| Basic Definitions | Vector Fields<br>0000 | Hamiltonian Actions | Hamiltonian Reduction | References<br>0 |
|-------------------|-----------------------|---------------------|-----------------------|-----------------|
|                   |                       |                     |                       |                 |

# Symplectic Manifolds

Sam Qunell

July 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Basic Definitions •00000 Vector Fields

Hamiltonian Actions

Hamiltonian Reduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References 0

## Symplectic Linear Algebra

- A symplectic vector space is a finite-dimensional vector space
   V equipped with a nondegenerate alternating bilinear form ω.
- This form gives an isomorphism from V to V\* given by  $v \rightarrow \omega(-, v)$ .
- These are always even dimensional!

| Basic Definitions<br>0●0000 | Vector Fields | Hamiltonian Actions | Hamiltonian Reduction | References<br>0 |
|-----------------------------|---------------|---------------------|-----------------------|-----------------|
|                             |               |                     |                       |                 |
| Subspaces                   |               |                     |                       |                 |

 A subspace W of a symplectic vector space (V, ω) is called isotropic if ω|<sub>W</sub> = 0 i.e. W ⊂ W<sup>ω⊥</sup>.

- W is called Lagrangian if W is isotropic of maximal dimension i.e.  $W = W^{\omega \perp}$ .
- $dim(W) + dim(W^{\omega\perp}) = dim(V)$  for any subspace W



Symplectic Manifolds

- A \*\*\*\* manifold M and differential 2-form  $\omega$  are called a symplectic manifold if  $\omega$  is closed ( $d\omega = 0$ ) and  $\omega|_p$  is nondegenerate (hence symplectic) for all  $p \in M$ .
- We will allow M to be real  $C^{\infty}$  or complex nonsingular algebraic.
- $\omega$  gives a canonical bijection between vector fields on M and differential 1-forms on M given by  $X \to \omega(-, X)$ .

- These are always even-dimensional!
- These are always orientable!

| Basic Definitions<br>000●00 | Vector Fields<br>0000 | Hamiltonian Actions | Hamiltonian Reduction | References<br>O |
|-----------------------------|-----------------------|---------------------|-----------------------|-----------------|
| Examples                    |                       |                     |                       |                 |

- $(\mathbb{R}^{2n},\omega)$  with  $\omega = \sum_{i=1}^{n} dx_i dy_i$
- $S^2$  with any nonvanishing volume form
- Let G be a Lie/algebraic group acting on the dual algebra g\* via the coadjoint action. Any orbit of this action is a symplectic manifold with the Kirillov-Kostant-Souriau form.



- If *M* is any *n*-dimensional manifold, then  $T^*M$ , the cotangent bundle, is canonically a symplectic manifold with the form  $\sum_{i=1}^{n} dp_i dq_i$ , where  $p_i$  is a set of local coordinates on *M*, and  $q_i$  are the corresponding extra coordinates on  $T^*M$ .
- If *M* represents a set of position coordinates for a physical object, then *T*\**M* is the "phase space" tracking position and momentum. This is the basis for Hamiltonian mechanics.
- The Heisenberg uncertainty principle says the position and momentum of quantum particles cannot be observed simultaneously. So, the smallest observables in the corresponding phase space are the Lagrangian submanifolds i.e. the "quantum points"

| Basic Definitions<br>00000● | Vector Fields<br>0000 | Hamiltonian Actions | Hamiltonian Reduction | References<br>O |
|-----------------------------|-----------------------|---------------------|-----------------------|-----------------|
| Poisson Str                 | uctures               |                     |                       |                 |

A Poisson structure on a manifold M (generally a variety) is a k-bilinear map  $\{-,-\} : \mathcal{O}_M \times \mathcal{O}_M \to \mathcal{O}_M$  such that, for every open  $U \subset M$ ,  $f \in \mathcal{O}_M(U)$ 

E.G. If  $\mathcal{O}_M(U) = Mat_n(\mathbb{R})$ , then the standard Lie bracket [A, B] = AB - BA is a Poisson bracket on this level. Morally, a Poisson manifold is a symplectic manifold where the form is allowed to have some degeneracy

| Basic | Definition |  |
|-------|------------|--|
|       |            |  |

Vector Fields

Hamiltonian Actions

Hamiltonian Reduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Vector Fields and 1-forms

- Recall that  $X o \omega(-,X)$  is a bijection from vector fields to 1-forms
- Given a 1-form  $\eta$ , denote the associated vector field as  $X_{\eta}$ .
- If  $\eta = df$  for some smooth function f, denote  $X_f = X_{df} = X_\eta$

| Basic | Definition |  |
|-------|------------|--|
|       |            |  |

Vector Fields

Hamiltonian Actions

Hamiltonian Reduction

# Symplectic Vector Fields

- A vector field X is called *symplectic* if  $\omega(-, X)$  is closed
- Reason: Symplectic vector fields preserve  $\omega$  i.e.  $L_X \omega = 0$
- Proof:  $L_X \omega = i_X d\omega + d(i_X \omega) = 0 + 0 = 0$
- $X_f$  is always symplectic, since  $\omega(-, X_f) = df$  is exact

| Basic Definitions | Vector Fields<br>00●0 | Hamiltonian Actions | Hamiltonian Reduction | References<br>0 |
|-------------------|-----------------------|---------------------|-----------------------|-----------------|
| Lie Morphi        | sm                    |                     |                       |                 |

Theorem:

- If (M, ω) is symplectic, then {f, g} = ω(X<sub>g</sub>, X<sub>f</sub>) is a Poisson structure on M.
- In fact,  $f \to X_f$  is a Lie algebra morphism;  $X_{\{f,g\}} = [X_f, X_g]$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

| Basic Definitions | Vector Fields<br>000● | Hamiltonian Actions | Hamiltonian Reduction |
|-------------------|-----------------------|---------------------|-----------------------|
|                   |                       |                     |                       |

#### Hamiltonian Vector Fields

 A vector field X is called Hamiltonian if ω(-, X) = dH for some smooth H.

References

- H is often called the Hamiltonian function
- Fact: H is constant on any integral curve of  $X_H$
- This reflects that physical objects travel along paths that conserve their energy/momentum
- We need to consider Lie group actions if we want multiple degrees of symmetry/conservation

| Basic Definitions | Vector Fields | Hamiltonian Actions<br>●0000 | Hamiltonian Reduction | References<br>0 |
|-------------------|---------------|------------------------------|-----------------------|-----------------|
|                   |               |                              |                       |                 |
| Group Act         | tions         |                              |                       |                 |

- Let G be a Lie/Linear Algebraic group acting on M symplectically, meaning  $g^*\omega = \omega$  for all  $g \in G$ . We denote by g the Lie algebra of G.
- For any a ∈ g, there is an associated vector field X<sub>a</sub> on M corresponding to the infinitesimal motion of the group action.
- Fact: If G acts symplectically,  $X_a$  is always symplectic i.e.  $L_{X_a}\omega = 0$ .
- We would like it if X<sub>a</sub> were always Hamiltonian so that we can turn symmetries of motion into conserved quantities.
- Note that in the  $C^{\infty}$  case, symplectic vector fields are *locally* Hamiltonian since manifolds are locally Euclidean

| Basic Definitions | Vector Fields | Hamiltonian Actions<br>0●000 | Hamiltonian Reduction | References<br>O |
|-------------------|---------------|------------------------------|-----------------------|-----------------|
|                   |               |                              |                       |                 |
| Desired Fil       | nction        |                              |                       |                 |

- We are essentially hoping for a function H : M × g → ℝ sending (x, a) to H<sub>a</sub>(x), where H<sub>a</sub> is the Hamiltonian for a.
- This would ideally be linear in the first variable. This would therefore give us a map  $\mu: M \to \mathfrak{g}^*$  given by  $x \to H(x, -)$ .

A D N A 目 N A E N A E N A B N A C N

• It would also be nice if  $a \to H_a$  were a Lie morphism i.e.  $\{H_a, H_b\} = H_{[a,b]}$ 

| Basic Definitions | Vector Fields | Hamiltonian Actions | Hamiltonian Reduction | References |
|-------------------|---------------|---------------------|-----------------------|------------|
| 000000            | 0000          | 00●00               |                       | 0          |
| Hamiltonian       | Actions       |                     |                       |            |

A symplectic action of G on M is called Hamiltonian if there exists a moment map  $\mu: M \to \mathfrak{g}^*$  such that:

• For any  $a \in \mathfrak{g}$ , the function  $H_a(x) = \mu(x)(a)$  is the Hamiltonian for  $X_a$  i.e.  $X_{H_a} = X_a$ .

3 For any 
$$a,b\in \mathfrak{g},\ \{H_a,H_b\}=H_{[a,b]}$$

**③**  $\mu$  is *G*-equivariant

Note that such  $\mu$  need not be unique, but we will assume  $\mu$  fixed in the future.

| Basic Definitions<br>000000 | Vector Fields | Hamiltonian Actions<br>000●0 | Hamiltonian Reduction | References<br>0 |
|-----------------------------|---------------|------------------------------|-----------------------|-----------------|
|                             |               |                              |                       |                 |
| Example                     |               |                              |                       |                 |

- Take  $M = \mathbb{C}^2$  with coordinates (p, q) and so  $\omega = dpdq$ .  $G = SL_2(\mathbb{C})$  acts on M symplectically.
- $\bullet\,$  The generators of  $\mathfrak g$  map to the corresponding vector fields

$$egin{pmatrix} 0&1\0&0\end{pmatrix}
ightarrow qrac{\partial}{\partial p}\ egin{pmatrix} 0&0\1&0\end{pmatrix}
ightarrow prac{\partial}{\partial p}\ egin{pmatrix} 1&0\0&-1\end{pmatrix}
ightarrow prac{\partial}{\partial q}-qrac{\partial}{\partial q} \end{cases}$$

• This action can likely be made Hamiltonian since  $H^1(M) = 0$ 



• This action is in fact Hamiltonian. The given vector fields come from smooth functions as follows:

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \to q \frac{\partial}{\partial p} = X_{q^2/2}$$
$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \to p \frac{\partial}{\partial q} = X_{-p^2/2}$$
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \to p \frac{\partial}{\partial p} - q \frac{\partial}{\partial q} = X_{pq}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• The corresponding moment map is  $\mu:(p,q) 
ightarrow 1/2 egin{pmatrix} pq & q^2 \ -p^2 & -pq \end{pmatrix}$ 

| Basic Definitions | Vector Fields | Hamiltonian Actions | Hamiltonian Reduction<br>●0000000 | References<br>O |
|-------------------|---------------|---------------------|-----------------------------------|-----------------|
|                   |               |                     |                                   |                 |
| Motivation        | ן             |                     |                                   |                 |

- We will show that under nice conditions, certain quotients exist in the symplectic category
- This reflects eliminating symmetries or conserved quantities to see a physical system's "true" dynamics
- The general setup is that we have a symplectic manifold (M,ω) along with a Hamiltonian acting Lie/linear algebraic group (G, μ).
- We should not naively try to look at the orbit space M/G. For one thing, this isn't even dimensional in general!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

| Basic Definitions | Vector Fields | Hamiltonian Actions | Hamiltonian Reduction | References<br>0 |
|-------------------|---------------|---------------------|-----------------------|-----------------|
| Level Set         |               |                     |                       |                 |

- We will consider certain subspaces of *M*. Let *p* ∈ g<sup>\*</sup> be a fixed point of the coadjoint action. Often, one takes *p* = 0.
- By equivariance of  $\mu$ ,  $\mu^{-1}(p)$  is closed under the G action
- Fact: If G acts freely and properly on  $\mu^{-1}(p)$ , then  $\mu^{-1}(p)$  is a coisotropic submanifold of M.

• In fact,  $\mu^{-1}(p)$  is foliated by orbits

| Basic Definitions | Vector Fields<br>0000 | Hamiltonian Actions | Hamiltonian Reduction | References<br>O |
|-------------------|-----------------------|---------------------|-----------------------|-----------------|
| <b>•</b> • •      |                       |                     |                       |                 |
| Quotient          | Manifold              |                     |                       |                 |

- Now, restrict to the smooth  $C^{\infty}$  symplectic category.
- Near any  $x \in \mu^{-1}(p)$ , M looks like a bunch of parallel G orbits bound together. We want to try and quotient out these extra dimensions by passing to the orbit space.
- In general,  $\mu^{-1}(p)/G$  need not be a manifold. But in the case that G acts freely and properly, it will be a manifold!

 The quotient will also inherit the symplectic form from  $\mu^{-1}(p)$ , and this form will still be nondegenerate

| Basic Definitions | Vector Fields<br>0000 | Hamiltonian Actions | Hamiltonian Reduction<br>000●0000 | References<br>O |
|-------------------|-----------------------|---------------------|-----------------------------------|-----------------|
|                   |                       |                     |                                   |                 |
| Hamiltonian       | Reduction             |                     |                                   |                 |

To summarize, we have this variant of the Marsden-Weinsten theorem:

Let M be a  $C^{\infty}$  symplectic manifold with a proper Hamiltonian action of a real Lie group G. If  $p \in \mathfrak{g}^*$  is fixed by G and G acts properly and freely on  $\mu^{-1}(p)$ , then  $\mu^{-1}(p)/G$  has the canonical structure of a symplectic manifold.

• Even if p isn't fixed, one can alter the hypotheses to consider  $\mu^{-1}$  of an entire orbit

# Hamiltonian Reduction Special Case

- Suppose a Lie group G acts freely and properly on a manifold X. One can show that this lifts to a free and proper action on  $M = T^*X$ . The action on  $T^*X$  is actually Hamiltonian with  $\mu(x,\lambda)(a) = \lambda(X_a(x))$
- By the theorem,  $\mu^{-1}(0)/G$  is a symplectic manifold. It is in fact symplectomorphic to  $T^*(X/G)$
- This result holds for smooth algebraic varieties as well as  $C^{\infty}$  manifolds.

| Basic Definitions | Vector Fields | Hamiltonian Actions | Hamiltonian Reduction | References<br>O |
|-------------------|---------------|---------------------|-----------------------|-----------------|
| Non-free A        | ction         |                     |                       |                 |

- Consider this previous example in the algebraic case but with a possibly non-free action
- If G acts non-freely, then  $\mu^{-1}(0)/G$  may not be smooth. It would be better to study what structure GIT quotients have.
- Let  $\chi: G \to k^{\times}$  be a character, and recall the *twisted GIT* quotient  $\mathcal{M}_{\chi} = (\mu^{-1}(0)) / /_{\chi} G$

• These come with projective morphisms  $\pi:\mathcal{M}_{\chi}\to\mathcal{M}_0$ 

| Basic Definitions | Vector Fields | Hamiltonian Actions | Hamiltonian Reduction<br>000000€0 | References<br>O |
|-------------------|---------------|---------------------|-----------------------------------|-----------------|
|                   |               |                     |                                   |                 |
| Stable Poir       | nte           |                     |                                   |                 |

- Recall the special class of  $\chi$ -semistable points,  $(\mu^{-1}(0))^s$ , called the *stable* points. One important condition is that all  $G_x$  are finite.
- When this set is nonempty, it is open in both  $(\mu^{-1}(0))^{ss}$  and  $\mu^{-1}(0)$

A D N A 目 N A E N A E N A B N A C N

- Denote the quotient  $\mathcal{M}^s_\chi := (\mu^{-1}(0))^s / /_\chi G$
- Generally just better behaved and easier to check many conditions on these e.g. freeness of *G* action

| Basic Definitions | Vector Fields | Hamiltonian Actions | Hamiltonian Reduction<br>000000● | References<br>0 |
|-------------------|---------------|---------------------|----------------------------------|-----------------|
|                   |               |                     |                                  |                 |
| CIT               |               |                     |                                  |                 |

- Fact: For any  $\chi$ ,  $\mathcal{M}_{\chi}$  has a Poisson structure inherited from  $\mathcal{T}^*X$ , and the projective map  $\pi : \mathcal{M}_{\chi} \to \mathcal{M}_0$  is Poisson
- Moreover, when  $\mathcal{M}^s_{\chi}$  is smooth, it is in fact canonically a symplectic manifold, with the Poisson structure above coinciding with the one induced by the symplectic form.
- $T^*(X^s//G)$  is an open (possibly empty) subset of  $\mathcal{M}^s_{\chi}$

| Basic Definitions | Vector Fields | Hamiltonian Actions | Hamiltonian Reduction | References<br>• |
|-------------------|---------------|---------------------|-----------------------|-----------------|
|                   |               |                     |                       |                 |
|                   |               |                     |                       |                 |

- Kirillov "Quiver Representations and Quiver Varieties"
- Chriss and Ginzburg "Representation Theory and Complex Geometry"
- McDuff and Salamon "Introduction to Symplectic Topology"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Lee "Introduction to Smooth Manifolds"
- Wikipedia "Poisson Manifold"