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1 Introduction

The fixed field Ω∗ of the canonical representation φ : GQ → Out(π1) with

π1 = πpro−p
1 (P1(Q̄) \ {0, 1,∞})

is a pro-p extension of Q(ζp) unramified outside p for any prime number p [I1]. We
study, for odd primes p, the structure of G = Gal(Ω∗/Q(ζp∞)) and of a certain graded
Zp-Lie algebra g associated to φ and arising from a filtration of G. To that effect, this
article can be viewed as an extension of the article of Ihara [I6] (esp., Lecture I).

Our primary insight comes from the examination of the relationship between ele-
ments of Gal(Ω/Q(ζp)), where Ω is the maximal pro-p extension of Q(ζp) unramified
outside p, and elements of Gal(Ω/Q(ζp∞)). More specifically, we construct elements
σm ∈ Gal(Ω/Q(ζp∞)) restricting nontrivially to elements of the mth graded pieces
grmg for odd m ≥ 3. The elements σm are obtained recursively starting from elements
of Gal(Ω/Q(ζp)) which satisfy the property that their images in the maximal abelian
quotient generate its odd eigenspaces under the action of Gal(Q(ζp)/Q). In fact, these
elements of Gal(Ω/Q(ζp)) provide suitable σm for odd m with 3 ≤ m ≤ p. In this
way, we are able to employ knowledge of the Galois group of Ω/Q(ζp) in studying
the structure of g. In particular, it will follow from a consequence of a conjecture of
Greenberg’s in multivariable Iwasawa theory [G2] that g is not free on the restrictions
of the σm for a large class of irregular primes.

Define Ω∗m−1 as the fixed field of the kernel of

φm : GK → Out(π1/π1(m+ 1)),

where K = Q(ζp∞) and π1(m + 1) denotes the (m + 1)st term in the lower central
series of π1. The graded Zp-Lie algebra g is defined by setting grmg = Gal(Ω∗m/Ω

∗
m−1)

∗The author would like to thank Yasutaka Ihara and Bill McCallum for many helpful discussions.
Supported by NSF VIGRE grant 9977116.

1



for m ≥ 1. Recall that, as a Gal(K/Q)-module, grmg ∼= Zp(m)⊕rm for some rm ≥ 0
[I1, I6].

Consider the filtration FmG = Gal(Ω∗/Ω∗m−1) of G giving rise to g. For each odd
integer m ≥ 3, we let σm denote an element of FmG with the property that κm(σm)
generates the image of the mth Soulé character κm on FmG [So, I6]. In Section 2, we
shall make a particular choice of the elements σm. By abuse of notation, the element
of grmg given by the restriction of σm to Ω∗m will also be denoted by σm (and is
nontrivial [I2, I6]). We remark that κm and κk induce the same character modulo pn

if m ≡ k mod pn−1(p− 1).
Let S denote the free pro-p group on infinitely many generators sm with m odd

≥ 3, and let s denote the free graded Zp-Lie algebra with generators also denoted sm

in odd degree ≥ 3. Consider the homomorphisms Ψ: S → G and ψ : s → g determined
by sm 7→ σm. Ihara attributes to Deligne the conjecture that ψ⊗Qp is an isomorphism
[I2, I3, I6]. In fact, Hain and Matsumoto have recently shown ψ ⊗Qp to be surjective
[HM].

We will study the surjectivity, or lack thereof, of ψ itself. This appears to be a
finer question, its answer depending upon arithmetic properties of the prime p. We
shall show that the validity of certain conjectures would imply that the map ψ is not
surjective exactly when p is an irregular prime. Without any assumptions, our results
imply that ψ is not an isomorphism for a large class of irregular primes.

The following theorem will result from our definition of the elements σm, but holds
for any choice of σm.

Theorem 1.1. Let p be an odd regular prime. Then the homomorphism Ψ is surjective.
If Deligne’s conjecture holds for p, then ψ and Ψ are isomorphisms and Ω = Ω∗.

Additionally, we shall obtain a refinement of this in the form of an extension of
Theorem I-2(ii) of [I6]. It will also follow from our methods that if p is regular and
Ω = Ω∗, then the map Ψ is injective. Furthermore, we shall show that injectivity of Ψ
together with surjectivity of ψ forces ψ to be injective. Hence, we obtain the following
result.

Theorem 1.2. Let p be an odd regular prime. If Ω = Ω∗ and ψ is surjective, then
Deligne’s conjecture holds for p.

For any number field F , Greenberg has a conjecture regarding the structure of the
Galois group of a large pro-p extension of F unramified outside primes above p [G2]
(see also [G1]). Let F∞ denote the compositum of all Zp-extensions of F (which is
necessarily unramified outside p), and let L∞ denote the maximal abelian unramified
pro-p extension of F∞. Greenberg’s conjecture states that X = Gal(L∞/F∞) has
annihilator of height at least 2 as a module over the multivariable Iwasawa algebra
Λ = Zp[[Gal(F∞/F )]] [G2]. By class field theory, X is seen to be isomorphic to the
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inverse limit A∞ of the p-parts of the ideal class groups of finite subextensions of F in
F∞.

We consider Greenberg’s conjecture for the field F = Q(ζp), which we refer to as
Greenberg’s conjecture for the prime p. Since A∞ = 0 if p is regular, Greenberg’s con-
jecture holds trivially for regular primes. Let M∞ denote the maximal abelian pro-p
extension of F∞ unramified outside p. Greenberg’s conjecture for p is equivalent to
Gal(M∞/F∞) having no torsion as a module over Λ [Mc, LN]. In particular, Green-
berg’s conjecture for an irregular prime p implies that Gal(Ω/F ) has no free pro-p
quotient on (p+ 1)/2 generators [Mc] (see also [LN]). The absence of such a free pro-p
quotient is the key to the following theorem.

Theorem 1.3. Let p be an irregular prime. If Greenberg’s conjecture holds for p, then
ψ and Ψ are not isomorphisms. In particular, if Deligne’s conjecture also holds for p,
then ψ and Ψ are not surjective.

McCallum has proven Greenberg’s conjecture for a large class of irregular primes
[Mc]. These are exactly those primes p for which both the p-part A of the ideal
class group of Q(ζp) and (U/Ē)[p∞] are of order p, where U denotes the unit group
of Qp(ζp) and Ē denotes the closure of the image of Z[ζp]

∗ in U (see [Mc, Ma] for
equivalent conditions). David Marshall has extended this result to a class of primes p
for which A which may be cyclic of any positive p-power order [Ma]. Currently, there
are no known examples in which A is cyclic of order greater than p. On the other hand,
there are plenty of primes for which A is not cyclic, for instance p = 157 and 691.

2 Construction of the elements

Choose any element τ ∈ Gal(Ω/Q) that restricts to a generator of Gal(K/Q). Let
δ = limi→∞ τ

pi
, an element of order p − 1 restricting to a generator of Gal(F/Q),

and let γ = τ p−1, which commutes with δ and restricts to a topological generator of
Gal(K/F ) ∼= Zp. By abuse of notation, we also denote by δ and γ the restrictions to
subfields Galois over Q. For any m ∈ Z, let εm ∈ Zp[Gal(Ω/Q)] be the element

εm =
1

p− 1

p−2∑
i=0

χ(δi)−mδi,

where χ : GQ → Z∗p denotes the cyclotomic character.
Let E denote a pro-p extension of F (unramified outside p) which is also Galois

over Q. If E/F is nonabelian, we cannot in general define an action of the idempotent
εm on Gal(E/F ). However, the following provides something of a substitute. For
g ∈ Gal(E/F ), we define

gεm = (g · δgχ(δ)−m

δ−1 · δ2gχ(δ2)−m

δ−2 · · · δp−2gχ(δp−2)−m

δ−p+2)1/(p−1). (2.1)
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Note that gεm = gεm′ whenever m ≡ m′ mod p − 1. We also define gεi
m to be the ith

iterate (. . . (gεm)εm . . .)εm . Although ε2m = εm, we do not necessarily have gε2m = gεm .
Instead, we have the following lemma.

Lemma 2.1. For any g ∈ Gal(E/F ), the element

g(m) = lim
i→∞

gεi
m

is well-defined and satisfies

δg(m)δ−1 = (g(m))χ(δ)m

. (2.2)

Proof. Set N = Gal(E/F ). Let x ∈ N , and let B denote the normal closure in
Gal(E/Q) of the subgroup generated by the elements [x, δjxδ−j] with 1 ≤ j ≤ p − 2.
We begin by proving the claim that

δxεmδ−1(xεm)−χ(δ)m ∈ B.

To see this, note that by definition (2.1) we have

δxεmδ−1 = (δxδ−1 · δ2xχ(δ)−m

δ−2 · · · δp−2xχ(δp−3)−m

δ−p+2 · xχ(δ)m

)1/(p−1). (2.3)

In N/B, the terms of (2.3) commute, and the right-hand side of equation (2.3) equals

(xχ(δ)m

)εm = (xεm)χ(δ)m

,

which proves the claim.
Let N(i) denote the ith term in the lower central series of N . We now show

inductively that for i ≥ 0 and 1 ≤ j ≤ p− 2 we have

ai,j = δjgεi
mδ−j(gεi

m)−χ(δj)m ∈ N(i+ 1). (2.4)

Note that a0,j ∈ N = N(1), and assume that ai−1,j ∈ N(i) for each j and some
i ≥ 1. Our earlier claim implies that the element ai,j is contained in the normal closure
C(i+ 1) in Gal(E/Q) of the group generated by the commutators

bi,l = [gεi−1
m , δlgεi−1

m δ−l] = [gεi−1
m , ai−1,l]

with 1 ≤ l ≤ p− 2. Hence bi,l ∈ N(i+ 1) for each l and therefore ai,j ∈ N(i+ 1).
Similarly, we have that

ci = gεi
m(gεi−1

m )−1 ∈ C(i+ 1) / N(i+ 1). (2.5)

As ∩∞i=1N(i) = {1}, we have that g(m) is well-defined by (2.5). Furthermore, (2.2)
holds by (2.4) with j = 1.
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We shall now make our choice of the elements σm described in the introduction.
First, for odd m with 3 ≤ m ≤ p, we choose any element tm ∈ Gal(Ω∗/K) such

that κm(tm) generates κm(Gal(Ω∗/K)), and we set gm = t
(m)
m , which also has maximal

image. For such m, set σm = gm. We recursively define the other elements gm and σm

by
gm+p−1 = γgmγ

−1g−χ(γ)m

m (2.6)

and
σm+p−1 = (γσmγ

−1σ−χ(γ)m

m )(m) (2.7)

for any odd m ≥ 3.
(We remark that it is not necessary to take the limit element in (2.7); a finite

iteration
(γσmγ

−1σ−χ(γ)m

m )εi
m

would work as an element σm+p−1, in fact with i ≤ 1 if m ≥ p− 2.)
Let L∗ denote the maximal abelian extension of K in Ω∗.

Lemma 2.2. The elements σm and gm have the same restriction to L∗ for all odd
m ≥ 3.

Proof. For 3 ≤ m ≤ p, the statement is trivially true. Note that εm defines an idem-
potent endomorphism of Gab = Gal(L∗/K). Also, εm commutes with conjugation by
γ on Gab. Hence we have

σm+p−1|L∗ = (γσmγ
−1σ−χ(γ)m

m )εm|L∗ = γσεm
m γ−1(σεm

m )−χ(γ)m|L∗
= γσmγ

−1σ−χ(γ)m

m |L∗ .

The statement now follows immediately by induction.

Let vp denote the p-adic valuation on Zp.

Proposition 2.3. Let m denote an odd integer with m ≥ 3. The element σm fixes
Ω∗m−1, and its image under κm generates κm(FmG). Furthermore, if m = k + j(p− 1)
for some integers k ≥ 3 and j ≥ 0, then

vp(κm(σm)) = vp((jp)!) + vp(κm(σk)).

Proof. We first show that σm fixes Ω∗m−1 inductively. Set Ω∗k = K for k < 0. Assume

that σm fixes Ω∗m−p+1. Once we show that σm fixes Ω∗m−1, then γσmγ
−1σ

−χ(γ)m

m will fix
Ω∗m, as grmg has Tate twist m.
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We prove the claim that if x fixes Ω∗m−p+1 then y = x(m) fixes Ω∗m−1. Note first that
y fixes Ω∗m−p+1, so we assume inductively that it fixes Ω∗k−1 with m−p+2 ≤ k ≤ m−1.
As Ω∗k is abelian over Ω∗k−1 and gk has Tate twist k, we see that

δyδ−1|Ω∗k = yχ(δ)k |Ω∗k .

From Lemma 2.1, we therefore have that y will fix Ω∗k, since k 6≡ m mod p − 1. We
conclude that y fixes Ω∗m−1. The first statement of the proposition now follows.

Note that
κm(γtγ−1) = χ(γ)mκm(t) (2.8)

for any t ∈ G. Therefore, we see that

vp(κm(γtγ−1t−χ(γ)l

)) = vp((m− l)p) + vp(κm(t)) (2.9)

for any t ∈ G. The last statement of the proposition now follows from the recursive
definition (2.6) of gm and (2.9).

By Lemma 2.2, the element gm has the same image under κm as σm. Let L̃ denote
the abelian subextension of Ω generated by roots of cyclotomic p-units, and note that
κm can be considered as a homomorphism of A = Gal(L̃/K) [I6]. To prove the second
statement of the proposition, it suffices to show that κm(gm) generates κm(Gal(L̃/L̃ ∩
Ω∗m−1)).

Let i denote the unique integer with 3 ≤ i ≤ p and m ≡ i mod p− 1. Let Ai = Aεi ,
B = Gal(L̃/F ), and Bi = (Bab)εi . Let hi denote an element of Ai restricting to a
generator of the procyclic group Bi [W, Ch. 8,13]. Then hi topologically generates Ai

as a normal subgroup of B.
Let x̃ denote the restriction of an element x ∈ Gal(Ω/F ) to L̃. We claim that Ai

is also the normal closure in B of the procyclic subgroup generated by g̃i. If not, then
since g̃i ∈ Ai, we must have

g̃i = xp[γ, y]

for some x, y ∈ Ai. Clearly, we would then have

vp(κi(gi)) > vp(κi(hi)),

contradicting the definition of gi.
Let Am denote the largest normal subgroup of Ai fixing Ω∗m−1 ∩ L̃. We have

κm(FmG) = κm(Am), and so we need only show that Am is the normal closure in
B of the procyclic subgroup generated by g̃m. Inductively assuming this is true for k,
we prove it for k + p − 1. If x ∈ Ak, then since A is abelian, x ∈ Ak is a product of
conjugates of g̃k by powers of γ̃. From equation (2.8), we see that

κk(
∏

γjg
aj

k γ
−j) = 0
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if and only if ∑
ajχ(γ)kj = 0.

Observing (2.6), we see that any such element is a product of conjugates of g̃k+p−1 by
powers of γ̃.

Proposition 2.3 has an interesting application to the study of the stable derivation
algebra D over Z considered by Ihara [I4, I5, I6]. Ihara has shown that there is a
canonical embedding of graded Zp-Lie algebras

ι : g ↪→ D ⊗ Zp

and has conjectured that grmι is an isomorphism for (at least) m < p. There is also a
canonical map

λm : grmD → Z

(denoted grm(c) in [I6]) which, after extending Zp-linearly, we may compose with grmι

to obtain a map λ
(p)
m . The latter map is related to the Soulé character κm by the

formula [I2, I6]
κm = (pm−1 − 1)(m− 1)!λ(p)

m (2.10)

on FmG. Let Nm denote the positive generator of the image ideal of λm.

Corollary 2.4. Let p denote an odd prime satisfying Vandiver’s conjecture. Let m ≥ 3
be an odd positive integer, and let k denote the largest integer less than or equal to
(m− 3)/(p− 1). Then

vp(Nm) ≤ vp((kp)!)− vp((m− 1)!), (2.11)

with equality if grmι is an isomorphism.

Proof. Since λ
(p)
m (FmG) ⊆ NmZp, this follows directly from (2.10), the surjectivity

of κm−k(p−1) under Vandiver’s conjecture [IS] and the last statement of Proposition
2.3.

3 Proofs of the main results

Before proving any theorems regarding ψ and Ψ, we make the following general points.

Lemma 3.1. Fix r ≥ 1, and consider a pro-p group F topologically generated by
elements y and xi with 1 ≤ i ≤ r. For each 1 ≤ i ≤ r, define xi,1 = xi and

xi,j+1 = yxi,jy
−1x

−1+pai,j

i,j = [y, xi,j]x
pai,j

i,j (3.1)

for some ai,j ∈ Zp for each j ≥ 1. Let H denote the normal closure of the pro-p
subgroup of F generated by the xi with 1 ≤ i ≤ r. Then:
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a. The elements xi,j with 1 ≤ i ≤ r and j ≥ 1 topologically generate H.

b. If F is a free pro-p group on the elements y and xi with 1 ≤ i ≤ r, then H is a
free pro-p group on the elements xi,j.

c. Assume H is a free pro-p group on the elements xi,j with 1 ≤ i ≤ r and j ≥ 1.
If ypn

/∈ H for all n, then F is a free pro-p group on the elements y and xi with
1 ≤ i ≤ r.

Proof. To prove part (a), we need only show that, for each k ≥ 0, the element ykxiy
−k

is contained in the pro-p subgroup generated by the elements xi,j. This follows easily
from the fact that the group generated by xi,j+1 and xi,j contains yxi,jy

−1.
For any pro-p group N , let N [j] denote the jth term in its descending central p-

series, and set N̄ = N/N [2]. Now assume F is free pro-p on y and the xi. Note that
H is a free pro-p group as a closed subgroup of a free pro-p group. Hence it is free on
the xi,j if and only if the images of the xi,j form a minimal generating set of H̄.

Fix i, and let D = Di denote the free pro-p subgroup of F generated by xi and y.
Let C = Ci denote the normal closure in D of the pro-p subgroup generated by xi. By
freeness of F , we have

H̄ ∼=
r⊕

k=1

C̄k.

Hence we are reduced to showing that the images of the xi,j form a minimal generating
set of C̄. As C̄ is elementary abelian, we have an injection

C̄ ↪→
⊕
j≥0

(C ∩D[j])/(C ∩D[j + 1]).

Finally, as xi,j ∈ D[j] \D[j + 1], we obtain minimality, proving part (b).
As for part (c), consider a free presentation of F on generators x̃i and ỹ mapping

to xi and y:
1 → R→ F̃ → F → 1.

By parts (a) and (b), the group F̃ has a free subgroup H̃ on elements x̃i,j defined as in
(3.1). Since H is free on the xi,j, the map H̃ → H is an isomorphism. Hence R∩H̃ = 0.
Thus R is isomorphic to RH̃/H̃, which is a subgroup of the group F̃/H̃ ∼= Zp generated
by the image of ỹ. Hence, if R is nontrivial, then ỹpn ∈ RH̃ for some n ≥ 0. Therefore
we have ypn ∈ H, a contradiction. Hence R is trivial, proving (c).

We now prove Theorem 1.1.

Proof of Theorem 1.1. For p regular, it is well-known that Gal(Ω/F ) is free pro-p on
the generators γ and gm with 3 ≤ m ≤ p and m odd. By the construction (2.6) of
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the gm and parts (a) and (b) of Lemma 3.1, it follows that H = Gal(Ω/K) is freely
generated as a pro-p group by the gm with m odd ≥ 3. As H is pronilpotent, and
since by Lemma 2.2 the elements σm and gm have the same image on the Galois group
of the maximal abelian subextension of K in Ω, we have that H is also free on the
σm. As G = Gal(Ω∗/K) is a quotient of H, the map Ψ is surjective. (Note that the
surjectivity of Ψ does not depend on the choice of elements σm.)

Assuming Deligne’s conjecture, we have that ψ, and hence Ψ, is injective. Therefore,
Ψ is an isomorphism and Ω = Ω∗. Finally, the injectivity of ψ plus the surjectivity of
Ψ yield the surjectivity of ψ [I6, §III-I-2].

The following serves as a rough converse to the injectivity implies surjectivity the-
orem for ψ ⊗Qp proven by Ihara [I6, Theorem I-1]. Recall that s arises as the graded
Lie algebra associated to a filtration FmS on S compatible with the filtration on G
[I6].

Theorem 3.2. If Ψ is injective and ψ is surjective, then ψ is injective.

Proof. We begin by assuming merely that Ψ is injective and ψ is not. Then ψ(x̄) = 0
for some nonzero x̄ ∈ grms and m ≥ 3. Choose a lift x1 ∈ S of x̄. Since Ψ is injective,
the image element g1 = Ψ(x1) is nontrivial. Let k1 be maximal such that g1 fixes Ω∗k1−1.
Let ḡ1 be the image of g1 in grk1g. By [HM], we have that ψ ⊗ Qp is surjective, so
there exists ȳ1 ∈ grk1s such that ψ(ȳ1) = pn1 ḡ1 for some minimum possible n1 ≥ 0.
Set x2 = xpn1

1 y−1
1 for y1 lifting ȳ1. By construction and the injectivity of Ψ, there

exists k2 > k1 maximal such that g2 = Ψ(x2) fixes Ω∗k2−1. By induction, we obtain a
sequence of elements xi ∈ S, each of which restricts to some multiple of x̄ ∈ grms, and
corresponding sequences of elements yi and exponents ni such that xi+1 = xpni

i y−1
i .

If ψ is surjective, then each ni is zero. Since the sequence of numbers ki is increasing,
the sequence xi has a limit x ∈ S which restricts to x̄ ∈ grms. We see that Ψ(x) = 0, as
Ψ(x) will fix Ω∗k for every k. This is a contradiction, proving the theorem. Note that,
removing the assumption of the surjectivity of ψ, this argument yields that infinitely
many of the ni are non-zero.

Theorem 1.2 now follows as a corollary to Theorem 3.2.

Proof of Theorem 1.2. If Ω = Ω∗, then since p is regular, Lemma 3.1b implies that G
is free on the generators gm with m odd ≥ 3 and hence is free on the σm by Lemma
2.2. That is, Ψ is an isomorphism. Since by assumption ψ is surjective, Theorem 3.2
implies that ψ is an isomorphism.

Before proving Theorem 1.3, we make the following remark.

Lemma 3.3. The state of Ψ being an isomorphism does not depend on the choice of
elements σm.
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Proof. For each odd m ≥ 3, let τm be an element of FmG with maximal possible image
under κm. Let Ψ′ : S → G be a homomorphism satisfying Ψ′(sm) = τm for each odd
m ≥ 3. Assume that Ψ is an isomorphism. The surjectivity of Ψ forces that

τm|L∗ =
∏
k≥m
k odd

σ
am,k

k |L∗

for some am,m ∈ Z∗p and am,k ∈ Zp for odd k > m. Setting am,k = 0 for k < m, we
find that the matrix formed by the am,k with m and k odd ≥ 3 is upper triangular and
invertible. Then the τm|L∗ form a minimal generating set of Gab = Gal(L∗/K), and
hence the τm freely generate G, as G is a free pro-p group.

We may now prove Theorem 1.3.

Proof of Theorem 1.3. The idea of the proof is to show that if ψ or Ψ is an isomorphism
then G = Gal(Ω∗/F ) is free, contradicting the corollary of Greenberg’s conjecture that
Gal(Ω/F ) has no free pro-p quotient of rank (p + 1)/2. The state of ψ or Ψ being
an isomorphism does not depend on the choice of generators σm by [I6, §III-6] and
Lemma 3.3, so we use our previously defined generators from (2.7) (which is possible
by Proposition 2.3).

If ψ is an isomorphism, then Ψ is as well [I6, §III-6]. Assume that Ψ is an isomor-
phism. This means that the σm freely generate G, so Lemma 2.2 implies that the gm do
as well. We clearly have that G is generated by γ and gm with m odd and 3 ≤ m ≤ p.
As γpn

/∈ G for any n, it follows by Lemma 3.1c that G is freely generated by these
elements, finishing the proof.

4 The filtration on the Galois group

We now consider the question of where in the filtration of G the nonsurjectivity of
Ψ may first occur. In this regard, we also have the following extension of Theorem
I-2(ii) of [I6] which removes the assumption m < p. It can also be viewed as a more
precise version of the contrapositive to Theorem 1.1 that if Ψ is not surjective, then p
is irregular.

Let Gm = Gal(Ω∗m/K) and set Sm = S/Fm+1S [I6]. We also recall the map
Ψm : Sm → Gm with Ψm(si) = σi for 3 ≤ i ≤ m and i odd.

Theorem 4.1. Let p be an odd prime and assume that Ψ is not surjective. If m
is minimal such that Ψm is not surjective, then Ω∗m contains a nontrivial elementary
abelian extension of F with Tate twist m which is linearly disjoint from the fixed field
of the kernel of κm if m is odd. If m is even, then p divides Bm and L∗ ∩ Ω∗m has a
nontrivial even part. If m is odd, then p divides Bp−m and Vandiver’s conjecture fails
at p.
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Proof. We remark that the surjectivity, or lack thereof, of Ψ and Ψm is independent of
the choice of the elements σk. Thus, Proposition 2.3 again allows us to use our choice
of σk from (2.7).

Set B = grmg if m is even, and let B denote the kernel of κm on grmg if m is odd.
Set A = B/(B ∩Gm(2)). Similarly to the proof of Theorem I-2(ii) of [I6], we have an
isomorphism of abelian groups

Gab
m
∼= Ψ(Sm)ab × A.

We claim that Ψ(Sm)ab is a Z∗p-submodule of Gab
m . (Ihara points out that a similar

group need not be Z∗p-stable.) In fact, we have by definition that

δσkδ
−1 = σ

χ(δ)k

k

and
γσkγ

−1|L∗ = σ
χ(γ)i

k σk+p−1|L∗ .
This proves the claim, so A is a direct summand of Gab

m as a Z∗p-submodule.
Therefore, A gives rise to an abelian pro-p extension Σ of K unramified outside

p with Tate twist m and satisfying Σ ∩ L̃ = K. The maximal elementary abelian
subextension of Σ/K descends to the desired elementary abelian p-extension of F .

One may ask if the assumptionm < p in Ihara’s result actually needs to be removed.
That is, is the smallest m such that Ψm is not surjective also the smallest m such that
p divides Bm? We shall briefly describe what an answer should involve.

Let us assume Vandiver’s conjecture at p. That p divides Bm indicates the existence
of a relation in G. If m is any number such that Ψm−1 is surjective, then the relation
induced in Gm can be put in the form

hpc

= Ψm(s)

for some h ∈ Gm, c ≥ 1, and s ∈ [Sm, Sm] which is not a pth power of a nontrivial
element. The map Ψm is not surjective if and only if Ψm(s) 6= 1. The surjectivity of
Ψm is therefore governed by both the structure of the relation in G and the form of the
filtration on G, two objects about which we require more information.

For example, in the case p = 691 and m = 12 considered by Ihara [I6] we know
that the commutators [σ3, σ9] and [σ5, σ7] are linearly independent in gr12g⊗Q691 [Mt],
and so we have information about the filtration. However, to prove the nonsurjectivity
of Ψ12 one still needs to demonstrate that the relation in G actually “involves” these
commuators so that in G12 it reduces to a nontrivial relation of the form

h691 = [σ3, σ9]
a[σ5, σ7]

b.

This question will be discussed in further detail in [MS].
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