Hall Algebras

Sam Qunell

July 2023

Inspiration

- A classic representation theory question is to investigate what properties of an object are easily visible in the category of representations
- $\operatorname{Rep}_{k}(G)$ is semisimple iff $\operatorname{char}(k)$ doesn't divide $|G|$ (Maschke)
- $\operatorname{Rep}_{\mathbb{C}}(Q)$ is finite type iff the graph of Q is Dynkin (Gabriel)
- $\operatorname{Coh}(X)$ for X smooth projective variety has cohomological dimension less than or equal to $\operatorname{dim}(X)$ (Serre)

Quiver Representations

- In the Dynkin case one can obtain the positive part of the root lattice by looking at the indecomposables in $\operatorname{Rep}_{\mathbb{C}}(Q)$
- We would like to obtain directly the algebra structure on the universal enveloping algebra $U\left(\mathfrak{n}_{+}\right)$
- What should "multiplication" of two quiver representations look like?

Hall Numbers

- For now, consider finite field $\mathbb{F}_{q}=\mathbb{F}_{p^{k}}$ and Dynkin Q
- $F_{M_{1}, M_{2}}^{L}=\left|\left\{X \subset L \mid X \sim M_{2}, L / X \sim M_{1}\right\}\right|$ is finite for any finite dimensional representations L, M_{1}, M_{2}.
- These can be understood as equivalence classes of short exact sequences. They are sometimes called Hall Numbers

The Algebra

- Define the Hall Algebra $H\left(Q, \mathbb{F}_{q}\right)$ to be the \mathbb{C} algebra whose basis is the isomorphism classes of objects in $\operatorname{Rep}_{\mathbb{F}_{q}}(Q)$
- The multiplication is given by $\left[M_{1}\right] *\left[M_{2}\right]=\sum_{L} F_{M_{1}, M_{2}}^{L}[L]$
- This sum is always finite since every $\operatorname{Ext}\left(M_{1}, M_{2}\right)$ is finite dimensional
- The unit of this multiplication is [0]
- Fact: This multiplication is associative
- This algebra is graded by the Grothendieck group of $\operatorname{Rep}_{\mathbb{F}_{q}}(Q)$
- Let $Q=*=A_{1}$, with one vertex and no arrows
- Representations are simply vector spaces. Finite dimensional ones are in bijection with \mathbb{N}.
- We compute

$$
\left[V_{1}\right] *\left[V_{1}\right]=P_{1,1}^{2}\left[V_{2}\right]=\left|P^{1}\left(\mathbb{F}_{q}\right)\right|\left[V_{2}\right]=\frac{q^{2}-1}{q-1}\left[V_{2}\right]=[2]_{q}\left[V_{2}\right]
$$

- A similar computation shows $\left[V_{n}\right] *\left[V_{m}\right]=\binom{n+m}{m}_{q}\left[V_{n+m}\right]$
- There is an isomorphism of algebras $H\left(A_{1}, \mathbb{F}_{q}\right) \rightarrow \mathbb{C}[x]$ with $\left[V_{n}\right] \rightarrow x^{n} /[n]_{q}!$
- Let $Q=*_{1} \rightarrow *_{2}=A_{2}$
- There are 3 indecomposables; S_{1}, S_{2}, P_{1}
- We compute $\operatorname{Hom}\left(S_{1}, S_{2}\right)=\operatorname{Hom}\left(S_{2}, S_{1}\right)=0$, $\operatorname{dim}\left(E x t\left(S_{1}, S_{2}\right)\right)=1, \operatorname{dim}\left(E x t\left(S_{2}, S_{1}\right)\right)=0$
- Therefore, $\left[S_{2}\right] *\left[S_{1}\right]=\left[S_{2} \oplus S_{1}\right]$, but $\left[S_{1}\right] *\left[S_{2}\right]=\left[S_{2} \oplus S_{1}\right]+\left[P_{1}\right]$
- Rewriting, we have $\left[\left[S_{1}\right],\left[S_{2}\right]\right]=\left[P_{1}\right]$

A_{2} continued

- It is not so hard to check that $H\left(A_{2}, \mathbb{F}_{q}\right)$ is isomorphic to the Heisenberg algebra
- We will have

$$
\begin{aligned}
& {\left[S_{1}\right] \rightarrow\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)} \\
& {\left[S_{2}\right] \rightarrow\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)} \\
& {\left[P_{1}\right] \rightarrow\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)}
\end{aligned}
$$

Possibly with some rescaling

Relation to Lie Theory

- The underlying graph of A_{2} describes the root system for $\mathfrak{s l}_{3}$
- Note that the Heisenberg algebra is $U\left(\mathfrak{s l}_{3,+}\right)$
- Likewise, $\mathbb{C}[x]=U\left(\mathfrak{s l}_{2,+}\right)$
- Proving this phenomenon generally is the goal of Ringel's Theorem

Key Observations

- Amazing Fact: $F_{M_{1}, M_{2}}^{L}$ only depends on the associated map $R_{+} \rightarrow \mathbb{Z}_{+}$for L, M_{1}, and M_{2}
- Amazing Fact: $F_{M_{1}, M_{2}}^{L}$ is actually an integer polynomial in $q=\left|\mathbb{F}_{q}\right|$
- This allows us to define a universal Hall algebra $H(Q)_{A}$, where $[M] *[N]=\sum_{l} F_{f_{M}, f_{N}}^{f_{L}}(t)\left[f_{L}\right]$
- We specialize $H(Q)_{A}$ by mapping t to 1 . We call this algebra $H(Q)$.

Generators

- We were able to show in the previous examples that the simple representations actually generate $H(Q)$. We will want to show that this is true generally
- Due to AR theory, there is a total order on the indecomposable representations such that $\operatorname{Hom}(A, B)=\operatorname{Ext}(B, A)=0$ if $B<A$. This is basically a refinement of the "obvious" order on the AR quiver
- We can then compute that $\left[\bigoplus_{k=1}^{\prime} n_{k} I_{k}\right]=\Pi_{k=1}^{\prime}\left[I_{k}\right]^{\left(n_{k}\right)}$, assuming that the indecomposables are ordered

More on Generators

- An induction argument using this order also lets us prove that all indecomposables are in the subalgebra generated by the [S_{i}]
- Therefore, $H(Q)$ is generated by the $\left[S_{i}\right]$
- Note that this is NOT true if Q is not Dynkin. Generally, we define $C(Q) \subset H(Q)$ the composition algebra to be the subalgebra generated by the $\left[S_{i}\right]$.

The Homomorphism

- $U\left(\mathfrak{n}_{+}\right)$is also generated by simple elements e_{i}. We would like to define an algebra homomorphism sending e_{i} to $\left[S_{i}\right]$
- This amounts to checking the Serre relations for the $\left[S_{i}\right]$

$$
\begin{aligned}
{\left[e_{i}, e_{j}\right] } & =0 \text { if } i \text { and } j \text { are not connected } \\
{\left[e_{i},\left[e_{i}, e_{j}\right]\right] } & =0 \text { if } i \text { and } j \text { are connected }
\end{aligned}
$$

- Surjectivity of this map follows from the prior slide
- Injectivity follows from a graded dimension computation via PBW theorem

Hopf Algebra Structure

- $U(\mathfrak{g})$ has the structure of a Hopf algebra. How should we interpret the coproduct and scalar product?
- The coproduct will have the form
$\Delta([R])=\sum_{M, N} C_{M, N}[M] \otimes[N]$
- This may require passing to a formal completion of the Hall algebra to deal with infinite sums in certain categories
- Counit $\epsilon([M])=\delta_{M, 0}$
- $([M],[N])=\delta_{M, N} /|\operatorname{Aut}(M)|$
- Antipode also exists - this can be upgraded to a genuine (topological) Hopf algebra structure

Other Categories

- Definition of Hall algebra does not explicitly use quivers - just some finiteness conditions
- We generally require Hom-finiteness: $\operatorname{Hom}(M, N)$ and all $E_{x t}{ }^{i}(M, N)$ are finite. Easily achieved if we look at finite fields.
- Generally need finite global cohomological dimension. The most tractable cases are the hereditary categories i.e. $E x t^{k}=0$ for $k \geq 2$
- This will allow us to construct Hall algebras for non-Dynkin quivers and coherent sheaves on curves

Non-Dynkin Quivers

- We often impose that representations of Affine quivers be nilpotent so that we have good finiteness
- In this case, the map $U\left(\mathfrak{n}^{+}\right) \rightarrow H(Q)$ is still well-defined and injective, but will not be surjective in general. The image is called the composition algebra
- Recall that indecomposables were called either preprojective, preinjective, or regular in this case
- One can show that $H(Q)=H_{P} \otimes H_{R} \otimes H_{l}$ and $C(Q)=C_{P} \otimes C_{R} \otimes C_{l}$

Coherent Sheaves

- We mostly focus on finite fields again
- $\operatorname{Coh}\left(\mathbb{P}_{1}\right)$ is also hereditary. Generally, $\operatorname{Coh}(X)$ for X a smooth curve
- If $g(X) \geq 2$, then this category is wild! Only \mathbb{P}^{1} is really understood well, and elliptic curves are still being explored
- Lenzing introduced certain one dimensional subvarieties of weighted projective spaces which are not smooth but are homologically nice

$\operatorname{Coh}\left(\mathbb{P}^{1}\right)$

- The indecomposables here are the line bundles and the simple torsion sheaves. Recall $\operatorname{Tor}\left(\mathbb{P}^{1}\right)$ is abelian and extension closed, but $\operatorname{Vec}\left(\mathbb{P}^{1}\right)$ is not
- Kapranov proved that there is a similar isomorphism $U\left(\mathcal{L} b_{+}\right) \rightarrow \bar{H}\left(\mathbb{P}^{1}\right)^{\prime}$
- This is reminiscent of the derived equivalence $\operatorname{Coh}\left(\mathbb{P}^{1}\right) \rightarrow \operatorname{Rep}($ Kron $)$

More Extensions and Applications

- A similar analysis can be done for the weighted projective lines, although one should use the HN filtration to understand the indecomposables
- Lusztig produces canonical bases of such algebras by categorifying
- There are many attempts to recover the full enveloping algebra, not just the positive part
- One can perform a Hall algebra construction on certain cluster categories and recover cluster algebras.
- Kirillov "Quiver Representations and Quiver Varieties"
- Schiffmann "Lectures on Hall Algebras"

