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The Poincaré lemma is essential to computing de Rham cohomology of smooth manifolds, as it gives a sort
of base case to reduce to when using the Mayer-Vietoris sequence. The lemma essentially shows that de
Rham cohomology is homotopy invariant, and hence, can be computed readily via homotopic techniques.
Unfortunately, the proofs given in many standard texts are either “too geometric” or “too algebraic”. The
“too geometric” proofs prefer to avoid the language of cochain complexes and chain homotopies, and so miss
some of the generality of the theorem. The “too algebraic” proofs ignore the geometric intuition and instead
write down the explicit homotopy operator, apparently obtained via divine revelation. This writeup is an
attempt to combine the most useful techniques from both styles to produce an organized and motivated
proof of the Poincaré lemma. This proof tries to emphasize how geometric ideas are being converted into
algebraic ones.

Lemma 1. Any star-shaped domain in Rn (in particular, Rn itself) is homotopy equivalent to a single point

Proof. Take a central point x0 in our domainD. Then the homotopy ϕ : D×[0, 1] → D, ϕ(x, t) = (1−t)x+tx0

is a smooth deformation retract of D onto {x0}. Note that the image of ϕ is always contained in D since D
is star-shaped, and this is simply a radial contraction onto the central point.

Lemma 2. Let D and C be smooth manifolds without boundary (although this proof can be modified to work
if there is boundary). If ϕ : D × [0, 1] → C is a smooth homotopy between the smooth ϕ0 and ϕ1, then the
pullback maps of de Rham complexes ϕ∗

0, ϕ
∗
1 : Ω∗(C) → Ω∗(D) are chain homotopic.

Proof. Define et : D → D×[0, 1], x → (x, t). Then ϕt = ϕ◦et. On cochain complexes, we have the composites
ϕ∗
t = e∗t ◦ϕ∗, with ϕ∗ : Ω∗(C) → Ω∗(D×[0, 1]), and e∗t : Ω∗(D×[0, 1]) → D. It is sufficient then to find a chain

homotopy from e∗0 to e∗1, since precomposing with ϕ∗ will give a chain homotopy from ϕ∗
0 to ϕ∗

1. It is much
easier to believe that e∗0 and e∗1 should be chain homotopic, since e0 and e1 are just different embeddings of D.

Recall that a chain homotopy from Ω∗(D × [0, 1]) to Ω∗(D) has component maps that reduce degree by
1. So, we need a tool that lets us reduce the degree of a differential form, and a tool that lets us eliminate
the last coordinate to change manifolds. Our first problem is solved by the interior product of forms iX ;
if we imagine a differential p-form as a smooth function of p different vector fields, then iXω has its first
argument fixed as the vector field X, and so is only a p− 1 form. To answer our second problem, we could
use any e∗t , but no value of t is preferred. So, we will simply integrate across t, essentially removing our
extraneous coordinate. Integrating from 0 to 1 is as easy as it gets! We are, in a sense, taking an average
value across the coordinate that we wish to ignore.

Formally, on D × [0, 1], we have the vector field X = (0, ∂/∂t′) that is only a differential in the last t co-
ordinate. This vector field is chosen to encode that this is the coordinate we wish to eliminate. Denote iX
to be the interior product of forms with respect to this field. Then, define h : Ωp(D × [0, 1]) → Ωp−1(D),

hω =
∫ 1

0
e∗t (iX(ω))dt (if p = 0, we take the zero map). hω is well-defined by thinking of the integral as a

limit of sums. We show that this map h, which is clearly R-linear, is the chain homotopy that we seek.

First, d commutes with integrals via working in local coordinates, so dhω =
∫ 1

0
de∗t (iX(ω))dt. Therefore,

(hp+1dD×[0,1],p + dD,p−1hp)(ω) =
∫ 1

0
e∗t (iX(dω)) + de∗t (iX(ω))dt. d commutes with pullbacks, so this is
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∫ 1

0
e∗t (iXd+ diX(ω))dt =

∫ 1

0
e∗tLX(ω)dt, where LX is the Lie derivative with respect to X.

To finish the proof, we use our crafty choice of X. Write et = Tt ◦ e0, where Tt(x, s) = (x, s + t) is a
diffeomorphism of D × R to itself. Then Tt is actually the associated flow of X. Viewing D × [0, 1] as a
subspace of this larger space, we have, by property of Lie derivatives, e∗tLX(ω) = e∗0T

∗
t LX(ω) = e∗0

∂
∂tT

∗
t ω =

∂
∂te

∗
0T

∗
t ω = ∂

∂te
∗
tω.

Therefore, (hd + dh)(ω) =
∫ 1

0
∂
∂te

∗
tωdt = e∗1ω − e∗0ω, so h is indeed a chain homotopy between e∗1 and

e∗0.

Remark. Part of the motivation for this proof strategy is in the similarity between the definition of a chain
homotopy and in Cartan’s formula for the Lie derivative, in that we are “adding” two different paths from
Ωp(D) to itself. The comparisons between the fundamental theorem of calculus and the equation e∗1 − e∗0 are
also shown. Perhaps then this is a “fundamental theorem of homotopies”

Lemma 3. Chain homotopic maps on cochain complexes induce the same map on cohomology

Proof. We use Ω∗(C) and Ω∗(D) to represent our cochain complexes here for clarity, even though this lemma
is more general.

If f∗, g∗ : Ω∗(C) → Ω∗(D) are chain homotopic, then in degree p, f∗ − g∗ = hp+1dA,p + dB,p−1hp,
where the hi : Ai → Bi−1 are R linear maps. Let ω be any closed p form ∈ Ωp(C). We see that
(f∗−g∗)(ω) = hp+1(dA,pω)+dB,p−1(hpω) = dB,p−1(hpω) since ω is closed and h is R linear (generally, it may
just be Z linear). Then in cohomology, (f∗ − g∗)([ω]) = [dB,p−1(hpω)] = [0]. Therefore, f∗([ω]) = g∗([ω])
for any closed ω and any degree p.

Lemma 4. If f : D → C is a homotopy equivalence with homotopy inverse g, then f∗ : H∗
dR(C) → H∗

dR(D)
is an isomorphism of cochain complexes

Proof. One checks that (f ◦ g)∗ = g∗ ◦ f∗. Then since f ◦ g ∼ idC , (f ◦ g)∗ = g∗ ◦ f∗ and id∗C = idΩ∗(C)

induce the same maps on cohomology by lemmas 2 and 3. Likewise, f∗ ◦ g∗ = idΩ∗(D) on cohomology. The
identity maps on differential forms certainly induce the identity maps on cohomology. Therefore, f∗ and g∗

induce inverse isomorphisms on cohomology, and so f∗ : H∗
dR(C) → H∗

dR(D) is an isomorphism of cochain
complexes.

Corollary 5. (Poincaré Lemma) A star shaped domain D of Rn has the same De Rham cohomology as a
single point. In particular, H0(D) = R and all other Hi(D) = 0.

Proof. Combine lemmas 1 and 4

Remark. Of course, this proof works the same if there is any deformation retract at all of D onto a
point, whether or not it is as simple as the radial one described in Lemma 1. Such a domain is just called
contractible, and this is a much broader set of shapes than the star shaped ones. Take your favorite star-
shaped domain and start smoothly stretching/squashing it. You have created a contractible domain via
homotopy equivalence.
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