1.(*) Let $a, b \in \mathbf{Z}^+$. Repeated use of the Division Algorithm gives the Euclidean Algorithm, viz., a system of equations

Show this ends. Show that $r_k = gcd(a, b)$. Plugging in backwards gives $r_k = ax + by$ for some integers x, y. Do all of this for a = 39493 and b = 198593 (including finding an appropriate x and y).

- 2. Let a, b, c be non-zero integers. Let d = gcd(a, b). Then the equation ax + by = c has a solution x, y in integers if and only if d|c. Moreover, if d|c and x_o, y_o is a solution in integers then the general solution in integers is $x_o + \frac{b}{d}k, y_o \frac{a}{d}k$ for all integers k.
- 3. In the proof of the uniqueness of the Fundamental Theorem of Arithmetic, give two proofs to finish after showing $p_1 = q_1$.
- 4.(*) Show the following.
 - (i) Let R be an equivalence relation on A. Then \overline{A} partitions A. Conversely, if \mathcal{C} partitions A, define \sim on $A \times A$ by $a \sim b$ if a, b belong to the same set in \mathcal{C} . Then \sim is an equivalence relation on A.
 - (ii) Through each integer point on the x-axis in the plane \mathbb{R}^2 draw a line perpendicular to the x-axis and the same with the y-axis. Define a (systematic) partition of the plane that this defines. [Be careful with points on the various lines.]
 - 5. Let m > 1 be an integer. Show all of the following:
 - (i) Congruence modulo m is an equivalence relation. In particular,

$$\mathbf{Z} = \overline{0} \vee \overline{1} \vee \ldots \vee \overline{m-1}$$

i.e., there are m equivalence classes. Let $\mathbb{Z}/m\mathbb{Z} = \mathbb{Z}/\equiv \operatorname{mod} m = \{\overline{0}, \dots, \overline{m-1}\}.$

(ii) Let $a, b, c, d \in \mathbf{Z}$ satisfy

$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$

then

$$a + b \equiv c + d \pmod{m}$$
 and $a \cdot b \equiv c \cdot d \pmod{m}$

(i.e.,
$$\overline{a+b} = \overline{c+d}$$
 and $\overline{a \cdot b} = \overline{c \cdot d}$).

- (iii) Now define a + and \cdot on $\mathbf{Z}/m\mathbf{Z}$ by $\overline{a} + \overline{b} = \overline{a+b}$ and $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$. Show that this is well-defined, i.e., if $\overline{a} = \overline{a'}$ and $\overline{b} = \overline{b'}$ then $\overline{a+b} = \overline{a'+b'}$ and $\overline{a \cdot b} = \overline{a' \cdot b'}$.
- (iv) This + and · make $\mathbf{Z}/m\mathbf{Z}$ into a commutative ring. That is the following axioms are satisfied for all $\overline{a}, \overline{b}, \overline{c} \in \mathbf{Z}/m\mathbf{Z}$:
 - 1. $(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c})$ [Associativity] $2. \ \dot{\overline{a}} + \overline{b} = \overline{b} + \overline{a}$ [Commutativity]3. $\overline{a} + \overline{0} = \overline{a}$ [Existence of zero] 4. $\overline{a} + (\overline{-a}) = \overline{0}$ [Existence of additive inverses] 5. $(\overline{a} \cdot \overline{b}) \cdot \overline{c} = \overline{a} \cdot (\overline{b} \cdot \overline{c})$ [Associativity of Multiplication] 6. $\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a}$ [Commutativity of Multiplication] 7. $\overline{a} \cdot \overline{1} = \overline{a} = \overline{1} \cdot \overline{a}$ [Existence of one] 8. $\overline{c} \cdot (\overline{a} + \overline{b}) = \overline{c} \cdot \overline{a} + \overline{c} \cdot \overline{b}$ $[Distributative\ Law]$ 9. $(\overline{a} + \overline{b}) \cdot \overline{c} = \overline{a} \cdot \overline{c} + \overline{b} \cdot \overline{c}$ $[Distributative\ Law]$
- 6. Find the smallest positive integer x such that $x \equiv 3 \pmod{11}$, $x \equiv 2 \pmod{12}$, and $x \equiv 1 \pmod{13}$.
- 7. Prove that there exist infinitely many primes congruent to 3 modulo 4.
- 8.(*) Let p be a prime number. Show that $a^p \equiv a \pmod{p}$ for all integers a.