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Symplectic Linear Algebra

A symplectic vector space is a finite-dimensional vector space
V equipped with a nondegenerate alternating bilinear form ω.

This form gives an isomorphism from V to V ∗ given by
v → ω(−, v).

These are always even dimensional!
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Subspaces

A subspace W of a symplectic vector space (V , ω) is called
isotropic if ω|W = 0 i.e. W ⊂ W ω⊥.

W is called Lagrangian if W is isotropic of maximal
dimension i.e. W = W ω⊥.

dim(W ) + dim(W ω⊥) = dim(V ) for any subspace W
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Symplectic Manifolds

A **** manifold M and differential 2-form ω are called a
symplectic manifold if ω is closed (dω = 0) and ω|p is
nondegenerate (hence symplectic) for all p ∈ M.

We will allow M to be real C∞ or complex nonsingular
algebraic.

ω gives a canonical bijection between vector fields on M and
differential 1-forms on M given by X → ω(−,X ).

These are always even-dimensional!

These are always orientable!



Basic Definitions Vector Fields Hamiltonian Actions Hamiltonian Reduction References

Examples

(R2n, ω) with ω =
∑n

i=1 dxidyi

S2 with any nonvanishing volume form

Let G be a Lie/algebraic group acting on the dual algebra g∗

via the coadjoint action. Any orbit of this action is a
symplectic manifold with the Kirillov-Kostant-Souriau form.
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Classical Example

If M is any n-dimensional manifold, then T ∗M, the cotangent
bundle, is canonically a symplectic manifold with the form∑n

i=1 dpidqi , where pi is a set of local coordinates on M, and
qi are the corresponding extra coordinates on T ∗M.

If M represents a set of position coordinates for a physical
object, then T ∗M is the “phase space” tracking position and
momentum. This is the basis for Hamiltonian mechanics.

The Heisenberg uncertainty principle says the position and
momentum of quantum particles cannot be observed
simultaneously. So, the smallest observables in the
corresponding phase space are the Lagrangian submanifolds
i.e. the “quantum points”
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Poisson Structures

A Poisson structure on a manifold M (generally a variety) is a
k-bilinear map {−,−} : OM ×OM → OM such that, for every
open U ⊂ M, f ∈ OM(U)

{−,−} is a Lie bracket on OM(U)

{f ,−} is a derivation of OM(U) i.e.
{f , gh} = {f , g}h + g{f , h}

E.G. If OM(U) = Matn(R), then the standard Lie bracket
[A,B] = AB − BA is a Poisson bracket on this level.
Morally, a Poisson manifold is a symplectic manifold where the
form is allowed to have some degeneracy
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Vector Fields and 1-forms

Recall that X → ω(−,X ) is a bijection from vector fields to
1-forms

Given a 1-form η, denote the associated vector field as Xη.

If η = df for some smooth function f , denote Xf = Xdf = Xη
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Symplectic Vector Fields

A vector field X is called symplectic if ω(−,X ) is closed

Reason: Symplectic vector fields preserve ω i.e. LXω = 0

Proof: LXω = iXdω + d(iXω) = 0 + 0 = 0

Xf is always symplectic, since ω(−,Xf ) = df is exact
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Lie Morphism

Theorem:

If (M, ω) is symplectic, then {f , g} = ω(Xg ,Xf ) is a Poisson
structure on M.

In fact, f → Xf is a Lie algebra morphism; X{f ,g} = [Xf ,Xg ]
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Hamiltonian Vector Fields

A vector field X is called Hamiltonian if ω(−,X ) = dH for
some smooth H.

H is often called the Hamiltonian function

Fact: H is constant on any integral curve of XH

This reflects that physical objects travel along paths that
conserve their energy/momentum

We need to consider Lie group actions if we want multiple
degrees of symmetry/conservation
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Group Actions

Let G be a Lie/Linear Algebraic group acting on M
symplectically, meaning g∗ω = ω for all g ∈ G . We denote by
g the Lie algebra of G .

For any a ∈ g, there is an associated vector field Xa on M
corresponding to the infinitesimal motion of the group action.

Fact: If G acts symplectically, Xa is always symplectic i.e.
LXaω = 0.

We would like it if Xa were always Hamiltonian so that we can
turn symmetries of motion into conserved quantities.

Note that in the C∞ case, symplectic vector fields are locally
Hamiltonian since manifolds are locally Euclidean
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Desired Function

We are essentially hoping for a function H : M × g → R
sending (x , a) to Ha(x), where Ha is the Hamiltonian for a.

This would ideally be linear in the first variable. This would
therefore give us a map µ : M → g∗ given by x → H(x ,−).

It would also be nice if a → Ha were a Lie morphism i.e.
{Ha,Hb} = H[a,b]
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Hamiltonian Actions

A symplectic action of G on M is called Hamiltonian if there exists
a moment map µ : M → g∗ such that:

1 For any a ∈ g, the function Ha(x) = µ(x)(a) is the
Hamiltonian for Xa i.e. XHa = Xa.

2 For any a, b ∈ g, {Ha,Hb} = H[a,b].

3 µ is G -equivariant

Note that such µ need not be unique, but we will assume µ fixed
in the future.
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Example

Take M = C2 with coordinates (p, q) and so ω = dpdq.
G = SL2(C) acts on M symplectically.

The generators of g map to the corresponding vector fields(
0 1
0 0

)
→ q

∂

∂p(
0 0
1 0

)
→ p

∂

∂q(
1 0
0 −1

)
→ p

∂

∂p
− q

∂

∂q

This action can likely be made Hamiltonian since H1(M) = 0
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Example Continued

This action is in fact Hamiltonian. The given vector fields
come from smooth functions as follows:

(
0 1
0 0

)
→ q

∂

∂p
= Xq2/2(

0 0
1 0

)
→ p

∂

∂q
= X−p2/2(

1 0
0 −1

)
→ p

∂

∂p
− q

∂

∂q
= Xpq

The corresponding moment map is

µ : (p, q) → 1/2

(
pq q2

−p2 −pq

)
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Motivation

We will show that under nice conditions, certain quotients
exist in the symplectic category

This reflects eliminating symmetries or conserved quantities to
see a physical system’s “true” dynamics

The general setup is that we have a symplectic manifold
(M, ω) along with a Hamiltonian acting Lie/linear algebraic
group (G , µ).

We should not naively try to look at the orbit space M/G .
For one thing, this isn’t even dimensional in general!
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Level Set

We will consider certain subspaces of M. Let p ∈ g∗ be a
fixed point of the coadjoint action. Often, one takes p = 0.

By equivariance of µ, µ−1(p) is closed under the G action

Fact: If G acts freely and properly on µ−1(p), then µ−1(p) is
a coisotropic submanifold of M.

In fact, µ−1(p) is foliated by orbits
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Quotient Manifold

Now, restrict to the smooth C∞ symplectic category.

Near any x ∈ µ−1(p), M looks like a bunch of parallel G
orbits bound together. We want to try and quotient out these
extra dimensions by passing to the orbit space.

In general, µ−1(p)/G need not be a manifold. But in the case
that G acts freely and properly, it will be a manifold!

The quotient will also inherit the symplectic form from
µ−1(p), and this form will still be nondegenerate



Basic Definitions Vector Fields Hamiltonian Actions Hamiltonian Reduction References

Hamiltonian Reduction

To summarize, we have this variant of the Marsden-Weinsten
theorem:
Let M be a C∞ symplectic manifold with a proper Hamiltonian
action of a real Lie group G . If p ∈ g∗ is fixed by G and G acts
properly and freely on µ−1(p), then µ−1(p)/G has the canonical
structure of a symplectic manifold.

Even if p isn’t fixed, one can alter the hypotheses to consider
µ−1 of an entire orbit
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Hamiltonian Reduction Special Case

Suppose a Lie group G acts freely and properly on a manifold
X . One can show that this lifts to a free and proper action on
M = T ∗X . The action on T ∗X is actually Hamiltonian with
µ(x , λ)(a) = λ(Xa(x))

By the theorem, µ−1(0)/G is a symplectic manifold. It is in
fact symplectomorphic to T ∗(X/G )

This result holds for smooth algebraic varieties as well as C∞

manifolds.



Basic Definitions Vector Fields Hamiltonian Actions Hamiltonian Reduction References

Non-free Action

Consider this previous example in the algebraic case but with
a possibly non-free action

If G acts non-freely, then µ−1(0)/G may not be smooth. It
would be better to study what structure GIT quotients have.

Let χ : G → k× be a character, and recall the twisted GIT
quotient Mχ = (µ−1(0))//χG

These come with projective morphisms π : Mχ → M0
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Stable Points

Recall the special class of χ-semistable points, (µ−1(0))s ,
called the stable points. One important condition is that all
Gx are finite.

When this set is nonempty, it is open in both (µ−1(0))ss and
µ−1(0)

Denote the quotient Ms
χ := (µ−1(0))s//χG

Generally just better behaved and easier to check many
conditions on these - e.g. freeness of G action
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GIT

Fact: For any χ, Mχ has a Poisson structure inherited from
T ∗X , and the projective map π : Mχ → M0 is Poisson

Moreover, when Ms
χ is smooth, it is in fact canonically a

symplectic manifold, with the Poisson structure above
coinciding with the one induced by the symplectic form.

T ∗(X s//G ) is an open (possibly empty) subset of Ms
χ
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Kirillov “Quiver Representations and Quiver Varieties”

Chriss and Ginzburg “Representation Theory and Complex
Geometry”

McDuff and Salamon “Introduction to Symplectic Topology”

Lee “Introduction to Smooth Manifolds”

Wikipedia “Poisson Manifold”
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