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INTRODUCTION vii

Introduction

The algebraic theory of quadratic forms really began with the pioneering work of Witt.
In his paper [64], Witt considered the totality of non-degenerate symmetric bilinear forms
over a field F' of characteristic different from two. Under this assumption, the theory of
symmetric bilinear forms and the theory of quadratic forms are essentially the same.

His work allowed him to form a ring W (F'), now called the Witt ring, arising from the
isometry classes of such forms. This set the stage for further study. From the viewpoint of
ring theory, Witt gave a presentation of this ring as a quotient of the integral group ring
where the group consists of the non-zero square classes of the field F'. Three methods of
study arise: ring theoretic, field theoretic, i.e., the relationship of W (F') and W (K) where
K is an algebraic field extension of F', and algebraic geometric. In this book, we will
develop all three methods. Historically, the powerful approach using algebraic geometry
has been the last to be developed. This volume attempts to show its usefulness.

The theory of quadratic forms lay dormant until work of Cassels and then of Pfister
in the 1960’s still under the assumption of the field being of characteristic different from
two. Pfister employed the first two methods, ring theoretic and field theoretic, as well as a
nascent algebraic geometric approach. In his Habilitationsschrift [48] Pfister determined
many properties of the Witt ring. His study bifurcated into two cases: formally real fields,
i.e., fields in which —1 is not a sum of squares and non-formally real fields. In particular,
the Krull dimension of the Witt ring is one in the formally real case and zero otherwise.
This makes the study of the interaction of bilinear spaces and orderings an imperative
hence the importance of looking at real closures of the base field resulting in extensions of
Sylvester’s work and Artin-Schreier theory. Pfister determined the radical, zero-divisors,
and spectrum of the Witt ring. Even earlier, in [46], he discovered remarkable forms,
now called Pfister forms. These are forms that are tensor products of binary forms that
represent one. Pfister showed that scalar multiples of these were precisely the forms
that become hyperbolic over their function field. In addition, the non-zero value set of a
Pfister form is a group and in fact the group of similitudes of the form. As an example,
this applies to the quadratic form that is a sum of 2" squares. He also used it to show
that in a non formally real field the least number of squares s(F') needed to express —1 is
always a power of 2 in [47]. Interest and problems about other arithmetic field invariants
have also played a role in the development of the theory.

The even dimensional forms determine an ideal I(F') in the Witt ring of F', called the
fundamental ideal. Its powers I"™(F') := (I(F))" give an important filtration of W (F), each
generated by appropriate Pfister forms. The problem then arises: What ring theoretic
properties respect this grading? From W (F') one also forms the graded ring GW (F)
associated to I(F') and asks the same question.

Using Matsumoto’s presentation of Ky(F') of a field (cf. [?], Milnor gave an ad hoc
definition of a graded ring K.(F) := @,>0K,(F) of a field in [?]. From the viewpoint of
Galois cohomology, this was of great interest as there is a natural map, called the norm
residue map from K, (F) to the Galois cohomology group H"(I'p, u®™) where I' is the
absolute Galois group of F'. For the case m = 2, Milnor conjectured this map to be an
epimorphism with kernel 2K,,(F) for all n. Voevodsky proved this conjecture in [60].
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Milnor also related his algebraic K- ring of a field to quadratic form theory, by asking if
GW (F) and K,.(F)/2K.(F) were isomorphic. This was solved in the affirmative in [45].
Assuming these results, one can answer some of the questions that have arisen about the
filtration of W (F') induced by the fundamental ideal.

In this book, we do not restrict ourselves to fields of characteristic different from
two. This means that the study of symmetric bilinear forms and the study of quadratic
forms must be done separately, then interrelated. Not only do we present the classical
theory characteristic free but include many results not proven in any text as well as some
previously unpublished results to bring the classical theory up to date.

We will also take a more algebraic geometric viewpoint then has historically been
done. Indeed the second two parts of the book, will be based on such a viewpoint. In
our characteristic free approach this means a firmer focus on quadratic forms which have
geometric objects attached to them rather than bilinear forms. We do this for a variety
of reasons.

Firstly, one can associate to a quadratic form a number of algebraic varieties: the
quadric of isotropic lines in the projective space and more generally, for an integer ¢ > 0
the variety of isotropic subspaces of dimension 7. More importantly, basic properties of
quadratic forms can be reformulated in terms of the associated varieties: a quadratic form
is isotropic if and only if the corresponding quadric has a rational point. A nondegen-
erate quadratic form is hyperbolic if and only if the variety of maximal totally isotropic
subspaces has a rational point.

Not only are the associated varieties important but so are the morphisms between
them. Indeed if ¢ is a quadratic form over F' and L/F is a finitely generated field extension
then there is a variety Y over F' with function field L, and the form ¢ is isotropic over L
is and only if there is a rational morphism from Y to the quadric of .

Working with correspondences rather than just rational morphisms adds further depth
to our study, where we identify morphisms with their graphs. Working with these leads to
the category of Chow correspondences. This provides greater flexibility, because we can
view correspondences as elements of Chow groups and apply the rich machinery of that
theory: pull-back and push forward homomorphisms, Chern classes of vector bundles,
and Steenrod operations. For example, suppose we wish to prove that a property A of
quadratic forms implies a property B. We translate the properties A and B to “geometric”
properties A’ and B’ about the existence of certain cycles on certain varieties. Starting
with cycles satisfying A’ we then can attempt to apply the operations over the cycles as
above to produce cycles satisfying B’.

All the varieties listed above are projective homogeneous varieties under the action
of the orthogonal group or special orthogonal group of ¢, i.e., the orthogonal group acts
transitively on the varieties. It is not surprising that the properties of quadratic forms
are reflected in the properties of the special orthogonal groups. For example if ¢ is of
dimension 2n or 2n + 1 (with n > 1) then the special orthogonal group is a semisimple
group of type D,, or B,,. The classification of semisimple groups is characteristic free. This
explains why most important properties of quadratic forms hold in all characteristics.
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Unfortunately, bilinear forms are not ”geometric”. We can associate varieties to a
bilinear form, but it would be a variety of the associated quadratic form. Moreover in
characteristic two the automorphism group of a bilinear form is not semisimple.

In the book we sometimes give several proofs of the same results - one is classical,
another is geometric. (This can be the same proof, but written in geometric language).
Example - Springer’s theorem (more examples?)

The first part of the text will derive classical results under this new setting. It is

self-contained needing minimal prerequisites except for Chapter 7. In this chapter we
shall assume the results of Voevodsky in [60] and Orlov-Vishik-Voevodsky [45].

Prerequisites for the second two parts of the text will be more formidable. A reasonable
background in algebraic geometry will be assumed. For the convenience of the reader
appendices have been included to aid the reader.






Part

Classical theory of symmetric bilinear forms
and quadratic forms






CHAPTER I

Bilinear Forms

1. Basics

The study of (n x n)-matrices over a field F' leads to various classification problems.
Of special interest is to classify alternating and symmetric matrices. If A and B are
two such matrices, we say that they are congruent if A = P!BP for some invertible
matrix P. For example, it is well-known that symmetric matrices are diagonalizable if
the characteristic of F' is different from two. So the problem reduces to the study of a
class of a matrix in this case. The study of alternating and symmetric bilinear forms over
an arbitrary field is the study of this problem in a coordinate-free approach. Moreover,
we shall, whenever possible, give proofs independent of characteristic. In this section, we
introduce the definitions and notations needed throughout the text and prove that we
have a Witt Decomposition Theorem (cf. Theorem [1.28 below) for such forms. As we
make no assumption on the characteristic of the underlying field, this makes the form of
this theorem more delicate.

DEFINITION 1.1. Let V be a finite dimensional vector space over a field F'. A bilinear
formon Visamap b:V xV — F satisfying for all v,v",w,w’ € V and ¢ € F

b(v+v',w) =b(v,w) + b(v',w)
b(v,w+ w') = b(v,w) + b(v,w")
b(cv, w) = cb(v,w) = b(v, cw).

The bilinear form is called symmetric if b(v, w) = b(w,v) for all v,w € V and is called
alternating if b(v,v) = 0 for all v € V. If b is an alternating form, expanding b(v+w, v+w)
shows that b is skew symmetric, i.e., that b(v,w) = —b(w,v) for all v,w € V. In
particular, every alternating form is symmetric if char F' = 2. We call dim V' the dimension
of the bilinear form and also write it as dim b. We write b is a bilinear form over F' if b
is a bilinear form on a finite dimensional vector space over F' and denote the underlying
space by V.

DEFINITION 1.2. Let V* := Hompg(V, F') denote the dual space of V. A bilinear form
b on V is called non-degenerate if [ : V- — V* defined by v +— [, : w — b(v,w) is an
isomorphism. An isometry f : by — by between two bilinear forms b;, ¢ = 1,2, is a linear
isomorphism f : V4, — V4, such that by (v, w) = ba(f(v), f(w)) for all v,w € V4,. If such

an isometry exists, we write by ~ by and say that b; and by are isometric.

Let b be a bilinear form on V. Let {vy,...,v,} be a basis for V. Then b is determined
by the matrix (b(v;,v;)) and the form is non-degenerate if and only if (b(v;,v;)) is in-
vertible. Conversely any matrix B in the n x n matrix ring M, (F') determines a bilinear

3
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form based on V. If b is symmetric (respectively, alternating) then the associated matrix
is symmetric (respectively, alternating where a square matrix (a;;) is called alternating if
a;j = —a;; and a; = 0 for all 4, j). Let b and b’ be two bilinear forms with matrices B
and B’ relative to some bases. Then b ~ b’ if and only if B’ = A'BA for some invertible
matrix A, i.e., the matrices B’ and B are congruent. As det B’ = det B - (det A)? and
det A # 0, the determinant of B’ coincides with the determinant of B up to squares.
We define the determinant of a non-degenerate bilinear form b by detb := det B - F X2
in F*/F 2 where B is a matrix representation of b. So the det is an invariant of the
isometry class of a non-degenerate bilinear form.

The set Bil(V') of bilinear forms on V is a vector space over . The space Bil(V)
contains the subspaces Alt(V') of alternating formson V and Sym(V) of symmetric bilinear
formson V. The correspondence of bilinear forms and matrices given above defines a linear
isomorphism Bil(V) — Mgimv (F). If b € Bil(V) then b — b is alternating where the
bilinear form b’ is defined by b*(v,w) = b(w,v) for all v,w € V. Since every alternating
n X n-matrix is of the form B — B! for some B, the linear map Bil(V) — Alt(V) by
b — b — b’ is surjective. Therefore, we have an exact sequence of vector spaces

(1.3) 0 — Sym(V) — Bil(V) — Alt(V) — 0.
EXERCISE 1.4. Construct natural isomorphisms
Bil(V) ~ (VerV) ~ V'@V,  Sym(V)~S2(V)*,  Al(V)~ A*(V)* ~ A*(V*)
and show that the exact sequence [1.3 is dual to the standard exact sequence
0= A(V)=VerV —S3(V)—0.
where A*(V) is the exterior square of V and S§%(V) is the symmetric square of V.

If b,c € Bil(V), we say the two bilinear forms b and ¢ are similar if b ~ ac for some
a€ F*.

Let V' be a finite dimensional vector space over F' and let A = +1. Define the hyperbolic
A-bilinear form on V to be Hy\(V') = by, on V @& V* with

by, (V1 + f1,v2 + f2) := fi(va) + Afa(v1)

for all v1,ve € V and fi, fo € V*. If A = 1, the form Hy(V) is a symmetric bilinear
form and if A = —1, it is an alternating bilinear form. A bilinear form b is called a
hyperbolic bilinear form if b ~ Hy(W) for some finite dimensional F-vector space W and
some A = +1. The hyperbolic form Hy(F) is called the hyperbolic plane and denoted H.
It has the matrix representation
0 1
(3 o)

in the appropriate basis. If b ~ H,, then b has the above matrix representation in some
basis {e, f} of V4. We call e, f a hyperbolic pair. Hyperbolic forms are non-degenerate.

Let b be a bilinear form on V and W C V' a subspace. The restriction of b to W is a
bilinear form on W and is called a subform of b. We denote this form by b|y .
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Let b be a symmetric or alternating bilinear form on V. We say v, w € V are orthogonal
if b(v,w) = 0. Let W, U C V be subspaces. Define the orthogonal complement of W by

Wh:={veV|bv,w)=0for all we W}

This is a subspace of V. We say W is orthogonal to U if W C U+, equivalently U C W+,
If V=W @ U is a direct sum of subspaces with W C U+, we write b = bly L b|y and
say b is the the (internal) orthogonal sum of b|y and b|y. The subspace V+ is called the
radical of b and denoted by rad b. The form b is non-degenerate if and only if rad b = 0.

If K/F is a field extension, let Vi := K ®p V, a vector space over K. We have the
standard embedding V' — Vi by v +— 1 ® v. Let by denote the extension of b to Vi, so
br(a®v,c®w) = achb(v,w) for all a,c € K and v,w € V. The form by is of the same
type as b. Moreover, rad(by) = (rad b)x hence b is non-degenerate if and only if by is
non-degenerate.

Let ~:V — V/rad b be the canonical epimorphism. Define b to be the bilinear form
on V determined by b(77,73) := b(vy,vy) for all vi,v, € V. Then b is a non-degenerate
bilinear form of the same type as b. Note also that if f : by — by is an isometry of
symmetric or alternative bilinear forms then f(rad b;) = rad bs.

We have

LEMMA 1.5. Let b be a symmetric or alternating bilinear form on V. Let W be any
subspace of V' such that V- =rad b ® W. Then b|y is non-degenerate and

b = blrade L bl = Olraae L blw
with bly ~ b, the form induced on V/radb. In particular, bly is unique up to isometry.

The lemma above shows that it is sufficient to classify non-degenerate bilinear forms.
In general, if b is a symmetric or alternating bilinear form on V and W C V is a subspace
then we have an exact sequence of vector spaces

0 - W=V W
where Iy is defined by v — I,y : © — b(v,x). Hence dim W+ > dimV — dim W. It is

easy to determine when this is an equality.

PROPOSITION 1.6. Let b be a symmetric or alternating bilinear form on V. Let W be
any subspace of V.. Then the following are equivalent

(1) Wnradb = 0.
(2) lw =V — W* is surjective.
(3) dim W+ = dim V' — dim .

PRrROOF. (1) holds if and only if the map {j;, : W — V* is injective if and only if the
map ly : V. — W* is surjective if and only if (3) holds. d
Note that the conditions (1) — (3) hold if either b or b|y is non-degenerate.

A key observation is

PROPOSITION 1.7. Let b be a symmetric or alternating bilinear form on V. Let W be
a subspace such that bly is non-degenerate. Then b = bly L blyo.
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PRrROOF. By Proposition 1.6, dim W+ = dimV — dim W hence V. = W @ W=. The
result follows. O

COROLLARY 1.8. Let b be a symmetric bilinear form on V. Let v € V such that
b(v,v) #0. Then b = b|p, L bip,L.

Let by and by be two symmetric or alternating bilinear forms on V; and V5 respectively.
Then their ezternal orthogonal sum b, denoted by by L by, is the form on Vi [[ V5 given
by

b((v1,v2), (w1, w2)) := by(v1,wy) 4 ba(ve, w)
for all v;,w; € V;, i =1, 2.

If n is a non-negative integer and b is a symmetric or alternating bilinear form over

F, abusing notation we let

nb:=bLl---1b.
In particular, if n is a non-negative integer, we do not interpret nb with n viewed in the
field.

For example, Hy (V') ~ nH, for any n-dimensional vector space V over F.

It is now easy to complete the classification of alternating forms.

PROPOSITION 1.9. Let b be a non-degenerate alternating form on' V. Then dimV = 2n
for some n and b ~ nH_q, i.e., b is hyperbolic.

PROOF. Let 0 # v € V. Then there exists w € V such that b(v,w) = a # 0.
Replacing w by a~'w, we see that v, w is a hyperbolic pair in the space W = Fv @& Fw,
so blw is a hyperbolic subform of b. Therefore, b = b|y L b|y. by Proposition [1.7. The
result follows by induction on dim b. U

The proof shows that every non-degenerate alternating form b on V' has a symplectic
basis, i.e., a basis {vy,...,ve,} for V satisfying b(v;,v,4;) = 1 for all 1 < i < n and
b(v;,v;) =0if i < jand j #n+1i.

We turn to the classification of the isometry type of symmetric bilinear forms. By
Lemma (1.5, Corollary 1.8 and induction, we therefore have the following

COROLLARY 1.10. Let b be a symmetric bilinear form on V. Then
b = b|radb J_ b|\/1 J_ e J_ b|Vn J_ b|W

with V; a one-dimensional subspace of V' and by, non-degenerate for all 1 < i < n, and
blw a non-degenerate alternating subform on a subspace W of V.

If char ' # 2 then, in the corollary, by is symmetric and alternating hence W = {0}.
In particular, every bilinear form b has an orthogonal basis, i.e., a basis {v,...,v,} for
Vi satisfying b(v;,v;) = 0 if ¢ # j. The form is non-degenerate if and only if b(v;, v;) # 0
for all .

If char F' = 2, by Proposition 1.9, the alternating form by in the corollary above has
a symplectic basis and satisfies b|y ~ nH;.
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Let a € F. Denote the bilinear form on F' given by b(v, w) = avw for all v,w € F by
(a), or simply (a). In particular, (a) ~ (b) if and only if a = b = 0 or aF** = bF** in
F*/F**. Denote

(@)L La) by (an....as orsimplyby (an....a).

We call such a form a diagonal form. A symmetric bilinear form b isometric to a diagonal
form is called diagonalizable. Consequently, b ~ (ay,...,a,), with some a; € F if and
only if b has an orthogonal basis. Note that det{(a;,...,a,) =aj--- aan2 if a; € F* for
all 7. Corollary 1.10/ says that every bilinear form b on V satisfies

b~r{0) L (ar,...,a,) Lb

with 7 = dim(rad b) and b’ an alternating form and a;, € F* for all 4. In particular, if
char F' # 2 then every symmetric bilinear form is diagonalizable.

EXAMPLE 1.11. Let a,b € F*. Then (1,a) ~ (1,b) if and only if aF** = det(1,a) =
det(1,b) = bE*?,

DEFINITION 1.12. Let b be a bilinear form on V over F'. Let
D(b) := {b(v,v) | v € V with b(v,v) # 0},
the set on nonzero values of b and
G(b):={a € F* | ab~b},
a group called the group of similarity factors of b . Also set
D(b) := D(b) U {0}.
We say that elements a € 5(6) are represented by b.

For example, G(H;) = F*. A symmetric bilinear form is called round if G(b) = D(b). In
particular, if b is round then D(b) is a group.

REMARK 1.13. If b is a symmetric bilinear form and a € D(b) then b ~ (a) L ¢ for
some symmetric bilinear form ¢ by Corollary [1.8.

LEMMA 1.14. Let b be a bilinear form. Then
D(b) - G(b) C D(b).
In particular, if 1 € D(b) then G(b) C D(b).

PROOF. Let a € G(b) and b € D(b). Let A : b — ab be an isometry and v € V; satisfy
b= b(v,v). Then b(A(v), A(v)) = ab(v,v) = ab. O

EXAMPLE 1.15. Let K = F[t]/(t* —a) with a € F. So K = F @ F0 as a vector space
over F' where 6 denotes the class of t in K. If z = x + yf with x,y € F, write Z = x — 6.
Let s : K — F be the F-linear functional defined by s(x 4+ y) = z. Then b defined by
b(21,29) = s(21Z2) is a binary symmetric bilinear form on K. Let N(z) = 2% for z € K.
Then D(b) = {N(2) #0|z€ K} ={N(z) | z€ K*}. If z € K then A, : K — K given
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by w — zw is an F-linear isomorphism if and only if N(z) # 0. Suppose that A, is an
F-isomorphism. As

b(A.21, A\.29) = b(221,229) = N(2)s(z1Z2) = N(2)b(21, 22),

we have an isometry N(z)b ~ b for all z € K*. In particular, b is round. Computing b
on the orthogonal basis {1, 0} for K shows that b is isometric to the bilinear form (1, —a).
If a € F* then b ~ (1, —a) is non-degenerate.

REMARK 1.16. (i). Let b be a binary symmetric bilinear form on V. Suppose there
exists a basis {v, w} for V satisfying b(v,v) =0, b(v,w) =1, and b(w,w) = a # 0. Then
b is non-degenerate as the matrix corresponding to b in this basis is invertible. Moreover,
{w, —av + w} is an orthogonal basis for V' and, using this basis, we see that b ~ (a, —a).

(ii). Suppose that char F' # 2. Let b = (a, —a) with a € F'* and {e, g} an orthogonal
basis for V, satisfying a = b(e,e) = —b(f, f). Evaluating on the basis {e + f, = (e — f)}
shows that b ~ Hy. In particular, (a, —a) ~ H; for all a € F*. Moreover, (a, —a) ~ Hy is
round and universal, where a non-degenerate symmetric bilinear form b is called universal
if D(b) = F*.

(iii). Suppose that char F' = 2. As H; = H_; is alternating while (a, a) is not, (a,a) % H,;
for any a € F*. Moreover, H; is not round since D(H;) = 0. As D({(a,a)) = D({a)) =
aF** we have G((a,a)) = F** by Lemma 1.14. In particular, (a,a) is round if and only
if a € F** and (a,a) ~ (b,b) if and only if aF** ~ bF**.

(iv). Witt Cancellation holds if char F' # 2, i.e., if there exists an isometry of symmetric
bilinear forms b L b’ ~ b L b” over F with b non-degenerate then b’ ~ b”. (Cf. Theorem
8.4 below.) If char F' = 2, this is false in general. For example,

(1,1,—1) ~ (1) L H,

over any field. Indeed if b is three dimensional on V' and V has an orthogonal basis
{e, f, g} with b(e,e) =1 =b(f, f) and b(g,g) = —1 then the right hand side arises from
the basis {e + f +g,e +g,—f — g}. But by (iii), (1, —1) £ H; if char F = 2. Multiplying
the equation above by any a € F*, we also have

(1.17) {a,a,—a) ~ {(a) L Hy.

PROPOSITION 1.18. Let b be a symmetric bilinear form. If D(b) # () then b is diag-
onalizable. In particular, a nonzero symmetric bilinear form is diagonalizable if and only
if it is not alternating.

Proor. If a € D(b) then
b~ (a) L by~ (a) Lradb; L ¢ L ¢y
with b; a symmetric bilinear form by Corollary 1.8 and ¢; a non-degenerate diagonal form
and ¢y a non-degenerate alternating form by Corollary [1.10. By the remarks following
Corollary 1.10, ¢, = 0 if char F' # 2 and ¢o = mH; for some integer m if char ' = 2. By
1.17, we conclude that b is diagonalizable in either case.

If b is not alternating then D(b) # ) hence b is diagonalizable. Conversely, if b is
diagonalizable, it cannot be alternating as it is not the zero form. U
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COROLLARY 1.19. Let b be a symmetric bilinear form over F. Then b L (1) is
diagonalizable.

Let b be a symmetric bilinear form on V. A vector v € V is called anisotropic if
b(v,v) # 0 and isotropic if v # 0 and b(v,v) = 0. We call b anisotropic if there are no
isotropic vectors in V' and isotropic otherwise.

COROLLARY 1.20. Every anisotropic bilinear form is diagonalizable.

Note that an anisotropic symmetric bilinear form is non-degenerate as its radical is
trivial.

ExampPLE 1.21. Let F' be a quadratically closed field, i.e., every element in F' is a
square. Then, up to isometry, 0 and (1) are the only anisotropic forms over F. In
particular, this applies if F' is algebraically closed.

An anisotropic form may not be anisotropic under base extension. However, we do
have:

LEMMA 1.22. Let b be an anisotropic bilinear form over F. If K/F is purely tran-
scendental then by is anisotropic.

PrOOF. First suppose that K = F(t). Suppose that bpg is isotropic. Then there
exist a vector 0 # v € V4, such that bpy)(v,v) = 0. Multiplying by an appropriate
nonzero polynomial, we may assume that v € F[t]@p V. Write v = vy +tQ@vi+- - - 1" @y,
with v1,...v, € V and v, # 0. As the t*" coefficient b(v,,v,) of 0 = b(v,v) must vanish,
v, is an isotropic vector of b, a contradiction.

If K/F is finitely generated then the result follows by induction on the transcendence
degree of K over F. In the general case, if bg is isotropic there exists a finitely generated
purely transcendental extension Ky of F'in K with by, isotropic, a contradiction. Il

Let b be a symmetric bilinear form on V. A subspace W C V is called a totally
isotropic subspace of b if by = 0, i.e., if W C WL, If b is isotropic then it has a nonzero
totally isotropic subspace. Suppose that b is non-degenerate and W is a totally isotropic
subspace. Then dim W 4 dim W+ = dim V' by Proposition [1.6 hence dim W < %dim V.
We say that W is a Lagrangian for b if we have an equality dim W = % dim V', equivalently
W+ = W. A non-degenerate symmetric bilinear form is called metabolic if it has a
Lagrangian. Clearly an orthogonal sum of metabolic forms is metabolic.

ExAaMPLE 1.23. (1) Symmetric hyperbolic forms are metabolic.
(2) The form b L (—b) is metabolic if b is any non-degenerate symmetric bilinear form.
(3) A 2-dimensional metabolic space is nothing but a non-degenerate isotropic plane.
A metabolic plane is therefore either isomorphic to (a, —a) for some a € F* or to the
hyperbolic plane H; by Remark 1.16. In particular, the determinant of a metabolic plane
is —F>*. If char F # 2 then (a, —a) ~ Hy by Remark [1.16] so in this case, every metabolic
plane is hyperbolic.

LEMMA 1.24. Let b be an isotropic non-degenerate symmetric bilinear form over V.
Then every isotropic vector belongs to a 2-dimensional metabolic subform.
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PROOF. Suppose that b(v,v) = 0 with v # 0. As b is non-degenerate, there exists a
u € V such that b(u,v) # 0. Then b|pyqr, is metabolic. O

COROLLARY 1.25. Every metabolic form is an orthogonal sum of metabolic planes. In
particular, if b is a metabolic form over F then detb = (_1)(1”%5]”2.

Proor. We induct on the dimension of a metabolic form b. Let W C V =V, be
a Lagrangian. By Lemma [1.24] a nonzero vector v € W belongs to a metabolic plane
P C V. It follows from Proposition [1.7/that b = b|p L b|p. and W N Pt is a Lagrangian
of b|p1. By the induction hypothesis, b|p1 is an orthogonal sum of metabolic planes. The
second statement follows from Example [1.23(3). O

COROLLARY 1.26. If char F' # 2, the classes of metabolic and hyperbolic forms coin-
cide. In particular, every isotropic non-degenerate symmetric bilinear form is universal.

PRrooOF. This follows from Remark [1.16/ (ii) and Lemma [1.24' . O

LEMMA 1.27. Let b and b’ be two symmetric bilinear forms. If b L b" and b’ are both
metabolic so is b.

Proor. By Corollary 1.25] we may assume that b’ is 2-dimensional. Let W be a
Lagrangian for b 1L b’. Let p : W — Vi be the projection and Wy = kerp = W N V.
Suppose that p is not surjective. Then dim Wy > dim W — 1 hence W}, is a Lagrangian of
b and b is metabolic.

So we may assume that p is surjective. Then dim Wy = dim W —2. As b’ is metabolic,
it is isotropic. Choose an isotropic vector v € Vi and a vector w € W such that p(w) = v/,
ie., w = v+ for some v € V4. In particular, b(v,v) = (b L b')(w,w) — b'(v',0") = 0.
Since Wy C V4, we have v is orthogonal to W, hence v is also orthogonal to Wy. If we
show that v' € W then v ¢ W, and W, @ Fv is a Lagrangian of b and b is metabolic.

So suppose v' € W. There exists v” € Vi such that b’'(v/,0") # 0 as b’ is non-
degenerate. Since p is surjective, there exists w” € W with w” = u” + v” for some
u” € V. As W is totally isotropic,

0=(b Lb) w") = (b L)V u +")=0b""),

a contradiction. O

We have the following form of the classical Witt Decomposition Theorem for symmetric
bilinear forms over a field of arbitrary characteristic.

THEOREM 1.28. (Bilinear Witt Decomposition Theorem) Let b be a non-degenerate
symmetric bilinear form on V. Then there exist subspaces Vi and Vy of V' such that
b = by, L bly, with bly, anisotropic and bly, metabolic. Moreover, bly, is unique up to
1sometry.

ProOOF. We prove existence of the decomposition by induction on dimb. If b is
isotropic, there is a metabolic plane P C V by Lemma [1.24. As b = b|p L b|p., the
proof of existence follows by applying the induction hypothesis to b|p..
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To prove uniqueness, assume that b; L by ~ b} L b}, with b; and b} both anisotropic
and by and bf, both metabolic. We show that b; ~ b}. The form

by L (—b}) Lby~b, L (—b)) Lo,

is metabolic, hence by L (—b}) is metabolic by Lemma [1.27. Let W be a Lagrangian
of by L (—b)). Since by is anisotropic, the intersection W N V4, is trivial. Therefore,
the projection W — Vi is injective and dim W < dim bj. Similarly, dim W < dim b;.
Consequently, dim b; = dim W = dim b} and the projections p : W — V4, and p' : W —
Vi, are isomorphisms. Let w = v +v" € W, where v € V4, and v € Vy,. As

0= (bl 1 (_b/1)>(w7w) - bl(U7’U) - bll(vlvvl)a
the isomorphism p’' o p=t: V,, — Vi, is an isometry between by and bj. O

Let b = b|y, L b|y, be the decomposition of the non-degenerate symmetric bilinear
form b on V in the theorem. The anisotropic form b|y;, unique up to isometry, will be
denote by b, and called the anisotropic part of b. Note that the metabolic form bly, in
Theorem [1.28 is not unique in general by Remark [1.16/ (iv). However, its dimension is
unique and even. Define the Witt index of b to be i(b) := (dim V3)/2.

Remark [1.16 (iv) also showed that the Witt Cancellation Theorem does not hold for
non-degenerate symmetric bilinear forms in characteristic two. The obstruction is the
metabolic forms. We have, however, the following

COROLLARY 1.29. (Witt Cancellation) Let b, by, by be non-degenerate symmetric
bilinear forms satisfying by L b~ by L b. If by and by are anisotropic then by >~ bs.

PrROOF. We have b; L b L (—=b) ~ by L b L (—b) with b L (—b) metabolic. By
Theorem [1.28, by ~ b,. Ul

2. The Witt and Witt-Grothendieck Rings of Symmetric Bilinear Forms

In this section, we construct the Witt ring. The orthogonal sum induces an additive
structure on the isometry classes of symmetric bilinear forms. Defining the tensor product
of symmetric bilinear forms (corresponding to the classical Kronecker product of matrices)
turns this set of isometry classes into a semi-ring. Because of the Witt Decomposition
Theorem, this leads to the Grothendieck ring of isometry classes of anisotropic symmetric
bilinear forms. The Witt ring W (F') is the quotient of this ring by the ideal generated by
the hyperbolic plane.

Let by and by be symmetric bilinear forms over F' . The tensor product of b; and by is
defined to be the symmetric bilinear form b := b; ® by with underlying space V,, ®p V4,
and form b defined by

b((v1 ® v2), (w1 ® wa)) = by(vy, wr) - ba(ve, ws)

for all vy, w; € V4, and vy, wy € V,,. For example, if a € F then (a) ® by ~ ab;.

LEMMA 2.1. Let by and by be two non-degenerate bilinear forms over F' . Then
(1) by L by is non-degenerate.
(2) by ® by is non-degenerate.
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(3) Hi (V) ® by is hyperbolic for all finite dimensional vector spaces V.

PRrOOF. (1), (2): Let V; = V4, for ¢ = 1,2. The b; induce isomorphisms [; : V; — V;*
for i = 1,2 hence b; L by and b; ® by induce isomorphisms Iy ® Iy : Vi & Vo — (V) & Va)*
and l; ® Iy : Vi @p Vo — (V4 @p V3)* respectively.

(3): Let {e, f} be a hyperbolic pair for H;. Then the linear map (F & F*) ®@p V} —
Vi@ Vi induced by e @ v — v and f @ v — [, : w — b(w,v) is an isomorphism and
induces the isometry H; ® b — Hy (V). O

It follows that the isometry classes of non-degenerate symmetric bilinear forms over
F' is a semi-ring under orthogonal sum and tensor product. The Grothendieck ring of

this semi-ring is called the Witt-Grothendieck ring of F' and denoted by W (F). (Cf.
Scharlau [54] or Lang [41] for the definition and construction of the Grothendieck group

and ring.) In particular, every element in /W(F ) is a difference of two isometry classes
of non-degenerate symmetric bilinear forms over F'. If b is a non-degenerate symmetric
bilinear form over F', we shall also write b for the class in /W(F ). Thusif o € W(F ), there
exist non-degenerate symmetric bilinear forms b; and by over F' such that a = b; — by in
/W(F ). By definition, we have

by —by=b, — b, in W(F)
if and only if there exists a non-degenerate symmetric bilinear form b” over F' such that

(2.2) by L b, Lb"~b Lby b

As any hyperbolic form H; (V') is isometric to (dim V')H; over F, the ideal consisting
of the hyperbolic forms over F' in W(F) is the principal ideal H; by Lemma 2.1/ (3).

The quotient W(F) := W (F)/(H,) is called the Witt ring of non-degenerate symmetric
bilinear forms over F'. Elements in W (F') are called Witt classes. Abusing notation, we
shall also write b € W (F') for the Witt class of b and often call it just the class of b. The

operations in W (F') (and W(F)) shall be denoted by + and -.

By 1.17, we have
(a,—a) =0 in W(F)
for all @ € F’* and in all characteristics. In particular, (—1) = —(1) = —1 in W (F'), hence
the additive inverse of the Witt class of any non-degenerate symmetric bilinear form b
in W (F) is represented by the form —b. It follows that if @ € W(F) then there exists a
non-degenerate bilinear form b such that o = b in W(F).

EXERCISE 2.3. (Cf. Scharlau [54], p.22.) Let b be a non-degenerate symmetric bilinear
form on V. Suppose that V = W, & Wy with W, = Wi, Show that

b L —bx~HW;) L —b.
In particular, b = H(W;) in W(F)
Use this to give another proof that b + (—b) = 0 in W (F') for every non-degenerate b.

The Witt Cancellation Theorem [1.29 allows us to conclude the following.
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PROPOSITION 2.4. Let by and by be anisotropic symmetric bilinear forms. Then the
following are equivalent:

(1) bl ~ bg.
(2) by = by in W(F).

Proor. The implications (1) = (2) = (3) are easy.
(3) = (1): By definition of the Witt ring, by + nH = by + mH in W (F) for some
n,m > 0. It follows from the definition of the Grothendieck-Witt ring that

by LnH Lb~by L mHLDb

for some non-degenerate form b. Thus by L nH L b L —b~by L mH L b 1L —b and
b, ~ by by Corollary [1.29. O

We also have
COROLLARY 2.5. b =0 in W(F) if and only if b is metabolic.

It follows from Proposition 2.4 that every Witt class in W (F') contains (up to isom-
etry) a unique anisotropic form. As every anisotropic bilinear form is diagonalizable by
Corollary [1.20, we have a ring epimorphism

(2.6) Z[F*F**] — W(F) given by Zni(aiFXQ) — Zm(aZ}

ProproOSITION 2.7. Let F — K be a homomorphism of fields. This induces ring
homomorphisms

ricsr: W(F) = W(K) and ri/p: W(F) — W(K).
If K/F is purely transcendental then these maps are injective.
PROOF. Let b be symmetric bilinear form over F'. Define 7x/r(b) on K ®@p V, by
rr/r(b)(z ® v,y ® w) = zyb(v, w)

for all x,y € K and for all v,w € V4. This construction is compatible with orthogonal
sums and tensor products of symmetric bilinear forms.

As rg/r(b) is non-degenerate if b is, it follows the rg,p(b) is hyperbolic if b is. It
follows that b — rg/p(b) induces the desired maps. These are ring homomorphisms.

The last statement follows by Lemma [1.22. O

The ring homomorphisms defined above are called restriction maps. Of course, if
K/F is a field extension then the maps rx/p are the unique homomorphisms such that

T’K/F(b) = bK.
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3. Chain Equivalence

Two non-degenerate diagonal symmetric bilinear forms a = (ay,as,...,a,) and b =
(by,ba, ..., by), are called simply chain equivalent if either n = 1 and a F*? = b F*? or
n > 2 and (a;,a;) ~ (b;,b;) for some indices ¢ # j and a; = by for every k # i,5. Two
non-degenerate diagonal forms a and b are called chain equivalent (we write a ~ b) if

there is a chain of forms b; = a,bs,...,b,, = b such that b; and b;,; are simply chain
equivalent for all e = 1,...,m — 1. Clearly a =~ b implies a ~ b.

Note as the symmetric group S, is generated by transpositions, we have (ay, as, ..., a,) =~
(Ao(1)s Uo(2), - - - 5 Go(n)) for every o € S,,.

LEMMA 3.1. Every non-degenerate diagonal form is chain equivalent to an orthogonal
sum of an anisotropic diagonal form and metabolic binary diagonal forms (a, —a), a € F*.

ProoOF. By induction, it is sufficient to prove that any isotropic diagonal form b is
chain equivalent to (a, —a) L b’ for some diagonal form b’ and a € F*. Let {vy,...,v,}
be the orthogonal basis of b and set b(v;, v;) = a;. Choose an isotropic vector v with the
smallest number k£ of nonzero coordinates. Changing the order of the v; if necessary, we
may assume that v = Zle c;v; for nonzero ¢; € F and k > 2. We prove the statement
by induction on k. If £ = 2, the restriction of b to the plane Fv; & Fvy is metabolic
and therefore is isomorphic to (a, —a) for some a € F* by Example 1.23(3), hence b ~
(a,—a) L (as,...,a,).

If k£ > 2 the vector v; = c¢1v1 + covy is anisotropic. Complete v} to an orthogonal
basis {v],v5} of Fvy @ Fuy and set a = b(v),v)), i = 1,2. Then (aj,as) ~ (a},a})

([ 2Ee)

and b ~ (a},d},as,...,a,). The vector v has k — 1 nonzero coordinates in the orthog-
onal basis {v], v}, vs,...,v,}. Applying the induction hypothesis to the diagonal form
(ay,dy, as, ..., a,) completes the proof. O

LEMMA 3.2. (Witt Chain Equivalence) Two anisotropic diagonal forms of dimension
greater than one are chain equivalent if and only if they are isometric.

ProoF. Let {vy,...,v,} and {uq, ..., u,} be two orthogonal bases of the bilinear form
b with b(v;,v;) = a; and b(u;,u;) = b;. We must show that (ay,...,a,) = (b,...,by).
We do this by double induction on n and the number k of nonzero coefficients of u; in the
basis {v;}. Changing the order of the v; if necessary, we may assume that u; = Zle Civ;
for some nonzero ¢; € F.

If k=1, ie., ug = cyuy, the two (n — 1)-dimensional subspaces generated by the v;’s
and wu;’s respectively with ¢ > 2 coincide. By the induction hypothesis, (ao, ..., a,) ~
(ba, ..., by), hence (ay, as,...,an) = {(a1,ba, ..., by) = (b, ba, ... by).

If k> 2 set v] = cjv; + cove. As b is anisotropic, @} = b(vy, v}) is nonzero. Choose an
orthogonal basis {v], vy} of Fvy @ Fuy and set al, = b(vh, v)). We have (aq, as) ~ (a}, ab).
The vector u; has k — 1 nonzero coordinates in the basis {v], v}, vs,...,v,}. By the
induction hypothesis (aj, as, as, ..., a,) =~ (a},ay, a3, ..., a,) = (b1, by, b3, ... b,). O

EXERCISE 3.3. Prove that a diagonalizable metabolic form b is isometric to (1, —1) @b’
for some diagonalizable bilinear form b’.
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4. Structure of the Witt Ring

In this section, we give a presentation of the Witt-Grothendieck and Witt rings. The
classes of even dimensional anisotropic symmetric bilinear forms generate an ideal I(F)
in the Witt ring. We also derive a presentation for it and its square, I(F)2.

We turn to determining presentations of /W(F) and W (F). The generators will be the
isometry classes of non-degenerate 1-dimensional symmetric bilinear forms. The defining
relations arise from the following:

LEMMA 4.1. Let a,b € F* and z € D({(a,b)). Then {(a,b) ~ (z,abz). In particular, if
a+0b#0 then

(4.2) (a,b) ~ (a+b,ab(a +b)).
Proor. By Corollary 1.8, we have (a,b) ~ (z,d) for some d € F*. Comparing
determinants, we must have abF>*? = dzF*? so dF*% = abzF*2. Il

The isometry (4.2) is often called the Witt relation.

Define an abelian group W’(F') by generators and relations. Generators are isometry
classes of non-degenerate 1-dimensional symmetric bilinear forms. For any a € F* we

write [a] for the generator — the isometry class of the form (a). Note that [az?] = [a] for
every a,x € . The relations are:
(4.3) la] + [b] = [a + b] + [ab(a + D)]

for all a,b € F* such that a +b # 0.
LEMMA 4.4. If {a,b) =~ {(c,d) then [a] + [b] = [c] + [d] in W'(F).

PROOF. As (a,b) ~ (c,d), we have abF'** = det(a,b) = det{c,d) = cdF*? and d =
abez? for some z € F*. Since ¢ € D({a,b)), there exist x,y € F satisfying ¢ = az? + by?.
If x =0 or y = 0, the statement is obvious, so we may assume that xz,y € F*. It follows
from (4.3)) that

[a] + [0] = [a2?] + [by”] = [c] + [azby’c] = [c] + [d]. O
LEMMA 4.5. We have [a] 4+ [—a] = [b] + [=b] in W/(F) for all a,b € F*.
PROOF. We may assume that a + b # 0. From (4.3)), we have
[—a] + [a+b] = [b] + [—ab(a +b)], [-b] + [a+b] = [a] + [—ab(a + D)].
The result follows. U

If char F' # 2, the forms (a, —a) and (b, —b) are isometric by Remark [1.16 (ii). There-
fore, in this case Lemma 4.5 follows from Lemma 4.4.

LEMMA 4.6. If (a1,...,a,) = (b1,...,b,) then [a1] + - + [a,] = [b1] + -+ + [ba] in
W'(F).

Proor. We may assume that the forms are strictly chain equivalent. In this case the
statement follows from Lemma 4.4. O
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THEOREM 4.7. The Grothendieck-Witt group /W(F) is generated by the isometry
classes of 1-dimensional symmetric bilinear forms that are subject to the defining rela-

tions (a) + (b) = (a + b) + (ab(a + b)) for all a,b € F* such that a + b # 0.

Proor. It suffices to prove that the homomorphism W'(F) — /W(F) taking [a] to
(a) is an isomorphism. As b L (1) is diagonalizable for any non-degenerate symmetric
bilinear form b by Corollary [1.19, the map is surjective. An element in the kernel is given
by the difference of two diagonal forms b = (ay,...,a,) and b = (a},...,a,) such that
b=1"b"in /V[7(F ). By the definition of W(F) and Corollary [1.19, there is a diagonal form
b” such that b L b” ~ b’ L b”. Replacing b and b’ by b L b” and b’ L b” respectively, we
may assume that b ~ b’. It follows from Lemma 3.1/ that b ~ b; L by and b’ ~ b} L b5,
where by, b} are anisotropic diagonal forms and by, b, are orthogonal sums of metabolic
planes (a, —a) for various a € F*. It follows from the Corollary [1.29 that b; ~ b} and
therefore by ~ b} by Lemma [3.2. Note that the dimension of by and b, are equal. By
Lemmas 4.5 and 4.6, we conclude that [ai] + -+ [a,] = [a}] + -+ + [a],] in W/(F). O

n

Since the Witt class in W (F') of the hyperbolic plane H; is equal to (1, —1) by Remark
1.16(iv), Theorem 4.7 yields

THEOREM 4.8. The Witt group W (F) is generated by the isometry classes of 1-
dimensional symmetric bilinear forms that are subject to the following defining relations:

(1) (1) +{=1) = 0.
(2) (a) + (b) = (a+b) + (ab(a+ b)) for all a,b € F* such that a + b # 0.

If char F' # 2, the above is the well-known presentation of the Witt-Grothendieck and
Witt groups first demonstrated by Witt.

The Witt-Grothendieck and Witt rings has a natural filtration that we now describe.
Define the dimension map
dim: W(F) » Z by dimz =dimb; — dimby if z = by — by,
This is a well-defined map (cf. Equation 2.2).

~

We let I(F) denote the kernel of this map. As
(a) = (B) = ({1) = (b)) = (1) = {@)) in W(F)

for all a,b € F'*, the elements (1) — (a) with a € F* generate I(F) as an abelian group.

)
It follows that /W(F) is generated by the elements (1) and (1) — (z) with x € F*.
Let I(F') denote the image of I(F) in W(F). If a € F* write ((a)), or simply ((a))

for the binary symmetric bilinear form (1, —a),. As I(F) N (H;) = 0, we have I(F) ~
I(F)/I(F) N (Hy) ~ I(F). Then the map W (F) — W(F) induces an isomorphism

I(F) = I(F) given by (1) — (z) = ({z)).

In particular, I(F') is the ideal in W (F') consisting of the Witt classes of even dimensional
forms. It is called the fundamental ideal of W (F') and is generated by the classes ((a))
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~

with a € F'*. Note that if ' — K is a homomorphism of fields then TK/F(T(F)) C I(K)
and rg/p(I(F)) C I(K).

The relations in Theorem /4.8 can be rewritten as

({a)) + (b)) = ({a + b)) = ({ab(a +b)))
for a,b € F* with a + b # 0. We conclude

COROLLARY 4.9. The group I(F) is generated by the isometry classes of 2-dimensional
symmetric bilinear forms ((a)) with a € F* subject to the defining relations

(1) ((1)) =0.
(2) {a)) + ((b)) = {{a + b)) = ({ab(a + b))) for all a,b € F* such that a + b # 0.

Let I"
I'(F) =

(F) := (I(F))", the nth power of I(F). Then I"(F) maps isomorphically onto
I(F)™, the nth power of I(F) in W (F). It defines the filtration
) D

W(F) D I(F) > I*F I"(F)D -
in which we shall be interested.
For convenience, we let I°(F) = W(F) and I°(F) = W(F).
We denote the tensor product ({a;)) ® ((a)) ®@ -+ ® ({ay)) by
({ay,ag,...,a,)), orsimply by ({aj,as,...,a,))

and call a form isometric to such a tensor product a bilinear n-fold Pfister form. (We
call any form isometric to (1) a 0-fold Pfister form.) For n > 1, the isometry classes of
bilinear n-fold Pfister forms generate I"(F’) as an abelian group.

We shall be interested in relations between isometry classes of Pfister forms in W (F).
We begin with a study of 1- and 2-fold Pfister forms.

EXAMPLE 4.10. We have ((a)) + ((b)) = ({ab)) + ({a,b)) in W(F). In particular,
((a)) + (b)) = ({ab)) mod I*(F).

As the hyperbolic plane is two dimensional, the dimension invariant induces a map
eo: W(F)— Z/2Z by b+ dimb mod 2.

Clearly, this is a homomorphism with kernel the fundamental ideal I(F') so induces an
isomorphism

(4.11) éo: W(F)/I(F)— 7/27.
By Corollary 1.25, we have a map
e I(F) — F*/F** by b (—1)dir2ﬂb

The map e; is a homomorphism as det(b L b’) = det b - det b’ and surjective as ({a)) —
aF**. Clearly, e1({(a,b))) = F** so e, induces an epimorphism

(4.12) e : [(F)/I*(F) — F*F**.
We have
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PROPOSITION 4.13. We have ker(e,) = I%(F) and &, : I(F)/I*(F) — F*/F** is an
1somorphism.
PROOF. Let f : F*/F** — I(F)/I*(F) given by aF** — ({a)) + I?(F). This

is a homomorphism by Example [4.10 inverse to é;, since [(F') is generated by ((a)),
a€ F*. O

We turn to I*(F).

LEMMA 4.14. Let a,b € F*. Then ({a,b)) = 0 in W(F) if and only if either a € F**
orb e D(({(a))). In particular, ({(a,1 —a)) =0 in W(F) for any a # 1 in F*.

PROOF. Suppose that ({a)) is anisotropic. Then ({(a,b)) = 0 in W (F) if and only
if b((a)) ~ ({a)) by Proposition 2.4 if and only if b € G({{a))) = D({(a))) by Example
1.15. U

Isometries of bilinear 2-fold Pfister forms are easily established using isometries of
binary forms. For example, we have

LEMMA 4.15. Let a,b € F* and x,y € F. Let z = ax?® + by? # 0. Then

(1). {{a,b)) ~ ((a,b(y* — aa?))) if y* — ax® # 0.

(2). ({a,b)) =~ ((z, —ab)).

(3). ({a,b)) ~ ((z,abz)).

(4). If z is a square in F then ({a,b)) is metabolic. In particular, if char F # 2 then
{({a,b)) ~ 2H;.

PROOF. (1): Let w = y* — ax?. We have
{((a,b)) ~ (1, —a, —b,ab) ~ (1, —a, —by*, abr®) ~ (1, —a, —bw, abw) ~ {{a, bw)).
(2): We have
{{a,b)) ~ (1, —a, —b,ab) ~ (1, —az?, —by?, ab) ~ (1, —z, —zab, ab) ~ {(z, —ab)).
(3) follows from (1) and (2) and (4) follows from (2) and Remark [1.16 (ii). O

Explicit examples of such isometries are:

EXAMPLE 4.16. Let a,b € F'* then

(1) ({(a, 1)) is metabolic.
(2) (a,—a)) is metabolic.
(3> <<CL,CL>> = <<a7 _1>> )
(4) ((a,0)) + ({a, =b)) = ({a, =1)) in W(F).

We turn to a presentation of I?(F). It is different from that for I(F) as we need a

new generating relation. Indeed the analogue of the Witt relation will be a consequence
of our new relation and a metabolic relation. Let I,(F') be the abelian group generated

by all the isometry classes [b] of bilinear 2-fold Pfister forms b subject to the generating
relations:

(1) [{{1,1)] = 0.
(2) [{{ab, )] + [{{a, b))] = [({a, be))] + [{{b, c))] for all a, b, c € F*.
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We call the second relation the cocycle relation

REMARK 4.17. The cocycle relation holds in I*(F): Let a,b,c € F*. Then
({(ab, c)) + ({a,b)) = (1, —ab, —c,abc) + (1, —a, —b, ab) =
(1,1, —c, abe, —a, —b) = (1, —a, —bc, abc) + (1, —b, —c, be) =
{{a,be)) + {(b; )
in I*(F).

We begin by showing that the analogue of the Witt relation is a consequence of the
other two relations.

LEMMA 4.18. The relations
(i) (e, 1))] =0
(i) [{{a, D]+ [((b; )] = [({(a +b),e)] + [{{a + b)ab, c))]
holds in L,(F') for all a,b,c € F* if a+b # 0.

Proor. Applying the cocycle relation to a,a, 1 shows that

(L AN] + [{{a, a))] = [{{a, a})] + [{{a, 1))].
The first relation now follows. Applying Lemma [4.15/ and the cocycle relation to a,c,c
shows that

(4.19) [{{(=a, )]+ [({a, )] = [({ac, )] + [{(a, )] = [((=a, )] + [{{a, )] = [((=1, )]
for all c € F*.
Applying the cocycle relation to a(a + b), a, ¢ yields

(4.20) [({a+b,e)] + [{{ala +b),a))] = [{{aa + 1), ac))] + [((a, ¢))]
and to a(a + b),b, ¢ yields
(4.21) [{{ab(a +b), )] + [({ala + b),b))] = [({a(a +b), be))] + [((b, N)]-
Adding the equations (4.20) and (4.21) and then using the isometries
{(ala +b),a)) =~ ((a(a +b), =b)) and ({a(a +b), ac)) ~ ((a(a +b), =bc))
derived from Lemma 4.15, followed by using equation (4.19), yields
[{{a, )] + [{{b; )] = [{{(a + 1), )] — [({a + b)ab, c))]
= [{{a(a +0),a))] + [{{a(a +b),0))] = [({a(a + b), ac))] = [{{a(a + 1), bc))]
[{{a(a+0), =b))] + [({ala + b), b))] — [{{ala +b), —bc))] — [{{ala + D), bc))]
[{{a(a +0), =1))] = [({a(a + b), =1))] = 0. O

THEOREM 4.22. The ideal I*(F) is generated as an abelian group by the isometry
classes ((a,b)) of bilinear 2-fold Pfister forms for all a,b € F* subject to the generating
relations

(1) ({1,1)) = 0.
(2) ((ab,c)) + ({a,b)) = ({a,bc)) + ((b,c)) for all a,b,c € F*.
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Proor. Clearly, we have well-defined homomorphisms
g : L(F) — I*’(F) induced by [b] — b
and
J : L(F) — I(F) induced by [({a,0))] = ((@)) + (b)) — ((ab})
the latter being the composition with the inclusion I*(F) C I(F) using Example 4.10.
We show that the map g : I,(F) — I*(F) is an isomorphism. Define
v X X B FE S L(F) by (aF™* bF>*?) = [({a,b))].
This is clearly well-defined. For convenience, write (a) for aF**. Using (2), we see that

Y((b), (¢)) =~ ((ad), (c)) +~((a), (bc)) — y((a), (b))
= [({b, )] = [({ab, e))] + [{{a, be))] — [{{a, )] = O
so 7 is a 2-cocycle. By Lemma 4.18], we have [((1,a))] = 0 in I,(F), so v is a normalized
2-cocycle. The map 7 defines an extension N = F*/F** x L(F) of L,(F) by F*/F**?
with
((a), @) +((0),8) = ((ab), o + B + [({a, 0))]).
As v is symmetric, N is abelian. Let
h: N — I(F) be defined by ((a),a) — {({a)) + j(a)
We see that the map h is a homomorphism:
h((a),a) + ((b), 5)) = h(((ab),a + 3 + [{(a, 0))]
= ({ab)) +j(@) +3(B) + j([{(a, b))]) = ((a)) + {(b)) + () + 5 (B)
= h((a),a) + h((b), B).
Thus we have a commutative diagram
0 — L(F) — N —— FX/F** —— 0
gl hl f1l
0 —— I*(F) —— I(F) —— I(F)/I*(F) —— 0
where f; is the isomorphism inverse of €; in Proposition 4.13.
Let

f:I(F) — N be induced by ({a)) — ((a),0).
Using Lemma 4.15/ and Corollary 4.9, we see that f is well-defined as
((a),0) +((b),0) = ((ab), [({a, b))]) = ((ab), [{{a + b, aba + b)))])
= ((a+1b),0) + ((ab(a +b),0)
ifa+b#0. As
f({(a,0))) = f({{a)) + {(b)) — ((ab))}) = ((a),0) + ((b),0) — ((ab),0)
= ((ab), [({a, b))]) — ((ab),0) = ((ab), 0) + (1, [{(, a, b))]) — ((ab),0) = (1, [(( a, b))]),

we have

(f o h)((e), [{{a, b))]) = f({{e)) + {{a, b)) = ((¢), [{{a, b))]))-
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Hence f o h is the identity on N. As (ho f)({{a))) = ({a)), the composition h o f is the
identity on I(F"). Thus h is an isomorphism hence so is g. U

5. The Stiefel-Whitney Map

We shall use facts about Milnor K-theory. (Cf. Appendix, §99.) We write k.(F') :=
[L,50 kn(F) for the graded ring K.(F)/2K.(F) =[], Kn(F)/2K,(F). Abusing nota-
tion, if {ay,...a,} is a symbol in K, (F), we shall also write it for its coset {ai,...a,} +
2K, (F).

The associated graded ring GW.(F) =[], I"(F)/I""(F) of W(F) with respect to
the fundamental ideal I(F) is called the graded Witt ring of bilinear forms. Note that
since 2- I"(F) = (1,1) - I"(F) C I""}(F) we have 2 - GW,(F) = 0.

By Example 4.10, the map F* — I(F)/I*(F) defined by a — ({(a)) + I*(F) is a
homomorphism. By the definition of the Milnor ring and Lemma 4.14) this map gives rise
to a graded ring homomorphism

(5.1) o ko(F) — GW.(F)

taking the symbol {ai,as,...,a,} to ({a1,as,...,a,)) + "™ (F). Since the graded ring
GW.(F) is generated by the degree one component [(F)/I*(F), the map f, is surjective.

Note that the map fo : ko(F) — W (F)/I(F) is the inverse of the map €, and the map
fi:ki(F) — I(F)/I?(F) is the inverse of the map €; (cf. Proposition 4.13).

LEMMA 5.2. Let ({(a,b)) and ((c,d)) be isometric bilinear 2-fold Pfister forms. Then
{a,b} ={c,d} in kao(F).

PROOF. If the form ({a, b)) is metabolic then b € D({{a))) or a € F** by Lemma 4.14.
In particular, if ({a, b)) is metabolic then {a,b} = 0 in ky(F). Therefore, we may assume
that ({a,b)) is anisotropic. Using Witt Cancellation 1.29, we see that ¢ = az?®+ by* — abz?
for some z,y,z € F. If ¢ ¢ aF** let w = y2 — az? # 0. Then ((a,b)) ~ ((a,bw)) ~
({¢, —abw)) by Lemma [4.15 and {a,b} = {a,bw} = {c¢, —abw} in ky(F) by Appendix,
Lemma99.3. Hence we may assume that a = ¢. By Witt Cancellation, (—b, ab) ~ (—d, ad)
so bd € D({{a))), i.e., bd = 2* — ay?® in F for some z,y € F. Thus {a,b} = {a,d} by
Appendix, Lemma 99.3. O

ProPOSITION 5.3. The homomorphism
ey : I*(F) — ko(F) given by ((a,b)) — {a,b}
is a well-defined surjection with ker(ey) = I3(F). Moreover, ey induces an isomorphism
&y : IP(F)/IP(F) — kyo(F).

PROOF. By Lemma /5.2 and the presentation of I?(F) in Theorem [4.22, the map is
well-defined. Since

<<a’ b, C>> = <<a7c>> + <<b7 C>> - <<aba C>>7

we have I?(F) C keres. As & and f, are inverses of each other, the result follows. O
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Define the graded ring by
RE)() = [T kP

Let F(F') be the free abelian group on the set of isometry classes of non-degenerate
1-dimensional symmetric bilinear bilinear forms. Let w be the group homomorphism

w:F(F)— (E(F)[[t])* given by (a) — 1+ {a}t.
If a,b € F* satisfy a + b # 0 then by Appendix, Lemma 99.3, we have
wlla) + (8) = (1+ {a}H)(1 + {b}1)
=1+ ({a} + {b})t + {a,b}t?
=1+ ({ab})t + {a, b}#?
=1+ {ab(a + b)*}t + {a + b, ab(a + b) }t*
= w({a + b) + (ab(a +b))).

In particular, w factors through the relation (a) + (b) = (a + b) + (ab(a + b)) for all
a,b € F* satisfying a + b # 0 hence induces a group homomorphism

(5.4) w: W(F) — (k(F))[[t])"

by Theorem 4.7/ called the total Stiefel-Whitney map. If b is a non-degenerate symmetric

bilinear form and « is its class in W (F') define the total Stiefel-Whitney class of w(b) to
be w(a).

EXAMPLE 5.5. If b is a metabolic plane then b = (a) + (—a) in /W(F) for some
a € F*. (Note the hyperbolic plane equals (1) + (—1) in W(F') by Example [1.16(iv)), so
w(b) =1+ {—1}t as {a,—a} =1 in ko(F) for any a € F*.

LEMMA 5.6. Let o = ((1) — {a1)) -+ - (1) = (a,)) in W(F). Let m = 2", Then

w(a) = (1+{ai,...,an, —1,7;1._.7: —1 ™t
PROOF. As
o= slai---ay),
where the sum runs over all € = (g1,...,¢,) € {0,1}" and s, = (—1)2:% we have
w(e) = [J(1 + Zei{ai}t)sf.
Let

h=h(ty,... ty) = [[(L+ ettt 4+ eptnt) ™

€

in (Z/2Z][t]))[[t1, - -,ts]]. Substituting zero for any ¢; in h, yields one so
h=1+1ttyg(ts,..., t,)t" for some g€ (Z/2Z[[t]])[[t1,---,tn]]-
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As {a,a} = {a,—1}, we have
wla)™ =1+ {ay,...,a,}g({ar}, ... {a. D" =1+ {ay,...,a,}g({—1},..., {=1})t".
We have, with s a variable,

L4g(s,... st =h(s,...,s) = [J(L+ ) eist)™ = (1+st)" =1+ s"t"

€

as > &; = 11in Z/27 exactly m times, so g(s,...,s) = (st)™ ™ and the result follows. O
Let wo(a) =1 and

w(a) =1+ Zwi(a)ti

1>1

for a € W(F) The map w; : W(F) — ki(F) is called the ith Stiefel-Whitney class. Let
a,f € W(F). As w(a+ ) = w(a)w(F), we have the Whitney formula

(5.7) wn(a+B8) = Y wile)uw;(B).

1+j=n
REMARK 5.8. Let K/F be a field extension and o € /W(F) Then
resg/r wi(a) = wi(ag) in k;(F) for all .

COROLLARY 5.9. Let m = 2""'. Then wj(f”(F)) =0 forj=1,....,m—1 and
Wy = I"(F) — kp(F) is a group homomorphism mapping ((1) — (a1)) -+ ((1) — (an)) to

{ai,...,an,—1,...,—1}.
—_————
PrOOF. Let a = ((1) — (a1)) --- ((1) — (an)). By Lemma 5.6, we have w;(«) = 0 for
i=1,...m — 1. The result follows from the Whitney formula (5.7). 0

~

Let j : I(F) — I(F) be the isomorphism sending (1) — (a) +— {({a)). Let w,, be the
composition
iR wmlzn ()
I'(F) =— I''(F) —— k,,(F).
Corollary 5.9 shows that w; = e; for ¢ = 1,2. The map w,, : I"(F) — k,(F) is a group
homomorphism with I"™(F) C ker w,, so induces a homomorphism

Wy 2 I (F) /T (F) — ko (F).
We have w; = ¢; for i = 1,2. The composition w,, o f,, is multiplication by {—1,...,—1}.
———

m—n

In particular, w; and wy are isomorphisms, i.e.,

(5.10) I*(F) =kerw, and I*(F) = ker,
and
(5.11) P(F) = ker wi[f ) and f?’(F) = ker wa 72 p.-

This gives another proof for Proposition 4.13/ and Proposition 5.3.
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REMARK 5.12. Let char F' # 2 and h% : ky(F) — H?*(F) be the norm-residue homo-
morphism defined in Appendix §100. If b is a non-degenerate symmetric bilinear form
then hy o wy(b) is the classical Hasse- Witt invariant of b. (Cf. [40], Definition V.3.17,
[54], Definition 2.12.7.)

ExAMPLE 5.13. Suppose that K is a real-closed field. (Cf. Appendix §94.) Then
ki(K) = 7/27 for all i > 0 and W(K) = Z ® Z¢ with € = (—1) and €2 = 1. The
Stiefel-Whitney map w : /W(F) — (K(K)[[t]])* is then the map n+m& — (1 +1¢)™. In
particular, if b is a non-degenerate form then w(b) determines the signature of b. Hence
if b and ¢ are two non-degenerate symmetric bilinear forms over K, we have b ~ ¢ if and
only if dim b = dim ¢ and w(b) = w(c).

It should be noted that if b = ((a,...,a,)) that w(b) is not equal to w(a) = w([b])
where a = ((1) — (a1)) - - ((1) — (an)) in W(F') as the following exercise shows.

EXERCISE 5.14. Let m = 2"~ If b is the bilinear n-fold Pfister form ({ay,...,a,))
then
wb)=1+{-1,...,—-1}+{ay,...,a,,—1,...,—1 Ht".
(b) S t+H{a )

m m—n

The following fundamental theorem was proved by Voevodsky-Orlov-Vishik [45] in
the case that char F' # 2 and by Kato [35] in the case that char F' = 2.

Fact 5.15. The map f. : k.(F) — GW.(F) is a ring isomorphism.

For i = 0, 1,2, we have proven that f; is an isomorphism in (4.11), Proposition 4.13,
and Proposition 5.3, respectively.

6. Bilinear Pfister forms

The isometry classes of tensor products of non-degenerate binary symmetric bilinear
forms representing one are the most interesting forms. These forms, called Pfister forms
generate a filtration of the Witt ring by its fundamental ideal I(F'). In this section, we
derive the main elementary properties of these forms.

By Example [1.15, a bilinear 1-fold Pfister form b = ({(a)), a € F*, is round, i.e.,
D({{a))) = G({{a))). Because of this the next proposition shows that there are many
round forms and, in particular, bilinear Pfister forms are round.

PROPOSITION 6.1. Let b be a round bilinear form and let a € F*. Then
(1) The form ((a)) ® b is also round.
(2) If ((a)) ® b is isotropic then either b is isotropic or a € D(b).
PROOF. Set ¢ = ({(a)) ® b.

(1). Since 1 € D(b), it suffices to prove that D(c) C G(c). Let ¢ be a nonzero value of c.
Write ¢ = x — ay for some z,y € D(b). If y = 0, we have ¢ =z € D(b) = G(b) C G(¢).
Similarly, y € G(¢) if x = 0 hence ¢ = —ay € G(c¢) as —a € G({{a))) C G(c).
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Now suppose that x and y are nonzero. Since b is round, x,y € G(b) and therefore
c=b_1 (—ab)~b L (—ayz™")b = ({ayz™")) @ b.
By Example(1.15, we know that 1—ayz~ € G({(ayz™"))) C G(c). Since z € G(b) C G(¢),
we have ¢ = (1 — ayx™)z € G(c).
(2). Suppose that b is anisotropic. Since ¢ = b L (—ab) is isotropic, there exist z,y € D(b)

such that x — ay = 0. Therefore a = zy~! € D(b) as D(b) is closed under multiplication.
U

COROLLARY 6.2. Bilinear Pfister forms are round.
Proor. 0-fold Pfister forms are round. O
COROLLARY 6.3. A bilinear Pfister form is either anisotropic or metabolic.

PROOF. Suppose that ¢ is an isotropic bilinear Pfister form. We show that ¢ is meta-
bolic by induction on the dimension of the ¢. Write ¢ = ((a)) ® b for a Pfister form
b. If b is metabolic then so is ¢. By the induction hypothesis we may assume that b is
anisotropic. By Proposition [6.1 and Corollary 6.2, a € D(b) = G(b). Therefore ab ~ b
hence the form ¢ ~ b 1 (—ab) ~ b L (—b) is metabolic. O

REMARK 6.4. Note that the only metabolic 1-fold Pfister form is ((1)). If char F' # 2
there is only one metabolic bilinear n-fold Pfister form for all n > 1, viz., the hyperbolic
one. It is universal by Corollary [1.26. If char /' = 2 then there may exist many metabolic
n-fold Pfister forms for n > 1 including the hyperbolic one.

EXAMPLE 6.5. If char F' = 2, a bilinear Pfister form ({(as,...,a,)) is anisotropic if
and only if ay,...,a, are 2-independent. Indeed [F?(ai,...,a,) : F?] < 2™ if and only if
({ay,...,a,)) is isotropic.

COROLLARY 6.6. Let char F' # 2. Let z € F*. Then 2"((z)) = 0 in W(F) if and only
if z € D(2"(1)).

PRrROOF. If z € D(2"(1)) then the Pfister form 2"((z)) is isotropic hence metabolic by
Corollary 6.3,

Conversely, suppose that 2"((z)) is metabolic. Then 2"(1) = 2"(z) in W (F). If 2"(1)
is isotropic, it is universal as char F' # 2, so z € D(2"(1)). If 2"(1) is anisotropic then
2"(1) ~ 2™(z) by Proposition 2.4/so z € G(2"(1)) = D(2"(1)) by Corollary 6.2. O

As additional corollaries, we have the following two theorems of Pfister.
COROLLARY 6.7. D(2"(1)) is a group for every non-negative integer n.
The level of a field F' is defined to be
s(F) := min{n | the element — 1 is a sum of n squares}
or infinity if no such integer exists.
COROLLARY 6.8. The level s(F') of a field F, if finite, is a power of two.

PROOF. Suppose that s(F) is finite. Then 2" < s(F') < 2"*! for some n. By Propo-
sition 6.1 (2), with b = 2"(1) and a = —1, we have —1 € D(b). Hence s(F) = 2". d
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Since the isometry type of a 2-fold Pfister forms is easy to deal with, we use them to
study n-fold Pfister forms.

DEFINITION 6.9. Let ay,...,a,,b1,...,b, € F* withn > 1. Wesay that ((a1,...,a,))
and ((by,...,b,)) are simply p-equivalent if n = 1 and a F*? = b F*? or n > 2 and there
exist 7,7 = 1,...,n such that

a;,a;)) =~ ({(b;, b; with 7 #j and ap="0b forall [#1i,j.
j j

We say bilinear n-fold Pfister forms b, ¢ are chain p-equivalent if there exist bilinear n-
fold Pfister forms by,...,b,, for some m such that b = by, ¢ = b,, and b; is simply
p-equivalent to b;,; for each i =0,...,m — 1.

Chain p-equivalence is clearly an equivalence relation on the set of anisotropic bilinear
forms of the type ({ai,...,a,)) with a;,...,a, € F* and is denoted by ~. As transposi-
tions generate the symmetric group, we have ((a1,...,an)) = ((aGsq), - - -, Gom))) for every
permutation o of {1,...,n}. We shall show

THEOREM 6.10. Let ({ai,...,a,)) and ({by,...,b,)) be anisotropic. Then

({ag,...,an)) = ((by,...,by))
if and only if
({ay,...,an)) = ((by,...,by)).
Of course we need only show isometric anisotropic bilinear Pfister forms are p-equivalent.
We shall do this in a number of steps. If b is an n-fold Pfister form then we can write

b="0b" L (1). If b is anisotropic then it is unique up to isometry and we call b’ the pure
subform of b.

LEMMA 6.11. Suppose that b = ({(a1,...,a,)) is anisotropic. Let —b € D(b’) Then
there exist by, ..., b, € F* such that b = ((b,ba,...,b,)).

PrOOF. We induct on n, the case n = 1 being trivial. Let ¢ = ((a1,...,a,-1)) so
b’ ~ ¢ L —a,c by Witt Cancellation [1.29. Write
—b=—z+ayy with —zeD(), —ye D(b).

If y = 0 then = # 0 and we finish by induction, so we may assume that 0 # y = y; + 22
with —y; € D(¢/) and z € F. If y; # 0 then ¢ = ((y1,...yn_1)) for some y; € F* and,
using Lemma 4.15)

(6.12) ¢ (Y1, Yn-1,an)) = (Y1, Yn-1, —ay)) = (a1, ... Qp-1, —nY)).
This is also true if y; = 0. If z = 0, we are done. If not ¢ = ((x,x5...2,_1)) some z; € F*
and
b~ ((z,29,...Tn_1,—any)) = {(anzy, To, ... Tn_1, —any + T))
~ ((anry, T2, ... Tn_1,b))
by Lemma 4.15(2) as needed. O

The argument to establish equation (6.12) yields
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COROLLARY 6.13. Let b = ((x1,...,2,)) andy € D(b). Let z € F*. Ifb® ((2)) is
anisotropic then ((x1,...,xn,2)) = ((x1,..., Ty, yz2)).

We also have the following generalization of Lemma 4.14:

COROLLARY 6.14. Let b be an anisotropic bilinear Pfister form over F' and let a € F*.
Then ({a)) - b = 0 in W(F) if and only if either a € F** or b ~ ((b)) ® ¢ for some
b€ D({{a))) and bilinear Pfister form c. In the latter case, ({a, b)) is metabolic.

Proor. Clearly ({a,b)) = 0 in W(F) if b € D({{a))). Conversely, suppose that
{{a)) ®b = 0. Hence a € G(b) = D(b) by Corollary 6.2. Write a = 2% — b for some x € F'
and —b € D(b'). If b = 0 then a € F*2. Otherwise, b € D({{a))) and b ~ ((b)) @ ¢ for
some bilinear Pfister form ¢ by Lemma 6.11. U

The generalization of Lemma 6.11/ is very useful in computation and is the key to
proving further relations among Pfister forms.

PROPOSITION 6.15. Let b = ((a1,...,am)) and ¢ = ({by,...,b,)) be such that b ®@ ¢ is
anisotropic. Let —c € D(b ® ') then

<<a17' e aamybla s 7bn>> ~ <<CE1,. -y Qm, C1,C2y . - 7cn—1vc>>
for some cq,...,c, 1 € F*.

ProoOF. We induct on n. If n = 1 then —¢ = yb; for some —y € D(b) and this
case follows by Corollary 6.13, so assume that n > 1. Let @ = ((b1,...,b,—1)). Then

¢ ~b,0 L2 so b =b,b®@0 Lb®0V. Write 0 # —c = b,y — 2 with —y € D(b® ¢) and
—2€D(b® /(). If z=0 then x # 0 and

<(a1, . ,am,bl, cee bn>> ~ <<a1, C. ,Gm,bl, Ce ,bnfl, _ybn>>

by Corollary 16.13 and we are done. So we may assume that z # 0. By induction
({1, ... Qmy by, bp1)) = (a1, ..., Qm, 1,0, ...y Cr, 2)) fOr sSOmMe ¢, ..., cp_9 € F*.
If y = 0, tensoring this by (1, —b,) completes the proof, so we may assume that y # 0.
Then

<<Cl1, cee 7amab17 tee >bn>> =~ <<a17 . 7am7b17 tee >bn717 _ybn>> ~

({ay, ..., am,C1y .. Crn, 2, —yby)) = (a1, ..., Qm, C1y - ooy Cua, 2 — Yy, 2yby)) =
({ay,...,am,C1,y ..., Coa,C, 2yby))
by Lemma 4.15(2). This completes the proof. OJ

COROLLARY 6.16. (Common Slot Property) Let ({ay, ... an,—1,2)) and ((by,...by—1,Y))
be isometric anisotropic bilinear forms. Then there exists a z € F* satisfying

((a1,...an-1,2)) = ({a1,...an_1,2)) and ({by,...by_1,2)) = ((b1,...bu_1,¥)).

PROOF. Let b = ({(ay,...a,—1)) and ¢ = ((by,...by—1)). Asaxb—yc=0b"—¢ in W(F),
the form zb 1 —yc) is isotropic. Hence there exists a z € D(xb) N D(yc). The result
follows by Proposition 6.15. O

added resulf
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A non-degenerate symmetric bilinear form b is called a general bilinear n-fold Pfister
form if b ~ ac for some a € F'* and bilinear n-fold Pfister form ¢. As Pfister forms are
round, a general Pfister form is isometric to a Pfister form if and only if it represents one.

COROLLARY 6.17. Let ¢ and b be general anisotropic bilinear Pfister forms. If ¢ is a
subform of b then b ~ ¢ ® 0 for some bilinear Pfister form 0.

PRrROOF. If ¢ = ccy for some Pfister form ¢; and ¢ € F* then ¢; is a subform of ¢b. In
particular, cb represents one so is a Pfister form. Replacing b by cb and ¢ by cc, we may
assume both are Pfister forms.

Let ¢ = ({ay,...,a,)) with a; € F*. By Witt Cancellation[1.29, we have ¢’ is a subform
of b’ hence b ~ ((a1)) ® 9, for some Pfister form d; by Lemma 6.11. By induction, there
exists a Pfister form 0, satisfying b ~ ((a1,...,a;)) ® 0x . By Witt Cancellation [1.29,
we have ((a1,...,ar)) ® ((Agy1,--.,a,))" is a subform of ((a1,...,ax)) @V, SO —ax41 €
D({{a1,...,ar)) ®0}). By Proposition [6.15, we complete the induction step. O

Let b and ¢ be general Pfister forms. We say that ¢ divides b if b ~ ¢ ® 0 for some
Pfister form 0. The corollary says that ¢ divides b if and only if it is a subform of b.

We now proof Theorem 16.10.

Proor. Let a = ({a1,...,a,)) and b = ((b,...,b,)) be isometric over F. Clearly
we may assume that n > 1. By Lemma [6.11, we have a = ({by,d}...,al)) for some

a; € F*. Suppose that we have shown a = ((b1,...,bn,a,,,,...,a,)) for some m. By
Witt Cancellation [1.29,

(D1, b)) @ (b1 -« b)) 22 ((b1y o b)) @ ((ahyq - -y an)),
50 —bpt1 € D(((b1, ..., bm)) @ ({alyy1 .-, ap))"). By Proposition 6.15, we have
a~ <<bl,...,bm+1,a;+2...,ag>>

for some a € F*. This completes the induction step. O

We need the following theorem:

THEOREM 6.18. (Hauptsatz) Let 0 # b be an anisotropic form lying in I"(F'). Then
dim b > 2",

We shall prove this theorem in Theorem 23.8 below. Using it we show:

COROLLARY 6.19. Let b and ¢ be two anisotropic general bilinear n-fold Pfister forms.
If b = ¢ mod I""(F) then b ~ ac for some a € F*. In addition, if D(b) N D(c) # 0 then
b ~c.

ProoOF. Choose a € F* such that b L —ac is isotropic. By the Hauptsatz, this form
must be metabolic. By Proposition 2.4, we have b ~ ac.
Suppose that x € D(b) N D(c). Then b L —c is isotropic and one can take a = 1. [

THEOREM 6.20. Let aq,...a,,b1,...,b, € F*. The following are equivalent:

(1) ({a1,...,an)) = ((b1,..., b)) in W(F).
(2) {ag,...,an)) = {{b1,...,b,)) mod I"T(F).
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3) {ar,...,an} = {b1,....0,} in K,(F)/2K,(F).

PRrOOF. Let b = ({ay,...,a,)) and ¢ = ((b1,...,b,)). As metabolic Pfister forms are
trivial in W(F) and any bilinear n-fold Pfister form lying in I"*!(F) must be metabolic
by the Hauptsatz 6.18, we may assume that b and ¢ are both anisotropic.

(2) = (1) follows from Corollary 6.19.
(

(1) = (3). By Theorem 6.10, we have ((a1,...,a,)) = ({(b1,...,b,)), so it suffices to show
that (3) holds if

((a;,a;)) ~ ((b;,b;)) with i#7j and ap =0 forall [#1,j.
As {a;,a;} = {b;, b;} by Proposition 5.3, statement (3) follows.
(3) = (2) follows from (5.1)). O

We derive some other properties of bilinear Pfister forms that we shall need later.

PROPOSITION 6.21. Let by and by be two anisotropic general bilinear Pfister forms.
Let ¢ be a general r-fold Pfister form with r > 0 and a common subform of by and by. If
i(by L —by) > 27 then there exists a k-fold Pfister form 0 such that ¢ ® 0 is a common
subform of by and by and i(b; L —by) = 27k,

Proor. By Corollary 6.17, there exist Pfister forms 9; and 95 such that by ~ ¢ ® 04
and by ~ ¢ ®09. Let b = b; L —by. As b is isotropic, b; and by have a common nonzero
value. Dividing the b; by this nonzero common value, we may assume that the b; are
Pfister forms. We have

b~c® (0] L —0) L (¢ L —c).
The form ¢ L —c is metabolic by Example 1.23(2) and i(b) > dim¢. Therefore, the form
¢ ® (0] L —0)) is isotropic hence there is a € D(¢ ®0}) N D(c ® 0%). By Proposition 6.15,
we have by ~ ¢ ® ((—a)) ® ¢; and by ~ ¢ ® ((—a)) ® ey for some bilinear Pfister forms e
and ey. As
b~c®(e) L—ey) L (c®((—a)) L —c®((=a))),
either i(b) = 2"™! or we may repeat the argument. The result follows. g

If a general bilinear r-fold Pfister form ¢ is a common subform of two general Pfister
forms by and by, we call it a linkage of b; and b, and say that b; and by are r-linked. The
integer m = max{r | by and by, are r-linked} is called the linkage number of b; and bs.
The Proposition says that i(b; L —by) = 2. If by and by are n-fold Pfister forms and
r =mn — 1, we say that b; and by are linked. By Corollary 6.17 the linkage of any pair of
bilinear Pfister forms is a divisor of each.

If b is a non-degenerate symmetric bilinear form over F' then the annihilator of b in

W(F)
annyy (r)(b) ;== {c € W(F)|b-c=0}

is an ideal in W(F'). When b is a Pfister form this ideal has a nice structure that we now
establish. First note that if b is an anisotropic Pfister form and x € D(b) then, as b is
round by Corollary 6.2, we have ((x)) ® b~ b L —zb ~ b L —b is metabolic. It follows
that ((x)) € anny (g (b). We shall show that these binary forms generate anny g (b)
This will follow from the next result.
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PROPOSITION 6.22. Let b be an anisotropic bilinear Pfister form and ¢ a non-degenerate
symmetric bilinear form. Then there exists a symmetric bilinear form 0 satisfying all of
the following:

(1) b-c=b-0in W(F).
(2) b ® 0 is anisotropic. Moreover, dimd < dim¢ and dimd = dime¢ mod 2.
(3) ¢ —0 lies in the subgroup of W (F') generated by ((x)) with x € D(b).

Proor. We prove this by induction on dimc¢. By the Witt Decomposition Theorem
1.28], we may assume that ¢ is anisotropic. Hence ¢ is diagonalizable by Corollary 1.20, say
¢ = (x1,...,T,) with z; € F*. If b ® ¢ is anisotropic, the result is trivial, so assume it is
isotropic. Therefore, there exist ay, ..., a, € D(b) not all zero such that a;z1+- - -+a,z, =
0. Let b; = a; if a; # 0 and b; = 1 otherwise. In particular, b; € G(b) for all i. Let
¢ = (b1x1,...,b,x,). Then ¢ —e = 21((by)) + -+ + z,((b,)) with each b, € D(b) as b
is round by Corollary 6.2l Since e is isotropic, we have b-c¢ = b - (¢),, in W(F). As
dim(e),, < dim ¢, by the induction hypothesis there exists ? such that b ® is anisotropic
and ¢ — 0 and therefore ¢ — 9 lies in the subgroup of W(F') generated by ((z)) with
x € D(b). As b ® 0 is anisotropic, it follows by (1) that dim0o < dime¢. It follows from
(3) that the dimension of ¢ — ? is even. O

COROLLARY 6.23. Let b be an anisotropic bilinear Pfister form. Then anny g (b) is
generated by ((x)) with x € D(b).

If b is 2-dimensional, we obtain stronger results.

LEMMA 6.24. Let b be a binary anisotropic bilinear form over F' and ¢ an anisotropic
bilinear form over F' such that b ® ¢ is isotropic. Then ¢ >~ 0 L ¢ for some binary bilinear
form 0 annihilated by b and bilinear form e over F'.

PRrROOF. Let {e, f} be a basis for V,. By assumption there exists vectors v,w € V,
such that e® v+ f ®w is an isotropic vector for b®¢. Choose a two-dimensional subspace
W C V, containing v and w. Since ¢ is anisotropic, so is ¢|y. In particular, ¢|y is non-
degenerate hence ¢ = ¢|y L ¢|y1 by Proposition [1.7. As b ® c|y is an isotropic general
2-fold Pfister form it is metabolic by Corollary 6.3. O

PROPOSITION 6.25. Let b be a binary anisotropic bilinear form over F and ¢ an
anisotropic form over F'. Then there exist forms ¢; and ¢ over ' such that ¢ ~ ¢; L ¢
with b ® ¢o anisotropic and ¢; ~ 01 L --- 1L 0, where each 0; is a binary bilinear form
annihilated by b. In particular, if detd; = d;F** then —d; € D(b) for each i.

PROOF. The first statement of the proposition follows from the lemma and the second
from its proof. U

COROLLARY 6.26. Let b be a binary anisotropic bilinear form over F' and ¢ an anisotropic
form over F' annihilated by b. Then ¢ ~ 0, L --- L 0, for some binary forms 0; annihi-
lated by b for 1 < i <n.



CHAPTER 1II

Quadratic Forms

7. Basics

In this section, we introduce the basic properties of quadratic forms over an arbitrary
field F'. Their study arose from the investigation of homogeneous polynomials of degree
two. If the characteristic of F' is different from two, then this study and that of bilinear
forms are essentially the same as the diagonal of a bilinear form is a quadratic form and
each determines the other by the polar identity. However, they are different when the
characteristic of F'is two. It is because of this difference that we see that quadratic forms
unlike bilinear forms have a rich geometric flavor in general. When studying symmetric
bilinear forms, we saw that one could easily reduce to the study of non-degenerate forms.
For quadratic forms, the situation is more complex. The polar form of a quadratic form
no longer determines the quadratic form when the underlying field is of characteristic two.
However, the radical of the polar form is invariant under field extension. This leads to
two types of quadratic form. When the radical is the whole of the underlying space, the
quadratic form may not be trivial in characteristic two. These forms are called totally
singular forms. The other extreme is when the radical is as small as possible (which
means of dimension zero or one), this gives rise to the non-degenerate forms. As in the
study of bilinear forms, certain properties are not invariant under base extension. The
most important of these is anisotropy. Analogous to the bilinear case, an anisotropic
quadratic form is one having no nontrivial zero, i.e., no isotropic vectors. Every vector
that is isotropic for the quadratic form is isotropic for its polar form. If the characteristic
is two, the converse is false as every vector is an isotropic vector of the polar form. As in
the previous chapter, we shall base this study on a coordinate free approach and strive to
give uniform proofs in a characteristic free fashion.

DEFINITION 7.1. Let V be a finite dimensional vector space over F. A quadratic form
on V is a map ¢ : V — F satisfying

(1) ¢(av) = a*p(v) for allv € V and a € F.
(2) (Polar Identity) b, : V' x V' — F defined by

by (v, w) = (v +w) —p(v) — p(w)
is a bilinear form.

The bilinear form b,, is called the polar form of of ¢. We call dim V' the dimension of the
quadratic form and also write it as dim ¢. We write ¢ is a quadratic form over F'if ¢ is
a quadratic form on a finite dimensional vector space over F' and denote the underlying
space by Vi,.

31
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Note that the polar form of a quadratic form is automatically symmetric and even
alternating if char ' = 2. If b : V x V' — F'is a bilinear form (not necessarily symmetric),
let pp : V' — F be defined by ¢u(v) = b(v,v) for all v € V. We call y, the associated
quadratic form of b. Then ¢, is a quadratic form and its polar form b, is b+ b’. In
particular, if b is symmetric, the composition b — ¢, — b, is multiplication by 2 as is
the composition ¢ — b, — @y, .

DEFINITION 7.2. Let ¢ and ¢ be two quadratic forms. An isometry f : ¢ — ¥ is a
linear map f : V,, — Vi such that p(v) = ¢(f(v)) for all v € V,,. If such an isometry
exists, we write ¢ ~ ¢ and say that ¢ and v are isometric.

ExamMPpLE 7.3. If ¢ is a quadratic form over F' and v € V satisfies p(v) # 0 then the
(hyperplane) reflection
To 1 o — @ given by w — w — by (v, w)p(v) v

is an isometry.

Let V be a finite dimensional vector space over F. Define the hyperbolic form on V
to be H(V) = ¢y on V & V* with
SD[H(U> f) = f(U)
for all v € V and f € V*. Note that the polar form of ¢y is by, = Hi(V). If ¢ is a
quadratic form isometric to H(W) for some vector space W, we call ¢ a hyperbolic form.

The form H(F') is called the hyperbolic plane and we denote it simply by H. If ¢ ~ H, two
vectors e, f € V,, satisfying p(e) = ¢(f) = 0 and b, (e, f) = 1 are called a hyperbolic pair.

Let ¢ be a quadratic form on V' and {vy,...,v,} be a basis for V. Let a; = ¢(v;) for
all 7 and

b,(vi,v;) foralli<j
Qij = S
! 0 for all © > j.
As

n
90(5 l'i'Ui):E a;jT;5,
i=1 i

the homogeneous polynomial on the right hand side as well as the matrix (a;;) determined
by ¢ completely determines .

NOTATION 7.4. (1) Let a € F. The quadratic form on F given by ¢(v) = av? for all
v € I will be denoted by (a), or simply (a).

(2) Let a,b € F. The two dimensional quadratic form on F? given by ¢(z,y) = az® +
zy + by? will be denoted by [a,b]. The corresponding matrix for ¢ in the standard basis

is
a 1
0 b))’

while the corresponding matrix for b, is

2 1Y\ ¢
(4 ) aen
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REMARK 7.5. Let ¢ be a quadratic form over V. Then the associated polar form b,
is not the zero form if and only if there are two vectors v, w in V satisfying b(v,w) = 1.
In particular, if ¢ is a nonzero binary form then ¢ ~ [a, b].

EXAMPLE 7.6. Let ¢ ~ H with {e, f} is a hyperbolic pair. Using the basis {e, ae+ f},
we have H ~ [0,0] ~ [0, a] for any a € F..

EXAMPLE 7.7. Let char ' = 2 and p : F' — F be the Artin-Schreier map p(z) = z*+z.
Let a € F. Then the quadratic form [1, a] is isotropic if and only if a € p(F).

Let V be a finite dimension vector space over F'. The set Quad(V) of quadratic forms
on V is a vector space over F'. We have linear maps

Bil(V') — Quad (V) given by b — ¢y
and
Quad(V) — Sym(V') given by ¢ — by,.

Restricting the first map to Sym(V') and composing shows the compositions
Sym(V) — Quad(V) — Sym(V) and Quad(V) — Sym(V) — Quad(V)

are multiplication by 2. In particular, if char F' # 2 the map Quad(V) — Sym(V') given
by ¢ — 3b, is an isomorphism inverse to the map Sym(V) — Quad(V) by b — ;. For
this reason, we shall usually identify quadratic forms and symmetric bilinear forms over
a field of characteristic different from two.

The correspondence between quadratic forms on a vector space V' of dimension n and
matrices defines a linear isomorphism Quad (V') — T,,(F'), where T,,(F') is the vector space
of n xn-upper triangular matrices. Therefore by the surjectivity of the linear epimorphism
M,,(F) — T,(F) given by (a;;) — (b;;) with b;; = a;;+a;; for all i < j, and b; = a;; for all
i, and b;; = 0 for all j < ¢ implies that the linear map Bil(V) — Quad(V') given by b — ¢y
is also surjective. We, therefore, have an exact sequence

0 — Alt(V) — Bil(V) — Quad(V) — 0.
EXERCISE 7.8. The natural exact sequence
0—= A (V*) =V @p V" — S*(V*) -0
can be identified with the sequence above via the isomorphism

S*(V*) — Quad(V) given by f- g+ @, v — f(v)g(v).

If o, v € Quad(V), we say y is similar to 1 if there exists an a € F* such that ¢ ~ a.

Let ¢ be a quadratic form on V. A vector v € V is called anisotropic if p(v) # 0 and
isotropic if v # 0 and p(v) = 0. We call ¢ anisotropic if there are no isotropic vectors
in V' and isotropic if there are. If W C V is a subspace the restriction of ¢ on W is
the quadratic form whose polar form is given by by, = b,|w. It is denoted by ¢|y and
called a subform of ¢. Define W+ to be the orthogonal complement of W relative to the
polar form of ¢. The space W is called totally isotropic if |y = 0. If this is the case
then b,|w = 0.
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ExaMPLE 7.9. If F' is algebraically closed then any homogeneous polynomial in more
than one variable has a nontrivial zero. In particular, up to isometry, the only anisotropic
quadratic forms over F' are 0 and (1).

REMARK 7.10. Let ¢ be a quadratic form on V over F. If ¢ = ¢, for some symmetric
bilinear form b then ¢ is isotropic if and only if b is. In addition, if char F' # 2 then ¢ is
isotropic if and only if its polar form b, is. However, if char F' = 2 then every 0 Zv € V
is an isotropic vector for by,.

Let ¢ be a subform of a quadratic form . The restriction of ¢ on (V)" is denoted
by 1+ and is called the complementary form of 1 in . If V, = W & U is a direct sum of
vector spaces with W C UL, we write ¢ = |y L @|y and call it an internal orthogonal
sum. So p(w + u) = p(w) + ¢(u) for all w € W and u € U. Note that ¢|y is a subform

of (¢lw)™.

REMARK 7.11. Let ¢ be a quadratic form with rad b, = 0. If ¢ is a subform of ¢
then by Proposition [1.6, we have dim 1+ = dim ¢ — dim ¢ and therefore 1+ = 1.

Let ¢ be a quadratic form on V. We say that ¢ is totally singular if its polar form b,
is zero. If char ' # 2 then ¢ is totally singular if and only if ¢ is the zero quadratic form.
If char F' = 2 this may not be true. Define the quadratic radical of ¢ by

rad ¢ := {v € rad b, | p(v) = 0}.

This is a subspace of rad b,. We say that ¢ is reqular if rad ¢ = 0. If char I’ # 2 then
rad ¢ = rad b,. In particular, ¢ is regular if and only if its polar form is non-degenerate.
If char F = 2, this may not be true.

ExAMPLE 7.12. Every anisotropic quadratic form is regular.

Clearly, if f : ¢ — 7 is an isometry of quadratic forms then f(radb,) = rad b, and
f(rad ¢) = rad .

Let ¢ be a quadratic form on V and ~ : V — V/rad ¢ the canonical epimorphism.
Let @ denote the quadratic form on V' given by ®(v) := ¢(v) for all v € V. In particular,
the restriction of @ to rad b,/ rad ¢ determines an anisotropic quadratic form. We have:

LEMMA 7.13. Let ¢ be a quadratic form on V and W any subspace of V' satisfying
V =radp®W. Then

Y = 90|rad<p 1L 90|W - 0|radcp L 90|W

with ¢lw ~ @ the induced quadratic form on V/rad ¢. In particular, o|w is unique up to
1sometry.

If ¢ is a quadratic form, the form |y, unique up to isometry will be called its regular
part. The subform ¢l in the lemma is regular but b, may be degenerate if char F' = 2.
To obtain a further orthogonal decomposition of a quadratic form, we need to look at the
regular part. The key is the following.
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PROPOSITION 7.14. Let ¢ be a reqular quadratic form on V. Suppose that V' contains
an isotropic vector v. Then there exists a two-dimensional subspace W of V' containing v
such that p|w ~ H.

PRrROOF. Asrad¢ = 0, we have v ¢ rad b,. Thus there exists a vector w € V such that
a = b,(v,w) # 0. Replacing v by a~'v, we may assume that a = 1. Let W = Fv & Fuw.
Then v, w — p(w)v is a hyperbolic pair. O

We say that any isotropic regular quadratic form splits off a hyperbolic plane.

If K/F is a field extension let ¢ be the quadratic form on Vi defined by ¢ (z®v) :=
z*p(v) for all € K and v € V with polar form by, := (b,)x. Although (rad b,)s
rad(by)x, we only have (rad ¢)x C rad(¢x) with inequality possible.

REMARK 7.15. If K/F is a field extension and ¢ a quadratic form over F' then ¢ is
regular if ¢ is.

The following is a useful observation. The proof analogous to that for Lemma 1.22
shows:

LEMMA 7.16. Let ¢ be an anisotropic quadratic form over F. If K/F is purely tran-
scendental then pk is anisotropic.

To define non-degeneracy, we use the following lemma.

LEMMA 7.17. Let o be a quadratic form on V. Then the following are equivalent:

(1) @x is reqular for every field extension K/F.
(2) @k is reqular over an algebraically closed field K containing F.
(3) ¢ is regular and dimrad b, < 1.

PROOF. (1) = (2) is trivial.

(2) = (3): As (rad(¢))x C rad(¢x) = 0, we have radp = 0. To show the second
statement, we may assume that F' is algebraically closed. As ¢[radp, = Plradb,/rade 1S
anisotropic and over an algebraically closed field any quadratic form of dimension greater
than one is isotropic, dimrad b, < 1.

(3) = (1): Suppose that rad(¢x) # 0. Then rad(¢x) = rad(b,,) = (rad(b,))x is
one dimensional. Let 0 # v € radb,. Then v € rad(ypk) hence ¢(v) = 0 contradicting
rad ¢ = 0. O

DEFINITION 7.18. A quadratic form ¢ over F'is called non-degenerate if the equivalent
conditions of the lemma are satisfied.

REMARK 7.19. If K/F is a field extension then ¢ is non-degenerate if and only if ¢
is non-degenerate by Lemma [7.17.

This definition of a non-degenerate quadratic form agrees with the one given in [39].
It is different than that found in some other texts. The geometric characterization of this
definition of non-degeneracy explains our definition. In fact, if ¢ is a quadratic form on
V' of dimension at least two then the following are equivalent:

(1) The quadratic form ¢ is non-degenerate.

added
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(2) The projective quadric X,, associated to ¢ is smooth. (Cf. Proposition 22.1.)
(3) The even Clifford algebra Cy(¢) of ¢ is separable (i.e., is a product of finite
dimensional simple algebras each central over a separable field extension of F').
(Cf. Proposition [11.6.)
(4) The group scheme SO(y) of all isometries of ¢ identical on rad ¢ is reductive
(semi-simple if dim ¢ > 3 and simple if dim ¢ > 5). (Cf. [39], Chapter VI.)
PROPOSITION 7.20. (i) The form (a) is non-degenerate if and only if a € F*.
(ii) The form [a,b] is non-degenerate if and only if 1 — 4ab # 0. In particular this binary
quadratic form as well as its polar form is always non-degenerate if char F' = 2.
(iii) Hyperbolic forms are non-degenerate.

(iv) Ewvery binary isotropic non-degenerate quadratic form is isomorphic to H.

PROOF. (i) and (iii) are clear.

(ii) This follows by computing the determinant of the matrix representing the polar form
corresponding to [a,b]. (Cf. Notation [7.4.)

iv) follows by Proposition [7.14. O
(iv) y Prop

REMARK 7.21. Let char F' # 2. Let ¢ and ¢ be quadratic forms over F.

(1) The form ¢ is non-degenerate if and only if ¢ is regular.
(2) If ¢ and 9 are both non-degenerate then ¢ L 1 is non-degenerate as b, , =
b, L by.
REMARK 7.22. Let char F = 2. Let ¢ and ¢ be quadratic forms over F'.
(1) If dim¢ is even then ¢ is non-degenerate if and only if its polar form b, is
non-degenerate.

(2) If dim ¢ is odd then ¢ is non-degenerate if and only if dimrad b, = 1 and ¢|;aqs,
is nonzero.

(3) If ¢ and 9 are non-degenerate quadratic forms over F at least one of which is of
even dimension then ¢ 1 v is non-degenerate.
The important analogue of Proposition 1.7 is immediate:
PROPOSITION 7.23. Let ¢ be a quadratic form on'V. Let W be a vector subspace such
that by, is a non-degenerate bilinear form. Then p|w is non-degenerate and ¢ = @|w L
olwr. In particular, (¢lw)t = o|lwe

Let ¢; be a quadratic form on V; for ¢« = 1,2. Then their external orthogonal sum is
defined by ¢ := ¢1 L w9 on Vi [[ V5 given by
P((v1,v2)) 1= @1(v1) + P2(v2)
for all v; € Vi, i = 1,2. Note that by, 14, = by, L by,.

EXAMPLE 7.24. Suppose char F' = 2 and a,b,c € F. Let ¢ = [c,a] L [c,

{e, f.€/, f'} be a basis for V,, such that p(e) = ¢ = @(€), ¢(f) = a, p(f') =
b,(e, f) =1="b(e, f'). Then in the basis {e, f + f',e + €', f'}, we have

¢~ [c,al L[e,b] ~[c,a+b] L H
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by Example 7.6.

If n is a non-negative integer and ¢ is a quadratic form over F', we let
np:=¢plL---1Lp.
—_———
n

In particular, if n is an integer, we do not interpret nyp with n viewed in the field. For
example, if V' is an n-dimensional vector space, H(V') ~ nH.

We denote (ay), L -+ L (a,), by
(a1,...,an)q or simply (aq,...,an,).

So ¢ >~ (ay,...,ay) if and only if V,, has an orthogonal basis. If V,, has an orthogonal
basis, we say ¢ is diagonalizable.

REMARK 7.25. Suppose that char FF = 2 and ¢ is a quadratic form over F'. Then ¢
is diagonalizable if and only if ¢ is totally singular, i.e., its polar form b, = 0. If this is
the case then every basis for V,, is orthogonal. In particular, there are no diagonalizable
non-degenerate quadratic forms of dimension greater than one.

EXERCISE 7.26. A quadratic form ¢ is diagonalizable if and only if ¢ = ¢, for some
symmetric bilinear form b.

EXAMPLE 7.27. Suppose that char F' # 2. If a € F* then (a, —a) ~ H.

ExampLE 7.28. (Cf. Example 1.11l) Let char ' = 2 and ¢ = (1,a) with a # 0. If
{e, f} is the basis on V,, with p(e) = 1 and ¢(f) = a then computing on the orthogonal
basis {e,ze + yf} with z,y € F, y # 0 shows ¢ ~ (1, 2% + ay?). Consequently, (1,a) ~
(1,b) if and only if b = 2% + ay?® with y # 0.

PROPOSITION 7.29. Let ¢ be an 2n-dimensional non-degenerate quadratic form on V.
Suppose that V' contains a totally isotropic subspace W of dimension n. Then ¢ ~ nH.
Conversely, every hyperbolic form of dimension 2n contains a totally isotropic subspace
of dimension n.

PROOF. Let 0 # v € W. Then by Proposition [7.14 there exists a two dimensional
subspace V; of V' containing v with |y, a non-degenerate subform isomorphic to H. By
Proposition [7.23), this subform splits off as an orthogonal summand. Since ¢|y, is non-
degenerate, W NV} is one dimensional, so dim WNV;- = n—1. The first statement follows
by induction applied to the totally isotropic subspace W N Vi of V. The converse is
easy. U

We turn to splitting off anisotopic subforms of regular quadratic forms. It is convenient
to write these decompositions separately for fields of characteristic two and not two.

PROPOSITION 7.30. Let char F' # 2 and let ¢ be a quadratic form on V. Then there
exists an orthogonal basis for V. In particular, there exist one dimensional subspaces
V,cV,1<i<n for some n and an orthogonal decomposition

© = Plrads, L @l L -+ L oly,
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with plv, ~ (a;), a; € F* for all 1 <i <mn. In particular
e ~r(0) L {(ay,...,a,)
with r = dimrad b,.

Proor. We may assume that ¢ # 0. Hence there exists an anisotropic vector 0 #
v € V. As by, is non-degenerate, ¢|p, splits off as an orthogonal summand of ¢ by
Proposition [7.23. The result follows easily by induction. U

COROLLARY 7.31. Suppose that char F' # 2. Then every quadratic form over F is
diagonalizable.

PROPOSITION 7.32. Let char F' = 2 and let ¢ be a quadratic form on V. Then there
exists two dimensional subspaces V; C'V, 1 <t <n for somen, a subspace W C rad b,
and an orthogonal decomposition

© = Plrad(p) L elw L oly, L+ Loy,

with |y, =~ [a;,b;] non-degenerate, a;,b; € F for all 1 < i < n. Moreover, plw is
anisotropic, diagonalizable, and is unique up to isometry. In particular,

©~7r(0) L {c1,...,cs) L]ar,b1] L -+ L [ay,by]
with r = dimrad ¢ and s =dim W and ¢; € F*,1 <i <s.

PRrOOF. Let W C V be a subspace such that radb, = rade @ W and V' C V be
a subspace such that V' = radb, @ V'. Then ¢ = @l L @lw L ¢ly. The form
¢|w is diagonalizable as b, = 0 and anisotropic as W Nrad¢ = 0. By Lemma [7.13,
the form ¢|w = (¢lradp,)|lw is unique up to isometry. So to finish we need only show
that ¢|y is an orthogonal sum of non-degenerate binary subforms of the desired isometry
type. We may assume that V' # {0}. Let 0 # v € V'. Then there exists 0 # v € V'
such that ¢ = b,(v,v") # 0. Replacing v' by ¢~ !¢/, we may assume that b,(v,v') = 1. In
particular, ¢|puary =~ [p(v), p(v)]. As [p(v), @(v")] and its polar form are non-degenerate
by Proposition [7.20, the subform ¢|p,qry is an orthogonal direct summand of ¢ by
Proposition [7.23. The decomposition follows by Lemma [7.13 and induction. (l

ExAMPLE 7.33. Suppose that I’ is quadratically closed of characteristic two. Then
every anisotropic form is isometric to 0, (1) or [1,a] with a € F'\ p(F') where p: FF — F
is the Artin-Schreier map.

EXERCISE 7.34. Every non-degenerate quadratic form over a separably closed field F'
is isometric to nH or (a) L nH for some n > 0 and a € F*.

8. Witt’s Theorems

As with the bilinear case, the classical Witt theorems are more delicate to ascertain
over fields of arbritrary characteristic. We shall give characteristic free proofs of these.
The basic Witt theorem is the Witt Extension Theorem (cf. Theorem 8.3 below). We
construct the quadratic Witt group of even dimensional anisotropic quadratic forms and
use the Witt theorems to study this group.
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To get further decompositions of a quadratic form, we need generalizations of the
classical Witt theorems for bilinear forms over fields of characteristic different from two.

Let ¢ be a quadratic form on V. Let v and ¢" in V satisfy ¢(v) = ¢(v'). If the vector
v = v — v is anisotropic then the reflection (cf. Example [7.3) 75 : ¢ — ¢ satisfies

(8.1) (v) =0,
What if v is isotropic?

LEMMA 8.2. Let ¢ be a quadratic form on V with polar form b. Let v and v’ lie in
V and v = v —v'. Suppose that p(v) = p(v') and p(v) = 0. If w € V is anisotropic and
satisfies both b(w,v) and b(w,v") are nonzero then the vector w' = v—7,(v') is anisotropic
and (Ty 0 Ty ) (V) = V.

PROOF. As w' =0+ b(v/, w)p(w) 1w, we have
p(w') = @(v) +b(D, b, w)p(w)'w) + bV, w)*p(w) ™
= b(v,w)b(v, w)p(w)™! £ 0.
It follows from (8.1) that 7,/ (v) = 7,(v") hence the result. O

THEOREM 8.3. (Witt Extension Theorem) Let ¢ and ¢’ be isometric quadratic forms
onV and V' respectively. Let W C V and W' C V' be subspaces such that W Nrad b, = 0
and W' Nradby = 0. Suppose that there is an isometry o : plw — ¢'|wr. Then there
exists an isometry & : ¢ — ¢’ such that (W) = W' and &|lw = a.

PrOOF. It is sufficient to treat the case V' =V’ and ¢ = ¢’. Let b denote the polar
form of ¢. We proceed by induction on n = dim W, the case n = 0 being obvious.
Suppose that n > 0. In particular, ¢ is not identically zero. Let u € V satisfy ¢(u) # 0.
As dim W N (Fu)* > n — 1, there exists a subspace Wy C W of codimension one with
Wy C (Fu)*. Applying the induction hypothesis to 8 = a|w, : ¢|lw, — @la(w), there
exists an isometry (3 : ¢ — ¢ satisfying 5(Wo) = a(W,) and B|W() = (. Replacing W' by
B~HW’), we may assume that Wy C W’ and a/y, is the identity.

Let v be any vector in W\ W, and set v' = a(v) € W’. It suffices to find an isometry
v of ¢ such that v(v) = v" and |, = Id. Let v = v — v’ as above and S = W3-. Note
that for every w € Wy, we have a(w) = w, hence

b(v,w) = b(v,w) — b(a(v),a(w)) =0,
ie,veSs.

Suppose that ¢(v) # 0. Then 73(v) = v" using (8.1). Moreover, 75(w) = w for every
w € Wy as 0 is orthogonal to Wy. Then v = 7; works. So we may assume that ¢(v) = 0.
We have

0= p(0) = @(v) = b(v,v') + (v) = b(v,v) — b(v,v') = b(v,0),
i.e., v is orthogonal to v. Similarly, v is orthogonal to v'.

By Proposition 1.6, the map Iy : V — W is surjective. In particular, there exists
u € V such that b(u, W) = 0 and b(u,v) = 1. In other words, v is not orthogonal to
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S, i.e., the intersection H = (Fv)+ NS is a subspace of codimension one in S. Similarly,
H' = (Fv')t NS is also a subspace of codimension one in S. Note that v € H N H'.

Suppose that there exists an anisotropic vector w € S such that w ¢ H and w ¢ H'.

By Lemma 8.2, we have (7, o 1) (v) = v/ where

w =v—71,(v) =0+ bV, w)p(w) w e S.
As w,w’ € S, the map 7, o T,y is the identity on Wj. Setting v = 7, o 7,y produces the
desired extension. Consequently, we may assume that p(w) = 0 for every w € S\ (HUH").

Case 1: |F| > 2:

Let wy € HNH' and wy € S\ (HUH'). Then aw; +we € S\ (HU H') for any a € F so
by assumption

0 = p(aw; +wy) = a’p(wr) + ab(wy, wa) + (ws).

Since |F| > 2, we must have g(w;) = b(wy,we) = p(wy) = 0. So p(HNH') = 0,
e(S\(HUH')) =0 and HNH' is orthogonal to S\ (H U H’), (i.e., b(z,y) = 0 for
alz €e HNH andy € S\ (HUH")).

Let we Hand w' € S\ (HUH’). As |F| > 2, we see that w+aw’ € S\ (HU H’) for
some a € F. Hence the set S\ (HUH') generates S. Consequently, HNH’ is orthogonal to
S. In particular, b(v,S5) = 0. Thus H = H'. It follows that p(H) =0 and ¢(S\ H) =0,
hence ¢(S) = 0, a contradiction. This finishes the proof in this case.

Case 2: F =Fy:

As HU H' # S, there exists a w € S such that b(w,v) # 0 and b(w,v’) # 0. As F' = Fy,
this means that b(w,v) = 1 = b(w,v"). Moreover, by our assumptions ¢(v) = 0 and
@(w) = 0. Consider the linear map

v: V=V by ~v)=z+b0z)w+bw,z)v.
Note that b(w, v) = b(w,v)+b(w,v") = 141 = 0. A simple calculation shows that v* = Id
and ¢(v(x)) = ¢(z) for any € V, i.e., v is an isometry. Moreover, y(v) = v + 0 = v'.
Finally, v|w, = Id since w and v are orthogonal to W,. O

THEOREM 8.4. (Witt Cancellation Theorem) Let ¢, ¢’ be quadratic forms onV and V'
respectively and 1, Y’ quadratic forms on W and W' respectively with rad b, = 0 = rad by .
If

o Ly~¢ LY andp ~'
then o ~ ¢'.

PROOF. Let f: ¢ — ¥’ be an isometry. By the Witt Extension Theorem, this extends
to an isometry f : o L ¢ — ¢ L. As f takes V = Wt to V' = (W), the result
follows. O

Witt Cancellation together with our previous computations allows us to derive the
decomposition that we want.

THEOREM 8.5. (Witt Decomposition Theorem) Let ¢ be a quadratic form on' V. Then
there exist subspaces Vi and Vo of V' such that ¢ = ¢laa, L @lvi L @lv, with |y,
anisotropic and |y, hyperbolic. Moreover, |y, and p|y, are unique up to isometry.
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Proor. We know that ¢ = ¢|aa, L @|yr with ¢y on V' unique up to isometry.
Therefore, we can assume that ¢ is regular. Suppose that ¢y~ is isotropic. By Proposition
7.14, we can split off a subform as an orthogonal summand isometric to the hyperbolic
plane. The desired decomposition follows by induction. As every hyperbolic form is non-
degenerate, the Witt Cancellation Theorem shows the uniqueness of ¢y, up to isometry
hence ¢ly, is unique by dimension count. U

DEFINITION 8.6. Let ¢ be a quadratic form on V and ¢ = ¢|raa, L |y, L @|v, be
the decomposition in the theorem. The anisotropic form ¢ly,, unique up to isometry,
will be denoted ., on the space V,,,, and be called the anisotropic part of ¢. As py, is
hyperbolic, dim V5 = 2n for some unique non-negative number n. The integer n is called
the Witt index of ¢ and denoted by ig(p). We say that two quadratic forms ¢ and 1 are
Witt equivalent and write ¢ ~ 9 if dimrad ¢ = dimrad and @,, ~ ¥,,. Equivalently,
@ ~ 1 if and only if ¢ L nH ~ ¢ 1 mH for some n and m.

Note that if ¢ ~ 1 then ¢ ~ 1 for any field extension K/F.

Witt cancellation does not hold in general for non-degenerate quadratic forms in char-
acteristic two. We show in the next result, Proposition 8.8, that

(8.7) [a,b] L (a) ~H L {(a)
if char F' = 2 for all a,b € F with a # 0. But [a,b] ~ H if and only if [a, b] is isotropic by

Proposition[7.20(iv). Although Witt cancellation does not hold in general in characteristic
two, we do have:

PROPOSITION 8.8. Let p be a non-degenerate quadratic form of even dimension over
a field F' of characteristic 2. Then p L (a) ~ (a) for some a € F* if and only if p ~ |a, b]
for some b € F.

PRrROOF. Let ¢ = [a,b] L (a) with a,b € F and a # 0. Clearly, ¢ is isotropic and it
is non-degenerate as ¢|iaqp, = (a). It follows by Proposition 7.14 that [a,b] L (a) ~ H L
(a) ~ (a). Since p ~ [a, b], we have p L (a) ~ (a).

Conversely, suppose that p L (a) ~ (a) for some a € F*. We prove the statement by
induction on n = dim p. If n = 0 we can take b = 0. So assume that n > 0. We may also
assume that p is anisotropic. By assumption, the form p L (a) is isotropic. Therefore
a € D(p) and we can find a decomposition p = p’ L [a,d] for some non-degenerate form
P’ of dimension n — 2 and b € F. As [a,d] L (a) ~H L (a) by the first part of the proof,
we have

(a) ~pL(a)=p"Lla,d] L (a)~p" L {a).
By the induction hypothesis, p’ =~ [a, ¢] for some ¢ € F. Therefore by Example [7.24,
p=p Lla,d] ~la,c La,d] ~a,c+d LH~ [a,c+d|. O

REMARK 8.9. Let ¢ and v be a quadratic forms over F'.
(1). If ¢ is non-degenerate and anisotropic over F' and K/F a purely transcendental
extension then ¢y remains anisotropic by Lemma [7.16. In particular, io(¢) = io(¢x).
(2). Let a € F*. Then ¢ ~ av if and only if ., ~ atb,, as any form similar to a
hyperbolic form is hyperbolic.
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(3). If char F' = 2, the quadratic form ¢,, may be degenerate. This is not possible if
char F' # 2.

(4). If char F' # 2 then every symmetric bilinear form corresponds to a quadratic form,
hence the Witt theorems hold for symmetric bilinear forms in characteristic different from
two.

LEMMA 8.10. Let ¢ be a reqular quadratic form on V. Let W C V be a totally
isotropic subspace of dimension m. Let 1 be the quadratic form on W+ /W induced by
the restriction of ¢ on W+. Then ¢ ~ 1 L mH.

Proor. As WnNradb, C rad g, the intersection W N rad b, is trivial. Thus the map
V — W* by v — l|w : w — by(v,w) is surjective by Proposition 1.6/ and dim W+ =
dimV — dim W. Let W’ C V be a subspace mapping isomorphically onto W*. Clearly,
WnW ={0}. Lee U=W o W'

We show the form |y is hyperbolic. The subspace W @& W’ is non-degenerate with
respect to b,. Indeed let 0 # v =w+w € W& W'. If w' # 0 there exists a wy € W
such that b, (w',wp) # 0 hence b, (v,wp) # 0. If w’ = 0, there exists w, € W’ such that
b, (w,wy) # 0 hence by, (v, wj) # 0. Thus by Proposition [7.29, the form |y is isometric
to mH where m = dim WW.

By Proposition 7.23, we have ¢ = |y L oly ~ ¢|yr L mH. As W and Ut are
subspaces of W+ and UN W+ = W, we have Wt = W @ U+. Thus W+ /W ~ U~ and
the result follows. 0

PROPOSITION 8.11. Let ¢ be a regular quadratic form on V. Then every totally
isotropic subspace of V' is contained in a totally isotropic subspace of dimension ig(ip).

Proor. Let W C V be a totally isotropic subspace of V. We may assume that it
is a maximal totally isotropic subspace. In the notation in the proof of Lemma [8.10, we
have ¢ = ¢|y1 L |y with ¢|y ~ mH where m = dim W. The form ¢|;;1 is anisotropic
by the maximality of W hence must be ¢, by the Witt Decomposition Theorem 8.5. In
particular, dim W = ig(¢p). O

COROLLARY 8.12. Let ¢ be a reqular quadratic form on'V'. Then every totally isotropic
subspace W of V' has dimension at most io(p) with equality if and only if W is a mazimal
totally isotropic subspace of V.

Let p be a non-degenerate quadratic form and ¢ a subform of p. If b, is non-degenerate
then p = ¢ 1L ot hence p L (—p) ~ p*. However, in general, p # ¢ L pt. We do always
have:

LEMMA 8.13. Let p be a non-degenerate quadratic form of even dimension and let ¢

be a reqular subform of p. Then p L (—p) ~ ¢*.

PRrROOF. Let W be the subspace W = {(v,v) | v € V,,} of V,®V,,. Clearly W is totally
isotropic with respect to the form p L (—¢) on V, @ V,,. By the proof of Lemma [8.10, we
have dim W+ /W = dimV, &V, — 2dim W = dim V, — dim V,. By Remark [7.11}, we also
have dim V- = dim V,, — dim V,,. It follows that the linear map W+=/W — V_- defined by
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(v,v') = v — v’ is an isometry. On the other hand, by Lemma 8.10, the form on W+ /W
is Witt equivalent to p L (—¢). O

Let V and W be vector spaces over F. Let b be a symmetric bilinear form on W and
¢ be a quadratic form on V. The tensor product of b and ¢ is the quadratic form b ® ¢
on W ®@p V defined by

(8.14) (b® @) (w®v) =b(w,w) - (v)

for all w € W and v € V' with the polar form of b ® ¢ equal to b ® b,. For example, if
a € F then (a), ® ¢ ~ ap.

ExAaMPLE 8.15. If b is a symmetric bilinear form then ¢, >~ b ® (1),.

LEMMA 8.16. Let b be a non-degenerate symmetric bilinear form over F' and ¢ a non-
degenerate quadratic form over F. In addition, assume that dim ¢ is even if characteristic

of F' is two. Then

(1) The quadratic form b ® ¢ is non-degenerate.
(2) If either ¢ or b is hyperbolic then b ® ¢ is hyperbolic.

PRrROOF. (1): The bilinear form b, is non-degenerate by Remark [7.21l and by Remark
7.22if characteristic of F' is not two or two respectively. By Lemma 2.1, the form b ® b,
is non-degenerate hence so is b ® .

(2): Using Proposition [7.29, we see that Vg, contains a totally isotropic space of dimen-
sion 1 dim(b ® ¢). O

As the orthogonal sum of even dimensional non-degenerate quadratic forms over F is
non-degenerate, the isometry classes of even dimensional non-degenerate quadratic forms
over F' form a monoid under orthogonal sum. The quotient of the Grothendieck group
of this monoid by the subgroup generated by the image of the hyperbolic plane is called
the quadratic Witt group and will be denoted by I,(F'). The tensor product of a bilinear
with a quadratic form induces a W (F')-module structure on /,(F) by Lemma [8.16.

REMARK 8.17. Let ¢ and ¥ be two non-degenerate even dimensional quadratic forms
over F'. By the Witt Decomposition Theorem 8.5,

o~ ifandonlyif ¢=1in [,(F) and dime = dimq.

REMARK 8.18. Let F' — K be a homomorphism of fields. Analogous to Proposition
2.7, this map induces the restriction map

ricpe : L(F) = I,(K).

It is a group homomorphism. If K/F' is purely transcendental, the restriction map is
injective by Lemma [7.16.

Suppose that char ' # 2. Then we have an isomorphism [(F) — [,(F) given by
b — ¢,. We will use the correspondence b — ¢, to identify bilinear forms in W (F') with
quadratic forms. In particular, we shall view the class of a quadratic form in the Witt
ring of bilinear forms when char F' # 2.
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9. Quadratic Pfister Forms I

As in the bilinear case, there is a special class of forms built from tensor products
of forms. If the characteristic of F' is different from two, these forms can be identified
with the bilinear Pfister forms. If the characteristic is two, these forms arise as the tensor
product of a bilinear Pfister form and a binary quadratic form of the type [1, a]. In general,
the quadratic 1-fold Pfister forms are just the norm forms of a quadratic étale F-algebra
and the 2-fold quadratic Pfister forms are just the reduced norm forms of quaternion
algebras. These forms as their bilinear analogue satisfy the property of being round. In
this section, we begin their study.

DEFINITION 9.1. Let ¢ be a quadratic form on V' over F'. Let
D(p) = A{p(v) [v eV, pv) # 0},

the set on nonzero values of ¢ and
Glp) =H{ae F* | ap = ¢},

a group called the group of similarity factors of b. If D(p) = F*, we say that ¢ is
universal. Also set

N D(g) := D(p) U {0}.
We say that elements in D(p) are represented by .
For example, G(H) = F'* (as for bilinear hyperbolic planes) and D(H) = F*. In particu-

lar, if ¢ is an regular isotropic quadratic form over F' then ¢ is universal by Proposition
7.14.

The analogous proof of Lemma [1.14/ shows:
LEMMA 9.2. Let ¢ be a quadratic form. Then

D(p) - G(p) C D(p).
In particular, if 1 € D(p) then G(¢) C D(p).

The relationship between values and similarities of a symmetric bilinear form and the
quadratic form it determines is given by the following.

LEMMA 9.3. Let b a symmetric bilinear form on F and ¢ = ¢y,. Then
(1) D(¢) = D(b).
(2) G(b) C G(p).

PROOF. (1). By definition, ¢(v) = b(v,v) for all v € V.

(2). Let a € G(b) and A : b — ab an isometry. Then p(A(v)) = b(A(v), A(v)) = ab(v,v) =
ap(v) for allv e V. O

A quadratic form is called round if G(¢) = D(y). In particular, if ¢ is round then
D(yp) is a group. For example, any hyperbolic form is round.

A basis example of round forms arises from quadratic F-algebras (Cf. Appendix
§97.B)):
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ExAMPLE 9.4. Let K be a quadratic F-algebra. Then there exists an involution on K
given by x — ¥ and a quadratic norm form ¢ = N given by x — xx (cf. Appendix §97.B).
We have p(zy) = p(z)p(y) for all x,y € K. If € K with p(z) # 0 then 2 € K*. Hence
the map K — K given by multiplication by z is an F-isomorphism and ¢(x) € G(yp).
Thus D(¢) C G(p). As 1 € D(p), we have G(¢) C D(y). In particular, ¢ is round.

Let K be a quadratic étale F-algebra. So K = F, for some a € F. The norm form
N of F, in Example [9.4is denoted by ((a]] and called a quadratic 1-fold Pfister form. In
particular, it is round. Explicitly, we have:

ExaMPLE 9.5. For F, a quadratic étale I’ algebra, we have

(1). (Cf. Example 97.3.) If char F' # 2 then F, = F[j]/(j> — a) with a € F* and the
quadratic form ((a]] = (1, —a), =~ ((a))» ® (1), is the norm form of F,.

(2). (Cf. Example 97.4.) If char F = 2 then F, = F[j]/(j%> + j + a) with a € F and the
quadratic form ((a]] = [1,a] is the norm form of F,. In particular, ({a]] ~ ((z* + = + a]
for any x € F

Let n > 1. A quadratic form isometric to a quadratic form of the type

(ag, . an)] = ({ar, . an 1)) @ {{ay]]

for some ay,...,a,_1 € F* and a, € F (with a, # 0 if char F' # 2) is called a quadratic
n-fold Pfister form. It is convenient to call the form isometric to (1), a 0-fold Pfister form.
Every quadratic n-fold Pfister form is non-degenerate by Lemma 8.16. We let

P,.(F) :={¢]| ¢ a quadratic n-fold Pfister form}

P(F) = P.(F)
GP,(F) :={ap|a € F*, ¢ a quadratic n-fold Pfister form}
GP(F) :=|_JGP.(F).

Forms in GP,(F) are called general quadratic n-fold Pfister forms.

If char I # 2, the form ((aj,...,a,]] is the associated quadratic form of the bi-
linear Pfister form ((ay,...,a,)), by Example 9.5 (1). We shall also use the notation
{{ay,...,a,)) for the quadratic Pfister form ((ay,...,a,]] in this case.

The class of an n-fold Pfister form belongs to
INF) = 1""N(F) - I(F).

As [a,b] = a[l,ab] for all a,b € F, every non-degenerate binary quadratic form is a
general 1-fold Pfister form. In particular, GP;(F) generates I,(F'). It follows that GP,(F)
generates I;'(F) as an abelian group. In fact, as

(9.6) a((b, c]] = ({ab, c]] = ((a, ]

for all a,b € F* and ¢ € F (with ¢ # 0 if char F' # 2), P,(F) generates IJ'(F) as an
abelian group for n > 1.
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Note that in the case that char F' # 2, under the identification of I(F) with I,(F'), the
group I"(F') corresponds to I;'(F) and a bilinear Pfister form ({a1, ..., a,)), corresponds
to the quadratic Pfister form ((ay,...,ay,)).

Using the material in Appendix §97.E, we have the following example.

ExaMPLE 9.7. Let A be a quaternion F-algebra

a,b

(1). (Cf. Example 97.11.) Suppose that char F' # 2. If A = then reduced

quadratic norm form is equal to the quadratic form (1, —a, —b, ab) = ({(a,b)).

b
(2). (Cf. Example 97.12.) Suppose that char F' = 2. If A = al; then reduced quadratic

norm form is equal to the quadratic form [1,ab] L [a,b]. This form is hyperbolic if a = 0
and is isomorphic to (1, a), ® [1,ab] = ((a, ab]] otherwise.

EXAMPLE 9.8. Let L/F be a separable quadratic field extension and Q = L & Lj a
quaternion F-algebra with j2 = b € F* (cf. 97.E). For any ¢ = [ +{'j € Q, we have
Nrdg(q) = Np(I) = bNL(I"). Therefore, Nrdg ~ ((b)) ® N.

PROPOSITION 9.9. Let ¢ be a round quadratic form and a € F*. Then

(1) The form ((a)) ® ¢ is also round.
(2) If ¢ is regular then the following are equivalent:
(1) {{a)) ® ¢ is isotropic.
(17) ((a)) ® @ is hyperbolic.
(1ii) a € D(yp).
PROOF. Set ¢ = ((a)) ® ¢.

(1). Since 1 € D(yp), it suffices to prove that D(¢)) C G(). Let ¢ be a nonzero value of 1.

Write ¢ = & — ay for some x,y € D(p). If y =0, we have c =z € D(p) = G(p) C G(¥).
Similarly, y € G(¢) if z = 0 hence ¢ = —ay € G(¢) as —a € G({{a))) C G(¢).

Now suppose that = and y are nonzero. Since ¢ is round, z,y € G(¢) and therefore

b= L(-ap) = ¢ L (-ayz™ )y = ((ayz™")) ® ¢.
By Example 9.4, we know that 1 — ayz™ € G(({ayz™"))) C G(¢b). Since z € G(p) C
G(v), we have ¢ = (1 — ayz™ ")z € G(v).

(2). (i) = (4i7): If v is isotropic then ¢ is universal by Proposition [7.14. So suppose that
© is anisotropic. Since ¥ = ¢ L (—ayp) is isotropic, there exist z,y € D(p) such that
x —ay = 0. Therefore a = zy~' € D(p) as D(yp) is closed under multiplication.

(i13) = (i1): As ¢ is round, a € D(p) = G(¢) and ({a)) ® ¢ is hyperbolic.
(17) = (i) is trivial. O
COROLLARY 9.10. Quadratic Pfister forms are round.

COROLLARY 9.11. A quadratic Pfister form is either anisotropic or hyperbolic.
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PROOF. Suppose that ¢ is an isotropic quadratic n-fold Pfister form. If n = 1 the
result follows by Proposition [7.20(iv). So assume that n > 1. Then ¢ = ({a)) ® ¢ for a
Pfister form ¢ and the result follows by Proposition 9.9. O

Let char FF = 2. We need another characterization of hyperbolic Pfister forms in this
case. Let p : F' — F defined by p(z) = 2? +x be the Artin-Schreier map. (Cf. Appendix
§97.B.) For a quadratic 1-fold Pfister form we have ((d]| is hyperbolic if and only if
d € Im p by Example [97.4. More generally, we have:

LEMMA 9.12. Let b be an anisotropic bilinear Pfister form and d € F. Then b ® ((d]]
is hyperbolic if and only if d € Im p + D(b').

PROOF. Suppose that b ® ((d]] is hyperbolic and therefore isotropic. Let {e, f} be
the standard basis of ((d]]. Let v ® e +w ® f be an isotropic vector of b @ ((d]] where
v,w € Vp. We have a4+ b+ ¢d = 0 where a = b(v,v), b= b(v,w) and ¢ = b(w, w).

As b is anisotropic, we have w # 0, i.e., ¢ # 0. Suppose first that v = sw for some
s€F. Then0=a+b+cd=c(s*+ s+d), hence d = s* + s € Im p.

Now suppose that v and w generate a 2-dimensional subspace W of V. The determi-
nant of bly is equal to zF*? where x = b* + bc + ¢*d. Hence b|y ~ c¢((x)) by Example
1.11. As c € D(b) = G(b) by Corollary [6.2, the form ({z)) is isomorphic to a subform of
b. By the Bilinear Witt Cancellation Theorem [1.29, we have (x) is a subform of b’, i.e.,
x € D(b'). Hence (b/c)? + (b/c) +d = z/c* € D(b') and therefore d € ITm p + D(b’).

Conversely, let d = z + y where 2 € Imp and y € D(b'). If y = 0 then ((d]] is
hyperbolic hence so is b® ((d]]. So suppose that y # 0. By Lemma 6.11] there is a bilinear

Pfister form ¢ such that b ~ ¢ ® ((y)). Therefore b ® ((d]] ~ ¢ ® ((y,d)) is hyperbolic as
({y,d]] ~ ((y, y]] by Example 97.4/ which is hyperbolic. O

If ¢ is a non-degenerate quadratic form over F' then the annihilator of ¢ in W (F)
annyy () () := {c € W(F) [ ¢- 9 =0}

is an ideal. When ¢ is a Pfister form this ideal has the structure that we had when ¢ was
a bilinear anisotropic Pfister form. Indeed the same proof yielding Proposition 6.22/ and
Corollary 6.23 shows:

THEOREM 9.13. Let ¢ be anisotropic quadratic Pfister form. Then annw g (p) is
generated by binary symmetric bilinear forms ((x))y with x € D(p).

As in the bilinear case, if ¢ is 2-dimensional, we obtain stronger results. Indeed the
same proofs for the corresponding results show

LEMMA 9.14. (Cf. Lemma [6.24.) Let ¢ be a binary anisotropic quadratic form over
F and ¢ an anisotropic bilinear form over F' such that ¢ ® @ is isotropic. Then ¢ ~0 L e
for some binary bilinear form d annihilated by ¢ and bilinear form e over F.

PROPOSITION 9.15. (Cf. Proposition 6.25.) Let ¢ be a binary anisotropic quadratic
form over F' and ¢ an anisotropic bilinear form over F'. Then there exist bilinear forms
¢1 and ¢y over F such that ¢ >~ ¢; L ¢ with ¢o ® ¢ anisotropic and ¢ ~ 0y L --- L 9,
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where each ¥; is a binary bilinear form annihilated by . In particular, —detd; € D(p)
for each 1.

COROLLARY 9.16. (Cf. Corollary 6.26.) Let ¢ be a binary anisotropic quadratic form
over F' and ¢ an anisotropic bilinear form over F' annihilated by b. Thenc¢~0, L --- 1L 0,
for some binary bilinear forms 0; annihilated by b for 1 <1 < n.

10. Totally Singular Forms

Totally singular forms in characteristic different from two are zero forms but in char-
acteristic two they become interesting. In this section, we look at totally singular forms
in characteristic two. In particular, throughout most of this section, char F' = 2.

Let char F' = 2. Let ¢ be a quadratic form over F. Then ¢ is totally singular form
if and only if it is diagonalizable. Moreover, if this is the case, then every basis of V,, is

orthogonal by Remark [7.25. In particular, D(ip) is a vector space over the field FZ.
We investigate the F-subspace (D(p))Y2 of F¥/2. Define an F-linear map
f: Vo = (D(@))"? given by f(v) = v/p(v).

Then f is surjective and ker(f) = rad ¢. Let ¢ be the quadratic form on (5(90)) over
F defined by ¢(y/a) = a. Clearly ¢ is anisotropic. Consequently, if @ is the quadratic
form induced on V,,/rad ¢ by ¢ then f induces an isometry between ¢ and . Moreover

1/2

© ™~ Qan. Therefore, if char F' = 2, the correspondence ¢ +— D(y) gives rise to a bijection

[sometry classes of totally singular ~ Finite dimensional
anisotropic quadratic forms F2-subspaces of F

Moreover, for any totally singular quadratic form ¢, we have
dim ¢,, = dim D(¢)
and if ¢ and 9 are two totally singular quadratic forms then

¢ ~1 if and only if D(p) = D(¢) and dim¢ = dim .
We also have D(¢ L 1) = D(p) + D(1).

ExampLE 10.1. If F' is a separably closed field of characteristic two, the anisotropic
quadratic forms are diagonalizable hence totally singular.

Note that if b is an alternating bilinear form and v is a totally singular quadratic form
then b ® ¢ = 0. It follows that the tensor product of totally singular quadratic forms
P ®1 = c®1) is well-defined where ¢ is a bilinear form with ¢ = .. The space D(¢ ®1))
is spanned by D(p) - D(3) over F2.

PROPOSITION 10.2. Let char F' = 2. If ¢ is a totally singular quadratic form then
G(p) ={a e F* | aD(p) C D(p)}.
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PROOF. The inclusion ”C” follows from Lemma 9.2, Conversely, let a € F* satisty
aD(p) C D(p). Then the F-linear map g : (D())*? — (D())*/? defined by g(b) = /ab
is an isometry between ¢ and ag. Therefore a € G(¢) = G(y). O

It follows from Proposition [10.2 that G(¢) := G() U{0} is a subfield of F' containing
F? and D(y)) is a vector space over G(y).

It is also convenient to introduce a variant of the notion of Pfister forms in all charac-
teristics. A quadratic form ¢ is called a quasi-Pfister form if there exists a bilinear Pfister
form b with ¢ = ¢y, i.e.,

o= ({ay,...,an))p ® (1), denoted by ((ai,...,a)),

for some aq,...,a, € F*. If char F # 2 then the classes of quadratic Pfister and quasi-
Pfister forms coincide. If char I’ = 2 every quasi-Pfister form is totally singular. Quasi-
Pfister forms have some properties similar to those for quadratic Pfister forms.

COROLLARY 10.3. Quasi-Pfister forms are round.

PROOF. Let b be a bilinear Pfister form. As (1), is a round quadratic form the form
b ® (1), is round by Proposition [9.9. O

REMARK 10.4. Let char F' = 2. Let p = ((a1, ..., a,)), be an anisotropic quasi-Pfister

form. Then D(p) is equal to the field F2(ay, ..., a,) of degree 2" over F2. Conversely
every field K such that F? C K C F with [K : F?] = 2" is generated by n elements and

therefore K = D(p) for an anisotropic n-fold quasi-Pfister form p. Thus we get a bijection

[sometry classes of anisotropic Fields K with F2Cc K C I
n-fold quasi-Pfister forms and [K : F?] = 2"

12

Let ¢ be an anisotropic totally singular quadratic form. Then K = é(gp) is a field with
K - D(p) C D(p). We have [K : F?] < oo and D(y) is a vector space over K. Let
bi,...,by, be a basis of D(¢) over K and set ¢ = (by,...,b,),. Choose an anisotropic

n-fold quasi-Pfister form p such that D(p) = G(¢). As D(¢p) is the vector space spanned
by K - D() over F? we have ¢ ~ p ® 1. In fact, p is the largest quasi-Pfister divisor of

®.
11. The Clifford Algebra

To each quadratic form ¢ one associates a Z/2Z-graded algebra by factoring the
tensor algebra on V,, by the relation ¢(v) = v?. This algebra, called the Clifford Algebra
generalizes the exterior algebra. In this section, we study the basic properties of Clifford
algebras.

Let ¢ be a quadratic form on V' over F. Define the Clifford algebra of ¢ to be the
factor algebra C(¢p) of the tensor algebra T'(V') = [[,,~, V" modulo the ideal I generated
by (v ® v) — p(v) for all v € V. We shall view vectors in V' as elements of C(p) via the
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natural F-linear map V' — C(p). Note that v* = ¢(v) in C(p) for every v € V. The
Clifford algebra of ¢ has a natural Z/2Z-grading

C(p) = Co(p) © Ci(p)

as I is homogeneous if degree is viewed modulo two. The subalgebra Cy(y) is called the
even Clifford algebra of p. We have dim C(p) = 24m¢ and dim Cy(p) = 24me=1 If K/F
is a field extension C(pg) = C(¢)k and Cy(¢r) = Co(p)k.

LEMMA 11.1. Let ¢ be a quadratic form on'V over F with polar form b. Letv,w € V.
Then b(v,w) = vw + wv in C(p). In particular, v and w are orthogonal if and only if
vw = —wv in C(p).

Proor. This follows from the polar identity. 0

ExampLE 11.2. (1) The Clifford algebra of the zero quadratic form on V' coincides
with the exterior algebra A V.

(2) Co(a)) = F.
(3) If char F' # 2 then the Clifford algebra of the quadratic form (a, b) is C'({a, b)) = <a],:b)
and Co((a,b)) = F_q. In particular, Co({(b))) = F.

a],:b} and Cy([a,b]) = F,. In particular, Co(((0]]) = F.

By the construction, the Clifford algebra satisfies the following universal property:

(4) If char F' = 2 then C(]a, b]) = {

For any F-algebra A and any F-linear map f : V' — A satisfying f(v)? = p(v) for
all v € V, there exists a unique F-algebra homomorphism f : C(¢) — A such that
f(v) = f(v) forallv e V.

ExAMPLE 11.3. Let C'()° denote the Clifford algebra of ¢ with the opposite multipli-
cation. The canonical linear map V' — C(¢)° extends to an involution ~: C(p) — C(yp)
given by the algebra isomorphism C(¢) — C(p). Note that if x = vyvy---v, then
T = Uy -+ V1.

PROPOSITION 11.4. Let ¢ be a quadratic form on V over F and let a € F*. Then
(1) Colap) ~ Cy(yp), i.e., the even Clifford algebras of similar quadratic forms are
isomorphic.
(2) Let ¢ = (a) L . Then Cy(p) ~ C(—arh).

PROOF. (1). Set K = F[t]/(t?—a) = F@® Ft. Since (v®1)? = p(v)@t* = ap(v)®1 in
C(p)x = C(p) ®p K, there is an F-algebra homomorphism « : C(ap) — C(p)k taking
v €V to v ®t by the universal property of the Clifford algebra ap. Since

(VR @t) = @ =a' @1 € Cp) C CY)k,
the map « restricts to an F-algebra homomorphism Cy(ap) — Co(p). As this map is
clearly a surjective map of algebras of the same dimension, it is an isomorphism.

(2). Let V = Fo® W with p(v) =a and W C (Fv)*t. Since

(v0)? = PP = —p(0)b(w) = ~atb(w)
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for every w € W, the map W — Cy(p) defined by w — vw extends to an F-algebra
isomorphism C(—a)) = Cy(p) by the universal property of Clifford algebras. O

Let ¢ be a quadratic form on V over F. Applying the universal property of Clifford
algebras to the natural linear map V. — V/radb, — C(¢), where ¢ is the induced
quadratic form on V/rad b, we get a surjective F-algebra homomorphism C(¢) — C(g)
with kernel rad(b,)C(¢). Consequently, we get canonical isomorphisms

C(p) = C(p)/ rad(by)C (),
Co(p) = Co()/ rad(by)Cr()-
EXAMPLE 11.5. Let ¢ = H(W) be the hyperbolic form on the vector space V =
W @ W*. Then
C(p) ~ Endp(/\ W),

where the exterior algebra \ W of V' is considered as a vector space (Cf. [39], Proposition
8.3). Moreover,

Co(¢) = Endp( /\0 W) x Endg( /\1 W),

where A\, W = @iso A* W and A\, W = @iz0 A*"' W with W a nonzero vector space.
In particular, C(¢p) is a split central simple F-algebra and the center of Cy(¢) is the split
quadratic étale F-algebra F' x F. Note also that the natural F-linear map V' — C(yp) is
injective.

PROPOSITION 11.6. Let ¢ be a quadratic form over F.

(1) If dim ¢ > 2 is even then the following conditions are equivalent:

(a) ¢ is non-degenerate.

(b) C(yp) is central simple.

(c) Colyp) is separable with center Z(y) a quadratic étale quadratic algebra.
(2) If dim @ > 3 is odd then the following conditions are equivalent:

(a) ¢ is non-degenerate.

(b) Co(p) is central simple.

PROOF. We may assume that F' is algebraically closed. Suppose first that ¢ is non-
degenerate and even dimensional. Then ¢ is hyperbolic, and by Example11.5, the algebra
C(¢p) is a central simple F-algebra and Cy(yp) is a separable F-algebra whose center is the
split quadratic étale F-algebra F' x F.

Conversely, suppose that the even Clifford algebra Cy(¢p) is separable or C'(y) is central
simple. The ideals I = rad(b,)Ci(¢) in Cy(p) and J = rad(b,)C(¢) in C(p) satisfy
I? = 0 = J? Consequently, I = 0 or J = 0 as Cy(p) is semi-simple or C(y) is central
simple and therefore rad(b,) = 0. Thus ¢ is non-degenerate.

Now suppose that dim ¢ is odd. Write ¢ = (a) L @ for some a € F and an even
dimensional form . Let v € V, be a nonzero vector satisfying ¢(v) = a and v is
orthogonal to V;;. If ¢ is non-degenerate then a # 0 and 1 is non-degenerate. It follows
from Proposition [11.4(2) and the first part of the proof that the algebra Cy(¢) ~ C'(—at))
is central simple.
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Conversely, suppose that the algebra Cy(p) is central simple. As dimy > 3, the
subspace I := vC(p) of Cy(yp) is nonzero. If a = 0 then [ is a nontrivial ideal of Cy(¢p),
a contradiction to the simplicity of Cy(p). Thus a # 0 and by Proposition [11.4(2),
Co(p) ~ C(—ar). Hence by the first part of the proof, the form 1 is non-degenerate.
Therefore, ¢ is also non-degenerate. U

LEMMA 11.7. Let ¢ be a non-degenerate quadratic form of positive even dimension.
Then yx = zy for every x € Z(p) and y € Cy(p).

PRrROOF. Let v € V,, be an anisotropic vector hence a unit in C(y). Since conjugation
by v on C(¢p) stabilizes Cy(ip), it stabilizes the center of Cy(p), i.e., vZ(p)v™t = Z(p). As
C(¢) is a central algebra, conjugation by v induces a nontrivial automorphism on Z ()
given by x +— Z otherwise C(p) = Cy(p)v and therefore the full algebra C(¢) would
commute with Z(¢). Thus va = zv for all z € Z(¢). Let y € Ci(p). Writing y in
the form y = zv for some z € Cy(p), we have yxr = zvr = zZv = Zzv = Ty for every

x € Z(p). O

COROLLARY 11.8. Let ¢ be a non-degenerate quadratic form of positive even dimen-
sion. If a is a norm for the quadratic étale algebra Z(yp) then C(ap) ~ C(p).

PROOF. Let x € Z(p) satisfy N(x) = a. By Lemma [11.7, we have (vz)? = N(x)v? =
ap(v) in C(y) for every v € V. By the universal property of the Clifford algebra ayp, there
is an algebra homomorphism « : C(ap) — C(p) mapping v to vz. Since both algebras
are simple of the same dimension, « is an isomorphism. O

12. Binary Quadratic Forms and Quadratic Algebras

In the appendices §97.F and §97.B, we review the theory of quadratic and quaternion
algebras. In this section, we study the relationship between these algebras and quadratic
forms.

If A is a quadratic F-algebra, we let N4 denote the quadratic norm form of A (see
Appendix §97.B). Note that N4 is a binary form representing 1.

Conversely, if ¢ is a binary quadratic form over F' then the even Clifford algebra Cy(y)
is a quadratic F-algebra. We have defined two maps

Quadratic — Binary quadratic
F-algebras — forms representing 1

PROPOSITION 12.1. The above two maps induce a bijection on the set of isomorphism
classes of quadratic F'-algebras and the set of isometry classes of binary quadratic forms
representing one. Under this bijection, we have:

(1) Quadratic étale algebras correspond to non-degenerate binary forms.
(2) Quadratic fields correspond to anisotropic binary forms.
(3) Semisimple algebras correspond to reqular binary quadratic forms.

PROOF. Let A be a quadratic F-algebra. We need to show that A ~ Cy(N4). We have
C1(N4) = A. Therefore, the map o : A — Cy(N,) defined by = — 1-z (where dot denotes
the product in the Clifford algebra) is an F-linear isomorphism. We shall show that « is
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an algebra isomorphism, i.e., (1-x)-(1-y) =1-xy for all z,y € A. The equality holds if
x € Fory e F. Since A is 2-dimensional over F, it is suffices to check the equality when
x =y and it does not lie in F. We have 1-z+2-1 = Ng(x+1)—Na(z) = N4(1) = Tra(z),
SO

(1-2)-(1-2)=(1-2) (Tra(z) —2-1) =1 -Tra(x)r —1-Ny(z) =1-2°
as needed.

Conversely, let ¢ be a binary quadratic form on V representing 1. We shall show that
the norm form for the quadratic F-algebra Cy(p) is isometric to ¢. Let vy € V be a
vector satisfying ¢(vg) = 1. Let f : V — Cy(¢p) be the F-linear isomorphism defined by
f(v) = v-vg. The quadratic equation (97.2) for v-vy € Cy(p) in Appendix §97.B becomes

(v-v9)* =v- (b(v,v9) —v-vp) - vp = b(v,v0)(v - vy) — (V)

50 Ny (o) (v - v9) = ¢(v) hence

Neo(p) (f(v)) = Ney(p) (v - v0) = (v),
i.e., f is an isometry of ¢ with the norm form of Cy(y) as needed.

In order to prove that quadratic étale algebras correspond to non-degenerate binary
forms it is sufficient to assume that F' is algebraically closed. Then a quadratic étale
algebra A is isomorphic to F' x F and therefore N4 ~ H. Conversely, by Example [11.5]
Co(H) ~ F x F.

If a quadratic F-algebra A is a field, then obviously the norm form N4 is anisotropic.
Conversely, if N4 is anisotropic, then for every nonzero a € A we have aa = N4(a) # 0,
therefore a is invertible, i.e., A is a field.

Statement (3) follows from Statements (1) and (2), since a quadratic F-algebra is
semisimple if and only if it is either a field or F' x F; and a binary quadratic form is
regular if and only if it is anisotropic or hyperbolic. U

COROLLARY 12.2. (1) Let A and B be quadratic F-algebras. Then A and B are
isomorphic if and only if the norm forms N4 and Ng are isometric.
(2) Let ¢ and v be nonzero binary quadratic forms. Then ¢ and v are similar if and
only if the even Clifford algebras Co(p) and Co()) are isomorphic.

COROLLARY 12.3. Let ¢ be an anisotropic binary quadratic form and let K/F be a
quadratic field extension. Then pg is isotropic if and only if K ~ Cy(y).

Proor. By Proposition 12.1, the form ¢ is isotropic if and only if the 2-dimensional
even Clifford K-algebra Cy(¢x) = Co(p) @ K is not a field. The later is equivalent to

We now consider the relationship between quaternion and Clifford algebras.

PROPOSITION 12.4. Let @) be a quaternion F-algebra and let ¢ be the reduced norm
quadratic form of Q. Then C(p) ~ My(Q).
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PROOF. For every x € @, let m, be the matrix <2 g) in My(Q). Since m? =

x

xZ = Nrd(z) = ¢(z), the F-linear map @ — Mj(Q) defined by = — m, extends to
an F-algebra homomorphism « : C(p) — Msy(Q) by the universal property of Clifford
algebras. As C(yp) is a central simple algebra of dimension 16 = dim M5(Q), the map «
is an isomorphism. 0

COROLLARY 12.5. Two quaternion algebras are isomorphic if and only if their reduced
norm quadratic forms are isomorphic. In particular, a quaternion algebra is split if and
only if its reduced norm quadratic form is hyperbolic.

EXERCISE 12.6. Let @ be a quaternion F-algebra and let ¢’ be the restriction of the
reduced norm quadratic form to the space @' of pure quaternions. Prove that Cy(¢’) is
isomorphic to Q.

13. The Discriminant

A major objective is to define sufficiently many invariants of quadratic forms. The
first, and simplest such invariant is the dimension. In this section, using quadratic étale
algebras, we introduce a second invariant, the discriminant, of a non-degenerate quadratic
form.

Let ¢ be a non-degenerate quadratic form over F' of positive even dimension. The
center Z(¢) of Cy(p) is a quadratic étale F-algebra. The class of Z(¢) in Ety(F), the
group of isomorphisms classes of quadratic étale F-algebras (cf. Appendix §97.B), is
called the discriminant of ¢ and will be denoted by disc(¢). Define the discriminant of
the zero form to be trivial.

ExampLE 13.1. By Example [11.2, we have disc({(a,b)) = F_g if char I’ # 2 and
disc([a, b]) = Fyp if char F' = 2. It follows from Example 11.5 that the discriminant of a
hyperbolic form is trivial.

The discriminant is a complete invariant for the similarity class of a non-degenerate
binary quadratic form, i.e.,

PROPOSITION 13.2. Two non-degenerate binary quadratic forms are similar if and
only if their discriminants are equal.

PROOF. Let disc(p) = disc(v), i.e., Cy(p) ~ Co(vp). Write ¢ = ay’ and ¢ = b/,
where ¢’ and ¢’ both represent 1. By Proposition 12.1, the forms ¢’ and ¢’ are the
norm forms for Cy(¢’) = Co(p) and Cy(v)") = Cy()) respectively. Since these algebras are
isomorphic, we have ' ~ 1. O

COROLLARY 13.3. A non-degenerate binary quadratic form o is hyperbolic if and only
if disc() is trivial.

LEMMA 13.4. Let ¢ and ¥ be non-degenerate quadratic forms of even dimension over
F. Then disc(p L ¥) = disc(p) + disc(v)).



13. THE DISCRIMINANT 55

PROOF. The even Clifford algebra Cy(¢ L v) coincides with (Co(p) @p Co()) @
(C1(p) ®F C1(¢0)) and contains Z(¢) @ Z(¢)). By Lemma 11.7, we have yr = Ty for
every x € Z(p) and y € Cy(p). Similarly, wz = zt for every z € Z(¢) and w € C1(v).
Therefore, the center of Cy(¢ L 1) coincides with the subalgebra Z () Z (1) of all stable

elements of Z(p) @p Z(1¢) under the automorphism x ® y — T ® . O
EXAMPLE 13.5. (1) Let char F' # 2. Then
disc{ay, as, ..., as,) = F,

where ¢ = (—1)"ajay . .. ag,. For this reason, the discriminant is often called the signed
determinant when the characteristic of F' is different from two.

(2) Let char ' = 2. Then
disc([a1,b1] L -+ L [an, b,]) = F.

where ¢ = a1b; + - - - +a,b,. The discriminant in the characteristic two case is often called
the Arf invariant.

PROPOSITION 13.6. Ifdiscp =1 and p L (a) ~ {(a) for some a € F*, then p ~ 0.

PROOF. By Proposition 8.8, we have p ~ [a, b] for some b € F. Therefore disc|a, b] is
trivial and [a,b] ~ 0. O

It follows from Lemma 13.4 and Example 11.5 that the map
ey : I,(F) — Ety(F)
taking a form ¢ to disc(yp) is a well-defined group homomorphism.
The analogue of Proposition 4.13 is true, viz.,
THEOREM 13.7. The homomorphism ey is surjective with kernel I7(F).

PrRoOOF. The surjectivity follows from Example13.1. Since similar forms have isomor-
phic even Clifford algebras, for any ¢ € I,(F) and a € F*, we have e;({({(—a)) - ¢) =
e1(p) + e1(—ayp) = 0. Therefore, e, (I7(F)) = 0.

Let ¢ € I,(F) be a form with trivial discriminant. We show by induction on dim ¢
that p € [ g(F ). The case dim ¢ = 2 follows from Corollary [13.3. Suppose that dim ¢ > 4.
Write p = p L 9 with p a binary form. Let a € F'* be chosen so that the form ¢’ = ap L ¥
is isotropic. Then the class of ¢’ in I,(F) is represented by a form of dimension less than
dim ¢. As disc(g') = disc(yp) is trivial, " € IZ(F) by induction. Since p = ap mod IZ(F),
¢ also lies in IZ(F). O

REMARK 13.8. One can also define a discriminant like invariant for all non-degenerate
quadratic forms. Let ¢ be a non-degenerate quadratic form. Define the determinant det ¢
of ¢ to be det b, in F*/F*? if the bilinear form b, is non-degenerate. If char F' = 2 and
dim ¢ is odd (the only remaining case), define det o to be aF** in F*/F*? where a € F'*
satisfies ¢[raqp, >~ (a).

REMARK 13.9. Let ¢ be a non-degenerate quadratic form with trivial discriminant
over F, ie., ¢ € IZ(F). Then Z(p) ~ F x F, in particular C(yp) is not a division algebra,
i.e., C(p) = My(C(p)) for a central simple F-algebra C*(¢) uniquely determined up to
isomorphism. Moreover, Cy(p) ~ CT(p) x Ct(p).
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14. The Clifford Invariant

A more delicate invariant of a non-degenerate even dimensional quadratic form arises
from its associated Clifford algebra.

Let ¢ be a non-degenerate even dimensional quadratic form over F. The Clifford
algebra C'(¢p) is then a central simple F-algebra. Denote by clif(¢) the class of C(yp) in
the Brauer group Br(F). It follows from Example [11.3| that clif(p) € Bry(F'). We call
clif(¢) the Clifford invariant of .

ExaMPLE 14.1. Let ¢ be the reduced norm form of a quaternion algebra @). It follows
from Proposition 12.4 that clif(¢) = Q.

LEMMA 14.2. Let ¢ and Y be two non-degenerate even dimensional quadratic forms

over F. If disc(y) is trivial then clif (¢ L ) = clif(p) - clif (¢).

PROOF. Let e € Z(¢) be a nontrivial idempotent and set s = e —é = 1 —2e. We have
§=—sand s> =1 and vs = 5v = —sv for every v € V,, by Lemma [11.7. Therefore, in
the Clifford algebra of ¢ L 1, we have (v ® 1+ s @ w)? = ¢(v) + ¢(w) for all v € V,, and
w € V. It follows from the universal property of the Clifford algebra that the F-linear
map V, @V, — C(p) ®p C(¢) defined by v w — v ® 1+ s @ w extends to an F-algebra
homomorphism C(g¢ L ¢) — C(¢) ®p C(¢). This map is an isomorphism as the Clifford
algebra of an even dimensional form is central simple. 0

THEOREM 14.3. The map
€21 I2(F) — Bry(F)

taking a form ¢ to clif(y) is a well-defined group homomorphism. Moreover, ]S(F) C
ker es.

PROOF. It follows from Lemma 14.2/ that e, is well-defined. Next let ¢ € I>(F) and
a € F*. Since disc(yp) is trivial, it follows from Corollary 11.8 that C'(ap) ~ C(p).
Therefore, es({{a)) ® @) = ea(p) — e2(ap) = 0. O

In §16/ below, we shall in fact see that I7(F) = ker ;.

15. Chain p-Equivalence of Quadratic Pfister Forms

We saw that bilinear Pfister forms were p-chain equivalent if and only if they were
isometric. This equivalence relation was based on isometries of 2-fold Pfister forms. In this
section, we prove the analogous result for quadratic Pfister forms. To begin we therefore
need to establish isometries of quadratic 2-fold Pfister forms in characteristic two. This
is given by the following:

LEMMA 15.1. Let F be a field of characteristic 2. Then in I,(F) we have
(1) ({a, b+ b] = {(a, b]] + ({a, V]].
(2) ((ad,b]] = ((a,b]] + ({a’,b]] mod ]g’(F).
() (fat 22,8 = (fa, — ]

“a 4+ x?
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ab , a'b
(o, 2+ (', -2

Proor. (1). This follows by Example 7.24.

(2). Follows from the equality ((a))+ ((a')) = ((aa’))+((a,a’)) in the Witt ring of bilinear
forms by Example 4.10).

(3). Let ¢ =b/(a + x?) and
a,c Ja+a?c
A—[F} and B—{ I 1

By Corollary [12.5, it is sufficient to prove that A ~ B. Let {1,4,7,ij} be the standard
basis of A, i.e., 1> = a, 7> = band ij+ji = 1. Considering the new basis {1,i+z, J, (i+x)j}
with (i + z)? = a + 2* shows that A ~ B.

(4). We have by (1)-(3):

(4) (fa+d. 1] || mod I(F).

a ab

(a0, = (5 + 18]+ (8] = (5 =)+ (b =
ab , ab — ab , a'b
(fas 22+ (s 2]+ (6] = G, ]+ (', =]

The definition for quadratic Pfister forms is slightly more involved then that for bilinear
Pfister forms.

DEerFINITION 15.2. Let ay,...,a,_1,b1,...,b,_1 € F* and a,,b, € F with n > 2.
We assume that a, and b, are nonzero if char F' # 2. We say that the quadratic Pfister
forms ((a1,...,an_1,a,]] and ((by,... b,_1,b,]] are simply p-equivalent if either n = 1 and
({(a1]] =~ ((b1]] or n > 2 and there exist ¢ and j with 1 <1i < j < n satisfying
(15.2a) ((a;,a;)) ~ ({b;,b;)) with j<n and a =28 foral [#1i,j or
(15.2b) ({(aj,an)] >~ ((bi,by)]] with 7=n and a; =1b forall [#i,j.

We say that two quadratic n-fold Pfister forms ¢ and v are chain p-equivalent if there

exist quadratic n-fold Pfister forms ¢y, ..., @, for some m such that ¢ = ¢, ¥ = o,
and ; is simply p-equivalent to ;1 for each ¢t =0,...,m — 1.

THEOREM 15.3. Let @1, po be anisotropic quadratic n-fold Pfister forms as in Defini-
tion [15.2. Then o1 =~ @9 if and only if p1 >~ @s.

We shall prove this result in a series of steps. Suppose that ¢; ~ @s. The case
char F' # 2 was considered in Theorem [6.10, so we may also assume that char F' = 2. As
before the map o : F — F is defined by p(x) = 2® + = when char F' = 2.

LEMMA 15.4. Let char F' = 2. If b is an anisotropic bilinear Pfister form and dy,ds €
F then b ® ((d1]] =~ b ® ((da]] if and only if b @ ((d1]] = b & ({ds]].

PROOF. Assume that b ® ((d;]] ~ b ® ((d2]]. Then the form
b® ((di +da]] ~b® ((di]] L b® ((do]]
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is hyperbolic. By Lemma 9.12, we have dy + dy = x + y where x € Im p and y € E(b').
If y = 0 then ((d;]] ~ ((ds]] and we are done. So suppose that y # 0. By Lemma 6.11]
there is a bilinear Pfister form ¢ such that b =~ ¢® ((y)). As ((y,d:]] ~ ((y, ds]], we have

b® ((di]] = ¢ ® ((y, di]] = ¢ @ ((y, do]] = b @ ((do]]. O

LEMMA 15.5. Let char F' = 2. Let p be a quadratic Pfister form. For every a € F*
and z € D(p), we have ({(a)) ® p =~ ((az)) @ p.
PROOF. We proceed by induction on dim p. Write p = ((b)) @ n for some b € F* and

quadratic Pfister form n. We have z = x + by with z,y € D(n). If y =0 then x = 2 # 0
and by the induction hypothesis ((a)) ® n = ({az)) ® n, hence

{(a)) ® p = ({a, b)) @n = ((az,b)) ©n = ((az)) @ p.
If z = 0 then z = by and by the induction hypothesis ({a)) ® n ~ ({(ay)) ® 1, hence

{(a)) @ p = ((a,b)) @ n = ((ay, b)) @ n =~ ((az,b)) @ n = ((az)) ®
Now suppose that both x and y are nonzero. As 7 is round, zy € D(n). By the induction
hypothesis and Lemma 4.15,

((a)) ® p = {{a,0)) ®n = {(a,ab)) @ n = ({az, aby)) @7
~ ((az, bzy)) @ n ~ ((az,b)) @ n = ((az)) @ p. O
LEMMA 15.6. Let char F' = 2. Let b be a bilinear Pfister form, p € P,(F), n > 1,

and ¢ € F*. Suppose there exists an x € D(b) with ¢+ x # 0 satisfying b @ ((c+z)) @ p
is anisotropic. Then there exists a quadratic Pfister form ¢ with b @ ((c + z)) ® p ~

b® ((c) @ 1.

PROOF. We proceed by induction on the dimension of b. Suppose b = (1). Then
x = y? for some y € F. We may assume that p = ({(d]] for d € F. Tt follows from Lemma
1510 that ({c + vy*,d]] ~ {{c,cd/(c + 3*)]] and we are done.

So we may assume that dimb > 1. Write b = ¢ ® ((a)) for some a € F* and bilinear

Pfister form ¢. We have x = y + az where y, z € D(c). If ¢ = az then ¢+ z = y belongs
to D(b), so the form b ® ({¢ 4+ z)) would be metabolic contradicting hypothesis.

Let d := ¢ + az. We have d # 0. By the induction hypothesis,
®{(d+y)@p=ca((d)@p and c@ ((ac+a’z)) @ p~c® ((ac) @ Y
for some quadratic Pfister forms p and . Hence by Lemma 4.15,
b& (et a))@p=b® ([d+1) @ p=c{{a,d+y) ®p
~c® {((a,d) @pu=rc®{{a,c+az))@u=~c® ({a,ac+a’z)) @pu
~ @ ((a,ac)) @ =@ ((a,0) @Y =b® ({c) @ . O

If b is a bilinear Pfister form over a field F' then b = b’ L (1) with the pure subform
b’ unique up to isometry. For quadratic Pfister form over a field of characteristic two,
the analogue of this is not true. So, in this case, we have to modify our notion of a pure
subform of a quadratic Pfister form. So suppose that char F' = 2. Let ¢ = b ® ((d]]
be a quadratic Pfister form. We have ¢ = ((d]] L ¢° with ¢° = b’ ® ((d]]. The form
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¢° depends on the presentation of b. Let ¢’ := (1) L b’ ® ((d]]. This form coincides
with the complementary form (1)* in . The form ¢’ is uniquely determined by ¢ up
to isometry. Indeed, by Witt Extension Theorem 8.3, for any two vectors v,w € V,
with ¢(v) = p(w) = 1 there is an auto-isometry a of ¢ such that «(v) = w. Therefore
the orthogonal complements of F'v and Fw are isometric. We call the form ¢ the pure
subform of .

PROPOSITION 15.7. Let char F' = 2. Let p € P,(F), n > 2, and let b be a bilinear
Pfister form and set p = b ® p. Suppose that ¢ is anisotropic. Let ¢ € D(b® p')\ D(b)
be a nonzero element. Then ¢ ~ b ® ({c)) ® ¥ for some quadratic Pfister form 1.

PROOF. We proceed by induction on dim p. Write p = ({a)) ® n for some a € F* and
quadratic Pfister form n. Then

b= (1) Lbey Labmn.

We have ¢ = x + y + az with 2 € D(b), y € D(b®7/), and z € D(b®1).
Suppose first that x = 0.
If in addition z = 0 then ¢ = y € D(b® ) \ D(b). By the induction hypothesis,
ben~b® ((c) ®p for some quadratic Pfister form pu. Hence
p=b@p=0®((a)@n~be () (a) @ p.
Now suppose that z # 0. By Lemma [15.5]
p=b@p=0b8((a) ®@n=b& (az)) @ 1.

If y = 0 then az = ¢ and we are done. Assume that y # 0. By the induction hypothesis,
ben=~b® ((y)) @ u for some quadratic Pfister form p. Therefore by Lemma 4.15,

PrRb®((a2)) @~ bR ((y,02)) @ p=b® ((c,ayz)) @ p.

Finally we assume that x # 0.

Applying the above consideration to c+x instead of ¢ we get p =~ b® ((c+z,ayz)) @ p.
By Lemma [15.6, the latter form is chain equivalent to b ® ((c)) ® v for some quadratic
Pfister form . O

PROOF. (of Theorem [15.3) Let ¢; and @9 be isometric anisotropic quadratic n-fold
Pfister forms over F'. We must show that ¢, ~ 5. We may assume that char F' = 2.

CrLAM 15.8. For everyr = 0,...,n—1 there exist a bilinear r-fold Pfister form b and
quadratic (n — r)-fold Pfister forms py and ps such that ¢; = b® p;, i =1,2:

We prove the claim by induction on r. The case r = 0 is obvious. Suppose we have
such b, p; and py for some r < n — 1. Write p; = ({¢)) ® ¢; for some ¢ € F* and
quadratic Pfister form ¢; so ¢1 = b® ((c)) ® ¥1. Note that as ¢; is anisotropic, we have
ce D(b®py)\ D(b).

The form b ® (1) is isometric to subforms of ¢y and ¢,. As radb, = 0 for i =
1,2, by the Witt Extension Theorem 8.3, an isometry between these subforms extends
to an isometry between ¢, and ¢s. This isometry induces an isometry of orthogonal
complements b®p| and b® p),. Therefore, we have ¢ € D(b®p])\D(b) = D(b®p,)\ D(b).
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It follows from Proposition [15.7 that ¢y ~ b ® ((c)) ® 15 for some quadratic Pfister form
. Thus @; = b ® ((¢)) ® 1; for i = 1,2 and the claim is established.

Applying the claim in the case r = n — 1, we find a bilinear (n — 1)-fold Pfister form
b and elements dy,dy € F such that ¢; =~ b ® ((d;]], i = 1,2. By Lemma [15.4, we have
b® ((di]] = b® ((ds]], hence v = . O

16. Cohomological Invariants

A major problem in the theory of quadratic forms was to determine the relationship
between quadratic forms and Galois cohomology. In this section, using the cohomology
groups defined in Appendix §100, we introduce the problem.

Let H*(F') be the groups defined in Appendix §100. In particular,
wimy o | Bto(F), ifn=1.
HY(F) = { Bry(F), ifn=2.
If o = ({ay,...,a,|| define its class e,(¢) in H"(F) by

en(p) ={a1,as,...,an_1} - [Fa,],

the cohomological invariant of ({ay,...,a,]] where [F.] is the class of the étale quadratic
extension F,/F in Ety(F) ~ HY(F).

The cohomological invariant e, is well-defined on quadratic n-fold Pfister forms.
PROPOSITION 16.1. Let ¢ and ¢ be n-fold Pfister forms. If o =~ 1 then e, () = e, (1))
in H"(F).

PRroor. This follows from Theorems 6.20 and [15.3. O

As in the bilinear case, if we use the Hauptsatz 23.8 below, we even have if

v =1 mod I:H(F) then e,(¢) = en(¥)

in H"(F'). (Cf. Corollary 23.10/ below). In fact, we shall also show by elementary means
in Proposition 24.6 below that if @1, s and @3 are general quadratic n-fold Pfister forms
such that o1 + @ + @3 € I;“(F) then e, (¢1) + en(w2) + en(ps) =0 € H™(F).

We call the extension of e, to a group homomorphism e, : IJ(F) — H"(F) the nth
cohomological invariant of I}'(F).

FAcT 16.2. The nth cohomological invariant e, exists for all fields F' and for alln > 1.
Moreover, kere,, = [g‘“(F). Equivalently, there is a unique isomorphism

e, I)(F)/I)"(F) — H"(F)

satisfying e, (¢ + 1] (F)) = en(p) for every n-fold Pfister quadratic form .
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Special cases of Fact 16.2 can be proven by elementary methods. Indeed we have
already shown that the invariant e; is well-defined on all of I,(F') and coincides with the
discriminant in Theorem 3.7 and e; is well-defined on all of I7(F') and coincides with the
Clifford invariant by Theorem [14.3. Then by Theorems 13.7 and [14.3/ the maps é; and é,
are well-defined.

Suppose that char F' # 2. Then the identification of bilinear and quadratic forms leads
to the composition

Wi Ko(F)[2K,(F) 25 1"(F) [ I™Y(F) = [3(F) /I (F) & H(F).
where R} is the norm residue homomorphism of degree n defined in Appendix §100.
Voevodsky proved in [60] that A% is an isomorphism and as was stated in Fact 5.15

the map f, is an isomorphism for all n. In particular, e, is well-defined and €, is an
isomorphism for all n.

If char F' = 2, Kato proved Fact [16.2 in [35].

We have proven that € is an isomorphism in Theorem 13.7. We shall prove that h3.
is an isomorphism in Chapter VIII below if the characteristic of F' is different from two.
It follows that é, is an isomorphism. We now turn to the proof that e, is an isomorphism
if char F' = 2.

THEOREM 16.3. Let char F = 2. Then é; : I7(F)/I3(F) — Bry(F) is an isomorphism.

PRrOOF. The classes of quaternion algebras generate the group Bra(F') by [1, Ch. VII,
Th. 30]. It follows that é5 is surjective. So we need only show that é, is injective.

Let o € I7(F) satisfy es() = 0. Write v in the form )77 | di({as, bs]]. By assumption,

aiaci]

the sum of all [ AL where ¢; = b;/a;, in Br F' is trivial.

We prove by induction on n that o € I3(F). If n = 1, we have a = ((a1,b]] and

ex(a) = a Cl} = 0. Therefore the reduced norm form « of the split quaternion algebra
[a}cl} is hyperbolic by Corollary 12.5, hence oo = 0.
In the general case, let L = F(a}/Q, . ,a,ll/_zl). The field L splits [G%Ci] for all
ny ~n mny ~n Y d
1 =1,...,n — 1 and hence splits [a Fc } By Lemma [97.16) [a FC ] = [CF ], where
c is the square of an element of L, i.e., ¢ is the sum of elements of the form ¢?m where
g € F and m is a monomial in the a;, 2 = 1,...,n— 1. It follows from Corollary 12.5 that

((an,ba]] = ({c,cd]]. By Lemma [15.1, ((c,cd]] is congruent modulo I?(F) to the sum of
2-fold Pfister forms ((a;, fi]] withi=1,...,n—1, f; € F. Therefore we may assume that
a =317 ((a;, b]] for some b;. By the induction hypothesis, a € I3(F). O






CHAPTER III

Forms over Rational Function Fields

17. The Cassels-Pfister Theorem

Given a quadratic form ¢ over a field over F', it is natural to consider values of the form
over F(t). The Cassels-Pfister Theorem shows that whenever ¢ represents a polynomial
over F'(t) then it already does so when viewed as a quadratic form over the polynomial
ring F'[t]. This results in specialization theorems. As an n-dimensional quadratic form
can be viewed as a polynomial in F[T| := F[ty,...,t,], one can also ask when is (T a
value of ¢p)? If both the forms are anisotropic, we shall also show in this section the
fundamental result that this is true if and only if ¥ is a subform of .

COMPUTATION 17.1. Let ¢ be an anisotropic quadratic form on V over F' and b its
polar form. Let v and u be two distinct vectors in V' and set w = v — u. Let 7, be the
reflection with respect to w defined in Example 7.3 Then

(1). o(1w(v)) = p(v) as 7, is an isometry.
p(u) — )

(2). ule) = wt ZL

w as by(v,w) = —b,(v, —w) = —p(u) + ¢(v) + p(w) by
definition.
NoTATION 17.2. If T = (t1,...,t,) is a tuple of independent variables, let
F[T):=Fl[ty,...,t,)] and F(T):=F(ty,...,ty).
If V is a finite dimensional vector space over F, let
VIT:=FT|®prV and V(T):=Vpr) = F(T)®FrV.

Note that V(T') is also the localization of V[T at F[T]\ {0}. In particular, if v € V(T)
then there exist w € V[T'] and nonzero f € F[T] satisfying v = w/f. For a single variable
t,welet V[t] := F[t]®@p V and V(t) := Vpy) = F(t) @ V.

The following general form of the Classical Cassels-Pfister Theorem is true.

THEOREM 17.3. (Cassels-Pfister Theorem) Let ¢ be a quadratic form on V' and let
h € Flt] N D(¢pw). Then there is w € V[t] such that ¢(w) = h.

PROOF. Suppose first that ¢ is anisotropic. Let v € V(t) satisfy ¢(v) = h. There is
a nonzero polynomial f € F[t] such that fv € V[t]. Choose v and f so that deg(f) is the
smallest possible. It suffice to show that f is constant. Suppose deg(f) > 0.

Using the analog of the Division Algorithm, we can divide the polynomial vector
fv by f to get fv = fu+r, where u,r € V[t] and deg(r) < deg(f). If r = 0 then

63
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v=wu € V[t] and f is constant; so we may assume that r # 0. In particular, ¢(r) # 0 as
¢ is anisotropic. Set w = v —u =r/f and consider

p(u) —h -
o(r)/f

as in Computation 17.1 (2). We have ¢(7,(v)) = h. We show that f' := o(r)/f is a
polynomial. As

(17.4) Tw(V) = u +

fh=¢(fv) = o(fu+r) = fo(u) + fo,(u,r) +¢(r),
we see that ¢(r) is divisible by f. Equation (17.4) implies that f'7,(v) € V[t] and the
definition of r yields

deg(f') = degp(r) — deg(f) < 2deg(f) — deg(f) = deg(f),

a contradiction to the minimality of deg(f).

Now suppose that ¢ is isotropic. By Lemma [7.13, we may assume that rad ¢ = 0. In
particular, a hyperbolic plane splits off as an orthogonal direct summand of ¢ by Lemma
7.14. Let e, e’ be a hyperbolic pair for this hyperbolic plane. Then

@(he+€') = by(he,e’) = hby(e,e') = h.

COROLLARY 17.5. Let b be a symmetric bilinear form on V and let h € F[t] N
D(¢rpw). Then there is v € V[t] such that b(v,v) = h.

PROOF. Let ¢ be ¢y, i.e., p(v) = b(v,v) for all v € V. As D(¢) = D(b) by Lemma
9.3, the result follows from the Cassels-Pfister Theorem. U

COROLLARY 17.6. Let f € F[t] be a sum of n squares in F(t). Then f is a sum of n
squares in Ft].

COROLLARY 17.7. (Substitution Principle) Let ¢ be a quadratic form over F and
h € D(ppr)) withT = (t1,...,t,). Suppose that h(x) is defined for x € F™ and h(x) # 0
then h(zx) € D(p).

PROOF. As h(z) is defined, we can write h = f/g with f,g € F[T] and g(z) #
Replacing h by ¢*h, we may assume that h € F[T]. Let T = (t1,...,t,_1) and x
(1,...,2,). By the theorem, there exists v(1”,t,) € V(1")[t,] satistying o (v(T",t,))
h(T',t,). Evaluating t, at x, shows that h(T",z,) = o(v(T",z,)) € D((pF(T/)). Th
conclusion follows by induction on n.

[~

Oz |

As above, we also deduce:

COROLLARY 17.8. (Bilinear Substitution Principle) Let b be a symmetric bilinear form
over F and h € D(bpry) with T = (t1,...,t,). Suppose that h(x) is defined for x € F"
and h(x) # 0 then h(zx) € D(b).

We shall need the following slightly more general version of the Cassels-Pfister Theo-
rem.

PROPOSITION 17.9. Let ¢ be an anisotropic quadratic form on V and let s € V and
v € V(t) satisfy (v) € F[t] and by(s,v) € F[t]. Then there is w € VIt] such that

o(w) = p(v) and by (s,w) = by (s, v).
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ProoF. It is sufficient to show the value b,(s,v) does not change when v is modified in
the course of the proof of Theorem [17.3. Choose vy € V[t] satisfying b, (s, vy) = by,(s,v).

Let f € FJt] be a nonzero polynomial such that fv € V[t]. As the remainder r on
dividing fv and fv— fuvg by f is the same and fv— fvy € (F(t)s)*, we have r € (F(t)s)*.
Therefore, b, (s, 7.(v)) = by,(s,v). O

LEMMA 17.10. Let ¢ be an anisotropic quadratic form and p a non-degenerate binary
anisotropic quadratic form satisfying p(ti,t2) +d € D(@p 1)) for some d € F. Then
©~p L u for some form p and d € D(p).

PROOF. Let p(t1,ts) = at?+btita+cts. As p(ty, ty)+dt3 is a value of p over F(ty, o, t3),
there is a u € V' = V,, such that ¢(u) = a by the Substitution Principle 17.7. Applying
the Cassels-Pfister Theorem [17.3 to the form ¢p,), we find a v € Vpg,)[ti] such that
@(v) = ati+btita+ct3+d. Since ¢ is anisotropic, we have deg,, v < 1, 1.e., v(t1) = vo+vity
for some vy, v1 € Vp(,). Expanding we get

p(vo) = a, b(vg,v1) =bla, @(v1) = ct +d,
where b = b,,. Clearly vy ¢ rad(bp,)).

We claim that u ¢ rad(b). We may assume that u # vy and therefore

0 # (u— o) = @(u) + ¢(vo) — b(u, vo) = b(u, u — o)
as Qr(t,) is anisotropic by Lemma [7.16 hence the claim.

By the Witt Extension Theorem 8.3, there is an isometry 7 of pr,) satisfying y(vo) =
u. Replacing vy and v; by u = v(vg) and y(v;) respectively, we may assume that vy € V.

Applying Proposition 17.9 to the vectors vy and v; we find w € V[ts] such that
o(w) = ct? + d and b(vg, w) = bly. In a similar fashion, we have w = wy + wity with
wy, wy € V. Expanding, we have

o(vg) =a, blv,w)=b, plw)=c @wy)=d, blvy,wy)=0, bwy,w;)=0.
It follows if W is the subspace generated by vy and w; then |y ~ p and d € 5(;@) where
f= @y g

COROLLARY 17.11. Let ¢ and 1 be two anisotropic quadratic forms over F with
dimy =n. Let T = (t1,...,t,). Suppose that Y(T) € D(opry). If Y = p L o with p a
non-degenerate binary form and T' = (t3,...,t,) then ¢ ~ p L p for some form p and

W(T") € Drry(@re).-

THEOREM 17.12. (Representation Theorem) Let ¢ and 1) be two anisotropic quadratic
forms over F' with dim =n. Let T = (t1,...,t,). Then the following are equivalent

(1) D(¥k) C D(¢k) for every field extension K/F.
(2) ©(T) € D(¢r))-

(3) @ is isometric to a subform of .

In particular, if any of the above conditions hold then dimy < dim .
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PROOF. (1) = (2) and (3) = (1) are trivial.

(2) = (3). Applying the structure results, Propositions [7.32 and [7.30, we can write
Y = 1 L 1y, where 9 is an orthogonal sum of non-degenerate binary forms and )y is
diagonalizable. Repeated application of Corollary 17.11/ allows us to reduce to the case
= 1hy, ie., ¥ = (ay,...,a,) is diagonalizable.

We proceed by induction on n. The case n = 1 follows from the Substitution Principle
17.7. Suppose that n = 2. Then we have a,t> + as € D(¢rp@). By the Cassels-Pfister
Theorem, thereis a v € V[t] where V' =V, satisfying p(v) = a1t*+as. As ¢ is anisotropic,
we have v = vy + vyt for vy, v € V and therefore p(v1) = a1, ¢(v2) = as and b(vy,v9) = 0.
The restriction of ¢ on the subspace spanned by v; and vy is isometric to .

In the general case, set T' = (t1,to,...,tn), T" = (to,...,t,), b= ast? + -+ + a,t2.
As a1t? + b is a value of p over F(T")(t), by the case considered above there are vectors
vy, V2 € Vp(pry satisfying

It follows from the Substitution Principle 17.7 that there is w € V such that p(w) = a;.

We claim that there is an isometry 7 of ¢ over F'(T”) such that ¢(vy) = w. We may
assume that w # v as @p(rv) is anisotropic by Lemma 7.16. We have

0 # o(w —v1) = p(w) + ¢(v1) = b(w,v1) = b(w,w — v1) = b(v1 —w,v1),
therefore w and v; do not belong to radb. The claim follows by the Witt Extension
Theorem 8.3l

Replacing v; and vy by 7(v1) = w and 7(vy) respectively, we may assume that v; € V.
Set W = (Fuv;)*. Note that vy € Wy, hence b is a value of ¢l over F(1"). By the
induction hypothesis applied to the forms ¢’ = (as,...,a,) and ¢|w, there is a subspace
V' C W such that |y ~ (as,...,a,). Note that v is orthogonal to V' and vy ¢ V' as
1 is anisotropic. Therefore the restriction of ¢ on the subspace Fv; @ V' is isometric to

. U

A field F is called formally real if —1 is not a sum of squares. In particular, char F' = 0
if this is the case. (Cf. Appendix §94.)

COROLLARY 17.13. Suppose that F is formally real and T = (t1,...,t,). Then
2412+ +t2 is not a sum of n squares in F(T).

PROOF. If this is false then t2 +¢* +-- -+ 2 € D(n(1)). As (n+ 1)(1) is anisotropic,
this contradicts the Representation Theorem. 0

The ideas above also allow us to develop a test for simultaneous zeros for quadratic
forms.

THEOREM 17.14. Let ¢ and v be two quadratic forms on a vector space V' over F.
Then the form ppu) + tpe on V(L) over F(t) is isotropic if and only if ¢ and 1 have a
common isotropic vector in V.

Proor. Clearly, a common isotropic vector for ¢ and v is also an isotropic vector for
p = Qr@ + tWr@e.
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Conversely, let p be isotropic. There exists a nonzero v € V[t] such that p(v) = 0.
Choose such a v of the smallest degree. We claim that degv = 0, i.e., v € V. If we show
this, the equality ¢(v) + t1(v) = 0 implies that v is a common isotropic vector for ¢ and

.
Suppose n := degv > 0. Write v = w + t"u with u € V and w € V[t] of degree less
than n. Note that by assumption p(u) # 0. Consider the vector

V' = plu) - 7u(v) = plu)o — b, (v, u)u € Vi)
As p(v) =0, we have p(v') = 0. It follows from the equality
p(w)v — by(v,w)w = p(v — t"u)v — b,(v,v — t"u)(v — t"u) = t*" (p(u)v — b,(v, u)u)
that

v = p(w)v — bp(v7w)w_

t2n

Note that deg p(w) < 2n—1 and deg b, (v, w) < 2n. Therefore degv’ < n, a contradiction
with the minimality of n. U

18. Values of Forms

Let ¢ be an anisotropic quadratic form over F. Let p € F[T] := Flty,...,t,] be
irreducible and F'(p) the quotient field of F[T]/(p). In this section, we determine what it
means for ¢pg, to be isotropic. This result has consequences for finite extensions K/F.
In particular, the classical Springer’s Theorem that forms remain anisotropic under odd
degree extensions follows as well as a norm principle about values of ¢.

Order the group Z" lexicographically, i.e., (i1,...,4,) < (j1,-.-,Jn) if for the first
integer k satisfying iy # jr with 1 < k < n we have i < jr. Let T' = (t1,...,t,).
If i = (iy,...,4,) in Z" and a € F*, write aT" for at’ ---t» and call i the degree of
aT'. Let f = aT' + monomials of lower degree in F[T] with a € F*. The term aT" is
called the leading term of f. We define the degree deg f of f to be i, the degree of the
leading term, and the leading coefficient f* of f to be a, the coefficient of the leading
term. Let T, denote T" if i is the degree of the leading term of f. Then f = f*T; + f’
with deg f' < degTy. For convenience, we view deg 0 < deg f for every nonzero f € F[T.
Note that deg(fg) = deg f + degg and (fg)* = f*¢*. If h € F(T)x and h = f/g with
f,g € FIT] let h* = f*/g*.

Let V' be a finite dimensional vector space over F'. For every nonzero v € V[T'] define
the degree deg v, the leading vector v*, and the leading term v*T, in a similar fashion. Let
deg0 < degv for any nonzero v € V[T|. So if v € V[T] is nonzero, we have v = v*T,, + v’
with degv’ < degT,.

LEMMA 18.1. Let ¢ be a quadratic form on V over F and g € F[T]. Suppose that
g € D(opry). Then g* € D(p). If, in addition, ¢ is anisotropic then degg € 2Z".

PROOF. Since ¢ on V and @ on V/rad ¢ have the same values, we may assume that
rad(¢) = 0. In particular, if ¢ is isotropic it is universal so we may assume that ¢
anisotropic.
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Let g = ¢(v) with v € V(T'). Write v = w/f with w € V[T] and nonzero f € F[T].
Then f2g = p(w). As (f?9)* = (f*)%g*, we may assume that v € F[T]. Let v = v*T, + '
with degv’ < degv. Then

9= p(0T,) + by (v T, ') + (V) = p(v )T + by (v, )T, + (v')

= p(v*)T? + terms of lower degree.

As ¢ is anisotropic, we must have p(v*) # 0, hence g* = ¢(v*) € D(yp). As the leading
term of g is ¢(v*)T?, the second statement also follows. U

Let v € V[T]. Suppose that f € F[T] satisfies deg,, f > 0. Let T = (ta,...,t,).
Viewing v € V(1")[t1], the analog of the usual division algorithm produces an equation

v=fuw' +r" with w',r" € Vp[t:] and deg, r’ < deg,, f.
Clearing denominators in F[T"], we get
hv = fw+r
(18.2) with w,r € V[T], 0#h € F[T'] and deg, r < deg, f
so degh < deg f, degr < deg f.

If p € F[T] is irreducible, we write F'(p) for the quotient field of F[T]/(p).

If ¢ is a quadratic form over F' let (D(p)) denote the subgroup in F* generated by
D(yp).

THEOREM 18.3. (Quadratic Value Theorem) Let ¢ be an anisotropic quadratic form
on V and let f € F[T] be a nonzero polynomial. Then the following conditions are
equivalent:

(1) f*f € (D(erm))-
(2) There exists an a € F* such that af € (D(¢pr)))-

(3) @r(p) s isotropic for each irreducible divisor p occurring to an odd power in the
factorization of f.

PROOF. (1) = (2) is trivial.

(2) = (3). Let af € (D(¢rp))), ie., there are 0 # h € F[T] and vy,..., v, € V[T
such that ah?f = [] p(v;). Let p be an irreducible divisor of f to an odd power. Write
v; = p¥iv] so that v} is not divisible by p. Dividing out both sides by p?*, where k = > k;,
we see that the product []¢(v}) is divisible by p. Hence the residue of one of the ¢(v})
is trivial in the residue field F'(p) while the residue of v is not trivial. Therefore, fg(,) is
isotropic.

(3) = (1). We proceed by induction on n and deg f. The statement is obvious if f = f*.
In the general case, we may assume that f is irreducible. Therefore, by assumption ¢g(y) is
isotropic. In particular, we see that there exists a vector v € V,,[T] such that f | p(v) and
ffov. Ifdeg, f=01let T" = (ts,...,t,) and let L denote the quotient field of (F[T"]/(f)).
Then F(f) = L(t) so ¢y, is isotropic by Lemma [7.16/ and we are done by induction on
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n. Therefore, we may assume that deg, f > 0. By (18.2), there exist 0 # h € F[T] and
w,r € VI[T] such that hv = fw + r with degh < deg f and degr < deg f. As

p(hv) = p(fw +1) = fPo(w) + foy(w,r) + (1),
we have f | ¢(r). If r = 0 then f | hv. But f is irreducible and ff v so f | h. This is
impossible as degh < deg f. Thus r # 0. Let ¢(r) = fg for some g € F[T]. As ¢ is
anisotropic g # 0. So we have fg € D(ppr)) hence also (fg)* = f*g* € D(p) by Lemma
18.1.

Let p be an irreducible divisor occurring to an odd power in the factorization of g¢.
As degp(r) < 2deg f, we have degg < deg f hence p occurs with the same multiplicity
in the factorization of fg. By (2) = (3) applied to the polynomial fg, the form ¢p,) is
isotropic. Hence the induction hypothesis implies that g*g € (D(¢p(r))). Consequently,

Fr=r2(fg)" g9 fg-92 € (Dlerm)). O

THEOREM 18.4. (Bilinear Value Theorem) Let b be an anisotropic symmetric bilinear
form on'V and let f € F[T] be a nonzero polynomial. Then the following conditions are
equivalent:

(1) f7f € (D(brr))).
(2) There exists an a € F* such that af € (D(bpr))).

(3) brg) is isotropic for each irreducible divisor p occurring to an odd power in the
factorization of f.

PROOF. Let ¢ = ¢p. As D(bg) = D(pk) for every field extension K/F by Lemma
9.3 and by is isotropic if and only if ¢g is isotropic, the result follows by the Quadratic
Value Theorem [18.3. O

COROLLARY 18.5. (Springer’s Theorem) Let K/F be a finite extension of odd degree.
Suppose that ¢ (respectively, b) is an anisotropic quadratic form (respectively, symmetric
bilinear form) over F. Then px (respectively, by ) is anisotropic.

PROOF. By induction on [K : F] we may assume that K = F(f) is a primitive
extension. Let p be the minimal polynomial of # over F'. Suppose that g is isotropic.
Then ap € (D(¢pw)) for some a € F* by the Quadratic Value Theorem [18.3. It follows
that p has even degree by Lemma [18.1, a contradiction. If b is a symmetric bilinear form
over I, applying the above to the quadratic form ¢, shows the theorem also holds in the
bilinear case. U

COROLLARY 18.6. If K/F is an extension of odd degree then ri/p: W(F) — W(K)
and i/ 1 1g(F) — 1,(K) are injective.

COROLLARY 18.7. Let ¢ and i be two quadratic forms on a vector space V over F
having no common isotropic vector in V. Then for any field extension K/F of odd degree
the forms pg and Yk have no common isotropic vector in Vi.

Proor. This follows from Springer’s Theorem and Theorem [17.14. U

EXERCISE 18.8. Let char F' # 2 and K/ F be a finite purely inseparable field extension.
Then rg/p : W(F) — W(K) is an isomorphism.
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COROLLARY 18.9. Let K = F(0) be an algebraic extension of F' and p the (monic)
manimal polynomial of @ over F'. Let ¢ be a reqular quadratic form over F'. Suppose that
there exists a ¢ € F such that p(c) & (D(p)). Then vk is anisotropic.

PRrOOF. Asradp = 0, if ¢ were isotropic it would be universal. Thus ¢ is anisotropic.
In particular, p is not linear hence p(c) # 0. Suppose that ¢k is isotropic. By the
Quadratic Value Theorem [18.3, we have p € (D(¢p))). By the Substitution Principle
17.7, we have p(c) € (D(p)) for all ¢ € F, a contradiction. O

THEOREM 18.10. (Value Norm Principle) Let ¢ be a quadratic form over F and let
K/F be a finite field extension. Then N r(D(pKk)) C (D(p)).

PRrROOF. Let V' = V,,. Since the forms ¢ on V and ¢ on V/rad(y) have the same
values, we may assume that rad(¢) = 0. If ¢ is isotropic then ¢ splits off a hyperbolic
plane. In particular, ¢ is universal and the statement is obvious. Thus we may assume
that ¢ is anisotropic. Moreover, we may assume that dim¢ > 2 and 1 € D(yp).

Case 1. ¢y is isotropic:

Let * € D(pk). Suppose that K = F(z). Let p € F[t| denote the (monic) minimal
polynomial of z so K = F(p). It follows from the Quadratic Value Theorem [18.3] that
p € (D(r@)) and degp is even. In particular, Ng/p(2) = p(0) and by the Substitution
Principle 17.7,

Ni/r(z) = p(0) € (D(p)).

If F(x) C K let m = [K : F(z)]. If m is even then N p(z) € 2 C (D(p)). If m is odd
then @, is isotropic by Springer’s Theorem [18.5. Applying the above argument to the
field extension F'(x)/F yields

Ng/r(z) = Np@)r(z)™ € (D(¢))
as needed.

Case 2. ¢y is anisotropic:

Let x € D(pk). Choose vectors v, vy € Vi such that ¢ (v) = z and pi(vy) = 1. Let V' C
Vi be a 2-dimensional subspace (over K') containing v and vy. The restriction ¢’ of vk
to V' is a binary anisotropic quadratic form over K representing x and 1. It follows from
Proposition [12.1] that the even Clifford algebra L = Cy(¢’) is a quadratic field extension
of K and x = Nk (y) for some y € L*. Moreover, since Cy(¢}) = Co(¢') @k L = L@k L
is not a field, by the same proposition, ¢’ and therefore ¢ is isotropic over L. Applying
Case 1 to the field extension L/F yields

Ng/r(z) = Ng/p (NL/K<y>) = Np/r(y) € (D(p)). O

THEOREM 18.11. (Bilinear Value Norm Principle) Let b be a symmetric bilinear form
over F and let K/F be a finite field extension. Then N p(D(bg)) C (D(b)).

PROOF. As D(bg) = D(py,,) for any field extension E/F, this follows from the qua-
dratic version of the theorem. O
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19. Forms Over a Discrete Valuation Ring

We wish to look at similarity factors of bilinear and quadratic forms. To do so we
need a few facts about such forms over a discrete valuation ring (DVR) which we now
establish.

Throughout this section, R will be a DVR with quotient field K, residue field K, and
prime element 7. If V' is a free R-module of finite rank then the definition of a (symmetric)
bilinear form and quadratic form on V' is analogous to the field case. In particular, we
can associate to every quadratic form its polar form b, : (v,w) — (v + w) — ¢(v) —
©(w). Orthogonal complements are defined in the usual way. Orthogonal sums of bilinear
(respectively, quadratic) forms are defined as in the field case. We use analogous notation
as in the field case when clear. If F' — R is a ring homomorphism and ¢ is a quadratic
form over F', we let op = R ®p .

A bilinear form b on V' is non-degenerate if [ : V' — Hompg(V, R) defined by v + [, :
w — b(v,w) is an isomorphism. As in the field case, we have the crucial

ProproOSITION 19.1. Let R be a DVR. Let V' be a free R-module of finite rank and
W a submodule of V. If ¢ is a quadratic form on V with b,|w non-degenerate then

o =vlw L olwe.

PROOF. As b, is non-degenerate, W NW+ = {0} and if v € V there exists w' € W
such that the linear map W — F by w + b, (v, w) is given by b,(v,w) = b, (w’, w) for
all w € W. Consequently, v =w + (v —w') € W & W+ and the result follows. O

Hyperbolic quadratic forms and planes are also defined in an analogous way. We let
H denote the quadratic hyperbolic plane.

If Risa DVR and V a vector space over the quotient field K of R. A vector v € V' is
called primitive if it is not divisible by a prime element 7, i.e., the image v of v in K ®g V'
is not zero.

Arguing as in Proposition [7.14, we have

LEMMA 19.2. Let R be a DVR. Let ¢ be a quadratic form on V whose polar form
is non-degenerate. Suppose that V' contains an isotropic vector v. Then there exists a
submodule W of V' containing v such that |y ~ H.

Proor. Dividing v by 7™ for an appropriate choice of n, we may assume that v is
primitive. It follows easily that V/Ruv is torsion-free hence free. In particular, V' — V/Ruv
splits hence Ruv is a direct summand of V. Let f : V — R be an R-linear map satisfying
f(v) =1. Asl:V — Homg(V, R) is an isomorphism, there exists an element w € V' such
that f = [, hence b,(v,w) = 1. Let W = Rv @ Rw. Then v, w — ¢(w)v is a hyperbolic
pair. Il

By induction, we conclude:

COROLLARY 19.3. Let R be a DVR. Let ¢ be a quadratic form on V over R whose
polar form is non-degenerate. Then ¢ = ¢y, L p|v, with Vi, Vo submodules of V' satisfying
vl is anisotropic and |y, ~ mH for some m > 0.
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Associated to a quadratic form ¢ on V' over R are two forms: o on K @g V over K
and ¢ = oz on K ®r V over K.

LEMMA 19.4. Let R be a complete DVR and let p be an anisotropic quadratic form over
R such that the associated bilinear form by, is non-degenerate. Then ¢ is also anisotropic.

PrOOF. Let {vy,...,v,} be a basis for V,, and ti,...,t, the respective coordinates.

0 _
If w e V, then %(w) = b,(v;, w). In particular, if w # 0 there exists an 4 such that

by, (v;, w) # 0. It follows by Hensel’s lemma that ¢ would be isotropic if ¢ is. O

LEMMA 19.5. Let ¢ and ¢ be two quadratic forms over a DVR R such that ¢ and Y
are anisotropic over K. Then ¢ 1 )k is anisotropic over K.

PROOF. Suppose that ¢(u) + mp(v) = 0 for some u € V,, and v € V,, with at least
one of u and v primitive. Reducing modulo 7, we have @(u) = 0. Since @ is anisotropic,
u = mw for some w. Therefore mp(w)+1(v) = 0 and reducing modulo 7 we get 1 (v) = 0.
Since 1) is also anisotropic, v is divisible by =, a contradiction. U

COROLLARY 19.6. Let ¢ and 1 be an anisotropic forms over F'. Then ppy) L thpe
1S anisotropic.

PROOF. In the lemma, let R = F[t];), a DVR, m = t a prime. As g = ¢ and g = 1),
the result follows from the lemma. O

PROPOSITION 19.7. Let ¢ be a quadratic form over a complete DVR R such that
the associated bilinear form b, is non-degenerate. Suppose that px ~ mwor. Then ¢ is
hyperbolic.

PROOF. Write ¢ = 1 1L nH with 1 anisotropic. By Lemma 19.4, we have 1 is
anisotropic. The form

VK 1 (—W(pK> ~ w}( 1 (—WwK) 1 2nH
is hyperbolic and 1 | (—mk) is anisotropic over K by Lemma [19.5. We must have

¥ = 0 by uniqueness of Witt decomposition over K, hence ¢ = nH is hyperbolic. It
follows that ¢ is hyperbolic. O

PROPOSITION 19.8. Let ¢ be a non-degenerate quadratic form over I of even dimen-
sion. Let f € F[T] and p € F[T] an irreducible polynomial factor of f of odd multiplicity.
If orry = feorm) then ©py) is hyperbolic.

PROOF. Let R denote the completion of the DVR F[T, and let K be its quotient

field. The residue field of R coincides with F'(p). Modifying f by a square, we may assume
that f = up for some v € R*. As prr) ~ fopmr), we have ppr) >~ upppr). Applying

Proposition 19.7 to the form ¢p and 7 = up yields (¢r) = () is hyperbolic. O

We shall also need the following;:

ProroOsITION 19.9. Let R be a DVR with quotient field K. Let ¢ and v be two
quadratic forms on'V and W over R respectively such that their respective residues forms
@ and Y are anisotropic. If @ ~ 1y then ¢ ~ 1) (over R).
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ProOOF. Let f: Vkx — Wk be an isometry between px and vg. It suffices to prove
that f(V) € W and f~Y(W) C V. Suppose that there exists a v € V such that f(v)
is not in W. Then f(v) = w/7* for some primitive w € W and k > 0. Since f is an
isometry we have 1(w) = m%#¢(v), i.e., ¥(w) is divisible by 7, hence w is an isotropic
vector of 1, a contradiction. Analogously, f~(W) C V. O

If R is a DVR then for each z € K* we can write x = un™ for some u € R* and
ne/’z.

LEMMA 19.10. Let R be a DVR with quotient field K and residue field K. Let 7 be a
prime element in R. There exist group homomorphisms

0:W(K)—W(K) and 0, : W(K)— W(K)
satisfying

. and O ((ur")) = ,
0 n 1s odd 0 n 18 even

A (ur)) = {(ﬂ) n is even. {<ﬁ> n is odd.

forue R* andn € Z.

PRrooF. It suffices to prove the existence of 0 as we can take 0, = 0 o A\, where \ is
the group homomorphism A, : W(K) — W(K) given by b — 7b.

By Theorem 4.8 it suffices to check the generating relations of the Witt ring are
respected. As (1) + (—1) = 0 in W(K), it suffices to show if a,b € R with a+ b # 0 then

(19.11)7 d({a)) + 9((b)) = d({a + b)) + O({ab(a + b)))

in W(K).
Let
a=ayr", b=byr™ a+b=rnlcy with ag,by,co€E R
and m,n,l € Z satisfying min{m,n} <. We may assume that n < m.
Suppose that n < m. Then

b b
a+b=m"ag(1+7" ") and ab(a+ b) = 7" "beal(1 + —x" ).
Qg Qo

In particular, 9({a)) = 9({a + b)) and O({b)) = I({ab(a + b))) as needed.
Suppose that n = m.
If n =1 then ag + by € R* and the result follows by the Witt relation in W (K).

So suppose that n < [. Then ag = —by so the left hand side of (19.11) is zero. If [ is
odd then 0((a + b)) = 0 = 9({ab(a + b))) as needed. So we may assume that [ is even.
Then (a + b) ~ (co) and (ab(a + b)) ~ (apboco) over K. Hence the right hand side of
(19.11)) is (o) + (@oboco) = (Co) + (=) = 0 in W(K) also. O

The map 0 : W(K) — W(K) in the lemma does not dependent on the choice on the
prime element 7. It is called the first residue homomorphism with respect to R. The map

Or : W(K) — W(K) does depend on 7. It is called the second residue homomorphism
with respect to R and .
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REMARK 19.12. Let R be a DVR with quotient field K and residue field K. Let 7 be
a prime element in R. If b is a non-degenerate diagonalizable bilinear form over K, we
can write b as
b (up,...,up) L w(vr,. .. 0m)
for some u;,v; € R*. Then 9(b) = (iy,...,u,) in W(K) and 0,(b) = (vy,...,0,) in
W(K).

EXAMPLE 19.13. Let R be a DVR with quotient field K and residue field K. Let 7
be a prime element in R. Let b = ((ay,...,a,)), an anisotropic n-fold Pfister form over
K. Then we may assume that a; = 7/iu; with j; = 0 or 1 and w; € R for all i. By
Corollary 6.13, we may assume that a; € R* for all i > 1. As b = —ay((ag,...,a,)) L
({(ag,...,an)), if a € R* then 0(b) = ({(ay,...,a,)) and 0,(b) = 0, and if a; = 7wu; then
a(b) = ((as,...,a,)) and 0,(b) = —uy((as, ..., an)).

As n-fold Pfister forms generate I"(F'), we have, by the example the following:

LEMMA 19.14. Let R be a DVR with quotient field K and residue field K. Let 7 be a
prime element in R. Then for everyn > 1:

(1) o(I"(K)) C I"H(K).

(2) 0,(I"(K)) c I"Y(K).

EXERCISE 19.15. Suppose that R is a complete DVR with quotient field K and residue
field K. If char K # 2 then the residue homomorphisms induce split exact sequences of
groups:
and

0— I"(K)— I"(K) — I""Y(K) — 0.

20. Similarities of Forms

Let ¢ be an anisotropic quadratic form over F. Let p € F[T]| := F|[ty,...,t,] be
irreducible and F(p) the quotient field of F[T]/(p). In this section, we determine what it
means for ¢, to be hyperbolic. We establish the analogous result for anisotropic bilinear
forms over F'. We saw that for a form to become isotropic over F'(p) was related to the
values it represented over the polynomial ring F[T]. We shall see that hyperbolicity
is related to the similarity factors of the form over F[T]. We shall also deduce norm
principles for similarity factors of a form over F'. To establish these results, we introduce
the transfer of forms from a finite extension of F' to F.

Let K/F be a finite field extension and s : K — F an F-linear functional. If b is a
symmetric bilinear form on V over K define the transfer s.(b) of b induced by s to be the
symmetric bilinear form on V over F' given by

$4(0)(v,w) = s(b(v,w)) for all v,w e V.

If ¢ is a quadratic form on V over K define the transfer s.(¢) of ¢ induced by s to be the
quadratic form on V over F given by s.(¢)(v) = s(¢(v)) for all v € V with polar form

s.(by).
Note that dim s.(b) = [K : F]dim b.
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LEMMA 20.1. Let K/F be a finite field extension and s : K — F be an F-linear
functional. The transfer s, factors through orthogonal sums and preserves isometries.

PrROOF. Let v,w € V,. If b(v,w) = 0 then s.(b)(v,w) = s(b(v,w)) = 0. Thus
$.(b L ¢) = s5,(b) L su(c). If 0: b — b’ is an isometry then
$:(b') (0 (v), o(w)) = 5(b'(0(v), o (w))) = s(b(v, w)) = s.(b)(v, w),
50 0 : 8.(b) — s.(b') is also an isometry. O
PROPOSITION 20.2. (Frobenius Reciprocity) Let K/F be a finite extension of fields
and s : K — F an F-linear functional. Let b and ¢ be symmetric bilinear forms over F

and K respectively and let @ and 1 be quadratic forms over F' and K respectively. Then
there exist canonical isometries:

(20.3a) $:(bg @k ¢) ~ b ®p s.(c).
(20.3) 5. (b @i b)) = b Dp 5.(1)).
(20.3¢) S:(¢ QK i) =~ 8.(¢) @F .

In particular,
$.(br) >~ b ®p s.((1)p).

PROOF. (a). The canonical F-linear map V4, @ Vi, — Vo ®@pV, given by (a®@v)@w

v ® aw is an isometry. Indeed
s((bx ®¢)((a ®v) @ w, (a' @) @ w') = s(aa’b(v, v')e(w, w'))
= b(v,v")s(c(aw,d'w’)) = (b ® s¢)(v ® aw, v’ ® d'w’).

The last statement follows from the first by setting ¢ = (1).

(b) and (c) are proved in a similar fashion. O

LEMMA 20.4. Let K/F be a finite field extension and s : K — F a nonzero F-linear
functional.

(1) If b is a non-degenerate symmetric bilinear form on V over K then s.(b) is
non-degenerate on V' over F'.

(2) If ¢ is an even dimensional non-degenerate quadratic form on V over K then
s«(p) is non-degenerate on V over F.

PROOF. Suppose that 0 # v € V. As b is non-degenerate, there exists a w € V' such
that 1 = b(v,w). As s is not zero, there exists a ¢ € K such that 0 # s(c¢) = s.(b)((v, cw)).
This shows (1). Statement (2) follows from (1) and Remark [7.22(1). O

COROLLARY 20.5. Let K/F be a finite extension of fields and s : K — F a nonzero
F-linear functional.

(1) If ¢ is a bilinear hyperbolic form over K then s.(c) is a hyperbolic form over F.

(2) If v is a quadratic hyperbolic form over K then s.(¢) is a hyperbolic form over
F.
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PROOF. (1): As s, respects orthogonality, we may assume that ¢ = H;. By Frobenius
Reciprocity,

se(H1) = s.((Hh)x) = (Hi)r @ 5.((1)).
As s,((1)) is non-degenerate by Lemma 20.4, we have s,(H;) is hyperbolic by Lemma 2.1.
(2): This follows in the same way as (1) using Lemma 8.16. O
DEFINITION 20.6. Let K/F be a finite field extension and s : K — F a nonzero
F-linear functional. By Lemmas 20.4/ and 20.5, the functional s induces group homomor-
phisms

s, W(K) - W(F) s, :W(EK) > W(F) and s, : I(K) — I(F)

called transfer maps. Let b and ¢ be non-degenerate symmetric bilinear form over F' and
K respectively and ¢ and 1 non-degenerate quadratic forms over F' and K respectively.
By Frobenius Reciprocity, we have

S (Tr/pb-¢) = b - 5,(c)

in W\(F) and W(F), ie., s, : /W(K) — W\(F) is a /W(F)—module homomorphism and
se + W(K) — W(F) is a W(F)-module homomorphism where we view W(K) as a
W (F)-module via 7g/p. Furthermore,

Se(ri/p(b) - ¢) = b-s.(¢)  and  s.(c-ryp(p)) = s.(c) -
in I,(F). Note that s,(I(K)) C I(F).

COROLLARY 20.7. Let K/F be a finite field extension and s : K — F a nonzero
F-linear functional. Then the compositions

saryp i W(E) > W(F)  sagype: W(EF) = W(EF) and sorgyr : L(F) — L(F)
are given by multiplication by s,({1)y), i.e., b +— b-5,((1)) for a non-degenerate symmetric

bilinear form b and ¢ — s.((1)y) - ¢ for a non-degenerate quadratic form.

COROLLARY 20.8. Let K/F be a field extension and s : K — F a nonzero F-linear
functional. Then im s, is an ideal in W (F') (respectively, W (F')) and is independent of s.

ProoOF. By Frobenius Reciprocity, im s, is an ideal. Suppose that s; : K — F'is
another nonzero F-linear functional. Let K — Homp (K, F') be the F-isomorphism given
by a + (z — s(az)). Hence there exists a unique a € K* such that s;(x) = s(ax) for all
x € K. Hence (s1).(b) = s.(ab) for all non-degenerate symmetric bilinear forms b over

K. U

Let K = F(z)/F be an extension of degree n and a = Ng/p(x) € F'* the norm of z.
Let

s: K — F be the F-linear functional defined by
s(1)=1and s(z') =0foralli=1,...,n— 1.
Then s(z") = (—1)""a.

(20.9)
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LEMMA 20.10. The transfer induced by the F-linear functional s in (20.9) satisfies
s (1)) = { (1) if n is odd

(1, —a), if n is even.

PROOF. Let b = s,((1)). Let V C K be the F-subspace spanned by z' with i =
1,...,n, a non-degenerate subspace. Then V+ = F, consequently K = F ¢ V.

First suppose that n = 2m +1 is odd. The subspace of W spanned by z,i =1,...,m
is a Lagrangian of b|y, hence by is metabolic and b = by, = (1) in W(F).
Next suppose that n = 2m is even. We have

b(a',a) = {

It follows that det b = (—1)™aF*? and the subspace W’ C W spanned by all 2% with i # m
and 1 < i < n is non-degenerate. In particular, K = W’ & (W')* by Proposition 1.7. By
dimension count dim(W’)* = 2. As the subspace of W’ spanned by 2%, i = 1,...,m — 1
is a Lagrangian of b|y-, we have b|y is metabolic. Computing determinants, yields
blwnr =~ (1, —a), hence in W(F) we have b = b|yy). = (1, —a). O

0 ifi+j5<n
—a ifi14+75=n.

COROLLARY 20.11. Suppose that K = F(x) is a finite extension of even degree over
F. Then kerrg;p C annw p)(((Nr/r(2)))).

PROOF. Let s be the F-linear functional in (20.9). By Corollary 20.7 and Lemma
20.10, we have

ker(rg/p: W(F) — W(K)) C anny g (5.((1)) = annw ) (((Nk/r(2)))). O

COROLLARY 20.12. Let K/F be a finite field extension of odd degree. Then the map
r/p: W(F) — W(K) is injective.

Proor. If K = F(x) and s is as in (20.9) then by Corollary 20.7 and Lemma 20.10),
we have

ker(rg/p: W(F) — W(K)) C anny(p)(s.((1)) = anny(m((1)) = 0.
The general case follows by induction of the odd integer [K : F. O

Note that this corollary provides a more elementary proof of Corollary [18.6.

LEMMA 20.13. The transfer induced by the F-linear functional s in (20.9) satisfies
[ {a)y ifn is odd
s-({wh) = { 0 ifn is even.
PROOF. Let b = s.((x)). First suppose that n = 2m + 1 is odd. Then
_ 0, ifi+j<n—-1
i\ ’
[’(“"’M_{ a, ifi+j=n—1

It follows that det b = (—1)™aF*? and the subspace W C K spanned by all z° with i # m
and 1 < i < n is non-degenerate. In particular, K = W @® W+ by Proposition 1.7 and W+
is 1-dimensional by dimension count. Computing determinants, we see that b|y1 ~ (a).
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As the subspace of W spanned by z%, i = 0,...,m — 1, is a Lagrangian of by, the form
b|w is metabolic. Consequently, b = by = (a) in W(F).

Next suppose that n = 2m is even. The subspace of K spanned by z*,i=0,...,m—1
is a Lagrangian of b so b is metabolic and b = 0 in W (F). O

COROLLARY 20.14. Let s, be the transfer induced by the F-linear functional s in
(20.9). Then s.({({x))) = ({a)) in W(F).

THEOREM 20.15. (Similarity Norm Principle) Let K/F be a finite field extension and
© a non-degenerate even dimensional quadratic form over F. Then

Nir(Glek)) C G(p).

PROOF. Let x € G(pk). Suppose first that K = F(z). Let s be as in (20.9). As
((x)) - ox = 01in [,(K), applying the transfer s, : I,(K) — I,(F) yields
0= s.(((x)) - o) = s:({(2))) - ¢ = ((Nigyp(2))) -
in 1,(F') by Frobenius Reciprocity 20.2/ and Corollary 20.14. Hence Nk, p(x) € G(p) by
Remark 8.17.

In the general case, set k = [K : F(x)]. If k is even we have
Ni/p(z) = Np@yr(@)" € G(e)
since F*? C G(yp). If k is odd, the homomorphism I,(F(z)) — I,(K) is injective by

Remark [18.6, hence ((x)) - o) = 0. By the first part of the proof, Npyr(z) € G(p).
Hence Ng/r(z) € Np@yr(z)F*?* C G(p). O

LEMMA 20.16. Let ¢ be a non-degenerate quadratic form of even dimension and let
p € F[t] be a monic irreducible polynomial (in one variable). If ppq) is hyperbolic then

p € G(orw))-

PROOF. Let x be the image of ¢ in K = F(p) = F|[t]/(p). We have p is the norm of
t — x in the extension K(t)/F(t). Since ¢k is hyperbolic, t — z € G(pk)). Applying
the Norm Principle 20.15 to the form ¢p) and the field extension K(t)/F(t) yields

p € G(erw)- O
THEOREM 20.17. (Quadratic Similarity Theorem) Let ¢ be a non-degenerate quadratic
form of even dimension and let f € F[T] = Flt1,...,t,] be a nonzero polynomial. Then

the following conditions are equivalent:
(1) £°f € Glora).
(2) There exists an a € F* such that af € G(¢rr)).
(3) For any irreducible divisor p of f to an odd power, the form pp) is hyperbolic.

PROOF. (1) = (2) is trivial.
(2) = (3) follows from Proposition 19.8.
(3) = (1). We proceed by induction on the number n of variables. We may assume that f
is irreducible and deg,; f > 0. In particular, f is an irreducible polynomial in #; over the
field £ = F(T'") = F(ta,...,t,). Let g € F[T'] be the leading term of f. In particular,
g* = f*. As the polynomial f' = fg~! in E[t;] is monic irreducible and E(f") = F(f),
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the form ¢ is hyperbolic. Applying Lemma 20.16 to ¢g and the polynomial f’, we
have fg = f"- g € G(or))-

Let p € F[T'] be an irreducible divisor of g to an odd power. Since p does not divide f,
by the first part of the proof applied to the polynomial fg, the form g, ) is hyperbolic.
Since the homomorphism I,(F(p)) — I,(F(p)(t1)) is injective by Remark 8.18, we have
©r(p) is hyperbolic. Applying the induction hypothesis to g yields g*g € G(¢r@v)).

Therefore, f*f = g*f =g*g- fg-g7% € G(erm)). O

THEOREM 20.18. (Bilinear Similarity Norm Principle) Let K/F be a finite field ex-
tension and let b be an anisotropic symmetric bilinear form over F' of positive dimension.
Then

Niyr(G((bk)an) C G(b).

PROOF. Let 2 € G((bg)an). Suppose first that K = F/(z). Let s be as in (20.9). Let
brx = (bx)an L ¢ with ¢ a metabolic form over K. Then z¢ is metabolic so

bK = (bK)an = x(bK)an - x<<bK)an + C) = be
in W(K). Consequently, ((x))-bx = 0in I(K). Applying the transfer s, : W(K) — W (F)
yields
0= s.({(z)) - bx) = 5.(((2))) - b = ((Nk/r())) - b
by Frobenius Reciprocity 20.2/ and Corollary 20.14. Hence Nk /p(x)b = b in W (F') with
both sides anisotropic. It follows from Proposition 2.4 that N, r(z) € G(b).

In the general case, set k = [K : F(x)]. If k is even we have

Ng/p(z) = Npgyr(z)F € G(b)

since F*?2 C G(b). If k is odd, the homomorphism W (F(z)) — W/(K) is injective by
Corollary 18.6, hence ((z)) - (bp))an = 0 in W(F(z)). Hence z € G((brw))an) by
Proposition 2.4, By the first part of the proof, Np),/r(z) € G(b). Hence Nk /p(x) €
NF(JC)/F<I>FX2 C G(b) U

LEMMA 20.19. Let b be a non-degenerate anisotropic symmetric bilinear form and let

p € F[t] be a monic irreducible polynomial (in one variable). If bpy is metabolic then
pE G(bp(t)).

PROOF. Let z be the image of t in K = F(p) = FJt|/(p). We have p is the norm
of t — 2 in the extension K(t)/F(t). Since b is metabolic, (bx())an = 0. Thus
x—1t € G((bx))an). Applying the Norm Principle 20.18/to the anisotropic form by and
the field extension K(t)/F(t) yields p € G(bpy))- O

THEOREM 20.20. (Bilinear Similarity Theorem) Let b be an anisotropic bilinear form
of even dimension and let f € F[T] = F[ti,...,t,] be a nonzero polynomial. Then the
following conditions are equivalent:

(1) f7f € G(orm).
(2) There exists an a € F* such that af € G(bp(r)).

(3) For any irreducible divisor p of f to an odd power, the form bp, is metabolic.
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PROOF. Let ¢ = ¢y be of dimension m.
(1) = (2) is trivial.
(2) = (3). Let p be an irreducible factor of f to an odd degree. As F(T') is the quotient

field of the localization F[T, and F[T],) is a DVR, we have a group homomorphism
0:W(F(T)) — W(F(p)) of Lemma 19.10. Since p is a divisor to an odd power of f,

brg) = 0(br(r) = 0(afbrmr) =0
in W(F(p)). Thus bp, is metabolic.
(3) = (1). The proof is analogous to the proof of (3) = (1) in the Quadratic Similarity

Theorem 20.17 with Lemma 20.19 replacing Lemma 20.16/ and hyperbolicity replaced by
metabolicity. 0

COROLLARY 20.21. Let ¢ be an quadratic form (respectively, b an anisotropic bilinear
form) on V over F and f € F[T] with T = (t1,...,t,). Suppose that f € G(ppmr))
(respectively, f € G(bp(r))). Suppose that f(a) is defined and nonzero with a € F". Then
fla) € G(p).

PROOF. We may assume that ¢ is anisotropic as G(¢) = G(¢an). (Cf. Remark 8.9.)
By induction, we may assume that f is a polynomial in one variable t. Let R = F[t];—q),
a DVR. As f(a) # 0, we have f € R*. Over F(t) we have ppy) ~ fop@y) hence op ~ for
by Proposition [19.9. Since F' is the residue class field of R, upon taking the residue forms
we see that ¢ = f(a)y as needed.

As in the quadratic case, we reduce to f being a polynomial in one variable. We then
have bpy) ~ fbpy Taking O of this equation relative to the DVR R = F[t];_q) yields
b= fb= f(a)bin W(F) as f € R*. The result follows by Proposition 2.4. O

COROLLARY 20.22. Let ¢ be an quadratic form (respectively, b an anisotropic bilinear
form) on'V over F and g € F[T]. Suppose that g € G(opry) (respectively, g € G(bpr).
Then g* € G(p) (respectively, g* € G(b)).

PrOOF. We may assume that ¢ is anisotropic as G(¢) = G(@a,). (Cf. Remark 8.9.)
By induction on the number of variables, we may assume that g € F[t]. By Lemma [18.1
and Lemma 9.2, we must have deg g = 2r is even. Let h(t) = t*"¢(1/t) € G(¢F@)). Then
g° = h(0) € G(p) by Corollary 20.21. An analogous proof shows the result for symmetric
bilinear forms (using also Lemma [9.3] to see that deg g is even). U

21. An Exact Sequence for W (F(t))

Let AL be the one dimensional affine line over F. Let x € AL be a closed point and
F(z) be the residue field of x. Then there exists a unique monic irreducible polynomial
fz € Ft] of degree d = degx such that F(z) = F|[t]/(f.). By Lemma [19.10, we have
the first and second residue homomorphisms with respect to the DVR Oy1 , and prime
element f,:

W(F() S W(F() and W(F(®) 25 W(F ().

Denote 0y, by 0,. If g € F[t] then 0,((¢9)) = 0 unless f, | g in F[t]. It follows if b is a
non-degenerate bilinear form over F(t) that 9,(b) = 0 for almost all z € AL.
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We have
THEOREM 21.1. The sequence

0— W(F) — S w(FE) S ] W(F@) —o
ZGA%
is split exact where 8 = (0y,).
PROOF. As anisotropic bilinear forms remain anisotropic under a purely transcenden-

tal extension, rp(;),p is monic. It is split by the first residue homomorphism with respect
to any rational point in AkL.

Let Flt]g := {9 | g € F[t], degg < d} and Ly C W(F(t)) the subring generated
by (g) with g € F[t|s. Then Ly C Ly C Ly C --- and W(F(t)) = UgzLs. Note that
imrpu)p = Lo. Let Sq be the multiplicative monoid in F'[t] generated by Ft];\ {0}. As
a group Lg4 is generated by one-dimensional forms of the type

(21.2) (fr- fma)
with distinct monic irreducible polynomials fi, ..., f,, € F[t] of degree d and g € Sy_;.

Cramv 21.3. The additive group Ly/Lq_1 is generated by (fg) + Lq_1 with f € F[t]
monic irreducible of degree d and g € Sy 1. Moreover, if h € F[t|q_1 satisfies g = h
mod (f) then (fg) ~ (fh) mod Ly_1:

We first must show that a generator of the form in (21.2) is a sum of the desired forms
mod Ly_;. By induction on m, we need only do the case m = 2. Let fi, fo be distinct
irreducible monic polynomials of degree d and g € S3_1. Let h = f; — fy so degh < d.
We have

(f1) = (h) + (f2) = {f1f2)
in W(F(t)) by the Witt relation (4.2). Multiplying this equation by (fog) and deleting
squares, yields

(f1fag) = (f29h) + (9) — (figh) = (f2gh) — (figh) mod L4
as needed.

Now suppose that g = g1g2 with g1, g2 € F[t]a—1. As f fg by the Division Algorithm,
there exist polynomials ¢, h € F[t] with h # 0 and degh < d satisfying g = fqg+ h. It
follows that degq < d. By the Witt relation (4.2), we have

{g9) = (fa) + () — (fqhg)
in Ly hence multiplying by (f), we have
(fg) =(a) + {fh) — {qhg) = (fh) mod Lq_;.
The Claim now follows by induction on the number of factors for a general g € Sy_;.
Let z € AL be of degree d and f = f,. Define

ag : W(F(z)) — La/La-1 by (g+ (f)) = (9) + La-1 for g € Flt]a1.

We show this map is well-defined. If h € F[t];_; satisfies gh? = [ mod (f), with [ €
F(t]g_1 then (fg) = (fgh?®) = (fl) mod Lgq_; by the Claim, so the map is well-defined on
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1-dimensional forms. If g1, go € F[t]q_1 satisfy g1 +¢2 # 0 and h = (g1 + ¢2)g192 mod (f)
then

(for) + (fg2) = (f(o1 + 92)) + (fo192(91 + 92)) = (f(91 + 92)) + (fh) mod Lg_,

by the Claim. As (f)+(—f) = 0in W(F\(t)), it follows that «, is well-defined by Theorem
4.8

Let 2’ € AL with degz’ = d. Then the composition

W (F(2)) %5 La/Lyy 25 W(F(2'))

is the identity if x = 2’ otherwise it is the zero map. It follows that the map

H W(F(J? (az Ld/Ld 1

degx=d

is split by (0y)degz=d- It follows by the Claim that this map is also surjective hence an
isomorphism with inverse (0,)degz=4. By induction on d, we check that

(am>degz§d : Ld/LO - H W(F(IE))

deg x<d
is an isomorphism. As Ly = W (F'), passing to the limit yields the result. U

COROLLARY 21.4. The sequence

0 — I"(F) =25 (F(1) & [ 1" (F(x)) — 0

xGA}
15 split exact for eachn > 1.

PROOF. We show by induction on d = deg x that I" 1 (F(z)) € im(8). Let g2,..., 9, €
Ft] be of degree < d. We need to prove that b = ((ga, . .., gn)) lies in im(d) where g; is the
image of g; in F(z). By Example [19.13, we have 0,(c) = b where ¢ = ((—fz, 92, .., 9n))-
Moreover, ¢ — b € [[4eppeq I" ' (F(x)) and therefore ¢ — b € im(8) by induction.

To finish, it suffices to show exactness at I"(F(t)). Let b € ker(8). By Theorem 21.1]
there exists ¢ € W(F) such that rp/r(c) = b. We show ¢ € I"(F). Let x € Ay, be a fixed
rational point and f =t — ¢(x). Define p : W(F(t)) — W(F) by p(d) = 0.({{(—f)) - 0).
By Lemma [19.14, we have p(I"(F(t)) C I"(F) as F(z) = F. By Example [19.13] the
composition p o rpy)/p is the identity. It follows that ¢ = p(b) € I"(F) as needed. O

We wish to modify the sequence in Theorem 21.1/ to the projective line PL. If z € AL
is of degree n, let s, : F/(x) — F be the F-linear functional

s.(t" Hx)) =1 and s,(t'(x)) =0 fori <n— 1.

The infinite point co corresponds to the 1/t-adic valuation. It has residue field F'. The
corresponding second residue homomorphism 0., : W(F(t)) — W(F) is taken with re-
spect to the prime 1/t. So if 0 # h € F[t] is of degree n and has leading coefficient
a, we have 0y ((h)) = (a) if n is odd and O ((h)) = 0 otherwise. Define (s ). to be
—Id : W(F) — W(F).
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THEOREM 21.5. The sequence

0— W(F) W) 2 T W(F() = W(F) — 0

wGP%

TF(t)/F
_

is exact where 8 = (0,) and s, = ((84)+)-
PROOF. The map (S )« is —Id. Hence by Theorem 21.1} it suffices to show s, o 8 is
the zero map.

As 1-dimensional bilinear forms generate W (F'(t)), it suffices to check the result on
one-dimensional forms. Let (afi,..., f.) be a one-dimensional form with f; € F[t] monic
of degree d; and a € F* for 1 < i < n. Let x; € AL satisfy f; = f,, and s; = s,, for
1 < ¢ < n. We must show that

Z (82)« 0 0z({afi - fn)) = —(Scc)x © Ouc({af1 -+ fu))

in W(F). Multiplying through by (a), we may also assume that a = 1.

Set A = F[t]/(fi--- f.) and d = dim A. Then d = ) d;. Let —: F[t] — A be the
canonical epimorphism and set ¢; = (f1 -+ fu)/fi- We have an F-vector space homomor-
phism

a: HF(xZ) — A given by (hy(z;),..., hn(x;)) — Zﬁi@- for all h € Ft].
i=1
We show that « is an isomorphism. As both spaces have the same dimension, it suffices to
show « is monic. As the g; are relatively prime in F[t], we have an equation ) | ¢;¢; =1
with g; € F[t]. Then the map

A= ] F) given by b — (A(@1)g(@), .. h(z2)gn(zn))
splits « hence « is monic as needed. Set A; = a(F(z;)) for 1 <i < n.

Let s : A — F be the F-linear functional defined by s(*~') = 1 and s(¢') = 0 for
0 <i < d— 1. Define b to be the bilinear form on A over F' given by b(f,h) = s(fh) for
f,h e F[t]. If i # j, we have

ba(f (i), alh(z)))) = b(fGi, hg;) = s(fhaid;) = s(0) =0
for all f,h € F[t]. Consequently, b
CLAIM 21.6. bla, = (5:)«(0f,((f1--- fn))) fori=1,...n:

Let g, h € F[t]. Write

A, is orthogonal to b4, if i # j.

Gigh=co+ -+ ca1t" T+ fip
for some ¢; € F and p € F[t].

By definition, we have
(50)« (05, ({f1 -+ fud)(g(@i), (w2))) = silqi(wi)g(@i)h(wi)) = ca,-1-
As deg ¢; = d — d;, we have deg ¢;t%~! = d — 1. Thus
bla, (a(g(:), a(h(x:)) = b(gGi, hai) = s(q;gh) = ca, 1.



84 ITII. FORMS OVER RATIONAL FUNCTION FIELDS

and the claim is established.

As 0¢(f1--- fn) = 0 for all irreducible monic polynomials f # f;. i =1,...n, in F[t],
we have, by the Claim,

=D (0@ ((fr - f)) = D (5)u(@u((fr - fu))
i=1 wEA%
in W(F).

Suppose that d = 2e is even. The form b is then metabolic as it has a totally isotropic
subspace of dimension e spanned by 1,%,...,t"}. We also have (54 )+ © O5(b) = 0 in this
case.

Suppose that d = 2e + 1. Then b has a totally isotropic subspace spanned by
1,t,...,t 1 so b ~ (a) L ¢ with ¢ metabolic by the Witt Decomposition Theorem [1.28.
Computing det b on the basis {1,7,...t971}, we see that (a) = (1). As (So)s 0 Oso(b) =
—(1), the result follows. O

COROLLARY 21.7. Let K be a finite simple extension of F' and s : K — F a non-trivial
F-linear functional. Then s,(I"(K)) C I"(F) for all n > 0. Moreover, the induced map
I"(K)/I"™Y(K) — I["(F)/I"(F) is independent of the non-trivial F-linear functional s
for alln > 0.

PROOF. Let z lie in AL with K = F(x). Let b € I"(K). By Lemma 21.4, there exists
¢ € I"™(F(t)) such that d,(c) = 0 for all y € Al unless y = z in which case 9,(¢) = b. It
follows by Theorem 21.5! that

0= 3" (5,): 0 9,(6) = (5).(6) — 0 ().

By Lemma 19.14, we have 0,.(c) € I"(F), so (s;)«(b) € I"(F). Suppose that s : K — F
is another non-trivial F-linear functional. As in the proof of Corollary 20.8, there exists

a ¢ € K* such that (s).(c) = (s)«(cc) for all symmetric bilinear forms ¢. In particular,
(8)4(b) = (84)+(cb) lies in I"(F). As ((c)) - b € I"(K), we also have

$:+(b) = (52)4(b) = (s2)+({(c)) - b)
lies in I™*1(F). The result follows. O

The transfer induced by distinct non-trivial F-linear functionals K — F', are not in
general equal on I"(F).

EXERCISE 21.8. Show that Corollary 21.7 holds for arbitrary finite extensions K/F.
COROLLARY 21.9. The sequence

0— I"(F) F@) S I 1" '(F ) = 1"Y(F) — 0

1
z€PE

TF(t)/F
_

18 exact.



CHAPTER 1V

Function Fields of Quadrics

22. Quadrics

A quadratic form ¢ over F' defines a projective quadric X, over F'. The quadric X, is
smooth if and only if ¢ is non-degenerate (cf. Proposition 22.1). The quadric X, encodes
information about isotropy properties of ¢, namely the form ¢ is isotropic over a field
extension E/F if and only if X, has a point over E. In the third part of the book we will
use algebraic-geometric methods to study isotropy properties of .

If b is a symmetric bilinear form, the quadric X, reflects isotropy properties of b (and
of pp as well). If the characteristic of F' is two, only totally singular quadratic forms arise
from symmetric bilinear forms. In particular quadric arising from bilinear forms are not
smooth. Therefore algebraic-geometric methods have wider application in the theory of
quadratic forms than in the theory of bilinear forms.

In the previous sections, we looked at quadratic forms over field extensions determined
by irreducible polynomials. In particular, we were interested in when a quadratic form be-
comes isotropic over such a field. Viewing a quadratic form as a homogeneous polynomial
of degree two, results from these sections apply.

Let ¢ and ¢ be two quadratic forms. In this section, we begin our study of when
¢ become isotropic or hyperbolic over F'(¢)). It is natural at this point to introduce the
geometric language that we shall use, i.e., to associate to a quadratic form a projective
quadric.

Let ¢ be a quadratic form on V. Viewing ¢ € S?(V*) we define the projective quadric
associated to ¢ to be the closed subscheme

X, =Proj $*(V7")/(p)

of the projective space P(V') = Proj $*(V*). The scheme X,, is equidimensional of dimen-
sion dim V' —2if ¢ # 0 and dim V' > 2. We define the Witt index of X, by io(X,) = io(¢).
By construction, for any field extension L/F, the set of L-points X, (L) coincides with
the set of isotropic lines in V. Therefore, X,(L) = 0 if and only if ¢, is anisotropic.
For any field extension K/F we have X, = (X,)k.
Let ¢’ be a subform of ¢. The inclusion of vector spaces V' := V,, C V gives rise to
a surjective graded ring homomorphism

S* (V) () = ST (V™) /(¥)
which in its turn leads to a closed embedding X, — X,. We shall always identify X
with a closed subscheme of X,,.

85
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PROPOSITION 22.1. Let ¢ be a nonzero quadratic form of dimension at least 2. Then
the quadric X, is smooth if and only if ¢ is non-degenerate.

PROOF. We may assume that F' is algebraically closed. We claim that P(rady) is
the singular locus of X,. Let 0 # v € V' be an isotropic vector. Then the isotropic line
U = Fu C V can be viewed as a rational point of X,. As p(u+¢ev) = 0 if and only if u is
orthogonal to v (where €% = (), the tangent space Ty is the subspace Hom (U, U+ /U) of
the tangent space Tpy,y = Hom(U, V/U) (see Example 103.20). In particular the point
U is regular on X if and only if dimTxy = dim X = dimV — 2 if and only if U+ # V,
i.e., U is not contained in rad¢. Thus X, is smooth if and only if radp = 0, i.e., ¢ is
non-degenerate. U

We say that the quadratic form ¢ on V is irreducible if ¢ is irreducible in the ring
S*(V*). If ¢ is nonzero and not irreducible, then ¢ = [ -1’ for some nonzero linear forms
[,I' € V*. Then rad ¢ = kerl Nker!’ has codimension at most 2 in V. Therefore the form
@ on V/rad ¢ is either one-dimensional or a hyperbolic plane. It follows that a regular
quadratic form ¢ is irreducible if and only if dim ¢ > 3 or dim ¢ = 2 and ¢ is anisotropic.

If ¢ is irreducible, X, is an integral scheme. The function field F/(X,) is called the
function field of ¢ and will be denoted by F(¢). By definition, F'(p) is the subfield of
degree 0 elements in the quotient field of the domain S*(V*)/(y). Note that the quotient
field of S*(V*)/(¢p) is a purely transcendental extension of F'(¢) of degree 1. Clearly ¢ is
isotropic over the quotient field of S*(V*)/(y) and therefore is isotropic over F(y).

EXAMPLE 22.2. Let o be an anisotropic binary quadratic form. As o is isotropic over
F(0), it follows from Corollary [12.3 that F(o) ~ Cy(0).

If K/F is a field extension such that o is still irreducible, we simply write K (¢) for
K(¢x)-

EXAMPLE 22.3. Let ¢ and ¢ be irreducible quadratic forms. Then F(X, x X)) ~
F(e) () =~ F(¢)().

Let ¢ and ¢ be two irreducible regular quadratic forms. We shall be interested in when
©r(yp) is hyperbolic or isotropic. A consequence of the Quadratic Similarity Theorem 20.17
is:

PROPOSITION 22.4. Let ¢ be a non-degenerate quadratic form of even dimension and

Y be an irreducible quadratic form of dimension n over F. Suppose that T = (ty,...,t,)
and b € D(v). Then @pey) is hyperbolic if and only if

b- (T orr) = Pr(T)-
PROOF. By the Quadratic Similarity Theorem 20.17, we have ¢p(y is hyperbolic if

and only if ¥* - Y(T)ppmr) ~ ¢pr). Let b € D(y). Choosing a basis for V' with first
vector v satisfying ¥ (v) = b, we have ¢* = b. O

THEOREM 22.5. ( Subform Theorem) Let ¢ be a nonzero anisotropic quadratic form
and v be an irreducible anisotropic quadratic form such that the form @p(y) is hyperbolic.
Let a € D(p) and b € D(v). Then abiy is isometric to a subform of ¢ and, therefore,
dim vy < dim .
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PROOF. We view v as an irreducible polynomial in F[T]. The form ¢ is non-degenerate
of even dimension by Remark 7.19, so by Corollary 22.4, we have by)(T') € G(¢p(ry). Since
a € D(p), we have aby)(T') € D(ppry). By the Representation Theorem 17.12, abi) is a
subform of ¢. O

By the proof of the theorem and Corollary 20.21, we have

COROLLARY 22.6. Let ¢ be an anisotropic quadratic form and ) an irreducible anisotropic
quadratic form. If ppy is hyperbolic then D(p)D(v) C G(y). In particular, if 1 € D(1))
then D(¢) C G(p).

REMARK 22.7. The natural analogues of the Representation Theorem [17.12/ and the
Subform Theorem [22.5 are not true for bilinear forms in characteristic two. Let b = (1,b)
and ¢ = (1,¢) be anisotropic symmetric bilinear forms with b and ¢ = 2 + by? nonzero
and bF** #* cF*? in a field F of characteristic two. Thus b * ¢. However, o, >~ ¢, by
Example 7.28. So ¢(t1,t2) € D(Pop, 1)) and cp(y,) is isotropic hence metabolic but ac
is not a subform of b for any a # 0.

Pb

We do have, however, the following:

COROLLARY 22.8. Let b and ¢ be anisotropic bilinear forms with dime¢ > 2 and b

nonzero. Let 1 be the associated quadratic form of ¢. If bp(y is metabolic then dim¢ <
dim b.

PROOF. Let ¢ = ¢p. By the Bilinear Similarity Theorem 20.20 and Lemma 9.3, we
have ay)(T') € G(bp(r)) C G(prer)) for some a € F* where T' = (t1,. .., tqimy). It follows
that by)(T') € D(¢pry) for some b € F*. Consequently,

dim b = dimp > dimy = dim¢
by the Representation Theorem 17.12. U

We turn to the case that a quadratic form becomes isotropic over the function field of
another form or itself.

PROPOSITION 22.9. Let ¢ be an irreducible reqular quadratic form. Then the field
extension F(p)/F is purely transcendental if and only if ¢ is isotropic.

PROOF. Suppose that the field extension F(y)/F is purely transcendental. As @p(y,)
is isotropic, ¢ is isotropic by Lemma [7.16.

Now suppose that ¢ is isotropic. Then ¢ = H L ¢’ for some ¢’ by Proposition [7.14.
Let V=V, V' =V, and let h,h' € V be a hyperbolic pair of H. Let ¢ = ¢|ppgys with
h' € (V') Tt is sufficient to show that X, \ X, is isomorphic to an affine space. Every
isotropic line in X, \ Xy has the form F(h + ah’ + ') for unique a € F and v' € V' such
that

0=wp(h+ah +v")=a+ ),
i.e., a = —p(v'). Therefore the morphism X, \ X, — A(V’) taking F(h + ah’ + ') to ¢/
is an isomorphism with the inverse v’ +— F(h — p(v')h/ 4+ v'). O
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REMARK 22.10. Let char F' = 2 and let ¢ be an irreducible totally singular form.
Then the field extension F(y)/F is not purely transcendental even if ¢ is isotropic.

PROPOSITION 22.11. Let ¢ be an anisotropic quadratic form and let K/F be a qua-

dratic field extension. Then g is isotropic if and only if there is a binary subform o of
@ such that F(o) ~ K.

PROOF. Let o be a binary subform of ¢ with F(o) ~ K. Since o is isotropic over
F(o) we have ¢ isotropic over F(o) ~ K.

Conversely, suppose that ¢k (v) = 0 for some nonzero v € (V,,) k. Since K is quadratic
over F', there is a 2-dimensional subspace U C V,, such that v € Ug. Therefore the form

o = |y is isotropic over K. As o is also isotropic over F(o), it follows from Corollary
12.3/ and Example 22.2 that F(o) ~ Cy(0) ~ K. O

COROLLARY 22.12. Let ¢ be an anisotropic quadratic form and o a non-degenerate
anisotropic binary quadratic form. Then o ~ b®c | ¢ with b a non-degenerate symmetric
bilinear form and Vg anisotropic.

PROOF. Suppose that ¢p() is isotropic. By Proposition 22.11! there is a binary sub-
form ¢ of ¢ with F(o') = F(o). By Corollary 12.2 and Example 22.2, we have o’ is
similar to 0. Consequently, there exists an a € F* such that ¢ ~ ac L 9 for some
quadratic form . The result follows by induction on dim ¢. 0

Recall that a field extension K/F is called separable if there exists and intermediate
field F in K/F with E/F purely transcendental and K/FE algebraic and separable. We
show that regular quadratic forms remain regular after extending to a separable field
extension.

LEMMA 22.13. Let ¢ be a reqular quadratic from and let K/F be a separable (possibly
infinite) field extension. Then i is reqular.

ProOOF. We proceed in several steps.
Case 1: [K: F|=2.

Let v € (V,,)k be an isotropic vector. Then v € Uy for a 2-dimensional subspace U C V,
such that |y is similar to the norm form N of K/F (cf. Proposition 12.1). As N is
non-degenerate, v ¢ rad(b,, ), therefore, rad(¢x) = 0.

Case 2: K/F is of odd degree or purely transcendental.

We have ¢ ~ ¢,, 1. nH. The anisotropic part ¢,, stays anisotropic over K by Springer’s
Theorem [18.5 or Lemma [7.16 respectively, therefore ¢ is regular.

Case 3: [K : I is finite.

We may assume that K/F is Galois by Remark [7.15. Then K/F is a tower of odd degree
and quadratic extensions.

Case 4: The general case.

In general K/F is a tower of a purely transcendental and a finite separable extension. [

We turn to the function field of an irreducible quadratic form.
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LEMMA 22.14. Let ¢ be an irreducible quadratic form over F. Then there exists a
purely transcendental extension E of F' with [F(p) : E] = 2. Moreover, if ¢ is not totally
singular, the field E can be chosen with F(p)/E is separable. In particular F(p)/F is
separable.

Proor. Let U C V,, be an anisotropic line. The rational projection f : X, --» P =
P(V/U) taking a line U’ to (U + U’)/U is a double cover, so that F'(¢)/E is a quadratic
field extension where E' is the purely transcendental extension F'(P) of F.

Let 7 be the reflection of ¢ with respect to a nonzero vector in U. Clearly, f(7U’) =
f(U’) for every line U" in X,,. Therefore 7 induces an automorphism of every fiber of f. In
particular 7 induces an automorphism of the generic fiber and therefore an automorphism
e of the field F(y) over E.

If ¢ is not totally singular, we can choose U not in rad b,. Then the isometry 7 and
the automorphism ¢ are nontrivial. Hence the field extension F'(¢)/E is separable. [

Let ¢ and ¥ be anisotropic quadratic forms of dimension at least 2 over F. We write
@ = 1 if ppy) is isotropic and write ¢ <> v if ¢ = 1 and ¢ = ¢. For example, if ¢ is a
subform of ¢ then ¢ = 1.

We have ¢ = 1 if and only if there exists a rational map X, --» X,,.
We show that the relation > is transitive.

LEMMA 22.15. Let ¢ and v be anisotropic quadratic forms over F. If 1 = u then
there ezist a purely transcendental field extension E/F and a binary subform o of ¥ over

E such that E(0) = F(u).

PrROOF. By Lemma 22.14] there exist a purely transcendental field extension E/F
such that F'(u) is a quadratic extension of E. As 1 is isotropic over F'(u) it follows from
Proposition 22.11] applied to the form ¢ and the quadratic extension F'(u)/E that ¢g
contains a binary subform o over E such that E(o) = F(u). O

PROPOSITION 22.16. Let ¢, 1, and p be anisotropic quadratic forms over F. If
@ =1 = i then ¢ = .

PRrROOF. Consider first the case when p is a subform of .

We may assume that p is of codimension one in . Let T = (t1,...,t,) be the
coordinates in Vi, so that V, is given by ¢t; = 0. By assumption there is v € V,,[T] such
that ¢(v) is divisible by ¢(T") but v is not divisible by ¢(T"). Since ¢ is anisotropic,
we have deg, ¢ = 2 for every i. Applying the division algorithm on dividing v by
with respect to the variable t; we may assume that deg,, v < 1. Moreover, dividing out
a power of t; if necessary we may assume that v is not divisible by t;. Therefore the
vector w := v|y,—o € V,[I"], where T" = (ts,...,t), is not zero. As deg, w < 1 and
deg,, 1 = 2, the vector w is not divisible by x(7”). On the other hand, p(w) is divisible
by ¥(T)|¢,=0 = p(T"), i.e., @ is isotropic over F'(u).

Now consider the general case. By Lemma 22.15] there exist a purely transcendental
field extension E/F and a binary subform o of ¢ over E such that E(o) = F(u). By
the first part of the proof applied to the forms ¢g > ¥ > o we have g is isotropic over
E(o) = F(u), i.e., ¢ = p. d
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COROLLARY 22.17. Let ¢, ¥, and p be anisotropic quadratic forms over F. If
@ <= then pp) s isotropic if and only if ppy) is isotropic.

PROPOSITION 22.18. Let v and p be anisotropic quadratic forms over F satisfying
Y = . Let ¢ be a quadratic form such that ppy) is hyperbolic. Then @r () s hyperbolic.

ProOF. Consider first the case when p is a subform of 1. Choose variables 7" of
and variables T' = (T",T") of ¢ so that u(T") = ¥ (1",0). As ¢p(y) is hyperbolic, by the
Quadratic Similarity Theorem 20.17, we have ppry ~ a)(T) gy over F(T') for some a €
F>. Specializing variables 7" = 0, we see by Corollary 20.21l that ¢py ~ ap(T")p@r
over F'(1"), and again it follows from the Quadratic Similarity Theorem 20.17 that pp(,)
is hyperbolic.

Now consider the general case. By Lemma 22.15, there exist a purely transcendental
field extension E/F and a binary subform o of ¢ over E such that E(o) = F(p). As
©E() is hyperbolic, by the first part of the proof applied to the forms ©g > o, we have
©E(e) = PF(w is hyperbolic. 0

23. Quadratic Pfister Forms 11

The introduction of function fields of quadrics allows us to determine the main charac-
terization of general quadratic Pfister forms. They are precisely those forms that become
hyperbolic over their function fields. In particular, Pfister forms can be characterized as
universally round forms.

If ¢ is an anisotropic general quadratic Pfister form then ¢p(,) is isotropic hence
hyperbolic by Corollary 9.11. We wish to show the converse of this property. We begin
by looking at subforms of Pfister forms.

LEMMA 23.1. Let ¢ be an anisotropic quadratic form and let p be a subform of .
Suppose that D(pk) and D(pk) are groups for all field extensions K/F. Let a = —¢(v)
for some v € V;-\ 'V, Then the form ((a)) ® p is isometric to a subform of .

ProoOF. Let T' = (t1,...,t,) and 77 = (t,41,...,t2,) be 2n independent variables
where n = dim p. We have

T)
) — ap(T") = p(7)[2L) _
pAT) = ap(T) = 1) [ =
. T T
As D(ppr,r)) is a group, we have 5((T’)) € D(pp(r,r)) hence pp((T’)) —a € D(opr,r). As

p(T") € D(@pr,r), we have
p(T) — ap(T') € D(err))D(praay) = D(@rar))-
By the Representation Theorem [17.12, ((a)) ® p is a subform of ¢. O

THEOREM 23.2. Let ¢ be a non-degenerate (respectively, totally singular) n-dimensional
anisotropic quadratic form over F withn > 1. LetT = (t1,...,t,) and T = (tpi1, ..., ton)
be 2n independent variables. Then the following are equivalent:



23. QUADRATIC PFISTER FORMS II 91

(1) n = 2% for some k > 1 and ¢ € P(F) (respectively, ¢ is a quadratic quasi-Pfister
form).

(2) G(¢k) = D(¢k) for all field extensions K/F.

(3) D(¢k) is a group for all field extensions K/F.

(4) Over the rational function field F(T,T"), we have

o(T)p(T') € D(oram)-

(5) o(T) € G(orr))-
PROOF. (2) = (3) = (4) are trivial.

(5) < (1) = (2): As quadratic Pfister forms are round by Corollary 9.10 and quasi-
Pfister forms are round by Corollary [10.3, the implications follow.

(5) = (4): We have ¢(T') € G(vpry) C G(@rmr)) and (T") € D(pry). It follows by
Lemma 9.2 that o(T)(T") € D(@pr17))-

(4) = (3): If K/F is a field extension then ¢(T)p(T") € D(pkr1y). By the Substitution
Principle [17.7, it follows that D(pk) is a group.

(3) = (1): As 1 € D(yp) it suffices to show that ¢ is a general quadratic Pfister form. We
may assume that dim¢ > 2. If ¢ is non-degenerate, ¢ contains a non-degenerate binary
subform, i.e., a 1-fold general quadratic Pfister form. Let p be the largest quadratic
general Pfister subform of ¢ if ¢ is non-degenerate and the largest quasi-Pfister form if
¢ is totally singular. Suppose that p # ¢. If ¢ is non-degenerate then VpL # 0 and
VpL NV, =radb, = 0 and if ¢ is totally singular then VpL =V, and V, # V,,.. In either
case, there exists a v € V;* \ V,. Set a = —¢(v). By Lemma 23.1, ((a)) ® p is isometric
to a subform of ¢, a contradiction. O

REMARK 23.3. Let ¢ be a non-degenerate isotropic quadratic form over F. As hyper-
bolic quadratic forms are universal and round, if ¢ is hyperbolic then o(T') € G(vpr)).
Conversely, suppose p(T') € G(prr)). As

(0r))an L io(@)H ~ 0pry ~ @(T)or@) =~ o(T)(Pr))an L io(@)e(T)H,

we have o(T') € G((¢r))an) by Witt Cancellation 8.4. If ¢ was not hyperbolic then the
Subform Theorem 22.5/ would imply dim ¢pry < dim(@p(r))an, @ contradiction. Conse-
quently, ¢(T') € G(¢p(r)) if and only if ¢ is hyperbolic.

COROLLARY 23.4. Let ¢ be a non-degenerate anisotropic quadratic form of dimension
at least two over F. Then the following are equivalent:
(1) dim ¢ is even and i1(p) = dim ¢/2.
(2) wr(yp) is hyperbolic.
(3) ¢ € GP,(F) for some n > 1.

PROOF. Statements (1) and (2) are both equivalent to ¢,y contains a totally isotropic
subspace of dimension 3 dim ¢. Let a € D(y). Replacing ¢ by (a)¢ we may assume that ¢
represents one. By Theorem 22.4, Condition (2) in the corollary is equivalent to Condition
(5) of Theorem 23.2/ hence conditions (2) and (3) above are equivalent. O
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COROLLARY 23.5. Let ¢ and v be quadratic forms over F with ¢ € P,(F") anisotropic.
Suppose that there exists an F-isomorphism F(p) ~ F(¢). Then there exists an a € F*
such that 1) ~ ap over F', i.e., ¢ and ¢ are similar over F'.

PROOF. As pp(, is hyperbolic so is ¢pyy. In particular, ai) is a subform of ¢ for
some a € F* by the Subform Theorem 22.5. Since F(p) ~ F(1), we have dim ¢ = dim ¢
and the result follows. O

In general the corollary does not generalize to non Pfister forms. Let F' = Q(ty, 2, t3)
The quadratic forms ¢ = ((t1,t9)) L (—t3) and ¢ = ((t1,t3)) L (—t2) have isomorphic
function fields but are not similar. (Cf. [40] Th. XII.2.15.)

NOTATION 23.6. Let r : F' — K be a homomorphism of fields. Denote the kernel of
ri/p: W(F) — W(K) by W(K/F) and the kernel of rx/p : I;(F) — I,(K) by I,(K/F).
If ¢ is a non-degenerate even dimensional quadratic form over F', we denote by W (F)p
the cyclic W(F)-module in I,(F') generated by ¢.

COROLLARY 23.7. Let p be an anisotropic quadratic n-fold Pfister form withn > 1 and
Y an anisotropic quadratic form of even dimension over F. Then there is an isometry

Y~ b®y over ' for some symmetric bilinear form b over F' if and only if ¥p, is
hyperbolic. In particular, I,(F(p)/F) = W (F)e.

ProoOF. If b is a bilinear form then (b ® ¢)p@) = br) ® Yr() is hyperbolic by
Lemma 8.16/ as ¢p(,) is hyperbolic by Corollary 9.11. Conversely, suppose that 9p(,,) is
hyperbolic. We induct on dim . Assume that dim > 0. By the Subform Theorem 22.5
and Proposition [7.23, we have ¥ ~ ap 1 ~ for some a € F'* and quadratic form . The
form v also satisfies yp(,) is hyperbolic, so the result follows by induction. 0

We next prove a fundamental fact about forms in /™(F') and I7(F') due to Arason and
Pfister known as the Hauptsatz.

THEOREM 23.8. (Hauptsatz)
(1) Let 0 # ¢ be an anisotropic quadratic form lying in I}'(F'). Then dim g > 2".
(2) Let 0 # b be an anisotropic bilinear form lying in I"™(F). Then dim(b) > 2".

PrOOF. (1). As [}'(F) is additively generated by general quadratic n-fold Pfister
forms, we can write p = Y |_. a;p; in W(F') for some anisotropic p; € P,(F) and a; € F*.
We prove the result by induction on r. If » = 1 the result is trivial as p; is anisotropic,
so we may assume that 7 > 1. As (p,)p(,,) is hyperbolic by Corollary 9.11, applying
the restriction map rp(,.yp : W(F) — W(F(p,)) to ¢ yields @p,) = Sl a (Pi) o)
in I7(F(p)). If wp(,) is hyperbolic then 2" = dim p < dim by the Subform Theorem
22.5. If this does not occur then by induction 2" < dim(ypr(,,))an < dim g and the result
follows.

(2). As I™(F) is additively generated by bilinear n-fold Pfister forms, we can write
b = > _,eic; in W(F) for some ¢; anisotropic bilinear n-fold Pfister forms and e; €
{£1}. Let ¢ = ¢, the quadratic form associated to ¢,. Then ¢p(,) is isotropic hence
(¢r)F(y) 1s isotropic hence metabolic by Corollary 6.3, If b F(p) 18 not metabolic then 2" <
dim(bp(e))an < dim b by induction on r. If bp(,) is metabolic then 2" = dim ¢ < dim b by
Corollary 22.8. 0
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An immediate consequence of the Hauptsatz is a solution to a problem of Milnor, viz.,

COROLLARY 23.9. (2, I"(F) =0 and (;2, I}(F) = 0.
The proof of the Hauptsatz for bilinear forms completes the proof of Corollary [6.19
and Theorem 6.20. We have an analogous result for quadratic Pfister forms.

COROLLARY 23.10. Let ¢, € GP,(F). If ¢ = ¢ mod IJ*H(F) then ¢ ~ ay for
some a € F*, i.e., ¢ and ¢ are similar over F. If, in addition, D(¢) N D(¢) # O then
=1,

ProOOF. By the Hauptsatz 23.8, we may assume both ¢ and 1 are anisotropic. As
((a)) ® ¢ € GP1(F), we have ai) = ¢ mod I} (F) for any a € F*. Choose a € F*
such that ¢ L —ay in Ig“(F) is isotropic. By the Hauptsatz 23.8, the form ¢ 1 —av is

hyperbolic hence ¢ = at) in I,(F). As both forms are anisotropic, it follows by dimension
count that ¢ ~ at) by Remark B.17. If D(p) N D(v) # () then we can take a = 1. O

If  is a nonzero subform of dimension at least two of an anisotropic quadratic form
p then pp(,) is isotropic. As ¢ must also be anisotropic p = . For general Pfister forms,
we can say more. Let p be an anisotropic general quadratic Pfister form. Then pp,) is
hyperbolic so contains a totally isotropic subspace of dimension (dim p)/2. Suppose that
¢ is a subform of p satisfying dim¢ > (dim p)/2. Then ¢p(,) is isotropic hence ¢ > p
also. This motivates the following:

DEFINITION 23.11. An anisotropic quadratic form ¢ is called a Pfister neighbor if
there is a general quadratic Pfister form p such that ¢ is isometric to a subform of p and
dim ¢ > (dim p)/2.

For example, non-degenerate anisotropic forms of dimension at most 3 are Pfister
neighbors.

REMARK 23.12. Let ¢ be a Pfister neighbor isometric to a subform of a general Pfister
form p with dimp > (dimp)/2. By the above, ¢ <> p. Let p’ be another form such
that ¢ is isometric to a subform of p’ and dimy > (dimp’)/2. As p <> ¢ <> p/ and
D(p)ND(p") # () we have p' ~ p by the Subform Theorem 22.5. Thus the general Pfister
form p is uniquely determined by ¢ up to isomorphism. We call p the associated general
Pfister form of . If ¢ represents one then p is a Pfister form.

24. Linkage of Quadratic Forms

In this section, we look at the quadratic analogue of linkage of bilinear Pfister forms.
The Hauptsatz shows that anisotropic forms in [7'(F') have dimension at least 2". We
shall be interested in those dimensions that are realizable by anisotropic forms in I}'(F).
In this section, we determine the possible dimension of anisotropic forms that are the sum
of two general quadratic Pfister forms as well as the meaning of when the sum of three
general n-fold Pfister forms is congruent to zero mod I7*(F). We shall return to and
expand these results in §35 and §81.

PROPOSITION 24.1. Let ¢ € GP(F).
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(1) Let p € GP,(F) be a subform of ¢ with n > 1. Then there is a bilinear Pfister
form b such that ¢ ~ b ® p.

(2) Let b be a general bilinear Pfister form such that g is a subform of ¢. Then
there is p € P(F) such that ¢ ~ b ® p.

ProoOr. We may assume that ¢ is anisotropic of dimension > 2.

(1): Let b be a bilinear Pfister form of the largest dimension such that b® p is isometric to
a subform v of . As b®p in non-degenerate, V@jﬂVIZ, = 0. We claim that ¢» = ¢. Suppose
not. Then V- # 0 hence V- \ V,, # 0. Choose a = —tp(v) with v € V- \ V;,. Lemma 23.1
implies that ({a)) ® p is isometric to a subform of ¢, contradicting the maximality of b.

(2): We may assume that char ' = 2 and b is a Pfister form, so 1 € D(yy) C D(yp). Let
W be a subspace of V,, such that ¢|y ~ ¢,. Choose a vector w € W such that ¢,(w) =1
and write the quasi-Pfister form ¢, = (1) L ¢ where Vi 1s any complementary subspace
of Fw in V. Let v € V,, satisfy v is orthogonal to Vi, but b(v,w) # 0. Then the
restriction of ¢ on W & Fv is isometric to ¢ := ¢y L [1,a] for some a € F*. Note that
1 is isometric to subforms of both of the general Pfister forms ¢ and p := b ® ((a]]. In
particular, ¢ and u are anisotropic. As dimy > %dim i, the form v is a Pfister neighbor
of u. Hence ¢ <> p by Remark 23.12. Since @y is hyperbolic by Proposition 22.18 so
is @p(- It follows from the Subform Theorem 22.5 that p is isomorphic to a subform of
pas1le D(u)ND(p). By the first statement of the proposition, there is a bilinear Pfister
form ¢ such that ¢ ~ ¢c® pu=c¢® b ® ((a]]. Hence ¢ ~ b ® p where p = ¢ ® ((a]]. O

Let p be a general quadratic Pfister form. We say a general quadratic Pfister form
(respectively, a general bilinear Pfister form b) is a divisor p if p ~ ¢® 1 for some bilinear
Pfister form ¢ (respectively, p ~ b ® u for some quadratic Pfister form p). By Proposition
24.1, any general quadratic Pfister subform of p is a divisor of p and any general bilinear
Pfister form b of p whose associated quadratic form is a subform of p is a divisor p.

THEOREM 24.2. Let p1,p2 € GP(F) be anisotropic. Let p € GP(F') be a form of
largest dimension such that p is isometric to subforms of ¢1 and ws. Then

io(p1 L —p9) = dim p.

PROOF. Note that iy := ip(¢1 L —p2) > d := dim p. We may assume that ip > 1.
We claim that ¢; and ¢, have isometric non-degenerate binary subforms. To prove the
claim let W be a two-dimensional totally isotropic subspace of V,,, ® V_,,. As ¢; and
o are anisotropic, the projections U; and U, of W to V,, and V_,, = V,,, respectively
are 2-dimensional. Moreover, the binary forms ¢, := ¢1|y, and ¥y = @]y, are isometric.
We may assume that 11 and 1, are degenerate (and therefore, char(F) = 2). Hence
¥y and 1y are isometric to ¢y, where b is a 1-fold general bilinear Pfister form. By
Proposition 24.1(2), we have ¢1 ~ b ® p; and @y ~ b ® ps for some p; € P(F). Write
pi = ¢; ® v; for bilinear Pfister forms ¢; and 1-fold quadratic Pfister forms v;. Consider
quaternion algebras )1 and ()2 whose reduced norm forms are similar to b®v; and bR 1,
respectively. The algebras (J; and ()5 are split by a quadratic field extension that splits
b. By Theorem 97.19, the algebras )7 and ()2 have subfields isomorphic to a separable
quadratic extension L/F. By Example 9.8, the reduced norm forms of ¢); and Q. are
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divisible by the non-degenerate norm form of L/F. Hence the forms b® 14 and b® v, and
therefore ¢, and @9 have isometric non-degenerate binary subforms. The claim is proven.

By the claim, p is a general r-fold Pfister form with » > 1. Write ¢; = p L ¢, and
wy = p L 1y for some forms ¢; and 5. We have ¢1 L (—po) ~ 1y L (—1p9) L dH.
Assume that iy > d. Then the form 1 L (—1)y) is isotropic, i.e., ©; and 19 have a
common value, say a € F*. By Lemma 23.1], the form ({(—a)) ® p is isometric to subforms
of 1 and ¢, a contradiction. O

COROLLARY 24.3. Let 1, ps € GP,(F) be anisotropic forms. Then the possible values
of io(p1 L —p9) are 0,1,2,4,...,2™.

Let 1 € GP,(F) and ¢y € GP,(F) be anisotropic forms satisfying i(¢; L —p2) =
2" > 0 with p a common general quadratic Pfister subform of dimension 2". We call p
the linkage of ¢1 and ¢ and say that ¢; and @ are r-linked. By Proposition 24.1) the
linkage p is a divisor of ¢ and @s. If m = n and r > n — 1, we say that ¢, and ¢, are

linked.

REMARK 24.4. Let ¢ and @9 be general quadratic Pfister form. Suppose that ¢, and
o have isometric r-fold quasi-Pfister subforms. Then ip(¢1 L —p2) > 2" and by Theorem
24.2), the forms ¢; and ¢y have isometric general quadratic r-fold Pfister subforms.

For three n-fold Pfister forms, we have:

PROPOSITION 24.5. Let 1, 0o, 03 € Po(F). If o1 + 0o + @3 € IJTHF) then there
exist a quadratic (n — 1)-fold Pfister form p and ay,as,a3 € F* such that ajasaz =1 and
i ~ ({a;)) @ p fori=1,2,3. In particular, p is a common divisor of @; fori =1,2,3.

PrOOF. We may assume that all p; are anisotropic Pfister forms by Corollary(9.11. In
addition, we have (3)p(y,) is hyperbolic. By Proposition 23.10, the form (¢1 L —2)p(ys)
is also hyperbolic. As 3 is anisotropic, ¢; 1. —¢s cannot be hyperbolic by the Hauptsatz
23.8. Consequently,

(901 1 _()DQ)an = aps L7
over F' for some a € F* and a quadratic form 7 by the Subform Theorem 22.5/ and
Proposition 7.23. As dim7 < 2" and 7 € [ ;‘“(F ), the form 7 is hyperbolic by Hauptsatz
23.8 and therefore 1 — o = aps in [,(F). It follows that ig(¢1 L —@2) = 2"~ hence ¢,
and g are linked by Theorem 24.2.
Let p be a linkage of ¢ and y,. By Proposition24.1, p1 ~ ({a1))®p and ¢y ~ ({a2))®p
for some aj,as € F*. Then 3 is similar to (@1 L —¢2)an ~ —ai{{a1as)) ® p, ie.,

p3 ~ ((a1a2)) ® p. O
COROLLARY 24.6. Let 1, @2, w3 € P,(F). Suppose that

(24.7) @1+ 2 + @3 =0 mod I (F).

Then

en(91) + en(2) + enlps) = 0 in H'(F).
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PROOF. By Proposition 24.5, we have ¢; ~ ({a;)) ® p for some p € P, 1(F) and
a; € F* for i = 1, 2, 3 satisfying ayasa3z = 1. It follows from Proposition [16.1 that

6n(§01) + €n(902) + €n<903) = en(<<a1)> X p) + en(<<a2>> ® p) + €n(<<a3>> ® p)
= {a1azaz}e, 1 (p) = 0. O

25. The Submodule J,(F)

By Corollary 23.4, a general quadratic Pfister form has the following “intrinsic” char-
acterization: a non-degenerate anisotropic quadratic form ¢ of positive even dimension is
a general quadratic Pfister form if and only if the form ¢p(,) is hyperbolic. We shall use
this to characterize elements of I7'(F'). Let ¢ be a form that is nonzero in I,(F). Consider
field extensions K/F such that (¢x )., is a general quadratic n-fold Pfister form. The
smallest 7 is called the degree of ¢. We shall see in Theorem 40.10 that ¢ € I7'(F) if and
only if deg ¢ > n. In this section, we shall begin the study of the degree of forms.

We begin by constructing a tower of field extensions of F' with (¢k )., & general
quadratic n-fold Pfister form where K is the penultimate field K in the tower.

Let ¢ be a non-degenerate quadratic form over F'. We construct a tower of fields
Fy C Fy C --- C F}, and quadratic forms ¢, over F; for all ¢ = 0,...,h as follows. We
start with Fy := F, ¢y 1= @an, and set inductively Fy := F,_1(¢4-1), ©q := (¢F,)an for
g > 0. We stop at Fj, such that dim ¢, < 1. The form ¢, is called the gth anisotropic
kernel form of ¢ . The tower of the fields Fj, is called the generic splitting tower of ¢. The
integer h = h(yp) is called the height of . We have h(¢) = 0 if and only if dim ¢, < 1.

Let h = bh(p). For any ¢ = 0, ..., h, the g-th absolute higher Witt index j,(¢) of ¢ is
defined as the integer iy(yF,). Clearly one has

0 <jo(p) <jilp) <--- <inlp) = [(dimep)/2].
The set of integers {j,(¢),...,in(¢)} is called the splitting pattern of ¢.

PROPOSITION 25.1. Let ¢ be a non-degenerate quadratic form with h = h(p). The
splitting pattern {jo(), ..., in(¢)} of ¢ coincides with the set of Witt indices iy(px) over
all field extensions K/F.

PRrROOF. Let K/F be a field extension. Define a tower of fields Ko C K; C --- C Kj,
by Ko = K and K, = K,_1(p,-1) for ¢ > 0. Clearly F, C K, for all ¢q. Let ¢ > 0 be the
smallest integer such that ¢, is anisotropic over K. It suffices to show that io(¢x) = j,(¥).

By definition of ¢, and j, we have pr, = ¢, L j;(¢)H. Therefore ¢, = (¢q)x, L
iq(¢)H. As ¢, is anisotropic over K, we have iy(pk,) = iq(¥).

We claim that the extension K,/K is purely transcendental. This is clear if ¢ = 0.
Otherwise K, = K, 1(p,-1) is purely transcendental by Proposition 22.9 since ¢, is
isotropic over K,_; by the choice of ¢ and is non-degenerate. It follows from the claim
and Remark 8.9 that i(¢x) = io(¢r,) = iq(®). O

COROLLARY 25.2. Let ¢ be a non-degenerate quadratic form over F and K/F be a
purely transcendental extension. Then the splitting patterns of ¢ and @i are the same.

PRroor. This follows from Lemma 7.16. O
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We define the relative higher Witt indices i,(¢), ¢ = 1,...,bh(p), of a non-degenerate
quadratic form ¢ to be the differences

ig(¢) = Jo(p) = g-1()-
Clearly, i,(¢) > 0 and i,(¢) = i,(p,) for any r > 0 and s > 0 such that r + s = q.

COROLLARY 25.3. Let ¢ be a non-degenerate anisotropic quadratic form over F of
dimension at least two. Then

i1(v) =j1(p) = min{ig(vk) | K/F a field extension with ¢k isotropic}.

Let ¢ be a non-degenerate non-hyperbolic quadratic form of even dimension over F
with h = h(p). Let Fy C Fy C --- C Fj, be the generic splitting tower of ¢. The form
©n-1 = (¢F,_, )an is hyperbolic over its function field hence a general n-fold Pfister form
for some integer n > 1 with i,(¢) = 2"~ by Corollary 23.4. The form ¢,_; is called the
leading form of ¢ and n is called the degree of ¢ and is denoted by deg . The field Fj,_;
is called the leading field of p. For convenience, we set deg ¢ = oo if ¢ is hyperbolic.

REMARK 25.4. Let ¢ be a non-degenerate quadratic form of even dimension with the
generic splitting tower Fy C Fy C -+ C Fy. If o; = (pF,)an with i =0,...,h(¢) — 1 then
deg ; = deg .

NoOTATION 25.5. Let ¢ be a non-degenerate quadratic form over /' and X = X,. Let
q be an integer satisfying 0 < ¢ < h(p). We shall let X, := X and also write j,(X)
(respectively, i,(X)) for j,(¢) (respectively, i,(¢)).

It is a natural problem to classify non-degenerate quadratic forms over a field F' of a
given height. This is still an open problem even for forms of height two. By Corollary
23.4, we do know

PROPOSITION 25.6. Let ¢ be an even dimensional non-degenerate anisotropic qua-
dratic form. Then h(p) =1 if and only if p € GP(F).

PROPOSITION 25.7. Let ¢ be a non-degenerate quadratic form of even dimension over
F and let K/F be a field extension such that (pk)an is an m-fold general Pfister for some
m > 1. Then m > degy. In particular, degp is the smallest integer n > 1 such that
(0K )an 18 a general n-fold Pfister form over an extension K/F.

Proor. It follows from Proposition 25.1/ that
(dim ¢ — 2™)/2 = io(px) < ipip)-1(p) = (dim @ — 29°%¥) /2,
hence the inequality. O

COROLLARY 25.8. Let ¢ be a non-degenerate quadratic form of even dimension over
F. Then degyp > degy for any field extension E/F.

For every n > 1 set
Jn(F) ={p € I,(F) | degp > n} C I,(F).
Clearly Ji(F) = I,(F).
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LEMMA 25.9. Let p € GP,(F) be anisotropic with n > 1. Let ¢ € J,.1(F). Then
deg(p L o) <n.

Proor. We may assume that ¢ is not hyperbolic. Let ¢ = p L . Let Fy, Fi, ..., F}
be the generic splitting tower of ¢ and let ¢; = (¢F, )an. We show that pp, is anisotropic.
Suppose not. Choose j maximal such that pr, is anisotropic. Then pr,,, is hyperbolic so
dim ¢; < dim p by the Subform Theorem 22.5. Hence

2" = dimp > dim ¢; > deg 2degwj — gdegy > gntl
which is impossible. Thus pg, is anisotropic.
As ¢ is hyperbolic over Fj,, we have 95, ~ pp,. Consequently,

degtp < degvpp, = degpp, =n
hence deg1 < n as claimed. ([l

COROLLARY 25.10. Let ¢ and v be even dimensional non-degenerate quadratic forms.
Then deg(y L 1) > min(deg ¢, deg ).

Proor. If either ¢ or v is hyperbolic, this is trivial, so assume that both forms are
not hyperbolic. We may also assume that ¢ L 9 is not hyperbolic. Let K/F be a field
extension such that (¢ L 1) ~ p for some p € GP,(K) where n = deg(p L 1). Then
v ~ p L (—vg). Suppose that degty > n. Then degvyx > n and applying the lemma
to the form p L (—1g) implies deg ox < n. Hence degp < n = deg(¢ L 9). O

PROPOSITION 25.11. J,,(F) is a W(F')-submodule of I,(F) for every n > 1.

PrOOF. Corollary 25.10/ shows that J,(F') is a subgroup of I,(F). Since degy =

deg(ayp) for all a € F*, it follows that J,(F) is also closed under multiplication by
elements of W (F). O

COROLLARY 25.12. I (F) C Ju(F).

PROOF. As general quadratic n-fold Pfister forms clearly lie in J,,(F), the result fol-
lows from Proposition 25.11. O

PROPOSITION 25.13. IZ(F) = J5(F).

PROOF. Let ¢ € Jo(F) and ¢; = ¢p, with F;, i = 0,..., h the generic splitting tower.
As deg ¢ > 2 the field F; is the function field of a smooth quadric of dimension at least
2 over F;_1, hence the field F;_; is algebraically closed in F;. Since the form ¢, = 0 has
trivial discriminant, by descending induction on ¢ we get ¢ = ¢ is of trivial discriminant.
It follows from Theorem [13.7 that ¢ € IZ(F). O

PROPOSITION 25.14. J3(F) = {p | dim ¢ is even, disc(p) = 1, clif(p) = 1}.

PRrOOF. Let ¢ be an anisotropic form of even dimension and trivial discriminant.
Then ¢ € I7(F) = Jo(F) by Theorem [13.7 and Proposition 25.13. Suppose ¢ also has
trivial Clifford invariant. We must show that degy > 3. Let K be the leading field
of ¢ and p its leading form. Then p € GP,(F) with n > 2. Suppose that n = 2. As
es2(p) = 0in H%(K'), we have p is hyperbolic by Corollary 12.5, a contradiction. Therefore,
p € J3(F).
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Let ¢ € J3(F). Then ¢ € I7(F) by Proposition 25.13. In particular, disc(p) = 1 and
o =, piwith p; € GPy(F), 1 <i < r. We show that clif(¢) = 1 by induction on
r. Let p, = b{(a,d]] and K = F;. Then px € J3(K) and satisfies o = S.0—; (pi)x as
(pr)k 1s hyperbolic. By induction, clif(px) = 1. Thus clif(¢) lies in kernel of Br(F) —
Br(K). Therefore the index of clif(¢) is at most two. Consequently, clif(¢) is represented
by a quaternion algebra, hence there exists a 2-fold quadratic Pfister form o satisfying
clif(¢) = clif (o). Thus clif(p+0) = 1 so ¢+ o lies in J5(F') by the first part of the proof.
It follows that o lies in J3(F'). Therefore, o = 0 and clif(¢) = 1. 0

We showed that &, is an isomorphism in Chapter [16. Therefore, I*(F) = J5(F). We
shall show that I"(F') = J,,(F) for all n in Theorem 40.10.

PROPOSITION 25.15. I"™(F)J,(F) C Jnpm(F).

Proor. Clearly, it suffices to do the case that m = 1. Since 1-fold bilinear Pfister
forms additively generate I(F), it also suffices to show that if ¢ € J,(F) and a € F*
then ((a)) ® ¢ € Jo41(F). Let ¢ be the anisotropic part of ((a)) ® ¢. We may assume
that ¥ # 0.

First suppose that v € GP(F'). We prove that degt) > n by induction on the height
hof . If h =1 then ¢ € GP(F) and the result is clear. So assume that h > 1. Suppose
that 1 () remains anisotropic. By the induction hypothesis applied to the form ¢p(,) we
have

degv = degYp) > n.
If ¢ p(y) is isotropic, it is hyperbolic and therefore dim¢) > dim ¢ by the Subform Theorem
22.5. As h > 1 we have

29°8¥ — dim ¢ > dim ¢ > 298% > 2"
hence deg1) > n.

Now consider the general case. Let K/F be a field extension such that ¥x is Witt
equivalent to a general Pfister form and deg vy = deg. By the first part of the proof

degvy = degvg > n. O
26. The Separation Theorem

There are anisotropic quadratic forms ¢ and ¢ such that dim ¢ < dimv and ppy) is
isotropic. For example, this is the case when ¢ and v are Pfister neighbors of the same
Pfister form. In this section, we show that if two anisotropic quadratic forms ¢ and v are
separated by a power of two, more precisely, if dim ¢ < 2" < dim for some n > 0 then
©F(y) Temains anisotropic.

We shall need the following observation.

REMARK 26.1. Let ¢ be a quadratic form. Then V, contains a (maximal) totally
isotropic subspace of dimension ij()) := ip(¢)) + dimrad(¢). Define the invariant s of a
form by s(¢) := dim(¢) — 2ij(v0) = dimt,,, — dimrad(¢). If two quadratic forms ¢ and
p are Witt equivalent then s(¢) = s(u).
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A field extension L/F is called unirational if there is a filed extension L'/ L with L'/F
purely transcendental. A tower of unirational field extensions is unirational. If L/F' is
unirational then every anisotropic quadratic form over F' remains anisotropic over L by
Lemma [7.16.

LEMMA 26.2. Let ¢ be an anisotropic quadratic form over F' satisfying dimp < 27
for some n > 0. Then there exists a field extension K/F and an (n + 1)-fold anisotropic
quadratic Pfister form p over K such that

(1) @k is isometric to a subform of p.
(2) The field extension K(p)/F is unirational.

PROOF. Let Ko = F(ty,...,tn41) and let p = ({(t1,...,t,41]]. Then p is anisotropic.
Indeed by Corollary [19.6 and induction, it suffices to show ((t]] is anisotropic over F(t).
If this is false there is an equation f? + fg + tg> = 0 with f,g € F[t]. Looking at the
highest term of ¢ in this equation gives either a*t*" = 0 or b*t*"*! = 0 where a,b are the
leading coefficients of f, g respectively. Neither is possible.

Consider the class F of field extensions F/Kj satisfying

(1) p is anisotropic over E.
(2') The field extension E(p)/F is unirational.

We show that K, € F. By the above p is anisotropic. Let L = Ky(((1,1]]). Then
L/F is purely transcendental. As pp is isotropic, L(p)/L is also purely transcendental
and hence so is L(p)/F. Since Ky(p) C L(p), the field extension Ky(p)/F is unirational.

For every field E € F, the form ¢g is anisotropic by (2). As pg is non-degenerate,
the form pg L (—¢g) is regular. We set

m(E) =i(pr L (—¢r)) =i(pr L (—¢E))
and let m be the maximum of the m(E) over all E € F.
Claim 1: We have m(E) < dim ¢ and if m(E) = dim ¢ then pg is isometric to a subform
of PE-

Let W be a totally isotropic subspace in V,, L V_, . of dimension m(E). Since pg
and g are anisotropic, the projections of W to V,, and V_,, =V, are injective. This
gives the inequality. Suppose that m(E) = dim¢. Then the projection p : W — V,,, is
an isomorphism and the composition

VSOE f;l_> W — VPE
identifies g with a subform of pg.
Claim 2: m = dim ¢.
Assume that m < dim ¢. We derive a contradiction. Let K € F be a field satisfying
m = m(K) and set 7 = (px L (—¢K))an. As the form pyx L (—pk) is regular we have
T~ pr L (—pk) and
(26.3) dim p + dim ¢ = dim 7 + 2m.

Let W be a totally isotropic subspace in V,, L V_,,  of dimension m. Let o denote the
restriction of px on V,, N W+, Thus o is a subform of pgx of dimension > 2"+ —m > 27,
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In particular, o is a Pfister neighbor of py. By Lemma 8.10, the natural map V,, "W+ —
W+ /W identifies o with a subform of 7.

We show that the condition (2’) holds for K (7). Since o is a Pfister neighbor of pg, the
form ¢ and therefore 7 is isotropic over K(p). By Lemma 22.14 the extension K(p)/K is
separable hence 7 (,) is regular by Lemma 22.13. Therefore, by Lemma 22.9 the extension
K(p)(1)/K(p) is purely transcendental. It follows that K (p)(r) = K(7)(p) is unirational
over F' hence condition (2') is satisfied.

As 7 is isotropic over K (1), we have m(K (7)) > m, hence K(7) ¢ F. Therefore
condition (1”) does not hold for K(7), i.e., pk is isotropic and therefore hyperbolic over
K(7). As 0 # D(o) C D(pk) N D(7), the form 7 is isometric to a subform of px by the
Subform Theorem 22.5. Let 7+ be the complementary form of 7 in pg. It follows from
(26.3) that

dim 7t = dim p — dim 7 = 2m — dim ¢ < dim ¢.

As pg L (=7) ~ 7+ by Lemma 8.13|

(26.4) TL(=7)~pr L (=px) L (=7) ~ 7" L (—k).

We now use the invariant s defined in Remark 26.1. Since the space of 7 L (—7)
contains a totally isotropic subspace of dimension dim 7, it follows from (26.4) and Remark
26.1 that

s(th L (—¢x)) = s(r L (=7)) =0,
i.e., the form 7+ L (—pg) contains a totally isotropic subspace of half the dimension of
the form. Since dim ¢ > dim 7+, this subspace intersects V,,, nontrivially, consequently
@k is isotropic contradicting condition (2’). This establishes the claim.

It follows from the claims that ¢k is isometric to a subform of pg. g

THEOREM 26.5. (Separation Theorem) Let ¢ and v be two anisotropic quadratic forms
over F'. Suppose that dim ¢ < 2" < dim for some n > 0. Then @p(y) is anisotropic.

PROOF. Let p be an (n+ 1)-fold Pfister form over a field extension K/F as in Lemma
26.2/ with g a subform of p. By the lemma 1k, is anisotropic. Suppose that px(y) is
isotropic. Then pg(y) is isotropic hence hyperbolic. By the Subform Theorem 22.5, there
exists an a € F such that aik is a subform of p. As dimvy > %dim p, the form avk is a
neighbor of p hence a1k (,) and therefore 1k, is isotropic. This is a contradiction.  [J

COROLLARY 26.6. Let ¢ and v be two anisotropic quadratic forms over F with
dimy > 2. If dimy > 2dim ¢ — 1 then @py) is anisotropic.

27. A Further Characterization of Quadratic Pfister Forms

In this section, we give a further characterization of quadratic Pfister forms. We show
if a non-degenerate anisotropic quadratic form p becomes hyperbolic over the function
field of an irreducible anisotropic form ¢ satisfying dim ¢ > %dim p then p is a general
quadratic Pfister form.

For a non-degenerate non-hyperbolic quadratic form p of even dimension, we set
N(p) = dim p—298~. Since the splitting patterns of p and pp) are the same by Corollary
25.2, we have N(pp@)) = N(p).
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THEOREM 27.1. Let p be a non-hyperbolic quadratic form and ¢ be a subform of p of
dimension at least 2. Suppose that

(1) ¢ and its complementary form in p are anisotropic.
(2) pr(p) is hyperbolic.
(3) 2dim ¢ > N(p).

Then p is an anisotropic general Pfister form.

ProOF. Note that p is a non-degenerate form of even dimension by Remark [7.19 as
pr(p) is hyperbolic.

Claim 1: For any field extension K/F with g anisotropic and px not hyperbolic, vk
is isometric to a subform of (px)an-
By Lemma R.13, the form p L (—¢) is Witt equivalent to ¢ := . In particular
dim p = dim ¢ + dim¢). Set p’ = (px )an. It follows from (3) that

dim(p’ L (—¢k)) > 2987 4+ dim ¢ > dim p — dim ¢ = dim ).

As p' L (—pK) ~ ¥k it follows that the form p' L (—¢) is isotropic, therefore D(p") N
D(pk) # 0. Since Pl () 1s hyperbolic, the form ¢ is isometric to a subform of p’ by the
Subform Theorem 22.5 as needed.

Claim 2: p is anisotropic.

Applying Claim 1 to K = F implies that ¢ is isometric to a subform of p' = p,,. Let ¢/
be the complementary form of ¢ in p/. By Lemma 8.13,

Vg L(=p)~pL(=¢) ~ .
As both forms 1) and ¢’ are anisotropic, we have v’ ~ 1. Hence
dim p = dim ¢ + dim ¢ = dim ¢ + dim ¢’ = dim p’ = dim pg,.
Therefore p is anisotropic.

We now investigate the form ¢p(,y. Suppose it is isotropic. Then ¢ <> p hence pp,)
is hyperbolic by Proposition 22.18. It follows that p is a general Pfister form by Corollary
23.4/ and we are done. Thus we may assume that ¢p(,) is anisotropic. Normalizing we
may also assume that 1 € D(y). We shall prove that p is a Pfister form by induction on

dim p. Suppose that p is not a Pfister form. In particular, p; := (pr(y))an is nonzero and
dim p; > 2. We shall finish the proof by obtaining a contradiction. Let o1 = @p,).

Note that deg p; = deg p and dim p; < dim p hence N(p1) < N(p).

Claim 3: p; is a Pfister form.

Applying Claim 1 to the field K = F(p), we see that ¢, is isometric to a subform of p;.
We have

2dim ¢, = 2dimp > N(p) > N(p1).

By the induction hypothesis applied to the form p; and its subform, ¢, we conclude that
the form p; is a Pfister form proving the claim. In particular, dim p; = 2468, = 2degr,

Claim 4: D(p) = G(p).
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Since G(p) C D(p), it suffices to show if x € D(p) then = € G(p). Suppose that = ¢ G(p).
Hence the anisotropic part [ of the isotropic form ((x)) ® p is nonzero. It follows from
Proposition 25.15 that deg > 1 + deg p.

Suppose that (g, is hyperbolic. As p — = —xp in [,(F) the form p L (—f) is
isotropic, hence D(p) N D(B) # 0. Tt follows from that p is isometric to a subform of
by the Subform Theorem 22.5. Let 8~ p L u~ p L (—xp) for some form p. By Witt
cancellation, yu ~ —zp. But dim 3 < 2dim p hence dimp < dimp. As p is anisotropic,
this is a contradiction. It follows that the form 3, = (8p(y))an is not zero and hence
dim 3, > 2de88 > gl+degp,

Since p is hyperbolic over F(y), it follows from the Subform Theorem 22.5 that ¢ is
isometric to a subform of xp. Applying Claim 1 to the form xpp(,), we conclude that
@1 1s a subform of xp;. As ¢ is also a subform of p;, the form ({x)) ® p; contains
v1 L (—¢1) and therefore a totally isotropic subspace of dimension dim¢; = dim .
Therefore dim({((z)) ® p1)an < 2dim p; — 2dim ¢. Consequently,

21tde8r < dim ) = dim({(z)) ® p1)an < 2dim p; — 2dim ¢ < 2" TP

a contradiction. This proves the claim.

Let F(T) = F(1T4,...,T,) with n = dim p. We have deg pr(r) = degp and N(ppr)) =
N(p). Working over F(T') instead of F, we have the forms ¢p) and ppep) satisfy the
conditions of the theorem. By Claim 4, we conclude that G(prr)) = D(ppr)). It follows
from Theorem 23.2/ that p is a Pfister form, a contradiction. U

COROLLARY 27.2. Let p be a monzero anisotropic quadratic form and let @ be an
irreducible anisotropic quadratic form satisfying dimp > %dim p. 1If prp) is hyperbolic
then p € GP(F).

PROOF. As pp(,) is hyperbolic, the form p is non-degenerate. It follows by the Subform
Theorem 22.5 that ap is a subform of p for some a € F*. As p is anisotropic, the
complementary form of ap in p is anisotropic.

Let K be the leading field of p and 7 its leading form. We show that ¢ is anisotropic.
If wp(y) is isotropic then ¢ <> p. In particular, pp(,) is hyperbolic by Proposition 22.18
hence K = F and ¢ is anisotropic by hypothesis. Thus we may assume that ¢p(,)
is anisotropic. The assertion now follows by induction on h(p). As Tg(p) ~ pr(e) IS
hyperbolic, dim¢ = dimyxr < dim7 = 297 by the Subform Theorem 22.5. Hence
N(p) = dim p—29¢¢» < dim p—dim ¢ < 2dim ¢. The result follows by Theorem 27.1. O

A further application of Theorem 27.1/is given by:

THEOREM 27.3. Let ¢ and v be non-degenerate quadratic forms over F' of the same
odd dimension. Ifiy(vx) = io(Vk) for any field extension K/F then ¢ and i are similar.

Proor. We may assume that ¢ and v are anisotropic and have the same determinants
(cf. Remark 13.8). Let n = dim¢. We shall show that ¢ ~ 1 by induction on n. The
statement is obvious if n = 1, so assume that n > 1.

We construct a non-degenerate form p of dimension 2n and trivial discriminant con-
taining ¢ such that ot ~ —1) as follows: If char F' # 2 let p = ¢ L (—%). If char F = 2
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write ¢ >~ (a) L ¢’ and ¢ ~ (a) L ¢’ for some a € F'* and non-degenerate forms ¢’ and
Y. Set p=la,c] L ¢ L where cis chosen so that disc p is trivial.

By induction applied to the anisotropic parts of ¢r(,) and ¥g(,, we have pp,) ~
VYpp). It follows from Witt Cancellation and Proposition [13.6/ (in the case char F' = 2)
that pp(,) is hyperbolic. If p itself is not hyperbolic, then by Theorem 27.1, the form p
is an anisotropic general Pfister form of dimension 2n. In particular n is a power of 2, a
contradiction.

Thus p is hyperbolic. By Lemma 8.13, we have —p ~ p L (—p) ~ ot ~ —1). As ¢
and 1) have the same dimension we conclude that ¢ ~ 1. O

28. Excellent Quadratic Forms

In general, if ¢ is a non-degenerate quadratic form and K/F a field extension then
the anisotropic part of px will not be isometric to a form defined over F' and extended
to K. Those forms over a field I’ whose anisotropic part is universally defined over F' are
called excellent forms. We introduce them in this section.

Let K/F be a field extension and ¢ a quadratic form over K. We say that ¢ is defined
over F' if there is a quadratic form 7 over F' such that ¢ ~ ngk.

THEOREM 28.1. Let ¢ be an anisotropic non-degenerate quadratic form of dimension
> 2. Then ¢ is a Pfister neighbor if and only if the quadratic form (Yp(y))an s defined
over F'.

PRroOF. Let ¢ be a Pfister neighbor and let p be the associated general Pfister form
so ¢ is a subform of p. As @, is isotropic, the general Pfister form pp(,) is hyperbolic
by Corollary 9.11. By Lemma 8.13, the form ¢, is Witt equivalent to — (o) p(,). Since
dim ¢+ < (dim p)/2, it follows by Corollary 26.6/ that (o) p(,) is anisotropic. By Corollary
22.17, the form (pt) F(y) 1S also anisotropic as ¢ <> p by Remark 23.12. Consequently,
(©F())an = (—¢T) (e is defined over F.

Suppose now that (¢p(e))an =~ Vr(e) for some (anisotropic) form 1) over F. Note that
dimy < dim ¢.

Claim: There exists a form p satisfying
(1) ¢ is a subform of p.
(2) The complementary form o is isomorphic to —1).
(3) pr(p) is hyperbolic.

Moreover, if dim ¢ > 3, then p can be chosen in I7(F).

Suppose that dim ¢ is even or char F' # 2. Then p = ¢ L (—) satisfies (1), (2), and
(3). As F is algebraically closed in F'(p), if dimp > 3, we have discp = disct) hence
peIF).

So we may assume that char F' = 2 and dim¢ is odd. Write ¢ = ¢’ L (a) and
b =1 L (b) for non-degenerate forms ¢’, 1’ and a,b € F*. Note that (a) (respectively,
(b)) is the restriction of ¢ (respectively, 1) on rad b, (respectively, rad b,,) by Proposition

7.32. By definition of ¢ we have (a)p,) ~ (b)p(p). Since F(¢)/F is a separable field
extension by Lemma 22.14, we have (a) ~ (b). Therefore we may assume that b = a.
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Choose ¢ € F such that disc(¢’ L ¢') = discla, c] and set p = ¢’ L ¢’ L [a,c] so that
p E qu(F). Clearly ¢ is a subform of p and ¢t is isomorphic to . By Lemma .13,

p L o ~1. Since ¢ and ¢ are Witt equivalent over F(y), we have pp,) L @rs) ~ @rp)-
Cancelling the non-degenerate form go’F(w) yields

Pr(p) L (@) pip) ~ (@) p(p)-
As p € I7(F) by Proposition 13.6, we have pp(,) ~ 0 establishing the claim.
As dimp = dimy + dimvy < 2dimy and ¢ is anisotropic, it follows that p is not
hyperbolic. Moreover, ¢ and its complement ¢! ~ —1) are anisotropic. Consequently, p
is a general Pfister form by Theorem 27.1/ hence ¢ is a Pfister neighbor. O

EXERCISE 28.2. Let ¢ be a non-degenerate quadratic form of odd dimension. Then
h(p) = 1 if and only if ¢ is a Pfister neighbor of dimension 2" — 1 for some n > 1.

THEOREM 28.3. Let ¢ be a non-degenerate quadratic form. Then the following two
conditions are equivalent:

(1) For any field extension K/F, the form (¢k)an 1S defined over F.

(2) There are anisotropic Pfister neighbors o = Pan, ©1, - - - , r With associated gen-
eral Pfister forms po, p1, ..., pr respectively satisfying o; ~ (pi L ©iv1)an for all
i=0,1,...,r (with ¢, 41 :=0).

PROOF. (2) = (1) Let K/F be a field extension. If all general Pfister forms p; are
hyperbolic over K, the isomorphisms in (2) show that all the ¢; are also hyperbolic. In
particular, (¢ )a, is the zero form and hence is defined over F.

Let s be the smallest integer such that (ps)x is not hyperbolic. Then the forms ¢ =
©o, Y1, - - -, ps are Witt equivalent and (¢ )k is a Pfister neighbor of the anisotropic general

Pfister form (p;)x. In particular (pg)x is anisotropic and therefore (¢g)en = (¢s)k 1S
defined over F'.

(1) = (2) We prove the statement by induction on dim ¢. We may assume that dim ¢, >
2. By Theorem 28.1] the form ¢,,, is a Pfister neighbor. Let p be the associated general
Pfister form of ¢,,. Consider the negative of the complimentary form ¢ = —(@g,)* of
Yan 10 p. It follows from Lemma 8.13/ that @u, >~ (p L ¥)an.

We claim that the form 1 satisfies (1). Let K/F be a field extension. If p is hyperbolic
over K, then @i and 1y are Witt equivalent. Therefore (¢¥k)an =~ (¢ )an is defined
over F. If pg is anisotropic then so is ¥, therefore (Vg ) = Yy is defined over F.
By the induction hypothesis applied to i, there are anisotropic Pfister neighbors ¢, =
U, o, ..., p, with the associated general Pfister forms py, ps, ..., p, respectively such that
0i ~ (pi L @is1)an for all i =1,... r, where p,,1 = 0. To finish the proof let g = (©)an
and py = p. O

A quadratic form ¢ satisfying equivalent conditions of Theorem 28.3lis called ezcellent.
By Lemma 8.13 the form ;1 in Theorem 28.3(2) is isometric to the negative of the
complement of ¢; in p;. In particular, the sequences of forms ¢; and p; are uniquely
determined by ¢ up to isometry. Note that all forms ¢; are also excellent — this allows
inductive proofs while working with excellent forms.
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ExAMPLE 28.4. If char F' # 2 then the form n(1) is excellent for every n > 0.

PROPOSITION 28.5. Let ¢ be an excellent quadratic form. Then in the notation of
Theorem 28.5 we have the following:

(1) The integer r coincides with the height of .
(2) If Fy = F, F,..., F, is the generic splitting tower of ¢ then (¢F)an == (¢i)r, for
allt=20,...,7r.

PRrOOF. The last statement is obvious if i = 0. As py is hyperbolic over F} = F(pgu,) =
F(¢o), the forms ¢p and (¢1)r, are Witt equivalent. Since dimp; < (dim pg)/2, the
form ¢, is anisotropic over F(pg) by Corollary 26.6. As ¢q <> po, the form ¢; is also
anisotropic over F; = F(yg) by Corollary 22.17. Therefore, (¢r, )an == (p1)r . This proves
the last statement for + = 1. Both statements of the proposition follow now by induction
on r. 0

29. Excellent Field Extensions

A field extension E/F is called excellent if the anisotropic part g of any quadratic
form ¢ over F' is defined over F', i.e., there is a quadratic form v over F' satisfying

(@E)an = wE

ExXAMPLE 29.1. Suppose that every anisotropic form over F' remains anisotropic over
E. Then for every quadratic form ¢ over F' the form (¢,,)g is anisotropic and therefore
is isometric to the anisotropic part of pg. It follows that E/F is an excellent field
extension. In particular, it follows from Lemma [7.16/ and Springer’s Theorem [18.5 that
purely transcendental field extensions and odd degree field extensions are excellent.

EXAMPLE 29.2. Let E/F be a separable quadratic field extension. Then E = F(o),
where o is the (non-degenerate) binary norm form of E/F. It follows from Corollary
2212/ that E/F is an excellent field extension.

ExAMPLE 29.3. Let E/F be a field extension such that every quadratic form over £
is defined over F. Then E/F is obviously an excellent extension.

EXERCISE 29.4. Let E be either algebraic closure, or separable closure of a field F.
Prove that every quadratic form over E is defined over F'. In particular £/ F is an excellent
extension.

Let p be an irreducible non-degenerate quadratic form over F. If dimp = 2, the
extension F'(p)/F is separable quadratic and therefore is excellent by Example 29.2. We
extend this result to non-degenerate forms of dimension 3.

NoTATION 29.5. Until the end of this section, let K/F be a separable quadratic field
extension and let a € F*. Consider the 3-dimensional quadratic form p = Ng/p L (—a)
on the space U := K @ F. Let X be the projective quadric of p. It is a smooth conic
curve in P(U). In the projective coordinates [s : t] on K @ F', the conic X is given by the
equation Ng/p(s) = at®. We write E for the field F(p) = F(X).
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The intersection of X with P(K) is Spec F'(z) for a point € X of degree 2 with
F(x) ~ K. In fact, Spec F(x) is the quadric of the form Ng/r = p|x. Over K the norm
form Ng,p(s) factors into a product s- s’ of linear forms. Therefore there are two rational
points y and ¥’ of the curve X mapping to x under the natural morphism Xx — X so
that div(s/t) = y — ¢’ and div(s'/t) = ¢ — y. Moreover, we have
(296) NKE/E(S/t) = NK/F(S)/t2 = at2/t2 = Q.

For any n > 0 let L,, be the F-subspace

{f € EX|div(f) +nx >0} U {0}
of E. We have
F=LyCcliClL,C---CFE
and L, - L, C L., for all n,m > 0. In particular the union L of all L, is a subring of
E. In fact, F is the quotient field of L.

In addition, Ox, - L,, C L, and mx, - L,, C L,_; for every n > 1. In particular, we
have the structure of a K-vector space on L,,/L,,_; for every n > 1.

Set L, = L, /L,_1 for n > 1 and Lo =K. The graded group L, has the structure of
a ring.

The following lemma is an easy case of the Riemann-Roch Theorem.

LEMMA 29.7. In the notation above, we have dimg(L,) =1 for all n > 0. Moreover,
L, is a polynomial ring over K in one variable.

PRrOOF. Let f,g € L, \ L,—; for n > 1. Since f = (f/g)g and f/g € (Ox.)*, the
images of f and g in L, are linearly dependent over K. Hence dimg(L,) < 1. On the
other hand, for a nonzero linear form [ on K, we have div(l/t) = z — x for some z # x.
Hence (I/t)* € L, \ L,_1 and therefore dimg(L,) > 1. Moreover, L, = K[l/t]. O

PROPOSITION 29.8. Let ¢ : V' — F be an anisotropic quadratic form and suppose that
for some n > 1 there exists

ve(VeL,)\(V&®L,)
such that p(v) = 0. Then there exists a subspace W C V' of dimension 2 such that
(1) ¢|w is similar to Ng,p,

(2) there exists a nonzero © € V ® L,y such that $(0) = 0 where ¢ is the quadratic
form a(plw) L olywr on V.

PROOF. Denote by @ the image of v under the canonical map V® L, — V ® L,. We
have v # 0 since v ¢ V® L,,_1. As L,, is 2-dimensional over F' by Lemma 29.7, there is a
subspace W C V of dimension 2 such that o € W @ L,,.

As 7 is an isotropic vector in W ® L, and L, is a polynomial algebra over K, we have
W ® K is isotropic. It follows from Corollary 22.12 that the restriction ¢y is isometric
to ¢ Ngyp for some ¢ € F'* and, in particular, non-degenerate.

By Proposition [7.23, we can write v = w+w' with w € W® L,, and w’ € W+ ®L,,. By
construction of W we have @’ = 0in V® L, i.e., w' € V® L,_1, therefore p(w') € Ly, _s.
Since 0 = ¢(v) = p(w) + (w'), we must have p(w) € Loy, —o.
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We may therefore assume that W = K and ¢|x = ¢Ng/p.

Thus we have w € K ® L, C K ® EF = K(X). Considering w as a function on Xy
we have dive,(w) = my + m'y’ for some m, m' < n where div, is the divisor of poles. As
w¢ W ® L,_1 we must have one of the numbers m and m’, say m, equal n.

Let o be the generator of the Galois group of K/F. We have o(y) = %/, hence
dive (ow) = my’ + m'y and

dives p(w) = dive Ng/p(w) = dive(w) + dive (ow) = (m +m')(y +y').
As p(w) € Loy we have m +m/ <2n —2 ie, m' <n—2.
Note also that

dive (ws/t) = divee(w) +y —y = (m — L)y + (m' + 1)y
As both m — 1 and m’ + 1 are at most n — 1 we have ws/t € K ® L,,_;.

Now let ¢ be the quadratic form a(¢|w) L ¢|lwr on V. = W & W and set v =
alws/t+w' €V & L,_1. We have by (29.6) that

P(0) = ap(a ws/t) +p(w') = a™' Ngx)ro0 (s/Hp(w) +p(w') = p(w) +p(w') = 0. O

COROLLARY 29.9. Let o be a quadratic form over F' such that ¢g is isotropic. Then
there exist an isotropic quadratic form 1 over F' such that ¥g ~ ¢g.

PRrOOF. Let v € V ® E be an isotropic vector of ¢g. Scaling v we may assume that
v € V ® L. Choose the smallest n such that v € V ® L,,. We induct on n. If n =0, i.e.,
v € V, the form ¢ is isotropic and we can take ¢ = .

Suppose that n > 1. By Proposition 29.8] there exist a 2-dimensional subspace W C V/
such that |y is similar to N x/r and an isotropic vector v € V' & L,,_; for the quadratic
form ¢ = a(plw) L (plwr) on V. As a is the norm in the quadratic extension KE/FE,
the forms Ng/r and aNg,p are isometric over E, hence ¢p ~ ¢g. By the induction
hypothesis applied to the form ¢, there is an isotropic quadratic form i over F' such that

YE ~ O ~ QE. O

THEOREM 29.10. Let p be a non-degenerate 3-dimensional quadratic form over F'.
Then the field extension F(p)/F is excellent.

PrROOF. We may assume p is the form in Notation 29.5/ as every non-degenerate 3-
dimensional quadratic form over F' is similar to such a form. Let E = F(p) and let ¢ be
a quadratic form over F. By induction on dim ¢,, we show that (¢g)a, is defined over
F. If ., is anisotropic over E we are done since (¢g)an =~ (Van) E-

Suppose that ¢, is isotropic over E. By Corollary 29.9 applied to ¢,,, there exists
an isotropic quadratic form ) over F' such that ¥g ~ (¢un)Ep. As dim i), < dim @,,, by
the induction hypothesis there is a quadratic form p over F' such that (¢g)ae, >~ pg. Since

pE ~ g ~ ¢g, we have (0g)an >~ liEg. O
COROLLARY 29.11. Let ¢ € GPy(F). Then F(p)/F is excellent.

PROOF. Let 1 be a Pfister neighbor of ¢ of dimension three. Let K = F(¢) and
L = F(v). By Remark 23.12 and Proposition 22.9, the field extensions K'L/K and
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KL/L are purely transcendental. Let v be a quadratic form over F'. By Theorem [29.10),
there exists a quadratic form o over F' such that (vp )., ~ or. Hence

((VK)an)KL = (VKL)an = ((VL)an)KL = 0OKL-

It follows that (vi)an =~ 0k. 0

This result does not generalize. It is known, in general, for every n > 2, there exists
a field F' and a ¢ € GP,(F) with F(¢)/F not an excellent extension (cf. [27]).

30. Central Simple Algebras Over Function Fields of Quadratic Forms

Let D be a finite dimensional division algebra over a field F'. Denote by DIt] the
F[t]-algebra D ®p F[t]. Let D(t) denote the F(t)-algebra D ®p F(t). As D(t) has no zero
divisors and is of finite dimension over F'(t), it is a division algebra.

A subring A C D(t) is called an order over FJt] if it is a finitely generated F'[t]-
submodule of D(t).

LEMMA 30.1. Let D be a finite dimensional division F'-algebra. Then every order
A C D(t) over Flt] is conjugate to a subring of DIt].

PROOF. As A is finitely generated as F'[t]-module, there is a nonzero f € F[t] such
that Af C D[t]. The subset DAf of D[t] is a left ideal. The ring D[t] admits both the left
and the right Euclidean algorithm relative to degree. In follows that all one-sided ideals
in DIt] are principal. In particular DAf = D[t]z for some z € DIt]. As A is a ring, for
every y € A we have

xy € Dltlzy = DAfy C DAf = Dlt]x,
hence zyxz~! € D[t]. Thus zAz~' C D]t]. O

LEMMA 30.2. Let R be a commutative ring and S be a (not necessarily commutative)
R-algebra. Let X C S be an R-submodule generated by n elements. Suppose that every
x € X satisfies the equation x> + ax +b =0 for some a,b € R. Then the R-subalgebra of
S generated by X can be generated by 2" elements as an R-module.

PRrROOF. Let x1,...,x, be generators of the R-module X. Writing quadratic equations
for every pair of generators z;,z; and z; + x;, we see that z;z; + z,;x; + ax; + bx; +c =0
for some a, b, c € R. Therefore, the R-subalgebra of S generated by X is generated by all

monomials ;, x;, ... x;, with iy <iy < --- <1 as an R-module. U

Let ¢ be a quadratic form on V over I’ and vy € V' a vector such that ¢(vy) = 1. For
every v € V| the element —ovv, in the even Clifford algebra Cy(¢p) satisfies the quadratic
equation
(30.3) (—vvg)? + by (vo, v)(—vvg) + p(v) = 0.

Choose a subspace U C V such that V = Fuvy @ U. Let J be the ideal of the tensor
algebra T'(U) generated by the elements v ® v + by, (vo, v)v + ¢(v) for all v € U.

LEMMA 30.4. With U as above, the F-algebra homomorphism o : T(U)/J — Cy(p)
defined by a(v + J) = —vvy is an isomorphism.
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PROOF. By Lemma [30.2, we have dim T'(U)/J < 29mY = dim Cy(p). As « is surjec-
tive, it is therefore an isomorphism. O

THEOREM 30.5. Let D be a finite dimensional division F-algebra and let ¢ be an
irreducible quadratic form over F. Then Dp,) is not a division algebra if and only if
there is an F-algebra homomorphism Cy(p) — D.

PROOF. Scaling ¢ we may assume that there is vy € V satisfying ¢(vg) = 1 where
V = V,. We will be using the decomposition V' = Fvy @ U as above and set

l(v) = by(vg,v) for every v e U.

Cram 30.6. Suppose that Dp,) is not a division algebra. Then there is an F-linear
map [ : U — D satisfying the equality of quadratic maps

(30.7) fPrif+o=0.
(We view the left hand side as the quadratic map v — f(v)? +1(v)f(v) + @(v) on U).

If we establish the claim then the map f extends to an F-algebra homomorphism
T(U)/J — D and by Lemma 30.4, we get an F-algebra homomorphism Cy(p) — D as
needed.

We prove the claim by induction on dim U. Suppose that dimU = 1, i.e., U = Fv
for some v. By Example 22.2, we have F(p) ~ Cy(y) = F & Fz with z satisfying the
quadratic equation z? + ax + b = 0 with a = [(v) and b = ¢(v) by equation (30.3).
Since Dp,) is not a division algebra, there exists a nonzero element d’ + dx € Dp(,) with
d,d € D such that (& + dz)? = 0 or equivalently d’> = bd® and dd’ + d'd = ad?. Since D
is a division algebra, we have d # 0. Then the element d'd~! in D satisfies

(dd)? —a(dd™t)+b=0.
Therefore the assignment v — —d'd~! gives rise to the desired map f: U — D.

Now consider the general case, dim U > 2. Choose a decomposition
U=Fv, ®Fvoo,®&W

for some nonzero vy,vs € U and a subspace W C U and set V' = Fuvy ® Fv, & W,
U = Fvy®W so that V' = Fuy@ U’. Consider the quadratic form ¢’ on the vector space
Vi@ over the function field F(¢) defined by

@' (avg + buy + w) = @(avy + bvy + btvg + w).

We show that the function fields F'(¢) and F(t)(¢’) are isomorphic over F. Indeed,
consider the injective F-linear map 6 : V* — V' }(t) taking a linear functional z to the
functional 2’ defined by 2’'(avy + bvy +w) = z(avy + bvy + btvy + w). The map 6 identifies
the ring S*(V*) with a graded subring of $*(V' ;) so that ¢ is identified with ¢'. Let x;
and xo be the coordinate functions of v; and v, in V respectively and ) the coordinate
function of v; in V'. We have ; = ) and x, = ta} in §'(V'}). Therefore, the
localization of the ring S*(V*) with respect to the multiplicative system Flxy,zs] \ {0}
coincides with the localization of $*(V'% ;) with respect to F'(¢)[z}] \ {0}. Note that
Flz1,22]N () = 0 and F(t)[x}]N(¢") = 0. It follows that the localizations $*(V*)(, and
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S*(V'r()) (o) are equal. As the function fields F'(y) and F'(t)(¢) coincide with the degree
0 components of the quotient fields of their respective localizations, the assertion follows.

Let I'(v) = b,(vo,v), s0
l'(avy + bvy +w) = l(avg + bvy + btvg + w).

Applying the induction hypothesis, to the quadratic form ¢’ over F(t) and the F(t)-
algebra Dp), there is an F(t)-linear map f*: Up,) — D) satisfying

(30.8) AU+ =o.

Consider the F[t]-submodule X = f'(Uy,) in Dp. By Lemma30.2, the F[t]-subalgebra
generated by X is a finitely generated F'[t]-module. It follows from Lemma 30.1 that, after
applying an inner automorphism of Dp ), we have f'(v) € Dppy for all v. Considering the
highest degree terms of f’ (with respect to t) and taking into account the fact that D is a
division algebra, we see that deg [’ < 1, i.e., f' = g+ ht for two linear maps g, h : U — D.
Comparison of degree 2 terms of (30.8) gives

h(v)? + bl(va)h(v) + b*p(vs) = 0

for all v = bv; + w. In particular, h is zero on W, therefore h(v) = bh(vy). Thus (30.8)
reads

(30.9) (g(v) + bth(vl))2 + 1(bvy + btvs) (g(v) + bth(vy)) + (v + btvs) = 0
for every v = bvy +w. Let f: U — D be the F-linear map defined by the formula
f(bvy + cvg +w) = g(bvy + w) + ch(vy).

Substituting ¢/b for ¢ in (30.9), we see that (30.7) holds on all vectors bv; + cvy + w with
b # 0 and therefore holds as an equality of quadratic maps. The claim is proven.

We now prove the converse. Suppose that there is an F-algebra homomorphism
s: Cy(p) — D. Consider the two F-linear maps p,q : V. — D given by p(v) = s(vuvp)
and q(v) = s(vvy — l(v)). We have

p(v)g(v) = s((vvo)* — l(v)vre) = s(p(v)) = ()
by equation (30.3). It follows that p and ¢ are injective maps if ¢ is anisotropic. The
maps p and ¢ stay injective over any field extension. Let L/F be a field extension such
that oy, is isotropic (e.g., L = F'(¢)). Then for a nonzero isotropic vector v € V,, we have
p(v)q(v") = @(v') = 0 but p(v') # 0 and ¢g(v') # 0. It follows that Dy, is not a division
algebra.

It remains to consider the case when ¢ is isotropic. We first show that every isotropic
vector v € V' belongs to rad b,. Suppose this is not true. Then there is a u € V satisfying
by(v,u) # 0. Let H be the 2-dimensional subspace generated by v and u. The restriction
of ¢ on H is a hyperbolic plane. Let w € V' be a nonzero vector orthogonal to H and let
a = p(w). Then

My (F) =C(—aH) = Co(Fw L H) C Cy(p)

by Proposition 11.4. The image of the matrix algebra My(F') under s is isomorphic to
M, (F) and therefore contains zero divisors, a contradiction proving the assertion.
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Let V' be a subspace of V satisfying V' = rad ¢ ®V’. As every isotropic vector belongs
to rad b, the restriction ¢’ of ¢ on V' is anisotropic. The natural map Cy(p) — Co(¢’)
induces an isomorphism Cy(¢)/J = Co(¢’), where J = rad()C)(p). Since J* = 0 we
have s(J) = 0. Therefore, s induces an F-algebra homomorphism s’ : Cy(¢') — D. By
the anisotropic case, D is not a division algebra over F'(¢). Since F(¢p) is a field extension
of F(¢'), the algebra Dp,) is also not a division algebra. O

COROLLARY 30.10. Let D be a division F-algebra of dimension less than 2*™ and ¢ a
non-degenerate quadratic form of dimension at least 2n+1 over F'. Then D) is also a
division algebra.

PROOF. Let 1) be a subform of ¢ of dimension 2n + 1. As F\(¢)()/F (1) is a purely
transcendental extension by Proposition 22.9, we may replace ¢ by ¢ and assume that
dimy = 2n + 1. By Proposition [11.6, the algebra Cy(¢) is simple of dimension 22". If
Dp(,) is not a division algebra then there is an F-algebra homomorphism Cy(¢) — D
by Theorem 30.5. This homomorphism must be injective as Cy(p) is simple. But this is
impossible by dimension count. O

COROLLARY 30.11. Let D be a division F-algebra and let ¢ be a non-degenerate qua-
dratic form over F satisfying:
(1) If dimp is odd or ¢ € I,(F)\ IZ(F) then Co(p) is not a division algebra.
(2) If p € IZ(F) then C*(p) is not a division algebra over F (cf. Remark[13.9).
Then Dp ) s a division algebra.

PROOF. If Dp(,) is not a division algebra, there is an F-algebra homomorphism
f:Co(p) — D by Theorem 30.5. If ¢ € IZ(F) we have Co(p) ~ CF(p) x C*(yp) by
Remark 13.9. Thus in every case the image of f lies in a non-division subalgebra of D.
Therefore, D is not a division algebra, a contradiction. U

COROLLARY 30.12. Let D be a dwision F-algebra and let ¢ € I3(F) be a nonzero
quadratic form. Then Dp is a division algebra.

PROOF. By Theorem [14.3, the Clifford algebra C(y) is split. In particular, C*(p) is
not division. The statement follows now from Corollary 30.11. 0



CHAPTER V

Bilinear and Quadratic Forms and Algebraic Extensions

31. Structure of the Witt Ring

In this section, we investigate the structure of the Witt ring of non-degenerate sym-
metric bilinear forms. For fields F' whose level s(F') is finite, i.e., non-formally real fields,
the ring structure is quite simple. The Witt ring of such a field has a unique prime
ideal, viz., the fundamental ideal and W (F') (as an abelian group) has exponent 2s(F).
As s(F) = 2™ for some non-negative integer this means that the Witt ring is 2-primary
torsion. The case of formally real fields F', i.e., fields of infinite level, is more involved.
Orderings on such a field give rise to prime ideals in W (F'). The torsion in W (F) is still
2-primary, but this as easy. Therefore, we do the two cases separately. We consider the
case of non-formally real fields first.

A field F is called quadratically closed if F' = F?. For example, algebraically closed
fields are quadratically closed. A field of characteristic two is quadratically closed if and
only if it is perfect. The quadratic closure of the rationals @ is the complex constructible
numbers. Over a quadratically closed field the structure of the Witt ring is very simple.
Indeed, we have

LEMMA 31.1. A field F the following are equivalent:
(1) F is quadratically closed.
(2) W(F)=12/27.
(3) I(F) = 0.
Proor. As W(F)/I(F) = Z/2Z, we have W(F) ~ Z/27 if and only if I(F) = 0 if
and only if (1, —a) = 0 in W (F) for all a € F* if and only if a € F** for all a € F*. O

EXAMPLE 31.2. (1). Let F be a finite field with char F =p > 0 and |F| =¢q. If p =2
then F = F? and F is quadratically closed. So suppose that p > 2. Then F*? ~ F*/{£1}
so |F*/F**| =2 and |F?| = }(qg+1). Let F*/F** = {F*? aF**}. If x € F, the finite
sets

F?and {a —y* |y € F}
both have %(q + 1) elements, hence they intersect non-trivially. It follows that every
element in F' is a sum of two squares. We have —1 € F>** if and only if g =1 mod 4.

If g =3 mod 4 then —1 ¢ F** and s(F) = 2. We may assume that a = —1. Then
(1,1,1) =(1,-1,—1) = (1) in W(F) so W(F') is {0, (1), (—1),(1,1)} and is isomorphic
to the ring 7 /47.

If g=1 mod 4 then —1 is a square and W (F) is {0, (1), (a), (1,a)} is isomorphic to
the group ring Z/2Z[F* /F*?].

113
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(2). If F is not formally real with char I’ # 2 then s = s(F') is finite so the symmetric
bilinear form (s + 1)(1) is isotropic hence universal by Corollary [1.26.

It follows by the above that any field F' of positive characteristic has s(F') = 1 or 2.
In general, if F'is not formally real, s(F') = 2" by Corollary 6.8, There exist fields of level
2™ for all m > 1.

LEMMA 31.3. Let 2™ < n < 2™ Suppose that F satisfies s(F) > 2™, e.g., F is
formally real, and ¢ = (n + 1)(1),. Then s(F(y)) = 2™.

PROOF. As s(F) > 1, the characteristic of F' is not two. Since ¢p(, is isotropic,
it follows that s(F'(¢)) < 2™ by Corollary 6.8. If ¢ was isotropic over F' then s(F) =
s(F(p)) < 2™ as F(p)/F is purely transcendental by Proposition 22.9. This contradicts
the hypothesis. So ¢ is anisotropic. If s(F#(¢)) < 2™ then the Pfister form (2(1))p(,)
is non-degenerate as char F' # 2 hence is hyperbolic. It follows that 2 = dim 2™(1) >
dim ¢ > 2™ by the Subform Theorem 22.5, a contradiction. O

The ring structure of W (F) is given by the following:
PROPOSITION 31.4. Let F' be non-formally real with s(F) = 2". Then

F) is connected, i.e., 0 and 1 are the only idempotents in W (F').

F) is a 2-primary torsion group of exponent 2s(F).

(F) is artinian if and only if it is noetherian if and only if |FX/FXQ| is finite
if and only if W(F) is a finite ring.

PROOF. Let s = s(F'). The integer 2s is the smallest integer such that the bilinear
Pfister form 2s(1), is metabolic hence zero in the Witt ring. Therefore, 2" (a) = 0 in
W (F) for every a € F*. Tt follows that W (F) is 2-primary torsion of exponent 2" i.e.,
(6) holds. As

{a) = ((a,...,a)) = {{a,—1,..., 1)) =2""((a)) = 0
in W(F) for every a € F* by Example 4.16, we have I(F') lies in every prime ideal. Since
W(F)/I(F) ~ Z/2Z, the fundamental ideal I(F") is maximal hence is the only prime ideal
which is (1). As I(F) is the only prime ideal (2) — (5) follows easily.

Finally, we show (7). Suppose that W (F) is noetherian. Then I(F') is a finitely
generated W (F)-module so I(F)/I*(F) is a finitely generated W (F)/I(F)-module. As
F*/F** ~ [(F)/I*(F) by Proposition 4.13/and Z/2Z ~ W (F)/I(F), we have F* /F** is
finite. Conversely, suppose that F*/F *2 is finite. By (2.6), we have a ring epimorphism
Z[F*/F**] — W(F). As the group ring Z[F*/F*?] is noetherian, W (F) is noetherian.
As 2sW (F) = 0 and W (F) is generated by the classes of 1-dimensional forms, we see that
[W (F)| < |F*/F**?. Statement (7) now follows easily. O

We turn to formally real fields, i.e., those fields with of infinite level. In particular,
formally real fields are of characteristic zero, so the theories of symmetric bilinear forms
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and quadratic forms merge. The structure of the Witt ring of a formally real field is more
complicated as well as more interesting. We shall use the basic algebraic and topological
structure of formally real fields which can be found in Appendices §94/ and §95. Recall
that a formally field F' is called euclidean if every element in F* is a square or minus a
square. So F is euclidean if and only if F' is formally real and F* /F** = {F** —F**},
In particular, every real-closed field is euclidean. Sylvester’s Law of Inertia for real-closed
fields generalizes to euclidean fields.

PROPOSITION 31.5. (Sylvester’s Law of Inertia) Let F' be a field. Then the following
are equivalent:

(1) F is euclidean.

(2) F is formally real and if b is a non-degenerate symmetric bilinear form there
exists unique non-negative integers m,n such that b ~ m(l) L n(—1).

(3) W(F) ~ Z as rings.

(4) F? is an ordering of F.

PrROOF. (1) = (2): As F is formally real, char /' = 0 so every bilinear form is
diagonalizable. Since F*/F** = {F** —F**}, every non-degenerate bilinear form is
isometric to m(1) L n(—1) for some non-negative integers n and m. The integers n and
m are unique by Witt Cancellation [1.29.

(2) = (3): By (2) every anisotropic quadratic form is isometric to (1) for some unique
integer 7.

(3) = (4): Let sgn : W(F) — Z be the isomorphism. Then sgn(l) = 1 so (1) has
infinite order, hence F' is formally real. Let a € F. Then sgn(a) = n for some integer
n. Thus (a) = n(l) in W(F). In particular n is odd. Taking determinants, we must
have aF** = £F**. It follows that FX/FX2 = {FXQ,—Fx2}. As F is formally real,
F? + F? C F? hence F? is an ordering.

(4) = (1): As F has an ordering, it is formally real. As F'? is an ordering, F' = F?U(—F?)
with —1 € F? so F is euclidean. O

DEFINITION 31.6. Let F' be a euclidean field. If b is a non-degenerate symmetric
bilinear form then b ~ m(1) L n(—1) for unique non-negative integers n and m. The
integer m — n is called the signature of b and denoted sgn b. This induces an isomorphism
sgn : W(F) — Z taking the Witt class of b to sgn b called the signature map.

Let

D(o0(1)) := UD(n(l)) = {z | z is a nonzero sum of squares in F'}

D(00(1)) := D(co(1)) U {0}.

A field F'is called a pythagorean field if every sum of squares of elements in F' is itself a
square, i.e., D(oo(1)) = F? and if char F' = 2 then F is quadratically closed, i.e., perfect.

REMARK 31.7. A field F' of characteristic different from two is pythagorean if and
only if every sum of two squares F' is a square.
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ExAMPLE 31.8. Let F' be a field.

(1). Every euclidean field is pythagorean.

(2). Let F be a field of characteristic different from two and K = F'((t)), a Laurent series
field over F. Then K is the quotient field of F[[t]], a complete discrete valuation ring. If
F is formally real then so is K as n(1) is anisotropic over K for all n by Lemma 19.4.
Suppose that F'is formally real and pythagorean. If x; € K* for ¢« = 1, 2 then there exists
integers m; such that x; = t"(a; + ty;) with a; € F* and y; € F|[t]] for i = 1,2. Suppose
that m; < my then 22 + 23 = t*™(c + t2) with z € F[[t]] and ¢ = a? if m; < my and
¢ = al+a3 if m; = my hence c is a square in F in either case. As K is formally real, ¢ # 0
in either case. Hence c+tz is a square in K by Hensel’s Lemma. It follows that K is also
pythagorean. In particular, the finitely iterated Laurent series field F,, = F'((t1)) - ((tn))
as well as the infinite iterated Laurent series field Fip, = im F,, = F'((t1))--- ((t,))--- are
formally real and pythagorean if F is.

(3). If F is not formally real and char F # 2 then F' = D(0o(1)) by Example 31.2(2). It
follows that if F'is not formally real then F'is pythagorean if and only if it is quadratically
closed.
(4). Let K = F((t)) with char F = 0 and F*/F** = {a,F** | i € I}. Tt follows by
Hensel’s Lemma that

K*JK** = {q;K** |ie IYU{atK** |ieI}.
and from Lemma[19.4' that this is a disjoint union and a K% = ajKX2 if and only if ¢+ = j.

In particular, if F'is not formally real then Laurent series field K is not pythagorean as
t is not a square.

EXERCISE 31.9. Let F' be a formally real pythagorean field and let b be a bilinear
form over F'. Prove that the set D(b) is closed under addition.

PROPOSITION 31.10. Let F' be a field. Then the following are equivalent:
(1) F is pythagorean.
(2) I(F) is torsion-free.
(3) There are no anisotropic torsion binary bilinear forms over F'.

PROOF. (1) = (2): If s(F) is finite then F is quadratically closed so W (F') = {0, (1)}
and I(F) = 0. Therefore, we may assume that F' is formally real. We show in this case
that W (F) is torsion-free. Let b be an anisotropic bilinear form over F' that is torsion
in W(F), say mb = 0 in W(F) for some positive integer m. As b is diagonalizable by
Corollary [1.20, suppose that b ~ (aq, ..., a,) with a; € F*. The form mb; is isotropic so
there exists a nontrivial equation ) i > aix?j =01in F. As F is pythagorean, there exist
x; € F satisfying 27 = 37 a7, Since F is formally real not all the 2; can be zero. Thus
(x1,...,2,) is an isotropic vector for b, a contradiction.

(2) = (3) is trivial.
(3) = (1): Let 0 # z € D(2(1)). Then 2((z)) = 0 in W(F) by Corollary 6.6. By
assumption, ((z)) = 0 in W (F) hence z € F**. O

COROLLARY 31.11. A field F is formally real and pythagorean if and only if W (F') is
torsion-free.
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PROOF. Suppose that W (F) is torsion-free. Then I(F') is torsion-free so F'is pythagorean.

As (1) is not torsion, s(F') is infinite hence F' is formally real.

Conversely, suppose that F' is formally real and pythagorean. Then the proof of
(1) = (2) in Proposition 31.10/ shows that W (F') is torsion-free. O

LEMMA 31.12. The intersection of pythagorean fields is pythagorean.

PROOF. Let F' =), F; with each F; pythagorean. If z = 2? + y? with x,y € F. then
for each ¢ € I there exist z; € F; with z? = 2. In particular, z; = £z forall 4,5 € I. Thus
z €, F; = F forevery j € I and z = 2. O

EXERCISE 31.13. Let K/F be a finite extension. Show if K is pythagorean so is F.
(Hint: If char F #2and a=1+2% € F\ F? let 2 = a++/a € K. Show z € F(y/a)? but

Ne(yayr(z) & F2.)

Let F be a field and K/F an algebraic extension. We call K a pythagorean closure of F
if K is pythagorean and if ' C F ; K is an intermediate field then F is not pythagorean.
If F'is an algebraic closure of F' then the intersection of all pythagorean fields between
F and F' is pythagorean by the lemma. Clearly, this is a pythagorean closure of F. In
particular, a pythagorean closure is unique (after fixing an algebraic closure). We shall
denote the pythagorean closure of F' by F),,. If I’ is not a formally real field then F,, is
just the quadratic closure of I, i.e., a quadratically closed field K algebraic over F' such
thatif F C F ; K then FE is not quadratically closed. We shall also denote the quadratic
closure of a field F' by Fj,.

EXERCISE 31.14. Let E be a pythagorean closure of a field F'. Prove that E/F is an
excellent extension. (Hint: in the formally real case use Exercise 31.9/ to show that for
any quadratic form ¢ over F' the form (¢g)., over E takes values in F.)

We show how to construct the pythagorean closure of a field.

DEFINITION 31.15. Let F be a field and F an algebraic closure. If K/F is a finite
extension in F' then we say K/F is admissible if there exists a tower

F=FCF, C---CF,= K where

(31.16) F, = Fz‘—l(\/ﬂ) with 2,1 € D(2(1)g,_,).

from F to K.

REMARK 31.17. If F' is a formally real field and K is an admissible extension of F'
then K is formally real by Theorem 94.3 in Appendix §94.

LEMMA 31.18. Let char F' # 2. Let L be the union of all admissible extensions over
F. Then L = F,,. If F'is formally real so is F,,.

PROOF. Let F be a fixed algebraic closure of F.. If £ and K are admissible extensions
of F' then the compositum of FK of E and K is also an admissible extension. It follows
that L is a field. If 2 € L satisfies z = 2® + 9%, x,y € L, then there exist admissible
extensions £ and K of F with z € F and y € K. Then FK(y/z) is an admissible
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extension of F' hence v/z € EK(\/z) C L. Therefore, L is pythagorean. Let M be

pythagorean with /' C M C F. We show L C M. Let K/F be admissible. Let (31.16)
be a tower from F to K. By induction, we may assume that F; C M. Therefore, z; € M?
hence F;;; C M. Consequently, K C M. It follows that L. C M so L = F,,. If Fis

Py
formally real then so is L by Remark [31.17. U

If F'is an arbitrary field then the quadratic closure of F' can also be constructed by
taking the union of all square root towers
F=FRCF C---CF,=K where F;=F,_1(\/zi—1) with z_, € F[*,.

over F'.

NOTATION 31.19. Let
Wi(F) :={b € W(F) | there exists a positive integer n such that nb = 0},
the additive torsion in W (F). It is an ideal in W (F).

Recall if K/F is a field extension then W(K/F) := ker(rg/r : W(F) — W(K)).

LEMMA 31.20. Let z € D(2(1)) \ F**. If K = F(/2) then

Proor. It follows from the hypothesis that ((z)) is anisotropic hence K/F' is a qua-
dratic extension. As z is a sum of squares and not a square, char F' # 2. Therefore, by
Corollary 23.7, we have W (K/F) = ((z))W (F'). By Corollary 6.6, we have 2((z)) = 0 in
W (F') and the result follows. O

We have

THEOREM 31.21. Let F' be a formally real field.
(1) Wi(F) is 2-primary, i.e., all torsion elements of W (F) have exponent a power of
2

(2) Wi(F) = W(E,,/F).

PROOF. As W (F,,) is torsion-free by Corollary [31.11], the torsion subgroup W;(F) lies
in W(F,,/F), so it suffices to show W (F,,/F) is a 2-primary torsion group. Let K be an
admissible extension of F as in (31.16). Since F),, is the union of admissible extensions
by Lemma 31.18, it suffices to show W (K/F) is 2-primary torsion. By Lemma [31.20/ and
induction, it follows that W (K /F') C anny () (2"(1)) as needed. O

LEMMA 31.22. Let F be a formally real field and b € W(F') satisfy 2"b # 0 in W (F)
for anyn > 0. Let K/F be an algebraic extension that is maximal with respect to by not
having order a power of 2 in W(K). Then K is euclidean. In particular, sgnbg # 0.

PROOF. Suppose K is not euclidean. As 2"(1) # 0, the field K is formally real. Since
K is not euclidean, there exists an z € K* such that z ¢ (K*)*U—(K*)?2. In particular,
both K(y/z)/K and K(y/—x)/K are quadratic extensions. By choice of K, there exists
a positive integer n such that ¢ := 2"by satisfies cx(z) and ¢ (/=) are metabolic, hence
hyperbolic as char F' # 2. By Corollary 23.7, there exist forms ¢; and ¢y over K satisfying
¢~ () ®c¢ ~ ((—1)) ®co. As —x((z)) =~ ({x)) and z((—z)) ~ ((—x)), we conclude
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that xc ~ ¢ >~ —zc and hence that 2¢ ~ ¢ L ¢ ~ x¢ L —zc hence 2¢ = 0 in W(K). This
means that by is torsion of order 2"*!, a contradiction. Il

PROPOSITION 31.23. The following are equivalent:

2) F is formally real.
3) Wi(F) # W(F).
4) W(F) is not a 2-primary torsion group.
5) There exists an ideal A C W (F) such that W(F)/U ~ Z.
(6) There exists a prime ideal B in W (F') such that char(W (F)/B) # 2.
Moreover, if F is formally real then for any prime ideal B in W (F') with char(W (F)/B) #
2, the set
Py = {x € F*[((x)) € B} U{0}

is an ordering of F.

PROOF. (1) = (2) is clear.

(2) = (3): By assumption, —1 ¢ Dp(n(1)) for any n > 0 so (1) & W,(F).
(3) = (4) is trivial.
(4) = (5): By assumption there exists b € W(F') not having order a power of 2. By

Lemma 31.22) there exists K/F with K euclidean. In particular, rg,p is onto. Therefore,
A = W(K/F) works by Lemma [31.22/ and Sylvester’s Law of Inertia 31.5.

(5) = (6) is trivial.
(6) = (1). By Proposition [31.4] the field F' is formally real. We show that (6) implies
the last statement. This will also prove (1). Let B in W(F') be a prime ideal satisfying
char(W (F) /B # 2.

We must show
(i) PgU(—Py) =F.

(ii) Pq_g + P‘l‘ C qu.

(iii) Py - Py C Py

(iv) Py N (=Py) = {0}.
Suppose that © # 0 and both £z € Py. Then ((—1)) = ((—z)) + ((z)) lies in P so
2(1)+P = 0in W(F)/PB, a contradiction. This shows (iv) and (v) hold. As ({(x,—z)) =0
in W(F), either ((x)) or ((—x)) lies in B, so (i) holds. Next let z,y € Py. Then
({(xy)) = ((z)) +z((y)) lies in P so zy € P which is (iii). Finally, we show that (ii) holds,
i.e., x4y € Py. We may assume neither « nor y is zero. This implies that z .=z +y # 0
else we have the equation ((—1)) = (1,2, —x,1) = (1, —z, —y, 1) = ((z)) + ({y)) in W(F)
which implies that ((—1)) lies in P contracting (v). Since (—z,—y) ~ —z({—zxy)) by
Corollary 6.6, we have

2(=z) = 2=z, —y, zzy) = (—x, —y, zxy, =2, —zzy, zay) = ((2)) + ({y)) — 2(1) — 2((zy))
in W(F). As z,y € Py and 2y € Py by (iii), it follows that 2((z)) € P as needed. O
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The proposition gives another proof of the Artin-Schreier Theorem that every formally
real field can be ordered.

Let F' be a formally real field and X(F) the space of orderings. Let P € X(F') and
Fp be the real closure of F' at P (within a fixed algebraic closure). By Sylvester’s Law of
Inertia 31.5, the signature map defines an isomorphism sgn : W(Fp) — Z. In particular,
we have a signature map sgnp : W(F') — Z given by sgnp = sgnorp,,p. This is a ring
homomorphism satisfying W;(F) C kerrp, /r = kersgnp. We let

PBpr =kersgnp in Spec W(F).

Note if F' C K C Fp and b is a non-degenerate symmetric bilinear form then sgnp b =
SEN 2 i bx. In particular, if K is euclidean then sgnp b = sgn by.

THEOREM 31.24. (Local-Global Principle) The sequence

0 — Wi(F) - w(F) " T wiFe)
X(F)
18 exact.

PrOOF. We may assume that F' is formally real by Proposition [31.4. We saw above
that Wi(F') C kersgnp for every ordering P € X(F') so the sequence is a zero sequence.
Suppose that b € W (F') is not torsion of 2-power order. By Lemma 131.22) there exists a
euclidean field K/F with by not of 2-power order. As K? € X(K), we have P = K?NF €
X(F). Thus sgnp b = sgnby # 0. The result follows. O

COROLLARY 31.25. The map
X(F) — { € Spec(W(F)) | W(F)/P =2} givenby PPy
s a bijection.
PROOF. Let P C W(F') be a prime ideal such that W(F) /B ~ Z. As in Proposition
31.23, let Py :={x € F*|((z)) € B} U {0} € X(F).
CrLAM 31.26. ‘B + Py is the inverse, i.e., P = Py, and ‘B = Pp,:

If P € X(F) then certainly, P C Py,, so we must have P = Py, as both are orderings.

By definition, we see that the composition W(F) — W(F)/8 = Z maps (z) to
sglip, (z). Hence kersgnp, = B. O

THEOREM 31.27. Spec(W (F')) consists of

(1) The fundamental ideal I(F').

(2) PBp with P € X(F).

(3) Bpp = Pp + pW(F) = sgnp' (pZ), p an odd prime with P € X(F).
Moreover, all these ideals are different. The prime ideals in (1) and (3) are the mazimal
ideals of W(F). If F is formally real then the ideals in (2) are the minimal primes of
W(F) and PBp C Pp, NI(F) for all P € X(F) and for all odd primes p.
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PrROOF. We may assume that F'is formally real by Proposition 31.4. Let 3 be a prime
ideal in W (F). Let a € F*. As ((a,—a)) =0 in W(F) either ((a)) € B or ({(—a)) € P.
In particular, (a) = (1) mod B. Hence W (F)/P is cyclic generated by (1) + B, so
W(F)/B ~ Z or Z/pZ for p a prime. If z,y € F* then (z) and (y) are units in W (F),
so do not lie in B. Suppose that W (F') /P ~ Z/2Z. Then we must have (x,y) € P for
all x,y € F* hence P = I(F'). So suppose that W (F) /B # Z/2Z. By Proposition 31.23,
the set P = Py € X(F). Since W(F)/Bp ~ Z, we have Pp C P. Hence P = Pp or
B = Pp, for a suitable odd prime. As each P € X(F') determines a unique Pp and Pp,,
by Corollary 31.23. the result follows. O

COROLLARY 31.28. If F' is formally real then dim W (F') = 1 and the map X(F) —
Min Spec W (F) given by P+ kersgnp is a homeomorphism.

PROOF. As ((1)) does not lie in any minimal prime, for each a € F* either a € Pp or
—a € Pp but not both where P € X(F'). The sets H(a) := {P | —a € P} form a subbase
for the topology of X(F') (cf. §95). As a € P for P € X(F) if and only if ((a)) € Pp if
and only if Pp lies in the basic open set {P | a ¢ P for P € Min Spec W (F')}, the result
follows. 0

PROPOSITION 31.29. Let F' be formally real. Then

(1) nil(W(F)) =rad(W(F)) = Wi(F).

(2) W(F)* ={b| sgnpb==1 forall P € X(F)}

={{a)+c|lae F* andce I*(F)NW,(F)}.

) If F' is not pythagorean then zd(W (F)) = I(F).
) If F' is pythagorean then zd(W(F)) = Uy Br & 1(F).
) W(F) is connected, i.e., 0 and 1 are the only idempotents in W (F').
) W(F) is noetherian if and only if F*/F** is finite.

ProOOF. (1): If P € X(F) then Pp = N,Pp, so nil(W(F) = rad(W(F). By the
Local-Global Principle 31.24, we have

= ker( H T'FP/F ﬂ ker(sgnp) = ﬂ Br = ﬂ PBr, =nil(W(F)).
X(F) X(F)

Pex(F X(F)

(3
(4
(5
(6

(2): We have sgnP(W(F)X) C {£1} for all P € X(F). Let b be a non-degenerate
symmetric bilinear form satisfying sgnp b = £1 for all P € X(F'). Choose a € F such that
¢ := b — (a) lies in I*(F) using Proposition 4.13. In particular, sgnp b = sgnp(a) mod 4
hence sgnp b = sgnp(a) for all P € X(F). Consequently, sgnpc = 0 for all P € X(F)
so is torsion by the Local-Global Principle 31.24. By (1), the form ¢ is nilpotent hence
be W(F)~.

(3),(4): As the set of zero divisors is a saturated multiplicative set, it follows by commu-
tative algebra that it is a union of prime ideals.

Suppose that F is not pythagorean. Then W;(F') # 0 by Corollary 31.11. In particular,
2"b =0 € W(F) for some b # 0 in W(F') and n > 1 by Theorem 31.21. Thus ((—1)) is a
zero divisor. As I(F') is the only prime ideal containing ((—1)), we have I(F') C zd(W (F)).
Since n(l) is not a zero divisor for any odd integer n by Theorem [31.21, no PBp, can lie
in zd(W(F). It follows that zd(W (F)) = I(F), since Bp C I(F) for all P € X(F).
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Suppose that F' is pythagorean. Then W;(F) is torsion-free so n(1l) is not a zero-
divisor for any nonzero integer n. In particular, no maximal ideal lies in zd(W (F')). Let
P € X(F) and b € Pp. Then b is diagonalizable so we have b ~ (ay,...,an,b1,...b,)
with a;, —b; € P for all i, j. Let ¢ = ({a1by,...,ayb,)). Then b is non-zero in W (F) as
sgnpc=2" As ((—a;b;)) - ¢ =0 in W(F) for all i, we have b-¢ =0 hence b € zd(W(F)).
Consequently, Bp C zd(W(F)) for all P € X(F) hence zd(W (F)) is the union of the
minimal primes.

(5): If the result is false then 1 = e; + ey for some nontrivial idempotents ey, e;. As
eres = 0, we have ey, es € zd(W(F')) C I(F) which implies 1 € I(F'), a contradiction.
(6): This follows by the same proof for the analogous result in Proposition 31.4. U

PROPOSITION 31.30. If F' is formally real then Wi (F') is generated by ({x)) with x €
D(co(1)), i.e., I,(F) is generated by torsion 1-fold Pfister forms.

PROOF. Let b € W, (F'). Then 2"b = 0 for some integer n > 0. Thus b € annyy(#)(2"(1)).
By Corollary[6.23) there exist binary forms 9; € anny () (2"(1)) satisfying b = 014 - -+0,,
in W(F'). The result follows. O

Because I(F') is the unique ideal of index two in W (F'), we can deduce the following:

THEOREM 31.31. Let F' and K be two fields. Then W(F) and W(K) are isomorphic
as rings if and only if W(F)/I*(F) and W(K)/I*(K) are isomorphic as rings.

ProOOF. The fundamental ideal is the unique ideal of index two in its Witt ring by
Theorem 31.27. Therefore any ring isomorphism W (F') — W(K) induces a ring isomor-

phism W(F)/I3(F) — W (K)/I3}(K).

Conversely, let g : W (F)/I*(F) — W(K)/I*(K) be a ring isomorphism. By the first
argument, g induces an isomorphism I(F)/I*(F) — I(K)/I?(K). By Proposition 4.13,
it induces an isomorphism h : F*/F** — K*/K**.

We adopt the following notation. For a coset o = 2K**, write (a) and ((a)) for the
forms (z) and ((z)) in W(K) respectively. We also write s(a) for h(aF**). Note that
s(ab) = s(a)s(b) for all a,b € F*.

By construction,

g({{a)) + I*(F)) = ({s(a))) mod I*(K)/I’(K).
As g(1) = 1, plugging in a = —1, we get (s(—1)) = (—1). In particular,
(31.32) (s(1)) + (s(—=1)) = (1) + (—1) =0 € W(K).
Since g is a ring homomorphism, we have
9({a, b)) + IP(F)) = g({(a)) + I*(F)) - g(((0)) + I*(F))
= ((s(a))) - ((s(0))) + I*(K)
= ((s(a), s(b))) + I°(K).
for every a,b € F*.
If a 4+ b # 0 we have ((a,b)) ~ ((a + b, ab(a + b))) by Lemma 4.15(3). Therefore,

((s(a), s(b))) = ((s(a+0), s(abla+b)))) mod I’(K).
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By Theorem 6.20, these two 2-fold Pfister forms are equal in W (K'). Therefore,
(31.33) (s(a)) + (s(b)) = (s(a+ b)) + (s(abla +b)))
in W(K).

Let F be the free abelian group with basis the set of isomorphism classes of 1-
dimensional forms (a) over F. It follows from Theorem 4.8 and equations (31.32)) and
(31.33) that the map F — W(K) taking (a) to (s(a)) gives rise to a homomorphism

s: W(F) — W(K). Interchanging the roles of F' and K, we have in similar fashion a
homomorphism W (K) — W (F') which is the inverse of s. O

32. Addendum on Torsion

We know by Corollary 6.26 that if b € anny ) (2(1)), i.e., if 2b = 0 in W(F') that
b~ L--- L 0, where each b; is a binary form annihilated by 2. In particular, if b is
an anistropic bilinear Pfister form such that 26 = 0 in W(F) then D(b") N D(2(1)) # 0.
In general, if 2"b = 0 in W(F) with n > 1, then b is not isometric to binary forms
annihilated by 2" nor does the pure subform of a torsion bilinear Pfister form represent a
totally negative element. In this Addendum, we construct a counterexample. We use the
following variant of the Cassels-Pfister Theorem [17.3.

LEMMA 32.1. Let char F' # 2. Let ¢ = (a1,...,a,)q be anisotropic over F(t) with
a,...,a, € F[t] all satisfying dega; < 1. Suppose that 0 # q € D(¢pw)) N Ft]. Then
there exist polynomials fi,..., f, € FIt] such that ¢ = o(f1,..., fn), i.e., Flt] Qr ¢
represents q.

PROOF. Let ¢ ~ (—¢) L ¢ and let

Q:={f = (fo,--. fn) € FIt]" | by(f, f) = O}.
Choose f € @ such that deg fy is minimal. Assume that the result is false. Then
deg fo > 0. Write f; = fog; + r; with r;, = 0 or degr; < deg fy for each 7 using the
Euclidean Algorithm. So degr? < 2deg fo — 2 for all i. Let g = (1,g1,...,9,) and define
h € F[t]"™ by h = c¢f — dg with ¢ = by(g,g) and d = —2b,(f, g). We have
by(cf +dg, cf +dg) = by(f, ) + 2cdby(f, g) + d*by(g. g) = 0

so h € ). Therefore,
ho = by(g,9) — 2by(f,9) = by(fog — 2f,9) = =by(f +1,9),

SO

foho = —foby(f +1,9) = =by(f + 1, f — 1) =by(r,r) = Zaﬂ"i
i=1
which is not zero as ¢ is anisotropic. Consequently,

deg ho + deg fo < max{dega,;} +2deg fo —2 < deg fo +1

as dega; <1 for all 7. This is a contradiction. OJ
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LEMMA 32.2. Let F' be a formally real field and x,y € D(oo(1)). Letb = ((—t,z + ty)),
a 2-fold Pfister form over F(t). If b ~ 0y L by over F(t) with by and 0y binary torsion
forms over F(t) then there ezists a z € D(0o(1)) such that x,y € D({(—=z))).

PRrROOF. If one of x or y or xy is a square, let z = y or z = x to finish. So we
may assume they are not squares. As b is round, we may also assume that 9; ~ ((w))
with w € D(oo(1)) by Corollary 6.6 In particular, D(b%) N —D(oo(1)) # ) by Lemma
6.11. Thus, there exists a positive integer n such that b’ L n(1) is isotropic. Let ¢ =
(t,—(z + yt)) L n(l). We have t(z + yt) € D(c). The form (1,—y) is anisotropic
as is n(l), since F is formally real. If ¢ is isotropic, then we would have an equation
—tf* = > g?> — (z + yt)h? in F[t] for some f,g;,h € F[t]. Comparing leading terms
implies that y is a square. So ¢ is anisotropic. By Lemma 32.1, there exist ¢, d, f; € F|t]
satisfying

e 2t — (x+yt)d® =tz + yt).
Since (1, —y) and n(1) are anisotropic and t* occurs on the right hand side, we must have
¢, d are constants and deg f; < 1 for all 7. Write f; = a; + b;t with a;,b; € F for 1 <i <n.
Then

n

Za? = zd?, Qiaibi =—+x+yd, and ibf =y.
i=1

i=1 =1
If d = 0 then a; = 0 for all i and = = ¢? is a square which was excluded. So d # 0. Let

z= 42&? : Z b7 — 4(2 a;ib;)? = dvyd® — (x — & + yd?)*.
=1 =1 =1

Applying the Cauchy-Schwarz Inequality in each real closure of F', we see that z is non-
negative in every ordering so z € D(oo(1)). As zy is not a square, z # 0. As d # 0, we
have zy € D({((—=z))). Now

z = dayd® — (v — & +yd?*)* = dac® — (v — yd® + )%
Thus z € D({(—z))). As ({(—z)) is round, y € D({{(—z2))) also. O

LEMMA 32.3. Let Fy be a formally real field and u,y € D(co{1)g,). Let x = u + t*
in F'= Fy(t). If there exists a z € D(co(l)p) such that x,y € D(((—z))) then y €

D({{(=u))).
Proor. We may assume that y is not a square. By assumption, we may write

Z:(U—l-tQ)le—g%:ysz—gg fOI" some f17f27917926F0<t)~

Multiplying this equation by an appropriate square in Fy(t), we may assume that z € F[t]
and that fi1, g1, f2, 92 € Fp[t] have no common nontrivial factor. As z is totally positive,
i.e., lies in D(oo(1)), its leading term must be totally positive in Fy. Consequently,

deggr < 1+degfi and deggs < deg fs.

It follows that %degz < 1+ deg f;. We have %degz = deg f, otherwise y € F?, a
contradiction. Thus, we have

deg fo <1-+degf; and deg(g; +go) <1+ degfi.
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If deg((u+t2)f2 —yf3) < 2deg fi1 + 2 then y would be a square in Fy, a contradiction. So

deg((u+t*)ff — yf3) = 2+ 2deg f1.

As ((u+t3)fE —yfi = g? — g5, we have deg(g; & g2) = 1 + deg f1. It follows that either
f1 or g1 — g has a prime factor p of odd degree. Let F' = Fy[t]/(p) and ~ : Fy[t] — F be
the canonical map. Suppose that f; = 0. Then Z = —g2 in F. As z is a sum of squares
in Fy[t] (possibly zero), we must also have 7 is a sum of squares in F. But [F : Fy] is odd

hence Fy is still formally real by Theorem [94.3 or Springer’s Theorem [18.5. Consequently,
we must have z = ¢g; = 0. This implies that yfg = g5. As y cannot be a square in the
odd degree extension F of F, by Springer’s Theorem [18.5, we must have f, = 0 = .
But there exist no prime p dividing f, f2, g1, and go. Thus pf f1 in Fy[t]. It follows that
7, = G, which in turn implies that (u + fz)?f — y?i =0. As f, # 0, we have f, # 0, so
we conclude that (u, 1, —y)% is isotropic. As [F : Fp] is odd, (u, 1, —y) is isotropic over Fy
by Springer’s Theorem 8.5, i.e., y € D({(—u))) as needed. O

ExAMPLE 32.4. We apply the above two lemmas in the following case. Let Fy = Q(t1)
and u = 1 and y = 3. The element y is a sum of three but not two squares in Fy by the
Substitution Principle17.7. Let K = Fy(t2) and b = ((—t2, 14+3+3ts)) over K. Then the
Pfister form 4b is isotropic hence metabolic so 4b = 0 in W(K). As 1,3t2 € D({(=3t32))x)
and 3 ¢ D(2(1)qq,)), the lemmas imply that b is not isometric to an orthogonal sum
of binary torsion forms. In particular, it also follows that the form b has the property
D(b") N —D(oo(l) ) = 0.

33. The Total Signature

We saw when F is a formally real field the torsion in the Witt ring W (F') is determined
by the signatures at the orderings on F'. In this section, we view the relationship between
bilinear forms over a formally real field F' and the totality of continuous functions on the
topological space X of orderings on F' with integer values.

We shall use results in Appendices §94 and §95. Let F' be a formally real field. The
space of orderings X(F') is a boolean space, i.e., a totally disconnected compact Hausdorff
space with a subbase the collection of sets

(33.1) H(a) = Hp(a) :={P € X(F) | —a € P}.
Let b be a non-degenerate symmetric bilinear form over F. Then we define the total
signature of b to be the map
(33.2) sgnb : X(F) — Z given by sgnb(P) = sgnp b.
THEOREM 33.3. Let F' be formally real. Then
sgnb: X(F) —7

is continuous with respect to the discrete topology on Z. The topology on X(F') the coarsest
topology such that sgnb is continuous for all b.



126 V. BILINEAR AND QUADRATIC FORMS AND ALGEBRAIC EXTENSIONS

PROOF. As 7 is a topological group, addition of continuous functions is continuous.
As any non-degenerate symmetric bilinear form is diagonalizable over a formally real field,
we need only prove the result for b = (a), a € F’*. But
0 if n # +1
(sgn{a))™*(n) = { H(a) ifn=-1
H(—a) ifn=1
The result follows easily as the H(a) form a subbase. O
Let C(X(F'),Z) be the ring of continuous functions f : X(F) — Z where Z has the
discrete topology. By the theorem, we have a map
(33.4) sgn: W(F) — C(X(F),Z) given by b sgnb
called the total signature map. It is a ring homomorphism. The Local-Global Theorem
31.24' in this terminology states

Wi(F) = ker(sgn).

We turn to the cokernel of sgn : W(F) — C(X(F),Z). We shall show that it too is a
2-primary torsion group. This generalizes the two observations that C'(X(F'),Z) =0 if F
is not formally real and sgn : W(F) — C(X(F),Z) is an isomorphism if F' is euclidean.

If A C X(F), write x4 for the characteristic function of A. In particular, x4 €
C(X(F),2) if Ais clopen. Let f € C(X(F),Z). Then A, = f~!(n) is a clopen set. As
{A,, | n € Z} partition the compact space X(F'), only finitely many A, are non-empty.
In particular, f = > nya, is a finite sum. This shows that C(X(F'),Z) is additively
generated by xa, as A varies over the clopen sets in the boolean space X(F).

The finite intersections of the subbase elements (33.1)
(33.5) H(ay,...,a,) := H(a;)N---N H(a,) with ay,...,a, € F*
form a base for the topology of X(F'). As
H(aq,...,a,) =supp({{ay,...,a,))),

where supp b := {P € X(F) | sgnp b # 0} is the support of b, this base is none other than
the collection of clopen sets

(33.6) {supp(b) | b is a bilinear Pfister form}.
We also have

(33.7) sgnb = 2" xqupp(p) if b is a bilinear n-fold Pfister form.
THEOREM 33.8. The cokernel of sgn : W(F) — C(X(F),Z) is 2-primary torsion.

Proor. It suffices to prove for each clopen set A C X(F') that 2"y 4 € imsgn for some
n > 0. As X(F) is compact, A is a finite union of clopen sets of the form (33.6) whose
characteristic functions lie in im sgn by (33.7). By induction, it suffices to show that if A
and B are clopen sets in X(F') with 2"y 4 and 2"xp lying in imsgn for some integers m
and n then 2%y 4 lies in im sgn for some s. But

(33.9) XAuB = XA+ XB — XA " XB;
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SO
(33.10) 2" Y aup = 2"(2"xa) + 2"(2"x5) — (2"X4) - (2"X5)
lies in im sgn as needed. U

Refining the argument in the last theorem, we establish:

LEMMA 33.11. Let C' C X(F) be clopen. Then there exists an integer n > 0 and a
b € I"(F) satisfying sgnb = 2"y 4. More precisely, there exists an integer n > 0, bilinear
n-fold Pfister forms b; satisfying supp(b;) C A, and integers k; such that »_ k;sgnb; =
ZnXA.

PROOF. As X(F') is compact and (33.6) is a base for the topology, there exists an
r > 1 such that C = A; U---U A, with A; = supp(b;) for some m;-fold Pfister forms
b, i =1,...,7. We induct on r. If r = 1 the result follows by (33.7), so assume that
r>1. Let A=A, b="0b;, and B= A, U---U A,. By induction, there exists an m > 1
and a ¢ € I"(F'), a sum (and difference) of Pfister forms with the desired properties with
sgn ¢ = 2™y p. Multiplying by a suitable power of 2, we may assume that m = my. Let
0=2"b L c¢) L (=b)®c Then ? is a sum (and difference) of Pfister forms whose
supports all lie in C' as supp(a) = supp(2a) for any bilinear form a. By equations (33.9)
and (33.10), we have

22m 22m

22" aup = 27" x4+ 2°"xp — 2" xa - 2"Xx5
= 2™ (sgnb + sgnc) —sgnb - sgnc = sgno,
the result follows. O

Using the lemma, we can establish two useful results. The first is:

THEOREM 33.12. (Normality Theorem) Let A and B be disjoint closed subsets of
X(F). Then there ezists an integer n > 0 and b € I"(F) satisfying

w2 iPen
PP =N0  ifPeB

PRrROOF. The complement X(F') \ B is a union of clopen sets. As the closed set A
is covered by this union of clopen sets and X(F') is compact, there exists a finite cover
{C1,...,C,} of A for some clopen sets C;, i = 1,...,r lying in X(F) \ B. As C; \ U;;C}
is clopen for ¢ = 1, ..., 7, we may assume this is a disjoint union. By Lemma 33.11} there
exist b; € I™i(F), some m;, such that sgnb; = 2™ x¢,. Let n = max;{m; | 1 <i <r}.
Then b = ). 2"™b; lies in I"(F') and satisfies b = 2"xy,¢,. Since A C U;C;, the result
follows. (|

We now investigate the relationship between elements in f € C(X(F),2™Z) and bi-
linear forms b satisfying 2™ | sgnp b for all P € X(F'). We first need a useful trick.

If e =(e1,...,6n) € {£1}" and b = ({(ay,...,a,)) with a; € F*, let
bg = <(51a1,...,5nan>>.

Then supp(b.) Nsupp(b). = () unless € = €.
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LEMMA 33.13. Let b be a bilinear n-fold Pfister form over an arbitrary field F'. Then
2"(1) = >__b. in W(F), where the sum runs over all e € {£1}".

PROOF. Let b = ({ai,...,a,)) and ¢ = ((aq,...,a,-1)) with a; € F*. As ((—1)) =
({(a)) 4+ ((—a)) in W(F) for all a € F*, we have

D b= collan) + ) col(—an)) =2 o

where the ¢ run over all {#1}"~!. The result follows by induction on n. U

Using Lemma [33.11), we also establish:

THEOREM 33.14. Let f € C(X(F),2™Z). Then there is a positive integer n and a
b € I (F) such that 2"f = sgnb. More precisely, there exists an integer n such that
2" f can be written as a sum Y., k;sgnb; for some integers k; and bilinear (n + m)-fold
Pfister forms b; such that supp(b;) C supp(f) for every i = 1,...,r and whose supports
are pairwise disjoint.

Proor. We first show:

CrAaM 33.15. Let g € C(X(F),Z). Then there exists a non-negative integer n and
bilinear n-fold Pfister forms ¢; such that 2"g = 3 ._, sisgnc¢; for some integers s; with
supp(c;) C supp(g) for every i =1,...,r.

The function g is a finite sum of functions ), ix,-1(;) where i € Z and each g~*(i)
a clopen set. For each non-empty ¢g~'(i), there exist a non-negative integer n;, bilinear
n;-fold Pfister forms b;; with supp(b;;) C ¢~'(¢) and integers k; satisfying 2™y -1, =
>_;kjsgnb;; by Lemma 33.11. Let n = max;{n;}. Then 2"g = >, - ik;sgn(2""b;;).
This proves the Claim.

Let g = f/2™. By the Claim, 2"g = Y _;_, s;sgn¢; for some n-fold Pfister forms c;
whose supports lie in supp(g) = supp(f). Thus 2"f = !, s;sgn2"¢; with each 2™¢;
an (n 4+ m)-fold Pfister form. Let 0 = ¢; ® - - ® ¢, an rn-fold Pfister form. By Lemma
33.13, we have 20m+Dr f = 3™ sgn(2™s;¢; - 0.) in C(X(F), Z) where ¢ runs over all {£1}™.
For each ¢ and ¢, the form ¢; - 0. is isometric to either 2”79, or is metabolic by Example
4.16(2) and (3). As the 0. have pairwise disjoint suppports, adding the coefficients of the
isometric forms ¢; - 0. yields the result. O

COROLLARY 33.16. Let b be a non-degenerate symmetric bilinear form over F and fix
m > 0. Then 2"b € I""™(F) for some n > 0 if and only if sgnb € C(X(F),2™7Z).

PrOOF. We may assume that F' is formally real as 2s(F)W (F) = 0.
=: If 9 is a bilinear n-fold Pfister form then sgnd € C(X(F),2"Z). If follows that
sgn(I"(F)) C C(X(F),2"Z). Suppose that 2"b € """ (F) for some n > 0. Then
2"sgnb € C(X(F),2""™Z) hence sgnb € C(X(F),2"Z).

«<: By Theorem 133.14, there exists ¢ € I"*™(F') such that sgnc = 2"sgnb. As W,(F) =
ker(sgn) is 2-primary torsion by the Local-Global Principle 31.24, there exists a non-
negative integer k such that 2""*b = 2F¢ € ["tmHF(F). O
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This Corollary 33.16] suggests that if b is a non-degenerate symmetric bilinear form
over F' then

(33.17) sgnb € C(X(F),2"Z) ifandonlyif be I"(F)+ W, (F).
In particular, in the case that F' is a formally real pythagorean field, this suggests that
b e ["(F) if and only if 2" | sgnp(b) for all P € X(F)
as W (F') is then torsion-free.
Of course, if b € I"(F') + W, (F) then b € C(X(F'),2"Z). The converse would follow if
2"b € I"™(F) always implies that b € I"(F) + W;(F).
If F" were formally real pythagorean the converse would follow if
2"b € I"""(F) always implies that b € I"(F).
Because the nilradical of W (F) is the torsion W;(F') when F' is formally real, the total
signature induces an embedding of the reduced Witt ring
Wiea(F) i= W (F) juil(W(F)) = W (F) [ W(F)

into C(X(F'),Z). Moreover, since W;(F') is 2-primary, the images of two non-degenerate
bilinear forms b and ¢ are equal in the reduced Witt ring if and only if there exists a
non-negative integer n such that 2"b = 2"c in W(F). Let = : W(F) — W,ea(F) be the
canonical ring epimorphism. Then the problem above becomes: If b is a non-degenerate
symmetric bilinear form over F' then

b € I",(F) if and only if sgnb € C(%(F),2"Z).
where I ,(F') is the image of I"(F) in W,..q(F).
This is all, in fact, true as we shall see in §41/ (Cf. Corollaries 41.9 and 41.10)).

34. Bilinear and Quadratic Forms Under Quadratic Extensions

In this section we develop the relationship between bilinear and quadratic forms over
a field F' and over a quadratic extension K of F. We know that bilinear and quadratic
forms can become isotropic over a quadratic extension and exploit this. We also investigate
the transfer map taking forms over K to forms over F' induced by a nontrivial F-linear
functional. This leads to useful exact sequences of Witt rings and Witt groups.

PROPOSITION 34.1. Let K/F be a quadratic field extension and s : K — F a nontrivial
F-linear functional satisfying s(1) = 0. Let ¢ be an anisotropic bilinear from over K.
Then there exist bilinear forms b over F' and a over K such that ¢ ~ by L a and s.(a) is
anisotropic.

PrOOF. We induct on dim¢. Suppose that s,(c) is isotropic. It follows that there is
abe D(c)NF,ie, ¢~ (b) L ¢ for some ¢;. Applying the induction hypothesis to ¢;
completes the proof. O

We need the following generalization of Proposition [34.1.
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LEMMA 34.2. Let K/F be a quadratic extension of F' and s : K — F a nontrivial
F-linear functional satisfying s(1) = 0. Let § be a bilinear anisotropic n-fold Pfister form
over F and ¢ a non-degenerate bilinear form over K such that fx ® ¢ is anisotropic. Then
there exists a bilinear form b over F and a bilinear form a over K such that fx ® ¢ =~
f@b)k L fx ®a and §f ® s.(a) anisotropic.

PROOF. Let 0 = fx ® ¢. We may assume that s,(9) is isotropic. Then there exists

abe DO)NF. If ¢ ~ (ay,...,a,), there exist z; € D(fx), not all zero satisfying
b=x1a1+ -+ xpa,. Let y; = x; if x; # 0 and y; = 1 otherwise. Then

fK®C:fK® <y1a17"-7ynan> = fK® <b7227"'72n>
for some z; € K* as G(fx) = D(fx). The result follows easily by induction. O

COROLLARY 34.3. Let K/F be a quadratic extension of F and s : K — F a nontrivial
F-linear functional satisfying s(1) = 0. Let § be a bilinear anisotropic n-fold Pfister form
and ¢ an anisotropic bilinear form over K satisfying § ® s.(c) is hyperbolic. Then there
exists a bilinear form b over F' such that dimb = dimc¢ and fx @ ¢ ~ (f R b)k.

PRrOOF. If fx ® ¢ is anisotropic, the result follows by Lemma [34.2, so we may assume
that fx ® ¢ is isotropic. If fx is isotropic, it is hyperbolic and the result follows easily
so we may assume the Pfister form fx is anisotropic. Using Proposition 6.22, we see
that there exists a bilinear form 0 with fx ® 9 anisotropic and an integer n > 0 with
dimd 4+ 2n = dimc and fx ® ¢ ~ fx ® (0 L nH). Replacing ¢ by 0, we reduce to the
anisotropic case. l

Note that if K/F' is a quadratic extension and s, s’ : K — F' are F-linear functionals
satisfying s(1) = 0 = /(1) with s nontrivial then s, = as, for some a € F.

THEOREM 34.4. Let K/F be a quadratic field extension and s : K — F a nonzero
F-linear functional such that s(1) = 0. Then the sequence

TK/F
—_

18 exact.

PROOF. Let b € F* then the binary form s, ((b)) is isotropic hence metabolic. Thus
s, orgp = 0. Let ¢ € W(K). By Proposition 34.1, there exists a decomposition ¢ ~
brx L ¢; with b a bilinear form over F' and ¢; a bilinear form over K satisfying s.(c;) is
anisotropic. In particular, if s,(c) = 0, we have ¢ = bg. This proves exactness. U

If K/F is a quadratic extension, denote the quadratic norm form of the quadratic
algebra K by Ng/p. (Cf. Appendix §97.Bl)

LEMMA 34.5. Let K/F be a quadratic extension and s : K — F a nontrivial F-linear
functional. Let b be an anisotropic binary bilinear form over F such that the quadratic
form b @ Ny /p is isotropic. Then b ~ s,({(y)) for some y € K*.

PROOF. Let {1,z} be a basis of K over F. Let ¢ be the polar form of Ng,p. We have
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for every x € K. By assumption there are nonzero vectors v, w € V; such that

= b(v,v) Ng/p(1) + b(v, w)e(1, z) + b(w, w) Ng/p(x)
= b(v,v) + b(v,w) Trg,/p(x) + b(w, w) Ng/p(z)

by the definition of tensor product (8.14). Let f : K — F be an F-linear functional
satisfying f(1) = b(w,w) and f(z) = b(v,w). By (97.2), we have

f(@%) = f(— Trgr(z)z — Ngyp(2)) = — Tryp(z)b(v, w) — Ngp(z)b(w, w) = b(v,v).

Therefore, the F-linear isomorphism K — V; taking 1 to w and x to v is an isometry
between ¢ = f.((1)) and b. As f is the composition of s with the endomorphism of K
given by multiplication by some element y € K*, we have b ~ f,((1)) ~ s.({y)). O

PROPOSITION 34.6. Let K/F be a quadratic extension and s : K — F a nontrivial F-
linear functional. Let b be an anisotropic bilinear form over F'. Then there exist bilinear
forms ¢ over K and 0 over F such that b ~ s,(c) L d and 0 ® Ng,p is anisotropic.

Proor. We induct on dimb. Suppose that b ® Ng/r is isotropic. Then there is a
2-dimensional subspace W C V, with (blyw) ® N r isotropic. By Lemma 34.5, we have
bl =~ s.({y)) for some y € K*. Applying the induction hypothesis to the orthogonal
complement of W in V' completes the proof. O

THEOREM 34.7. Let K = F(y/a) be a quadratic field extension of F with a € F*. Let
s: K — F be a nontrivial F-linear functional such that s(1) = 0. Then the sequence

) {{a))

W(K) 2 W(F W (F)

is exact where the last homomorphism is multiplication by ((a)).
PROOF. For every ¢ € W(F) we have ({a))s.(¢) = s.({({a))xc) = 0 as ((a))x = 0.

Therefore the composition of the two homomorphisms in the sequence is trivial. Since
Ni/r =~ ({a))q, the exactness of the sequence now follows from Proposition 34.6. O

We now turn to quadratic forms.

PROPOSITION 34.8. Let K/F be a separable quadratic field extension and let v be an
anisotropic quadratic form over F'. Then ¢ ~ b ® Ng/p L 9 with b a non-degenerate
symmetric bilinear form and v a quadratic form satisfying Vg is anisotropic.

PROOF. Since K/F' is separable, the binary form ¢ := Ng/p is non-degenerate. As
F(o) ~ K, the statement follows from Corollary 22.12. O

THEOREM 34.9. Let K/F be a separable quadratic field extension and s : K — F a
nonzero functional such that s(1) = 0. Then the sequence

Ng/r

—— I,(F)

is exact where the middle homomorphism is multiplication by Nk p.

TK/F TK/F

W(F) W(K) 2 W(F) —— [(K) = I(F)
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PRrOOF. In view of Theorem [34.4/ and Propositions [34.6/ and [34.8, it suffices to prove
exactness at I,(K). Let ¢ € I,(K) be an anisotropic form such that s.(¢) is hyperbolic.
We show by induction on n = dimg ¢ that ¢ € imrg/p. We may assume that n > 0.
Let W C V,, be a totally isotropic F-subspace for the form s,.(¢) of dimension n. As
ker s = F' we have (W) C F.

We claim that the K-space KW properly contains W, in particular,

| |
(34.10) dimg KW = - dimp KW > = dimp W = g

To prove the claim choose an element z € K such that 22 ¢ F. Then for every nonzero
w € W, we have p(zw) = 2%p(w) ¢ F, hence zw € KW but = ¢ W. Tt follows
from the inequality (34.10) that the restriction of b, on KW and therefore on W is
nonzero. Consequently, there is a 2-dimensional F-subspace U C W such that b,y is non-
degenerate. Therefore, the K-space KU is also 2-dimensional and the restriction ¢ = |y
is a non-degenerate binary quadratic form over F' satisfying ¢x ~ ¢|xy. Applying the
induction hypothesis to (¥x)*, we have (V)" € imrg/p. Therefore, p = i + (Yg)*+ €
im TK/F- ]

REMARK 34.11. In Proposition 34.9, we have ker rg/r = W(F)((a]] when K = F,.

COROLLARY 34.12. Suppose that char F' # 2 and K = F(y/a)/F is a quadratic field
extension with a € F*. If s : K — F is a nontrivial F-linear functional such that s(1) = 0
then the triangle

18 exact.

PROOF. Since the quadratic norm form Ng/p coincides with ¢, where b = ((a)),
the map W (F) — I,(F) given by multiplication by Ng/p is identified with the map
W(F) — I(F) given by multiplication by ((a)). Note also that kerry, C I(F), so the
statement follows from Theorem 34.9. O

REMARK 34.13. Suppose that char FF # 2 and K = F(y/a) is a quadratic extension
of F. Let b be an anisotropic bilinear form. Then by Proposition 34.8 and Example 9.5]
we see that the following are equivalent:

(1) bg is metabolic.
(2) b€ ((a))W(F).

(3) b~ ((a)) ® ¢ for some symmetric bilinear form c.
In the case that char F' = 2, Theorem 34.9/ can be slightly improved.
We need the following computation:

LEMMA 34.14. Let F be a field of characteristic 2 and K/F a quadratic field extension.
Let s : K — F be a nonzero F-linear functional satisfying s(1) = 0. Then for everyx € K
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we have
s(x)((Trg/p(x)]], otherwise.

s (el = §
In particular s,(((z]]) = ((Trg/r(z)]] modulo I7(F).

PROOF. The element z satisfies the quadratic equation 2%+ ax +b = 0 for some a,b €
F. We have Tri/p(z) = a and s(2?) = as(z) = s(x) Trg/p(x). Let & = Trg/p(z) — 2.
The element Z satisfies the same quadratic equation and s(z?) = s(x) Trg/p(Z).

Let {v,w} be the standard basis for the space V' of the form ¢ := ((x]] over K. If
x € F then v and w span the totally isotropic F-subspace of s.(¢), i.e., s.(¢) = 0.

Suppose that x ¢ F. We have V.= W L W’ where W = Fv @ Frw and W' =
Fzv @& Fw. We have s.(¢) =~ s.(¢)|lw L s.(@)|lw:. As s«(p)(v) = s(1) = 0, the form
s«(¢)|w is isotropic and therefore s,(¢)|w ~ H. Moreover,

=2

5.(0)(30) = (%) = 5(2) Teseyp(2), su(@)(w) = 5(z) and s, (b,(F0,w)) = 5(7 = 5()
hence s.(¢)|w ~ s(z)((Trx/p(x)]]. O

COROLLARY 34.15. Suppose that char F' = 2. Let K/F be a separable quadratic field
extension and s : K — F a nonzero functional such that s(1) = 0. Then the sequence

TK/F TK/F

) (R LK) 2 L(F) — 0

0 — W(F) W(K) 2 W(F

15 exact.

PROOF. To prove the injectivity of rx/r, it suffices to show that if b is an anisotropic
bilinear form over F' then by is also anisotropic. Let z € K \ F be an element satisfying
2>+ 2 +a =0 for some a € F and let bx (v + zw,v + zw) = 0 for some v, w € V. We
have

0=bg(v+zw, v+ 2w) = b(v,v) + ab(w, w) + zb(w, w),
hence b(w,w) = 0 = b(v,v). Therefore v = w = 0 as b is anisotropic.

By Lemma [34.14, we have for every y € K, the form s, (((y]] is similar to ((Trx/#(y)]].
As the map s, is W(F)-linear, I,(F') is generated by the classes of binary forms and the
trace map Trg,r is surjective, the last homomorphism s, in the sequence is surjective. [

We turn to the study of relations between the ideals I"(F), I"(K), I}(F) and I}'(K)
for a quadratic field extension K/F.
LEMMA 34.16. Let K/F be a quadratic extension. Let n > 1.
(1) We have
I"(K) = I (F)I(K),
i.e., I"(K) is the W (F')-module generated by n-fold bilinear Pfister forms bx @ ({x))
with x € K* and b an (n — 1)-fold bilinear Pfister form over F.
(2) If char F' = 2 then

INEK) =I""NF)I(K) 4+ I(K)I}7'(F).
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PROOF. (1): Clearly, to show that I"(K) = I""'(F)I(K), it suffices to show this for
the case n = 2. Let z,y € K\ F. As 1,z,y are linearly dependent over F', there are
a,b € F* such that ax + by = 1. Note that the form ({(az, by)) is isotropic and therefore
metabolic. Using the relation

({wv, w)) = {{u, ) + ul(v, w))
in W(K), we have

0= {{az,by)) = ((z,by)) + a{(z, by)) = {{a,6)) + b{(a, y)) + a{{z, b)) + ab((x,y)),
hence ((z,y)) € I(F)I(K).

(2): In view of (1), it is sufficient to consider the case n = 2. The group IZ(K) is
generated by the classes of 2-fold Pfister forms by (9.6). Let z,y € K. If 2 € F then
((z,y]] € I(F)I,(K). Otherwise y = a + bz for some a,b € F'. Then, by Lemma 15.1 and
Lemma [15.5]

({2, yl] = ({z, al] + {(z, bz]] = ({2, a]] + {(b, ba]] € [(K)I,(F) + [(F)I,(K)
since ((b, bx]| + ((x,bz]] = ({bx,bx]] = 0. O

COROLLARY 34.17. Let K/F be a quadratic extension and s : L — F a nonzero
F-linear functional. Then for every n > 1:
(1) s.(I™(K)) C I™(F).
(2) s.([}(K)) C I}(F).

ProoF. (1): Clearly s.(I(K)) C I(F). It follows from Lemma [34.16 and Frobenius
Reciprocity that

s.(I"(K)) = s,(I" " (F)I(K)) = "' (F)s,(I(K)) Cc " Y (F)I(F) = I"(F).

(2): This follows from (1) if char F' # 2 and from Lemma 34.16(2) and Frobenius Reci-
procity if char F' = 2. O

LEMMA 34.18. Let K/F be a quadratic extension and s,s' : K — F two nonzero
F-linear functionals. Let b € I"(K). Then s.(b) = s.(b) mod I"T'(F).

PROOF. As in the proof of Corollary 20.8, there exists a ¢ € K* such that s,(c¢) =
s.(cc) for all symmetric bilinear forms ¢. As b € I"(K), we have ({c)) - b € I""(K).
Consequently, s,(b) — s.(b) = s.({(c)) - b) lies in I"T(F). The result follows. O

COROLLARY 34.19. Let K/F be a quadratic field extension and s : K — F a nontrivial
F-linear functional. Then s.({(z))) = ((Ng,r(z))) modulo I*(F) for every x € K*.

PrOOF. By Lemma [34.18, we know that s,(((z))) is independent of the nontrivial
F-linear functional s modulo I?(F). Using the functional defined in (20.9), the result
follows by Corollary 20.14. O

Let K/F be a separable quadratic field extension and let s : K — F be a nontrivial
F-linear functional such that s(1) = 0. It follows from Theorem 34.9 and Corollary 34.17
that we have well-defined complexes

TK/F
—_—

(3120)  I"(F) 5 I(K) S5 (F) S5 ) B [ E) 2 1)
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and this induces (where by abuse of notation we label the maps in the same way)

-n r -n S« TN ‘N -n r -n S« TN
T'(F) X5 TY(K) 2 T(F) 2 T () X T () s T

q q

(34.21) (F).

By Lemma [34.18 it follows that the homomorphism s, in (34.21)) is independent of
the nontrivial F-linear functional K — F' although it is not independent in (34.20).

We show that the complexes (34.20) and (34.21) are exact on bilinear Pfister forms.
More precisely we have

THEOREM 34.22. Let K/F be a separable quadratic field extension and s : K — F a
nontrivial F-linear functional such that s(1) = 0.

(1) Let ¢ be an anisotropic bilinear n-fold Pfister form over K. If s,(c) € I""Y(F)
then there exists a bilinear n-fold Pfister form b over F' such that ¢ ~ by.

(2) Let b be an anisotropic bilinear n-fold Pfister form over F. Ifb-Ng/p € I"2(F),
then there exists a bilinear n-fold Pfister form ¢ over K such that b = s.(c).

(3) Let ¢ be an anisotropic quadratic (n + 1)-fold Pfister form over F. If rx/p(p) €
I""2(K) then there exists a bilinear n-fold Pfister form b over F such that o =~
b® NK/F-

(4) Let ¢ be an anisotropic (n + 1)-fold quadratic Pfister form over K. If s.(¢) €
I"2(F) then there exists a quadratic (n+1)-fold Pfister form ¢ over F such that
Y~ k.

PROOF. (1): As ¢ represents 1, the form s,(c) is isotropic and belongs to I"™(F). Tt
follows from the Hauptsatz 23.8 that s,(¢) = 0 in W (F'). We show by induction on k > 0
that there is a bilinear k-fold Pfister form 0 over F' and a bilinear (n — k)-fold Pfister form
¢ over K such that ¢ ~ 0x ® ¢. The statement that we need follows when & = n.

Suppose we have 0 and ¢ for some k£ < n. We have
0= S*(C) = 8*<DK . 2/ 1 DK) = S*(DK . 2/)

in W(F). In particular, s,(0x ® ¢) is isotropic. Thus there exists b € F* N D(0x ® ¢').
It follows that 0 ® ¢ ~ 0k ® ((b)) ® f for some Pfister form f over k& by Theorem [6.15.

(2): By the Hauptsatz 23.8, we have b ® N/ is hyperbolic. We claim that b ~ ((a)) ® a
for some a € Ng/p(K*) and an (n—1)-fold bilinear Pfister form a. If char ' # 2, the claim
follows from Corollary 6.14. If char F' = 2 it follows from Lemma 9.12 that Ng/p ~ ((a]]
for some a € D(b’). Clearly a € Ng,p(K*) and by Lemma [6.11 b is divisible by ((a)).
The claim is proven.

As a € Nk p(K*) there is y € K* such that s,(((y))) = ((a)). It follows that

s«(((y)) - a) = ((@)) -a =b.

(3): By the Hauptsatz 23.8, we have rg/p(¢) = 0 in I,(K). The field K is isomorphic to
the function field of 1-fold Pfister form Ng . The statement now follows from Corollary
23.7.

(4): In the case char F' # 2 the statement follows from (1). So we may assume that
char ' = 2. As 1 represents 1, the form s,(¢) is isotropic and belongs to IJ"(F). It
follows from the Hauptsatz 23.8 that s,(y) = 0 € I,(F). We show by induction on k£ > 0
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that there is a k-fold bilinear Pfister form 0 over F' and a quadratic Pfister form p over
K such that ¢ ~0x ® p.

Suppose we have d and p for some k < n. As dim(dx ® p') > 5dim(dx ® p), the
subspace of s.(0x ® p') intersects a totally isotropic subspace of s,(0x ® p) and therefore
is isotropic. Hence there is ¢ € F such that ¢ € D(0x ® p) \ D(0x). By Proposition [15.7,
Y ~0® ((¢) x ® p for some quadratic Pfister form p.

Applying the statement with £ = n we get an n-fold bilinear Pfister form b over F
such that ¢ >~ bx ® ((y]] for some y € K. As s,({(y]]) is similar to ((Trg,r(y)]] we have
b ® ((Trg/r(y)]] = 0 € I,(F). By Corollary 6.14, Trg,r(y) = b+ b* 4+ b'(v,v) for some
be Fandv e Vy. Let x € K\ F be an element such that 2% +x +a = 0 for some a € F.
Set z = xb+ (xb)? + b (zv,2v) € K and ¢ = y + z. Since Trg/p(x) = Trg p(2?) = 1 we
have Trg,p(2) = Trg p(y). It follows that ¢ € F. By Corollary 6.14 again, by ® ((2]] is
hyperbolic and therefore

¥ =bx - (W] = bx - ((y+ 2] = (b- (] O

REMARK 34.23. Suppose that char F' # 2 and K = F(y/a) is a quadratic extension
of F. Let b be an anisotropic bilinear n-fold Pfister form over F. Then Ng/p = ((a)) so
by Theorem 134.22(3), the following are equivalent:

(1) bg € I"Y(K).
(2) be ((a)W(F).
(3) b~ ((a)) ® ¢ for some (n — 1)-fold Pfister form c.

We now consider the case of a purely inseparable quadratic field extension K/F.

LEMMA 34.24. Let K/F be a purely inseparable quadratic field extension and s : K — F
a nonzero F-linear functional satisfying s(1) = 0. Let b € F*. Then the following condi-
tions are equivalent:
(1) b e NK/F(KX).
(2) (b)) =0€ W(K).
(3) (b)) = 5.((y)) for some y € K.
PROOF. The equality Ny /p(K*) = K? N F* proves (1) < (2). For any y € F*,
it follows by Corollary 34.19/ that s.((y)) is similar to ((Ng/r(y))). This proves that
(1) = (3)- 0

PROPOSITION 34.25. Let K/F be a purely inseparable quadratic field extension and
s : K — F a nontrivial F-linear functional such that s(1) = 0. Let b an anisotropic
bilinear form over F. Then there exist bilinear forms ¢ over K and 0 over F' satisfying
b~ s.(c) LD and 0k is anisotropic.

Proor. We induct on dimb. Suppose that bx is isotropic. Then there is a 2-
dimensional subspace W C V; such that (b|y)x is isotropic. By Lemma 134.24, we have
blw ~ s.((y)) for some y € K*. Applying the induction hypothesis to the orthogonal
complement of W in V' completes the proof. U

Theorem [34.4 and Proposition 34.25 yield
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COROLLARY 34.26. Let K/F be a purely inseparable quadratic field extension and
s: K — F a nonzero F-linear functional such that s(1) = 0. Then the sequence

W (F) W(K) 2 W(F) W(K)

TK/F TK/F

15 exact.

Let K/F be a purely inseparable quadratic field extension and s : K — F' a nonzero
linear functional such that s(1) = 0. It follows from Corollaries 34.17 and 34.26 that we
have well-defined complexes

(34.27) () 25 () 2 rF) 2 K
and
(34.28) T'(F) 25 T (K 25 TV(F) 25 TY(K).

As in the separable case, the homomorphism s, in (34.28) is independent of the non-
trivial F-linear functional K — F' by Lemma 34.18 although it is not independent in
(34.27).

We show that the complexes (34.27) and (34.28) are exact on quadratic Pfister forms.

THEOREM 34.29. Let K/F be a purely inseparable quadratic field extension and s :
K — F a nontrivial F-linear functional such that s(1) = 0.
(1) Let ¢ be anisotropic n-fold bilinear Pfister form over K. If s.(c) € I""Y(F) then
there exists an b over K such that ¢ >~ bg.
(2) Let b be anisotropic n-fold bilinear Pfister form over F. If by € I"™Y(K), then
there exists an n-fold bilinear Pfister form ¢ such that b = s.(c).

PROOF. (1) The proof is the same as in Theorem [34.22(1).

(2) By Hauptsatz 23.8, we have by = 0 € W(K). In particular, by is isotropic and
hence there is a 2-dimensional subspace W C V}, such that by is isotropic over K. Let
b € F* such that the form ((b)) is similar to b|y. As ((b))x = 0, by Lemma [34.24
(b)) = s.({{y))) for some y € K*. By Corollary 6.17, b ~ ((b)) ® ? for some bilinear
Pfister form 0. Finally,

b= {(b)) -0 =s.(((4)) -0 =15.(({y))) -0) € W(F). O

We shall show in Theorems 40.3, 40.5, and 40.6 that the complexes 34.20, 34.21], 134.27
and 34.28 are exact for any n. Note that the exactness for small n (up to 2) can be shown
by elementary means.

We turn to the transfer of the torsion ideal in the Witt ring of a quadratic extension.
We need the following lemma.

LEMMA 34.30. Let K/F be a quadratic field extension of F and b be a bilinear Pfister
form over F.
(1) If ¢ is an anisotropic bilinear form over K such that bx ® ¢ is defined over F
then there exists a form  defined over F' such that b @ ¢ ~ (b ® 0) k.
(2) rryp(W(F)) NbxW(K) = rr/p(6W(F)).
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ProOOF. (1): Let ¢ = (ay,...,a,). We induct on dim ¢ = n. By hypothesis, there is a
c€ F*ND(bg ®c). Write ¢ = a1by + - -+ + a,b, with b; € D(bg). Let ¢; = b; if b; # 0
and 1 if not. Then e := (ajcy, ..., a,c,) represents ¢ so e ~ (c) L f. Since b; € Gk(b), we
have

bK®CZBK®QZBK®<C>LbK®f

As b ® f € im(rg/p), its anisotropic part is defined over F' by the Proposition 34.1 and
Theorem 34.4. By induction, there exists a form g such that by ® f ~ bx ® gx. Then
(c) L g works.

(2) follows easily from (1). O

PROPOSITION 34.31. Let K = F(y/a)/F be a quadratic extension with a € F* and
s: K — F a nontrivial F-linear functional such that s(1) = 0. Let b be an n-fold bilinear
Pfister form. Then

s.(W(K)) Nannw(py(b) = s, (annw k) (bx)).
ProoOF. By Frobenius Reciprocity, we have
s, (anny k) (b)) C s.(W(K)) Nanny g (b).

Conversely, if ¢ € s,(W(K)) Nanny (py(b), we can write ¢ = 5,(0) for some form o over
K. By Theorem 34.4] and Lemma 134.30),

b[{ X0 E T‘K/F(W<F)) N bK W(K) = TK/F([JW(F))

Hence there exists a form ¢ defined over F such that by @0 = (b®e)g. Let f =0 L —ek.
Then ¢ = 5,(0) = s5.(f) € s«(anny (k) (bx)) as needed. O

The torsion W;(F') of W (F) is 2-primary. Thus applying the proposition to p = 2"(1)
for all n yields

COROLLARY 34.32. Let K = F(y/a) be a quadratic extension of F' with a € F* and
s: K — F anontrivial F-linear functional such that s(1) = 0. Then Wi(F)Ns,(W(K)) =
s (Wi(K)).

We also have the following:

COROLLARY 34.33. Suppose that F' is a field of characteristic different from two and
K = F(y/a) a quadratic extension of F. Let s : K — F be a non-trivial F-linear
functional such that s(1) = 0. Then

((a))W (F) mannw g (2(1)) = ker(rg/r) N s (W(K)) C
annyy () (2(1)) Nanny m (((@))) = s« (annw ) (2(1)))
PROOF. As ({(a,a)) ~ ((—1,a)), we have
({a)W (F) 0 anny () (2(1)) = ((a))W (F) N anny ) ({(a)))

which yields the first equality by Corollary 34.12. As ({(a))W (F) C annwr)({(a))), we
have the inclusion. Finally, s,.(W(K)) Nanny ) (2(1)) = s.(annw k) (2(1) k) by Proposi-
tion 34.31, so Corollary 34.12| yields the second equality. U
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REMARK 34.34. Suppose that F' is a formally real field and K a quadratic extension.
Let s, : W(K) — W(F) the a transfer induced by a nontrivial F-linear functional such
that s(1) = 0. Then it follows by the Corollaries [34.12 and 34.32/ that the maps induced
by rk/r and s, induce an exact sequence

TK/F

0 — Wrea(K/F) = Wyea(F) == Wrea(K) = Wea(F)
(again abusing notation for the maps) where W,.4(K/F) := ker(W,.ca(F) — Wyea(K)).
By Corollary 33.14, we have a zero sequence
0 — Lig(K/F) — I,
(K/F) == ker(I}.4(F) — Iy.4(K)).

In fact, we shall see in §41/ that this sequence is also exact.

(F) =5 1

red

(K) 2 1

red

(F)

n
where I,

35. Torsion in ["(F') and Torsion Pfister Forms

In this section we study the property that I(F’) is nilpotent, i.e., that there exists an n
such that I"™(F') = 0. For such an n to exist, the field must be non-formally real. In order
to study all fields we broaden this investigation to the study of the existence of an n such
that I™(F) is torsion-free. We wish to establish the relationship between this occurring
over F' and over a quadratic field extension K. This more general case is more difficult,
so in this section we look at the simpler property that there are no torsion bilinear n-fold
Pfister forms over the field F'. This would be equivalent to I"(F') being torsion-free if we
knew that torsion bilinear n-fold Pfister forms generate the torsion in I™(F"). This is in
fact true as we shall later see, but cannot be proven by elementary methods.

In this section we study torsion in I"(F') for a field F'. We set
I'F) :=W{(F)NnI"(F).
Note that the group I;(F) is generated by torsion binary forms by Proposition [31.30.
It is obvious that
I'F) D I" Y (F)I,(F).
PROPOSITION 35.1. I2(F) = I(F)I,(F).
PROOF. Note that for all a,a’ € F* and w,w’ € D(co(1)), we have
a((w)) +d'((w')) = a{(=ad’, w)) + dw{{ww')),

hence
al{w)) + ' {{(w")) = d'w{{ww')) mod I(F)I(F).

Let b € I2(F). By Proposition 31.30), we have b is a sum of binary forms a((w)) with
a € F* and w € D(oco(1)). Repeated application of the congruence above shows that
b is congruent to a binary form a{{w)) modulo I(F)I;(F). As a{{w)) € I*(F) we have
a{{w)) = 0 and therefore b € I(F)I(F). O

We shall prove in §41 that the equality I;'(F) = "' (F)I,(F) holds for every n.
It is easy to determine Pfister forms of order 2 (cf. Corollary (6.14).
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LEMMA 35.2. Let b be a bilinear n-fold Pfister form. Then 2b = 0 in W (F) if and
only if either char F' = 2 or b = ((w)) ® ¢ for some w € D(2(1)) and ¢ an (n — 1)-fold
Pfister form.

PROPOSITION 35.3. Let F' be a field and n > 1 an integer. The following conditions
are equivalent.

(1) There are no n-fold Pfister forms of order 2 in W (F).
(2) There are no anisotropic n-fold Pfister forms of finite order in W(F).
(3) For every m > n there are no anisotropic m-fold Pfister forms of finite order in

PrOOF. The implications (3) = (2) = (1) are trivial.
(1) = (3). If char FF = 2 the statement is clear as W(F') is torsion. Assume that
char ' # 2. Let 28b = 0 in W(F) for some k > 1 and b an m-fold Pfister form with
m > n. By induction on k& we show that b = 0 in W (F'). It follows from Lemma 35.2 that
2k71p ~ ((w)) @ ¢ for some w € D(2(1)) and a (k +m — 2)-fold Pfister form c. Let 0 be
an (n — 1)-fold Pfister form dividing ¢. Again by Lemma 35.2, the form 2((w)) -9 = 0 in
W (F), hence by assumption, ((w)) -0 =0 in W(F). It follows that 2*71b = ((w)) - ¢ =0
in W(F). By the induction hypothesis, b = 0 in W (F). O

We say that a field F satisfies A, if the equivalent conditions of Proposition 35.3 hold.

It follows from the definition that the condition A, implies A,, for every m > n. It follows
from Proposition 31.11/ that F satisfies A; if and only if F' is pythagorean.

If F' is not formally real, the condition A, is equivalent to I"(F) = 0 as the group
W (F) is torsion.

As the group I;(F) is generated by torsion binary forms, the property A, implies that
I"Y(F)I,(F) = 0.

EXERCISE 35.4. Suppose that F'is a field of characteristic not two. If K is a quadratic
extension of F, let s : K — F be an F-linear functional such that s%(1) = 0. Show the
following are equivalent:

(1) F satisfies A, 41.
(2) sYVO/(PL(F(Vw))) = Po(F) for every w € D(co(1)).
(3) sLVR (I (F(yw))) = I"(F) for every w € D(co(1)).

Now we study the property A, under field extensions. The case of fields of character-
istic two is easy.

LEMMA 35.5. Let K/F be a finite extension of fields of characteristic two. Then
I"(F) =0 if and only if I"(K) = 0.

PROOF. The property I"(E) = 0 for a field E is equivalent to [E : E?] < 2" by
Example [6.5. We have [K : F| = [K? : F?], as the Frobenius map K — K? given by

x — 2 is an isomorphism. Hence

(35.6) (K :K?|=[K:F?/[K*: F}]=[K: F?/[K : F] = [F : F?].
Thus we have I"(K) = 0 if and only if I"(F) = 0. O
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Let Fy be a formally real field satisfying A, i.e., a pythagorean field. Let F,, =
Fo((t1)) - -+ ((tn)) be the iterated Laurent series field over Fy. Then F), is also formally
real pythagorean (cf. Example [31.8)), hence F, satisfies A, for all n > 1. However,
K, = F,(v/—1) does not satisfy A, as ((t;,...,t,)) is an anisotropic form over the non-
formally real field K,,. Thus the property A, is not preserved under quadratic extensions.
Nevertheless, we have

PROPOSITION 35.7. Suppose that F satisfies A,. Let K = F(\/a) be a quadratic
extension of I with a € F*. Then K satisfies A,, if either of the following two conditions
hold:

(1) a € D(oo(1)).

(17) Fwvery bilinear n-fold Pfister form over F becomes metabolic over K.

ProoF. If char F' = 2 then ["(F) = 0 hence I"(K) = 0 by Lemma 35.5. So we may
assume that char F' # 2. Let y € K* satisfy y € D(2(1)x) and let ¢ be an (n — 1)-fold
Pfister form over K. By Lemma [35.2, it suffices to show that b := ((y)) ® e is trivial
in W(K). Let s, : W(K) — W(F) be the transfer induced by a nontrivial F-linear
functional s(1) = 0.

We claim that s.(b) = 0. Suppose that n = 1. Then s.(b) € I,(F) = 0. So we may
assume that n > 2. As I"1(K) is generated by Pfister forms of the form ((z)) ® 05 with
z € K* and 0 an (n — 2)-fold Pfister form over F' by Lemma [34.16, we may assume that
b= ((y,2)) @0k.

We have s.({(y, 2))) € I?(F) = I(F)I;(F) by Proposition [35.1. So

si(({y; 2)) - 0) = 5.({{y, 2))) - 0
lies in I"~!(F)I,(F) which is trivial by A,. The claim is proven.

It follows that b = cx for some n-fold Pfister form ¢ over F' by Theorem 34.22. Thus
we are done if every n-fold Pfister form over F' becomes hyperbolic over K. So assume
that a € D(oco(1)). As b is torsion in W(K), there exists an m such that 2"b = 0 in
W(F). Thus 2™cg is hyperbolic so 2"¢ is a sum of binary forms x((ay® + x2)) in W (F)
for some x,y, z in I’ by Corollary [34.12. In particular, 2"c¢ is torsion so trivial by A,, for
F'. The result follows. U

COROLLARY 35.8. Suppose that I"(F) =0 (in particular F' is not formally real). Let
K/F be a quadratic extension. Then I"(K) = 0.

In general, the above corollary does not hold if K/F is not quadratic. For example, let
F be the quadratic closure of the rationals, so I(F) = 0. There exist algebraic extensions
K of F such that I(K) # 0, e.g., K = F2). It is true, however, that in this case
I?(K) = 0. It is still an unanswered question whether I?(K) = 0 when K/F is finite
and F' is an arbitrary quadratically closed field, equivalently whether the cohomological
2-dimension of a quadratically closed field is at most one.

If I™(F) is torsion-free then F' satisfies A,. Conversely, if F' satisfies A;, then I(F) is
torsion-free by Proposition 31.11. If F' satisfies Ay then it follows from Proposition 35.1
that I*(F) is torsion-free as I;(F) is generated by torsion binary forms.

PROPOSITION 35.9. A field F satisfies Az if and only if I*(F) is torsion-free.
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ProOOF. The statement is obvious if F' is not formally real, so we may assume that
char F # 2. Let b € I*(F) be a torsion element. By Proposition [35.1

b= Z%((yz‘, w;))

for some z;,y; € F* and w; € D(0o(1)). We show by induction on r that b = 0.

It follows from Proposition [35.7 that K = F(y/w) with w = w, satisfies A3. By the
induction hypothesis, we have bx = 0. Thus b = ((w)) - ¢ for some ¢ € W (F') by Corollary
34.12. Then ¢ must be even dimensional as the determinant of ¢ is trivial. Choose d € F'*
such that 9 := ¢+ ((d)) € I*(F).

Thus in W (F),
b= ((w)) -0 = ((w,d)).
Note that ((w)) -0 =0 in W(F) by Az. Consequently, ((w,d)) € I*(F), so it is zero in
W (F) by the Hauptsatz 23.8. This shows b = 0. O

We shall show in Corollary 41.5 below that if I"™(F') is torsion-free if and only if F
satisfies A, for every n > 1.

We have an application for quadratic forms.

THEOREM 35.10. (Classification Theorem) Let F' be a field.

(1). Dimension and total signature classify the isometry classes of non-degenerate qua-
dratic forms over F' if and only if 1,(F) is torsion-free, i.e. F is pythagorean. In partic-
ular, if F' is not formally real then dimension classify the isometry classes of forms over
F if and only if F' is quadratically closed.

(2). Dimension, discriminant and total signature classify the isometry classes of non-
degenerate even dimensional quadratic forms over F if and only if[g(F) is torsion-free. In

particular, if F' is not formally real then dimension and discriminant classify the isometry
classes of a forms over F if and only if IZ(F) = 0.

(3). Dimension, discriminant, Clifford invariant, and total signature classify the isometry
classes of non-degenerate even dimensional quadratic forms over F if and only if Ig’(F)
is torsion-free. In particular, if F' is not formally real then dimension, discriminant, and
Clifford invariant classify the isometry classes of forms over F if and only if Ig’(F) = 0.

PROOF. We prove (3) as the others are similar (and easier). If I3(F) is not torsion-
free, then there exists an anisotropic torsion form ¢ € P3(F') by Proposition 35.9 if F' is
formally real and trivially if F is not formally real as then I,(F') is torsion. As ¢ and 4H
have the same dimension, discriminant, Clifford invariant, and total signature but are not
isometric, these invariants do not classify.

Conversely, assume that I g’(F ) is torsion-free. Let non-degenerate even-dimensional
quadratic forms ¢ and 1 have the same dimension, discriminant, Clifford invariant, and
total signature. Then by Theorem 13.7, we have 6 := ¢ L — lies in I2(F) and is torsion.
As ¢ and v have the same dimension, it suffices to show that 6 is hyperbolic. Thus the
result is equivalent to showing:
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If a torsion form # € I7(F) has trivial Clifford invariant and I(F) is torsion-free
then 6 is hyperbolic.

The case char F' = 2 follows from Theorem 16.3. So we may assume that char F' # 2.
By Proposition 35.1, we can write 0 = > ., a;((b;, ¢;)) in I,(F) with ((¢;)) torsion forms.
We prove that 6 is hyperbolic by induction on 7.

Let K = F, with ¢ = ¢,. Clearly, 0 € I7(K) is torsion and has trivial Clifford
invariant. By Proposition 35.7 and Corollary 35.9, we have [ g’(K ) is torsion-free. By the
induction hypothesis, 0 is hyperbolic. By Corollary 23.7, we conclude that 6 =1 - ({c))
in I,(F) for some quadratic form 1. As disc(d) is trivial, dim) is even. Choose d € '
such that 7:= ¢ + ((d)) € I*(F). Then

0 =1-({c) = ((d.))
in W(F).
As the torsion form 7 ® ((c)) belongs to I3(F), it is hyperbolic. As the Clifford

invariant of 6 is trivial, it follows that the Clifford invariant of ((d,c)) must also be
trivial. By Corollary [12.5, ((d, c¢)) is hyperbolic and hence 6 is hyperbolic. O

REMARK 35.11. The Stiefel-Whitney classes introduced in (5.4) are defined on non-
degenerate bilinear forms. If b is such a form then the w;(b) determine sgn b for every
P € X(F) by Remark 5.8 and Example 5.13. We also have w; = ¢; for i = 1,2 by
Corollary 5.9.

Let b and b’ be two non-degenerate symmetric bilinear forms of the same dimension.
Suppose that w(b) = w(b’), then w([b] — [b']) = 1, where [ | is the class of a form in
W(F). 1t follows that [b] — [b'] lies in I3(F) by (5.11) hence b — b’ lies in I3(F). As the
w; determine the total signature of a form, we have b — b’ is torsion by the Local-Global
Principle 31.24. Tt follows that the dimension and total Stiefel-Whitney class determines
the isometry class of anisotropic bilinear forms if and only if I3(F) is torsion-free.

Suppose that char F' # 2. Then all metabolic forms are hyperbolic, so in this case the
dimension and total Stiefel-Whitney class determines the isometry class of non-degenerate
symmetric bilinear forms if and only if I3(F) is torsion-free. In addition, we can define
another Stiefel-Whitney map

W W(F) — (H*(F)[[t])"

to be the composition of w and the map k.(F)[[t]] — H*(F)[[t]] induced by the norm
residue homomorphism h}, : k.(F) — H*(F) in §100.5. Then dimension and w classifies
the isometry classes of non-degenerate bilinear forms if and only if I3(F) is torsion-free by
Theorem 135.10/ as h, is an isomorphism if F' is a real closed field and ws, is the classical
Hasse invariant so determines the Clifford invariant.

We turn to the question on whether the property A, goes down.
THEOREM 35.12. Let K/F be a finite normal extension. If K satisfies A, so does F.
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PROOF. Let G = Gal(K/F) and let H be a Sylow 2-subgroup of G. Set F = K
L = K. The field extension L/F is purely inseparable, so [L : F] is either odd or L/F
is a tower of successive quadratic extensions. The extension K/F is a tower of successive
quadratic extensions and [E : L] is odd. Thus we may assume that [K : F] is either 2 or
odd. Springer’s Theorem [18.5 solves the case of odd degree. Hence we may assume that
K/F is a quadratic extension.

The case char F' = 2 follows from Lemma [35.5. Thus we may assume that the charac-
teristic of F' is different from two and therefore K = F(y/a) witha € F*. Let s : K — F
be a nontrivial F-linear functional with s(1) = 0.

Let b be a 2-torsion bilinear n-fold Pfister form. We must show that b = 0 in W (F).
As bx = 0 we have b € ((a))W(F) N anny ) (2(1)) by Corollary 34.12. As ((a,a)) =
<<a, —1)), it follows that ({(a)) - b = 0 in W (F') hence by Corollary 6.14, we can write

~ ((b)) ® ¢ for some (n — 1)-fold Pfister form ¢ and b € D({{(a))). Choose x € K* such
that s.((x)) = ((b)) and let = xcx. Then

5.(0) = s.({x))e = ({B))e = b.

If 0 =0 then b = 0 and we are done. So we may assume that 0 and therefore cx is
anisotropic.

We have s,(20) = 2b = 0 in W(F'), hence the form s,(20) is isotropic. Therefore 20
represents an element ¢ € F'* so that there exist u,v € D(¢k) such that z(u+v) = ¢. But
the form ({(u+v))®c is 2-torsion and K satisfies A,,. Consequently, u+v € D(cx) = G(ck)
as cx is anisotropic. We have

0=z >~ z(u+v)cg = cek.
Therefore, 0 = 5,(0) = b in W(F') as needed. O

COROLLARY 35.13. Let K/F be a finite normal extension with F not formally real.
If I"(K) =0 for some n then I"(F') = 0.

COROLLARY 35.14. Let K/F be a quadratic extension.

(1) Suppose that I"(K) = 0. Then L satisfies A, for every extension L/F such that
[L:F]<2.

(2) Suppose that I"(K) = 0. Then I"(F) = ({(—w))I"*(F) for every w € D(oco(1)).

(3) Suppose that I'(F) = ((—w)) " (F) for some w € F*. Then both F and K
satisfy Apy1 and if char F' 2 2 then w € D(oco(1)).

PRrROOF. (1), (2): By Corollary 35.8 and [35.13/if F’ is not formally real then I"(F) =0
if and only if I"(L) = 0 for any quadratic extension L/F. In particular (1) and (2)
follow if F' is not formally real. So suppose that F' is formally real. We may assume that
K = F(y/a) with a € F*. Then I"(L(y/a)) = 0 by Proposition 35.7 hence I"(L) satisfies
A, by Theorem [35.12. This establishes (1).

Let w € D(oco(1)). Then F(y/—w) is not formally real. By (1), the field F(v/—w)
satisfies A, hence I"(F(y/—w)) = 0. In particular, if b is a bilinear n-fold Pfister form
then by /=) is metabolic. Thus b >~ ({(—w)) ® ¢ for some (n — 1)-fold Pfister form ¢ over
F by Remark 34.23 and (2) follows.
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(3): If char F = 2 then I"(F) = 0 hence I"(K) = 0 by Corollary [35.8. So we may
assume that char F' # 2. By Remark [34.23, we have 2"(1) ~ ({(—w)) ® b for some bilinear
(n — 1)-fold Pfister form b. As 27(1) only represents elements in D(co(1)), we have
w € D(oo(1)).

To show the first statement, it suffices to show that L = F(v/—w) satisfies A, by (1)
and (2). Since I"™!(L) is generated by Pfister forms of the type ((z)) ® ¢, where x € L*
and ¢ is an n-fold Pfister form over F' by Lemma 34.16, we have I"*1(L) C ((—w))I"(L) =
{0}. O

If F is the field of 2-adic numbers then I?(F) = 2I(F) and K satisfies I3(K) = 0 for
all finite extensions K/F but no such K satisfies I*(K) = 0. In particular, statement (3)
of Corollary [35.14! is the best possible.

COROLLARY 35.15. Let F' be a field extension of transcendence degree n over a real
closed field. Then D(2"(1)) = D(oo(1)).

PROOF. As F(v/—1) is a Cy-field by Theorem 96.7 below, we have I"(F(1/—1) = 0.
Therefore, F' satisfies A,, by Corollary 35.14. O

Let b be a bilinear Pfister form. We set for simplicity
Ig(F)={ceI(F)|b-c=0cW(F)} = I(F)Nannyg(b) C I(F).
We note if b is metabolic then I,(F) = I(F). We tacitly assume that b is anisotropic
below.
LEMMA 35.16. Let ¢ be a bilinear (n — 1)-fold Pfister form, and d € Dp(b® ). Then
((d)) - c € ") Ip(F).

PrROOF. We induct on n. The hypothesis implies that b - ((d)) - ¢ = 0 in W (F") hence
(1, —=d) - v € Iy(F). In particular, the case n = 1 is trivial. So assume that n > 1 and
that the lemma holds for (n — 2)-fold Pfister forms. Write ¢ = ((a)) ® d where 0 is an

(n — 2)-fold Pfister form. Then d = e; — aes, where e, ey € 5([1 ®0). If e; = 0 then we
are done by the induction hypothesis. So assume that e; # 0. Then d = es(e — a), where

e =e1/es € D(b®0). By the induction hypothesis, we have
({d)) - e = ({eale —a))) - e = ({e —a)) - ¢+ {{e —a,e)) - ¢
= ({e—a))-¢ mod I" NF)I(F).

It follows that we may assume that e; = 1, hence that d = e — a. But then

({d,a)) = ((e —a,a)) = ((e,a))
for some a’ # 0 by Lemma [4.15, hence

((d)) - e =((d,a)) -0 =({e,d)) - 0.

By the induction hypothesis, it follows that ((d)) - ¢ € I"'(F)I,(F). O

LEMMA 35.17. Let ¢ be a bilinear n-fold Pfister form, and b € D(b ®¢’). Then there
is a bilinear (n — 1)-fold Pfister form § such that e = ((b)) - f mod " Y(F)I,(F).
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PrROOF. We induct on n. If n =1 then ¢/ = ((a)) and b = ax for some x € D(—b). It
follows that

{(0)) = ({az)) = ((@)) + a{{z)) = ((a)) mod L,(F).

Now assume that n > 1 and that the lemma holds for (n —1)-fold Pfister forms. Write
¢ = ((a)) ® 0 with 9 an (n — 1-fold Pfister form. Then b = ¢ + ad, where ¢ € D(b ®?')

and d € D(b®0). If d = 0 then we are through by the induction hypothesis. So assume
that d # 0. Then

{(ad)) -0 = ({a)) -0+ a{{d)) - 0

{(a)) -0 mod I" ' (F)I,(F)

by Lemma[35.16. It follows that we may assume that d = 1, hence b = c+a. If ¢ = 0 then
b = a and there is nothing to prove. So assume that ¢ # 0. By the induction hypothesis,
we can write

= {{c))-g mod I"?*(F)I,(F)
with g an (n — 2)-fold Pfister form. As

{{a,0)) = {{b—c,0)) =~ {{b,¢))

for some ¢ # 0 by Lemma [4.15] it follows that

e =((a) -2 = ({a,c) @9
={(b,c))-g mod I"N(F)I,(F)

as needed. O

LEMMA 35.18. Let e be a bilinear n-fold Pfister form, and b a bilinear form over F.
(1) If e € I(F) then e € I" 1 (F)I,(F).
(2) If e € I,(F) then b -e € I"Y(F)I,(F).

PROOF. (1): The hypothesis implies that b-e¢ = 0 in W(F'). In particular, b ® ¢ =

b L b® ¢ is isotropic. It follows that there exists an element b € Dp(b) N Dp(b®¢’). By
Lemma 35.17,

e=((0)) - f=0 mod I" Y (F)I,(F).

(2): The hypothesis implies that h-b-e = 0in W(F). If b-e = 0 in W(F) then, by
(1), we have e € I""Y(F)I,(F) and we are through. Else we have b € [y (F), which is
generated by the ((x)), with x € D(b ® ¢). It therefore suffices to prove the claim in the
case h = ((x)). But then, by (1), we even have b - e € I"(F)I,(F). O

LEMMA 35.19. Let bilinear n-fold Pfister forms e, § satisfy
ae = bf mod I,(F)

with a,b € F*. Then
ae = bf mod I" ' (F)I,(F).
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PRrROOF. We induct on n. As the case n = 1 is trivial, we may assume that n > 1
and that the claim holds for (n — 1)-fold Pfister forms. The hypothesis implies that
ab ® e ~ bb ® f, in particular, b/a € Dp(b ® ¢). By Lemma [35.16, we therefore have

ae =bf mod I" Y F)I,(F)

(actually, mod I"(F)I,(F)). Hence we may assume that a = b. Dividing by a, we may
even assume that a = b= 1. Write

e={{c))®0 and f= ((d))®I

with 9, € being (n—1)-fold Pfister forms. The hypothesis now implies that b®e’ ~ b®{f. In
particular, d € D(b®¢’). By Lemma 35.17, we can write e = ({(d))-0; mod I"*(F)Iy(F)
with 9, an (n — 1)-fold Pfister form. It follows that we may assume that ¢ = d. By the
induction hypothesis, we then have d = ¢ mod " ?(F)Iyg ) (F), hence

(d)) -2 = {{d)) - & mod ({d)I"*(F) Ly (F).

We are therefore finished if we can show that ((d)) sy (F) C I(F)Is(F). Now, leg ) (F)
is generated by the ((z)), with x € D(b ® ((d))). For such a generator ((x)), we have
b-((d,z)) =0 in W(F), hence, by Lemma 35.18, the form ((d, z)) lies in I(F)I,(F). O

PROPOSITION 35.20. Let ¢, f, g be bilinear n-fold Pfister forms. Assume that
ae = bf+cg mod [,(F).

Then
ae = bf+cg mod I" ' (F)I,(F).

PROOF. The hypothesis implies that ab-e =bb-f+cb-gin W(F). In particular, the
form bb ® f L ¢b ® g is isotropic. It follows that there exists d € D(bb ® f) N D(—cb ® g).
By Lemma [35.16, we then have

bf=df mod I" '(F)I,(F) and cg= —dg mod I" *(F)I,(F)

(actually, mod I"(F)I,(F)). Hence we may assume that ¢ = —b. Dividing by b, we may
even assume that b = 1 and ¢ = —1. Then the hypothesis implies that ab-e =b-f—b-g
in W (F) and we have to prove that ae = f — g mod I"'(F)I,(F).

Asab-e = b-f—b-gin W(F), it follows that b®f and b®g are linked using Proposition
6.21l and with b dividing the linkage. Hence there exists an (n — 1)-fold Pfister form 0
and elements 0/, ¢ # 0 such that b@ f~b®0® ((I)) and b® g~ b® 0 ® ((¢)) (and
hence b®e~b®0® ((V'())). By Lemma 35.19, we then have

f=0-((t))) andalso g=0-(()) mod I" YF)I,(F).

We may therefore assume that f = 0® ((¢')) and g = 0@ ((¢)). Then f—g=0-(-0,¢) =
=00 - ((b'd)) in W(F). The lemma now follows by Lemma 135.19. O

REMARK 35.21. From Lemmas 35.16 - '35.19 and Proposition 35.20), we easily see that
the corresponding results hold for the torsion part I;(F') of I(F) instead of I,(F'). Indeed,
in each case we only have to use our result for b = 2%(1) for some k > 0.
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We always have 2I"(F) C I"*}(F) for a field F. For some interesting fields, we have
equality, i.e., 2I"(F) = I""}(F) for some positive integer n. In particular, we shall see in
Lemma 41.1 below this is true for any field of finite transcendence degree over its prime
field. (This is easy if the field has positive characteristic but depends on the Fact [16.2
when characteristic of F' is zero.) We shall now investigate when this phenomenon holds
for a field.

PROPOSITION 35.22. Let F be a field. Then 2I"(F) = I""(F) if and only if every
anisotropic bilinear (n + 1)-fold Pfister form b is divisible by 2(1), i.e., b ~ 2¢ for some
n-fold Pfister form c.

Proor. If 2(1) is metabolic, the result is trivial so assume not. In particular, we
may assume that char F' # 2. Suppose 2["(F') = ["*}(F) and b is an anisotropic bilinear
(n+1)-fold Pfister form. By assumption, there exist © € I"(F’) such that b = 20 in W (F).
By Remark 134.23, we have b ~ 2¢ for some n-fold Pfister form c. U

It is also useful to study a variant of the property that 2I"(F) = I""(F). Recall
that I ,(F) the image of I"™(F') under the canonical homomorphism W (F) — W,q(F) =
W (F)/W,(F). We investigate the case that 21" ,(F) = I':}!(F) for some positive integer
n. Of course, if 2I"(F) = I"*Y(F) then 21" ,(F) = I"1'(F). We shall show that the

above proposition generalizes. Further, we shall show this property is characterized by
the cokernel of the signature map

sgn: W(F) — C(X(F),2).
Recall that this cokernel is a 2-primary group by Theorem [33.8.

PROPOSITION 35.23. Suppose the exponent of coker(sgn : W(F) — C(X(F),Z)) is
finite and 2". Then n is the least integer such that 2I" ,(F) = I"t'(F). Moreover, for

any bilinear (n + 1)-fold Pfister form b, there exists an n-fold Pfister form ¢ such that
b =2c mod W,(F).

PROOF. Let b be an anisotropic bilinear (n+1)-fold Pfister form. In particular, sgnb €
C(X(F),2""'7). By assumption, there exists a bilinear form 0 satisfying sgnd = %sgn b.
Thus b — 20 € W,(F) hence there exists an integer m such that 2™b = 219 in W(F') by
Theorem 31.21. If 2™b is metabolic the result is trivial, so we may assume it is anisotropic.
By Proposition [6.22, there exists f such that 2™b ~ 2™*§. Therefore, 2™b ~ 2m* !¢ for
some bilinear n-fold Pfister form ¢ by Corollary 6.17. Hence 21" ,(F) = I":}1(F).

red red

Conversely, suppose that 21" ,(F) = I"'(F). Let f € C(X(F),Z). It suffices to
show that there exists a bilinear form b satisfying sgn b = 2" f. By Theorem [33.14, there
exists an integer m and a bilinear form b € I"™(F) satisfying sgnb = 2" f. So we are

done if m < n. If m > n then there exists ¢ € I"(F') such that sgnb = sgn2™ "¢ and

2" f =sgne. O

REMARK 35.24. If 21" ,(F) = I""t*(F) then for any bilinear (n +m)-fold Pfister form
b there exists an n-fold Pfister form ¢ such that b = 2™¢ mod L,(F) and I}™(F) =
2m " (F). Similarly, if 2I™(F) = [""(F) then for any bilinear (n + m)-fold Pfister form

b there exists an n-fold Pfister form ¢ such that b ~ 2™¢ and I"*™(F') = 2™["(F).
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Suppose that 217,
d € F*. Write
((d)) -b=2¢ mod I,(F) and ((—d))-b=2f mod [,(F)

for some n-fold Pfister forms ¢ and § over F. Adding, we then get 2b = 2¢e+2f mod I,(F),
hence also b = ¢ +f mod I,(F). By Proposition 35.20, it follows that we even have
b=e+f mod I"'(F)[,(F).

(F) = I""'(F). Let b be a n-fold Pfister form over F and let

red

We generalize this as follows:

LEMMA 35.25. Suppose that 217

red

form and let dy,...,d,, € F*. Write
((e1dy, .. emdy)) - b =2"c. mod [,(F)
with c. a bilinear n-fold Pfister form for every e = (e1,...,em) € {£1}™. Then

b=> c. mod I"'(F)I(F).

(F) = I""}(F). Let b be a bilinear n-fold Pfister

red

Proor. We induct on m. The case m = 1 is done above. So assume that m > 1.
Write {{eads, . . ., Emdm))-b = 2™ 10, mod I;(F) with 0./ a bilinear n-fold Pfister form for
every &' = (eg,...,&,) € {£1}™ 1. By the induction hypothesis, we then have b = > _, 0./
mod " (F)I,(F). Tt therefore suffices to show that

0 = C(+1,e) + C(—1,¢") mod In_l(F)It(F)
for every €’. Since

20 = 2leady, . emdi)) - ¢ = (((d)) + ((—d))) - (o .- Emdn)) - €
=2"¢(41,) + 21,y mod L(F)

in W (F), hence also 0. = ¢(41,.) + ¢(—1,) mod I;(F). By Proposition 35.20, it follows
that 0. = C(4+1,¢") T C(=1,¢) mod ]n_l(F)]t(F). O

THEOREM 35.26. Let 21"

red

(F) = I""Y(F). Then

red

IMF) = " (F)L(F).

PROOF. Suppose that > ., a;b; € L(F), where by,...,b, are bilinear n-fold Pfister
forms and a; € F*. We prove by induction on r that this implies that 22:1 a;b; €
I"Y(F)I,(F). The case r = 1 is simply Lemma [35.18, so assume that r > 1.

Write b; = ((a;1,...,a;)) fori=1,...,r and let m = rn and
(diyeooydm) = (Q11, -, Quny Q21,5+ ooy A2y oy Gty ey Q).

Write ({(e1dy, ... ,emdm)) - b; = 2™¢;e mod I(F) with c¢;. bilinear n-fold Pfister forms for
every i = 1,...,r and every € = (g1,...,¢,) € {£1}". By Lemma 35.25]

zr: a;b; = Z ZT: aic;. mod 1" (F)I(F).
1 e 1=1

1=
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If e £ @ then sgn((e\Vdy, ..., e d)) and sgn((ePdy, ... ePd,,)) have disjoint sup-
ports on X(F'), hence the same holds for sgn ¢;.1) and sgnc; 2. It therefore follows from
the hypothesis that

r

Zai% =0 mod [(F) for each e.

i=1
Clearly, it suffices to show that >_;_ a;c;e =0 mod I"H(F)[,(F) for each e.
Fix e. Suppose that ¢ # (1,...,1). If —1 occurs in a component of € corresponding

to the jth block then ((e1dy, ..., endy)) - b; = 0 in W(F) and we may assume that for
all such j that ¢;c =0 in W(F'). In particular, if € # (1,...,1), then

Zaicig = Z aici. =0 mod I" Y(F)I,(F)
I
by the induction hypothesis. So we may assume that ¢ = (1,...,1). Then
<<51d1, Ce 75mdm>> & []Z ~ <<d1, e ,dm>> X bz ~ 2n<<d1, Ce 7dm>>

is independent of 7. We therefore may assume that ¢;., for 2 = 1,...,r, are all equal to a
single ¢. Let 0 = (ay,...,a,) then

v-c=) =0 mod [(F).

i=1
By Lemma 35.18, we conclude that 9 - ¢ € I"™'(F)[;(F) and the theorem follows. O

COROLLARY 35.27. The following are equivalent for a field F' of characteristic different
from two:

(1) I"H(F(v-1)) = 0.

(2) F satisfies Anyq and 2I"(F) = I"T(F).
(3) F satisfies Apy1 and 217 ,(F) = I"HH(F).
(4

red red

) I"TY(F) is torsion-free and 2I"(F) = "} (F).

PROOF. (1) = (2): By Theorem [35.12, F satisfies A, 1. Theorem 134.22 applied to
the quadratic extension F(v/—1)/F gives 2I"(F) = I"*(F).

(2) = (3) is trivial as 21" ,(F) = I"HY(F) if 2I"(F) = ["TY(F).
(3) = (4): As the torsion (n + 1)-fold Pfister forms generate the torsion in I"*!(F) by
Theorem 135.26, we have I"*!(F) is torsion-free. Suppose that b is an (n + 1)-fold Pfister
form. Then there exist ¢ € I"(F) and 0 € W;(F') such that b = 2¢ + 0 in W(F'). Hence
for some N, we have 2Vb = 2¥*1¢. As I"F1(F) is torsion-free, we have b = 2¢ in W (F),
hence bp, 1) is hyperbolic. By Theorem 134.22, there exists an n-fold Pfister form § such

that b ~ 2f. It follows that 21" ,(F) = "' (F).

red
(4) = (1) follows from Theorem 34.22! for the quadratic extension F'(v/—1)/F as forms
in W (K) transfer to torsion forms in W (F). O

COROLLARY 35.28. Let F' be a real closed field and K/F' a finitely generated extension
of transcendence degree n. Then I""(K) is torsion-free and 2I"(K) = I""(K).
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PROOF. As K(y/—1) is a C,-field by Theorem 96.7, we have "™ (K (v/—1)) = 0 and
hence 21"(K) = I""(K) by Corollary 35.27 applied to the field K. O

COROLLARY 35.29. Let F be a field satisfying " (F) = 21"(F). Then I""%(F) is
torsion-free.

PROOF. If —1 € F? then I""(F) = 0 and the result follows. In particular, we may
assume that char F' # 2. By Theorem [35.26, it suffices to show that F' satisfies A, 5. Let
b be an (n + 2)-fold Pfister form such that 2b = 0 in W(F'). By Lemma 35.2, we can
write b = ((w)) - ¢ in W(F) with ¢ an (n + 1)-fold Pfister form and w € D(2(1)). By
assumption, ¢ = 20 in W (F) for some n-fold Pfister form 9. Hence b = 2((w)) -9 = 0 in
W(F). O

REMARK 35.30. Any local field F satisfies I*(F) = 0 (cf. [40, Cor. VI.2.15]). Let

Y

Q2 be the field of 2-adic numbers. Then, up to isomorphism,

2
quaternion algebra (cf. [40, Cor. VI1.2.24]) hence I*(Qy) = 21(Q2) = {0,4(1)} # 0. Thus,
in general, I""2(F) cannot be replaced by I"(F) in the corollary above.

is the unique

We shall return to these matters in §41.






CHAPTER VI

u-invariants

36. The w-invariant

Given a field F', it is interesting to see if there exists a uniform bound on the dimension
of anisotropic forms over F', i.e., if there exists an integer n such that every quadric over F'
has a rational point and if such exists what is the minimum. For example, a consequence
of the Chevalley-Warning Theorem is that over a finite field every three dimensional
quadratic form is isotropic and a consequence of the Lang-Nagata Theorem is that every
(2" + 1)-dimensional form over a field of transcendence degree n over an algebraically
closed field is isotropic. Unlike the characteristic different from two case, totally singular
quadratic forms over fields of characteristic two, i.e., the quadratic form associated to
a bilinear form also give interesting degenerate anisotropic forms. We shall, therefore,
define two types of uniform bounds below. If F'is a formally real field then n(l) can
never be isotropic. To obtain meaningful arithmetic data about formally real fields, we
shall strengthen the condition on our forms. Although this makes computation more
delicate, it is a useful generalization. In this section, we shall, for the most part, look at
the simpler case of fields that are not formally real.

Let F be a field. We call a quadratic form ¢ over F' locally hyperbolic it pp, is
hyperbolic at each real closure Fp of F' (if any). If F' is formally real then the dimension
of every locally hyperbolic form is even. If F'is not formally real, every form is locally
hyperbolic. We define the u-invariant of F' to be the smallest integer u(F) > 0 such that
every non-degenerate locally hyperbolic quadratic form over F' of dimension > u(F) is
isotropic (or infinity if no such integer exists) and the @-invariant of F' to be the smallest
integer u(F) > 0 such that every locally hyperbolic quadratic form over F' of dimension
> u(F') is isotropic (or infinity if no such integer exists).

For any field F' of characteristic different from two, a locally hyperbolic form is one
that is torsion in the Witt ring W (F'). If F' is not formally real then every non-degenerate
quadratic form over F' is locally hyperbolic.

REMARK 36.1. (1). We have u(F) > u(F).
(2). If char F' # 2, every anisotropic form is non-degenerate hence u(F) = u(F).
(3). If F' is formally real, the integer u(F') = u(F') is even.

(4). As any (non-degenerate) quadratic form contains (non-degenerate) subforms of all
smaller dimensions, if F' is not formally real, we have u(F’) < n if and only if every non-
degenerate quadratic form of dimension n + 1 is isotropic and w(F') < n if and only if
every quadratic form of dimension n + 1 is isotropic.

153
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ExamMpPLE 36.2. (1). If F' is a formally real field then @(F) = 0 if and only if F is
pythagorean.
(2). Suppose that F' is an quadratically closed field. If char F' # 2 then u(F') = 1 as every
form is diagonalizable. If char F' = 2 then u(F') < 2 with equality if F' is not separably
closed by Example [7.33.
(3). If F'is a finite field then u(F) = 2.
(4). Suppose that F' is not formally real. If u(F) is finite then u(F((t))) = 2u(F). If
char F' # 2, this follows from Lemma [19.5. (Cf. [5] for the case that char ' = 2.) If F
is formally real, the same result holds as any torsion form ¢ over F((t)) is isometric to
o Lty for some torsion forms g and v, over F'.
(5). If F'is a C,, field then u(F) < 2".
(6). If Fis a local field then @(F') = 4. If char F' = 0 this follows from [13]. If char F' > 0
then u(F) = 4 by Example (4).
(7). If F is a global field then @(F) = 4. If char FF = 0 this follows from the Hasse-

Minkowski Theorem [40], VI.3.1. If char F' > 0 then F'is a C-field by Appendix Theorem
96.7.

PROPOSITION 36.3. Let F' be a field with I3(F) = 0. If 1 < u(F) < oo then u(F) is
even.

PRrROOF. We may assume that F' is not formally real. Suppose that u(F) > 1 is odd
and let ¢ be a non-degenerate anisotropic quadratic form with dim¢ = u(F’). We claim
that ¢ ~ 1 L (—a) for some ¢ € I7(F) and a € F*. If char F' # 2 then ¢ L (a) € I7(F)
for some a € F*. This form is isotropic, hence ¢ L (a) ~ ¢ L H for some ¢ € I7(F)
and therefore ¢ ~ ¢ L (—a). If char ' = 2 write ¢ ~ p L (a) for some form p and
a € F*. Choose b € F such that the discriminant of the form p L [a,b] is trivial, i.e.,
L [a,b] € IZ(F). By assumption the form x L [a,b] is isotropic, i.e., p L [a,b] ~ ¢ L H
for a form ¢ € IZ(F). It follows from (8.7) that

ppl(a)~pLfa,b] La) ~9 L (a),

hence ¢ ~ ¢ 1 (a) as these forms have the same dimension. This proves the claim.

Let b € D(v). As ((ab)) ® ¢ € I}(F) = 0 we have ab € G(¢). Therefore a = ab/b €
D(%) and hence the form ¢ is isotropic, a contradiction. U

COROLLARY 36.4. The u-invariant of a field is not equal to 3,5 or 7.

Let » > 0 be an integer. Define the u,-invariant of F' to be the smallest integer
u,(F') > 0 such that every set of r quadratic forms on a vector space over F' of dimension
> 4, (F) has common nontrivial zero.

In particular, if @,.(F') is finite then F' is not a formally real field. We also have
w1 (F) = w(F) when F' is not formally real.

THEOREM 36.5. Let F' be a field then for every r > 1 we have
'L_LT(F) < T?_Ll(F) + ﬂrfl(F).



36. THE u-INVARIANT 155

PROOF. We may assume that @,_1(F) is finite. Let ¢1,. .., ¢, be quadratic forms on
a vector space V over F' of dimension n > ruy(F) + u,_1(F). We shall show that the
forms have an isotropic vector in V. Let W be a totally isotropic subspace of F' of the
forms ¢, ..., @1 of the largest dimension d. Let V; be the orthogonal complement of
W in V relative to ¢; for each i =1,...,7r — 1. We have dimV; > n — d.

Let U=ViN---NV,_;. Then W C U and dimU > n — (r — 1)d. Choose a subspace
U Cc U such that U =W @ U’. We have

dimU' >n —rd > r(uy(F) — d) + @1 (F).

If d < uy(F) then dim U’ > @,_1(F), hence the forms ¢1,...,p,_1 have an isotropic
vector u € U’. Then the subspace W & Fu is totally isotropic for these forms, contradicting
the maximality of W.

It follows that d > u;(F"). The form ¢, therefore has an isotropic vector in U’ which
is isotropic for all the ¢;’s. O

COROLLARY 36.6. If F' is not formally real then @,(F) < 3r(r + 1)a(F).

COROLLARY 36.7. Let K/F be a finite field extension of degree r. If F' is not formally
real then u(K) < 3(r + 1)a(F).

PROOF. Let s1,$9,...,5, be a basis for the space of F-linear functionals on K. Let

¢ be a quadratic form over K of dimension n > $(r + 1)a(F) on the vector space V.
As dim(s;)s(¢) = rn > ir(r + 1)a(F) for each i = 1,...,r, by Corollary 36.6, the forms

(8:)«(¢) have common isotropic vector which is then an isotropic vector for . O

Let K/F be a finite extension with F' not formally real. We shall show that if u(K)
is finite then so is u(F). We begin with the case that F'is a field of characteristic two.

LEMMA 36.8. Let F' be a field of characteristic two. Let ¢ be an even dimensional
non-degenerate quadratic form over F' and v a totally singular quadratic form over F. If
@ L 1 is anisotropic then

1
§dim<p+dimw <[F:F?.
PROOF. Let ¢ ~ [ay,b1] L -+ L [am, by with a;,0; € F and ¢ ~ {(cq,...,c,) with

ci € F*. Foreach 1 = 1,...,m let d; € D([a;,b;]). Then {di,...,d,,c1,...cn} is F*-
linearly independent. The result follows. U

PROPOSITION 36.9. Let F' be a field of characteristic two and K/F a finite extension.
Then

u(F) < 2u(K) < 4u(F).

PROOF. If ¢y,..., ¢, are F*linearly independent then (cy,...,c,) is anisotropic. By
the lemma, it follows that we have

[F: F? <a(F) <2[F: F?.
As [F: F? = [K : K] (cf. (35.6)), we have
u(F) <2[F: FY =2[K : K] <2u(K) < 4K : K?] = 4[F : F?] < 4u(F). O
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REMARK 36.10. Let F' be a field of characteristic two. The proof above shows that
every anisotropic totally singular quadratic form has dimension at most [F : F?] and if

[F: F?] is finite then there exist anisotropic totally singular quadratic forms of dimension
[F: F?.

REMARK 36.11. Let F be a field of characteristic two such that [F : F?] is infinite
but F' separably closed. Then @(F') is infinite but w(F') = 1 by Exercise [7.34.

We now look at finiteness of @ coming down from a quadratic extension.

PROPOSITION 36.12. Let K/F be a quadratic extension with F not formally real. If
u(K) is finite then u(F) < 4u(K).

PrROOF. If char F = 2 then u(F) < 2u(K), so we may assume that char F' # 2.
We first show that @(F') is finite. Let ¢ be an anisotropic quadratic form over F. By
Proposition 34.8, there exist quadratic forms ¢ and po over F' with (uo)x anisotropic
satisfying

v~ {{a)) @1 L po.
In particular, dim(ug) < a(K). Analogously, there exist quadratic forms ¢, and py over
F with () anisotropic satisfying

pr = ((a) @ L.
Hence

v~ ((a) ® ({(a)) ® g2 L ) L po >~ 2((a)) @ @2 L {{a)) @ pa L prg
as ((a,a)) = 2((a)). Continuing in this way, we see that
p 22" ((a) ® o L 277 ({a)) @ pi L -+ L {{a)) @ g1 L pio
for some forms ¢; and pu; over F satisfying dim u; < @(K) for all i. By Proposition 31.4,
there exists an integer n such that 2"({a)) = 0 in W(F). It follows that
dime < (2" + -+ 24 Da(K) < 2"4(K)
hence is finite.

We now show that a(F') < 4u(K). As u(F) is finite, there exists an anisotropic form ¢
over F' of dimension @(F'). Let s : K — F be a non-trivial F-linear functional satisfying
s(1) = 0. We can write

= p L si(y)
with quadratic forms 1) over K and p over F' satisfying u ® Nk p is anisotropic by
Proposition [34.6. Then

1
dim s,(¢) < 2u(K) and dimp < iﬂ(F)

If dim s,(¢)) = 2u(K) then v is a u(K)-dimensional form over K hence universal as every
(a(K') + 1)-dimensional form is isotropic over the non formally real field K. In particular,
Y ~ (x)g L ¢y for some € F*. Thus s.(¢0) = s.(¢1) in W(F) so s.() is isotropic, a
contradiction. Therefore, we have dim s.(¢)) < 2u(K), hence

2u(K) > dim s, (¢) = dimg — dim p > a(F) —a(F)/2 > u(F)/2.
The result follows. 0
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PROPOSITION 36.13. Let K/F be a finite extension with F' not formally real. Then
u(F) is finite if and only if u(K) is finite.

Proor. If char F' = 2, the result follows by Proposition 36.9, so we may assume that
char F' # 2. By Theorem 36.6, we need only show if u(K) is finite then u(F’) is also finite.
Let L be the normal closure of K/F and Ej the fixed field of the Galois group of L/F.
Then Ey/F is of odd degree as char F' # 2. Let E be the fixed field of a Sylow 2-subgroup
of the Galois group of L/F. Then E/F is also of odd degree. Therefore, if u(E) is finite
so is u(F') by Springer’s Theorem [18.5. Hence we may assume that F = F| ie., K/F is
a Galois 2-extension. By induction on [K : F], we may assume that K/F is a quadratic
extension, the case established in Proposition 36.12. Il

Let K/F be a normal extension of degree 2™r with r odd and F' not formally real.
If u(K) is finite the argument in Proposition 36.13 and the bound in Proposition 36.12
shows that @(F') < 4"u(K). We shall improve this bound in Remark 37.8 below.

37. The u-invariant for Formally Real Fields

If F is formally real and K/F finite then 4(K) can be infinite and @(F') finite. Indeed,
let Fyy be the euclidean field of real constructible numbers. Then there exists extensions
E,./Fy of degree r none of which are both pythagorean and formally real. In partic-
ular, u(E,) > 0. It is easy to see that w(F,) < 4. (In fact, it can be shown that
u(E,) < 2.) For example, E, is the quadratic closure of the rational numbers. Let
F = Fy((t1)) -+ ((tn)) - - - the iterated power series in infinitely many variables. Then F'
is pythagorean by Example 36.2(1) so u(F') = 0. However, K, = E.((t1)) -+ ((t,)) - - - has
infinite u-invariant by Example [36.2(4). In fact, in [15] for each positive integer n, for-
mally real fields F}, are constructed with u(F},) = 2" and having a formally real quadratic
extension K/F, with u(K) = oo and formally fields F! are constructed with @(F)) = 2"
and such that every finite non-formally real extension L of F' has infinite u-invariant.

However, we can determine when finiteness of the u-invariant persists when going up
a quadratic extension and when coming down one. Since we already know this when the
base field is not formally real, we shall mostly be interested in the formally real case.
In particular, we shall assume, for the most part, that the fields in this section are of
characteristic different from two and hence the u-invariant and u-invariant are identical.

We need some preliminaries.

LEMMA 37.1. Let F be a field of characteristic different from two and K = F(\/a) a
quadratic extension of F. Letbe F*\ F** and ¢ € annyy () (((b))) be anisotropic. Then
© >~ o1+ po in W(F) for some forms @1 and @y over F' satisfying

(1) 1 € ({a))W(F) Nannyw g (((b))) is anisotropic.

(2) @2 € annw(r)(((b)))
(3) (¢2)k is anisotropic.

Proor. By Corollary 6.23 the dimension of ¢ is even. We induct on dim¢. If
vk is hyperbolic then ¢ = ¢; works by Corollary 34.12/ and if px is anisotropic then
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» = @9 works. So we may assume that pg is isotropic but not hyperbolic. In particular,
dim ¢ > 4. By Proposition [34.8, we can write

p = a(a) Lu
for some z € F* and even dimensional form form p over F. As ¢ € anny ) (((b))),
we have ((b)) - p = —x((b,a)) in W(F), so dim({((b)) ® u)an = 0 or 4. Therefore, by
Proposition [6.25, we can write

o Ly((e)
for some y,c € F* and even dimensional form p;, € anny ) (((b))). Substituting in the
previous isometry and taking determinants, we see that ac € D({(b))) by Proposition
6.25. Thus ¢ = az for some z € D({(b))). Consequently,

p~x((a) Ly{{az)) L m = z{{a, —zy2)) +y((2)) + m
in W(F). Let po ~ (y{(2)) L t1)an- As y{(2)) lies in anny p)(((b))), so does py and
hence also z((a, —zyz)). By induction on dim ¢, we can write us = @1 + @ in W(F)
where @, satisfies condition (1) and @, satisfies conditions (2) and (3). It follows that
o1~ (({a, —2yz)) L $1)an and @2 = @2
work. 0

EXERCISE 37.2. Let ¢ and v be 2-fold Pfister forms respectively over a field of char-
acteristic not 2. Prove that the group W (F) Nanny ) (¢) N I*(F) is generated by 2-fold
Pfister forms p in anny ) (1) that are divisible by ¢. This exercise generalizes. (Cf.
Exercise [41.8 below.)

To test finiteness of the u-invariant, it suffices to look at annyy (#)(2(1)). Define
v/ (F) := max{dim ¢ | ¢ is an anisotropic form over F' and 2 =0 in W(F)}
or oo if no such maximum exists.
LEMMA 37.3. «/(F) is finite if and only if u(F) is finite. Moreover, if u(F) is finite
then u(F) =4/ (F) =0 or u'(F) < u(F) < 2u/(F).

PROOF. We may assume that char F' # 2 and «/(F') > 0, i.e., that F' is not a formally
real pythagorean field. Let ¢ be an n-dimensional anisotropic form over F. Suppose that
n > 2u'(F'). By Proposition [6.25 we can write ¢ ~ py L ¢ with gy € anny (#(2(1)) and
2¢; anisotropic. By assumption, dim p; < u/(F). Thus

20/ (F) < dim ¢ = dim gy + dim ¢y < u/(F) + dim ¢
hence 2u/(F) < dim2p;. As (2¢)an =~ 2¢1, we have dim(2¢),, > 2u/(F'). Repeating the

argument, we see inductively that dim(2™y),, > 2u/(F) for all m. In particular, ¢ is not
torsion. The result follows. O

Hoffmann has shown that there exist fields F' satisfying «'(F) < u(F'). (Cf. [22].)

Let K/F be a quadratic extension. As it is not true that w(F') is finite if and only
if u(K) is when F' is formally real, we need a further condition for this to be true. This
condition is given by a relative u-invariant.
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Let L/F be a field extension. The relative u-invariant of L/F' is defined as
uw(L/F) := max{dim(¢r)an | ¢ a quadratic form over F' with ¢y, torsion in W(L)}
or oo if no such integer exists.

We shall prove

THEOREM 37.4. Let F be a field of characteristic different than two and K a quadratic
extension of F. Then u(F) and u(K/F) are both finite if and only if w(K) is finite.
Moreover, we have:

(1) If u(F) and u(K/F) are both finite then u(K) < w(F)+u(K/F). If, in addition,
K is not formally real then uw(K) < Ju(F) 4+ u(K/F).

(2) If u(K) is finite then u(K/F) < u(K) and uw(F) < 6u(K) or u(F) =u(K) = 0.
If, in addition, K is not formally real then u(F') < 4u(K).

PROOF. Let K = F(y/a) and s, : W(K) — W(F) be the transfer induced by the
F-linear functional defined by s(1) = 0 and s(y/a) = 1.

CrAM 37.5. Let ¢ be an anisotropic quadratic form over K such that s.(p) is torsion
in W(F'). Then there exist a form o over F and a form v over K satisfying
(a) dimo = dim .
(b) v is a torsion form in W(K).
(¢) dim <2 dimp and ¢ ~ (0 L V)an.
(d) If s«(p) is anisotropic over F' then dim ¢ < dim ).

In particular, if u(F) is finite and s.(p) is anisotropic and torsion then dim¢ < su(F)
and dim ) < u(F):

Let 2"s.(¢) = 0 in W(F') for some integer n. By Corollary [34.3 with p = 2"(1), there
exists a form ¢ over I such that dimo = dim ¢ and 2"¢p ~ 2"0k. Let ¥ ~ (¢ L (—0))an.
Then # is a torsion form in W (K) as it has trivial total signature. Condition (¢) holds
by construction and (d) holds as s.(¢0) = s.(p) in W(F).

We now prove (1). Suppose that both u(F') and u(K/F) are finite. Let 7 be an
anisotropic torsion form over K. By Proposition 34.1) there exists an isometry 7 ~ ¢ L g
for some form 7 over K satisfying s, (i) is anisotropic and form p over F'. As s,(¢) = s.(7)
is torsion, we can apply the claim to ¢. Let o over F' and 1 over K be forms as in the
claim. By the last statement of the claim, we have dim ¢ < %U(F ). In particular, we
have dim¢ < 2dim ¢ < u(F) and ¢ = ¢ + ok in W(K). Since 7 and 1) are torsion so is
(c+ k. AsT=1v+((0 L p)k)an in W(K), it follows that dim7 < u(F) + u(K/F) as
needed.

Finally, if K is not formally real then as above, we have 7 ~ ¢ L pux with dim¢ <
su(F). As every F-form is torsion in W(K), we have dim ugx < u(K/F) and the proof
of (1) is complete.

We now prove (2). Suppose that u(K) is finite. Certainly u(K/F) < u(K). We show
the rest of the first statement. By Lemma 37.3) it suffices to show that «/(F) < 3u/(K).

Let ¢ € anny ) (2(1)) be anisotropic. By Lemma [37.1 and Corollary [34.33, we can
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decompose ¢ ~ ¢ + , in W(F) with ¢, € anny ) (2(1)) satisfying (¢2)x is anisotropic
and ; is anisotropic over F' and lies in

{{a))W (F) Manny (p)(2(1)) C anny (p)({(@))) N anny ) (2(1))

using Lemma 34.33. In particular, (¢2)x € anny(x)(2(1)) so dimy, < o/(K). Conse-
quently, to show that «/(F) < 3u/(K), it suffices to show dim ¢, < 2u/(K). This follows
from (i) of the following (with o = ¢;):

CLAIM 37.6. Let o be a non-degenerate quadratic form over F'.
(1) If o € annyw () (((a))) Nanny ) (2(1)) then dim o, < 2u'(K).

(1) If o € annyw(py({(a))) N W(F) then dim o4, < 2u(K) with inequality if K is not
formally real.

By Corollary 34.33, in the situation of (i), there exists 7 € anny (x)(2(1)) such that
0 = $,(7). Then dim o,, < dim $,(7.,) < 2dim 7, < 2u/(K) as needed.

We turn to the proof of (i7) which implies the the bound on u(F) in Statement (2) for
arbitrary K (with 0 = ¢1). In the situation of (i7), we have dim o,,, < u(K') by Corollaries
34.12/ and 34.32. If K is not formally real then any u(K)-dimensional form 7 over K is
universal. In particular, D(7) N F* # () and (i) follows.

Now assume that K is not formally real. Let ¢ be an anisotropic torsion form over
F of dimension u(F). As ims, = annyr)({{(a))) by Corollary [34.12, using Proposition
6.25, we have a decomposition ¢ ~ @3 | ¢4 with ¢, a form over F satisfying ({a)) ® o4
is anisotropic and 3 ~ s,(7) for some form 7 over K. Since 3 lies in

s+ (W(K)) = s.(Wi(K)) = annw z) (((a))) O W (F)

by Corollary 34.12 and Corollary 34.32, we have dim p3 < 2u(K) by Claim 37.6. As
({a)) - g = ({a)) - ¢ in W(F) hence is torsion, we have dim ¢, < u(F)/2. Therefore,
2u(K) > dim ¢z = dim ¢ — dim ¢4 > w(F) — u(F)/2 and u(F) < 4u(K). O

Of course, by Theorem 36.6/ if F' is not formally real and K = F(y/a) is a quadratic
extension then u(K) < 2u(F).

COROLLARY 37.7. Let F be a field of transcendence degree n over a real closed field.
Then u(F) < 272,

PrOOF. F(1/—1) is a C,-field by Corollary 96.7. O

REMARK 37.8. Let F' be a field of characteristic different than two and K/F a finite
normal extension. Suppose that u(K) is finite. If K/F is quadratic then the proof of
Theorem [37.4 shows that «'(F') < 3u/(K). If K/F is of degree 2"m with m odd, arguing
as in Proposition 36.13, shows that «/(F) < 3"u/(K) hence u(F) < 2-3"u(K).

One case where the bound in the remark can be sharpened is the following which
generalizes the case of a pythagorean field of characteristic different from two.

PROPOSITION 37.9. Let F be a field of characteristic different from two and K/F a
finite normal extension. If u(K) <2 then u(F) < 2.
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PROOF. By Proposition 35.1, we know for a field E that I*(E) is torsion-free if and
only if F satisfies A, i.e., there are no anisotropic 2-fold torsion Pfister forms. In par-
ticular, as u(K) < 2, we have I*(K) is torsion-free. Arguing as in Proposition 36.13] we
reduce to the case that K = F(y/a) is a quadratic extension of F, hence I*(F) is also
torsion-free by Theorem 35.12. It follows that every torsion element p in I(F') lies in
anny(r(2(1)). In particular, by Proposition [6.25, we can write p ~ ((w)) mod I*(F)
for some w € D(2(1)) hence p ~ ((w)) some w € D(2(1)) and is universal. In particu-
lar, every even dimensional anisotropic torsion form over F' is of dimension at most two.
Suppose that there exists an odd dimensional anisotropic torsion form ¢ over F'. Then F
is not formally real hence all forms are torsion. As every two dimensional form over F' is
universal by the above, we must have dim ¢ = 1. The result follows. O

COROLLARY 37.10. Let F be a field of transcendence degree one over a real closed
field. Then u(F) < 2.

EXERCISE 37.11. Let F' be a field of arbitrary characteristic and a € F* totally
positive. If K = F(y/a) then u(K) < 2u(F).

We next show if K/F is a quadratic extension with K not formally real then the
relative u-invariant already determines finiteness. We note

REMARK 37.12. Suppose that char ' # 2 and K = F(y/a) is a quadratic extension
of F' that is not formally real. If ¢ is a non-degenerate quadratic form over F' then,
by Proposition [34.8, there exist forms ¢; and 1 such that ¢ ~ ((a)) ® ¥ L ¢ with
dim ¢y < u(K/F).

We need the following simple lemma.

LEMMA 37.13. Let F be a field of characteristic different from two and K = F(y/a)
a quadratic extension of F' that is not formally real. Suppose that u(K/F) < 2™. Then
I™(F) is torsion-free, I"T(K) = 0, and the exponent of Wi(F) is at most 2™

PrROOF. If p € P, (F) then i, (p) = 0 as K is not formally real. So I™(F) =

{{a))I™"Y(F) by Theorem 134.22. Tt follows that I™"!(K) = 0 by Lemma [34.16. Hence
I™T(F(y/—1) = 0 by Corollary [35.14. The result follows by Corollary [35.27. O

If Fis alocal field in the above then one can show that u(K/F) = 2 for any quadratic
extension K of F but neither I?(F) nor I*(K) is torsion-free.

THEOREM 37.14. Let F be a field of characteristic different from two. Suppose that
K is a quadratic extension of F' and K is not formally real. Then u(K/F) is finite if and
only if u(K) is finite.

PROOF. By Theorem [37.4, we may assume that w(K/F) is finite and must show that
u(F') is also finite. Let ¢ be an anisotropic form over F' satisfying 2¢p = 0 in W(F).
By the lemma, I""!(F) is torsion-free for some n > 1. We apply the Remark [37.12
iteratively. In particular, if dim¢ is large then ¢ ~ xp L @ for some p € P,(F) (cf.
the proof of Proposition [36.12)). Indeed, computation shows that if u(K/F) < 2™ and
dimg > 2™(2™*2 — 1) then n = m + 2 works. As p is an anisotropic Pfister form and
I"(F) is torsion-free, 2p is also anisotropic. Scaling ¢, we may assume that x = 1. Write
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Y >~ @1 L s with 2y = 0 in W(F') and 2ps anisotropic. Then we have 2p ~ 2(—ps).
If b € D(—ps9) then 2((b)) - p is isotropic hence is zero in W(F). As I"(F) is torsion-
free, ((b)) - p = 0 in W(F) and b € D(p). It follows that ¢ cannot be anisotropic if
dim g > 2m(2™"2 — 1). By Lemma 37.3, it follows that u(F) < 2m+1(2m+2 — 1) and the
result follows by Theorem [37.4. O

The bounds in the proof can be improved but are still very weak. The theorem does
not generalize to the case when K is formally real. Indeed let Fy be a formally real subfield
of the algebraic closure of the rationals having square classes represented by 41, +w where
w is a sum of (two) squares. Let F = Fy((t1))((t2)) -+ and K = F(y/w). Then, using
Corollary [34.12, we see that u(K/F) = 0 but both u(F') and u(K) are infinite.

COROLLARY 37.15. Let F be a field of characteristic different from two. Then u(K)
is finite for all finite extensions of F if and only if u(F(v/—1)) s finite if and only if
u(F(v—1)/F) is finite.

38. Construction of Fields with Even u-invariant

By taking iterated Laurent series fields over the complex numbers, we can construct
fields whose u-invariant is 2" for any n > 0. (We also know that formally real pythagorean
fields have u-invariant zero.) In this section, given any even integer m > 0, we construct
fields whose u-invariant is m.

LEMMA 38.1. Let ¢ € Ig(F) be a form of dimension 2n > 2. Then ¢ is a sum of
n — 1 general quadratic 2-fold Pfister forms in Ig(F) and ind clif (¢) < 2771

Proor. We induct on n. If n = 1, we have ¢ = 0 and the statement is clear. If n = 2,
¢ is a general 2-fold Pfister form and by Proposition 12.4, we have clif(¢) = [Q], where
() is a quaternion algebra such that Nrdg is similar to ¢. Hence ind clif(¢) < 2.

In the case n > 3 write ¢ = 0 L ¢ where ¢ is a binary form. Choose a € F* such
that the form ao L v is isotropic, i.e., ac L ¥ ~ H L u for some form p of dimension
2n — 2. We have in I, (F):

p=0+1={(a)o+u

and therefore clif(p) = clif(((a))o) - clif(z) by Lemma [14.2. Applying the induction
hypothesis to p, we have ¢ is a sum of n — 1 general quadratic 2-fold Pfister forms and

ind clif (¢) < ind clif ({(a))o) - ind clif (u) < 2-2"7% = 2771, O

COROLLARY 38.2. In the condition of the lemma assume that ind clif (¢) = 2"~'. Then
Y 18 anisotropic.

PROOF. Suppose ¢ is isotropic, i.e., ¢ =~ H L 9 for some 9 of dimension 2n — 2.
Applying Lemma [38.1 to 1, we have ind clif (¢) = ind clif (¢0) < 2”72, a contradiction. [

LEMMA 38.3. Let D be a tensor product of n — 1 quaternion algebras (n > 1). Then
there is a @ € 12(F) of dimension 2n such that clif(p) = [D] in Br(F).
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Proor. We induct on n. The case n = 1 follows from Proposition 12.4. If n > 2
write D = (Q ® B, where @) is a quaternion algebra and B is a tensor product of n — 2
quaternion algebras. By the induction hypothesis, there is ¢ € I g(F ) of dimension 2n — 2
such that clif(¢)) = [B]. Choose a quadratic 2-fold Pfister form o with clif(c) = [Q] and
an element a € F* such that ac L 1 is isotropic, i.e., ac L ¥ ~ H L ¢ for some ¢ of
dimension 2n. Then ¢ works as clif(p) = clif (o) - clif (¢) = [Q] - [B] = [D]. O

Let 2 be a set (of isometry classes) of irreducible quadratic forms. For any finite
subset S C A let Xg be the product of all the quadrics X, with ¢ € S. If S C T are
two subsets of 2 we have the dominant projection X1 — Xg and therefore the inclusion
of function fields F'(Xg) — F(Xr). Set Fy = colim Fs over all finite subsets S C 2(. By
construction, all quadratic forms ¢ € 2 are isotropic over the field extension Fy/F'.

THEOREM 38.4. Let F be a field and n > 1 an integer. Then there is a field extension
E of F satisfying
(1) u(E) = 2n.
(2) ]g’(E) = 0.
(3) E is 2-special.

PRrROOF. To every field L, we associate three fields LY, L®) and L®) as follows:

Let 2 be the set (of isometry classes) of all non-degenerate quadratic forms over L
of dimension 2n + 1. We set L) = Lg. Every non-degenerate quadratic form over L of
dimension 2n + 1 is isotropic over L™,

Let B be the set (of isometry classes) of all quadratic 3-fold Pfister forms over L. We
set L) = Lg. By construction, every quadratic 3-fold Pfister form over L is isotropic
over L),

Finally let L® be a 2-special closure of L (cf. Appendix §?).

Let D be a central division L-algebra of degree 2"~!. By Corollaries [30.10, 30.12, and
Appendix (???), D remains a division algebra over L), L®) and L®.

Let L be a field extension of F' such that there is a central division algebra D over L
that is a tensor product of n — 1 quaternion algebras (Example 777). By Lemma 38.3,
there is ¢ € I7(L) of dimension 2n such that clif(p) = [D] in Br(L).

We construct a tower of field extensions Fy C E; C Fy C ... by induction. We set
Eo = L. If E; is defined we set E;,; = (((E;)W)®)®) Note that the field E; is 2-special
and all non-degenerate quadratic forms of dimension 2n + 1 and all 3-fold Pfister forms

over IJ; are isotropic over E; ;. Moreover the algebra D remains a division algebra over
Ei1.

Now set £ = UFE;. Clearly E has the following properties:

(7) All (2n+1)-dimensional Pfister forms over E are isotropic. In particular, u(E) <
2n.
(i) The field E is 2-special.
(#1) All quadratic 3-fold Pfister forms over E are isotropic. In particular I3(E) =0 .
(v) The algebra D is a division algebra.
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As clif (¢g) = [Dgl, it follows from Corollary 38.2 that ¢ is anisotropic. In particular,
u(E) = 2n and I7(E) # 0 as ¢p is a nonzero form in I7(E). O

39. Addendum: Linked Fields and the Hasse Number

THEOREM 39.1. Let F' be a field. Then the following conditions are equivalent:

1) Every pair of quadratic 2-fold Pfister forms over F are linked.

2) Every 6-dimensional form in IZ(F) is isotropic.

3) The tensor product of two quaternion algebras over F' is not a division algebra.

4) FEvery two division quaternion algebras over F have isomorphic separable qua-
dratic subfields.

(5) Every two division quaternion algebras over F have isomorphic quadratic sub-
fields.

(6) The classes of quaternion algebras in Br(F') form a subgroup.

(
(
(
(

PROOF. (1) = (2): Let 1 be a 6-dimensional form in I7(F). By Lemma 38.1, we have
Y = 1 + 9, where @1 and y are general quadratic 2-fold Pfister forms. By assumption,
p1 and o are linked. Therefore, the class of ¢ in [ q2(F ) is represented by a form of
dimension 4, hence v is isotropic.

(2) = (4): Let Q1 and Q5 be division quaternion algebras over F. Let ¢; and ¢ be the
reduced norm quadratic forms of @); and ()5 respectively. By assumption, ¢; and ¢, are
linked. In particular, ¢; and ¢, are split by a separable quadratic field extension L/F.
Hence L splits @)1 and @2 and therefore L is isomorphic to subfields of ¢); and Q.

(3) & (4) & (5) is proven in Theorem 97.19.

(3) & (6) is obvious.

(4) = (1): Let o1 and ¢y be two anisotropic 2-fold Pfister forms over F. Let @ and Qs
be two division quaternion algebras with the reduced norm forms ¢; and ¢, respectively.
By assumption, ); and ()2 have quadratic subfields isomorphic to a separable quadratic

extension L/F. By Example 9.8, the forms ¢; and ¢y are divisible by the norm form of
L/F and hence are linked. O

A field F'is called linked if F' satisfies the conditions of Theorem 39.1.

For a formally real field F', the u-invariant can be thought of as a weak Hasse Principle,
i.e., every locally hyperbolic form of dimension > u(F’) is isotropic. A variant of the u-
invariant naturally arises. We call a quadratic form ¢ over F' locally isotropic or totally
indefinite if pp, is isotropic at each real closure Fp of F' (if any) i.e., ¢ is indefinite at
each real closure of F' (if any). The Hasse number of a field F' is define to be

u(F) := max{dim ¢ | ¢ is a locally isotropic anisotropic form over F'}.

or oo if no such maximum exists. For fields that are not formally real this coincides with
the w-invariant. If a field is formally real, finiteness of its u-invariant is a very strong
condition and is a form of a strong Hasse Principle. For example, if F' is a global field
then w(F') = 4 by Meyer’s Theorem [44] (a forerunner of the Hasse-Minkowski Principle
[54]) and if F is the function field of a real curve then w(F) = 2 (cf. Example 39.11
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below), but if F'/R is formally real and finitely generated of transcendence degree > 1
then, although w(F') is finite, its Hasse number w(F') is infinite.

EXERCISE 39.2. Show if the Hasse number is finite then it cannot be 3,5, or 7.

We establish another characterization of u(F'). We say F satisfies Property H,, with
n > 1 if there exist no anisotropic, locally isotropic forms of dimension n. Thus if u(F')
is finite
u(F)+ 1 =min{n| F satisfies H,, for all m > n}.

REMARK 39.3. Every 6-dimensional form in IZ(F) is locally isotropic, since every

element in I%(F) has signature divisible by 4 at every ordering. Hence if a(F) < 4 then
F is linked by Theorem 139.1.

LEMMA 39.4. Let F be a linked field of characteristic not two. Then

(1) Any pair of n-fold Pfister forms are linked for n > 2.

(2) If p € Py(F) then ¢ ~ ((—wy,x)) if n = 2 and p = 2"3({—wy, —wy, z)) for
some wy, wy € D(3(1)) and x € F* forn > 3.

(3) For everyn >0 and ¢ € I"(F), there exists an integer m and p; € GP;(F) with
n <1 <m satisfying o =Y p; in W(F). Moreover, if ¢ is a torsion element
then each p; is torsion.

(4) I*(F) is torsion-free.

PROOF. (1), (2): Any pair of n-fold Pfister forms are easily seen to be linked by
induction so (1) is true. As any 2-fold Pfister form is linked to 4(1), statement (2) holds
for n = 2. Let p = ((a,b,c)) be a 3-fold Pfister form then applying the n = 2 case
gives p = ((wy,z,y)) = ((wy,we, z)) for some x,y,z € F* and wy,wy € D(3(1)). This
establishes the n = 3 case. Let p = ({a,b,¢,d)) be a 4-fold Pfister form. By assumption,
there exist z,y, z € F* such that ((a,b)) ~ ({(x,y)) and ({(c,d)) ~ ((z,z)). Thus

(39.5) p={{a,bc.d)) = ((z,y,2,2)) = ((=1,9,7,2)) = 2((y, 7, 2))
Statement (2) follows.

(3): Let ¢ and 7 be n-fold Pfister forms. As they are linked ¢ — 7 = a((b)) - pn in W (F)
for some (n — 1)-fold Pfister form p and a,b € F*. Then

o) +yr = — a7+ a7 +yr = ax((b)) - p+ x{{(—xy)) - T
The first part now follows by repeating this argument. If ¢ is torsion, then inductively,
each p; is torsion by the Hauptsatz 23.8, so the second statement follows.

(4): By (3), it suffices to show there are no anisotropic torsion n-Pfister forms with
n > 3. By Proposition 35.3, it suffices to show if p € P,(F’) satisfies 2p = 0 in W (F') then
p=0in W(F). By Lemma 35.2, we can write p ~ ({a,b, c,w)) with w € D(2(1)) and
a,b,c € F*. Applying equation (39.5) with d = w, we have p ~ 2((y, z, z)) ~ 2((y, c,w))
which is hyperbolic. The result follows. U

LEMMA 39.6. Let char F' # 2 and n > 2. If F s linked and F satisfies H,, then it
satisfies Hp1q.

added n=3 c:
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PROOF. Let ¢ be an (n + 1)-dimensional anisotropic quadratic form with n > 2.
Replacing ¢ by zp for an appropriate x € F*, we may assume that ¢ = (w, b, wb) L ¢,
for some w,b € F* and form ¢; over F' and by Lemma [39.4 that w € D(3(1)). Let
w2 = (w,b) L 1. Assgnp(b) = sgnp(wb) for all P € X(F'), the form ¢ is locally isotropic
if and only if ¢ is. The result follows by induction. U

REMARK 39.7. If char F' # 2 and n > 4 then F satisfies Property H, ., if it satisfies
Property H,. However, in general, H3 does not imply Hy (cf. [14]).

EXERCISE 39.8. Let F' be a formally real pythagorean field. Then w(F) is finite if and
only if I?(F) = 2I(F). Moreover, if this is the case then u(F) = 0.

THEOREM 39.9. Let char F' # 2. Let F be a linked field. Then u(F) = u(F) and
u(F)=0,1,2,4, or8.

PROOF. We first show that u(F) = 0,1,2,4, or 8. We know that I*(F) is torsion-free
by Lemma 39.4. We first show that F' satisfies Hy hence u(F') < 8 by Lemma [39.6. Let ¢
be a 9-dimensional locally isotropic form over F'. Replacing ¢ by xy for an appropriate
r € F*, we can assume that ¢ = (1) + ¢ in W(F) with ¢; € I*(F) using Proposition
4.13. By Lemma [39.4, we have a congruence

(39.10) 0= (1) +py —ps mod I*(F)

for some p; € P;(F) with i = 2,3. Write ps =~ ({a,b)) and p3 ~ ({¢,d,e)). As F is linked,
we may assume that e = b and —d € Dg(p}). Thus we have

p = (1) + ((a,0)) = {{c, d, b))
= (1) = d({{a, b)) = {{¢, b))) = ({¢,0))
= —cd{{ac,b)) — {{(c,b)) mod I'*(F)

Let u = ¢ L cd{{ac,b)) L ({c,b)), a locally isotropic form over F lying in I*(F). In
particular, for all P € X(F'), we have 16| sgnp . As the locally isotropic form pu is
sixteen dimensional, |sgnp p| < 16 for all P € X(F) so sgnp p = 0 for all P € X(F) and
p € INF) = 0. Consequently, ¢ = —cd{{ac,b)) L (—{{c,b))’) in W(F) so ¢ is isotropic
and u(F) < 8.

Suppose that w(F) < 8. Then there are no anisotropic torsion 3-fold Pfister forms over
F. Tt follows that I3(F) is torsion-free by Lemma [39.4. We show @(F) < 4. To do this
it suffices to show that F' satisfies Hs by Lemma 39.6. Let ¢ be a 5-dimensional, locally
isotropic space over F. Arguing as above but going mod I3(F), we may assume that

p = (1) = ((a,0)) = =((a,b))" mod I*(F)

Let u = ¢ L {{a,b))’, an 8-dimensional, locally isotropic form over F lying in I3(F). As
above, it follows that y is locally hyperbolic hence p € I3(F) = 0. Thus ¢ = —({a, b)) in
W (F) so isotropic and u(F) < 4. In a similar way, we see that u(F') = 0, 1,2 are the only
other possibilities. This shows that u(F) =0, 1,2,4,8. The argument above and Lemma
39.4 show that u(F) = u(F). O

Note the proof shows if F is linked and I"(F) is torsion-free then u(F) < 2771
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EXAMPLE 39.11. (1). If F(v/=1) is a () field then I?(F(y/—1)) = 0. It follows that
I?(F) = 2I(F) and is torsion free by Corollary 35.14/ and Proposition [35.1/ (or Corollary
35.27). In particular, F' is linked and u(F") < 2
(2). If F'is a local or global field then u(F) =
(3). Let Fy be a local field and F = Fy((t)) be a Laurent series field. As u(Fy) = 4, and
F is not formally real, we have u(F) = u(F) = 8. This field F is linked by the following
exercise:

EXERCISE 39.12. Let F' = Fy((t)) with char F' # 2. Show there exist no 4-dimensional
anisotropic spaces of discriminant different from FOX2 over Fy if and only if F' is linked.

There exist linked formally real fields with Hasse number 8, but the construction of
such fields is more delicate (cf. [15]).

REMARK 39.13. Let F' be a formally real field. Then it can be shown that @w(F') is
finite if and only if u(F) if finite and I*(F},,) = 2["(F},,) (cf. [15]). If both of these

invariants are finite, they may be different (cf. [50].)






CHAPTER VII

Applications of the Milnor Conjecture

40. Exact Sequences for Quadratic Extensions

In this section, we derive the first consequences of the validity of the Milnor Conjecture
for fields of characteristic different from two. In particular, we show that the infinite
complexes of the powers of I- (cf. 34.20) and I- (cf. [34.21) arising from a quadratic
extension of a field of characteristic different from two are in fact exact. For fields of
characteristic two, we also show this to be true for separable quadratic extensions as well
as proving the exactness of the corresponding complexes complexes (34.27) and (34.28)
for purely inseparable quadratic extensions. In addition, we show that for all fields, the
ideals I7'(F') coincide with the ideals J,(F) based on the splitting patterns of quadratic
forms.

We need the following lemmas.
LEMMA 40.1. Let K/F be a quadratic field extension and let s : K — F be a nonzero
F-linear functional such that s(1) = 0. Then for every n > 0, the diagram

CK/F

kn(K) —— ku(F)

| |
(F

-n Sx )

I'K) == 1"
commutes where the vertical homomorphisms are defined in (5.1)).

PRrOOF. All the maps in the diagram are K, (F')-linear, in view of Lemma [34.16, it
is sufficient to check commutativity only when n = 1. The statement follows now from
Corollary 134.19. O

LEMMA 40.2. Let F be a field of characteristic 2 and let K/F be a quadratic field
extension. Let s : K — F be a nonzero F-linear functional satisfying s(1) = 0. Then the
diagram

18 commutative.

Proor. It follows from Lemmas 34.14 and 34.16 that it is sufficient to prove the
statement in the case n = 1. This follows from Lemma 34.14 since the corestriction map

169
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cxp - HY(K) — H'(F) is induced by the trace map Trg,p : K — F (cf. Example
100.2). O
We set ["(F) =W (F)ifn <0.
We first consider the case char F' # 2.

THEOREM 40.3. Let F be a field of characteristic different from 2 and let K = F(z)/F
be a quadratic extension with 2> = a € F*. Let s : K — F be an F-linear functional such
that s(1) = 0. Then the following infinite sequences

{{a)) {{a))

FE ITHR) S INF) S IE) S5 I(F) S I E) =
TN ST () PR TR S TR S TR -

are exact.
PrOOF. Consider the diagram

ko (F) =1 ko (F) 27 e (K) 2 Ry Y k()

| l ! l |

(F) ((a))  n TK/F 771([() Sx -n «({a))  sn+1

1 I'(F) I'(F) I (F)
where the vertical homomorphisms are defined in (5.1). It follows from Lemma 40.1
that the diagram is commutative. By Fact 5.15, the vertical maps in the diagram are

isomorphisms. The top sequence in the diagram is exact by Proposition 100.10. Therefore,
the bottom sequence is also exact.

n—1

To prove exactness of the first sequence in the statement consider the commutative
diagram
]n-l-l(F) s In+1(K)—> In-i—l(F>_> In-i-Z(F>_> ]n+2(K)

L T A

["Y(F)— I"(F) — I"(K) — I"(F) — I"*'(F)— I[""\(K)

I e

—n—1 —n—+1

I" ()= T'(F) = T(K) —T'(F) =1 (F)
with the horizontal sequences considered above and natural vertical maps. By the first
part of the proof the bottom sequence is exact. Therefore exactness of the middle sequence
implies exactness of the top one. Thus the statement follows by induction on n (with the
start of the induction given by Corollary 34.12). O

REMARK 40.4. Let char F' # 2. Then the second exact sequence in Theorem 4.3/ can
be rewritten as

GW (K)

GW (F)
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is exact (cf. Corollary 34.12).

Now consider the case of fields of characteristic 2. We consider separately the cases of
separable and purely inseparable quadratic field extensions.

THEOREM 40.5. Let F' be a field of characteristic 2 and let K/F be a separable qua-
dratic field extension. Let s : K — F be a nonzero F-linear functional such that s(1) = 0.
Then the following sequences

r S -N r S
0— I"(F) =5 INK) 25 1(F) —5 1Y(F) =5 IYEK) 25 Y(EF) =0,
-n T -n S« N ‘N n r -n S« =N
0—T"(F) 25 T(K) = T'(F) 5T (P ZE T (K) S T (F) =0
are exact.
Proor. Consider the diagram
0 N kn(F) TKJ) kn(K) CKJ) kn(F) [K] Hn+1(F) TK/F Hn+1(K) CK/F Hn+1(F) N 0

l l l T | T

0 — Tn(F) TK/F Tn(K) S« Yn(F) ‘Ng/r TnJrl(F) 7n+1 —n+1 (F) 0

q . () —— 1,
where the vertical homomorphisms are defined in (5.1) and Fact [16.2/ and the middle map
in the top row is the multiplication by the class [K] € H'(F). By Proposition 100.12,

the top sequence is exact. By Facts [5.15 and [16.2, the vertical maps are isomorphisms.
Therefore the bottom sequence is exact.

TK/F

Exactness of the other sequence follows by induction on n from the first part of the
proof and commutativity of the diagram

0— [”+1(F)—> I"+1(K)—> [”+1(F)—> [;+2(F)—> ]”+2( )— I”+2(F) —0

I T %

0— I"(F) — I"(K) — I"(F) — I"Y(F)— I"Y(K)— ["7(F) — 0

I T

0-T"(F) —=T'(K) —-T'(F) =L (F)=T. (k)= T."'(F) = 0.

The base of the induction follows from Corollary 34.15. U

THEOREM 40.6. Let F be a field of characteristic 2 and let K/F be a purely inseparable
quadratic field extension. Let s : K — F be an F-linear functional such that s(1) = 0.
Then the following sequences

S (R

TK/F TK/F
—_— —_

I"(K) 2 I"(F) I"(K) 2 .o

Sk TN TK/F —n TK/F —n

TR S T(K)ST(F) 25 T(K) 2.

are exact.
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Proor. Consider the diagram
FalF) =5 ka(K) =5 ko(F) = ka(K)

| l l

T'(F) 25 T'(K) = T'(F) 25 TYEK)

where the vertical homomorphisms are defined in (5.1). The diagram is commutative by
Lemma 40.1. By Fact 5.15/ the vertical maps in the diagram are isomorphisms. The top
sequence in the diagram is exact by Proposition 99.12. Therefore the bottom sequence is
also exact. The proof of exactness of the second sequence in the statement of the theorem

is similar to the one in Theorems 40.3 and 140.5. O

Fact 40.7. [45] Let char F' # 2 and let p be a quadratic n-fold Pfister form over F.
Then the sequence

[T (L) =25 me(p) 222 green(p) 2292, fren(p(p),

where the direct sum is taken over all quadratic field extensions L/F such that py is
1sotropic, 1S exact.

Fact 40.8. ([4, Th. 5.4]) Let char ' = 2 and let p be a quadratic n-fold Pfister form
over . Then the kernel of g, p : H"(F) — H"(F(p)) coincides with {0, e,(p)}.

COROLLARY 40.9. Let p be a quadratic n-fold Pfister form over an arbitrary field F.
Then the kernel of the natural homomorphism IZ(F) — TZ(F(p)) coincides with {0, p}.

Proor. Under the isomorphism TZ(F ) = H"(F) (cf. Fact16.2) the homomorphism
in the statement is identified with H"(F') — H™(F(p)). The statement now follows from
Fact 40.7/ if char F' # 2 and Fact [40.8 if char F' = 2. U

The following statement generalizes Proposition 25.13.
THEOREM 40.10. If F is a field then J,(F) = I7'(F) for everyn > 1.

ProOF. By Corollary 25.12, we have an inclusion I7'(F') C J,(F). Let ¢ € J,(F). We
show by induction on n that ¢ € I[['(F). As ¢ € J,_1(F), by the induction hypothesis, we
have ¢ € I"'(F). Let ¢ be a sum of m general (n — 1)-fold Pfister forms in I~*(F) and
let p be one of them. Let K = F(p). Since ¢k is a sum of m — 1 general (n — 1)-Pfister
forms in I7~'(K), by induction on m we have ¢x € I'(K). By Corollary 40.9, we have
either p € I7'(F) or ¢ = p modulo I (F'). But the latter case does not occur as ¢ € J,,(F)
and p ¢ J,(F). O

41. Annihilators of Pfister Forms

The main purpose of this section is to establish the generalization of Corollary 6.23
and Theorem 9.13/ on the annihilators of bilinear and quadratic Pfister forms and show
these annihilators respect the grading induced by the fundamental ideal. We even show
if o is a bilinear or quadratic Pfister form then the annihilator anny g (o) N I"(F) is
not only generated by bilinear Pfister forms annihilated by a but is in fact generated
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by bilinear n-fold Pfister forms of the type b ® ¢ with b € anny (p)(a) a 1-fold bilinear
Pfister form and ¢ a bilinear (n — 1)-fold Pfister form. In particular, Pfister forms of the
type ((w,as,...,a,)) with w € D(co(l)) and a; € F* generate I}'(F') thus solving the
problems raised at the end of §33.

Let F be a field. The smallest integer n such that I"T(F) = 2["(F) and I"T(F) is
torsion free is called the stable range of F' and is denoted by st(F'). We say that F' has
finite stable range if such an n exists and write st(F') = oo if such an n does not exist. By
Corollary35.29, a field F has stable range if and only if "™ (F) = 2I"(F) for some integer
n. If F is not formally real then st(F) is the smallest integer n such that I"*1(F) = 0.
If F is formally real then it follows from Corollary [35.27 that st(F) = st(F(v/—1)), i.e.,
st(F) is the smallest integer n such that I"*1(F(y/=1)) = 0.

LEMMA 41.1. Suppose that F' has finite transcendence degree n over its prime subfield.
Then st(F) <n+2 if char F =0 and st(F) <n+1 if char ' > 0.

PRrOOF. If the characteristic of F' is positive then F'is a C,,;;-field (cf. Appendix[96.7)
as finite fields are C) fields by the Chevellay-Warning Theorem (cf. [55], 1.2, Theorem 3)
and therefore every (n+2)-fold Pfister form is isotropic, so I"*2(F) = 0, i.e., st(F) < n+1.
If the characteristic of F is zero then the cohomological 2-dimension of F'(y/—1) is at most
n + 2 by §[56], 11.4.1, Proposition 10 and I1.4.2, Proposition 11. By Fact [16.2/ and the
Hauptsatz 23.8, we have I"*3(F(y/—1)) = 0. Thus st(F) < n + 2. O

As many problems in a field F' reduce to finitely many elements over its prime field,
we can often reduce to a problem over a given field to another over a field having finite
stable range. We then can try to solve the problem when the stable range is finite. We
shall use this idea repeatedly below.

EXERCISE 41.2. Let K/F be a finite simple extension of degree r. If I"(F') = 0 then
I""(K) = 0. In particular, if a field has finite stable range then any finite extension also
has finite stable range.

Next we study graded annihilators.

Let b be a bilinear n-fold Pfister form. For any m > 0 set

ann,,(b) ={a € I™(F) |a-b=0¢€ W(F)},

amn,,(b)={aecl (F)|a-b=0ec GW(F)}.
Similarly, for a quadratic n-fold Pfister form p and any m > 0 set
anny, (p) = {a € I™(F) | a-p=0€ I(F)},

a(p) = {a € T"(F) |a-p =0 € T,(F)}.

It follows from Corollary [6.23 and Theorem 9.13| that ann;(b) and ann;(p) are gener-
ated by the binary forms in them. Thus the following theorem determines completely the
graded annihilators.
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THEOREM 41.3. Let b and p be bilinear and quadratic n-fold Pfister forms respectively.
Then for any m > 1, we have

ann,,(b) = I™(F) -anny(b),  amn,(b) =1 (F)-amm(b),
anty(p) = "4 (F) -ann(p), amn(p) =T (F) - amma (p).
PRrROOF. The case char F' = 2 is proven in [?]Aravire, Baeza, Th.1.1 and 1.2. We
assume that char F' # 2. It is sufficient to consider the case of the bilinear form b.
It follows from Fact 40.7 that the sequence
[17" () == 1"(F) 2T (F),
is exact where the direct sum is taken over all quadratic field extensions L/F such that
by, is isotropic. By Lemma [34.16, we have I"™(L) = I™ *(F)I(L) hence the image of
Sy : I™(L) — I"™(F) is contained in I™ !(F')-ann;(b). Therefore, the kernel of the second
map in the sequence coincides with the image of I"~*(F)-ann(b) in I (F). This proves
— wm—1 —
ann,,(b) =1 (F)-ann(b).
Let ¢ € ann,,(b). We need to show that ¢ € I™1(F) - ann;(b). We may assume that
F is finitely generated over its prime field and hence F' has finite stable range by Lemma
41.1. Let k be an integer such that & + m > st(F'). Repeatedly applying exactness
of the sequence above, we see that ¢ is congruent to an element a € I**™(F) modulo
I 1(F) - ann;(b). Replacing ¢ by a we may assume that m > st(F).
We claim that it suffices to prove the result for ¢ an m-fold Pfister form. By Theorem
33.14, for any ¢ € I"™(F), there is an integer n such that

2"sgnc = Zk’ - sgn ¢;,
i=1

with k; € Z and (n + m)-fold Pfister forms ¢; with pairwise disjoint supports. As m >
st(F'), it follows from Proposition 35.22, that ¢; ~ 2"9; for some m-fold Pfister forms ;.
Since I"™(F') is torsion free, we have

C:ZT:]{JZ"DZ‘
i=1

in I"™(F) and the supports of the 9;’s are pairwise disjoint. In particular, if b ® ¢ is
hyperbolic then supp(b) N supp(c) = 0, so supp(b) N supp(d;) = 0 for every i. As I"(F)
is torsion free, this would mean that b ® ¢; is hyperbolic for every i and establish the
Claim. Therefore, we may assume that ¢ is a Pfister form.

The result now follows from Lemma 35.18(1). O
We turn to the generators for I}*(F'), the torsion in I"™(F).
THEOREM 41.4. For any field F we have I™(F) = I""Y(F)I,(F).

PROOF. Let ¢ € I[*(F). Then 2™c¢ = 0 for some m. Applying Theorem 41.3/ to the
Pfister form b = 2™ (1), we have

¢ € ann,(b) = I""Y(F) -anny(b) C I" Y (F)I,(F). O
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Recall that by Proposition 31.30), the group I;(F') is generated by binary torsion forms.
Hence Theorem 41.4 yields

COROLLARY 41.5. A field F' satisfies property A, if and only if I"(F) is torsion-free.

REMARK 41.6. By Theorem 41.4; every torsion bilinear n-fold Pfister form b can
be written as a Z-linear combination of the (torsion) forms ({(ai,as,...,a,)) with a; €
D(oco(1)). Note that b itself may not be isometric to a form like this (cf. Example 32.4).

THEOREM 41.7. Let b and p be bilinear and quadratic n-fold Pfister forms respectively.

Then for any m > 0, we have
W (F)b N ™™ (F) = I"™(F)b,
W(F)o N I (F) = I™(F)p.

PRrROOF. We prove the first equality (the second being similar). Let ¢ € W(F)b N
I"™™(F). We show by induction on m that ¢ € I"™(F)b. Suppose that ¢ =a-b in W(F)
for some a € I }(F), i.e., a € ann,,_;(b). By Theorem 41.3, we have a = d¢ for some
0 € I™2(F) and ¢ € W(F) satisfying ¢ € anm;(b). Let § be a binary bilinear form
congruent to ¢ modulo I?(F). As fb=¢b =0 € Tn+1(F), the general (n + 1)-fold Pfister

form §f ® b belongs to I"™2(F). By the Hauptsatz 23.8, we have {- b = 0 in W(F). Since
a = of modulo [™(F) it follows that ¢ = ab € I"™(F)b. O

EXERCISE 41.8. Let b and ¢ be bilinear k-fold and n-fold Pfister forms respectively
over a field F' of characteristic not 2. Prove that for any m > 1 the group

W(F)C N annW(F)(b) N Im+n(F)
is generated by (m 4 n)-fold Pfister forms 0 in annyy () (b) that are divisible by c.

The theorem allows us to answer the problems raised at the end of §33.

COROLLARY 41.9. Let b be a form over F'. If2"b € I"*"(F') then b € I"™(F)+W,(F).
In particular,

sgn(b) € C(X(F),2™2Z) if and only if b € I"™(F)+ W, (F).

PROOF. Suppose that sgnb € C(X(F'),2"Z). By Theorem 33.14, there exists a form
a € I"(F) such that 2"sgnb = sgna for some n. In particular, 2"b — a € W, (F).
Therefore 28" = 2¥q for some k. By Theorem 41.7 applied to the form 2*7"(1), we may
write 2¥a = 28+7¢ for some ¢ € I"(F). Then b — ¢ lies in W;(F) as needed. O

COROLLARY 41.10. Let F' be a formally real pythagorean field. Let b be a form over
F. If2"b € I"™™(F) then b € I"™(F). In particular, sgn(I™(F)) = C(X(F),2™Z).

If F is a formally real let GC(X(F),Z) be the graded ring
GC(X(F),z) = [[2"C(x(F),z)/2""' C(%(F),Z2) = [ [ C(%(F),2"2 /2" 2)

and GW;(F) the graded ideal in GW(F) induced by [;(F). Then Corollary 41.9/ implies
that the signature induces an exact sequence

0— GWy(F) - GW(F) - GC(X(F),Z)
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and Corollary 41.10/ says if F' is a formally real pythagorean field then the signature
induces an isomorphism GW (F) — GC(X(F),Z).

We interpret this results in terms of the reduced Witt ring and prove the result men-
tioned at the end of §34.

THEOREM 41.11. Let K be a quadratic extension and let s : K — F be a nonzero
F-linear functional such that s(1) = 0. Then the sequence

0 — I (K/F) — I (K) 2 1

red red

(F) =5,

red

(F)
18 exact.

PROOF. We need only to show exactness at I",(K). Let ¢ € I" ,(K) satisfy s.(c) is
trivial in 172 ,(F'), i.e., the form s,(c) is torsion. By Theorem 41.4, we have s.(¢) = > a;b;
with a; € I""1(F) and b; € I,(F). Tt follows by Corollary 134.32 that b; = s,(9;) for some
torsion forms 9; € I(K). Therefore, the form ¢ := ¢ — ) (a;) x0; belongs to the kernel of
s, I"(K) — I™(F). It follows from Theorems 40.3/ and 40.5 that e = rx/p(f) for some

O

f € I"(F). Therefore ¢ = rg,p(f) modulo torsion.

42. Presentation of ["(F)

In this section, using the validity of the Milnor conjecture, we show that the presen-
tation established for I*(F') in Theorem 4.22 generalizes to a presentation for I"(F).

Let n > 2 and let 1,,(F) be the abelian group generated by all the isometry classes [b]
of bilinear n-fold Pfister forms b subject to the generating relations:

) {1, 1) =0.
(2) [({ab,c)) @0] 4+ [({a, b)) ®0] = [({a,bc)) @]+ [{{(b,c)) ®?] for all a,b,c € F* and
bilinear (n — 2)-fold Pfister forms 0.
Note that the group I,(F') was defined earlier in Section §4.

There is a natural surjective group homomorphism g, : I, (F) — I"(F) taking the
class [b] of a bilinear n-fold Pfister form b to b € I"(F'). The map g, is an isomorphism
by Theorem 4.22

As in the proof of Lemma 4.18, applying both relations repeatedly, we find that
[({(a1,as,...,a,))] = 0if a; = 1. It follows that for any bilinear m-fold Pfister form b, the
assignment a — a ® b gives rise to a well defined homomorphism

L(F) = Ly (F)

=n-+m
taking [a] to [a ® b].
LEMMA 42.1. Let b be a metabolic bilinear n-fold Pfister form. Then [b] =0 in L,(F).

Proor. We prove the statement by induction on n. Since gy is an isomorphism, the
statement is true if n = 2. In the general case, we write b = ({a)) ® ¢ for some a € F* and
a bilinear (n — 1)-fold Pfister form ¢. We may assume by induction that ¢ is anisotropic.
It follows from Corollary [6.14] that ¢ ~ ((b)) ®d for some b € F* and bilinear (n — 2)-fold
Pfister form 9 such that ((a,b)) is metabolic. By the case n = 2, we have [({a,b))] = 0 in
L,(F), hence [b] = [({(a,b)) ®0] =0 in L,(F). O
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For each n, let o, : 1,1 (F) — I,(F) be the homomorphism map given by

[{{a, b)) @ ¢] = [({a)) @ ] + [((b)) @ ] = [{{ab)) @ ¢].
We show that this map is well defined. Let ((a,b)) ® ¢ and ({a’,0')) ® ¢’ be isometric
bilinear n-fold Pfister forms. We need to show that

(42:2) [((a)) ® ] + [{(0)) ® ] = [((ab)) ® ] = [{{a)) ® ] + [((V)) ® ¢'] = [((a'}) @ ¢

in 1,,(F). By Theorem 6.10, the forms ({a, b)) ® ¢ and ((a’, b)) ® ¢’ are chain p-equivalent.
Thus we may assume that one of the following cases hold:
(1) a=d,b=1V and c ~ (.
(2) ({a,b)) ~ ({(a’,V)) and ¢ = (.
(3) a=d, ¢c={{c))®0, and ¢ = ((¢))®0 for some ¢ € F* and bilinear (n—2)-fold
Pfister form 9 and ((b, c)) ~ ((V/,c’)).

It follows that it is sufficient to prove the statement in the case n = 2. The equality
(42.2)) holds if we compose the morphism as with the homomorphism ¢, : I,(F) — I*(F).
But g, is an isomorphism, hence «, is well defined.

The homomorphism «,, fits in the commutative diagram

L 1(F) == L,(F)

gn+1 J{ J{gn

I"YF) —— I"(F)
with the bottom map the inclusion.
LEMMA 42.3. The natural homomorphism
~ @ coker(ay) — I (F)
s an isomorphism.
Proor. Consider the map
7: (F*)" — coker(a,) given by (aq,aq,...,a,) — [{{a1,a9,...,a,))] + Im(a,).

Clearly 7 is symmetric with respect to permutations of the a;’s.
By definition of «,, we have

[{{a)) @ ] + [((0) @ ] = [{{ab)) ® ¢] mod im(a,)

for any bilinear (n — 1)-fold Pfister form ¢. It follows that 7 is multilinear.

The map 7 also satisfies the Steinberg condition. Indeed if a; + as = 1, then
[({a1,a2))] = 0 in I,(F) as go is an isomorphism and therefore [({a1,aq,...,a,))] = 0
in I (F).

As the group coker(«,,) has exponent 2, the map 7 induces a group homomorphism
kn(F) = K, (F)/2K,(F) — coker(ay,)
which we also denote by 7. The composition v o 7 takes a symbol {ay,as,...,a,} to

{{ay,ag,...,a,)) + [""(F). By Fact 5.15, the map v o 7 is an isomorphism. As 7 is
surjective, we have v is an isomorphism. O
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It follows from Lemma 42.3 that we have a commutative diagram

I

_n+1(F> — ln(F) -

gn-&-ll gnl
—=n

0 —— I"Y(F) —— I'(F) —— I

-n

I'F) — 0

(F) —— 0
with exact rows. It follows that if g,,.1 is an isomorphism then g, is also an isomorphism.

THEOREM 42.4. Ifn > 2, the abelian group I"(F) is generated by the isometry classes
of bilinear n-fold Pfister forms subject to the generating relations

(1) ((1,1,...,1)) =0.
(2) ((ab,c)) -0+ ({(a,b)) -0 = ((a,bc)) -0+ ((b,c)) -0 for all a,b,c € F* and bilinear
(n — 2)-fold Pfister forms 0.

PROOF. We shall show that the surjective map g, : I,(F) — I"(F) is an isomor-
phism. Any element in the kernel of g, = g, r belongs to the image of the natural map
Gn.Fr — gnr Where I’ is a subfield of F' finitely generated over the prime subfield. Thus
we may assume that F'is finitely generated. It follows from Lemma 41.1/ that F' has finite
stable range. The discussion preceding the theorem shows that we may also assume that
n > st(F).

If F' is not formally real then I"(F) = 0, i.e., every bilinear n-fold Pfister form is
metabolic. By Lemma 42.1], the group I,,(F') is trivial and we are done.

In what follows we may assume that F'is formally real, in particular, char F' # 2.

We let M be the abelian group given by generators {b}, the isometry classes of bilinear
n-fold Pfister forms b over F', and relations {b} = {c} + {9} where the bilinear n-fold
Pfister forms b, ¢ and ? satisfy b = ¢ +0 in W(F'). In particular, {b} =0in M if b =0
in W(F).

We claim that the homomorphism
d: M — I,(F) given by {b} — [b]

is well defined. To see this, it suffices to check that if b, ¢ and 0 satisfy b = ¢+0 in W(F)
then [b] = [¢] + [0] in L,,(F). As char F' # 2, it follows from Proposition 24.5 that there
are ¢,d € F'* and a bilinear (n — 1)-fold Pfister form a such that

c~{({(e)y®@a, 2~ {{d)®a, b~ {{cd))a.
The equality b = ¢ 4+ 0 implies that ({¢,d)) - a =0 in W (F'). Therefore
0 = an([({c,d)) ® a]) = [¢] + [0] — [b]
in I,,(F), hence the claim.

Let b be a bilinear n-fold Pfister form and d € F*. As I""(F) = 2I"(F), we can
write ((d)) - b = 2¢ and ((—d)) - b = 20 in W(F) with ¢, ? bilinear n-fold Pfister forms.
Adding, we then get 2b = 2¢ 4 20 in W(F'), hence b = ¢ + 0 since I"(F’) is torsion free.
It follows that [b] = [¢] + [0] in M. We generalize this as follows:



42. PRESENTATION OF I™(F) 179

LEMMA 42.5. Let F be a formally real field having finite stable range. Suppose that n
is a positive integer in the stable range. Let b € P,(F) and dy,...,d,, € F*. For every

€ = (€1,...,6n) € {E£1}™ write ((e1dy, ..., €ndn)) @ b ~ 2™¢c. with ¢. € P,(F). Then
[b] = > [c.] in M.

Proor. We induct on m: The case m = 1 was done above. So we assume that m > 1.
For every € = (€g,...,6,) € {1} write

<<€2d2, e emdm>> ®b~ 27”_106/

with 0+ € P,(F). By the induction hypothesis, we then have [b] = ), [0~] in M. It
therefore suffices to show that [0.] = [c(1,ey] + [¢(—1,e)] for every €. But
meg == 2<<62d2, e ,Emdm>> -b
= ({{d1)) + ((=d))) - ({e2da, . - -, €mdm)) - b
= 2mC(176/) + 2mc(—1,e’)
in W(F) hence 0o = ¢(1.¢) + ¢(—1,¢) in W(F). Consequently, [0o] = [cq,¢)] + [¢(~1,ey] in
M. U

PROPOSITION 42.6. Let F' be a formally real field having finite stable range. Suppose
that n is a positive integer in it. Then every element in M can be written as a Z-linear
combination ijl lj - [¢;] with forms ¢1,...,¢s € P,(F) having pairwise disjoint supports

PROOF. Let a = >/ ki - [b;] € M. Write b; ~ ((a;1,...,ap)) for i = 1,... r.
For every matrix € = (€p);0) o, in {£1}7" let fo ~ @)_; Q= ({eja;)) and write

fe ®b; >~ 2™¢; . with ¢; . bilinear n-fold Pfister forms for 7 = 1,...,r. By Lemma 42.5, we
have [b;] = > [¢;] in M for i =1,...,r, hence

a= ki o] = kD fed =303 ki leid

in M.

For each € write fo ~ 2"~ "0, with 0. a bilinear n-fold Pfister form. Clearly, the f.
have pairwise disjoint supports, hence also the d.. Now look at a pair (i,¢). If all the
€k, k=1,---,r, are 1 then f. ® b; = 2"f. = 2", hence ¢; = .. If, however, some €,
k=1,---,r is —1 then f. ® b; = 0 hence ¢;. = 0. It follows that for each € we have
S ki [cid] =l -0, for some integer I.. Consequently,

T

GZZZ]{?Z"[CLE]:Zh-UE. O

e 1=1

Applying Proposition 42.6/ to an element in the kernel of the composition

M1 (F) 2 (F) 2 0(X(F), Z)
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we see that all the coefficients [; are 0. Hence the composition is injective. Since ¢ is
surjective, it follows that g, is injective and therefore is an isomorphism. The proof of
Theorem 142.4] is complete. U

43. Going Down and Torsion-freeness

We show in this section that if K/F is a finite extension with ["(K) torsion free then
I"(F) is torsion free. Since we already know this to be true if char F' = 2 by Lemma 35.5,
we need only show this when char F' # 2. In this case we use the solution of the Milnor
conjecture that the norm residue map is an isomorphism.

Let F' be a field of characteristic not 2. For any integer k,n > 0 consider Galois

cohomology groups (cf. Appendix §100)
H™(F k) := H"™ Y(F,2/2"7).

In particular H"(F,1) = H"(F).

According to (Appendix §100, Corollary 100.7) there is an exact sequence

0— H"(F,r) — H"(F,r+s) — H"(F,s).
For a field extension L/F set
H"(L/F,k) := ker(H"(F, k) =% H™(L, k).

For all r,s > 0, we have an exact sequence
(43.1) 0— H"(L/F,r) — H"(L/F,r +s) — H"(L/F,s).

PROPOSITION 43.2. Let char F' # 2. Suppose I}'(F') = 0. Then H"(F,,/F,k) =0 for
all k.

PRrROOF. Let o € H"(F,,/F'). As F,, is the union of admissible extensions over F (cf.
Definition [31.15), there is an admissible sub-extension L/F of F,,/F such that oy = 0.
We prove by induction on the degree [L : F| that « = 0. Let E be a subfield of L such that
E/F is admissible and L = E(v/d) where d € D(2(1)g). Tt follows from the exactness of
the cohomology sequence (Appendix §Theorem 98.13) for the quadratic extension L/F
that ap € H"'(E) U (d). By Proposition 35.7, the field E Satisfies A,. Hence all the
torsion Pfister forms ({(ay,...,a,_1,d)) over E are trivial, hence H" }(E) U (d) = 0 by
Fact 16.2/ and therefore ap = 0. By the induction hypothesis, o = 0.

We have shown that H"(F,,/F) = 0. Triviality of the group H"(F},/F, k) follows
then by induction on & from exactness of the sequence (43.1)). U

EXERCISE 43.3. Let char F' # 2. Show that if H"(F,,/F) = 0 then I"(F) is torsion
free.

LEMMA 43.4. A field F of characteristic different from two is pythagorean if and only
if F' has no cyclic extensions of degree 4.
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PRrROOF. Consider the exact sequence
HY(F,2) & HY(F) X HX(F),
where b is the Bockstein homomorphism, b((a)) = (a)U(—1) (cf. Appendix §77 (100.13))).
The field F is not pythagorean if there is non-square a € F* such that a € D(2(1)). The
later is equivalent to (a) U (—=1) = 0 in H?(F) = Bry(F) which in its turn is equivalent
to (a) € im(g), i.e., the quadratic extension F(y/a)/F can be embedded into a cyclic
extension of degree 4. O

Let F' be a field of characteristic different from two such that psn C F with n > 1 and
m < n. Then Kummer theory implies that the natural map
(43.5) F*/F** = H\(F,n) — H"(F,m) = F*/F**"
is surjective.
LEMMA 43.6. Let F' be a pythagorean field of characteristic different from two. Then
croy=nyr P H(F(V=1),s) — H'(F,s)
18 trivial for every s.

PROOF. If F is non-real then it is quadratically closed, so H!(F,s) = 0. Therefore,
we may assume that F' is formally real. In particular, F'(v/—1) # F.

Let 8 € HY(F,s + 1) = Hom ou(T'r,Z/2°77). Then the kernel of 3 is an open
subgroup U of T'p with T'z /U cyclic of 2-power order. As F is pythagorean, F has no cyclic
extensions of a 2-power order greater than 2 by Lemma [43.4. It follows that [I'p : U] < 2
hence 3 lies in the image of H'(F) — H'(F,s + 1). Consequently, 3 lies in the kernel of
HY(F,s+1) — H'(F,s). This shows that the natural map H'(F,s + 1) — H'(F,s) is
trivial. The statement now follows from the commutativity of the diagram

HYF(V=T),s+ 1) =20 FY(F s +1)

! Js

HY(F(V/=T),s) —Y00 gy, s)
together with the surjectivity of H'(F(v/—1),s + 1) — H'(F(y/—1),s) which holds by
(43.5) as g C Qpy(v/—1) C F(v/—1). O

LEMMA 43.7. Let F be a field of characteristic different from two satisfying pos C
F(v/—1). Then for every d € D(2(1)) the class (d) belongs to the image of the natural
map H'(F,,/F,s) — H'(F,,/F).

PROOF. By (43.5), the natural map g : HY(F(v/-1),s) — HY(F(y/-1)) is sur-
jective. As d € Np(1)p(F(V=1)), there exists a v € H'(F(v/—1),s) satisfying
(d) = g(cpy=n,r(7)). By Lemma 43.6, we have cp,/—)/r(7) € H'(F,/F,s) and the
image of ¢p(/—1),p(7) in H'(F,,/F) coincides with (d). O

THEOREM 43.8. Let char F' # 2. Let K/F be a finite field extension. If I"(K) is
torsion free for some n then I"(F') is also torsion free.
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PROOF. Let 2" be the largest power of 2 dividing [K : F|. Suppose first that the field
F(v/—1) contains pigr+1.

By Theorem 41.4, the group I}'(F') is generated by the bilinear n-fold Pfister forms
{{ar,...,an_1,d)) satisfying d € D(2(1)). By Lemma 43.7, there is o € H'(F},,/F,r + 1)
such that the natural map H'(F,,/F,r + 1) — H'(F},,/F) takes a to (d).

Recall that the graded group H*(F},/F,r+ 1) has natural structure of a module over
the Milnor ring K,(F) (cf. Appendix, (100.5)). Consider the element

B=A{a,...,an1} -a€ H'(F,,/F,r+1).
As I'M(K) = 0, we have H"(K,,/K,r + 1) = 0 by Proposition 43.2. Therefore

[K . F] 'ﬁ:CK/FOTK/F(ﬂ) =0
hence 2”3 = 0. The composition
H"(F,r+1)— H"(F) — H"(F,r+1)
coincide with the multiplication by 2". Since the second homomorphism is injective by
(43.1), the image {a1, ..., an—1}-(d) = (a,...,an—1,d) of Bin H"(F') is trivial. Therefore,
({ay,...,a,_1,d)) is hyperbolic by Fact 16.2.

Consider the general case. As g C Fp,(v/—1) there is a subfield £ C F),, such that
por+1 C E(y/—1) and E/F is an admissible extension. Then L := KE is an admissible
extension of K. In particular, I™(L) is torsion free by Proposition [35.7) and Corollary
41.5. Note also that the degree [L : E] divides [K : F]. By the first part of the proof

applied to the extension L/E we have I'(E) = 0. It follows from Theorem [35.12/ and
Corollary 41.5 that IJ'(F') = 0. O

COROLLARY 43.9. Let K be a finite extension of a non formally real field F. If
I"(K) =0 then I"(F) = 0.

ProoOF. If char FF = 2, this was shown in Lemma [35.5. If char F' # 2, this follows
from Theorem 43.8 0



CHAPTER VIII

On the norm residue homomorphism of degree two

In this chapter we prove the following case of Fact [100.6.

THEOREM 43.10. For every field F' of characteristic not 2, the norm residue homo-
morphism
hp = h%: KyF 2K, F — Bry F,

b
taking {a,b}+2K5F to the class [a, b] of the quaternion algebra (GF’, ), is an isomorphism.

COROLLARY 43.11. Let F be a field of characteristic not 2. Then

(1) The group Bry F' is generated by the classes of quaternion algebras.
(2) The following is the list of the defining relations between classes of quaternion
algebras:

b b "b bt’ b b
1. (ac;, ) = (CLI’7 >.(a]; ) and (CL’F ) = (a],? )(a}? )foralla,a’,b,b’e
FX
2
2. (“];b> —1,

3. (“;’) =1lifa+b=1.

The main idea of the proof is to compare the norm residue homomorphisms hr and
hpc), where C' is a smooth conic curve over F. The function field F(C) is a generic
splitting field for a symbol in ko(F'), so passing from F' to F(C) allows us to carry out
inductive arguments.

44. Geometry of conic curves

In this section we establish interrelations between projective conic curves and corre-
sponding quaternion algebras.

44.A. Quaternion algebras and conic curves. Let () be a quaternion algebra
over a field F'. Recall (Appendix [97.E) that @ carries the canonical involution a — a, the
reduced trace linear map

Trd:QQ — F, a—a+a

and the reduced norm quadratic map
Nrd: Q — F, a+ aa.
183

numbering f
the previous
tion!



184 VIII. ON THE NORM RESIDUE HOMOMORPHISM OF DEGREE TWO

Every element a € () satisfies the quadratic equation
a® — Trd(a)a + Nrd(a) = 0.

Set
Vo :=Ker(Trd) ={a € Q | a = —a},
so Vo is a 3-dimensional subspace of (). Note that 22 = —Nrd(z) € F for any = € Vj,
and the map g : Vo — F given by ¢g(x) = 2* is a quadratic form on V. The space Vg
is the orthogonal complement to 1 in () with respect to the non-degenerate bilinear form
on ():
(a,b) — Trd(ab).

The quadric Cg of the form ¢g(x) in the projective plane P(Vy) is a smooth projective
conic curve. Conversely, every smooth projective conic curve (1-dimensional quadric) is
of the form Cy for some quaternion algebra @ (cf. Exercise 77).

PROPOSITION 44.1. The following conditions are equivalent:
(1) @ is split.
(2) Cq is isomorphic to the projective line P'.
(3) Cq has a rational point.

PROOF. (1) = (2): The algebra @ is isomorphic to the matrix algebra My (F'). Hence
Vp is the space of trace 0 matrices and Cgq is given by the equation X? +YZ = 0. The
morphism Cg — P!, given by [X : Y : Z] — [X : Y] = —[Z : X] is an isomorphism.

(2) = (3) is obvious.

(3) = (1): There is a nonzero element x € @ such that 2> = 0. In particular, Q) is not
a division algebra and therefore () is split. O

If @ is a division algebra, the degree of any finite splitting field extension is even.
Therefore, the degree of every closed point of Cg is even. Moreover, since () splits over
a quadratic subfield of @), the conic Cy has a point of degree 2. Thus, the image of the
degree homomorphism deg : CHy(Cg) — Z is equal to 2Z (Cf. Corollary [70.3). Note also
that the degree homomorphism is injective by Corollary [70.4. Consequently, any divisor
on Cg of degree zero is principal.

EXAMPLE 44.2. If char F' # 2, there is a basis 1,14, 7,k of Q such that a = 2 € F*,
b=j*>€ F*, k=ij=—ji (see Example 97.11). Then Vy = Fi® Fj & Fk and Cy is
given by the equation aX? + bY? — abZ? = 0.

EXAMPLE 44.3. If char F' = 2, there is a basis 1,4, 7,k of @ such that a = i*> € F,
b=j*€F, k=ij=ji+1 (see Example 97.12). Then Vo = F1® Fi & Fj and Cg is
given by the equation X2+ aY? +bZ? +Y Z = 0.

For every a € @) define the F-linear function [, on Vg by the formula
lo(x) = Trd(ax).

Since Trd is a non-degenerate bilinear form on @) (this is sufficient and easy to check over
a splitting field where () is isomorphic to a matrix algebra), hence every F-linear function
on Vj is equal to [, for some a € Q.
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LEMMA 44.4. Let a,b € Q and o, 3 € F. Then
(1) Iy =1y if and only ifa —b € F.
(2) laa+/8b = Oéla + Blb
(3) la = _la;'
(4) lg-r = —=(Nrda)~t -1, if a is invertible.

PROOF. (1) : This follows from the fact that V is orthogonal to F' with respect
to the bilinear form.
(2) is obvious.
(3) For any x € Vg we have lz(z) = Trd(az) = Trd(azr) = Trd(Za) = — Trd(za) =
—Trd(ax) = —l,(z).
(4) Tt follows from (2) and (3) that (Nrda)l,-1 = lz = —L,.
0

Every element a € @ \ F' generates a quadratic subalgebra Fla] = F @& Fa of Q.
Conversely, every quadratic subalgebra K of @ is of the form F[a] for any a € K \ F.
By Lemma 44.4) the linear form [, on V{ is independent, up to a multiple, on the choice
of a € K'\ F. Hence the line in P(Vg) given by the equation [,(z) = 0 is determined by
K. The intersection of this line with the conic Cg is a degree two effective divisor on Cq.
Thus, we get the following maps

Quadratic Rational points Lines Degree 2 effective
subalgebras of @) of P(V3) in P(Vg) divisors on Cg

PROPOSITION 44.5. These two maps are bijections.

PRrOOF. The first map is a bijection since every line in P(V) is given by the equation
lo = 0 for some a € @\ F and a generates a quadratic subalgebra of ). The second map
is a bijection since the embedding of C as a closed subscheme of P(Vj) is given by a
complete linear system. O

REMARK 44.6. Degree 2 effective divisors on Cg are rational points of the symmet-
ric square S*Cg. Proposition 44.5 essentially asserts that S?Cg is isomorphic to the
projective plane P(V{}).

Suppose () is a division algebra. The conic curve Cg has no rational points. Quadratic
subalgebras of ) are quadratic (maximal) subfields of (). A degree 2 effective cycle on
Cq is a closed point of degree 2. Thus, by Proposition [44.5, we have bijections

Quadratic ~ | Rational points Lines ~ Points of
subfields of @ of P(V3) in P(Vg) degree 2 in Cy

In what follows we shall frequently use this constructed bijection between the set of
quadratic subfields of () and the set of degree 2 closed points of Cy.
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44.B. Key identity. In the following proposition we write a multiple of the qua-
dratic form ¢g on Vg as a degree two polynomial of linear forms.

PROPOSITION 44.7. Let () be a quaternion algebra over F. For any a,b,c € @,
lyg Lo + Uiz - Lo + g - Iy = (Trd(cba) — Trd(abe)) - @o.

Proor. We write T' for Trd in the proof. For every x € V we have:

= T(a(T )x)T
= T(ax)T(b)T(cx) — T(abx) (cx)
= T(az)T(b)T (cx) — T (abT (cz)z)
= T(ax)T(b)T (czx) — T(abc)x® + T(abxex),
lie(x) - lo(z) = T (bex)T (ax)
=T((T(b) — b)ex)T(ax)
= T(cz)T'(b)T (az) — T (bex)T (azx)

= —T(az)T(b)T (cz) — T (bex(azx + za))
)T (cx) — T(bexax) + T (bea)x?
= —T(az)T(b)T(cx) — T(axbex) + T(cba)z?

Adding the equalities yields the result. O

44.C. Residue fields of points of 'y and quadratic subfields of (). Suppose the
quaternion algebra () is a division algebra. Recall that quadratic subfields of () correspond
bijectively to degree 2 points of Cy. We shall show how to identify a quadratic subfield
of () with the residue field of the corresponding point in Cg of degree 2.

Choose a quadratic subfield K C Q. For every a € Q \ K, one has Q = K @ aK. We
define the map

pa: Vo — K
by the rule: if ¢ = u + av for u,v € K, then p,(l.) = v. Clearly,

to(le) =0 <= ce K.
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By Lemma [44.4, the map p, is well defined and F-linear. If b € @\ K is another element,
we have

(44.8) to(le) = p(la) pta(le),

hence the maps p, and p,, differ by the multiple p(l,) € K*. The map p, extends to an
F-algebra homomorphism
La 5'(‘/@*) — K

in the usual way (where S°® denotes the symmetric algebra).

Let z € Cy C P(Vg) be the point of degree 2 corresponding to the quadratic subfield
K. The local ring Op(y,),. is the subring of the quotient field of the symmetric algebra
S*(V) generated by the fractions [./lq for all c€ Q and d € Q \ K.

Fix an element a € @ \ F'. We define the F-algebra homomorphism

i Opge = K

l
M(_c) _ Ha(le)
la Ma(ld)
Note that p,(ly) # 0 since d ¢ K and the map p is independent of the choice of a € Q\ K
by (44.8).
We claim that the map g vanishes on the quadratic form ¢¢ defining Cg in P(Vy).
Proposition 44.7 gives a formula for a multiple of the quadratic form g with the coefficient

a := Trd(cba) — Trd(abc).
LEMMA 44.9. There exista € Q\ K, b€ K and ¢ € Q such that o # 0.

PROOF. Pick any b € K \ F' and any a € @ such that ab # ba. Clearly, a € Q \ K.
Then o = Trd((ba — ab)c) is nonzero for some ¢ € @ since the bilinear form Trd is
non-degenerate on Q. O

Choose a,b and ¢ as in Lemma 44.9. We have i4(l;) = 0 since b € K. Also piq(ly) = 1
and p,(lz) = b. Write ¢ = u + av for u,v € K then p,(l.) = v. As

be = bu + bva = bu + Trd(bva) — avb,

by the formula

we have 1,(lz) = —vb and by Proposition 44.7,

ap(pg) = pa(lyg)pa(le) + tta(loz) ta(la) + pa(la) pta(ly) = bv — vb = 0.

Since a # 0, we have p(¢g) = 0 as claimed.
The local ring O¢,, . coincides with the factor ring Op(v,,) .« / ©QOp(v,),e- Therefore, p
factors through an F-algebra homomorphism

p:Oche — K.

Let e € K\ F. The function [l./l, is a local parameter of the local ring Oc,, ., i.e., it
generates the maximal ideal of Oc, .. Since p(le/l,) = 0, the map p induces a field
isomorphism

(44.10) Flz) 5 K
of degree 2 field extensions of F'. We have proved
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PROPOSITION 44.11. Let Q) be a division quaternion algebra. Let K C @) be a quadratic
subfield and x € Cg be the corresponding point of degree 2. Then the residue field F(x)
is canonically isomorphic to K over F. Let a € Q and b € Q \ K. Write a = u + bv
for unique u,v € K. Then the value (1,/ly)(x) € F(x) of the function l,/l, at the point x
corresponds to the element v € K under the isomorphism (44.10).

45. Key exact sequence

In this section we prove exactness of a sequence that compares the groups KsF' and
KyF(C).
Let C' be a smooth curve over a field F. For every (closed) point = € C there is residue
homomorphism
Oy : KuF (C) — K 1F(z) = F(x)~
induced by the discrete valuation of the local ring O¢, (cf. (48.A).
In this section we prove the following

THEOREM 45.1. Let C be a conic curve over a field F'. The sequence

KoF — Ko F(C) 5 [ Fla)* 5 F,
zeC
with 0 = (0,) and ¢ = (Cr)/r), is exact.

45.A. Filtration on K,F(C). Let C be a conic over F. If C splits, i.e., C' ~ P},
the statement of Theorem 45.1/is Milnor’s computation of K> F'(t) given in Theorem 99.7.
So we may (and will) assume that C' is not split. We know that the degree of every closed
point of C' is even.

Fix a closed point zy € C of degree 2. As in §29, for any n € Z let L, be the
F-subspace

{f e FC)| div(f) + nzo > 0} U{0}
of F(C). Clearly L, = 0if n < 0. Recall that Ly = F and L,, - L,, C Lyyp. It follows
from Lemma 29.7/ that dim L,, = 2n + 1 if n > 0.

We write L for L, \ {0}. Note that the value g(z) in F(z) is defined for every g € L
and a point x # x.

Since any divisor on C' of degree zero is principal, for every point x € C' of degree 2n
we can choose a function p, € L such that div(p,) = = — nxy. In particular, p,, € F*.
Note that p, is uniquely determined up to a scalar multiple. Clearly, p,(z) = 0 if = # xo.
Every function in L) can be written as the product of a nonzero constant and finitely
many p, for some points x of degree at most 2n.

LEMMA 45.2. Let x € C' be a point of degree 2n different from xy. If g € Ly, satisfies
g(x) =0 then g = p.q for some q € Ly,_,,. In particular, g =0 if m < n.

Proor. Consider the F-linear map

x i L — F(:L‘), ex(g) = g($)

If m < n, the map e, is injective since x does not belong to the support of the divisor of
a function in L. Suppose that m = n and g € Kere,. Then div(g) = x — nz and hence
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g is a multiple of p,. Thus, the kernel of e, is 1-dimensional. By dimension count, e, is
surjective.
Therefore, for arbitrary m > n, the map e, is surjective and

dim Kere, = dim L,, — deg