HW #3

- 1. Let H_i , $i \in I$, be a collection of subgroups of G. Prove that $\bigcap H_i$ is a subgroup of G. Is $\bigcup H_i$ a subgroup of G?
- 2. Let G be a group and W a subset of G. Show that $\langle W \rangle = \{g \in G \mid \exists w_1, \dots, w_r \in W, n_1, \dots, n_r \in \mathbf{Z} \ni g = w_1^{n_1} \dots w_r^{n_r} \}.$
- 3. Show if G is a group in which $(ab)^2 = a^2b^2$ for all $a, b \in G$ then G is abelian.
- 4. Determine all groups up to order 6.
- 5. Let p be a prime. Show that $F = \mathbf{Z}/p\mathbf{Z}$ is a field [i.e., in the commutative ring $\mathbf{Z}/p\mathbf{Z}$ every non-zero element has a multiplicative inverse]. Compute |G| if $G = GL_n(F), SL_n(F), T_n(F), ST_n(F)$, or $D_n(F)$. [Hint: First show that F is a domain, i.e., a commutative ring satisfying: if ab = 0 in F then a = 0 or b = 0. Then show that any domain with finitely many elements is a field.]
- 6.(*) Let $m_i > 1$, $1 \le i \le n$, be pairwise relatively prime integers. Let $m = m_1 \cdots m_n$. Let $\varphi(m)$ denote the order of the group $(\mathbf{Z}/m\mathbf{Z})^{\times}$. The function $\varphi : \mathbf{Z}^+ \to \mathbf{Z}^+$ is called the Euler phi function. [We let $\varphi(1) = 1$.] Show that there exists an isomorphism

$$(\mathbf{Z}/m\mathbf{Z})^{\times} \to (\mathbf{Z}/m_1\mathbf{Z})^{\times} \times \cdots \times (\mathbf{Z}/m_n\mathbf{Z})^{\times}.$$

In particular $\varphi(m) = \varphi(m_1) \cdots \varphi(m_n)$. Compute $\varphi(p^r)$ when p is a prime and r is a positive integer.

- 7.(*) Prove the Cyclic Subgroup Theorem which states: Let H be a subgroup of the cyclic group $G = \langle g \rangle$. Let e be the identity of G. Let n be a positive integer. Then
 - (i) $H = \{e\}$ or $H = \langle g^m \rangle$ where $m \geq 1$ is the least integer such that $g^m \in H$. If G is infinite then H is infinite or $\{e\}$. If G is finite of order n then m|n.
 - (ii) If |G| = n and m|n then $\langle g^m \rangle$ is the unique subgroup of G of order n/|m|.
 - (iii) If |G| = n and m / n then G does not have a subgroup of order m.
 - (iv) If |G| = n then the number of subgroups of G is equal to the number of divisors of |G|.
 - (v) If G has prime order then the only subgroups of G are $\{e\}$ and G.
- 8.(*) Let G be an abelian group. Let $a, b \in G$ have finite order m, n, respectively. Suppose that m and n are relatively prime. Show that ab has order mn. Is this true if G is not abelian? Prove or give a counterexample.