2-categorical affine symmetries and g-boson
algebras

Sam Qunell
UCLA

October 2025



Introduction
@000

Quantum groups

Quantum groups are Hopf algebras deforming the universal
enveloping algebra of several classes of Lie algebras.

Representations of quantum groups are useful for many things,
including producing solvable lattice models in statistical physics.

What are the symmetries of the symmetries?
Who acts on the actors?
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Categorification

Some symmetries are more obvious from the categorical viewpoint.

For us, categorifying an algebra means finding a monoidal category
whose Grothendieck group is the desired algebra.

Quantum groups and related structures can be categorified via
representations of KLR (quiver Hecke) algebras.
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Affinization

For g a simple complex Lie algebra, we can obtain the affine Lie
algebra § by taking a central extension (+ derivation) of the loop
algebra g ® C[t, t~1]. It is known § is a Kac-Moody Lie algebra.

Drinfeld showed that for g a Kac-Moody Lie algebra, the algebra
Uq(g) admits an “affinization” Uq(§) given by a loop presentation.
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Affinization

For g a simple complex Lie algebra, we can obtain the affine Lie
algebra § by taking a central extension (+ derivation) of the loop
algebra g ® C[t, t~1]. It is known § is a Kac-Moody Lie algebra.

Drinfeld showed that for g a Kac-Moody Lie algebra, the algebra
Uq(g) admits an “affinization” Uq(§) given by a loop presentation.

A categorical understanding of this affinization process or of loop
generators is still missing.

Representations of quantum affinizations are increasingly common.
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Main Results

@ We find new representations of U;r(g:[n) on Uf(sl,) by
constructing and decategorifying certain 2-representations.

@ The (1-)representation also exists at least in types Dy and Co.

o We also present new categorifications of related algebras in all
symmetrizable Kac-Moody types.
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Positive part quantum groups

Let (Cjj)ijes be a symmetric generalized Cartan matrix.
Let g be the Kac-Moody Lie algebra associated to C.
Let g be an indeterminate. Denote by (Z)q the quantum binomial
coefficient in gq.

Our algebras and categories work for symmetrizable C as well.
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Positive part quantum groups

Let (Cjj)ijes be a symmetric generalized Cartan matrix.
Let g be the Kac-Moody Lie algebra associated to C.
Let g be an indeterminate. Denote by (Z)q the quantum binomial
coefficient in gq.

Our algebras and categories work for symmetrizable C as well.

Definition

Define the algebra U, (g) as the C(q)-algebra with generators E;
for i € I and quantum Serre relations for i # j

l—C,'j

(1 y C”) (—1)KEFEE 7 =0
k 1
k=0 q
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Examples of U; (g)

UZ (sl2) ~ C(q)[E1], the polynomial algebra in 1 variable.

U;r(s:[z) is generated by two non-commuting variables E; and Ey
subject to the relations

A

EPEo— (°+1+q 2)E b1+ (q° + 1+ g °)EL B Ef — BoEP =0

and

ESEr—(q° +1+q ?)EgErEo+(¢* +1+q %) EoEr G — E1Eg = 0.
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Adjoints

o U/ (g) carries an important symmetric bilinear form. On the
generators, it is given by

1

(Eian):(Sijl_q2'

@ This form is nondegenerate and gives maps E adjoint to
(right multiplication by) E;.

@ Adjoints are more natural to categorify.
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g-boson algebras

Kashiwara shows that the operators E; and EJ* satisfy “g-boson
relations”

E'E—q “EE =

Let B(g) be the g-boson algebra for the Kac-Moody Lie algebra g.
It has generators E;, F; for i € [. The E; and F; both satisfy
quantum Serre relations. We also have

0jj
1-qg2

FiEj—q “EF; =

The action of B(g) on U, (g) is faithful.
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Evaluation homomorphisms

@ There are natural evaluation homomorphisms
g Clt,t71] — g.

° JimbAo gives quantum evaluation homomorphisms
Ua(Sls) — Ug(al,):

@ These quantum evaluation homomorphisms cannot be defined
outside of type A,,.

@ We will be primarily interested in finding a homomorphism
Ug (8) — B(g) and resulting action on U (g).
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Half 2-Kac-Moody algebra

We need a monoidal category that categorifies U, (g).
We will construct one in several steps.

For C a symmetric generalized Cartan matrix with Kac-Moody Lie
algebra g, define the strict monoidal additive category Z/I’+(g)
generated by objects E; for i € | and by morphisms X; : E; — E;
and TU : E,'Ej = EJE,

These morphisms are required to satisfy several KLR (quiver
Hecke) relations that depend on C.

v

The X; are like polynomial variables. The Tj; satisfy variants of the
braid relations.
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Z-grading

Denote U7 (g) := Kar(U'"(g)) — gr. By definition, U (g) is
idempotent-closed and Z-graded. Denote by g the shift functor.
Morphisms are graded via deg(X;) = 2, deg(T;;) = —Cj;, and
deg(ldp) = 0 for any object M.

For example, for each m € Z we have morphisms
X,' : qm+2E,' — qu,'.

Shifting by q in U, (g) categorifies multiplying by g in U, (g).
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Categorification

Theorem (Khovanov-Lauda)

U (9) =~ C(q) ®zq,q-1] Ko(Uy (9))- This is an isomorphism of
algebras.
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Categorification

Theorem (Khovanov-Lauda)

U (9) =~ C(q) ®zq,q-1] Ko(Uy (9))- This is an isomorphism of
algebras.

@ There is a C(q)-valued g-semilinear form on Ky defined by

([M],[N]) = ) _ g"dim(Hom(q"(M). N)).

nez

o If we apply the duality § := ¢~ !, E; = Ej to the first
argument, then we recover the previous symmetric bilinear
form on UJ (g).
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2-representations

A 2-representation of U, (g) or U (g) is an additive graded
strict-monoidal functor U (g) — Endg z(D) for some additive
Z-graded category D.

These yield (1-)representations of U, (g) on C(q) ®z(q,4-1] Ko(D).

Uy (g) comes with endofunctors for tensoring on the right by E;.
This categorifies the right-multiplication representation of U;“(g).
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Extending coefficients

We would like adjoints F; to the E;, but L{;(g) is “too small”.

We say that a coproduct of U;(g) objects is locally finite if it has
the form

[ k i k; i kni
[T o/ (M7 @ Mg ")
i€z
for some M; € U (g) and k;; € N. We say also that the coproduct
is left-bounded if there exists some m € Z for which k; ; = 0 for all
Jj whenever | < m.

V.

Definition

Denote by Z/{j{(g)”’“r the category of all left-bounded, locally finite
coproducts (in fact, biproducts) of 2/ (g) objects.
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Categorical g-boson relations

The functor for tensoring on the right by E; does have a right
adjoint F; defined on U (g)"".

Theorem (Kang-Kashiwara)

There is an isomorphism of functors

FiEj ~ q S E;F; ® 6; P ¢*"Id
neN

This categorifies the g-boson relations.
Note that F; is only right adjoint to E;.
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U;(f;\[g) 2-representation

Rouquier discovered a 2-representation of Llj(glz) on U (slp)"*

extending that of U, (sl2). Here, E; acts by right tensoring by Ej,
and Ep acts by the adjoint F;.
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U;(g[z) 2-representation

Rouquier discovered a 2-representation of Ll;“(glz) on U (slp)"*
extending that of U, (sl2). Here, E; acts by right tensoring by Ej,
and Ep acts by the adjoint F;.

The naturality of the construction suggests more important and
interesting structure in the background.
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U;(g[z) 2-representation

Rouquier discovered a 2-representation of Ll;“(glz) on U (slp)"*

extending that of U, (sl2). Here, E; acts by right tensoring by Ej,
and Ep acts by the adjoint F;.

The naturality of the construction suggests more important and
interesting structure in the background.

Can this be generalized to other types? It is not easy to determine
the action of Eg in general.
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Objective

To produce a 2-representation of L{;'(ﬁ) extending the right
multiplication 2-representation of 2/, (g), we need the following.

e Additive, graded endofunctor Eg of L{j(g)’b’f.

o Natural transformations of appropriate grading

Xo : Eo — Eo,
Too : E()E() — E()Eo,

and for each i a vertex for the Dynkin diagram of g,

Toi : EoEi — EjE,
Tio : EiEo — EoE;

satisfying the KLR relations in Z/{;(@).
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Jimbo's evaluation homomorphism

@ In Jimbo's evaluation homomorphisms
Uq(sln+1) = Uq(glp41), we map
E,' — E,',
EO — K- [Fn, [Fn—17 R [F27 Fl]q A ]q]q-

where K is some semisimple element and
[A,Blg = AB — gBA.
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Jimbo's evaluation homomorphism

@ In Jimbo's evaluation homomorphisms
Uq(sln+1) = Uq(glp41), we map

E,' — E,',

EO - K- [Fn, [Fn—17 e [F27 Fl]q . ]q]q-
where K is some semisimple element and
[A,Blg = AB — gBA.

@ We show that there is a similar homomorphism
Uj(s[,,ﬂ) — B(sl,4+1) given by

E,' — E,',
Eo — [Fn, [Fa—1,-.-[F2, Filq - - -Iqlg-
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Ey categorification example

As an example, let g = sl3. How can we categorify
[F2, Filqg = FoF1 — qF1 F2?

We look for a natural transformation from F1F, to FyF; of degree
1. The adjoint of T1» works.
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Ey categorification example

As an example, let g = sl3. How can we categorify
[F2, Filqg = FoF1 — qF1 F2?

We look for a natural transformation from F1F, to FyF; of degree
1. The adjoint of T1» works.

We will take the cokernel in the larger category of bimodules of
KLR algebras.
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Ey functor generally

For n > 2 and g = sl,41, we will iterate this procedure of taking
cokernels of appropriately graded morphisms. This gives us a
functor Egy defined a priori on a larger category.

Theorem (Q.)

The Eq functor obtained this way is well-defined on U (9)f . Its
action on C((q)) ®z(aqie-1 Koy (9)"") is

En [En1,- - [E5, E{lq - 1qlqg-




Affine symmetries
00000e

Main result 1

The needed natural transformations are all descended from X;, Tj;,
or from Kang-Kashiwara's g-boson isomorphism.

Theorem (Q.)

For n > 2, the described Ey, Xoo, Too, Toi, and Tiy give a

2-representation of Z/l;r (5A[,,+1) extending the right-multiplication

2-representation of U (sly1) on Uy (s0ns1)"F.

Slight modifications are made in the sl case due to double arrows
in the affine Dynkin diagram.
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g-boson category

The previous results suggest the existence and importance of a
(new) categorification of B(g).

We produce a generators-and-relations categorification B(g) akin
to L{j(g). This makes it easier to define 2-representations,
compute Hom spaces, and generalize.

Our construction works for any symmetrizable Kac-Moody Lie
algebra.
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Main result 2

The universal property of B(g) is as follows. A 2-representation of
B(g) is a 2-representation of U (g) such that

@ The image of each E; has a right dual F;
@ The image admits all left-bounded, locally finite direct sums

@ The g-boson morphisms (to be defined) are invertible

A

The category B(g) acts on Z/{j(g)“”’r with objects E; acting by ®F;
and F; acting by the right adjoint.

Theorem (Q.)

B(g) acts faithfully on U (g)"".
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Generators

@ First, we define a monoidal category with shift functor gq. The
generating objects are E; and F;. We have morphisms X; and
Ty just like in Uy (g).

@ We also require that F; is right dual to E;, so we have units
nj: 1 — F,E; and counits ¢; : E;F; — 1.

@ Diagrammatic techniques can be used to control the size of
Hom spaces.
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The g-boson morphism

@ Recall there is an isomorphism of functors on Z/{C‘f(g)/b“r

q 9EF @6 "1 — FiE;.
neN
@ This “g-boson morphism” is
FiEiejo FTjiF; 0 g~ SnEif; @ 65 D FiX[" o
neN

@ Very similar morphisms are formally inverted in Rouquier's
categorification of the (idempotented) full quantum group

Uq(g)-
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Other additions

e We add all left-bounded locally finite coproducts (in fact,
direct sums).

@ We then localize at a class of morphisms containing these
g-boson morphisms to obtain our desired category B(g). This
class of morphisms admits a calculus of right fractions.

o For decategorification, we also need to take an idempotent
completion.

Theorem (Q.)
C((q)) ®c(q) B(g) = C((q)) ®z(q)1q-1] Ko(Kar(B(g)))-
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Applications

o A quotient of U] (sl,+1) by a maximal Uq(b)-submodule is
isomorphic to a prefundamental representation. This gives
new proofs of the prefundamental character formulas.

@ Main result 2 yields interesting bases of B(g) and of the
corresponding bosonic extension.

@ Main result 2 yields a graphical description of the bilinear
form on B(g).
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Next Steps

@ Main result 1 suggests a possible categorification of
prefundamental representations.

@ We expect that there is a functor Z/{(—;_(ﬁl\[n+1) — Ho(B(slh+1))
coming from main result 1.

o Current work includes adding all duals to ¢/, (g) and
investigating connections to the quantum Grothendieck ring
of Ug(L(g))-

@ We are also investigating applications to the crystal basis of
Uq (9).
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Thank you for listening!

Main results:

@ For n > 2, we construct a 2-representation of U;“(:':[,,) on
Uy (sly). The representation of algebras is new for n > 3.

@ We also construct a representation of U/ (sog) on U, (s0s)
and of Uy (shy) on U, (spy4).

@ We construct a generators-and-relations monoidal
categorification of the g-boson algebras B(g) for any
symmetrizable Kac-Moody Lie algebra g. It has a faithful
2-representation on a categorification of U;“(g).
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