
Intro Example Computations Ringel’s Theorem Extensions and Applications References

Hall Algebras

Sam Qunell

July 2023



Intro Example Computations Ringel’s Theorem Extensions and Applications References

Inspiration

A classic representation theory question is to investigate what
properties of an object are easily visible in the category of
representations

Repk(G ) is semisimple iff char(k) doesn’t divide |G |
(Maschke)

RepC(Q) is finite type iff the graph of Q is Dynkin (Gabriel)

Coh(X ) for X smooth projective variety has cohomological
dimension less than or equal to dim(X ) (Serre)
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Quiver Representations

In the Dynkin case one can obtain the positive part of the
root lattice by looking at the indecomposables in RepC(Q)

We would like to obtain directly the algebra structure on the
universal enveloping algebra U(n+)

What should “multiplication” of two quiver representations
look like?
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Hall Numbers

For now, consider finite field Fq = Fpk and Dynkin Q

F L
M1,M2

= |{X ⊂ L|X ∼ M2, L/X ∼ M1}| is finite for any finite
dimensional representations L,M1,M2.

These can be understood as equivalence classes of short exact
sequences. They are sometimes called Hall Numbers
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The Algebra

Define the Hall Algebra H(Q,Fq) to be the C algebra whose
basis is the isomorphism classes of objects in RepFq(Q)

The multiplication is given by [M1] ∗ [M2] =
∑

L F
L
M1,M2

[L]

This sum is always finite since every Ext(M1,M2) is finite
dimensional

The unit of this multiplication is [0]

Fact: This multiplication is associative

This algebra is graded by the Grothendieck group of RepFq(Q)
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A1

Let Q = ∗ = A1, with one vertex and no arrows

Representations are simply vector spaces. Finite dimensional
ones are in bijection with N.
We compute

[V1] ∗ [V1] = P2
1,1[V2] = |P1(Fq)|[V2] =

q2−1
q−1 [V2] = [2]q[V2].

A similar computation shows [Vn] ∗ [Vm] =
(n+m

m

)
q
[Vn+m]

There is an isomorphism of algebras H(A1,Fq) → C[x ] with
[Vn] → xn/[n]q!
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A2

Let Q = ∗1 → ∗2 = A2

There are 3 indecomposables; S1,S2,P1

We compute Hom(S1, S2) = Hom(S2, S1) = 0,
dim(Ext(S1,S2)) = 1, dim(Ext(S2, S1)) = 0

Therefore, [S2] ∗ [S1] = [S2 ⊕ S1], but
[S1] ∗ [S2] = [S2 ⊕ S1] + [P1]

Rewriting, we have [[S1], [S2]] = [P1]
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A2 continued

It is not so hard to check that H(A2,Fq) is isomorphic to the
Heisenberg algebra

We will have

[S1] →

0 1 0
0 0 0
0 0 0


[S2] →

0 0 0
0 0 1
0 0 0


[P1] →

0 0 1
0 0 0
0 0 0


Possibly with some rescaling
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Relation to Lie Theory

The underlying graph of A2 describes the root system for sl3

Note that the Heisenberg algebra is U(sl3,+)

Likewise, C[x ] = U(sl2,+)

Proving this phenomenon generally is the goal of Ringel’s
Theorem
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Key Observations

Amazing Fact: F L
M1,M2

only depends on the associated map
R+ → Z+ for L, M1, and M2

Amazing Fact: F L
M1,M2

is actually an integer polynomial in
q = |Fq|
This allows us to define a universal Hall algebra H(Q)A,
where [M] ∗ [N] =

∑
l F

fL
fM ,fN

(t)[fL]

We specialize H(Q)A by mapping t to 1. We call this algebra
H(Q).
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Generators

We were able to show in the previous examples that the
simple representations actually generate H(Q). We will want
to show that this is true generally

Due to AR theory, there is a total order on the
indecomposable representations such that
Hom(A,B) = Ext(B,A) = 0 if B < A. This is basically a
refinement of the ”obvious” order on the AR quiver

We can then compute that [
⊕l

k=1 nk Ik ] = Πl
k=1[Ik ]

(nk ),
assuming that the indecomposables are ordered
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More on Generators

An induction argument using this order also lets us prove that
all indecomposables are in the subalgebra generated by the [Si ]

Therefore, H(Q) is generated by the [Si ]

Note that this is NOT true if Q is not Dynkin. Generally, we
define C (Q) ⊂ H(Q) the composition algebra to be the
subalgebra generated by the [Si ].
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The Homomorphism

U(n+) is also generated by simple elements ei . We would like
to define an algebra homomorphism sending ei to [Si ]

This amounts to checking the Serre relations for the [Si ]

[ei , ej ] = 0 if i and j are not connected

[ei , [ei , ej ]] = 0 if i and j are connected

Surjectivity of this map follows from the prior slide

Injectivity follows from a graded dimension computation via
PBW theorem
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Hopf Algebra Structure

U(g) has the structure of a Hopf algebra. How should we
interpret the coproduct and scalar product?

The coproduct will have the form
∆([R]) =

∑
M,N CM,N [M]⊗ [N]

This may require passing to a formal completion of the Hall
algebra to deal with infinite sums in certain categories

Counit ϵ([M]) = δM,0

([M], [N]) = δM,N/|Aut(M)|
Antipode also exists - this can be upgraded to a genuine
(topological) Hopf algebra structure
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Other Categories

Definition of Hall algebra does not explicitly use quivers - just
some finiteness conditions

We generally require Hom-finiteness: Hom(M,N) and all
Ext i (M,N) are finite. Easily achieved if we look at finite
fields.

Generally need finite global cohomological dimension. The
most tractable cases are the hereditary categories i.e.
Extk = 0 for k ≥ 2

This will allow us to construct Hall algebras for non-Dynkin
quivers and coherent sheaves on curves



Intro Example Computations Ringel’s Theorem Extensions and Applications References

Non-Dynkin Quivers

We often impose that representations of Affine quivers be
nilpotent so that we have good finiteness

In this case, the map U(n+) → H(Q) is still well-defined and
injective, but will not be surjective in general. The image is
called the composition algebra

Recall that indecomposables were called either preprojective,
preinjective, or regular in this case

One can show that H(Q) = HP ⊗ HR ⊗ HI and
C (Q) = CP ⊗ CR ⊗ CI
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Coherent Sheaves

We mostly focus on finite fields again

Coh(P1) is also hereditary. Generally, Coh(X ) for X a smooth
curve

If g(X ) ≥ 2, then this category is wild! Only P1 is really
understood well, and elliptic curves are still being explored

Lenzing introduced certain one dimensional subvarieties of
weighted projective spaces which are not smooth but are
homologically nice
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Coh(P1)

The indecomposables here are the line bundles and the simple
torsion sheaves. Recall Tor(P1) is abelian and extension
closed, but Vec(P1) is not

Kapranov proved that there is a similar isomorphism
U(Lb+) → H(P1)′

This is reminiscent of the derived equivalence
Coh(P1) → Rep(Kron)
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More Extensions and Applications

A similar analysis can be done for the weighted projective
lines, although one should use the HN filtration to understand
the indecomposables

Lusztig produces canonical bases of such algebras by
categorifying

There are many attempts to recover the full enveloping
algebra, not just the positive part

One can perform a Hall algebra construction on certain cluster
categories and recover cluster algebras.
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Kirillov “Quiver Representations and Quiver Varieties”

Schiffmann “Lectures on Hall Algebras”
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