Relationships between conjectures on the structure
of pro-p Galois groups unramified outside p
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1 Introduction

The fixed field 2* of the canonical representation ¢: Ggq — Out(m;) with
m =1 " (PH(Q)\ {0,1,00})

is a pro-p extension of Q((,) unramified outside p for any prime number p [I1]. We
study, for odd primes p, the structure of G = Gal(Q2*/Q((y~)) and of a certain graded
Z,-Lie algebra g associated to ¢ and arising from a filtration of G. To that effect, this
article can be viewed as an extension of the article of IThara [I6] (esp., Lecture I).

Our primary insight comes from the examination of the relationship between ele-
ments of Gal(©2/Q((,)), where Q is the maximal pro-p extension of Q((,) unramified
outside p, and elements of Gal(€2/Q((,~)). More specifically, we construct elements
om € Gal(©2/Q((pe)) restricting nontrivially to elements of the mth graded pieces
gr™g for odd m > 3. The elements o, are obtained recursively starting from elements
of Gal(£2/Q((,)) which satisfy the property that their images in the maximal abelian
quotient generate its odd eigenspaces under the action of Gal(Q((,)/Q). In fact, these
elements of Gal(£2/Q((,)) provide suitable o, for odd m with 3 < m < p. In this
way, we are able to employ knowledge of the Galois group of ©2/Q((,) in studying
the structure of g. In particular, it will follow from a consequence of a conjecture of
Greenberg’s in multivariable Iwasawa theory [G2] that g is not free on the restrictions
of the o, for a large class of irregular primes.

Define €2F _, as the fixed field of the kernel of

Pm: Gg — Out(m/mi(m + 1)),

where K' = Q((p~) and m(m + 1) denotes the (m + 1)st term in the lower central
series of 7. The graded Z,-Lie algebra g is defined by setting gr™g = Gal(Q2}, /2 ;)
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for m > 1. Recall that, as a Gal(K/Q)-module, grg = Z,(m)®™ for some 7, > 0
11, 16].

Consider the filtration FG = Gal(Q*/QF,_|) of G giving rise to g. For each odd
integer m > 3, we let 0, denote an element of FG with the property that k(o)
generates the image of the mth Soulé character k,, on F™G [So, I6]. In Section 2, we
shall make a particular choice of the elements o,,. By abuse of notation, the element
of gr'g given by the restriction of o,, to ! will also be denoted by o, (and is
nontrivial 12, I6]). We remark that x,, and kj induce the same character modulo p”
if m =k mod p"~(p—1).

Let S denote the free pro-p group on infinitely many generators s,, with m odd
> 3, and let s denote the free graded Z,-Lie algebra with generators also denoted s,,
in odd degree > 3. Consider the homomorphisms ¥: S — G and ¢: s — g determined
by s, — 0, Ihara attributes to Deligne the conjecture that ¢ ® Q, is an isomorphism
12, 13, 16]. In fact, Hain and Matsumoto have recently shown ¢ ® Q, to be surjective

We will study the surjectivity, or lack thereof, of v itself. This appears to be a
finer question, its answer depending upon arithmetic properties of the prime p. We
shall show that the validity of certain conjectures would imply that the map ) is not
surjective exactly when p is an irregular prime. Without any assumptions, our results
imply that v is not an isomorphism for a large class of irregular primes.

The following theorem will result from our definition of the elements o,,, but holds
for any choice of a,,.

Theorem 1.1. Let p be an odd regular prime. Then the homomorphism ¥ is surjective.
If Deligne’s conjecture holds for p, then ¢ and VU are isomorphisms and 2 = Q*.

Additionally, we shall obtain a refinement of this in the form of an extension of
Theorem I-2(ii) of [I6]. It will also follow from our methods that if p is regular and
Q) = QF, then the map WV is injective. Furthermore, we shall show that injectivity of ¥
together with surjectivity of v forces v to be injective. Hence, we obtain the following
result.

Theorem 1.2. Let p be an odd reqular prime. If Q = Q* and v is surjective, then
Deligne’s conjecture holds for p.

For any number field F'; Greenberg has a conjecture regarding the structure of the
Galois group of a large pro-p extension of F' unramified outside primes above p [G2]
(see also [G1]). Let F denote the compositum of all Z,-extensions of F' (which is
necessarily unramified outside p), and let L., denote the maximal abelian unramified
pro-p extension of Fi,. Greenberg’s conjecture states that X = Gal(Lo/Fx) has
annihilator of height at least 2 as a module over the multivariable Iwasawa algebra
A = Z,[[Gal(Fy/F)]] [G2]. By class field theory, X is seen to be isomorphic to the
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inverse limit A, of the p-parts of the ideal class groups of finite subextensions of F' in
F.

We consider Greenberg’s conjecture for the field F' = Q((,), which we refer to as
Greenberg’s conjecture for the prime p. Since A, = 0 if p is regular, Greenberg’s con-
jecture holds trivially for regular primes. Let M., denote the maximal abelian pro-p
extension of F,, unramified outside p. Greenberg’s conjecture for p is equivalent to
Gal(M/F) having no torsion as a module over A [Mc, LN]. In particular, Green-
berg’s conjecture for an irregular prime p implies that Gal(£2/F) has no free pro-p
quotient on (p+ 1)/2 generators [Mc] (see also [LN]). The absence of such a free pro-p
quotient is the key to the following theorem.

Theorem 1.3. Let p be an irreqular prime. If Greenberg’s conjecture holds for p, then
¥ and VU are not isomorphisms. In particular, if Deligne’s conjecture also holds for p,
then v and VU are not surjective.

McCallum has proven Greenberg’s conjecture for a large class of irregular primes
[Mc]. These are exactly those primes p for which both the p-part A of the ideal
class group of Q((,) and (U/E)[p>] are of order p, where U denotes the unit group
of Q,(¢,) and E denotes the closure of the image of Z[(,]* in U (see [Mc, Ma] for
equivalent conditions). David Marshall has extended this result to a class of primes p
for which A which may be cyclic of any positive p-power order [Mal]. Currently, there
are no known examples in which A is cyclic of order greater than p. On the other hand,
there are plenty of primes for which A is not cyclic, for instance p = 157 and 691.

2 Construction of the elements

Choose any element 7 € Gal(£2/Q) that restricts to a generator of Gal(K/Q). Let
§ = lim;_ 77, an element of order p — 1 restricting to a generator of Gal(F/Q),
and let v = 777!, which commutes with § and restricts to a topological generator of
Gal(K/F) = Z,. By abuse of notation, we also denote by § and v the restrictions to
subfields Galois over Q. For any m € Z, let ¢, € Z,[Gal(£2/Q)] be the element

1 =
em=——=> x(6)7"¢,
where x: Gq — Z, denotes the cyclotomic character.
Let E denote a pro-p extension of F' (unramified outside p) which is also Galois
over Q. If E/F is nonabelian, we cannot in general define an action of the idempotent

ém on Gal(E/F). However, the following provides something of a substitute. For
g € Gal(E/F), we define

g = (g- g Gl §2gXEON T 572 gp=2 xR T smpy /=) (9.7

3



Note that go» = ¢ whenever m = m’ mod p — 1. We also define g to be the ith
iterate (... (gm)“...)". Although €2, = ¢,,, we do not necessarily have g = g‘m.
Instead, we have the following lemma.

Lemma 2.1. For any g € Gal(E/F), the element

(") — lim gm

1—00

9

1s well-defined and satisfies
5gme—t = (g(m))x(é)m. (2.2)

Proof. Set N = Gal(E/F). Let x € N, and let B denote the normal closure in
Gal(E/Q) of the subgroup generated by the elements [z, 726 77] with 1 < j < p — 2.
We begin by proving the claim that

Sxem§H(zom) X" € B
To see this, note that by definition (2.1) we have
Szemd~l = (Bwd" - §2aXO) 2L g2 (O T g2 X (@)1 () (2.3)
In N/B, the terms of (2.3) commute, and the right-hand side of equation (2.3) equals

(xx(é)m)Em — (Iem)x(é)m

Y

which proves the claim.
Let N(i) denote the ith term in the lower central series of N. We now show
inductively that for i > 0 and 1 < j < p — 2 we have

a;; = & gmd I (gom) X" e N(i+1). (2.4)

Note that ap; € N = N(1), and assume that a;,_;; € N(i) for each j and some
¢ > 1. Our earlier claim implies that the element a; ; is contained in the normal closure
C(i+1) in Gal(E/Q) of the group generated by the commutators

i—1

1—1 1—1
biy = [g™ Olgem 67 = [gom L Qi1

with 1 <1 <p—2. Hence b;; € N(i+ 1) for each [ and therefore a, ; € N(i + 1).
Similarly, we have that

¢ =gm(g™ ) e Cli+ 1) aN(i+ 1). (2.5)

As N2, N(i) = {1}, we have that g™ is well-defined by (2.5). Furthermore, (2.2)
holds by (2.4) with j = 1. O



We shall now make our choice of the elements o, described in the introduction.
First, for odd m with 3 < m < p, we choose any element t¢,, € Gal(Q*/K) such
that K, (t,,) generates k,,(Gal(2*/K)), and we set g, = ¢i™  which also has maximal
image. For such m, set o, = g,,. We recursively define the other elements g,, and o,
by

Gmip1 = VG792 X" (2.6)

and
Om+p—1 = (’ng’y_lar_nxw) )(m) (2.7)

for any odd m > 3.

(We remark that it is not necessary to take the limit element in (2.7); a finite
iteration _
e’L

m

(Yomy o ")
would work as an element ,,, 4,1, in fact with ¢ <1if m >p — 2.)

Let L* denote the maximal abelian extension of K in Q*.

Lemma 2.2. The elements o, and g,, have the same restriction to L* for all odd
m > 3.

Proof. For 3 < m < p, the statement is trivially true. Note that ¢,, defines an idem-
potent endomorphism of G# = Gal(L*/K). Also, €,, commutes with conjugation by
v on G*. Hence we have

(™ )Em

e = oy og) X"

1= (Yoo

Om+p—1 L*

_ VUm’Y_lUn_@X(v)m e

The statement now follows immediately by induction. O]
Let v, denote the p-adic valuation on Z,.

Proposition 2.3. Let m denote an odd integer with m > 3. The element o,, fires
QF _,, and its image under K, generates kp,(F™G). Furthermore, if m = k+ j(p —1)

for some integers k > 3 and 7 > 0, then

p(Kom(om)) = vp((5P)") + vp(km (k).

Proof. We first show that o, fixes 27, inductively. Set 2; = K for £ < 0. Assume

that o, fixes 27, .. Once we show that o, fixes (27, _,

r ., as gr'g has Tate twist m.

then vamv_laﬁlxmm will fix



We prove the claim that if z fixes (27, ., then y = 2™ fixes ¥, _,. Note first that

y fixes 27, .4, so we assume inductively that it fixes 2 | withm—p+2 <k <m—1.

As Q7 is abelian over €2} _; and g, has Tate twist k, we see that

53/5_1 x(8)*

Q=Y Q-

From Lemma 2.1, we therefore have that y will fix Q}, since k # m mod p — 1. We
conclude that y fixes ¥ ;. The first statement of the proposition now follows.
Note that

K (VY1) = X(7) " K (t) (2.8)
for any t € GG. Therefore, we see that
Op(Fom (Y0~ EX)) = 0, ((m = D)p) + vy (k1) (2.9)

for any t € GG. The last statement of the proposition now follows from the recursive
definition (2.6) of g,, and (2.9).

By Lemma 2.2, the element g,, has the same image under £, as o,,. Let L denote
the abelian subextension of 2 generated by roots of cyclotomic p-units, and note that
fim can be considered as a homomorphism of A = Gal(L/K) [16]. To prove the second
statement of the proposition, it suffices to show that f,,(g,) generates ki, (Gal(L/L N
2, 1))

Let ¢ denote the unique integer with 3 < i < pand m =7mod p—1. Let A; = A%,
B = Gal(L/F), and B; = (B®)%. Let h; denote an element of A; restricting to a
generator of the procyclic group B; [W, Ch. 8,13]. Then h; topologically generates A;
as a normal subgroup of B.

Let & denote the restriction of an element z € Gal(Q/F) to L. We claim that A,
is also the normal closure in B of the procyclic subgroup generated by g;. If not, then
since g; € A;, we must have

Gi = 2P,y

for some x,y € A;. Clearly, we would then have

vp(ki(9i)) > vp(ri(hi)),

contradicting the definition of g;.

Let A,, denote the largest normal subgroup of A; fixing Qf_, N L. We have
Em(F"G) = Km(Ap), and so we need only show that A,, is the normal closure in
B of the procyclic subgroup generated by g,,. Inductively assuming this is true for k,
we prove it for kK +p — 1. If x € A, then since A is abelian, z € Ay is a product of
conjugates of g by powers of 4. From equation (2.8), we see that

se([ [V g ) =0
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if and only if
> ax(n)F =0.
Observing (2.6), we see that any such element is a product of conjugates of giy,—1 by

powers of 7. O]

Proposition 2.3 has an interesting application to the study of the stable derivation
algebra D over Z considered by lhara [I4, 15, 16]. IThara has shown that there is a
canonical embedding of graded Z,-Lie algebras

t:g—=D®Z,

and has conjectured that gr™: is an isomorphism for (at least) m < p. There is also a
canonical map

Am:gr"D — Z
(denoted gr™(c) in [I6]) which, after extending Z,-linearly, we may compose with gr™¢
to obtain a map A2 The latter map is related to the Soulé character k,, by the

formula [12, 16]
fom = (P71 = 1)(m — 1)IAW) (2.10)

on F™(G. Let N, denote the positive generator of the image ideal of A,,.

Corollary 2.4. Let p denote an odd prime satisfying Vandiver’s conjecture. Let m > 3
be an odd positive integer, and let k denote the largest integer less than or equal to

(m—3)/(p—1). Then
Up(Nim) < 0p((kp)!) — vp((m —1)Y), (2.11)
with equality if gr™e is an isomorphism.

Proof. Since AP (FMG) C NnZ,, this follows directly from (2.10), the surjectivity
of Ky—kp—1) under Vandiver’s conjecture [IS] and the last statement of Proposition
2.3. O

3 Proofs of the main results

Before proving any theorems regarding ¢ and ¥, we make the following general points.

Lemma 3.1. Fix r > 1, and consider a pro-p group F topologically generated by
elements y and z; with 1 <1 <r. For each 1 <1 <r, define ;1 = x; and

Tije1 = YT; Y 1ﬂ7i,j P ly, @ j]af (3.1)

for some a;; € Z, for each j > 1. Let H denote the normal closure of the pro-p
subgroup of F generated by the x; with 1 < i <r. Then:
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a. The elements x; ; with 1 <1 <1 and j > 1 topologically generate H.

b. If F is a free pro-p group on the elements y and x; with 1 < ¢ < r, then H is a
free pro-p group on the elements x; ;.

c. Assume H is a free pro-p group on the elements z; ; with 1 < i <r and j > 1.
If y?" ¢ H for all n, then F is a free pro-p group on the elements y and x; with
1< <.

Proof. To prove part (a), we need only show that, for each k > 0, the element y*x;y=*
is contained in the pro-p subgroup generated by the elements x; ;. This follows easily
from the fact that the group generated by z; ;.1 and z; ; contains yx; jy !

For any pro-p group N, let N[j] denote the jth term in its descending central p-
series, and set N = N/N|[2]. Now assume F is free pro-p on y and the z;. Note that
H is a free pro-p group as a closed subgroup of a free pro-p group. Hence it is free on
the z; ; if and only if the images of the z; ; form a minimal generating set of H.

Fix 7, and let D = D; denote the free pro-p subgroup of F generated by x; and y.
Let C' = C}; denote the normal closure in D of the pro-p subgroup generated by x;. By
freeness of F, we have

H = @ C.

Hence we are reduced to showing that the images of the z; ; form a minimal generating
set of C'. As C' is elementary abelian, we have an injection

C — E(C n Dj))/(C N DJj + 1)).

7>0

Finally, as z; ; € D[j] \ D[j + 1], we obtain minimality, proving part (b).
As for part (c), consider a free presentation of F on generators Z; and § mapping
to z; and y:
l1-R—F > F—1.

By parts (a) and (b), the group F has a free subgroup H on elements #; ; defined as in
(3.1). Since H is free on the z; ;, the map H — Hisan isomorphism. Hence RNH = 0.
Thus R is isomorphic to RH /H, which is a subgroup of the group F / H =~ Z,, generated
by the image of §. Hence, if R is nontrivial, then §*" € RH for some n > 0. Therefore
we have y?" € H, a contradiction. Hence R is trivial, proving (c). ]

We now prove Theorem 1.1.

Proof of Theorem 1.1. For p regular, it is well-known that Gal(Q2/F) is free pro-p on
the generators 7 and g, with 3 < m < p and m odd. By the construction (2.6) of



the g,, and parts (a) and (b) of Lemma 3.1, it follows that H = Gal(2/K) is freely
generated as a pro-p group by the g,, with m odd > 3. As H is pronilpotent, and
since by Lemma 2.2 the elements o, and g,, have the same image on the Galois group
of the maximal abelian subextension of K in €2, we have that H is also free on the
om. As G = Gal(Q*/K) is a quotient of H, the map W is surjective. (Note that the
surjectivity of U does not depend on the choice of elements o,,.)

Assuming Deligne’s conjecture, we have that v, and hence W, is injective. Therefore,
¥ is an isomorphism and §2 = ©*. Finally, the injectivity of ¢ plus the surjectivity of
U yield the surjectivity of v [16, §ITI-1-2]. O

The following serves as a rough converse to the injectivity implies surjectivity the-
orem for ¢ ® Q, proven by Ihara [I6, Theorem I-1]. Recall that s arises as the graded
Lie algebra associated to a filtration F™S on S compatible with the filtration on G
[16].

Theorem 3.2. If U s injective and 1 is surjective, then 1) is injective.

Proof. We begin by assuming merely that U is injective and ¢ is not. Then (zZ) =0
for some nonzero T € gr™s and m > 3. Choose a lift 1 € S of Z. Since V¥ is injective,
the image element g; = W(x1) is nontrivial. Let k; be maximal such that g; fixes Q,’;l_l.
Let g; be the image of g; in gr¥'g. By [HM], we have that 1 ® Q, is surjective, so
there exists 7j; € gr*s such that ¢(j;) = p™g; for some minimum possible n; > 0.
Set 1o = le,myl_ U for y; lifting ;. By construction and the injectivity of ¥, there
exists ky > k1 maximal such that go = W(x) fixes ;. By induction, we obtain a
sequence of elements x; € S, each of which restricts to some multiple of € gr™s, and
corresponding sequences of elements y; and exponents n; such that z;,; = 2 " y; .

If ¢ is surjective, then each n; is zero. Since the sequence of numbers k; is increasing,
the sequence x; has a limit = € S which restricts to z € gr's. We see that W(x) = 0, as
U(z) will fix Qf for every k. This is a contradiction, proving the theorem. Note that,
removing the assumption of the surjectivity of 1, this argument yields that infinitely
many of the n; are non-zero. m

Theorem 1.2 now follows as a corollary to Theorem 3.2.

Proof of Theorem 1.2. 1f ) = Q*, then since p is regular, Lemma 3.1b implies that G
is free on the generators g,, with m odd > 3 and hence is free on the o, by Lemma
2.2. That is, ¥ is an isomorphism. Since by assumption v is surjective, Theorem 3.2
implies that ¢ is an isomorphism. O

Before proving Theorem 1.3, we make the following remark.

Lemma 3.3. The state of U being an isomorphism does not depend on the choice of
elements o,,.



Proof. For each odd m > 3, let 7,,, be an element of F""G with maximal possible image
under K,,. Let ¥': S — G be a homomorphism satisfying V'(s,,) = 7,,, for each odd
m > 3. Assume that U is an isomorphism. The surjectivity of W forces that

L* = H O‘Zm’k|L*

k>m
k odd

Tm

for some a, , € Z, and ap € Zy for odd k > m. Setting a,, = 0 for k& < m, we
find that the matrix formed by the a,, with m and k odd > 3 is upper triangular and
invertible. Then the 7,,|z- form a minimal generating set of G* = Gal(L*/K), and
hence the 7, freely generate GG, as G is a free pro-p group. O

We may now prove Theorem 1.3.

Proof of Theorem 1.3. The idea of the proof is to show that if ¢ or ¥ is an isomorphism
then G = Gal(2*/F) is free, contradicting the corollary of Greenberg’s conjecture that
Gal(2/F) has no free pro-p quotient of rank (p 4+ 1)/2. The state of ¢ or ¥ being
an isomorphism does not depend on the choice of generators o, by [16, §III-6] and
Lemma 3.3, so we use our previously defined generators from (2.7) (which is possible
by Proposition 2.3).

If ¢ is an isomorphism, then V¥ is as well [I6, §I1I-6]. Assume that ¥ is an isomor-
phism. This means that the o,, freely generate GG, so Lemma 2.2 implies that the g,, do
as well. We clearly have that G is generated by v and g, with m odd and 3 < m < p.
As 47" ¢ G for any n, it follows by Lemma 3.1c that G is freely generated by these
elements, finishing the proof. O

4 The filtration on the Galois group

We now consider the question of where in the filtration of G the nonsurjectivity of
U may first occur. In this regard, we also have the following extension of Theorem
I-2(ii) of [I6] which removes the assumption m < p. It can also be viewed as a more
precise version of the contrapositive to Theorem 1.1 that if ¥ is not surjective, then p
is irregular.

Let G,, = Gal(Q,/K) and set S,, = S/F™S [16]. We also recall the map
U, Sy — Gy, with W, (s;) = o0 for 3 <@ < m and i odd.

Theorem 4.1. Let p be an odd prime and assume that U is not surjective. If m
w5 minimal such that W, is not surjective, then $27 contains a nontrivial elementary
abelian extension of F with Tate twist m which is linearly disjoint from the fized field
of the kernel of Ky, if m s odd. If m is even, then p divides B,, and L* N €Y has a
nontrivial even part. If m is odd, then p dwides B,_,, and Vandiver’s conjecture fails
at p.
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Proof. We remark that the surjectivity, or lack thereof, of ¥ and ¥,, is independent of
the choice of the elements 0. Thus, Proposition 2.3 again allows us to use our choice
of oy, from (2.7).

Set B = gr™g if m is even, and let B denote the kernel of k,, on gr™g if m is odd.
Set A = B/(BNG,,(2)). Similarly to the proof of Theorem I-2(ii) of [I6], we have an
isomorphism of abelian groups

G > §(S,,)™ x A

We claim that U(S,,)*" is a Z*-submodule of G2. (Ihara points out that a similar
group need not be Zy-stable.) In fact, we have by definition that

Sopd = 0_});(5)’“

and

__x()
L* =0 " Ok4p—1

yoRy

This proves the claim, so A is a direct summand of G as a Z;-submodule.
Therefore, A gives rise to an abelian pro-p extension ¥ of K unramified outside
p with Tate twist m and satisfying ¥ N L = K. The maximal elementary abelian

subextension of /K descends to the desired elementary abelian p-extension of F'. []

L*-

One may ask if the assumption m < p in Ihara’s result actually needs to be removed.
That is, is the smallest m such that W,, is not surjective also the smallest m such that
p divides B,,? We shall briefly describe what an answer should involve.

Let us assume Vandiver’s conjecture at p. That p divides B,, indicates the existence
of a relation in G. If m is any number such that ¥, ; is surjective, then the relation
induced in G,, can be put in the form

hP =W, (s)

for some h € G,,, ¢ > 1, and s € [S,,,, S;,] which is not a pth power of a nontrivial
element. The map ¥, is not surjective if and only if ¥,,(s) # 1. The surjectivity of
U, is therefore governed by both the structure of the relation in G and the form of the
filtration on G, two objects about which we require more information.

For example, in the case p = 691 and m = 12 considered by Thara [I6] we know
that the commutators [03, 09] and |05, 07] are linearly independent in gr'2g® Qg1 [Mt],
and so we have information about the filtration. However, to prove the nonsurjectivity
of W5 one still needs to demonstrate that the relation in G actually “involves” these
commuators so that in G5 it reduces to a nontrivial relation of the form

B9t = [o3, 09]% 05, 07]b.

This question will be discussed in further detail in [MS].
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