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Abstract

In classical mechanics, the state of a physical system is determined by the positions and momenta of
the involved particles. This allows us to define coordinates (xi, pi) which describe the “phase space” of
our system. Symplectic manifolds are a mathematical model for these systems. With this mathematical
language, the elimination of continuous symmetries of our system to obtain a space with fewer coordinates
is referred to as “symplectic reduction”. In this writeup, I will discuss and prove the Marsden-Weinstein-
Meyer theorem that describes how to walk through this symplectic reduction process.

1 Introduction

As is known in undergraduate physics, the dynamical behavior of a classical mechanical system can be
studied via the symmetries of its equations of motion. Suppose a massive particle moves in an n dimensional
smooth manifold M (Euclidean space, a hypersphere, etc.) with local generalized coordinates {qi}1≤i≤n.
The infinitesimal behavior of the system can be represented by a point in the cotangent bundle T ∗M , where
(q, p) represents the particle at position q moving in direction p. This cotangent bundle is sometimes called
the phase space of our system. Due to natural construction of the cotangent bundle, we may define a
canonical 2-form on T ∗M locally. We write ω =

∑n
i=1 dqi ∧ dpi. This form is independent of the choice of

generalized coordinates, and has several useful properties. Most importantly, its restriction to any tangent
space is a nondegenerate bilinear form, and so, the map TM → T ∗M , vp → ωp(vp,−) is an isomorphism of
vector bundles. (T ∗M,ω) is the canonical example of a symplectic manifold.

This isomorphism means that, given the Hamiltonian function H for our physical system, its differential
dH ∈ Γ(M,T ∗M) is naturally associated to some vector field XH ∈ Γ(M,TM) that describes the motion
of our particle. This correspondence makes symplectic manifolds a natural setting to study symmetries of
equations of motion. In particular, it gives us a mathematical language to describe how symmetries in the
physical setup of our configuration space correspond to simplifications that can be made in the equations
of motion. For example, a particle in 3 dimensional space travelling only along the x axis has cylindrical
symmetry, and hence, our configuration space may be viewed as only one dimensional.

Symplectic reduction is the mathematical formulation of this principle. Symmetries in our phase space
may be described as a smooth group action of a Lie group G on T ∗M . Under sufficiently nice conditions of
this action, we may produce a quotient manifold from T ∗M that is also symplectic, and is essentially our
“reduced” version of the phase space. The Marsden-Weinstein-Meyer theorem states this precisely.

Theorem 1.1 (Marsden-Weinstein-Meyer). Let (M,ω) be a symplectic manifold, and let G be a Lie group
with a Hamiltonian action on (M,ω), along with its associated moment map µ : M → g∗. Suppose that G
acts freely and properly on µ−1(0). Then the orbit space µ−1(0)/G (sometimes writtenM//G) is a symplectic
manifold.

This writeup is an exposition of the formalism used in this theorem, along with an organized proof. I
will first define several key concepts used in the proof, such as Hamiltonian actions and moment maps. I will
then prove Theorem 1 in several steps, describing both the manifold structure and symplectic structure on
µ−1(0)/G. To conclude, I will discuss some variations and applications of this symplectic reduction process.
Throughout the paper, I will highlight the physical intuition of each definition and proposition as much as is
possible, as well as provide examples from physical systems. The organization roughly follows [1], although
with more details and examples.
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2 Preliminaries

Despite the technical language used in the statement of the main theorem, the underlying ideas are easy to
describe, especially through the lens of classical mechanics.

2.1 Symplectic Linear Algebra and Geometry

Definition. A symplectic manifold (M,ω) is a smooth manifold M along with a closed, nondegenerate
2 form ω.

By nondegenerate, we mean that ωp is a nondegenerate, bilinear alternating form on each tangent space
TpM . This manifold often represents the phase space of a physical system, and ω allows us to “link” a
position coordinate with its corresponding momentum in such a way as to allow for the aforementioned
duality from vector fields to 1 forms. Vector spaces with such a bilinear form will be important to our study,
as they will be used to represent the infinitesimal motion of our particle. This theory will be outlined briefly.

Definition. A symplectic vector space (V, ω) is a finite dimensional vector space V over R with a
nondegenerate, alternating bilinear form ω.

By this definition, every tangent space of a symplectic manifold is a symplectic vector space. We will use
the following fact as a sanity check later on.

Fact. Symplectic vector spaces, and therefore symplectic manifolds, are even dimensional.

This is usually proven by explicitly producing an even dimensional basis via nondegeneracy of ω. We
will want to study subspaces of symplectic vector spaces that also respect this symplectic structure.

Definition. For (V, ω) a symplectic vector space and W a vector subspace, we define the symplectic
complement

V ω := {v ∈ V | ω(v, w) = 0 for all w ∈W}.

Note that V ω is itself a vector subspace.

Definition. The subspace W is isotropic if W ⊂Wω, and is coisotropic if Wω ⊂W .

Definition. A submanifold N of the symplectic manifold (M,ω) is (co)isotropic if, for each p ∈ N , TpN
is a (co)isotropic subspace of TpM .

The dimensions of W and Wω are closely related.

Fact. dim(W ) + dim(Wω) = dim(V ).

This should not be too surprising, since elementary linear algebra gives that dim(W ) + dim(W⊥) =
dim(V ). The proofs of both equations use that the associated bilinear form (ω or any inner product) are
nondegenerate, and such maps yield an isomorphism V → V ∗, v → ω(v,−).

2.2 Hamiltonian Vector Fields

In the context of physical systems, our equations of motion are generally governed by kinetic and potential
energies. In the most basic physical systems, total energy is conserved in motion. More generally, we have
a Hamiltonian function H : M → R that often coincides with a system’s total energy, and is (usually!)
conserved. If we assume H is a smooth function, then we can define a 1-form dH. In order to describe the
motion of a particle in our manifold, we need to present a flowline, or vector field, following its trajectory.
Fortunately, due to the symplectic structure, this is actually possible.

Fact. In a symplectic manifold M , smooth vector fields correspond bijectively with smooth 1-forms under
the map X → ιXω = ω(X,−).
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This was discussed briefly in the intro, and this fact follows from the nondegeneracy of ω. So, for any
Hamiltonian H, we can produce a vector field XH with ω(XH ,−) = dH. We can also go in reverse.

Definition. A vector field X on M is called Hamiltonian if ω(X,−) is exact.

The physical connection with this definition is that the Hamiltonian function H is actually preserved
along the flowlines of XH . This fact is essential to our physical reasoning, so we present a proof.

Lemma 2.1. If XH is the Hamiltonian vector field corresponding to H, then H is constant on any flow line
(integral curve) of XH .

Proof. The integral curves of XH yield a one parameter family of diffeomorphisms ρt : M → M , where
fixing x gives the integral curve through x. We rewrite the value of H along our curve algebraically as
H(ρt(x)) = ρ∗tH(x). Since ρt is the flow corresponding to the Hamiltonian vector field XH , the definition of
Lie derivative gives that d

dt (ρ
∗
tH)|t=0 = LXH

H. Cartan’s magic formula gives that this is

LXH
H = dιXH

H + ιXH
dH = ιXH

dH = ιXH
ω(XH ,−) = ω(XH , XH) = 0.

The time derivative of H(ρt(x)) is zero, so H(ρt(x)) is equal to H(x) for all t.

So, it is always possible to define a vector field that conserves a single smooth function on M . These
flows are, in fact, those adopted by physical systems via Hamiltonian mechanics, although the full proof
of this fact uses variational calculus, more of the compatible complex structures on (M,ω), and physical
assumptions that are independent from ZFC.

We can change our perspective on the matter to make it more easily generalized. This one parameter
family of diffeomorphisms ρt corresponding to H is equivalent to a smooth group action of R on M , where
r ∗x = ρr(x). This is an extremely basic kind of symmetry on M . Unfortunately, physical systems generally
exhibit multiple kinds of symmetry, and it is not obvious how to define several simultaneous vector fields on
M that are somehow mutually compatible with each other and with the symplectic structure of M . We do
so with Hamiltonian group actions.

2.3 Hamiltonian Group Actions

As before, we represent the general symmetries of a physical system with a (real) Lie group G acting on
M . Without further restrictions, a group action can be incredibly pathological, so we must enforce several
conditions.

Two of these conditions are more obvious for an action on a symplectic manifold. Firstly, we require
that the action of G on M be smooth, meaning that ev : G ×M → M , ev(g, p) = g ∗ p is smooth at all
(g, p) ∈ G ×M . This gives us a group homomorphism ψ : G → Diff(M), taking each G element to its
corresponding diffeomorphism. We also require that this action respect the symplectic structure on M (we
say that G acts symplectically). This is expressed as, for all g ∈ G, we have the equality on the pullback
ψ(g)∗ω = ω. This means that ψ has image in Symp(M,ω), the group of symplectomorphisms of (M,ω).
For the rest of this writeup, we assume implicitly that all group actions are smooth, and when appropriate,
symplectic.

In the context of physical systems, our equations of motion are generally governed by several distinct
components of momentum and angular momentum. In a generalized set of coordinates, these momenta can
take strange forms. We appeal to g, the Lie algebra of G, to make this precise.

Definition. Let µ : M → g∗ be any function. If ⟨−,−⟩ is an inner product for the pairing g∗ × g, then for
ζ ∈ g, define the ζ-component of µ,

µζ :M → R, µζ(p) = ⟨µ(p), ζ⟩.

Definition. For ζ ∈ g, let Xζ be the vector field of M given by

(Xζ)p =
d

dt
(etζ ∗ p)|t=0.
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Definition. The symplectic action ψ : G→ Symp(M,ω) is a Hamiltonian action with moment map µ
if the following two conditions hold.

1.
d(µζ) = ιXζω = ω(Xζ ,−),

i.e., “µ respects the symplectic structure on M”. Note that this says that each component ⟨µ, ζ⟩ is a
Hamiltonian function for the vector field Xζ . This encodes the fact that several different quantities
are conserved by the infinitesimal action of G.

2. µ is G-equivariant. More formally,

∀g ∈ G,µ ◦ ψ(g) = Ad∗g ◦ µ.

This means that “µ respects the action of G on M”.

µ is named evocatively; it is our mathematical parallel to the momenta or other conserved quantities of
our physical system. A basic physical example will make this connection clear.

Example. Let SE(3) = R3 ⋊ SO(3) be the special Euclidean group in three dimensions. The product
structure is (v,A) ∗ (w,B) = (Aw + v,AB). The canonical action on R3 is (v,A) ∗ x = Ax + v. The
special Euclidean group is the group of all (determinant 1) isometries on R3, and it includes all rotations
and translations. This makes it a natural group to act on a physical system.

Suppose a single particle moves in R3, so that our phase space is the cotangent bundle T ∗R3 = R6. The
action of SE(3) on R3 lifts to an action on this cotangent bundle, with (v,A) ∗ (x, y) = (Ax+ v,Ay). It is
easily verified that this action is smooth and symplectic.

To evaluate the corresponding moment map, we first look at the Lie algebra. The Lie algebra of SO(3)
is the set of all 3 by 3 skew-symmetric matrices, which is a 3 dimensional vector space. In fact, so(3) is
isomorphic as a Lie algebra to (R3,×), for × the cross product. One can show that se(3) is R3 × R3 as a
vector space, with bracket given by [(v⃗, x⃗), (w⃗, y⃗)] = (x⃗× w⃗ − y⃗ × v⃗, [x⃗, y⃗]) = (x⃗× w⃗ − y⃗ × v⃗, x⃗× y⃗) [2].

Consider the map
µ : T ∗M = R6 → g∗ = R6, µ(x, v) = (v⃗, x⃗× v⃗).

The vector notation is only used to distinguish between T ∗M elements and g∗ elements. One can check that
this is indeed a moment map for our SE(3) action. Now, for ζ = (⃗a, 0⃗) ∈ g, we compute that

µζ(x, v) = ⟨µ(x, v), (⃗a, 0⃗)⟩ = ⟨(v⃗, x⃗× v⃗), (⃗a, 0⃗)⟩ = v⃗ ∗ a⃗.

This is precisely the component of the linear momentum of our particle in the direction a⃗. Similarly, for
ζ = (⃗0, b⃗) ∈ g, we compute that

µζ(x, v) = ⟨µ(x, v), (⃗0, b⃗)⟩ = ⟨(v⃗, x⃗× v⃗), (⃗0, b⃗)⟩ = (x⃗× v⃗) ∗ b⃗.

This is exactly the component of angular momentum of our particle in the direction b⃗.

We show a generalization of Lemma 2.1 that is well-studied in undergraduate physics. Let (M,ω) be a
symplectic manifold with (G,µ) a Hamiltonian action and corresponding moment map. Then f ∈ C∞(M)
is called a symmetry if f is G invariant, and f is called an integral of motion if µ is constant on the
integral curves of Xf . The Noether principle shows that these are the same.

Lemma 2.2 (Noether principle). In the conditions described above, f is a symmetry iff it is an integral of
motion.

Proof. We can reduce the given definitions to computations along components of g elements. So, we have
that

f is a symmetry ⇐⇒ LXζf = 0 ∀ζ ∈ g,
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f is an integral of motion ⇐⇒ LXf
µζ = 0 ∀ζ ∈ g.

For a fixed ζ ∈ g, we compute that

LXζf = ιXζdf = ιXζ ιXf
ω = −ιXf

ιXζω = −ιXf
dµζ = −LXf

µζ ,

so one is zero whenever the other is.

This type of relationship between conserved quantities of motion and symmetries of our system underlies
the spirit of symplectic reduction. While it is not used explicitly in the proof of the main theorem, one
should keep in mind the picture that the orbits of the G action are describing a coordinate that is unused
and so conserved dynamically.

3 Marsden-Weinstein-Meyer Theorem

We now have the tools needed to proceed with the proof. The goal of the theorem is to show that the
quotient µ−1(0)/G is a symplectic manifold, although there are several intermediate constructions that are
needed. It is not guaranteed, in general, that either of µ−1(0) or µ−1(0)/G are smooth manifolds at all.

To start, we need to restrict our attention to µ−1(0). We do this for two reasons. Firstly, this captures
the notion of our physical system having some conserved quantity during its motion. Secondly, it is not
always possible that M/G can even be symplectic,. Symplectic manifolds must always be even dimensional,
but when M/G is a manifold, it has dimension dim(M)− dim(G), which is even only when dim(G) is.

Lemma 3.1. Let M be a symplectic manifold, and let G be a Lie group with a Hamiltonian action on (M,ω)
with associated moment map µ :M → g∗. Then µ−1(0) is closed under the action of G.

Proof. Fix p ∈ µ−1(0). Since the action of G is Hamiltonian, µ is G-equivariant. So,

∀g ∈ G,µ(g ∗ p) = Ad∗g ◦ µ(p) = Ad∗g ◦ 0.

Ad∗g is linear, so this is zero, i.e., g ∗ p ∈ µ−1(0), as desired.

This lemma, and in fact, the entirety of our main theorem, only focuses on µ−1(0) among all other level
sets because 0 is always a fixed point of the coadjoint representation. In fact, all of these results will work
for µ−1(ζ) for ζ any such fixed point. Nontrivial ζ are less commonly studied, although in the case of G a
torus, g is abelian, so all points of g∗ are fixed points. More generally, if O is a coadjoint orbit in g∗, then
under similar assumptions, µ−1(O)/G can be made into a symplectic manifold [6].

So, µ−1(0) is a union of G orbits. However, in order to better understand the G action restricted to
µ−1(0), we will need to study these orbits more carefully.

Lemma 3.2. Let M be a smooth manifold and let G be a Lie group acting freely and properly on M . Then
for any p ∈M , the orbit G ∗ p is an embedded submanifold of M that is homeomorphic to G.

Proof. The map fp : G→M , g → g∗p is injective since our action is free, and it is also proper by assumption.
Consider the map

(dfp)e : g → TpM.

By definition, (dfp)e(ζ) = 0 iff eζ ∗ p = p. But the action is free, and so eζ must be the identity element.
Since the Lie subalgebra of g corresponding to Stab(p) = {e} must be zero dimensional, we have that ζ = 0
as well. Similarly, for a general g ∈ G, we note that right multiplication by g gives us a diffeomorphism of
M , written Rg, and hence, an explicit isomorphism of tangent spaces

g = TeG = d(Rg−1)g(TgG).

Then
(dfp)g = d(fp ◦Rg)e ◦ (dRg−1)g.
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We see that fp ◦Rg = fg∗p, and so
d(fp ◦Rg)e = d(fg∗p)e,

which is injective by our previous work. Furthermore, dRg−1 is an isomorphism of vector spaces, so also
injective. This gives that the composite (dfp)g is injective. So, (dfp) is injective, and so fp is an embedding
of smooth manifolds.

This allows us to study the function dµp in more detail, since we can now describe the orbits of any point
in µ−1(0).

Lemma 3.3. Let (M,ω) be a symplectic manifold, and let G be a Lie group with a Hamiltonian action on
(M,ω) with associated moment map µ : M → g∗. Suppose G acts freely and properly on µ−1(0). Then
µ−1(0) is a submanifold of M with dimension dim(M)− dim(G).

Proof. We will apply the regular value theorem after showing that 0 is a regular value. Fix p ∈ µ−1(0) and
ζ ∈ g. Since our action is Hamiltonian, we have ωp(X

ζ
p , v) = d(µζ)(v) for any v ∈ TpM . By the definition of

µζ , we compute that
d(µζ)(v) = d⟨µp, ζ⟩(v) = ⟨dµp(v), ζ⟩.

We wish to show that dµp is full rank. By Rank-Nullity Theorem, it is sufficient to show that its kernel has
dimension

null(dµp) = dim(M)− dim(g∗) = dim(M)− dim(G).

Since the bilinear pairing ⟨−,−⟩ is nondegenerate, we have that dµp(v) = 0 iff ⟨dµp(v), ζ⟩ = 0 for all ζ ∈ g
iff ωp(X

ζ
p , v) = 0 for all ζ ∈ g. Let V be the subspace of TpM generated by all Xζ

p . Then dµp(v) = 0 iff
v ∈ V ω, the symplectic complement of V . Elementary symplectic linear algebra shows that

dim(V ω) = dim(TpM)− dim(V ) = dim(M)− dim(V ).

So, we have that dµp is surjective iff dim(V ) = dim(G). It remains to characterize V and show this equality.
Consider G ∗ p, the orbit of p in M under the action of G. By Lemma 3.2, G ∗ p is a submanifold of M

homeomorphic to G. Note that in G ∗ p, the tangent directions are exactly those vectors determined by the
infinitesimal action of g on p. More formally, v ∈ Tp(G ∗ p) iff there exists ζ ∈ g with d

dt (e
tζ ∗ p)|t=0 = v iff

v = Xζ
p for some ζ ∈ g iff v ∈ V . Therefore, dim(V ) = dim(G ∗ p) = dim(G), as desired.

Note that, via the dimension computations in this lemma, we have shown that, at every point p ∈ µ−1(0),
TpG ∗ p ⊂ Tpµ

−1(0) = ker(dµp) = (TpG ∗ p)ω. Therefore,

Corollary 3.4. In the conditions above, G ∗ p is an isotropic submanifold of M , and µ−1(0) is a coisotropic
submanifold of M .

The fact that µ−1(0) is coisotropic will allow us to push the form ω to the quotient µ−1(0)/G. Coisotropy
essentially says that the tangent spaces within the quotient are “big enough” for the resulting form to be
nondegenerate.

We now need to quotient out the action of G. Formally, we define the equivalence relation ∼ on µ−1(0),
with p ∼ q iff q ∈ G ∗ p, and then define the quotient topological space µ−1(0)/ ∼ := µ−1(0)/G, sometimes
called the orbit space. Note that the equivalence classes of this relation are exactly the G orbits, each of
which is an embedded submanifold of µ−1(0) homeomorphic to G by Lemma 3.2. Furthermore, one can show
that, in a suibtable sense, nearby G orbits are parallel, meaning that the connected components of these
equivalence relations form what is called a foliation of µ−1(0). One would expect that these conditions
imply that µ−1(0)/G is well-behaved enough to inherit a smooth structure from µ−1(0). In fact, this is the
case, but the proof of this fact is extremely long and technical, and uses little more of the G action and none
of the symplectic structure. For these reasons, only an outline of the proof is provided. A complete proof
can be found in [4].
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Theorem 3.5 (Quotient Manifold Theorem). Let M be a smooth manifold, and let G be a Lie group acting
freely and properly on M . Then the orbit space M/G is a smooth manifold of dimension dim(M)− dim(G),
with topology and smooth structure induced by the projection π :M →M/G.

Sketch. 1. The projection π is an open map since, for open U ⊂M , π−1 ◦ π(U) = G ∗ U , which is open.

2. Properness of the action implies that O = {(p, q) ⊂ M ×M | g ∗ q = p for some g ∈ G} is closed
in M ×M . Openness of π implies then that the diagonal of M/G ×M/G is closed. This is another
characterization of M/G being Hausdorff.

3. π is open and surjective, so M/G is second countable since M is.

4. The connected components of the G orbits are, in fact, leaves of a foliation of M .

5. By definition of a foliation, there exists a cubic atlas (all charts are hypercubes) on M , (Ui, ϕi), such
that each G ∗ p ∩ Ui ̸= ∅ implies that ϕi(G ∗ p ∩ Ui) is a countable union of hyperplanes, where each
hyperplane is given by an orthogonal slice (x1, ...xdim(M)−dim(G)) = (c1, ...cdim(M)−dim(G)) for some
choice of ci.

6. Because G acts freely and properly, we may refine our cubic atlas to (U ′
i , ϕ

′
i) so that ϕ′i(G ∗ p ∩ U ′

i) is
at most a single orthogonal slice of the cube. Each such U ′

i is therefore essentially a product (choice
of orbit, point in orbit), where each component is itself an open cube.

7. Since π is open and surjective, π(U ′
i) is an open Euclidean cover of M/G, where the corresponding

chart essentially projects U ′
i onto its choice of orbit component.

8. This choice of atlas also inherits the smooth structure from the original cubic atlas on M , and so M/G
is a smooth manifold with π :M →M/G a smooth surjective submersion.

The full proof also makes clear the following corollary.

Corollary 3.6. In the conditions above, there is a natural isomorphism T[p](M/G) ∼ TpM/Tp(G ∗ p).

In the conditions of the main theorem, we therefore have that µ−1(0)/G is a smooth manifold. Note
that we in fact have a bit more; µ−1(0)/G has the structure of a principal G-bundle with total space
µ−1(0). These principal bundles are fairly common in mathematical physics, as they embody the idea of
quotienting by smooth symmetries. The main observation of our theorem is that this same quotient will
respect the symplectic structure of M since µ−1(0) is coisotropic. Note that we have dim(µ−1(0)/G) =
dim(µ−1(0)) − dim(G) = dim(M) − 2 dim(G), which is always even. So, it is at least possible that this
quotient actually is symplectic.

To complete the proof of our theorem, we need to show that the quotient µ−1(0)/G inherits a version of
the symplectic form ω, and is therefore a symplectic manifold in its own right. We first show that this is the
case on the level of tangent spaces.

Lemma 3.7. Suppose that (V, ω) is a symplectic vector space, and W is a coisotropic subspace. Then the
quotient W/Wω inherits a symplectic form from ω.

Proof. Note that coisotropy is needed to even define the quotient W/Wω. It is somewhat clear what the
form should be. Define the form ωred on W/Wω, with ωred([v], [w]) = ω(v, w). We must first show that this
is well-defined. Suppose that [v] = [v′] and [w] = [w′]. Then v′ = v + x and w′ = w+ y for some x, y ∈Wω.
Therefore, by bilinearity,

ω(v′, w′)− ω(v, w) = ω(v + x,w + y)− ω(v, w) = ω(v, y) + ω(x,w) + ω(x, y).

Since v, w ∈ W and x, y ∈ Wω ⊂ W , each of these three terms is zero by definition. Therefore, ω factors
through Wω, and so ωred, the reduction, is a well-defined alternating bilinear form on W/Wω.

For ωred to be symplectic, we must also show that ωred is nondegenerate. So, suppose that there exists
[v] ∈W/Wω with ωred([v], [w]) = 0 for all [w] ∈W/Wω. Therefore, ω(v, w) = 0 for all w ∈W . By definition,
we have that v ∈Wω, and so [v] = 0. (W/Wω, ωred) is therefore a symplectic vector space.
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Combining Lemma 3.4, Lemma 3.6, and Lemma 3.7, we have

Corollary 3.8. In the conditions above, with a choice of p, T[p](µ
−1(0)/G) inherits a symplectic form from

Tp(µ
−1(0)).

We conclude the proof of the main theorem by showing that this form is well-defined on choice of p, and
can be extended globally to a symplectic form on µ−1(0)/G.

Lemma 3.9. In the conditions of Theorem 1.1, there exists a symplectic form ωred on µ−1(0)/G that is
equal to the inherited form on each T[p](µ

−1(0)/G).

Proof. The intuitive thing to try is to define ωred[p]([v], [w]) = ωp(v, w), since this is clearly smooth when
it is well-defined. Furthermore, for π : µ−1(0) → µ−1(0)/G the projection, we would have π∗ωred = ω.
To see that this form is actually well-defined on a choice of p, choose p, and v, w ∈ Tp(µ

−1(0)). Consider
g ∗ p ∈ G ∗ p, and suppose we have x, y ∈ Tg∗p(µ

−1(0)) such that Dπx = dπv and Dπy = Dπw. Then

ωred[g∗p]([x], [y]) = ω(x, y) = g ∗ ω(v, w) = ω(v, w) = ωred[p]([v], [w]),

where we have used that G acts symplectically. So, ωred is a well-defined 2-form on µ−1(0)/G.
To see that this form is closed, we simply compute that

π∗(dωred) = dπ∗ωred = dω = 0,

since ω on µ−1(0) is closed. Since π is a surjective submersion, π∗ is injective on forms. Therefore, dωred = 0.
We already know that ωred is nondegenerate on each tangent space, so ωred is a symplectic form.

This finishes the proof of Theorem 1.1, giving us that

Corollary 3.10. (µ−1(0)/G, ωred) is a symplectic manifold of dimension dim(M)− 2 dim(G).

Example. Suppose a particle moves in R2, and suppose that we know that our system exhibits circular
symmetry about the origin. We know S1 acts on R2 via rotation: eiθ ∗(x, y) = (cos(θ)x+sin(θ)y,− sin(θ)x+
cos(θ)y). This lifts to an action of S1 on the cotangent space T ∗R2 = R4, where eiθ ∗ (x, y, vx, vy) =
(cos(θ)x+ sin(θ)y,− sin(θ)x+ cos(θ)y, cos(θ)vx + sin(θ)vy,− sin(θ)vx + cos(θ)vy). The canonical symplectic
form on R4 is ω = dxdvx + dydvy. One checks that the action is in fact symplectic.

What should the moment map be? We turn to physics. Our Lie group is S1, so g = R. The angular
momentum for a particle rotating about the origin is proportional to rθ̇. This suggests changing coordinates
to (x, y, vx, vy) → (r, θ, vr, vθ), and defining µ = vθ (vθ is the linear velocity along θ̂, not the angular velocity

θ̇. It is exactly equal to rθ̇). We may omit the origin from our analysis so that this choice of coordinates is
well-defined and so that the action is now free.

Our action is now eiϕ ∗ (r, θ, vr, vθ) = (r, θ+ϕ (mod 2π) ,vr, vθ), and ω = drdvr + dθdvθ. To see that this
is a Hamiltonian S1 action, note that µ is automatically S1 equivariant since s1 = R, which is abelian. We
need only check one dimension for µ to be Hamiltonian. The flow of our action gives the vector field d

dθ . We
check ιd/dθω = dvθ = dµ. Our action is proper since S1 is compact, and evidently free. So, we are prepared
to apply the main theorem.

We need not restrict ourselves to when µ = 0 since s1 is abelian. So, for any x ∈ R, µ−1(x) ∼ T ∗R+×S1

with coordinates (r, θ, vr). The orbits are the sets of elements with fixed r and vr. Therefore, one can see
that µ−1(x)/S1 ∼ T ∗R+ = {(r, vr) | r ∈ R+, vr ∈ TrR+}. As we expected, the reduced phase space will be
essentially a choice of radial position and velocity. As in the theorem, we compute that the symplectic form
on this space will be ω = drdvr.

4 Applications

Symplectic reduction is a tool for refining a system of differential equations to a reduced set describing a
physical system’s “true” dynamics. The utility within both physics and math is at least clear conceptu-
ally, but due to the restrictive conditions imposed on the action of our group G, symplectic reductions are
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somewhat limited in their applications. That said, several variations of the Marsden-Weinstein-Meyer theo-
rem allow for computing a similar reduction for other types of manifolds, or to actions with less restrictive
conditions. A few of these, as well as some other related pieces of research, will be briefly outlined here.

4.1 Orbifolds

As was briefly described after the proof of Lemma 3.1, one way to soften the conditions of the main theorem
is to consider µ−1(O), where O is any coadjoint orbit of G, as opposed to any particular fixed point µ−1(ζ).
Another technique, which is perhaps most physically valid, is to eliminate the condition that G must act
freely on µ−1(0). One can show that when 0 is a regular value of µ and G is a torus, that the stabilizer of any
p ∈M under G must be discrete and finite, hence still tractable. While the Quotient Manifold Theorem does
not apply as is, a variation can show that µ−1(0)/G is locally a quotient of some Rn by part of our group
action. This gives µ−1(0)/G the structure of an orbifold. Orbifolds naturally arise in similar situations
where a group of symmetries acts on a topological space, and some form of quotient is needed. Visually,
an orbifold is a “manifold with singularities”, and careful attention must be given to dynamical behavior
around these singular points. A good review of the topic and early theory of how to perform reduction in
the singular case is given in [5].

4.2 Kähler Manifolds

A Kähler manifold is a special kind of symplectic manifold that contains additional complex and Riemannian
structure. They occur naturally in a comlpex algebraic geometric setting, and one of their specializations,
the Calabi-Yau manifolds, hold a critical role in mirror symmetry. It is natural to inquire whether our
procedure of symplectic reduction can be extended to the Kähler case. One method of doing so is presented
in [3], where we consider a complexified version of our group action. The proof and setup are essentially the
same, except that one needs also to show that the extra complex and Riemannian structures (or in the case
of the paper, a certain polarization) are also inherited by the quotient.

4.3 Geometric Quantization

Symplectic manifolds arise naturally as a means of studying differential equations like those found in clas-
sical mechanics. Unfortunately, the physical world is not purely dictated by Newtonian (or Hamiltonian)
physics. The Heisenberg uncertainty principle states that it is in fact impossible to know simultaneously
a quantum particle’s position and momentum, meaning that the bare symplectic structure of our phase
space is insufficient for studying quantum behavior. Quantum systems are often mathematically realized as
Hilbert spaces along with associated wavefunctions or operators corresponding to observables. In physics,
it is an active field of research as to how the theories of classical and quantum mechanics can be unified in
a way that is valid at either length scale. In mathematical terms, this roughly means that for a symplectic
manifold (M,ω) representing our phase space, there should be a Hilbert space H that represents the same
system. This mathematical procedure is referred to as quantization There are several proposed methods of
producing such a Hilbert space from a symplectic manifold, although each has its own weaknesses, and there
is no general consensus as to any “canonical” method.

One means of assessing such a quantization scheme is whether symmetries of the classical manifold are also
symmetries of the quantum Hilbert space. One formulation of this, as described in [3], is that “localization
commutes with quantization”. More formally, if we have a function Q taking our symplectic manifold to the
corresponding Hilbert space, then under an appropriate quotient, Q(M//G) = Q(M)/G.

This process was conjectured in [3], along with a few results for a specific scheme of quantization known as
geometric quantization. The conjecture was proven in the subsequent decades. One proof of this conjecture
is primarily analytic and provides some applications to the case of Kähler manifolds [7].
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