5.1.10. We have u(¥q4p17,) = ta(a), so knowing each w,, determines u on step func-

tions explicitly.

REMARK 5.1.11. Since O[T] = O[Z,] via the continuous &-linear isomorphism taking 7 + 1 to
the group element of 1, we have a canonical bijection between ¢-valued measures on Z, and power
series in O[T].

COROLLARY 5.1.12. The power series f attached to an O-valued measure (L on 7, is given by

-1 (/ p (})auto) 7€ o1,

PROOF. Let f, € O[T]/(®,) be the image of f. By Proposition 5.1.9, the measure u attached to
f given by the distribution {u, },,> is related to f,, through the formula

p'—1 o p—1 /. )
5 ="L w1y =L T (§mtar

i=0 a=0

so the inverse limit f of the f, satisfies the desired equation. 0
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COROLLARY 5.1.13. Let f be the power series attached to an O-valued measure [ on Z,. Ift € m,
where m is the maximal ideal of O, the value f(t) may be calculated by
£ = [ (40,
ZI’

where L is the measure corresponding to f.

THEOREM 5.1.14 (Mahler). We have

C(Zy,0) = {Zc,( ) lci€ O, c,—>0}

and the representation of g € C(Z,,0) as a sum as in the latter set is unique.

PROOF. Suppose that there is a sequence (c;);>1 of elements of & that converges to 0. Since each
| ( ) | is bounded by 1 on Z,, any g =Y 2 ¢ ( ) with ¢; — 0 is the uniform limit of its continuous partial
sums, hence continuous.

Consider the difference operator V on g € C(Z,, 0') defined by V(g)(x) = g(x+ 1) — g(x). Then

o()-(7)-0)-(")

so if g has the form in the theorem, then V'(g)(0) = c;. In other words, the representation of g as a sum
is unique if it exists.

We now show existence. For this, it suffices to consider Z,-valued functions by choice of a ba-
sis and projection. We have a Z,-linear map from the set of sequences in Z, that converge to 0 to
C(Zp,Zp) given by (ci)iz0 — Yi—gci(}). It suffices to show that this map is surjective. This can
be derived via recursion from the claim that the set of eventually zero sequences in ), surjects onto
C(Zp,IF,) via the reduction modulo p of this map.

Note that

C(Zp,F,) = ligMaps(Z/p”Z,Fp),

For 0 <i < p"—1, the map x ~ (}) mod p lies in Maps(Z/p"Z,F ), since
(14T = (1+T)* A +TF") = (1+T)* mod (p,T"")Z,[T].
Thus, our map restricts to a map
{(ci)o<i<pr | ci € Fp} — Maps(Z/p"Z,F))

that is injective by our earlier uniqueness argument using V and surjective by equality of IF ,-dimensions.

This proves the desired surjectivity. 0

The following is a matter of switching the order of a sum and an integral.
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COROLLARY 5.1.15. Forg=Y7¢i(}) € C(Zp,0) and 1 the measure attached to

i

f= iaiTi € O[T],

0
we have

/ gdu = Zaici.
Zyp i=0

Typically, we are more interested in measures on Z, or the units in a slightly larger ring. Let us
recall that 1 +gZ,, where g = p if p is odd and g = 4 for p = 2, is isomorphic to Z, via the map that
takes u“ to a for any a € Z,, where u is a fixed topological generator of 1+ gZ,,, such as 1+ g. In this

way, measures on 1 + gZ, are made to correspond to measures on Z,.

DEFINITION 5.1.16. For an &-valued measure v on 1+ gZ,, let i be the &-valued measure on Z,
defined by

| stwyaue = [ gav.

p +49Zp
The power series in &[[T] attached to Vv is the power series corresponding to p by Proposition 5.1.9.

LEMMA 5.1.17. The power series f attached to an O-valued measure v on 1+-qZ, satisfies

Fd—1)= / dv(x)
1+qZ,
fors € Zp, and f is uniquely determined by this formula.

PROOF. Let u be the measure on Z, corresponding to v and f. Set t = u’ — 1 for some s € Z,,.
Then Corollary 5.1.13 tells us that

f(us—l):/ usxd,u(x):/l x’dv(x).

Zyp +4Zp
We leave the last simple statement to the reader. U

REMARK 5.1.18. We can also attach a measure on Z, to a measure on Z; , by extension by zero.

Similarly, we can restrict measures on Z, to the latter multiplicative subgroups.

5.2. p-adic L-functions

DEFINITION 5.2.1. Let p be a prime number, and let m > 1 be prime to p. Set

Lpm = @(Z/mp”Z).

n

Then
Zpm — Lp x LImZ,

and we let ¢, denote the first coordinate of the image of ¢ € Zj, ;.
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Note that
= @(Z/mp"Z)X =7, x (Z/mZ)*™,
and, setting ¢ = p for p odd and g = 4nfor p =2, we also have
Ly — (1 +qZy) X (Z/qmZ)*.

DEFINITION 5.2.2. For ¢ € Z*

».m» We let ¢, denote its image in Z,; and (c), denote its image in
1 +qZp.

Note also that Z;m is canonically isomorphic to the Galois group of Q(i,,,~)/Q. We will typically
be interested in measures on Z, ,,.
Let us set A = (Z/qmZ)*. We have

Lp|Zp ] = ZplAl[1+qZy] = Zp[A][TT,
the latter isomorphism taking the group element u to 7' + 1.

Let & be the valuation ring of a finite extension of QQ,,. By the same discussion as before, replacing

O by the group ring O'[A], we have the following.

LEMMA 5.2.3. There is a canonical bijection between O-valued measures on Z,, ,, and elements

of O[T]A].

Explicitly, the power series f € O[T][A] attached to an &-valued measure v on Z, ,, satisfies
fl’—1) / x’dv(ox)-o
G;A 1+qZp
If v arises from a distribution y = () on the groups (Z/mp"Z)*, then f is then given by the com-

patible system of elements

m
Z n € O(Z/p"mZ)"],
=1
(a, mp)
where [a],, denotes the group element of a.
The Bernoulli distribution will be the key to our definition of p-adic L-functions, but it is not

necessarily integral. Therefore, we introduce the following modification.

DEFINITION 5.2.4. Set N = p"m, let c € Z;
element of Z/Z and define

and take k > 1. For x € Z/NZ, we view 3; as an

p,m>

0= ()

and
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Note that E,(,k) = %IV,EN), so the E,gk) and E,(lkc) form distributions on Q/Z.
PROPOSITION 5.2.5. For N = p"m withn > 1 and k > 1, we have E,(lkc) (x) € Z, and
E,gkc( )= xk_lE,(l}c (x) mod p"Z,
forallx € Z/NZ.

PROOF. We have

Xt o i
te I 1, X'
1— 141 —'
-1 ( 2 + 6 - ) l.;) it
from which we see that the kth Bernoulli polynomial has the form

By(X) =X*— gxk‘l +kf(X)

with f € Q[X] of degree k — 2 (or 0 if k = 1), the leading term of f(X) belng Elxk=2 Letey > 0be
minimal such that p% f(X) € Z,[X]
Leta € Z with 0 <a < N lift x € Z/NZ, and let b € Z with 0 < b < N and y € Z, be such that

—1
L, a

= ]% +y. We then have

c

b = c;jaj —ch;jHaj_ly mod N>

for j > 1, which yields

1 /1 k 1 B

Since this holds for all k, we have in particular that E, 1 ( ) is in Z,, for all n, noting that ¢, = 1 mod
27, and that
E,S’? (x) = xk_lE,(,}L? (x) mod p"~*Z,
(k)

18 integral for sufficiently large n as well. By the distribution relation for the E, ¢, this integrality then
holds for all n. If we choose n > ¢, where ¢ is minimal such that po(f(X)— k;61X k=2) € Z,[X], then
we can refine the above to to

E,(,kc) (x) = xk_lE,slc (x) —FN)ck_zE

: 7 G (1 —0127) mod p"Z,

Since 012, = 1 mod 6Z,, this reduces to
E,(,kc( )= xk’lE,(,}c) (x) mod p"Z,,
and the congruence then follows for arbitrary n by the distribution relation. 0
REMARK 5.2.6. Together the E,gkc) form a Z,-valued measure Ec(k) on Zy, , hence on Z;;,m as well
by restriction. We can integrate the resulting measure against functions on Z ,, that arise as limits of

Dirichlet characters of conductor dividing p"m for some n.
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DEFINITION 5.2.7. We let Ec(k) denote the measure defined by the E,(lkc) .

REMARK 5.2.8. Given g € C(Z},,,0), we have

p,m’

| et = [ g aED

p,m p,m

for every k > 1.

REMARK 5.2.9. When yx: Z, ,, — O is a continuous multiplicative function, we have

| 20dEP @ = (1= x(e)c))
Z

p,m

Brx

.
Note that if y has finite order, so is the map attached to a primitive Dirichlet character of conductor
dividing mp" for some n, then )(Ec(k) defines an 0-valued measure on Zj, ,,, with volume given by the
above formula. Here, the )(E,(,kc) are really only defined for p"'m a multiple of the conductor of y, but
the ith terms of the distribution for i less than the minimal such n can be defined by the distribution

relations.

DEFINITION 5.2.10. Let v be an &-valued measure on Z;m. We define its p-adic Mellin transform
to be the &-valued function M, (v) on Z, given by

M) = [, v,

REMARK 5.2.11. When p is odd, x, = (x),®(x) for any x € Z,,, where ® is the Teichmiiller

character, which factors through (Z/pZ)*. For p = 2, we simply define w: Z, — Hs(Z) by the

above formula.

REMARK 5.2.12. If v is an &'-valued measure on Z;’m, then so is yv for any Dirichlet character

v of conductor dividing p"m for some n. In particular, we have

M) = [ (0@ ).

Zym
DEFINITION 5.2.13. Let x: Z ,, — C be a finite-order character. We define the Kubota-Leopoldt
p-adic L-function of y to be the C,-valued function on Z, given by

v 1
Ly(x,8) = —(1 = x(c)(c)5 ) Mu(xE) (1 — )
for s € Z, and ¢ € Z}; ,, such that x(c) # 1if x # 1.

Rewriting this, we have

~(1= () L) = |

X
Zpm

= [ e B )

2 ) TaEN (x)
(5.2.1)
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REMARK 5.2.14. The factor (1 — x(c) <c>},_s)_1 in the definition of L,(),s) removes the depen-
dence of the definition of the p-adic L-function on the value c¢. Note that such a factor (without the

inverse) was used in defining Ec(l) in the first place.

A finite order character x: Z ,, — C* takes values in Q and may be viewed as a p-adic character

through a choice of embedding of Q in @, we have the following.

PROPOSITION 5.2.15. Let ) be a primitive Dirichlet character of conductor p"*m for some n > 0,
and let  also denote the resulting character J : Z;m — C;, fixing a place over p in Q. For k> 1, we

have

Bk —k
Ly(x,1—k)=—(1 —xw_k(p)pk‘l)% =(1—xo *(p)p L(xo ™, 1-k).

PROOF. Set y; = x®*. We note that

(1= Lol 1 =0 = | e BN )= [ 0B ),

p,m p,m

and we split the latter integral into a difference of an integral over Z, ,, by an integral over pZ, »,

given that )y is trivial on elements of Z,, ,, not prime to m. By Remark 5.2.9, the former is
(k) K\ Br.
. Xi(x)dEc™ (x) = (1 — xi(c)c)) .
p,m

Since E,(,kc) (pb) = EW (D) for b € Z/mp"Z, the latter is

n—1,c

mpn—l

|, u0adEfw) =¥ w(paEl (pa)
pr,m a=1
mp"71
=P Y m@EY, (a)

a=1

— 2o | n)dEd ().

p,m

Taking the difference of the two terms, we have the result. O
COROLLARY 5.2.16. The p-adic L-function of X is independent of the choice of c in its definition.

PROOF. The function L,(,s) is continuous, and its values at the dense subset of Z, consisting of

the nonnegative integers are independent of ¢ by Proposition 5.2.15. 0J
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5.3. Iwasawa power series

DEFINITION 5.3.1. A finite order p-adic character y on Z;}m is a of the first kind if x is trivial on
1 + g7, and of the second kind if it is trivial on A.

In general, a finite order p-adic character )} on Z;m is a unique product ¥ = yixw of a p-adic
character ) of the first kind and a p-adic character y,, of the second kind. We use the subscripts “t”
and “w” to indicate “tame” and “wild”, respectively, though the terminology is technically incorrect if
p =2. If we view x as corresponding to a primitive Dirichlet character of conductor mp" for n > 0,
then yx is of the first kind if and only if it has conductor dividing mgq, and x is of the second kind if and
only if it has p-power order and conductor p" for some n > 1 (and then necessarily at least 2 if p = 2).

If x is of the second kind, it is necessarily even.

NOTATION 5.3.2. For any Dirichlet character x, let Ay = 0,[T], where ) is the Z,-algebra
generated by the values of y, fixing a choice of a embedding Q — @p Let K, denote the quotient field
of 0y, and let (A, ) denote the quotient field of A, which contains K, [T].

PROPOSITION 5.3.3. Let ) be a primitive even Dirichlet character of conductor m or mq. There
exists a unique element Fy, € Q(Ay) such that

Fy(Su’ —1) =Lp(xp,s)

forall s € Z, and & of p-power order, where p is of the second kind satisfying p (u) = L

PROOF. It follows from (5.2.1) that

1= 2p@@F e = ([ 0, ) ) g0 (o)

cEA

Let a € Z,, be such that (c), = u“, and set

hyo(T) = x(c){e)p(1+T)" = 1.
Then
hye(§u —1) = x(c)(e)p& U™ =1 = —(1—xp(c){c),™ ).
Similarly, if we let f, . € 0, [T] be such that
frew =1) = =(1=2(e){e), " )Lp(x.9)
for all s € Z,, then
fre(@u® —1) = —(1=xp(c)(c), " )Lp(2P,9).
Thus F, = Z‘Cz has the desired property. In that the integral power series fy . satisfies fy ((14¢)° —

1) =hy((1+49)°—=1)L,(x,s) for all s € Z,, it is unique, and therefore so is F}. O
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REMARK 5.3.4. In the notation of Proposition 5.3.3, we have If y # 1, then we may take c € A C
Z, y to be such that (c) # 1,50 hy . = x(c) — 1, and (x(c) — 1)Fy € Ay. If x = 1, then we may take
c=u€l+qZps0hy,=u(T+1)"1-1.

DEFINITION 5.3.5. Let F, = Q (W), and let G, = Gal(F,/Q). For any b € Z;,, set

(a,mp)=1
We set ©F = © (1) and refer to O as the kth higher Stickelberger element for F,.

Since the E,(,k) form a distribution, the @,(f) give a compatible system in the inverse limit. Set

Ge = Gal(F../Q). We have a continuous isomorphism Z; ,, =+ Go Via a ++ 0,, under which 1+ ¢Z,,
is idenitifed with I' = Gal(F../F) for F = Q(Uq), and A = (Z/mqZ)* is identified with the torsion
subgroup of G.., which we also denote by A. For locally compact Z,-algebra R, we then have an
identification

RIG..] = RIA][T] = RIA][T]
of topological rings, where T = y—1 for y = o,,.

NOTATION 5.3.6. Let

0 (b) = (8 (b)) € Q,AI[TI,

and set O = (E')gf)(l).

REMARK 5.3.7. Since

ey o
(1-cy0. ) Z E, (a)o, = Z Enc(a)o, € Zp|Gyl,
a=1 a=1
(a,mp)=1 (a,mp)=1

we have (1—cbo! )@)r(x]f ez »[A][T]. Aside from tl;;a use of o, ! in place of o, the latter is the power

series corresponding to the measure given by the E,S,c on Z;m.

NOTATION 5.3.8. For any nontrivial primitive even Dirichlet character ¥ of conductor m or mgq, let

fy=—ox'(0L),
where @y ~!: Q,[A][T] — K, [T] is the unique continuous Q,[7-linear map that restricts to y; ' =
oy ' onA. Set
fi=0-u(+7)"o(6L).

DEFINITION 5.3.9. For any primitive even Dirichlet character of conductor m or mgq, the power

series fy is called the Iwasawa power series of X.
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REMARK 5.3.10. For any nontrivial y, the image of f, in Gal(F,/Q) is

C Y (A Detwel =L Y we@ey)
a=1 mpn 2 x “ <a>p N mp” a1 ax a <a>b’
(a,mp)=1 (amp)=1

where the second equality is by the nontriviality of );. Then — f, becomes identified with

(0x77(65)) QT

1

where @) " is defined in the obvious fashion. In other words, f, is the negative of the oy -

specialization of the inverse limit of Stickelberger elements of the fields F,.
For x nontrivial, the power series f, agrees with F;, defined above.

LEMMA 5.3.11. For any primitive even Dirichlet character X of conductor m or mq, we have
fy = Fy. For x =1, we have fi = hiFy, where hy = 1 —u(1+T) L.

PROOF. We have

—_— mp

g =ox | Y[ aar ey

a=1
(a,mp)=1

:/X xl(x)<x>;sdEc(l)(x)
Z

It follows that f;, = F;,. The case that ¥ = 1 is similar and left to the reader. 0

We now prove the integrality of the Iwasawa power series f, for odd p.

PROPOSITION 5.3.12. Let ) be a primitive even Dirichlet character of conductor m or mq. Then
1
31 € Ay

PROOF. We prove this in the case that p is odd. For ¥ = 1, this is immediate from Lemma 5.3.11
and Remark 5.3.4. For y nontrivial, we are already done if ) is not of p-power order, as x(c) — 1 can
be chosen to be a unit. In particular, we may suppose that m # 1, so is divisible by a prime ¢ # p. We

claim that

Ol —r el () € Z,[G-].
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To see this, note that

1

mp
(M) _ 1My — a 1/ ta ~1
@, -0, ; (mpn 14 <mp">>6a € Zp[Gy)
(amp)=1

~(oup

set of representatives of A viewed 1ns1de Z/mp"Z and a fixed b € Z,, we have that the coefficient of
Y € 6,(G,] of oy 1@ (¢) is

lab '
Z< ; >wxl( “Hatim'p"),

n
ach \"P a= lmp
ael

for all n, since £ € Z 7) € Z by definition. Setting m’ =%, for AC {1,...,mp"} a

and the latter sum is 0 since ¢ divides the conductor of @y ~!. (Note that one value of a + im’p" in the

sum will not be prime to m if £{m’, but @y ~ ! (a+im'p") = 0 for this value.) Thus, @y ! (G)g) (¢))=0,

SO

—~——

fy = 0x=' (O —7'el (1) € A,.

Putting this all together, we have the following.

THEOREM 5.3.13. Let ) be a primitive even p-adic Dirichlet character of the first kind. There

exists a unique element f, € Ay such that if ¥ is nontrivial, we have

fr(Guw’ =1) =L,y (xp,s),
and if y = 1, then for hy = u(1+T)~! — 1, we have

fi(Gw’ = 1) = hi(&u’ = 1)Ly(p,s)
orall s € an of p-power order, where P 1S of the second kind satisfying p(u) =¢ .
lls€Z,and der, where p is of th d kind satisfying p !

Recall that X., denotes the unramified Iwasawa module over F... The interpretation of f) in terms

of Stickelberger elements also gives the following.

PROPOSITION 5.3.14. For any primitive Dirichlet character ) of conductor m or mq, the Iwasawa

—1
power series % fx € Ay annihilates X\,

PROOF. We again suppose that p is odd. Recall that ol 1! )(E) is integral, and

P

oy 1Y () =0

for every nontrivial even character ¥ of conductor m or mp. Write ¥ = vp where v has order prime to

p and p has p-power order. By varying p over its Gg,-conjugates, this implies that e, 1@&3 ) (¢) =0,
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where e,,,1 is the idempotent for @v~! on the prime-to-p part of A. Then e, -1 el ¢ Ov[G]. By

Remark 5.3.10, it annihilates e, -1 X.. By projection, we then have that f, annihilates the quotient
(0x ")

XOO . D

COROLLARY 5.3.15. Suppose that p is odd. For any even k > 2 not divisible by p — 1 and every

j > 1, we have
B.

J>

Bka*l = mod p.

In particular, we have

B
By g1 = ~* mod D

k
k .k Bj 0"/ .
PROOF. We have Lj(0,0") = =B g1 and Ly(1 —j, @) = ——4=— so this follows from the fact
that ®* # 1, then L, (x,s) = f;(u* — 1), and u' =/ — 1 = 0 mod p. O

COROLLARY 5.3.16. Suppose that p is odd and j = k mod p"~'(p — 1) are even positive integers
not divisible by p — 1. Then

(1-p/hH=L=q(1 —p"_l)% mod p".

PROOF. We have L, (1 — j,®/) = —(1 —pjfl)%. As
@’ (x) ()] = x)(x),!
and x{; = x’l‘, mod p”, we have the result so long as
1—@/(c)(c)), =1-c,
can be taken to be a unit, which occurs if j £ 0 mod p — 1. 0

5.4. Coleman theory

Let E be an unramified extension of Q,, with valuation ring &. Let g denote the order of the residue
field of . Let E, = E(Wpn+1), and let O, denote its valuation ring, for n > 0. Fix a sequence (Epn), of
primitive p”th roots of unity in E, such that { 5 w1 = Cpn foreachn > 1. Let A = O[T].

NOTATION 5.4.1. Let [p] denote the continuous Z,-linear endomorphism of A given on f € A by
[Pl NT) = f((A+T)P —1).
LEMMA 5.4.2. The image of [p] is equal to the set of all f € A such that
F(G(1+T)=1) = £(T)
forallieZ.
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PROOF. We need only show that every f with the above property is in the image of [p]|, which
is to say that it can be expanded in a power series in P = [p|(T) = (1 +T)? — 1. For this, suppose

inductively that we have written f as
n—1 )
f=Y aP' +P'f
i=0

with a; € € for some n > 0. Then f, also has the property that fn(é‘[’;(l +T)—1) = fu(T) for all i.
Taking T = 0, we see that fn(é,'[’7 —1) = f,(0) for all i, and therefore

fn_fn(o) =Pfni1

for some f, 11 € A having the desired property, and we set a, = f,,(0). We then have f =Y, a;P' in
the limit. 0J

PROPOSITION 5.4.3. There exist unique maps N : A — A and .. A — pA satisfying

p—1 ) p—1 )
([p]OJV>(f)(T)=Hof(C,é(HT)—l) and ([p]oY)(ﬁ(T):;)f(C;(HT)—l)

forall f € A.

PROOF. For f € A, consider

-1

Hf (1+T)—1),

which is clearly in A as its coefficients are fixed by Gal(Q(u,)/Q). We have g(T) = g({)(14+T) —1)
for all i € Z, so by Lemma 5.4.2, we have g = [p](4/(f)) for some .4(f) € A, which is unique by the
injectivity of [p].

If we take

h= Zf (1+T)—1) €A
then as
f(G(1+T)=1) = f(T) mod (1-G,),

for each i, we have h(T) € pA. As in the case of .4, we have h(T) = h(CI’)(l +7)—1) for all i, so
h=[p](Z(f)) for a unique .7(f) € pA. O

DEFINITION 5.4.4. Coleman’s norm operator A : A — A and Coleman’s trace operator ./ : A —

A are the maps characterized by Proposition 5.4.3.

LEMMA 5.4.5. If f € Aand n > 1, then f =1 mod p" if and only if [p](f) = 1 mod p".
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PROOF. We consider the nontrivial direction. Let m > 0 be maximal with f = 1 mod p™, and let
k > 0 be maximal such that

f=1+ap™T* mod (p"H, TF1)
for some nonzero a € 0. Since [p](T) = T? mod p, we have
[p(f) = 1+ p"aT™ mod (p™*!, 7).
So, if [p](f) = 1 mod p", then n < m. O

Let ¢ denote the unique Frobenius element in Gal(Ew/Q),), where E., = J,, E,;, which we also let

act on A through its action on coefficients.

PROPOSITION 5.4.6. If f € A%, then A (f) = @(f) mod p. If f =1 mod p" for some positive
integer n, then A (f) = 1 mod p"*!.

PROOF. Take f € A%, and suppose that f = 1 mod p* for some k > 0. We then have

FG+T)—1) = £(T) mod p*(1-,)
for each i € Z, and our assumption on f implies that
p—1 )
([PloA)(f) =TT £(&(1+T)=1) = F(T)” mod p**".
i=1
If k > 1, then f7 = 1 mod p**!, so Lemma 5.4.5 tells us that .#"(f) = 1 mod p**! as well.
If k = 0, then we can at least say that f(T)” = ¢(f)(T?) = [p](f)(T) mod p, so

A(20) < 1mt

and therefore Lemma 5.4.5 tells us that A4 (f) = ¢(f) mod p. O
COROLLARY 5.4.7. Suppose that f € A*. For n > m, we have
A" (@7 (f)) = A" (97"(f)) mod p" .
PROOF. By repeated application of Proposition 5.4.6 with k = 0, we have

AT(f) = ¢" T (f) mod p,

and again by Proposition 5.4.6, the congruence follows by applying .4/ o ¢~" to ﬁ:—mm(%) 0J

COROLLARY 5.4.8. Suppose that f € A*. Then g = lim A" (¢ ~'(f)) exists, and N (g) = ¢(g).

[—yoo
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PROOF. By Corollary 5.4.7, the limit g in question exists, and we have

A () = lim A (97(f)) = @lim A (9~ TD(f)) = (g).

[—oo [—oo

OJ

THEOREM 5.4.9 (Coleman). Suppose that u = (uy),>0 forms a norm compatible sequence of units
with u, € O, . Then there exists a unique f € A* such that f({y —1) = @"(uy) for all n > 0, and it
has the property that NV (f) = @(f).

PROOF. We choose arbitrary f, € A* that satisfy f,(,» — 1) = ¢"(u,) for each n, and we set
gn=A"(@"(fan))- As (gn)n is a sequence in a compact set A, it has a limit point, which we call f.
We claim that this f has the desired property.

For any n > m, we have

n—m__ 1|

p

O" (m) = " (Ng, /i, ) = " [T FulGpp-mCpr —1)
i=0
= (A" ) ([p)" " (Epn — 1))
= (ATQ"T fu) (G — 1).
Since 2n —m > n, Corollary 5.4.7, tells us that
</VZn—m(pm—anzn = JVn(P_ann mod pn—i—l,

SO
¢" (tm) = JVzn_m(Pm_zann(Cpm —1) = gn(gym — 1) mod Pn+1-
This forces f({ym — 1) = ¢™(uy,) by taking the limit over the subsequence of (g,), converging to f.

The power series f is unique, as its difference with any other such power series would have infin-

itely many zeros in the maximal ideal of J... Note that

()G = 1) = A (F)([PI(Cprr1 = 1)) = ([Pl 0 A ) (f)(Cprt — 1)
= Iij: FGhir = 1) =Ng, 50" (1) = 0" () = @(F) (G = 1)
for all n, which similarly forces ;V( )=o) O
NOTATION 5.4.10. Let I = Gal(Ew/E). Let U, = lim & under norm maps.

We let 6 € ["acton f € O[T] by

(6f)(T) = f(1+T)*¥) 1),
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where y: I — Z, denotes the p-adic cyclotomic character. The group Gal(E./Q)) = (@) x I" then
acts on O[[T] through the action of powers of Frobenius on coefficients and the action of I" described

above.

NOTATION 5.4.11. Set
M={fEN|N(f)=0(f)}

DEFINITION 5.4.12. The Coleman power series attached to u = (uy,), € U is the unique f € .#
such that f({ —1) = ¢"(u,) for all n > 0.

COROLLARY 5.4.13. The map Us, — # that takes a norm compatible sequence to its associated

Coleman power series is a continuous Gal(Es/Q,)-equivariant isomorphism.

PROOF. That the map is an injective homomorphism is a consequence of uniqueness of the power
series f attached to u by Theorem 5.4.9, and its image is in .# by said theorem.
For any f € ., if we setu, = ¢~ "(f({,» — 1)), then

9" (un) = f(Gr = 1) = @~ A (f)(Gpr — 1) ”Hf 1 G = 1) = 0" (Ng,. /1, 1)

Thus f is the power series attached to (u,), € Us. Continuity follows from the construction of the map

and is easily checked. H

LEMMA 5.4.14. For all f € A, we have

Z([pl(f)) =pf.
PROOF. By definition, we have that
p—1 ,
([l o [p)(/INT) = ;) F(pI(&,(1+T) = 1)) = pf([p(T)) = [pP)(P/)(T).
The result then follows by injectivity of [p]. O

NOTATION 5.4.15. Let
ANV ={feAN|L(f)=0} and ATP?={feA|S(f)=pos}

PROPOSITION 5.4.16. The sequence

FTrg g, £(0)
07, - A7=re L0 \y—0 TG T 7

Is exact.
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PROOF. Any constant a € Z, satisfies ppa = pa = (7 o [p])(a) = 7 (a), so sits inside A7 =P9_ If
feA”=P?, then
Z((1=1[plo)(f) = po(f) —po(f) =
by Lemma 5.4.14, so (1 — [p]@)(f) € A”=. Thus, the sequence is well-defined.

Note that (1 —[p]¢)(a) = a—¢(a) = 0 for a € Z, and (1 - [p]@)(f)(0) = f(0) — ¢(f(0)) for
f € A, which is carried to 0 under Trg q,. Thus, the sequence is a complex.

Injectivity of the first map is obvious, so we consider exactness at A~ =9 If f € A~ =P? satisfies
[plo(f) = f, then £(0) € Z,, and we may replace f by g = p~"(f — f(0)) € A7=P? for m > 0
maximal, supposing g # 0. We then have

g=bT" mod (p,T"1)

for some b € 0 and i > 1. But this congruence forces ¢(g)(T?) =0 mod (p,T"*!), a contradiction.
Thus, we have f = f(0) € Z,,.

We next consider exactness at A~ =0, Suppose that g € A with Trg /0,8(0) = 0. Then g(0) =
(1 —[p]e)(D) for some b € & by Hilbert’s theorem 90, and

(1— [p](p)(aTi) = aT' mod (pTi, Tiﬂ)

for all a € & and i > 1, so we can find a sequence in the image of 1 — [p]¢ that converges to g

recursively, and thus g = (1 — p[@])(f) for some f € A. If moreover g € A7 =0, then

L(f)=Z(8)+Z([ple(f)) = Z([ple(f)) = po(f)-
Let § € pg—1(E) satisfy Trg g, & = 1. Note that §(1+T) € A7=0, since

[plo(5(14T)) ZC§1+T 0,

and [p] is injective. Thus, the final map is surjective. O
NOTATION 5.4.17.
a. Define D: A— Aon f € Aby D(f)=(1+T)f(T).
b. Define log: A* — E[T] to be the homomorphism satisfying

o i—1 pi
log(1+f) = Z )f

for f € (p,T) and log(&) = 0 for & any root of unity in &.

—

c. Define Dlog: A — A on f € A* by Dlog(f) = (1 +T)]},(;)'

REMARK 5.4.18. Note that Dlog = D olog. We also consider D*log = D! o Dlog for k > 1.



5.4. COLEMAN THEORY

LEMMA 5.4.19. For any f € A, the quantity
1 fP )
“log [ —L——
p%(MWﬂ
lies in A.
PROOF. We have
P(N(1+T)P =1)=@(f)(T?) = fP(T) mod p,

Lo
0 Lol = 1+ pg for some g € A. We have

11111

1 [e]
log(1+pg) =Z :
i=1

and the latter quantity clearly lies in A, since i > v, (i) + 1 forall i > 1.

NOTATION 5.4.20. Define Z: A* — Aon f € A* by

1
ZL(f) =log [ = ~log([ple(f).
PROPOSITION 5.4.21. We have a commutative square

M —Z A7

s

Ay:p¢ lf[p](p Ay:()
of continuous Gal(Ew/Q))-equivariant Zp-linear homomorphisms.

PROOF. For any g € A, we have

([plo-2) (D ZC (1+7)g'(&(1+T)—1)

(5.4.1) - ZD (Gp(1+T) 1))

= D(([plo-)(2)),
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employing the chain rule in the second equality. Since [p] is an injective endomorphism, it follows that

D(A,S/’ZO) C A,7:O-
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For h € ./, that Dlogh € A”=P? follows from the string of equalities

[pl(#(Dlogh)) = D(([p]o-7)(logh))
= Dlog(([p]o-/)(h))
= Dlog(¢[p](h))
= [p](p@(Dlogh)),

the first using (5.4.1), the second using that log is a homomorphism, the third using 4 € .#, and the

fourth by definition of the endomorphism [p]. We also have .Z(h) € A0, since

[p]o. Zz 1+T)—1)

= Zlog (CH(1+T) —1) —log([pl@(h)) =0,

the last step using [p](T) = [T (&A+T)—1).
Next, for any 4 € A*, we have by the chain rule that
(ho[p])(T) W ([p)(T))
ho [p)(T) h([pI(T))
It follows from this that the diagram commutes. Galois-equivariance of log and then .Z is clear, and

Diog([ploh) = (1+7) — (147)" = plpl(Dlogh).

Galois-equivariance of D and then Dlog follows from the chain rule (for the I-action). U

LEMMA 5.4.22. For every n > 1, we have

1 TN 14T
o ([pw) T) rlt

PROOF. Set P = [p|(T), and note that P = Hf;ol (CI’;(I +T)—1), and apply Dlog to both sides. We

then have

P T &)~
We have
14T b C(14+T) 14P 14T
[p]( ( T >) ;C(1+T)+l pP"—— =[Pl { PT"—— ),
which yields the result. O

NOTATION 5.4.23. Let Q = F,[T], and define d: Q* — TQ by

_ o J(T)
I(f) = Tf(T)

for f € Q.
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LEMMA 5.4.24. We have
TQ=3(Q) +{f"| fe TQ}.

PROOF. We claim that

2(Q”) = { aT' € Q| ay =al foralli> 1}.
i=1
Let us denote the latter set by S. For this, we note that any u € Q* may be written uniquely as an

infinite product

o)

u :cH(l —b,T")

n=1

with ¢ € IF; and b, € F, for n > 1. Note that

—nb,T"
I =bal") =77, T

= —an;T"i s,
i=1

so d(u) € S as d is a continuous homomorphism. Conversely, any element of S may be written as an
infinite sum of terms of the form —n} >, a'T™ for some a € [F, and n prime to p (by using it to specify
the coefficient of 7" and thereby of the T for i > 1), and such an element is equal to d(1 —aT").
Thus, we have the claim.

Note that we can pick the coefficients a; with p 1 i of a power series in S arbitrarily. The fact that
d(Q*) = S implies the result since the pth powers of elements of TQ are exactly the power series in

TPF,[T?], for which we can pick the coefficients a; with p | i arbitrarily. O

PROPOSITION 5.4.25. The map Dlog: A — A7 =P? is surjective and has kernel the group Hg—1
of roots of unity of O of prime-to-p order.

PROOE. Clearly, the kernel of Dlog on A* is &*. Note thata € 0 N.# if and only if a” = @(a).
It is easy to see that no element of 14 p& can have this property, while every element of u,_; does.
Thus, the kernel is as stated.

We claim first that it suffices to check the surjectivity of Dlog modulo p. Let Q =IF,[T], and note
that the formula for Dlog makes sense on Q. Let f € A~ =P?. Suppose by induction that there exists
hy € ./ such that Dlog(hy) = f mod p*A. Then set

1 _
f'= Jp(f = Dlog(m)) € A7=7%,
and choose /' € .# such that DI/ = f' mod pA. Setting hy, 1 = hy + p*h’, we then have
Dlog(hy1) = f mod pFIA.

If we set h = limy_... i, then Dlog(h) = f. Thus, we have the claim.
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Next, we note that the reduction modulo p map .Z — Q* is surjective. This is straightforward: if
f € QX then choose any lift f of it to A* and consider g = limy_,.. 9 4%, which also lifts f but
now lies in .. To see that Dlog is surjective, it is then enough to see that the image & of A~ =P?
under reduction modulo p is contained in 1£X9(Q*).
Let v € ®. By Lemma 5.4.24, we have that
T
147"
for some u € Q* and f € TQ. Note that I%q)_lf: A — A reduces to an operator 5: Q — € that fixes
both v and #8(@, so fixes #ﬂ’. On the other hand, Lemma 5.4.22 tells us that 5(#}”’) = #f,
since [p](@(f)) = fP in Q. But for H'TTf = HTTf” to hold for f € TQ, we must have f = 0. Therefore,
v =110 (u), finishing the proof. O

— 9(u)+ 7

COROLLARY 5.4.26. The map D: A7 = — A7=0 is a bijection.

PROOF. The kernel of D on A is Zj, but S (a) = pa for all a € Zp, so D is an injection. Since
Dlog is a surjection by Proposition 5.4.25, the exact sequence of Proposition 5.4.16 reduces us to
the claim that the composite map g — Trg /Qp Dg(0) is surjective. For a € &, one may observe that
S(a(1+T))=0,s0a(l1+T) € A”=0, and D(a(1+T))(0) = a. The corollary now follows by the

surjectivity of trace in unramified extensions. 0J

We now have the following consequence of what we have proven.

PROPOSITION 5.4.27. The diagram

) Ea b4y 2, g I, 7(0)

0— tg1 X Zp(1 Z,(1) =0

is an exact sequence in the category of compact abelian groups with continuous Gal(E../Q,)-actions.

PROOF. We use Proposition 5.4.21, Proposition 5.4.25, and Corollary 5.4.26 to replace the middle
terms in the exact sequence of Proposition 5.4.16. The fact that Dlog: .# — A~ =P? has kernel Hg—1
is taken care of by adding it to the first term to preserve exactness. Note for this that the Coleman
power series attached to the norm compatible sequence (Cj ), for a € Z, is exactly (1+7)%, and the
map is clearly Gal(E./Q,)-equivariant. Also, note that Df(0) = f’(0), so the last map is as stated,

and
FA+THD 1) 720 = x(a)f'(0),
so it is also Gal(E./Q))-equivariant. O

Recall that an &-valued measure on Z,, is identified with an element of &’[Z,] which is isomorphic

to A under the continuous ¢-linear map that takes the group element of [i] to (1 + T’
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NOTATION 5.4.28. We define an operator @: A — A on f € A by
1
O(f) =f— ;[p](f”(f))
By definition, f € A satisfies ®(f) = f if and only if f € A”=0,

PROPOSITION 5.4.29. A measure [ on Z,, is the extension by zero of a measure on Z; if and only
if the power series attached to u lies in A~ =C. In other words, the continuous O-linear isomorphism
O|Zp] = A sending the group element 1 to T + 1 restricts to an isomorphism O [Z;] = A0 of
topological O-modules.

PROOF. Let f be the power series attached to u, and let f, € O[T]/((1+T)”" —1) denote its
image. For the distribution (u,), attached to u, we have that

fo= Z (k) (1+T)k € O[T

lifts f,,. Here, w,(k) = fzp Xkt prz, A1 for Xy pnz,, the chararacteristic function of k + p"Z. So, i is
the extension by zero of a measure on Z; if and only if Un(k) =0forall 0 <k < p"—1 with p | k. We
claim this occurs if and only if ®(f) = f, which will finish the proof.

Note that for any a € &, we have

1Pzl a(l+T)* ifptk
<I>(a(l—|—T)k):a(1+T)k—— ZaC,’j‘(lJrT)k: ( ) pi
P i 0 if p | k.

Then

Zﬂn )(1+T)k e o],
pJ(k

and it is clear that
®(f,) = f, mod ((1+T)"" —1)
if and only if w,(k) = O for all p | k. This holds for all n if and only if u is the extension by zero of a

measure on Z; . O
Note that OZ5] = A”=0 is Gal(E../Q,)-equivariant, using the action of ¢ € Gal(E../E) by
multiplication by the group element of ¥ (o) on O[Z,]

DEFINITION 5.4.30. The Coleman map Col: U — O[Z] is the map that takes u € U to the

element of OZ ] corresponding to .Z(f), where f is the Coleman power series attached to u.

Set § = ({pr)n € Uwo. For & € 1, let & € UL, be the unique norm compatible sequence of elements
of g1 withnorm & € 0.
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THEOREM 5.4.31. There is an exact sequence

a a o A=Tr Iz xdA(x)
0 1y 1 x Zp(1) ELZEE gy, oL g L

> Zp(1) =0
of continuous Gal(E./Q))-equivariant homomorphisms.

PROOF. The Coleman map is the composite
Col: Un &5 tt Z5 N7=0 2 027

of the Coleman power series isomorphism with . and the isomorphism of Proposition 5.4.29. We use
this to replace the middle part of the exact sequence of Proposition 5.4.27 with Col. That the first map
is then as stated is immediate. That the final map is as stated comes from the fact that for f € A~ =0
corresponding to A € & [[Z;]] (which yields a measure on Z,, by extension by zero) and the distribution

(An)n, we have

n_1 1
£'(0) = lim pZ kA (k) (1+T) " 7—g = lim pZ kA (k) = / xdA(x).
k=0 =0 z

n—yoo
p

O

LEMMA 5.4.32. Let u be an O-valued measure on Z, and let f € A be the corresponding power

series. For all k > 0, we have

| #auw = 0n)(0)

P
PROOF. We have a linear functional defined by
L(g) = | wg(x)du(x)
ZP
forall g € C(Z,,C,). We then have

IL(g)| < max |g(a)]
anp

for all g, so L is bounded and thus gives a measure 1, with a corresponding power series h € A.
We claim that 7 = Df. To see this, write f =}, gc,T" € A, where ¢, = [ (;)du(x). Note that

o)

Df = Z (nen+ (n+1)cp1)T".
n=0

en:/pr(z)d,u(x).

Since x(}) = (n+1)(,,5;) +7(}). we have e, = (n+1)c, 41+ nc, and therefore the claim.

Write h =Y~ e, T". Then
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Now, to prove the lemma, it suffices (by repeated application of the claim) to show that

/ xkdﬂ :/ d iy,
z Z,

where L is the measure corresponding to D¥ f. We can see this by induction, it being a consequence

P

of the claim for kK = 1. That is, if we know if for all measures with k — 1 in place of &, then

/Xk_ldm:/ d Uy,
Z Z,

since D*~!(Df) = D*f. But by the claim, we have

/xk_ldulz/ xkdu,
/ /

14 P

P

so we are done. O

DEFINITION 5.4.33. For k > 1, the kth Coates-Wiles homomorphism Oy : U, — O takes u € U to
D*log(f)(0), where f is the Coleman power series attached to u.

LEMMA 5.4.34. Let y: I = Z,, be the p-adic cyclotomic character. Then

Si(o(u)) = x(0) & (u)
forallu € U, and o €T.
PROOF. Note that for any g € E[T] and a € Z,, we have
D(g((1+T)"=1)) =a(1+T)%¢"(1+T)"— 1) =a(Dg)((1+T)* —1).
So, by recursion we see that
(5.4.2) D*(g((1+T)* 1)) = d"(Dg)((1+T)* ~1).

We can apply this with g = log f for f the Coleman power series attached to u € U and a = x (o) for
o € I. For this, note that the Coleman power series attached to & (u) is 6(f)(T) = f((1+T)*(®) —1).

Therefore, we have
D¥(loga(f)) = x(0) (D*log f)(a(T)),

and plugging in 0, we get the desired formula. 0

PROPOSITION 5.4.35. For u € Uw, let A, = Col(u), which we view as an 0-valued measure on .
We then have

Fddy = (1 - p19)8(u)

Zp
forall k > 1.
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PROOF. Let f € A* denote the power series attached to u, and note that

Hdh, = (DL (f))(0)

Zy
= D"log(f)(0) — p~'D*log(@(f) o [p])(0)
= 8 (u) — p* ' DFlog 9 (£)(0)
=(1—p")8(u),

the second-to-last step following from (5.4.2).



CHAPTER 6

The Iwasawa main conjecture

6.1. Semi-local units modulo cyclotomic units

Let F = Q(Ump), where p{m and m # 2 mod 4. Let us first observe that we have a map Col: AL
Ay . Note that each place of Q(u,,) over p is totally ramified in F... Let V,, denote the set of places over
p in any intermediate field. Recall that

Ueo = P U o
vev,
Let O be the valuation ring of a place w of Q(u,) over p. (Note that such places are totally ramified

in F = Q(Ump), and even in F...) Then & is free of rank one over Z,[A,], for A, the decomposition

group at p in A = Gal(F/Q). Giving
Po

veVy
the structure of a Z,[Gal(Q(u»)/Q)]-module by allowing A to permute the factors, it is then is free
of rank one as a Z,[Gal(Q(t,)/Q)]-module, and we can think of 1 in the term for w as a generator.

Similarly, then, we obtain
A=17,[2,,]= ] O1Z,],

veV,
and we can use this to define a Coleman map Col: %, — A as the direct sum of the Coleman maps at

the places over p.

PROPOSITION 6.1.1. There is a homomorphism Col: %. — A induced by the Coleman maps at
the places of Fw above p, fitting in an exact sequence

0= Zp[A/A)(1) = Ze <5 A — Z,[A/A,)(1) = 0

of A-modules.

COROLLARY 6.1.2. Let x be a nontrivial Dirichlet p-adic character of conductor dividing mp.
Then the Coleman map induces a map 02/“(,%) — Ay which is an isomorphism if and only if ¥ o~ ( p)—

leﬁ;.

We aim to prove the following theorem that, at least in the case of F = Q(u,), was proven by
Iwasawa.

147
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THEOREM 6.1.3. Let x be a nontrivial, even primitive Dirichlet character of conductor m or mp,
where p is an odd prime and m is a positive integer prime to p. Let F = Q(lUy,), and let F., be its

cyclotomic Z,-extension. Then there is an exact sequence
0— Ay (1) = %0 JC0 — Ay /(gy) — O,

where Ay = Oy /(x® ' (p) — 1), and where gy = T_ngfor S=1ifyo ' (p)=1and § =0 other-
wise, where g, € Ay satisfies

gx (W’ =1) =Lp(x,1-5)

forall s € Zp,.

COROLLARY 6.1.4. With the notation of Theorem 6.1.3, suppose that o' (p) —1 € Oy . Then
UL |CH) = Ay [(gy)-

PROPOSITION 6.1.5. Suppose that p1 @(m). Let x be a nontrivial, even Dirichlet p-adic character
of conductor dividing mp, and let f be the prime-to-p part of its conductor. The Ay-module CKOE,X) is

generated by the image of the norm compatible sequence (1 — Crpn)p.

PROOE. Since only primes over p ramify in F.,/F, the norm compatible sequences of elements
of F, are all norm compatible sequences of p-units. The group of norm compatible sequences of
cyclotomic p-units in F../F is generated as a A-module by (1 — {y,n), for d dividing m. Such a
sequence is of true units if f 7 1. From this, it is easy to see that 4. is similarly generated by the
(1= Capn)n and ((1—Epn)% 1), where ¢ € Z is a primitive root modulo p. The elements ey (1 — Gy )n
vanish unless f is a multiple of d. On the other hand, ey (1 — {;,») for d a multiple of f equals e, times
the norm for Q(&yn)/Q(Espn) of the elements (1 — Cypn). That is, ey (1 — §ypn)n is a A-multiple of
ey (1 —=Cppr)y for f dividing d. O

Let us now focus on the case that F = Q(u,), for which we suppose that E = Q,. Note that

Uso = U X Wp—1. Consider the cyclotomic unit

Un,c = m

for ¢ prime to p, and let u. = (upc)n € Uw. Let fp’c = Col(up,).
PROPOSITION 6.1.6. For k > 1, we have

[ 4G = (1= 1= DEA =0 = (1= )L, (0 1= 0.

X
p
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PROOF. We employ the Coleman power series

(14+T)"¢/2—(14T)/?
(1+T)"1/2—(1+T)1/2

and the change of variables T = ¢’ — 1. By Lemma 5.4.32, we have that

f(T) =

k
8i(ue) = S log £ 1) li=o .

We have

d 1 1 1 c 1 1

“ 1) == _ _ - _

7 ogf(e'—1)= 2( ] e’—l) Z(e—“—l eCl—1>

k_zo_k o () = (—en)Y) :g()k—’!‘(ck— 1<,
SO
Kk 1\ Bk
O(uc) = (" = 1)-"=(1-c)E(1 k)

The result then follows from Proposition 5.4.35. 0

We then have the following.

COROLLARY 6.1.7. The Z,-valued measure EC(O) on Z; satisfying
() dED (x) = / hdEN (x)
z; ;

forallh € C(Z,,C,) is equal to &, .

SKETCH OF PROOF OF THEOREM 6.1.3 FOR Q(L,,). Note that .. is topologically generated by
the elements u,, and in particular it is generated as a Z,[Z ;] = A[A]-module, where A = Gal(Fe / Q),

by u, for any integer c that is a primitive root modulo p. Proposition 6.1.6 tells us that

Col(%e) = Zp[Zy 1 p.c-

Note that C’p =(1- GC)”&W is independent of ¢, though it is not quite integral, though it becomes
integral up application of any element in the augmentation ideal I of A[A]. If k £ 0 mod p — 1, then

1-cke Z., . The “‘equivariant” version of Iwasawa’s theorem is then proven: it reads
Uos | Cos = A[A]JIE,,.

Recall that a character ®* of A defines an in this case surjective homomorphism ok A[A] — A of
A-algebras. For even k, the image a)k(f ») is nonzero, and it is integral if and only if £ # 0 mod p — 1.
A simple check yields using Corollary 6.1.7 yields that the power series corresponding to a)k(fp) (or

T times itif k =0 mod p — 1) is g, so we have Iwasawa’s theorem. O
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6.2. The Ferrero-Washington theorem
THEOREM 6.2.1 (Ferrero-Washington). Let F be a finite abelian extension of Q, and let F. be its
cyclotomic Zy-extension for a prime p. Then |1(X.) = 0.

The following is immediate from the theorem and Proposition 3.4.2.

COROLLARY 6.2.2. Let F be an abelian extension of Q, and let F., be its cyclotomic Z,-extension
for an odd prime p. Then the p-torsion subgroup of X, is zero.

In this section, we prove the Ferrero-Washington theorem in the case of F = Q(u,) for an odd

prime p. We follow their original proof in this case.

NOTATION 6.2.3. For a € Z, and a nonnegative integer m, let [a],, € Z denote the unique integer
with 0 < a < p"™*! to which a is congruent modulo p™*!. Let 8(a) = [a]o and 8, (a) = p~"([a]m —
[a]m—1) if m>1.

We may think of &, (a) as the coefficient of p in the usual p-adic expansion of a.

PROPOSITION 6.2.4. The -invariant of X« is nonzero if and only if there exists an even integer
k # 0 mod p — 1 such that

Z Su(a&)EF1 =0 mod p

S€lp—1(Zp)
forallm>0andall a € Z,,.
1—k
PROOF. Since X\ is trivial, we need only show that the p-invariant p;, of X2 is zero for every

1-k
even k with 2 <k < p — 3. Since f,« annihilates x° ), it suffices to show that f,« is not in pZ,[T].

For b € Z,, let 1 < i,(b) < p™ be such that (b), = (14 p)»(?) mod p"*!. The expression for fy
given by Remark 5.3.10 reduces to
m+1
fuor = — Y bo* 1 (b)(T + 1)P" ) mod @,
b=1

ptb

Since @, = T”" mod p, the congruence holds modulo (p,TPm) as well. To say that u; is nonzero
is then equivalent to saying that every coefficient of a power of T + 1 in each such expansion as we

m+1

vary m is zero. Let T,,(a) denote the set of positive integers b < p that are prime to p and satisfy

im(b) = im(a) mod p™. By what we have just said, we have 1 > 0 if and only if

Y bo*'(b)=0mod p"*!
beTy(a)
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for all @ € Z,, and m > 0. Note that i,,(b) = iy(a) mod p™ ! if and only if there exists & € p,—1(Z))
such that [b],, = [Ea],,. For given a =1 mod p and & there is exactly one 0 < b < p™ with p 1 b having
this property. Since ®(b) = (&), we then have p; > 0 if and only if

Z [a&] €X' =0 mod p™T.

Seup-1(Zp)
As 8 (a&) = [a&lp and 6, (a) = p~™([a&]m — [a&]m—1) for all m > 1, the result follows from the
equivalence of L > 0 with the latter congruences. 0

DEFINITION 6.2.5. A sequence (b;);> of tuples in [0,1)" is uniformly distributed if for every
product U C (0,1)" of open intervals in (0,1), the volume of U is proportional by a positive real
number, independent of U, to the density of the b; in U, which is to say the limit of 3|{i <N | b; € U}|
as N — oo,

DEFINITION 6.2.6. For r > 1, we say that (ay,...,a,) € Z:, is normal if the sequence of tuples

i

(p al]mfla--wp_m[ar]mfl)

with m > 1 is uniformly distributed in [0, 1)".
We omit the proof of the following.

THEOREM 6.2.7 (Weyl). A sequence (b;1,...,bi,)i>1 of tuples in [0,1)" is uniformly distributed if
and only if for every tuple (t,...,t,) € Z" — {0}, we have

lim — ﬁ M E=1biiti =
N i=1 |

N—oo
PROPOSITION 6.2.8. Forr > 1, let by,...,b, € Z, be such that by,...,b, are Q-linearly indepen-

dent. Then the complement of the set of a € 7, with (aby,...,ab,) normal has Haar measure zero.

PROOF. Lett = (t1,...ty) € Z" — {0}, and let ¢ = ¥ b;t;, which is nonzero by the linear inde-

pendence of the b;. For a € Z,, we have

r r
laclp—1=ac=) abjt; = Z labj]m—1t; mod p™.
j=1 Jj=1
Therefore, that (aby,...,ab,) is normal is equivalent by the criterion of Weyl to the statement that
1 &
lim — Z eZmp laclm—1 _ 0
N—eo N 4=

for all . We claim that this holds outside a set of a of measure zero for each z. Since there are only
countably many ¢, this implies the result. We also suppose that ¢ ¢ pZ’, as the convergence to zero of

limit in question is unaffected by dividing by a power of p.
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Set

and note that

/ 27i(p~"[acly—1—p " [ac]u— l)da_l
N’

1
/ |pn(a 2da——+N2 Z
each integral in the latter sum being zero, being a multiple of a sum over all p"th (resp., p™th) roots of

unity if n > m (resp., m > n). It follows that
2

1 T
Z/|PM2 |da—ZW 3

is finite, which forces limy;_ py2(a) = 0 outside of a set of measure zero. Note also that for any
N € Z with M> <N < (M +1)?, we have
2M 2
pv(@)] < Ipae (@) + 5 < Ipap(@)] +
as py(a) — pyp(a) is a sum of N — M? roots of unity. Thus (py(a))y has limit 0 outside of the same

measure zero set. L]

PROPOSITION 6.2.9. Set s = ’%1 andr=@(p—1). Let by,...,bs € Z), be such that (by,...,b,) is
normal, bibfl ¢ Zforall2 <i<s, and

,
bi=) cijb
j=1

for some c¢; j € Z for all r < i < s. Then there exist nonnegative integers m and n such that 8,(b;) =
Om(bj) forall 2 < j < s, while §,(b1) = 1 and 8,(b1) = 0.

PROOF. Take x| = 1 and let X2,...,Xxr € (0,1) be such that the x1,...,x, are Q-linearly indepen-
p

r
X = ZCinj .
J=1

If x; € Q for such an i, then ¢; ; = 0 for 2 < j < r by the assumed linear indepedence, so x; = ¢ jxj.

dent. For r < i <y, set

But this would imply that b,-bl_l € Z, contradicting our hypotheses. Thus, the x; for 2 <i < s are all
irrational.

Lety; € (0, ) sety; =x; for2 <i<r,and sety; = (2‘5:1 ci jyj) for r <i <s. Suppose that x| —y|
a atl

5+ %) Since

is sufficiently small so that for each 2 < i <'s, we have an 0 < a < p such that x;,y; € (

(b1,...,b,) is normal, there exists an m > 0 such that

" bl —yil < e
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for a given choice of € > 0. forall 1 <i <r. Forr <i<s, we have

Pimil <[bi]m - i‘,lci,j[bj]m) €L

r r
P il =yl < X leigllp ™" byl —vil < X leil -,
=1 =

SO

noting that both terms are in (0, 1) in the middle step. We may take € small enough that small enough

p~ " 1[b;],n lies in the same open interval (5 %) as y; forall 1 <i <s. We then have
p715m(bi) < p "[bilm < Pil(sm(bi) +1),

s0 Op(bi) = | pyi], and we note that | py;| = | px;| for i > 2. Since y; < %, we have 6,,(b;) = 0.

Now repeat the argument, but this time replace y; with z; where 1—17 <71 < % and z; — x; is small
enough. We then again obtain an n > 0 such that 6,(b;) = | px; |, this time for all i, noting that | px; | = 1.
Thus 8, (b;) = 8,(b;) for all i > 2, while §,(b1) =1 > 0= 6,,(by). O

PROOF OF THEOREM 6.2.1 FOR F = Q(u,,) WITH p ODD. Set s = ”T_l and r = @(p—1). Let
& be a primitive (p — 1)th root of unity. Note that &1 = —&, so for a € Z,, we have &, (—a&) =
p—1—0u(a&) solong asm > 1+4v,(a). It follows that

p—1 s

(6.2.1) Z o (al)E i(k=1) _225 (ak)E (p—l)Zﬁi(k*I)

i=1 i=1

for all a € Z, and even integers k. The in with 1 <i < r are linearly independent: in fact, they form
a Z-basis of Z[u,—1] C Z,. Let a € Z, be such that (a&,a&?,...,a&") is normal, and set b; = a&'
for each 1 <i <s. Then the conditions of Proposition 6.2.9 are satisfied for the b;, so we can find
nonnegative integers m and n as in its statement.

Suppose that p (X5 ) > 0. By Proposition 6.2.4, there exists an even 2 < k < p — 1 such that

251 (a&)E =0mod p

forall / > 0. Applying (6.2.1), we then have that

2Ek-1 =9 <i} 5,1(615) i&n )

i=1
p—1 p—

=Y di(ag)""

i=1 =

1
m(aﬁ)i =0 mod p,
1

providing the desired contradiction. 0J
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6.3. The main conjecture over ()

In its most classical form, the main conjecture of Iwasawa theory, or Iwasawa main conjecture,
states that the characteristic ideals of odd eigenspaces of X., are generated by the power series interpo-
lating corresponding p-adic L-functions in the case that F is an abelian field and F.. is its cyclotomic
Zp-extension. We refer to this as the main conjecture over the rationals, since it deals with fields cut
out by abelian characters of the absolute Galois group over Q. Its formulation in print is due to Green-
berg. While the main conjecture was actually proven by Mazur and Wiles in 1984, we shall label it as

a conjecture here in order to discuss its equivalent forms. We discuss its proof in later sections.

CONJECTURE 6.3.1 (The Iwasawa Main Conjecture). Let p be an odd prime. Let ) be a nontrivial,
even finite order p-adic character of Gg of conductor not divisible by p?, and let F be the the fixed
field of the kernel of x. For the cyclotomic Zy,-extension F., of F, we have

chary,, XO(O“’X*l) = (fy),

where fy € Ay satisfies
S ((T+p)* = 1) = Ly(%,)
foralls € Z),.

We can reformulate the main conjecture in terms of the p-ramified Iwasawa module.

PROPOSITION 6.3.2. The Iwasawa main conjecture is equivalent to the statement that
chary, X% = (g5),

where g, € Ay satisfies
g ((1+p)' ™ = 1) =Ly(x.9)

foralls € Zy.
PROOF. By Corollary 3.4.9, we have a pseudo-isomorphism
) = (X)),
and pseudo-isomorphic modules have the same characteristic ideal. We then have
g2(T) = f(w(1+T)"" = 1),
and the result follows. H

We can also reformulate the main conjecture as a comparison between global units modulo cyclo-

tomic units and the plus part of the Iwasawa module. This formulation eschews the use of L-functions.
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THEOREM 6.3.3. The Iwasawa main conjecture is equivalent to the statement that
charAx(&f,X)/‘éE,X)) = chary,, (x)).
PROOF. From the first exact sequence of Proposition 3.3.6, we obtain an exact sequence
0— &X) e - 1) g0 - x%) - xX 0.

Iwasawa’s theorem tells us that the characteristic ideal of the second term has characteristic ideal (g, ).
Since the alternating product of characteristic ideals of Iwasawa modules in an exact sequence of finite
length is 1, we have that

charAl(éZg%)/%oE,X)) = chary,, (x2)y

if and only if chary, 2 = (8y)- The latter statement is an equivalent form of the main conjecture by

Proposition 6.3.2. OJ

Mazur and Wiles proved the following interesting consequence of the main conjecture.

THEOREM 6.3.4 (Mazur-Wiles). Let p, F, x, and Oy be as in the Iwasawa main conjecture, and
suppose that X has prime-to-p order. We then have

(0x™)) _ —1
|AF | = |Bl,xa)—1 |x )
where | - |, denotes the normalized multiplicative valuation on the unramified extension Oy of Z,.

In particular, the converse to Herbrand’s theorem (due to Ribet) holds.

We also note that any one divisibility of characteristic ideals in the main conjecture for all ) of
the Galois group of a given totally real abelian field implies the other. This is a consequence of the
following result, which can be derived using the analytic class number formula (for instance, using

Sinnott’s work).

PROPOSITION 6.3.5. Let F be an abelian, CM extension of Q of conductor not divisible by p?,

and let G = Gal(F*/Q). Let f = [1ce fx € ZplT], and let p(f) = n(A/(f)) and A(f) = A(A/(f))-
Then

HXs)=u(f) and A(XS)=A(f).

As a final note, we treat the powers of the variable 7 itself that appear in the ideals of the main

conjecture.

-1
PROPOSITION 6.3.6. We have that T | chary X\** ) if and only if o~ (p) = 1.
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PROOF. Let N /p: ée — &F be projection to the first term of a norm compatible sequence. Con-

sider the exact sequence

& [Npjpéo —ker | @ T, =T | = (Xo)r — Ar

VeV, (F)
-1
that exists by Theorem 1.3.14. We take wy ~'-eigenspaces. Since Ar is finite, éjéwx ) = 0, and
rlox") = 0, we have that
(0x™")
xer e~ P, ,
veV,(F)
and the latter isomorphic to Z, or 0 depending on whether x®©~ '(p) =1 or not. 0

THEOREM 6.3.7 (Ferrero-Greenberg). We have T? { fy, and T | fy if and only if yo~'(p) = 1.

-1
We can see from this (and Sinnott’s work, for instance) that 72 { chary Xo(fox )

xlox ),

for all y as well, so

the same power of T divides both f, and chary

6.4. The Euler system of cyclotomic units

Let m > 1 be a positive integer, and let F = Q(u,,)". Let A = Gal(F/Q). Consider the set & of
nontrivial products of distinct prime numbers that split completely in F', which is to say are congruent
to +1 modulo m. For any r € &, we set F, = F(L,) for brevity, and we let G, = Gal(F,/F), which is
isomorphic to Gal(Q(,) /Q) by restriction. For £ | , we view Gy as the subgroup Gal(F,/F, ) of G,.
With this identification, if we let N, € Z[G,] be the norm element, we then have

N, = HNZa

lr
the product being (implicitly) taken over primes. Fix a generator o; of G, for each prime ¢ € &, and

let @y denote the Frobenius in G, for any r € & not divisible by .

DEFINITION 6.4.1. For r € &2, the rth derivative element is

D, = HDg € Z|Gy]
Lr

where for a prime ¢ € &, we set
-2
Dy=Y) io;.
i=1

The /th derivative element has the following key property.
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LEMMA 6.4.2. For{ € &2, we have
(Gg — I)Dg =/—1 —Ny.

PROOF. We have
-1 -1

oDy = Zz o ' =Y (i ZZGE—ZGE— (Dg+0—1)—

i=1
O

Fix a primitive mth root a unity {,, and a primitive ¢th root of unity {, for each ¢/ € &. Forr € 2,
set & = [1y- G- Let

o = (Gn = 1)(5, ' & — 1) €F,

which is a cyclotomic unit if » # 1 or m is composite. It has two key properties: the first is that
o = o,/ mod £

for every prime £ of F, over £. The second is the so-called Euler system relation found in the following

lemma. Note that we use additive notation for the multiplicative action of the group ring.
LEMMA 6.4.3. We have N;o = (¢ — 1)ty

PROOF. Sets = %. We have

!

—1
N 1) =Gt~

1

CK
B CmCs - 1

and replacing {,, with {1, we have the lemma. O

(¢€_1)(CmCY )7

Fix an odd positive integer n, and let &, denote the subset of elements of & that are products of

primes that are 1 modulo 7.
LEMMA 6.4.4. If r € &, then D,a, € (F* JF")6"

PROOF. We prove this by induction on the number of primes dividing r, the case that the number

is zero, i.e., r = 1, being clear. If r = ¢s for some prime ¢ and s in &7, then
(oy—1)Dya, = (£—1—Ny)Dso,, = (€ — 1)Ds0t + (1 — @) D504

by the Euler system relation. The latter of course agrees with (1 — ¢;)D;0 modulo (FX)*~!. Now,
by induction we have Dy, € F,*", and since ¢ € &2, this tells us that (6; — 1)D,a, € F*". Since this

holds for all ¢, we have proven the lemma. 0J
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Note that u, NF = {1} since F is totally real and » is odd, and this and the fact that n and r are
relatively prime tell us that w, N F(u,) = {1}. We therefore have that p, has trivial Gr, -invariants, so

the sequence of base terms in the Hochschild-Serre spectral sequence yields an isomorphism
(FrX/Frxn)G, 1>F></F><n

inverse to the inflation map H' (G, u,) — H'(GF,, )% . Let &, € F* /F*" denote the image of D, ¢,

under this map.
TERMINOLOGY 6.4.5. The element k, is called the Kolyvagin derivative of o,.

REMARK 6.4.6. Note that for any y € F,*, the element (1 — oy)y = %y is necessarily a unit at

primes over /. As ¢ splits completely in F' and all primes over it are totally ramified in F;/F, it makes

sense to take the image of (oy — 1)y in

(OF [LOr) = |(OF /\OF)* = [ ](OF/L£0OF)".
1 S0

Let K, denote a lift of x;, to F'*. Write
Do, = k.
for some B, € F*.
LEMMA 6.4.7. The fractional ideal B,OF. is invariant under G,.

PROOF. For ¢ € G,, the element (o — 1), is an nth root of (¢ — 1)D,a,, since K, € F. In partic-
ular, (6 — 1), is a unit for all o € G,, and the result follows from this. O

Let I; denote the subgroup of the ideal group I of F' generated by the prime ideals [ in OF dividing

a rational prime ¢. Then Ir = @, 1;, where the direct sum is taken over all primes.

LEMMA 6.4.8. If r € &, and { is prime with { 1 r, then we may choose &, so that B, € F* is a unit

at all primes over (.

PROOF. Note that the choice of &, is canonical up to an element of F*", so B, is similarly-well
determined exactly up to an element of F*. Since no prime over ¢ ramifies in F,/F, we have that the
G,-fixed part of the summand of Ir. generated by primes over ¢ is I;. By Lemma 6.4.7, we can find

a € F* such that af3, is a unit at all primes over /, as required. 0

Fora € F* /F*", we let |a]; to denote the image of a0 in Iy /nl; under the canonical projection.
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LEMMA 6.4.9. Let { € &P,. Then there exists a unique A-equivariant surjection
y: (O /OF)” — Ip/nl;
such that
I, ((1 — o)x) = [Nex]
forall x € F) /F)".

PROOF. Since Fy/F is tamely ramified at each prime dividing ¢, the A-equivariant map
pe: B[R =5 (05 [00r)

that exists by Remark 6.4.6 is surjective. Similarly, the A-equivariant map g,: F;* /F;" — I;/nl, given
by g¢(x) = [Nyx], is surjective as all primes dividing £ in F are totally ramified in F;.

For x € F;* /F;", we have p(x) = 0 if and only if the order £ — 1 of the residue field of each prime
£ over ¢ in Fy divides the valuation vg¢(x), which of course implies that £ — 1 divides v((Ny(x)) for
each prime [ of F over L. Since ¢ € &,, we then have [Ny(x)]; = 0. Consequently, the map g, factors
through the map py, producing the unique map I1,. 0

Let
Ty : {aEFX/Fxn | [a]g:O} —>Ig/nlg

be the map that takes an element a to the value of Iy on the image of a in (Of /LOF)*.

REMARK 6.4.10. From the proof of Lemma 6.4.9, we have that x € ker 7ty if and only if x is an nth

power modulo [ for all prime [ dividing ¢.
PROPOSITION 6.4.11. For any r € &2, and prime {, we have

m(%0) LT
0 ifltr.

(K] =

PROOF. If /1 r, then we saw in Lemma 6.4.8 that 3, may be chosen to be a unit at all primes over
¢, in which case K, will also be a unit at ¢, and therefore [k;], = 0.

If ¢ | r, then write r = £s. We choose s to be a unit at primes over ¢. Since 3/ is a unit times an
element of F*, we have that v¢(fB)") is a multiple of the ramification index ¢ — 1 for each prime £ of
F, over /. Since such primes are unramified over Fy, we can find v € FéX such that ﬁrv(f’l)/ " is a unit
at all primes over £. Since Nyv and v/=1 have the valuation at each £ over ¢ and B "OF. = K:OF,, we
therefore have [Nyv], = [K/]y.

Fix a prime £ over £ in F,. Since £ is ramified over F, we have

(1—oc)v= /" = (6,—1)B, mod £.
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Since K, K; € F, we have

(o —1)B" = (o¢ — 1)Dy04 = ({ — 1 —Ny)Dsay
= ({—1)Dsa, — (¢, — 1)Dyots = (£ — 1)Dsot — (e — 1) By,
the third equality by the Euler system relation. Since ¢ = a; mod £, and
(@ —1)Bs = ({—1)Bs mod £

by definition of the Frobenius, we have

((=1)/n (t—1)/n
Dsa Dol .
(o, —1)B, = -~ E< - ) =&V mod ¢
((PK - 1)133 Bs
In other words, the elements (1 — o;)Vv and &; differ by an %th root of unity modulo primes over ¢ in
Fy. We then have that ITy((1 — oy)v) = my(k;). By Lemma 6.4.9, we have the result. O

Now suppose that p is an odd prime, and let n = p* for some k > 1. The following theorem

guarantees the existence of enough primes for our application.

PROPOSITION 6.4.12. Given an ideal class ¢ € Af, a finite Z[A|-submodule M of F* /F*", and a
Galois-equivariant map 0: M — 7Z./nZ|A|, there exist infinitely many primes | € ¢ that lie over some

prime { € &y, such that M has trivial image in Iy /nl; and there exists a unit u € (Z/nZ)* such that
my(x) = ub(x)l mod nl,
forall x e M.

PROOF. Let E = F(u,) and H be the p-Hilbert class field of F. The inertia group at any prime over
p in Gal(E/F) has index at most 2, so HNE = F as p is odd. Note that Gal(E(s/M)/E) injects into
Hom(M, i) by Kummer theory. The element p € Gal(E/F) corresponding to complex conjugation
acts as 1 on M and as —1 on L, so p acts as —1 on Hom(M, u,). It also acts as 1 on Gal(HE /E), so
E(YM)NHE =E. Since HNE = F, it follows that E(x/M)NH = F.

Since w, NF = {1}, we have H°(Gal(E/F),u,) = 0 and therefore H'(Gal(E/F),u,) = 0 as
Gal(E/F) is cyclic. The natural map F*/F*" — E* /E*" is therefore an injection, and we see that

the injection
Gal(E(¥/M)/E) — Hom(M, ,)
is in fact an isomorphism.

Fix a primitive nth root of unity {,, and define a homomorphism t: (Z/nZ)[A] — W, on group
elements by 1(1) = §, and 1(8) = 1 for § # 1. The homomorphism 10 6: M — p, corresponds to an



6.4. THE EULER SYSTEM OF CYCLOTOMIC UNITS 161

element 7 € Gal(E(¥/M)/E) satisfying

for all x € M.

By what we have shown, restriction maps define an isomorphism
Gal(HE (VM) /F) = Gal(H/F) x Gal(E /F) x Gal(E(¥/M) /E).

So, we may choose ¢ € Gal(HE (v/M)/F) such that O-|E(\’7A7I) = 7 and O |y corresponds to ¢ € A via
the Artin isomorphism. By the Cebotarev density theorem, there exist infinitely many primes ¢ that
are unramified in E(v/M) and for which the Frobenius ¢ at £ has the same conjugacy class as ¢ in
Gal(HE(/M)/Q).

Now fix such a prime ¢, and let [ be a prime lying over it. Here then are its most easily derived
properties. Since ¢|r = 1, the prime [ has degree 1, or in other words ¢ € &. Since oy corresponds
to ¢, we have [ € ¢. Since o|g = 1, the prime [ splits in E/F, so ¢ € &,. Since ¢ is unramified in the
Galois extension E(v/M) of Q, we have [x], = 0 for all x € M.

The component of my(x) € I;/nl; as [ is trivial if and only if x is an nth power modulo [, as in
Remark 6.4.10. On the other hand, 6 (x)( € I;/nly is trivial if and only if 1 0 8(x) = 1, so if and only if
7| fixes /x, and then if and only if @ fixes ¥/, and then finally if and only if x is an nth power modulo
[. Thus, there exists a u € (Z/nZ)* such that the [-component of 7y(x) and u0(x)[ agree for all x € M.
The map

mo(x) — ub (x)1: M — E(Z/nZ)1 C Iy/nl,
o
is A-equivariant as the difference of A-equivariant maps, so its image is Z/nZ[A]-stable, but its image
also lies in a subgroup of I;/nl, containing no nontrivial Z/nZ[A]-submodule, as A acts transitively on
the primes of F over /. It follows that m;(x) = u6(x)! for all x € M. O

Recall that & = Er ®7,Z,, and set 67 = Cr @z Z,.

LEMMA 6.4.13. Suppose that x: A — O is a p-adic character of A. Extending X to a primitive
Dirichlet character; if 1 — x(£) € Oy for all £ | m, then ey (1 — Cy,) generates ‘5}%) as an Oy-module.

PROOF. Let {; = & ' for d dividing m. The group %F is the intersection with & of the Z,[Al-
module generated by the elements 1 — {; for d dividing m. Since the norm from Q(&,;) to Q(&,) for
e dividing d of the element 1 — {; is 1 — £, so long as every prime dividing d also divides e, we can

reduce this generating set to the set of 1 — {; with (d,%) = 1. In general, if /;,...,¢; are the primes
dividing d but not e, then the norm of 1 — {; is the application of (1 — (p[ll) (1= (p[kl) to 1 —C,.



162 6. THE IWASAWA MAIN CONJECTURE

Projecting to the x-isotypical quotient, we have that it becomes the multiple of the image of 1 — {, by
(1—x (L)1) (1= x(£)~"), which is a unit by assumption. O

We may now bound the orders of eigenspaces of even eigenspaces of p-parts of class groups. The
proof of the following result using Euler systems is due to Kolyvagin. We suppose that m is divisible

by 4 if it is even.

THEOREM 6.4.14. Suppose that p1|A
Then the order of AI(VX) divides the order of (&) €r) ™).

, and let X be a primitive finite order p-adic character of A.

PROOF. Let & be the Z,-algebra generated by the image of y, and let f be its residue degree. Let
ay = |A%X)|1/f and g, = |(6r/Cr)®)|'/7, and set n = ayqy. Letcy,...,c, be ideal classes generating
AI(DX) as an 0-module.

Set 6, = ey k;, for r € &,. Primitivity and the fact that p { |A| imply, by Lemma 6.4.13, that %}X i
free of rank 1 over 0, generated by 8; = e, 01 = ey ({n — 1)2. Then gy is the maximal integer 7y such
that §; € (F*0 /F*m)x),

Let 1 <i < g, and suppose that for each 1 < j < i, we have found primes [; € ¢; lying over primes

l; € Py such that for rj = H£:1 ¢, and t; < n the largest power of p such that
t; X
5, € (F*i/F*m)),
one hast; | ¢j_; and

ti_
(6.4.1) ft—lcjeﬁ(cl,...,cj_l).
J
We look for [; with the same properties.
Let M; be the 0-submodule of F* /F*" generated by §,, ,. Define

0;: M; — (Z/nZ)[A)Y),  6:(5,,.,) =ti-1ey.

By Proposition 6.4.12, there exists a prime [; € ¢; over some ¢; € &7, and satisfying [5,1.7 1] ¢; = 0and
ﬂl’i(&i—l) = uiti—1€y l;
for some u; € (Z/nZ)*. Now let r; = H§:1 ¢; and t; < n be the largest power of p such that J,, €
F ><t,~/F ><n‘
We have by Proposition 6.4.11 that

(6.4.2) (61,10, = M, (8, ) = uiti—1exl;

1

in Ip,/nly,. Since o, € F*'i /[F*", this forces t; | t;_1. In particular, ; divides 7y = gy, and therefore

a, = 2L divides 2.
x qx 1
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Proposition 6.4.11 also tells us that [§,,], = 0 unless ¢ | r;. Thus &, has a #;th root in F* and nonzero

valuation modulo n only at primes dividing /1,...,¢;. It follows that }[Sri] ¢; has trivial image in the

quotient of AI(VX) by the &-span of the classes ¢q,...,¢;_1 of [1,...,[;_;. Moreover, we have by (6.4.2)

that
1 i n
—18,)0, = ui——e,l; mod —1I.
ti[ r,]f, Ui ti €xhi f 45
This implies that t"t;ilci € 0(cy,...,¢_1), completing the recursion.
Multiplying together (6.4.1) for 1 < j < g gives that a, divides
g

li-1 _ 9y
1% =%

i—1 lg

which clearly divides g, . O

6.5. The main conjecture via Euler systems

Let p be an odd prime. Let m be a positive integer not divisible by p and divisible by 4 if m is even.
Set F = Q(tmp). and let F, = Q(thyyn) for n > 1 and Foo = U7, Fy. Let [(n) ="' = Gal(F../F,)
and T, = Gal(F,/F) = Z/p"~'Z. Let x: (Z/mpZ)* — € be an even character of order prime to p,
where &' = 0, which we also view as a primitive ¢-valued Dirichlet character. Set A = ¢'[I'] and
A, = O[I';]. We make a usual choice of identification of A with &[T7].

LEMMA 6.5.1.

a. The restriction map (%w)ga) — 36,(1" Vis an isomorphism.

b. The restriction map (Xw)(rja )~ XX has trivial kernel unless x(p) =1 and x # 1, in which
case it is isomorphic to O. It has trivial cokernel unless y = 1, in which case it is a finite quotient of
L', that is zero for sufficiently large n.

c. The inverse limit of norm maps (%oo)gr)l) — %H(X) is an injection unless Yo~ '(p) =1 and a

surjection unless x(p) = 1.

(%)

d. The inverse limit of norm maps (‘éx,)r(n) — CK,,(X) is an injection which is an isomorphism if

x(p) # 1.

Note that if M is a finitely generated A-module such that Mr is finite, then it is torsion and T
does not divide its characteristic ideal, so M! is finite as well, and in particular M ' is contained in the

maximal finite submodule My, of M.

PROPOSITION 6.5.2. Suppose that X (p) # 1 and y 0" (p) # 1. Then there exists an open ideal a of
A that annihilates both the kernel and cokernel of the inverse limit of norm maps Ny, : ((5"00)% ) (5",1()( )
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PROOF. Consider the following two commutative diagrams with top rows arising from taking the
I'(n)-homology of Proposition 3.3.6 (noting Theorem 3.3.4) and the bottom rows coming from Theo-
rem 1.5.4 (noting Theorem 1.5.21):

(XENT0 — (20 16D ) py — (2 )r) — X)) — 0

B !

0 %(x) / @@n(x) 35’(19:) ASZ‘) 0

and

(@) )N s () —— (U )y —— (P ) EF )y —— 0

[+ I [

0 (gpn(x) %(x) %(x) / gn(x) 0.

By Lemma 6.5.1 and our assumption that x(p) # 1, we have that the rightmost two vertical arrows in
the first diagram and the middle vertical arrow in the second diagram are isomorphisms. In particular,

we have exact sequences

(6.5.1) (XINTO) (90 1 &) T w160 0.
and
(6.5.2) (%DSX)/éaog%))r(n) - (gogx))r(n) % éan(m — kerm, — 0.

Since (Xo(]))r(n) ~ A% s finite, so is (XLX))F(”), and being contained in the maximal finite A-

submodule of X,EX), it has order bounded independent of n. By (6.5.1) and (6.5.2), we then have that

coker N, = ker 7, also has bounded order. The group }Z,(fc )

(;{Qf ))F(n) is finite by our assumption on
x and the theorem of Ferrero-Greenberg, so its subgroup %n(% ) / é"n(x ) is finite as well. Equation (6.5.1)
then also yields that (02/05,%) / @@OSX))F(,,) is finite, so ker N, = (OZ/M(,X) / £’°£,X))F(”) is finite of order bounded
in n by the order of the maximal finite submodule of W / &% (which is in fact trivial). Letting a be

the annihilator of (Xo(f ))ﬁn ® (%«Ex ) / & ))ﬁn, we are done. O
(x)

Let hy denote a characteristic power series of X, and let j, denote a characteristic power series
of &%) )61

PROPOSITION 6.5.3. Suppose that x(p) # 1. Then there exists an open ideal a of A such that for

all A € a and n > 1, there exists a A,-module homomorphism 0,2 5,575) — A, such that

0,1 (CX)) = L jyAn.
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PROOEF. Under our assumption that (p) # 1, we have W) = A via the product of Coleman maps

by Corollary 6.1.2. Consequently, its submodule (5"09 ) is torsion-free of rank one. In particular, there
exists an injective pseudo-isomorphism 0 : e 5 A, By Proposition 6.1.5, the A-module Z %) i
cyclic, so

6(¢¥)) = chara, (Ay/6(CLH))) = chary, (6 /C ) = (jy).

Now let a be as in Proposition 6.5.2. Let 6,,: ((foE,X))r(n) — A, be the map induced by 6. For any
Acaanduc 5,,(7( ), we let 6,1 () be 6,(v) for any v with Nj,(v) = Au, which exists since A annihilates
cokerNV,, and is unique since 6, is necessarily trivial on the finite kernel of N,. The result then follows
by definition of 6, ;. 0

LEMMA 6.5.4. Suppose that x(p) # 1. Let f; with 1 <i < g be such that X&) ~ [T, A/(f3)- Then
there exists an open ideal b of A such that, for each n > 1, there exist elements cy,...,cq of A,(ZC ) such
that the annihilator Ann(c;) of each ¢; as an element of the A,-module AE,X) /Au(ct,. .. ci—1) satisfies
bAnn(c;) C fiAp.

PROOF. By the given pseudo-isomorphism, there exists an exact sequence
8
0—@PA/(fi) = xH - 00
i=1
~ A ()

with Q finite. Taking I',-homology and noting that (Xo(! ))F(n) = A, by assumption, we obtain an

exact sequence

14
6.5.3) 0" = D An/ filks — AF) = Oy — 0.
i=1

Let b be the A-annihilator of Q. Let ¢; be the image of the generator ¢; of the ith summand A,/ fiA, in
n .

If x € A, is such that x- ¢; € A,(cy,...,c¢,), then we have xe; is in the sum of the image of QF(")
and @ ; An/fiAn in EB?ZI/\"/fjAn by (6.5.3). Since b annhilates Q, any A € b satisfies Axe; €
D ;siAn /filAn, but Axe; is clearly in the ith summand, so Axe; = 0. In other words, b Ann(c;) C
fil\n. O

Let us now work over F,".

LEMMA 6.5.5. Let r € &, for a power m of p, let £ be a prime divisor of r, and let q be a prime of
F." over (. Let B be the subgroup of A, generated by the primes dividing 7. Let c = eyq] € A,SX). Let
Oy = ey Ky, and let M = A, 0, C (FX/FX’”)(X). Suppose that we can choose

m > AP || (I /mI) P /A8,
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Let I C A, denote the annihilator of the image of ¢ in A,} /B. Suppose also that A, f € A, are such that
AL C fA,, and A,/fA, is finite.
Then there exists a A,-module homomorphism
0: M — (Ay/mA,) Y

such that for
N F*JF™" = ApfmAn,  1(x)q=m(x),
we have
0(3,) = An(s,).

PROOF. By assumption, we have m A% = 0. Define n: F} — A, by f1(x)q = (x),, where (x),
denotes the image of (x) in I; so that 7} lifts . Let §, € F* be a lift of §,. Then (8,) is a multiple of m
at primes not dividing r, so its image in A;¥ /B is n1(5,)q, but also zero as the image of a principal ideal.

Thus 11(6,) € 1, and so A1} (5,) € fA, by assumption. Since A,/ fA, is finite, we may set

An(8,)
f

o=

€ Ay.

We define 6 as in the lemma as the unique A,-module homomorphism with 6(9,) = , if it exists.

If a € A, is such that a8, = 0, then [ad,], = 0. For h = \A,S") , we have
m
. (Ie/mI)™®) < Au[8)e.

so we must have a € hA,. Writing ad, = ™ for some x € F,*, we have ey [x], = [%agr] ¢» and (x) has
(x)

valuation a multiple of /4 at primes not dividing r. Since h-A,”" = 0, the element %(aS,) ¢ has trivial

image in AS,X)/B. In other words, %ﬁ (ad,)- ¢ € B. Then
aof = akﬁ(sr) € mfAy,
so 0 is 0 on ao,. Therefore, 6 is well-defined. L]

We now come to our proof of a divisibility in the main conjecture. For now, the proof is omitted.

THEOREM 6.5.6. If x(p) # 1 and x o~ (p) # 1, then char(X¥)) divides char(&%) /5.
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6.6. Geometry of modular curves

The original approach of Mazur and Wiles to the main conjecture was a heavily involved study of
Galois actions on the cohomology of modular curves, inspired by the work of Ribet in his proof of the
converse to Herbrand’s theorem, which looked at the Galois representations attached to a newform sat-
isfying a mod p congruence with an Eisenstein series. The work of Wiles was a significant refinement,
and in some sense simplification, of the work of Mazur-Wiles that employed Hida theory and Galois
representations constructed out of pseudo-representations to complete the proof of the more general
main conjecture over totally real extensions of Q. Back in the setting of the main conjecture over Q,
a further simplification of Wiles” work can be found in the work of Masami Ohta (for primes p > 5).
In this setting, the Galois representations that Wiles constructs are quotients of inverse limits of coho-
mology groups of modular curves, so one can study cohomology directly. It is this approach that we
will attempt to roughly sketch here. For this, we will have to assume substantially more background
than earlier in these notes, so we will try to focus on ideas to compensate for this.

For a given level N > 4, the modular curve X;(N) may be defined as a scheme over Z. Over,
Z[zlv]’ it is a compactification of the fine moduli scheme Y;(N) that represents the functor that to a
Z[}\,]-scheme S associates the set of pairs (E,P), where E is an elliptic curve over S and P is a point
of order N generating a subgroup scheme of E/s isomorphic to (Z/NZ) /s If we consider the base
change X;(N) of X;(N) to @, then its p-adic étale cohomology group Jyy = H},(X;(N),Q,(1)) has a
continuous action of Gg that is unramified outside of the primes over N and oo.

There is also an action on cohomology of Hecke operators given by correspondences. To describe

this, we remark that a choice of embedding Q < C gives rise to an isomorphism
Iy = H' (X1(N)(C), Zy)

of Q,-vector spaces, where the right-hand side is singular cohomology. This isomorphism commutes
with the actions of Hecke operators, so we can describe them on the right side. Recall that X;(N)(C)
is a quotient of the union H* of the upper-half place H and QU {eo} by the congruence subgroup

Iy(N) = { (a Z) € SLy(Z) | (¢,d) = (0,1) modN}.

c

I['(N,0) = { (j Z) €T (N)|c=0mod E}.

For a prime /, set
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Consider the diagram

(N, 0)\H*

X1 (N)(C) X1 (N)(C)

where vy is induced by multiplication by ¢ on H* and 7, is induced by the identity. This gives rise to
two correspondences on H! (X (N)(C),Z,) which are in a sense dual: we take the dual correspondence
T*(¢) given by pullback by y; followed by pushforward by 7. (The usual Hecke correspondence T (¢)
is given instead by (y;).7;.) We also have dual diamond operators (j)* for j € (Z/NZ)* (inverse to
the usual ones) that are the automorphisms induced by the maps on Y;(N) given by (¢ %) € SL»(Z)
with d = j~! mod N. We let h(N) denote the Hecke algebra of endomorphisms of H!(X;(N)(C),Z,)
generated by these dual correspondences and diamond operators. Back on étale cohomology, the
Galois and Hecke actions commute.

If N | M, then we have trace maps Tr: Jy; — Jy given on singular cohomology by summing over
['1(N) /'y (M)-conjugates (upon pullback to .7y via the injective map induced by the identity on H).
One key reason for our use of dual Hecke operators is that the trace map commutes with their actions.
In particular, if we consider a tower of modular curves X; (Np") for a fixed N > 1 not divisible by p and
n > 1, then we have an inverse limit of cohomology groups @n Tmpr under trace maps. Of particular
interest to us is the 7*(p)-ordinary part .7 = lim, fn?;ﬁ of H: it is the maximal direct summand of H
on which T*(p) acts invertibly. The ordinary part h* = m, b(mp™)° inverse limit of Hecke algebras
acting on .7 . This Hecke algebra h* is known as Hida’s ordinary (dual, cuspidal) Z,-Hecke algebra of
tame level m.

One of the key properties of Hida’s ordinary Hecke algebra | is it nicely encapsulates the structure
of ordinary parts of cuspidal Hecke algebras of all weights and levels. The Hecke algebra is free of
finite rank over the Iwasawa algebra A = Z,[T], where T = (1 +p)* — 1. If for k > 2 and n > 1, the
ordinary part of the weight k, level Np" Hecke algebra that acts on H'(X;(mp")(C),Sym*~! (Z%,))(’rd,
is isomorphic to /(1 +T)?" — (1+ p)?"*=2)). Moreover, the latter cohomology group is isomorphic
to the quotient of the free of finite rank A-module .7 by the action of (14 T)?" — (1 + p)?"*k=2),

It is perhaps more typical to speak of Hida’s Hecke algebra as acting on the space of ordinary
A-adic cusp forms via the usual (not dual) action of Hecke operators. (The algebras of usual and
dual Hecke algebras are isomorphic via the map that takes a Hecke operator to the corresponding
dual operator.) For this, one has the theory of A-adic modular forms, which are g-expansions with
coefficients in A that specialize upon plugging in (1 + p)*=2 — 1 for T to weight k cusp forms for each
(or, equivalently, all but finitely many) k > 2. For an eigenform to be 7' (p)-ordinary means that its

pth Fourier coefficient is a unit. Again, we have the same sort of good control when we specialize
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at various weights and levels. Let us denote the h-module of A-adic cusp forms by .. Hida proved
that the pairing h x . — A of A-modules that takes (7, f) to the g-coefficient of T f is perfect, so
h = Homp (-, A) and . = Homy (h,A). Moreover, .’ @4 2, where 2 is the quotient field of A, is
free of rank one over h ®5 2.

One sees that .7 fits in an exact sequence of Z,[Gg,]-modules of the form
0— T — 7 — Fquo — 0,

where Jquo has unramified action and is noncanonically isomorphic to the space of ordinary A-adic
cusp forms via an isomorphism that switches dual and usual Hecke actions. The key point here is
that for the Galois representation .7 to be ordinary for 7*(p) means also to be ordinary in the sense
of p-adic Hodge theory, which insures that it has a filtration of the above form. The Hecke operator
T*(p) acts as the Frobenius ¢, on J,. The characteristic polynomial of the Frobenius ¢y for ¢ {
mp acting on the rank two module .7 ® 2 is an h ®, Z-representation with 7*(p)-action given
by x> — T*(£)x + £(¢)*. One might roughly think of .7 as encapsulating all of the p-adic Galois
representations attached to ordinary cusp forms of tame level (dividing) m at once.

A version of Poincaré duality, modified to be compatible with the inverse limit, sets up a perfect
pairing of A-modules (, ): .7 x .7 — A such that (Tx,y) = (x,Ty) forx,y € . and T € b, and this
induces a perfect pairing Jgup X Jquo — A. From this and the duality between Hida’s Hecke algebra
and ordinary A-adic cusp forms, we see that Jgp, = . We remark that we may lift F5uo ®a £ to
a subspace of .7 @A £ complementary to Jg,, @A Z. We would preferably lift .7, itself, but it is
not clear one can do this if 6@~ !(p) = 1. However, we can get away with something close in all
eigenspaces using the action of a chosen element v of the inertia group I, at p with v({,n) = C;,T P for
all n. Setu= (1+T)(1+p) and A’ = A[(u—1)"1]. We declare .7 to be the h ®, A’-submodule
fixed by v. This clearly works, as the determinant in 2 of the action of Vv is u, but v acts trivially on
the quotient Fguo @A A'. We set T~ = Tgup QA A

By picking an ordered basis of .7 @4 2 from .7~ and .7, respectively, we see that the Galois
representation

a b
p: GQ-)GLz(f)@AQ), p= (c d)

is upper-triangular on Gg, and has the form

detp b
p””_< 0 1)

on the inertia subgroup I,,. We are particularly interested in the map c.
Let I denote the ideal of h generated by all 7*(¢) — 1 — £(¢)* for primes ¢ {mp and T*(¢) — 1 for

primes ¢ | mp, and fix an even p-adic character 8 of (Z/mpZ)* of conductor m or mp. Set y = O ®>.
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The image Ig of I in 6(®) (which corresponds to the 8~ !-eigenspace of the usual non-cuspidal Hecke
algebra acting on the space A-adic cuspidal modular forms) is the image of the ideal of the Hecke

algebra acting on A-adic modular forms that is the annihilator of the A-adic Eisenstein series

Gor =)ty Y, 07 (@)(x(@)q"
n=1 dn
(dmp)=1
where k(d) is the projection of d € Z,, , into 1+ pZ,. Here g% =g, if 0w(p) # 1 and gg’c = (T —
p) gy otherwise.

The quotient (h/1 )(9) measures, in a sense, the failure of the above Eisenstein series Gg-1 to be a
cusp form. This Eisenstein series induces map from Hida’s full modular Hecke algebra §) acting on
the space of A-adic modular forms to Ag-1, taking T'(¢) to the corresponding Fourier coefficient, and
its kernel is the Eisenstein ideal in the 6~ !-eigenspace of this Hecke algebra. On the dual cuspidal
Hecke algebra h(®), this yields a surjection (h/I)(®) — Agy/ l(gg)c) since Gg-1 becomes a cusp form
when reduced modulo its constant term. In fact, this surjection is an isomorphism for 6 # ®?, though
we shall not require it in our proof.

Now suppose that f; & (Ay[T~1])*. Note that T divides f; if and only if y®~!(p) = 0w(p) = 1.
(Recall that f ((1+p)*—1) = L,(x,s) for all s € Z,.). By the result of Ferrero and Greenberg, T
exactly divides f; in the “exceptional” case that y®~!(p) = 1, and T { f; for non-exceptional .

We shall be interested in the 6-eigenspaces (under the action of diamond operators) of our Galois
representation p that is defined by .7 (®) @, 2, so we view p as taking values in GLz(h(e) ®A 2) by

projection.

LEMMA 6.6.1. For 6,7 € Gq, the elements a(6) —detp(c), d(c) — 1, and b(c)c(t) of h1®) @, 2
are all contained in Iy C h(e).

PROOF. Note that h = Endy () = Endy(-”), so a and d take values in b, and moreover b(o)c(T) €
h for all 6,7 € Gg since compositions of elements in Homy (-, ) and Homy (h,.%) lie in one of the
aforementioned endomorphism groups.

It suffices to show the containments in question on Frobenius elements ¢, (or their “geometric”

inverses) at £ | Np by the Cebotarev density theorem. One has that
a(le, ) +d(e, ) =071T(0) = 1OT*(0) = 14 ¢7(¢) mod I.
Since detp (¢, 1 = ¢=1(¢) for all £, we therefore have

a(o)+d(oc)=1+detp(c) mod Iy
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for all 6 € Gg. The element v used to lift F,, satisfies

p(v) = (O ?)

where u = (1 + p)(T + 1). Taking the trace of p(vo), we see that
ua(o)+d(o)=1+udetp(c) mod Iy,

again for all o. It follows that a(c) —detp(o) € Ig and d(o) — 1 € I.
Now consider 6,7 € Gg and note that a(67) = a(o)a(t) + b(o)c(7). Thus we have

b(o)c(t) = (a(ot) —detp(o7)) — (a(o)a(t) —detp(o) -detp(7)) € Iy.
0J

Let B (resp., C) denote the h @ A’-submodules of l‘)(e) ®A 2 generated by the elements b(o) (resp.,
c(o)) with o € Gg. The h-module BC of sums of products is an ideal of h(e) contained in /.

LEMMA 6.6.2. The ideal BC of §\®) @z A is a faithful b®)-module.

PROOF. The map 6: Gg — (h/BC)* induced by ¢ +— d(0o) is a homomorphism that is unramified
outside of the primes over m. It is then at most tamely ramified at these primes, so by class field
theory the map factors through a quotient of []y|, Z; . Since the pro-abelian group (h/BC)* has finite
prime-to-p part and the group []y|, Z; has finite p-part, we see that the image of & is finite

For ¢ { mp, we have

OO = 1= 000" ) =a(e; ') +d(¢; ) —detp(p; ') — 1
= —(a(o, =) (d(p; ") = 1)+b(g; elo, ),

By the Cebotarev density theorem, we can find infinitely many primes £ { mp such that d (9, Hh-tle
BC. For such an /, we have then T*(¢) — 1 — £({)* € BC. This element is not a zero divisor in (®)
(as it does not annihilate any ordinary A-adic cuspidal eigenform with character 6!, which we do not
verify here), so the annihilator of BC in 6(®) is trivial. 0J

We have the following corollary.
COROLLARY 6.6.3. The H®) @ A'-modules B and C are faithful.
Let F = Q(Ump), and let F.. be its cyclotomic Z,-extension.

PROPOSITION 6.6.4. The map ¢: Gg — C/IgC induced by c restricts to a homomorphism on Gr,,

—1
with the same image as ¢ and which factors through Xogwx )



172 6. THE IWASAWA MAIN CONJECTURE
PROOF. For 0,7 € Gg, we have that
c(ot)=a(t)c(o)+c(1)d(o) =detp(T)c(0)+c(T) mod Iy.

Since detp factors through Gal(F../Q), we see that ¢ is a homomorphism, and it factors through X
since c|;, = 0.
For 0, € Gal(F../Q) with 6j(Cnpr) = /. for all n, where j € Z%, , we have

mp" p,m’
detp(aj) = jp(j)" = @8 (j)k(j){x(}))"
In particular, for j € (Z/mpZ)* and t € Gf,,, we have
&(ojro; ") =detp (o)) 'e(1) = (08) ' (j)e(r) = x ' (j)(7).
Finally, letting o € G, the commutator [v, o] lies in G, , and we have
&([v,0]) = (w ' = 1)é(o).
Since u~! — 1 is a unit in A/, we are done. O

Using the fact that C is a faithful (®)-module and the theory of Fitting ideals, one can show that
the characteristic ideal of C/IyC as a module over the algebra Ag of diamond operators is divisible

xex

by g?oz g-1- Since maps surjectively to C/IyC via ¢, we obtain the following theorem (upon

application of the theorem of Ferrero and Greenberg to deal with exceptional zeros).

THEOREM 6.6.5. The ideal (f;,) divides chary, X%,
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Duality in Galois cohomology

Fix a prime p. For a field E, let Gg denote its absolute Galois group, i.e., the Galois group of its
separable closure E°°P as an extension of E. Let u,~ denote the group of all p-power roots of unity in
ESP,

Now let E be a nonarchimedean local field of characteristic not equal to p. Recall that its Brauer
group Br(E) = H?*(Gg s, (E*P)*) is canonically isomorphic to Q,/Z, by class field theory. This has
the following corollary.

LEMMA A.0.1. We have an isomorphism
HZ(GEv@p/Zp(l)) — QP/ZP‘

PROOF. Of course, we may replace Q,/Z,(1) by u,~ in the statement, which in fact will make the

isomorphism canonical. First, we remark that, since direct limits are exact, we have an isomorphism
H*(Gg, y-) = lim H*(G, ).
n
Kummer theory sets up an exact sequence
0 — H2(Gg, 1) — Br(E) 25 Br(E),

the left exactness following from Hilbert’s theorem 90. Since the p” torsion in Br(E) is canonically

isomorphic to 1/p"Z/Z and Q,/7Z, is the direct limit of the latter groups, we have the result. O
REMARK A.0.2. If T is a finite Z,[Gg]-module, then H' (G, T) is finite for every i.
THEOREM A.0.3 (Tate duality). Let T be a finite Z,[Gg|-module. Then for i € Z the cup product
HI(Ge, T) x H*(Ge, T (1)) = H(GE,Qp/Zy(1)
is nondegenerate, inducing an isomorphism
H(Gg,T) = H* '(Gg, TV (1))".

REMARK A.0.4. In fact, we have, more generally, such a duality for compact Z,-modules T with
continuous Gg-actions. Here, we must use continuous cohomology, i.e., the cohomology groups of
the complex of continuous Gg-cochains with values in 7. We will in general denote such cohomology
groups using the same notation as the usual profinite cohomology groups.

173
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Finally, let F' denote a global field of characteristic not equal to p, and let S be a finite set of primes
of F.

DEFINITION A.0.5. Let T be a finite Z,|GFs]-module. For i € {1,2}, the ith Shafarevich-Tate
group of 7' is

I(Grs, T) = ker (H'(Grs, T) 25 @ H'(GR, T)),
vesS
where the map Res, is the compostion of restriction to a decomposition group at v € § in Grs with

inflation to the absolute Galois Gp, .
The duality theorem is then as following

THEOREM A.0.6 (Poitou-Tate duality). Let T be a finite Z,|Gr s|-module. For i € {1,2}, we have
isomorphisms
T (Grs,T) = 1P (Grs, TV(1))".

For v € S, and any i € Z, we will use H'(GF,, T) to denote the ith Tate cohomology group of T, by

abuse of notation.
REMARK A.0.7. For v € S., the cup product induces isomorphisms
H(GF,,T) = H*{(GF,,T"(1))¥
foralli e Z.

Combining Poitou-Tate duality with Tate duality, we obtain the following nine-term exact se-

quence.

THEOREM A.0.8 (Poitou-Tate sequence). For a finite Z,|Grs|-module T, we have an exact se-

quence

0 —— H(Grs,T) — @,esH(GF,,T) — H*(Gps, TV(1))V - - D
C_ 2 HI(GF,S7T) — @\/ESHI(GFWT) — HI(GF,SaTV(l))V - :)
C- 3 H(Grs,T) — @®,esH*(GF,,T) — H(Gps,TV(1))Y —— 0.

PROOF. We first define the maps in question. The maps

Res,: H' (Grs,T) — H'(GF,,T)
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are the compositions of the restriction maps from Grg to a decomposition group above v € § with
inflation to the absolute Galois group G,. The maps

H'(GF,,T) — H* ' (Gps,T(1))Y
are the compositions of the maps

H'(Gr,,T) — H*'(GF,, T¥(1))"

of Tate duality with the Pontryagin duals of the maps Res, with for the module 7V (1). Finally the
maps

H>(Grs, TV (1)) — H'(GFs,T)
are defined to be the natural maps that factor through the Poitou-Tate isomorphisms

m37i<GF75, TV(1>)V — Iﬂi<GF7s, T)

We briefly sketch the proof of exactness. Exactness at the first and last stages follows from injectiv-
ity of restriction on zeroth cohomology groups. Exactness at the local stages follows from global class
field theory, which tells us that the image of H i(GF7s, T) is the orthogonal complement of the image of
H?>7!(Grs,TV (1)) under the sum of local cup products. (We omit the argument, but see [NSW, Section
8.6].) Finally, exactness at the other four global stages follows directly from Poitou-Tate duality.  [J

REMARK A.0.9. As with Tate duality, we have Poitou-Tate duality and the Poitou-Tate sequence

more generally for compact Z,-modules T" with continuous G s-actions.
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