Algebraic and Geometric Theory of Quadratic Forms

(preliminary title)

(preliminary version of February 6, 2007)

Richard Elman, Nikita Karpenko,
and Alexander Merkurjev
Contents

Introduction vii

Part . Classical theory of symmetric bilinear forms and quadratic forms 1

Chapter I. Bilinear Forms 3
1. Basics 3
2. The Witt and Witt-Grothendieck Rings of Symmetric Bilinear Forms 11
3. Chain Equivalence 14
4. Structure of the Witt Ring 15
5. The Stiefel-Whitney Map 21
6. Bilinear Pfister forms 24

Chapter II. Quadratic Forms 31
7. Basics 31
8. Witt’s Theorems 38
9. Quadratic Pfister Forms I 44
10. Totally Singular Forms 48
11. The Clifford Algebra 49
12. Binary Quadratic Forms and Quadratic Algebras 52
13. The Discriminant 54
14. The Clifford Invariant 56
15. Chain p-Equivalence of Quadratic Pfister Forms 56
16. Cohomological Invariants 60

Chapter III. Forms over Rational Function Fields 63
17. The Cassels-Pfister Theorem 63
18. Values of Forms 67
19. Forms Over a Discrete Valuation Ring 71
20. Similarities of Forms 74
21. An Exact Sequence for $W(F(t))$ 80

Chapter IV. Function Fields of Quadrics 85
22. Quadrics 85
23. Quadratic Pfister Forms II 90
24. Linkage of Quadratic Forms 93
25. The Submodule $J_p(F)$ 96
26. The Separation Theorem 99
27. A Further Characterization of Quadratic Pfister Forms 101
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Bilinear and Quadratic Forms and Algebraic Extensions</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Structure of the Witt Ring</td>
<td>113</td>
</tr>
<tr>
<td>32</td>
<td>Addendum on Torsion</td>
<td>123</td>
</tr>
<tr>
<td>33</td>
<td>The Total Signature</td>
<td>125</td>
</tr>
<tr>
<td>34</td>
<td>Bilinear and Quadratic Forms Under Quadratic Extensions</td>
<td>129</td>
</tr>
<tr>
<td>35</td>
<td>Torsion in $I^n(F)$ and Torsion Pfister Forms</td>
<td>139</td>
</tr>
<tr>
<td>VI</td>
<td>u-invariants</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>The \bar{u}-invariant</td>
<td>153</td>
</tr>
<tr>
<td>37</td>
<td>The u-invariant for Formally Real Fields</td>
<td>157</td>
</tr>
<tr>
<td>38</td>
<td>Construction of Fields with Even u-invariant</td>
<td>162</td>
</tr>
<tr>
<td>39</td>
<td>Addendum: Linked Fields and the Hasse Number</td>
<td>164</td>
</tr>
<tr>
<td>VII</td>
<td>Applications of the Milnor Conjecture</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Exact Sequences for Quadratic Extensions</td>
<td>169</td>
</tr>
<tr>
<td>41</td>
<td>Annihilators of Pfister Forms</td>
<td>172</td>
</tr>
<tr>
<td>42</td>
<td>Presentation of $I^n(F)$</td>
<td>176</td>
</tr>
<tr>
<td>43</td>
<td>Going Down and Torsion-freeness</td>
<td>180</td>
</tr>
<tr>
<td>VIII</td>
<td>On the norm residue homomorphism of degree two</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Geometry of conic curves</td>
<td>183</td>
</tr>
<tr>
<td>45</td>
<td>Key exact sequence</td>
<td>188</td>
</tr>
<tr>
<td>46</td>
<td>Hilbert theorem 90 for K_2</td>
<td>199</td>
</tr>
<tr>
<td>47</td>
<td>Proof of the main theorem</td>
<td>202</td>
</tr>
<tr>
<td>Part</td>
<td>Algebraic cycles</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>Homology and cohomology</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>The complex $C_*(X)$</td>
<td>207</td>
</tr>
<tr>
<td>49</td>
<td>External products</td>
<td>222</td>
</tr>
<tr>
<td>50</td>
<td>Deformation homomorphisms</td>
<td>225</td>
</tr>
<tr>
<td>51</td>
<td>K-homology groups</td>
<td>229</td>
</tr>
<tr>
<td>52</td>
<td>Projective Bundle Theorem</td>
<td>233</td>
</tr>
<tr>
<td>53</td>
<td>Chern classes</td>
<td>238</td>
</tr>
<tr>
<td>54</td>
<td>Gysin and pull-back homomorphisms</td>
<td>241</td>
</tr>
<tr>
<td>55</td>
<td>K-cohomology ring of smooth schemes</td>
<td>247</td>
</tr>
<tr>
<td>X</td>
<td>Chow groups</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Definition of Chow groups</td>
<td>251</td>
</tr>
<tr>
<td>57</td>
<td>Segre and Chern classes</td>
<td>258</td>
</tr>
<tr>
<td>XI</td>
<td>Steenrod operations</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Squaring a cycle</td>
<td>267</td>
</tr>
<tr>
<td>59</td>
<td>Properties of the Steenrod operations</td>
<td>271</td>
</tr>
</tbody>
</table>
CONTENTS

60. Steenrod operations on smooth schemes 273

Chapter XII. Category of Chow motives 281
61. Correspondences 281
62. Categories of correspondences 285
63. Category of Chow motives 288
64. Duality 289
65. Motives of cellular schemes 290
66. Nilpotence Theorem 292

Part. Quadratic forms and algebraic cycles 295

Chapter XIII. Cycles on powers of quadrics 297
67. Split quadrics 297
68. Isomorphisms of quadrics 299
69. Isotropic quadrics 300
70. Chow group of dimension 0 cycles on quadrics 301
71. Reduced Chow group 302
72. Cycles on X^2 305

Chapter XIV. Izhboldin dimension 315
73. The first Witt index of subforms 315
74. Correspondences 316
75. The main theorem 319
76. Addendum: The Pythagoras Number 322

Chapter XV. Application of Steenrod operations 325
77. Computation of Steenrod operations 325
78. Values of the first Witt index 326
79. Rost correspondences 329
80. On 2-adic order of higher Witt indices, I 332
81. Holes in I^n 337
82. On 2-adic order of higher Witt indices, II 340
83. Minimal height 341

Chapter XVI. Variety of maximal totally isotropic subspaces 347
84. The variety $\text{Gr}(\varphi)$ 347
85. Chow ring of $\text{Gr}(\varphi)$ in the split case 348
86. Chow ring of $\text{Gr}(\varphi)$ in the general case 353
87. The invariant $J(\varphi)$ 355
88. Steenrod operations on $\text{Ch(Gr}(\varphi))$ 358
89. Canonical dimension 359

Chapter XVII. Motives of quadrics 363
90. Comparison of some discrete invariants of quadratic forms 363
91. Nilpotence Theorem for quadrics 365
92. Criterion of isomorphism 367
93. Indecomposable summands

Appendices

Chapter XVIII. Appendices

94. Formally Real Fields
95. The Space of Orderings
96. C_n-fields
97. Algebras
98. Galois cohomology
99. Milnor K-theory of fields
100. The cohomology groups $H^{n,i}(F, \mathbb{Z}/m\mathbb{Z})$
101. Length and Herbrand index
102. Places
103. Cones and vector bundles
104. Group actions on algebraic schemes

Bibliography

Index
Introduction

The algebraic theory of quadratic forms really began with the pioneering work of Witt. In his paper [64], Witt considered the totality of non-degenerate symmetric bilinear forms over a field \(F \) of characteristic different from two. Under this assumption, the theory of symmetric bilinear forms and the theory of quadratic forms are essentially the same. His work allowed him to form a ring \(W(F) \), now called the Witt ring, arising from the isometry classes of such forms. This set the stage for further study. From the viewpoint of ring theory, Witt gave a presentation of this ring as a quotient of the integral group ring where the group consists of the non-zero square classes of the field \(F \). Three methods of study arise: ring theoretic, field theoretic, i.e., the relationship of \(W(F) \) and \(W(K) \) where \(K \) is an algebraic field extension of \(F \), and algebraic geometric. In this book, we will develop all three methods. Historically, the powerful approach using algebraic geometry has been the last to be developed. This volume attempts to show its usefulness.

The theory of quadratic forms lay dormant until work of Cassels and then of Pfister in the 1960’s still under the assumption of the field being of characteristic different from two. Pfister employed the first two methods, ring theoretic and field theoretic, as well as a nascent algebraic geometric approach. In his Habilitationsschrift [48] Pfister determined many properties of the Witt ring. His study bifurcated into two cases: formally real fields, i.e., fields in which \(-1\) is not a sum of squares and non-formally real fields. In particular, the Krull dimension of the Witt ring is one in the formally real case and zero otherwise. This makes the study of the interaction of bilinear spaces and orderings an imperative hence the importance of looking at real closures of the base field resulting in extensions of Sylvester’s work and Artin-Schreier theory. Pfister determined the radical, zero-divisors, and spectrum of the Witt ring. Even earlier, in [46], he discovered remarkable forms, now called Pfister forms. These are forms that are tensor products of binary forms that represent one. Pfister showed that scalar multiples of these were precisely the forms that become hyperbolic over their function field. In addition, the non-zero value set of a Pfister form is a group and in fact the group of similitudes of the form. As an example, this applies to the quadratic form that is a sum of \(2^n \) squares. He also used it to show that in a non formally real field the least number of squares \(s(F) \) needed to express \(-1\) is always a power of 2 in [47]. Interest and problems about other arithmetic field invariants have also played a role in the development of the theory.

The even dimensional forms determine an ideal \(I(F) \) in the Witt ring of \(F \), called the fundamental ideal. Its powers \(I^n(F) := (I(F))^n \) give an important filtration of \(W(F) \), each generated by appropriate Pfister forms. The problem then arises: What ring theoretic properties respect this grading? From \(W(F) \) one also forms the graded ring \(GW(F) \) associated to \(I(F) \) and asks the same question.

Using Matsumoto’s presentation of \(K_2(F) \) of a field (cf. [?], Milnor gave an ad hoc definition of a graded ring \(K_*(F) := \oplus_{n \geq 0} K_n(F) \) of a field in [?]. From the viewpoint of Galois cohomology, this was of great interest as there is a natural map, called the norm residue map from \(K_n(F) \) to the Galois cohomology group \(H^n(\Gamma_F, \mu^\otimes m) \) where \(\Gamma_F \) is the absolute Galois group of \(F \). For the case \(m = 2 \), Milnor conjectured this map to be an epimorphism with kernel \(2K_n(F) \) for all \(n \). Voevodsky proved this conjecture in [60].
Milnor also related his algebraic K-ring of a field to quadratic form theory, by asking if $GW(F)$ and $K_*(F)/2K_*(F)$ were isomorphic. This was solved in the affirmative in [45]. Assuming these results, one can answer some of the questions that have arisen about the filtration of $W(F)$ induced by the fundamental ideal.

In this book, we do not restrict ourselves to fields of characteristic different from two. This means that the study of symmetric bilinear forms and the study of quadratic forms must be done separately, then interrelated. Not only do we present the classical theory characteristic free but include many results not proven in any text as well as some previously unpublished results to bring the classical theory up to date.

We will also take a more algebraic geometric viewpoint then has historically been done. Indeed the second two parts of the book, will be based on such a viewpoint. In our characteristic free approach this means a firmer focus on quadratic forms which have geometric objects attached to them rather than bilinear forms. We do this for a variety of reasons.

Firstly, one can associate to a quadratic form a number of algebraic varieties: the quadric of isotropic lines in the projective space and more generally, for an integer $i > 0$ the variety of isotropic subspaces of dimension i. More importantly, basic properties of quadratic forms can be reformulated in terms of the associated varieties: a quadratic form is isotropic if and only if the corresponding quadric has a rational point. A nondegenerate quadratic form is hyperbolic if and only if the variety of maximal totally isotropic subspaces has a rational point.

Not only are the associated varieties important but so are the morphisms between them. Indeed if φ is a quadratic form over F and L/F is a finitely generated field extension then there is a variety Y over F with function field L, and the form φ is isotropic over L is and only if there is a rational morphism from Y to the quadric of φ.

Working with correspondences rather than just rational morphisms adds further depth to our study, where we identify morphisms with their graphs. Working with these leads to the category of Chow correspondences. This provides greater flexibility, because we can view correspondences as elements of Chow groups and apply the rich machinery of that theory: pull-back and push forward homomorphisms, Chern classes of vector bundles, and Steenrod operations. For example, suppose we wish to prove that a property A of quadratic forms implies a property B. We translate the properties A and B to “geometric” properties A' and B' about the existence of certain cycles on certain varieties. Starting with cycles satisfying A' we then can attempt to apply the operations over the cycles as above to produce cycles satisfying B'.

All the varieties listed above are projective homogeneous varieties under the action of the orthogonal group or special orthogonal group of φ, i.e., the orthogonal group acts transitively on the varieties. It is not surprising that the properties of quadratic forms are reflected in the properties of the special orthogonal groups. For example if φ is of dimension $2n$ or $2n + 1$ (with $n \geq 1$) then the special orthogonal group is a semisimple group of type D_n or B_n. The classification of semisimple groups is characteristic free. This explains why most important properties of quadratic forms hold in all characteristics.
Unfortunately, bilinear forms are not "geometric". We can associate varieties to a bilinear form, but it would be a variety of the associated quadratic form. Moreover in characteristic two the automorphism group of a bilinear form is not semisimple.

In the book we sometimes give several proofs of the same results - one is classical, another is geometric. (This can be the same proof, but written in geometric language). Example - Springer’s theorem (more examples?)

The first part of the text will derive classical results under this new setting. It is self-contained needing minimal prerequisites except for Chapter 7. In this chapter we shall assume the results of Voevodsky in [60] and Orlov-Vishik-Voevodsky [45].

Prerequisites for the second two parts of the text will be more formidable. A reasonable background in algebraic geometry will be assumed. For the convenience of the reader appendices have been included to aid the reader.
Part

Classical theory of symmetric bilinear forms and quadratic forms
CHAPTER I

Bilinear Forms

1. Basics

The study of \((n \times n)\)-matrices over a field \(F\) leads to various classification problems. Of special interest is to classify alternating and symmetric matrices. If \(A\) and \(B\) are two such matrices, we say that they are congruent if \(A = PBP^t\) for some invertible matrix \(P\). For example, it is well-known that symmetric matrices are diagonalizable if the characteristic of \(F\) is different from two. So the problem reduces to the study of a class of a matrix in this case. The study of alternating and symmetric bilinear forms over an arbitrary field is the study of this problem in a coordinate-free approach. Moreover, we shall, whenever possible, give proofs independent of characteristic. In this section, we introduce the definitions and notations needed throughout the text and prove that we have a Witt Decomposition Theorem (cf. Theorem 1.28 below) for such forms. As we make no assumption on the characteristic of the underlying field, this makes the form of this theorem more delicate.

Definition 1.1. Let \(V\) be a finite dimensional vector space over a field \(F\). A bilinear form on \(V\) is a map \(b : V \times V \to F\) satisfying for all \(v, v', w, w' \in V\) and \(c \in F\)

\[
\begin{align*}
b(v + v', w) &= b(v, w) + b(v', w) \\
b(v, w + w') &= b(v, w) + b(v, w') \\
b(cv, w) &= c b(v, w) = b(v, cw).
\end{align*}
\]

The bilinear form is called symmetric if \(b(v, w) = b(w, v)\) for all \(v, w \in V\) and is called alternating if \(b(v, v) = 0\) for all \(v \in V\). If \(b\) is an alternating form, expanding \(b(v + w, v + w)\) shows that \(b\) is skew symmetric, i.e., that \(b(v, w) = -b(w, v)\) for all \(v, w \in V\). In particular, every alternating form is symmetric if char \(F = 2\). We call \(\dim V\) the dimension of the bilinear form and also write it as \(\dim b\). We write \(b\) is a bilinear form over \(F\) if \(b\) is a bilinear form on a finite dimensional vector space over \(F\) and denote the underlying space by \(V_0\).

Definition 1.2. Let \(V^* := \text{Hom}_F(V, F)\) denote the dual space of \(V\). A bilinear form \(b\) on \(V\) is called non-degenerate if \(l : V \to V^*\) defined by \(v \mapsto l_v : w \mapsto b(v, w)\) is an isomorphism. An isometry \(f : b_1 \to b_2\) between two bilinear forms \(b_i, i = 1, 2,\) is a linear isomorphism \(f : V_{b_1} \to V_{b_2}\) such that \(b_1(v, w) = b_2(f(v), f(w))\) for all \(v, w \in V_{b_1}\). If such an isometry exists, we write \(b_1 \simeq b_2\) and say that \(b_1\) and \(b_2\) are isometric.

Let \(b\) be a bilinear form on \(V\). Let \(\{v_1, \ldots, v_n\}\) be a basis for \(V\). Then \(b\) is determined by the matrix \((b(v_i, v_j))\) and the form is non-degenerate if and only if \((b(v_i, v_j))\) is invertible. Conversely any matrix \(B\) in the \(n \times n\) matrix ring \(M_n(F)\) determines a bilinear
form based on V. If b is symmetric (respectively, alternating) then the associated matrix is symmetric (respectively, alternating where a square matrix (a_{ij}) is called alternating if $a_{ij} = -a_{ji}$ and $a_{ii} = 0$ for all i, j). Let b and b' be two bilinear forms with matrices B and B' relative to some bases. Then $b \simeq b'$ if and only if $B' = A'B'A$ for some invertible matrix A, i.e., the matrices B' and B are congruent. As $\text{det } B' = \text{det } B \cdot (\text{det } A)^2$ and $\text{det } A \neq 0$, the determinant of B' coincides with the determinant of B up to squares. We define the determinant of a non-degenerate bilinear form b by $\text{det } b := \text{det } B \cdot F^\times/\sim$, where B is a matrix representation of b. So the det is an invariant of the isometry class of a non-degenerate bilinear form.

The set $\text{Bil}(V)$ of bilinear forms on V is a vector space over F. The space $\text{Bil}(V)$ contains the subspaces $\text{Alt}(V)$ of alternating forms on V and $\text{Sym}(V)$ of symmetric bilinear forms on V. The correspondence of bilinear forms and matrices given above defines a linear isomorphism $\text{Bil}(V) \rightarrow M_{\dim V}(F)$. If $b \in \text{Bil}(V)$ then $b - b'$ is alternating where the bilinear form b' is defined by $b'(v, w) = b(w, v)$ for all $v, w \in V$. Since every alternating $n \times n$-matrix is of the form $B - B'$ for some B, the linear map $\text{Bil}(V) \rightarrow \text{Alt}(V)$ by $b \mapsto b - b'$ is surjective. Therefore, we have an exact sequence of vector spaces

$$0 \rightarrow \text{Sym}(V) \rightarrow \text{Bil}(V) \rightarrow \text{Alt}(V) \rightarrow 0.$$

Exercise 1.4. Construct natural isomorphisms

$$\text{Bil}(V) \simeq (V \otimes_F V)^* \simeq V^* \otimes_F V^*, \quad \text{Sym}(V) \simeq \Lambda^2(V)^*, \quad \text{Alt}(V) \simeq \Lambda^2(V^*)$$

and show that the exact sequence (1.3) is dual to the standard exact sequence

$$0 \rightarrow \Lambda^2(V) \rightarrow V \otimes_F V \rightarrow \Lambda^2(V) \rightarrow 0,$$

where $\Lambda^2(V)$ is the exterior square of V and $\Lambda^2(V)$ is the symmetric square of V.

If $b, c \in \text{Bil}(V)$, we say the two bilinear forms b and c are similar if $b \simeq ac$ for some $a \in F^\times$.

Let V be a finite dimensional vector space over F and let $\lambda = \pm 1$. Define the hyperbolic λ-bilinear form on V to be $\mathbb{H}_\lambda(V) = b_{H_\lambda}$ on $V \oplus V^*$ with

$$b_{H_\lambda}(v_1 + f_1, v_2 + f_2) := f_1(v_2) + \lambda f_2(v_1)$$

for all $v_1, v_2 \in V$ and $f_1, f_2 \in V^*$. If $\lambda = 1$, the form $\mathbb{H}_\lambda(V)$ is a symmetric bilinear form and if $\lambda = -1$, it is an alternating bilinear form. A bilinear form b is called a hyperbolic bilinear form if $b \simeq \mathbb{H}_\lambda(W)$ for some finite dimensional F-vector space W and some $\lambda = \pm 1$. The hyperbolic form $\mathbb{H}_\lambda(F)$ is called the hyperbolic plane and denoted \mathbb{H}_λ. It has the matrix representation

$$\begin{pmatrix} 0 & 1 \\ \lambda & 0 \end{pmatrix}$$

in the appropriate basis. If $b \simeq \mathbb{H}_\lambda$, then b has the above matrix representation in some basis $\{e, f\}$ of V. We call e, f a hyperbolic pair. Hyperbolic forms are non-degenerate.

Let b be a bilinear form on V and $W \subset V$ a subspace. The restriction of b to W is a bilinear form on W and is called a subform of b. We denote this form by $b|_W$.

I. BILINEAR FORMS
Let b be a symmetric or alternating bilinear form on V. We say $v, w \in V$ are orthogonal if $b(v, w) = 0$. Let $W, U \subset V$ be subspaces. Define the orthogonal complement of W by

$$W^\perp := \{ v \in V \mid b(v, w) = 0 \text{ for all } w \in W \}.$$

This is a subspace of V. We say W is orthogonal to U if $W \subset U^\perp$, equivalently $U \subset W^\perp$. If $V = W \oplus U$ is a direct sum of subspaces with $W \subset U^\perp$, we write $b = b|_W \perp b|_U$ and say b is the the (internal) orthogonal sum of $b|_W$ and $b|_U$. The subspace V^\perp is called the radical of b and denoted by $\text{rad } b$. The form b is non-degenerate if and only if $\text{rad } b = 0$.

If K/F is a field extension, let $V_K := K \otimes_F V$, a vector space over K. We have the standard embedding $V \to V_K$ by $v \mapsto 1 \otimes v$. Let b_K denote the extension of b to V_K, so $b_K(a \otimes v, c \otimes w) = acb(v, w)$ for all $a, c \in K$ and $v, w \in V$. The form b_K is of the same type as b. Moreover, $\text{rad}(b_K) = (\text{rad } b)_K$ hence b is non-degenerate if and only if b_K is non-degenerate.

Let $\pi : V \to V/\text{rad } b$ be the canonical epimorphism. Define \overline{b} to be the bilinear form on \overline{V} determined by $\overline{b}(\overline{v_1}, \overline{v_2}) := b(v_1, v_2)$ for all $v_1, v_2 \in V$. Then \overline{b} is a non-degenerate bilinear form of the same type as b. Note also that if $f : b_1 \to b_2$ is an isometry of symmetric or alternative bilinear forms then $f(\text{rad } b_1) = \text{rad } b_2$.

We have

Lemma 1.5. Let b be a symmetric or alternating bilinear form on V. Let W be any subspace of V such that $V = \text{rad } b \oplus W$. Then $b|_W$ is non-degenerate and

$$b = b|_{\text{rad } b} \perp b|_W = 0|_{\text{rad } b} \perp b|_W$$

with $b |_W \simeq \overline{b}$, the form induced on $V/\text{rad } b$. In particular, $b|_W$ is unique up to isometry.

The lemma above shows that it is sufficient to classify non-degenerate bilinear forms. In general, if b is a symmetric or alternating bilinear form on V and $W \subset V$ is a subspace then we have an exact sequence of vector spaces

$$0 \to W^\perp \to V \xrightarrow{l_W} W^*,$$

where l_W is defined by $v \mapsto l_W(v) : x \mapsto b(v, x)$. Hence $\dim W^\perp \geq \dim V - \dim W$. It is easy to determine when this is an equality.

Proposition 1.6. Let b be a symmetric or alternating bilinear form on V. Let W be any subspace of V. Then the following are equivalent

1. $W \cap \text{rad } b = 0$.
2. $l_W : V \to W^*$ is surjective.
3. $\dim W^\perp = \dim V - \dim W$.

Proof. (1) holds if and only if the map $l_W^* : W \to V^*$ is injective if and only if the map $l_W : V \to W^*$ is surjective if and only if (3) holds. \hfill \square

Note that the conditions (1) – (3) hold if either b or $b|_W$ is non-degenerate.

A key observation is

Proposition 1.7. Let b be a symmetric or alternating bilinear form on V. Let W be a subspace such that $b|_W$ is non-degenerate. Then $b = b|_W \perp b|_{W^\perp}$.
Proof. By Proposition 1.6, \(\dim W^\perp = \dim V - \dim W \) hence \(V = W \oplus W^\perp \). The result follows.

Corollary 1.8. Let \(b \) be a symmetric bilinear form on \(V \). Let \(v \in V \) such that \(b(v, v) \neq 0 \). Then \(b = b|_{Fv} \perp b|_{(Fv)^\perp} \).

Let \(b_1 \) and \(b_2 \) be two symmetric or alternating bilinear forms on \(V_1 \) and \(V_2 \) respectively. Then their *external orthogonal sum* \(b \), denoted by \(b_1 \perp b_2 \), is the form on \(V_1 \bigoplus V_2 \) given by

\[
b((v_1, v_2), (w_1, w_2)) := b_1(v_1, w_1) + b_2(v_2, w_2)
\]

for all \(v_1, w_i \in V_i, i = 1, 2 \).

If \(n \) is a non-negative integer and \(b \) is a symmetric or alternating bilinear form over \(F \), abusing notation we let

\[
nb := b \perp \cdots \perp b.
\]

In particular, if \(n \) is a non-negative integer, we do not interpret \(nb \) with \(n \) viewed in the field.

For example, \(\mathcal{H}_\lambda(V) \simeq n\mathcal{H}_\lambda \) for any \(n \)-dimensional vector space \(V \) over \(F \).

It is now easy to complete the classification of alternating forms.

Proposition 1.9. Let \(b \) be a non-degenerate alternating form on \(V \). Then \(\dim V = 2n \) for some \(n \) and \(b \simeq n\mathcal{H}_{-1} \), i.e., \(b \) is hyperbolic.

Proof. Let \(0 \neq v \in V \). Then there exists \(w \in V \) such that \(b(v, w) = a \neq 0 \). Replacing \(w \) by \(a^{-1}w \), we see that \(v, w \) is a hyperbolic pair in the space \(W = Fv \oplus Fw \), so \(b|_W \) is a hyperbolic subform of \(b \). Therefore, \(b = b|_W \perp b|_{W^\perp} \) by Proposition 1.7. The result follows by induction on \(\dim b \). \(\square \)

The proof shows that every non-degenerate alternating form \(b \) on \(V \) has a *symplectic basis*, i.e., a basis \(\{v_1, \ldots, v_{2n}\} \) for \(V \) satisfying \(b(v_i, v_{n+i}) = 1 \) for all \(1 \leq i \leq n \) and \(b(v_i, v_j) = 0 \) if \(i \leq j \) and \(j \neq n + i \).

We turn to the classification of the isometry type of symmetric bilinear forms. By Lemma 1.5, Corollary 1.8 and induction, we therefore have the following

Corollary 1.10. Let \(b \) be a symmetric bilinear form on \(V \). Then

\[
b = b|_{\text{rad} b} \perp b|_{V_1} \perp \cdots \perp b|_{V_n} \perp b|_W
\]

with \(V_i \) a one-dimensional subspace of \(V \) and \(b|_{V_i} \) non-degenerate for all \(1 \leq i \leq n \), and \(b|_W \) a non-degenerate alternating subform on a subspace \(W \) of \(V \).

If \(\text{char } F \neq 2 \) then, in the corollary, \(b|_W \) is symmetric and alternating hence \(W = \{0\} \).

In particular, every bilinear form \(b \) has an *orthogonal basis*, i.e., a basis \(\{v_1, \ldots, v_n\} \) for \(V \) satisfying \(b(v_i, v_j) = 0 \) if \(i \neq j \). The form is non-degenerate if and only if \(b(v_i, v_i) \neq 0 \) for all \(i \).

If \(\text{char } F = 2 \), by Proposition 1.9, the alternating form \(b|_W \) in the corollary above has a symplectic basis and satisfies \(b|_W \simeq n\mathcal{H}_1 \).
Let $a \in F$. Denote the bilinear form on F given by $b(v, w) = avw$ for all $v, w \in F$ by $\langle a \rangle_b$ or simply $\langle a \rangle$. In particular, $\langle a \rangle \simeq \langle b \rangle$ if and only if $a = b = 0$ or $aF^2 = bF^2$ in F^2/F^2. Denote

$$\langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle \quad \text{by} \quad \langle a_1, \ldots, a_n \rangle_b \quad \text{or simply by} \quad \langle a_1, \ldots, a_n \rangle.$$

We call such a form a diagonal form. A symmetric bilinear form b isometric to a diagonal form is called diagonalizable. Consequently, $b \simeq \langle a_1, \ldots, a_n \rangle$, with some $a_i \in F$ if and only if b has an orthogonal basis. Note that $\det(\langle a_1, \ldots, a_n \rangle) = a_1 \cdots a_n F^2$ if $a_i \in F^2$ for all i. Corollary [1.10] says that every bilinear form b on V satisfies

$$b \simeq r(0) \perp \langle a_1, \ldots, a_n \rangle \perp b'$$

with $r = \dim(\text{rad} \ b)$ and b' an alternating form and $a_i \in F^2$ for all i. In particular, if $\text{char} F \neq 2$ then every symmetric bilinear form is diagonalizable.

Example 1.11. Let $a, b \in F$. Then $\langle 1, a \rangle \simeq \langle 1, b \rangle$ if and only if $aF^2 = \det(\langle 1, a \rangle) = \det(\langle 1, b \rangle) = bF^2$.

Definition 1.12. Let b be a bilinear form on V over F. Let

$$D(b) := \{ b(v, v) \mid v \in V \text{ with } b(v, v) \neq 0 \},$$

the set on nonzero values of b and

$$G(b) := \{ a \in F^2 \mid ab \simeq b \},$$

a group called the group of similarity factors of b. Also set

$$\tilde{D}(b) := D(b) \cup \{ 0 \}.$$

We say that elements $a \in \tilde{D}(b)$ are represented by b.

For example, $G(\mathbb{H}_1) = F^2$. A symmetric bilinear form is called round if $G(b) = D(b)$. In particular, if b is round then $D(b)$ is a group.

Remark 1.13. If b is a symmetric bilinear form and $a \in D(b)$ then $b \simeq \langle a \rangle \perp c$ for some symmetric bilinear form c by Corollary [1.8]

Lemma 1.14. Let b be a bilinear form. Then

$$D(b) \cdot G(b) \subset D(b).$$

In particular, if $1 \in D(b)$ then $G(b) \subset D(b)$.

Proof. Let $a \in G(b)$ and $b \in D(b)$. Let $\lambda : b \to ab$ be an isometry and $v \in V_b$ satisfy $b = b(v, v)$. Then $b(\lambda(v), \lambda(v)) = ab(v, v) = ab$. \qed

Example 1.15. Let $K = F[t]/(t^2 - a)$ with $a \in F$. So $K = F \oplus F \theta$ as a vector space over F where θ denotes the class of t in K. If $z = x + y \theta$ with $x, y \in F$, write $z = x - y \theta$. Let $s : K \to F$ be the F-linear functional defined by $s(x + y \theta) = x$. Then b defined by $b(z_1, z_2) = s(z_1 \bar{z_2})$ is a binary symmetric bilinear form on K. Let $N(z) = z \bar{z}$ for $z \in K$. Then $D(b) = \{ N(z) \neq 0 \mid z \in K \} = \{ N(z) \mid z \in K^2 \}$. If $z \in K$ then $\lambda_z : K \to K$ given
by \(w \to zw \) is an \(F \)-linear isomorphism if and only if \(N(z) \neq 0 \). Suppose that \(\lambda_z \) is an \(F \)-isomorphism. As
\[
\mathbf{b}(\lambda_z z_1, \lambda_z z_2) = \mathbf{b}(zz_1, zz_2) = N(z) s(z_1 z_2) = N(z) \mathbf{b}(z_1, z_2),
\]
we have an isometry \(N(z) \mathbf{b} \simeq \mathbf{b} \) for all \(z \in K^\times \). In particular, \(\mathbf{b} \) is round. Computing \(\mathbf{b} \) on the orthogonal basis \(\{1, \theta\} \) for \(K \) shows that \(\mathbf{b} \) is isometric to the bilinear form \(\langle 1, -a \rangle \). If \(a \in F^\times \) then \(\mathbf{b} \simeq \langle 1, -a \rangle \) is non-degenerate.

Remark 1.16. (i). Let \(\mathbf{b} \) be a binary symmetric bilinear form on \(V \). Suppose there exists a basis \(\{v, w\} \) for \(V \) satisfying \(\mathbf{b}(v, v) = 0 \), \(\mathbf{b}(v, w) = 1 \), and \(\mathbf{b}(w, w) = a \neq 0 \). Then \(\mathbf{b} \) is non-degenerate as the matrix corresponding to \(\mathbf{b} \) in this basis is invertible. Moreover, \(\{w, -av + w\} \) is an orthogonal basis for \(V \) and, using this basis, we see that \(\mathbf{b} \simeq \langle a, -a \rangle \).

(ii). Suppose that \(\text{char } F \neq 2 \). Let \(\mathbf{b} = \langle a, -a \rangle \) with \(a \in F^\times \) and \(\{e, g\} \) an orthogonal basis for \(V_0 \) satisfying \(a = \mathbf{b}(e, e) = -\mathbf{b}(f, f) \). Evaluating on the basis \(\{e + f, \frac{1}{2a}(e - f)\} \) shows that \(\mathbf{b} \simeq \mathbb{H}_1 \). In particular, \(\langle a, -a \rangle \simeq \mathbb{H}_1 \) for all \(a \in F^\times \). Moreover, \(\langle a, -a \rangle \simeq \mathbb{H}_1 \) is round and universal, where a non-degenerate symmetric bilinear form \(\mathbf{b} \) is called universal if \(D(\mathbf{b}) = F^\times \).

(iii). Suppose that \(\text{char } F = 2 \). As \(\mathbb{H}_1 = \mathbb{H}_{-1} \) is alternating while \(\langle a, a \rangle \) is not, \(\langle a, a \rangle \not\simeq \mathbb{H}_1 \) for any \(a \in F^\times \). Moreover, \(\mathbb{H}_1 \) is not round since \(D(\mathbb{H}_1) = \emptyset \). As \(D(\langle a, a \rangle) = D(\langle a \rangle) = aF^{\times 2} \), we have \(G(\langle a, a \rangle) = F^{\times 2} \) by Lemma 1.14. In particular, \(\langle a, a \rangle \) is round if and only if \(a \in F^{\times 2} \) and \(\langle a, a \rangle \simeq \langle b, b \rangle \) if and only if \(aF^{\times 2} \simeq bF^{\times 2} \).

(iv). Witt Cancellation holds if \(\text{char } F \neq 2 \), i.e., if there exists an isometry of symmetric bilinear forms \(\mathbf{b} \perp \mathbf{b}' \simeq \mathbf{b} \perp \mathbf{b}'' \) over \(F \) with \(\mathbf{b} \) non-degenerate then \(\mathbf{b}' \simeq \mathbf{b}'' \). (Cf. Theorem 8.4 below.) If \(\text{char } F = 2 \), this is false in general. For example,
\[
\langle 1, 1, -1 \rangle \simeq \langle 1 \rangle \perp \mathbb{H}_1
\]
over any field. Indeed if \(\mathbf{b} \) is three dimensional on \(V \) and \(V \) has an orthogonal basis \(\{e, f, g\} \) with \(\mathbf{b}(e, e) = 1 = \mathbf{b}(f, f) \) and \(\mathbf{b}(g, g) = -1 \) then the right hand side arises from the basis \(\{e + f + g, e + g, -f - g\} \). But by (iii), \(\langle 1, -1 \rangle \not\simeq \mathbb{H}_1 \) if \(\text{char } F = 2 \). Multiplying the equation above by any \(a \in F^\times \), we also have
\[
\langle a, a, -a \rangle \simeq \langle a \rangle \perp \mathbb{H}_1.
\]

Proposition 1.18. Let \(\mathbf{b} \) be a symmetric bilinear form. If \(D(\mathbf{b}) \neq \emptyset \) then \(\mathbf{b} \) is diagonalizable. In particular, a nonzero symmetric bilinear form is diagonalizable if and only if it is not alternating.

Proof. If \(a \in D(\mathbf{b}) \) then
\[
\mathbf{b} \simeq \langle a \rangle \perp \mathbf{b}_1 \simeq \langle a \rangle \perp \text{rad } \mathbf{b}_1 \perp \mathbf{c}_1 \perp \mathbf{c}_2
\]
with \(\mathbf{b}_1 \) a symmetric bilinear form by Corollary 1.8 and \(\mathbf{c}_1 \) a non-degenerate diagonal form and \(\mathbf{c}_2 \) a non-degenerate alternating form by Corollary 1.10. By the remarks following Corollary 1.10, \(\mathbf{c}_2 = 0 \) if \(\text{char } F \neq 2 \) and \(\mathbf{c}_2 = m\mathbb{H}_1 \) for some integer \(m \) if \(\text{char } F = 2 \). By 1.17 we conclude that \(\mathbf{b} \) is diagonalizable in either case.

If \(\mathbf{b} \) is not alternating then \(D(\mathbf{b}) \neq \emptyset \) hence \(\mathbf{b} \) is diagonalizable. Conversely, if \(\mathbf{b} \) is diagonalizable, it cannot be alternating as it is not the zero form. \(\square \)
Corollary 1.19. Let b be a symmetric bilinear form over F. Then $b \perp \langle 1 \rangle$ is diagonalizable.

Let b be a symmetric bilinear form on V. A vector $v \in V$ is called anisotropic if $b(v,v) \neq 0$ and isotropic if $v \neq 0$ and $b(v,v) = 0$. We call b anisotropic if there are no isotropic vectors in V and isotropic otherwise.

Corollary 1.20. Every anisotropic bilinear form is diagonalizable.

Note that an anisotropic symmetric bilinear form is non-degenerate as its radical is trivial.

Example 1.21. Let F be a quadratically closed field, i.e., every element in F is a square. Then, up to isometry, 0 and $\langle 1 \rangle$ are the only anisotropic forms over F. In particular, this applies if F is algebraically closed.

An anisotropic form may not be anisotropic under base extension. However, we do have:

Lemma 1.22. Let b be an anisotropic bilinear form over F. If K/F is purely transcendental then b_K is anisotropic.

Proof. First suppose that $K = F(t)$. Suppose that $b_{F(t)}$ is isotropic. Then there exist a vector $0 \neq v \in V_{F(t)}$ such that $b_{F(t)}(v,v) = 0$. Multiplying by an appropriate nonzero polynomial, we may assume that $v \in F[t] \otimes_F V$. Write $v = v_0 + t \otimes v_1 + \cdots + t^n \otimes v_n$ with $v_1, \ldots, v_n \in V$ and $v_n \neq 0$. As the t^n coefficient $b(v_n, v_n)$ of $0 = b(v,v)$ must vanish, v_n is an isotropic vector of b, a contradiction.

If K/F is finitely generated then the result follows by induction on the transcendence degree of K over F. In the general case, if b_K is isotropic there exists a finitely generated purely transcendental extension K_0 of F in K with b_{K_0} isotropic, a contradiction. □

Let b be a symmetric bilinear form on V. A subspace $W \subset V$ is called a totally isotropic subspace of b if $b|_W = 0$, i.e., if $W \subset W^\perp$. If b is isotropic then it has a nonzero totally isotropic subspace. Suppose that b is non-degenerate and W is a totally isotropic subspace. Then $\dim W + \dim W^\perp = \dim V$ by Proposition 1.6 hence $\dim W \leq \frac{1}{2} \dim V$. We say that W is a Lagrangian for b if we have an equality $\dim W = \frac{1}{2} \dim V$, equivalently $W^\perp = W$. A non-degenerate symmetric bilinear form is called metabolic if it has a Lagrangian. Clearly an orthogonal sum of metabolic forms is metabolic.

Example 1.23. (1) Symmetric hyperbolic forms are metabolic.

(2) The form $b \perp (-b)$ is metabolic if b is any non-degenerate symmetric bilinear form.

(3) A 2-dimensional metabolic space is nothing but a non-degenerate isotropic plane. A metabolic plane is therefore either isomorphic to $\langle a, -a \rangle$ for some $a \in F^\times$ or to the hyperbolic plane \mathbb{H}_1 by Remark 1.16. In particular, the determinant of a metabolic plane is $-F^\times$. If char $F \neq 2$ then $\langle a, -a \rangle \simeq \mathbb{H}_1$ by Remark 1.16, so in this case, every metabolic plane is hyperbolic.

Lemma 1.24. Let b be an isotropic non-degenerate symmetric bilinear form over V. Then every isotropic vector belongs to a 2-dimensional metabolic subform.
Suppose that (ii) and Lemma We induct on the dimension of a metabolic form 1.24. We prove existence of the decomposition by induction on dim \dim. This follows from Remark \dim. Every metabolic form is an orthogonal sum of metabolic planes. In (Bilinear Witt Decomposition Theorem) 1.25. If 1.24, proof of existence follows by applying the induction hypothesis to \dim. Since \dim is metabolic so is \dim. Choose an isotropic vector v and \dim be a Lagrangian. By Lemma \dim a nonzero vector $v \in W$ belongs to a metabolic plane $P \subset V$. It follows from Proposition \dim that $b = b|_P \perp b|_{P^\perp}$ and $W \cap P^\perp$ is a Lagrangian of $b|_{P^\perp}$. By the induction hypothesis, $b|_{P^\perp}$ is an orthogonal sum of metabolic planes. The second statement follows from Example \dim.

Corollary 1.26. If $\text{char } F \neq 2$, the classes of metabolic and hyperbolic forms coincide. In particular, every isotropic non-degenerate symmetric bilinear form is universal.

Proof. This follows from Remark \dim (ii) and Lemma \dim.

Lemma 1.27. Let b and b' be two symmetric bilinear forms. If $b \perp b'$ and b' are both metabolic so is b.

Proof. By Corollary \dim we may assume that b' is 2-dimensional. Let W be a Lagrangian for $b \perp b'$. Let $p : W \to V_0'$ be the projection and $W_0 = \ker p = W \cap V_0$. Suppose that p is not surjective. Then $\dim W_0 \geq \dim W - 1$ hence W_0 is a Lagrangian of b and b is metabolic.

So we may assume that p is surjective. Then $\dim W_0 = \dim W - 2$. As b' is metabolic, it is isotropic. Choose an isotropic vector $v' \in V_0'$ and a vector $w \in W$ such that $p(w) = v'$, i.e., $w = v + v'$ for some $v \in V_0$. In particular, $b(v, v) = (b \perp b')(w, w) - b'(v', v') = 0$. Since $W_0 \subset V_0$, we have v' is orthogonal to W_0 hence v is also orthogonal to W_0. If we show that $v' \not\in W$ then $v \not\in W_0$ and $W_0 \oplus Fv$ is a Lagrangian of b and b is metabolic.

So suppose $v' \in W$. There exists $v'' \in V_0'$ such that $b'(v', v'') \neq 0$ as b' is non-degenerate. Since p is surjective, there exists $w'' \in W$ with $w'' = u'' + v''$ for some $u'' \in V_0$. As W is totally isotropic,

$$0 = (b \perp b')(v', w'') = (b \perp b')(v', u'' + v'') = b'(v', v''),$$

a contradiction.

We have the following form of the classical Witt Decomposition Theorem for symmetric bilinear forms over a field of arbitrary characteristic.

Theorem 1.28. (Bilinear Witt Decomposition Theorem) Let b be a non-degenerate symmetric bilinear form on V. Then there exist subspaces V_1 and V_2 of V such that $b = b|_{V_1} \perp b|_{V_2}$ with $b|_{V_1}$ anisotropic and $b|_{V_2}$ metabolic. Moreover, $b|_{V_1}$ is unique up to isometry.

Proof. We prove existence of the decomposition by induction on $\dim b$. If b is isotropic, there is a metabolic plane $P \subset V$ by Lemma \dim. As $b = b|_P \perp b|_{P^\perp}$, the proof of existence follows by applying the induction hypothesis to $b|_{P^\perp}$.
2. THE WITT AND WITT-GROTHENDIECK RINGS OF SYMMETRIC BILINEAR FORMS

To prove uniqueness, assume that \(b_1 \perp b_2 \simeq b'_1 \perp b'_2 \) with \(b_1 \) and \(b'_1 \) both anisotropic and \(b_2 \) and \(b'_2 \) both metabolic. We show that \(b_1 \simeq b'_1 \). The form

\[b_1 \perp (-b'_1) \perp b_2 \simeq b'_1 \perp (-b'_1) \perp b'_2 \]

is metabolic, hence \(b_1 \perp (-b'_1) \) is metabolic by Lemma 1.27. Let \(W \) be a Lagrangian of \(b_1 \perp (-b'_1) \). Since \(b_1 \) is anisotropic, the intersection \(W \cap V_{b_1} \) is trivial. Therefore, the projection \(W \to V_{b'_1} \) is injective and \(\dim W \leq \dim b'_1 \). Similarly, \(\dim W \leq \dim b_1 \). Consequently, \(\dim b_1 = \dim W = \dim b'_1 \) and the projections \(p : W \to V_{b_1} \) and \(p' : W \to V_{b'_1} \) are isomorphisms. Let \(v = v + v' \in W \), where \(v \in V_{b_1} \) and \(v' \in V_{b'_1} \). As

\[0 = (b_1 \perp (-b'_1))(w, w) = b_1(v, v) - b'_1(v', v'), \]

the isomorphism \(p' \circ p^{-1} : V_{b_1} \to V'_{b_1} \) is an isometry between \(b_1 \) and \(b'_1 \).

Let \(b = b|_{V_1} \perp b|_{V_2} \) be the decomposition of the non-degenerate symmetric bilinear form \(b \) on \(V \) in the theorem. The anisotropic form \(b|_{V_1} \), unique up to isometry, will be denoted by \(b_{an} \) and called the anisotropic part of \(b \). Note that the metabolic form \(b|_{V_2} \) in Theorem 1.28 is not unique in general by Remark 1.16 (iv). However, its dimension is unique and even. Define the **Witt index** of \(b \) to be \(\text{dim} \) \(b \) := \(\text{dim} V_2 / 2 \).

Remark 1.16 (iv) also showed that the Witt Cancellation Theorem does not hold for non-degenerate symmetric bilinear forms in characteristic two. The obstruction is the metabolic forms. We have, however, the following

COROLLARY 1.29. (Witt Cancellation) Let \(b, b_1, b_2 \) be non-degenerate symmetric bilinear forms satisfying \(b_1 \perp b \simeq b_2 \perp b \). If \(b_1 \) and \(b_2 \) are anisotropic then \(b_1 \simeq b_2 \).

Proof. We have \(b_1 \perp b \perp (\neg b) \simeq b_2 \perp b \perp (\neg b) \) with \(b \perp (\neg b) \) metabolic. By Theorem 1.28, \(b_1 \simeq b_2 \).

2. The Witt and Witt-Grothendieck Rings of Symmetric Bilinear Forms

In this section, we construct the Witt ring. The orthogonal sum induces an additive structure on the isometry classes of symmetric bilinear forms. Defining the tensor product of symmetric bilinear forms (corresponding to the classical Kronecker product of matrices) turns this set of isometry classes into a semi-ring. Because of the Witt Decomposition Theorem, this leads to the Grothendieck ring of isometry classes of anisotropic symmetric bilinear forms. The Witt ring \(W(F) \) is the quotient of this ring by the ideal generated by the hyperbolic plane.

Let \(b_1 \) and \(b_2 \) be symmetric bilinear forms over \(F \). The **tensor product** of \(b_1 \) and \(b_2 \) is defined to be the symmetric bilinear form \(b := b_1 \otimes b_2 \) with underlying space \(V_{b_1} \otimes_F V_{b_2} \) and form \(b \) defined by

\[b((v_1 \otimes v_2), (w_1 \otimes w_2)) = b_1(v_1, w_1) \cdot b_2(v_2, w_2) \]

for all \(v_1, w_1 \in V_{b_1} \) and \(v_2, w_2 \in V_{b_2} \). For example, if \(a \in F \) then \(\langle a \rangle \otimes b_1 \simeq ab_1 \).

LEMMA 2.1. Let \(b_1 \) and \(b_2 \) be two non-degenerate bilinear forms over \(F \). Then

1. \(b_1 \perp b_2 \) is non-degenerate.
2. \(b_1 \otimes b_2 \) is non-degenerate.
(3) $\mathcal{H}_1(V) \otimes b_1$ is hyperbolic for all finite dimensional vector spaces V.

Proof. (1), (2): Let $V_i = V_{b_i}$ for $i = 1, 2$. The b_i induce isomorphisms $l_i : V_i \to V_i^*$ for $i = 1, 2$ hence $b_1 \perp b_2$ and $b_1 \otimes b_2$ induce isomorphisms $l_1 \oplus l_2 : V_1 \oplus V_2 \to (V_1 \oplus V_2)^*$ and $l_1 \otimes l_2 : V_1 \otimes_F V_2 \to (V_1 \otimes_F V_2)^*$ respectively.

(3): Let $\{e, f\}$ be a hyperbolic pair for \mathcal{H}_1. Then the linear map $(F \oplus F^*) \otimes_F V_1 \to V_1 \oplus V_1^*$ induced by $e \otimes v \mapsto v$ and $f \otimes v \mapsto l_v : w \mapsto b(w, v)$ is an isomorphism and induces the isometry $\mathcal{H}_1 \otimes b \to \mathcal{H}_1(V)$.

It follows that the isometry classes of non-degenerate symmetric bilinear forms over F is a semi-ring under orthogonal sum and tensor product. The Grothendieck ring of this semi-ring is called the *Witt-Grothendieck* ring of F and denoted by $\hat{W}(F)$. (Cf. Scharlau [54] or Lang [41] for the definition and construction of the Grothendieck group and ring.) In particular, every element in $\hat{W}(F)$ is a difference of two isometry classes of non-degenerate symmetric bilinear forms over F. If b is a non-degenerate symmetric bilinear form over F, we shall also write b for the class in $\hat{W}(F)$. Thus if $\alpha \in \hat{W}(F)$, there exist non-degenerate symmetric bilinear forms b_1 and b_2 over F such that $\alpha = b_1 - b_2$ in $\hat{W}(F)$. By definition, we have

$$b_1 - b_2 = b_1' - b_2' \quad \text{in} \quad \hat{W}(F)$$

if and only if there exists a non-degenerate symmetric bilinear form b'' over F such that

$$b_1 \perp b_2 \perp b'' \simeq b_1' \perp b_2' \perp b''.$$

As any hyperbolic form $\mathcal{H}_1(V)$ is isometric to $(\dim V) \mathcal{H}_1$ over F, the ideal consisting of the hyperbolic forms over F in $\hat{W}(F)$ is the principal ideal \mathcal{H}_1 by Lemma 2.1 3. The quotient $W(F) := \hat{W}(F)/\mathcal{H}_1$ is called the *Witt ring* of non-degenerate symmetric bilinear forms over F. Elements in $W(F)$ are called *Witt classes*. Abusing notation, we shall also write $b \in W(F)$ for the Witt class of b and often call it just the *class* of b. The operations in $W(F)$ (and $\hat{W}(F)$) shall be denoted by $+$ and \cdot.

By [1,17] we have

$$\langle a, -a \rangle = 0 \quad \text{in} \quad W(F)$$

for all $a \in F^\times$ and in all characteristics. In particular, $\langle -1 \rangle = -\langle 1 \rangle = -1$ in $W(F)$, hence the additive inverse of the Witt class of any non-degenerate symmetric bilinear form b in $W(F)$ is represented by the form $-b$. It follows that if $\alpha \in W(F)$ then there exists a non-degenerate bilinear form b such that $\alpha = b$ in $W(F)$.

Exercise 2.3. (Cf. Scharlau [54], p.22.) Let b be a non-degenerate symmetric bilinear form on V. Suppose that $V = W_1 \oplus W_2$ with $W_1 = W_1^{\perp}$. Show that

$$b \perp -b \simeq \mathcal{H}(W_1) \perp -b.$$

In particular, $b = \mathcal{H}(W_1)$ in $\hat{W}(F)$.

Use this to give another proof that $b + (-b) = 0$ in $W(F)$ for every non-degenerate b.

The Witt Cancellation Theorem [1,29] allows us to conclude the following.
Proposition 2.4. Let b_1 and b_2 be anisotropic symmetric bilinear forms. Then the following are equivalent:

1. $b_1 \simeq b_2$.
2. $b_1 = b_2$ in $\hat{W}(F)$.
3. $b_1 = b_2$ in $W(F)$.

Proof. The implications (1) \Rightarrow (2) \Rightarrow (3) are easy.

(3) \Rightarrow (1): By definition of the Witt ring, $b_1 + n\mathbb{H} = b_2 + m\mathbb{H}$ in $\hat{W}(F)$ for some $n, m \geq 0$. It follows from the definition of the Grothendieck-Witt ring that

$$b_1 \perp n\mathbb{H} \perp b \simeq b_2 \perp m\mathbb{H} \perp b$$

for some non-degenerate form b. Thus $b_1 \perp n\mathbb{H} \perp b \perp -b \simeq b_2 \perp m\mathbb{H} \perp b \perp -b$ and $b_1 \simeq b_2$ by Corollary 1.29. \(\square\)

We also have

Corollary 2.5. $b = 0$ in $W(F)$ if and only if b is metabolic.

It follows from Proposition 2.4 that every Witt class in $W(F)$ contains (up to isometry) a unique anisotropic form. As every anisotropic bilinear form is diagonalizable by Corollary 1.20, we have a ring epimorphism

$$\mathbb{Z}[F^x/F^{x^2}] \to W(F) \quad \text{given by} \quad \sum_i n_i(a_i F^{x^2}) \mapsto \sum_i n_i(a_i).$$

Proposition 2.7. Let $F \to K$ be a homomorphism of fields. This induces ring homomorphisms

$$r_{K/F} : \hat{W}(F) \to \hat{W}(K) \quad \text{and} \quad r_{K/F} : W(F) \to W(K).$$

If K/F is purely transcendental then these maps are injective.

Proof. Let b be symmetric bilinear form over F. Define $r_{K/F}(b)$ on $K \otimes_F V_b$ by

$$r_{K/F}(b)(x \otimes v, y \otimes w) = xyb(v, w)$$

for all $x, y \in K$ and for all $v, w \in V_b$. This construction is compatible with orthogonal sums and tensor products of symmetric bilinear forms.

As $r_{K/F}(b)$ is non-degenerate if b is, it follows the $r_{K/F}(b)$ is hyperbolic if b is. It follows that $b \mapsto r_{K/F}(b)$ induces the desired maps. These are ring homomorphisms.

The last statement follows by Lemma 1.22. \(\square\)

The ring homomorphisms defined above are called restriction maps. Of course, if K/F is a field extension then the maps $r_{K/F}$ are the unique homomorphisms such that $r_{K/F}(b) = b_K$.
3. Chain Equivalence

Two non-degenerate diagonal symmetric bilinear forms \(a = \langle a_1, a_2, \ldots, a_n \rangle\) and \(b = \langle b_1, b_2, \ldots, b_n \rangle\), are called simply chain equivalent if either \(n = 1\) and \(a_1 F^x = b_1 F^x = F^x\) or \(n \geq 2\) and \(\langle a_i, a_j \rangle \approx \langle b_i, b_j \rangle\) for some indices \(i \neq j\) and \(a_k = b_k\) for every \(k \neq i, j\). Two non-degenerate diagonal forms \(a\) and \(b\) are called chain equivalent (we write \(a \approx b\)) if there is a chain of forms \(b_1 = a, b_2, \ldots, b_m = b\) such that \(b_i\) and \(b_{i+1}\) are simply chain equivalent for all \(i = 1, \ldots, m - 1\). Clearly \(a \approx b\) implies \(a \simeq b\).

Note as the symmetric group \(S_n\) is generated by transpositions, we have \(\langle a_1, a_2, \ldots, a_n \rangle \approx \langle a_{\sigma(1)}, a_{\sigma(2)}, \ldots, a_{\sigma(n)} \rangle\) for every \(\sigma \in S_n\).

Lemma 3.1. Every non-degenerate diagonal form is chain equivalent to an orthogonal sum of an anisotropic diagonal form and metabolic binary diagonal forms \(\langle a, -a \rangle, a \in F^x\).

Proof. By induction, it is sufficient to prove that any isotropic diagonal form \(b\) is chain equivalent to \(\langle a, -a \rangle \perp b'\) for some diagonal form \(b'\) and \(a \in F^x\). Let \(\{v_1, \ldots, v_n\}\) be the orthogonal basis of \(b\) and set \(b(v_i, v_i) = a_i\). Choose an isotropic vector \(v\) with the smallest number \(k\) of nonzero coordinates. Changing the order of the \(v_i\) if necessary, we may assume that \(v = \sum_{i=1}^k c_iv_i\) for nonzero \(c_i \in F\) and \(k \geq 2\). We prove the statement by induction on \(k\). If \(k = 2\), the restriction of \(b\) to the plane \(Fv_1 \oplus Fv_2\) is metabolic and therefore is isomorphic to \(\langle a, -a \rangle\) for some \(a \in F^x\) by Example 1.23(3), hence \(b \approx \langle a, -a \rangle \perp \langle a_3, \ldots, a_n \rangle\).

If \(k > 2\) the vector \(v'_1 = c_1v_1 + c_2v_2\) is anisotropic. Complete \(v'_1\) to an orthogonal basis \(\{v'_1, v'_2\}\) of \(Fv_1 \oplus Fv_2\) and set \(a'_i = b(v'_i, v'_i), i = 1, 2\). Then \(\langle a_1, a_2 \rangle \approx \langle a'_1, a'_2 \rangle\) and \(b \approx \langle a'_1, a'_2, a_3, \ldots, a_n \rangle\). The vector \(v\) has \(k-1\) nonzero coordinates in the orthogonal basis \(\{v'_1, v'_2, v_3, \ldots, v_n\}\). Applying the induction hypothesis to the diagonal form \(\langle a'_1, a'_2, a_3, \ldots, a_n \rangle\) completes the proof. \(\square\)

Lemma 3.2. (Witt Chain Equivalence) Two anisotropic diagonal forms of dimension greater than one are chain equivalent if and only if they are isometric.

Proof. Let \(\{v_1, \ldots, v_n\}\) and \(\{u_1, \ldots, u_n\}\) be two orthogonal bases of the bilinear form \(b\) with \(b(v_i, v_i) = a_i\) and \(b(u_i, u_i) = b_i\). We must show that \(\langle a_1, \ldots, a_n \rangle \approx \langle b_1, \ldots, b_n \rangle\). We do this by double induction on \(n\) and the number \(k\) of nonzero coefficients of \(u_i\) in the basis \(\{v_i\}\). Changing the order of the \(v_i\) if necessary, we may assume that \(u_1 = \sum_{i=1}^k c_i v_i\) for some nonzero \(c_i \in F\).

If \(k = 1\), i.e., \(u_1 = c_1v_1\), the two \((n-1)\)-dimensional subspaces generated by the \(v_i\)'s and \(u_i\)'s respectively with \(i \geq 2\) coincide. By the induction hypothesis, \(\langle a_2, \ldots, a_n \rangle \approx \langle b_2, \ldots, b_n \rangle\), hence \(\langle a_1, a_2, \ldots, a_n \rangle \approx \langle a_1, b_2, \ldots, b_n \rangle \approx \langle b_1, b_2, \ldots, b_n \rangle\).

If \(k \geq 2\) set \(v'_1 = c_1v_1 + c_2v_2\). As \(b\) is anisotropic, \(a'_1 = b(v'_1, v'_1)\) is nonzero. Choose an orthogonal basis \(\{v'_1, v'_2\}\) of \(Fv_1 \oplus Fv_2\) and set \(a'_2 = b(v'_2, v'_2)\). We have \(\langle a_1, a_2 \rangle \approx \langle a'_1, a'_2 \rangle\). The vector \(u_1\) has \(k-1\) nonzero coordinates in the basis \(\{v'_1, v'_2, v_3, \ldots, v_n\}\). By the induction hypothesis \(\langle a_1, a_2, a_3, \ldots, a_n \rangle \approx \langle a'_1, a'_2, a_3, \ldots, a_n \rangle \approx \langle b_1, b_2, b_3, \ldots, b_n \rangle\). \(\square\)

Exercise 3.3. Prove that a diagonalizable metabolic form \(b\) is isometric to \((1, -1) \otimes b'\) for some diagonalizable bilinear form \(b'\).
4. Structure of the Witt Ring

In this section, we give a presentation of the Witt-Grothendieck and Witt rings. The classes of even dimensional anisotropic symmetric bilinear forms generate an ideal \(I(F) \) in the Witt ring. We also derive a presentation for it and its square, \(I(F)^2 \).

We turn to determining presentations of \(\widehat{W}(F) \) and \(W(F) \). The generators will be the isometry classes of non-degenerate 1-dimensional symmetric bilinear forms. The defining relations arise from the following:

Lemma 4.1. Let \(a, b \in F^\times \) and \(z \in D(\langle a, b \rangle) \). Then \(\langle a, b \rangle \simeq \langle z, abz \rangle \). In particular, if \(a + b \neq 0 \) then

\[
(4.2) \quad \langle a, b \rangle \simeq \langle a + b, ab(a + b) \rangle.
\]

Proof. By Corollary 1.8, we have \(\langle a, b \rangle \simeq \langle z, d \rangle \) for some \(d \in F^\times \). Comparing determinants, we must have \(abF^\times = dzF^\times \) so \(dF^\times = abF^\times \). □

The isometry \((4.2) \) is often called the *Witt relation*.

Define an abelian group \(W'(F) \) by generators and relations. Generators are isometry classes of non-degenerate 1-dimensional symmetric bilinear forms. For any \(a \in F^\times \) we write \([a]\) for the generator—the isometry class of the form \(\langle a \rangle \). Note that \([ax^2] = [a]\) for every \(a, x \in F^\times \). The relations are:

\[
(4.3) \quad [a] + [b] = [a + b] + [ab(a + b)]
\]

for all \(a, b \in F^\times \) such that \(a + b \neq 0 \).

Lemma 4.4. If \(\langle a, b \rangle \simeq \langle c, d \rangle \) then \([a] + [b] = [c] + [d] \) in \(W'(F) \).

Proof. As \(\langle a, b \rangle \simeq \langle c, d \rangle \), we have \(abF^\times = \det \langle a, b \rangle = \det \langle c, d \rangle = cdF^\times \) and \(d = abcz^2 \) for some \(z \in F^\times \). Since \(c \in D(\langle a, b \rangle) \), there exist \(x, y \in F \) satisfying \(c = ax^2 + by^2 \). If \(x = 0 \) or \(y = 0 \), the statement is obvious, so we may assume that \(x, y \in F^\times \). It follows from \((4.3) \) that

\[
[a] + [b] = [ax^2] + [by^2] = [c] + [ax^2by^2c] = [c] + [d].
\]

Lemma 4.5. We have \([a] + [-a] = [b] + [-b] \) in \(W'(F) \) for all \(a, b \in F^\times \).

Proof. We may assume that \(a + b \neq 0 \). From \((4.3) \), we have

\[
[-a] + [a + b] = [b] + [-ab(a + b)], \quad [-b] + [a + b] = [a] + [-ab(a + b)].
\]

The result follows. □

If \(\text{char } F \neq 2 \), the forms \(\langle a, -a \rangle \) and \(\langle b, -b \rangle \) are isometric by Remark 1.16 (ii). Therefore, in this case Lemma 4.5 follows from Lemma 4.4.

Lemma 4.6. If \(\langle a_1, \ldots, a_n \rangle \approx \langle b_1, \ldots, b_n \rangle \) then \([a_1] + \cdots + [a_n] = [b_1] + \cdots + [b_n] \) in \(W'(F) \).

Proof. We may assume that the forms are strictly chain equivalent. In this case the statement follows from Lemma 4.4. □
The Grothendieck-Witt group $\hat{W}(F)$ is generated by the isometry classes of 1-dimensional symmetric bilinear forms that are subject to the defining relations $\langle a \rangle + \langle b \rangle = \langle a + b \rangle + \langle ab(a + b) \rangle$ for all $a, b \in F^\times$ such that $a + b \neq 0$.

Proof. It suffices to prove that the homomorphism $W''(F) \to \hat{W}(F)$ taking $[a]$ to $\langle a \rangle$ is an isomorphism. As $b \perp \langle 1 \rangle$ is diagonalizable for any non-degenerate symmetric bilinear form b by Corollary \[1.19\], the map is surjective. An element in the kernel is given by the difference of two diagonal forms $b = \langle a_1, \ldots, a_n \rangle$ and $b' = \langle a'_1, \ldots, a'_n \rangle$ such that $b = b'$ in $\hat{W}(F)$. By the definition of $\hat{W}(F)$ and Corollary \[1.19\], there is a diagonal form b'' such that $b \perp b'' \perp b''$. Replacing b and b' by $b \perp b''$ and $b' \perp b''$ respectively, we may assume that $b \simeq b'$. It follows from Lemma \[3.1\] that $b \simeq b_1 \perp b_2$ and $b' \simeq b'_1 \perp b'_2$, where b_1, b'_1 are anisotropic diagonal forms and b_2, b'_2 are orthogonal sums of metabolic planes $\langle a, -a \rangle$ for various $a \in F^\times$. It follows from the Corollary \[1.29\] that $b_1 \simeq b'_1$ and therefore $b_1 \simeq b'_1$ by Lemma \[3.2\]. Note that the dimension of b_2 and b'_2 are equal. By Lemmas \[4.5\] and \[4.6\] we conclude that $[a_1] + \cdots + [a_n] = [a'_1] + \cdots + [a'_n]$ in $W'(F)$.

Since the Witt class in $W(F)$ of the hyperbolic plane \mathbb{H}_1 is equal to $\langle 1, -1 \rangle$ by Remark \[1.16\](iv), Theorem \[4.7\] yields

Theorem 4.8. The Witt group $W(F)$ is generated by the isometry classes of 1-dimensional symmetric bilinear forms that are subject to the following defining relations:

1. $\langle 1 \rangle + \langle -1 \rangle = 0$.
2. $\langle a \rangle + \langle b \rangle = \langle a + b \rangle + \langle ab(a + b) \rangle$ for all $a, b \in F^\times$ such that $a + b \neq 0$.

If $\text{char } F \neq 2$, the above is the well-known presentation of the Witt-Grothendieck and Witt groups first demonstrated by Witt.

The Witt-Grothendieck and Witt rings has a natural filtration that we now describe. Define the dimension map

$$\dim : \hat{W}(F) \to \mathbb{Z} \quad \text{by} \quad \dim x = \dim b_1 - \dim b_2 \quad \text{if} \quad x = b_1 - b_2.$$

This is a well-defined map (cf. Equation \[2.2\]).

We let $\hat{I}(F)$ denote the kernel of this map. As

$$\langle a \rangle - \langle b \rangle = (\langle 1 \rangle - \langle b \rangle) - (\langle 1 \rangle - \langle a \rangle) \quad \text{in} \quad \hat{W}(F)$$

for all $a, b \in F^\times$, the elements $\langle 1 \rangle - \langle a \rangle$ with $a \in F^\times$ generate $\hat{I}(F)$ as an abelian group.

It follows that $\hat{W}(F)$ is generated by the elements $\langle 1 \rangle$ and $\langle 1 \rangle - \langle x \rangle$ with $x \in F^\times$. Let $I(F)$ denote the image of $\hat{I}(F)$ in $W(F)$. If $a \in F^\times$ write $\langle \langle a \rangle \rangle_b$ or simply $\langle \langle a \rangle \rangle$ for the binary symmetric bilinear form $\langle 1, -a \rangle_b$. As $\hat{I}(F) \cap (\mathbb{H}_1) = 0$, we have $I(F) \simeq \hat{I}(F)/\hat{I}(F) \cap (\mathbb{H}_1) \simeq \hat{I}(F)$. Then the map $\hat{W}(F) \to W(F)$ induces an isomorphism

$$\hat{I}(F) \to I(F) \quad \text{given by} \quad \langle 1 \rangle - \langle x \rangle \mapsto \langle x \rangle.$$

In particular, $I(F)$ is the ideal in $W(F)$ consisting of the Witt classes of even dimensional forms. It is called the fundamental ideal of $W(F)$ and is generated by the classes $\langle \langle a \rangle \rangle$.
with \(a \in F^\times \). Note that if \(F \to K \) is a homomorphism of fields then \(r_{K/F}(\widehat{I}(F)) \subset \widehat{I}(K) \) and \(r_{K/F}(I(F)) \subset I(K) \).

The relations in Theorem 4.8 can be rewritten as

\[
\langle\langle a \rangle\rangle + \langle\langle b \rangle\rangle = \langle\langle a + b \rangle\rangle = \langle\langle ab(a + b) \rangle\rangle
\]

for \(a, b \in F^\times \) with \(a + b \neq 0 \). We conclude

Corollary 4.9. The group \(I(F) \) is generated by the isometry classes of 2-dimensional symmetric bilinear forms \(\langle\langle a \rangle\rangle \) with \(a \in F^\times \) subject to the defining relations

1. \(\langle\langle 1 \rangle\rangle = 0 \).
2. \(\langle\langle a \rangle\rangle + \langle\langle b \rangle\rangle = \langle\langle a + b \rangle\rangle = \langle\langle ab(a + b) \rangle\rangle \) for all \(a, b \in F^\times \) such that \(a + b \neq 0 \).

Let \(\widehat{I}^n(F) := (\widehat{I}(F))^n \), the \(n \)th power of \(\widehat{I}(F) \). Then \(\widehat{I}^n(F) \) maps isomorphically onto \(I^n(F) := I(F)^n \), the \(n \)th power of \(I(F) \) in \(\widehat{W}(F) \). It defines the filtration

\[
\widehat{W}(F) \supset I(F) \supset I^2(F) \supset \cdots \supset I^n(F) \supset \cdots
\]

in which we shall be interested.

For convenience, we let \(\widehat{I}^0(F) = \widehat{W}(F) \) and \(I^0(F) = W(F) \).

We denote the tensor product \(\langle\langle a_1 \rangle\rangle \otimes \langle\langle a_2 \rangle\rangle \otimes \cdots \otimes \langle\langle a_n \rangle\rangle \) by

\[
\langle\langle a_1, a_2, \ldots, a_n \rangle\rangle_b
\]

and call it a form isometric to such a tensor product a *bilinear n-fold Pfister form*. (We call any form isometric to \(\langle\langle 1 \rangle\rangle \) a 0-fold Pfister form.) For \(n \geq 1 \), the isometry classes of bilinear \(n \)-fold Pfister forms generate \(I^n(F) \) as an abelian group.

We shall be interested in relations between isometry classes of Pfister forms in \(\widehat{W}(F) \). We begin with a study of 1- and 2-fold Pfister forms.

Example 4.10. We have \(\langle\langle a \rangle\rangle + \langle\langle b \rangle\rangle = \langle\langle ab \rangle\rangle + \langle\langle a, b \rangle\rangle \) in \(\widehat{W}(F) \). In particular, \(\langle\langle a \rangle\rangle + \langle\langle b \rangle\rangle \equiv \langle\langle ab \rangle\rangle \mod I^2(F) \).

As the hyperbolic plane is two dimensional, the dimension invariant induces a map

\[
e_0 : \widehat{W}(F) \to \mathbb{Z}/2\mathbb{Z} \quad \text{by} \quad b \mapsto \dim b \mod 2.
\]

Clearly, this is a homomorphism with kernel the fundamental ideal \(I(F) \) so induces an isomorphism

\[
(4.11) \quad \overline{e}_0 : \widehat{W}(F)/I(F) \to \mathbb{Z}/2\mathbb{Z}.
\]

By Corollary 4.25, we have a map

\[
e_1 : I(F) \to F^\times/F^\times^2 \quad \text{by} \quad b \mapsto (-1)^{\frac{\dim b}{2}} \det b.
\]

The map \(e_1 \) is a homomorphism as \(\det(b \perp b') = \det b \cdot \det b' \) and surjective as \(\langle\langle a \rangle\rangle \mapsto aF^\times^2 \). Clearly, \(e_1(\langle\langle a, b \rangle\rangle) = F^\times^2 \) so \(e_1 \) induces an epimorphism

\[
(4.12) \quad \overline{e}_1 : I(F)/I^2(F) \to F^\times/F^\times^2.
\]

We have
Proposition 4.13. We have $\ker(e_1) = I^2(F)$ and $\bar{e}_1 : I(F)/I^2(F) \to F^\times/F^{x^2}$ is an isomorphism.

Proof. Let $f_1 : F^\times/F^{x^2} \to I(F)/I^2(F)$ given by $aF^{x^2} \mapsto \langle\langle a \rangle\rangle + I^2(F)$. This is a homomorphism by Example 4.10. Inverse to \bar{e}_1, since $I(F)$ is generated by $\langle\langle a \rangle\rangle, a \in F^\times$.

We turn to $I^2(F)$.

Lemma 4.14. Let $a, b \in F^\times$. Then $\langle\langle a, b \rangle\rangle = 0$ in $W(F)$ if and only if either $a \in F^{x^2}$ or $b \in D(\langle\langle a \rangle\rangle)$. In particular, $\langle\langle a, 1 - a \rangle\rangle = 0$ in $W(F)$ for any $a \neq 1$ in F^\times.

Proof. Suppose that $\langle\langle a \rangle\rangle$ is anisotropic. Then $\langle\langle a, b \rangle\rangle = 0$ in $W(F)$ if and only if $b\langle\langle a \rangle\rangle \simeq \langle\langle a \rangle\rangle$ by Proposition 2.4 if and only if $b \in G(\langle\langle a \rangle\rangle) = D(\langle\langle a \rangle\rangle)$ by Example 1.15.

Isometries of bilinear 2-fold Pfister forms are easily established using isometries of binary forms. For example, we have

Lemma 4.15. Let $a, b \in F^\times$ and $x, y \in F$. Let $z = ax^2 + by^2 \neq 0$. Then

1. $\langle\langle a, b \rangle\rangle \simeq \langle\langle a, b(y^2 - ax^2) \rangle\rangle$ if $y^2 - ax^2 \neq 0$.
2. $\langle\langle a, b \rangle\rangle \simeq \langle\langle z, -ab \rangle\rangle$.
3. $\langle\langle a, b \rangle\rangle \simeq \langle\langle z, abz \rangle\rangle$.
4. If z is a square in F then $\langle\langle a, b \rangle\rangle$ is metabolic. In particular, if char $F \neq 2$ then $\langle\langle a, b \rangle\rangle \simeq 2\mathbb{H}_1$.

Proof. (1): Let $w = y^2 - ax^2$. We have

$\langle\langle a, b \rangle\rangle \simeq \langle\langle 1, -a, -b, ab \rangle\rangle \simeq \langle\langle 1, -a, -by^2, abx^2 \rangle\rangle \simeq \langle\langle 1, -a, bw, ab \rangle\rangle \simeq \langle\langle a, bw \rangle\rangle$.

(2): We have

$\langle\langle a, b \rangle\rangle \simeq \langle\langle 1, -a, -b, ab \rangle\rangle \simeq \langle\langle 1, -ax^2, -by^2, ab \rangle\rangle \simeq \langle\langle 1, -z, -zab, ab \rangle\rangle \simeq \langle\langle z, -ab \rangle\rangle$.

(3) follows from (1) and (2) and (4) follows from (2) and Remark 1.16(ii).

Explicit examples of such isometries are:

Example 4.16. Let $a, b \in F^\times$ then

1. $\langle\langle a, 1 \rangle\rangle$ is metabolic.
2. $\langle\langle a, -a \rangle\rangle$ is metabolic.
3. $\langle\langle a, a \rangle\rangle \simeq \langle\langle a, -1 \rangle\rangle$.
4. $\langle\langle a, b \rangle\rangle + \langle\langle a, -b \rangle\rangle = \langle\langle a, -1 \rangle\rangle$ in $W(F)$.

We turn to a presentation of $I^2(F)$. It is different from that for $I(F)$ as we need a new generating relation. Indeed the analogue of the Witt relation will be a consequence of our new relation and a metabolic relation. Let $I_3(F)$ be the abelian group generated by all the isometry classes $[b]$ of bilinear 2-fold Pfister forms b subject to the generating relations:

1. $[[\langle\langle 1, 1 \rangle\rangle]] = 0$.
2. $[[\langle\langle ab, c \rangle\rangle]] + [[\langle\langle a, b \rangle\rangle]] = [[\langle\langle a, bc \rangle\rangle]] + [[\langle\langle b, c \rangle\rangle]]$ for all $a, b, c \in F^\times$.
We call the second relation the \textit{cocycle relation}.

\textbf{Remark 4.17.} The cocycle relation holds in $I^2(F)$: Let $a, b, c \in F^\times$. Then \[\langle\langle ab, c \rangle\rangle + \langle\langle a, b \rangle\rangle = \langle\langle 1, -ab, -c, abc \rangle\rangle + \langle\langle 1, -a, -b, ab \rangle\rangle = \langle\langle 1, 1, -c, abc, -a, -b \rangle\rangle = \langle\langle 1, -a, -bc, abc \rangle\rangle + \langle\langle 1, -b, -c, bc \rangle\rangle = \langle\langle a, bc \rangle\rangle + \langle\langle b, c \rangle\rangle\]
in $I^2(F)$.

We begin by showing that the analogue of the Witt relation is a consequence of the other two relations.

\textbf{Lemma 4.18.} The relations

\begin{enumerate}[(i)]
\item $[\langle\langle a, 1 \rangle\rangle] = 0$
\item $[\langle\langle a, c \rangle\rangle] + [\langle\langle b, c \rangle\rangle] = [\langle\langle (a + b), c \rangle\rangle] + [\langle\langle a + b\rangle\rangle]$
\end{enumerate}

holds in $I^2_2(F)$ for all $a, b, c \in F^\times$ if $a + b \neq 0$.

\textbf{Proof.} Applying the cocycle relation to $a, a, 1$ shows that \[\langle\langle (1, 1) \rangle\rangle + [\langle\langle a, a \rangle\rangle] = [\langle\langle a, a \rangle\rangle] + [\langle\langle a, 1 \rangle\rangle].\] The first relation now follows. Applying Lemma 4.15 and the cocycle relation to a, c, c shows that \[\langle\langle a + b, c, c \rangle\rangle + \langle\langle (a + b), c, c \rangle\rangle = \langle\langle a + b, c, c \rangle\rangle + \langle\langle (a + b), c, c \rangle\rangle\] for all $c \in F^\times$.

Applying the cocycle relation to $a(a + b), a, c$ yields \[\langle\langle a + b, c \rangle\rangle + [\langle\langle a + b, a \rangle\rangle] = [\langle\langle a + b, ac \rangle\rangle] + [\langle\langle a, c \rangle\rangle]\] and to $a(a + b), b, c$ yields \[\langle\langle ab(a + b), b \rangle\rangle + [\langle\langle ab(a + b), c \rangle\rangle] = [\langle\langle a + b, bc \rangle\rangle] + [\langle\langle b, c \rangle\rangle].\]

Adding the equations (4.20) and (4.21) and then using the isometries \[\langle\langle a + b, a \rangle\rangle \simeq \langle\langle a + b, -b \rangle\rangle \text{ and } \langle\langle a + b, ac \rangle\rangle \simeq \langle\langle a + b, -bc \rangle\rangle\] derived from Lemma 4.15, followed by using equation (4.19), yields

\begin{align*}
[\langle\langle a, c \rangle\rangle] + [\langle\langle b, c \rangle\rangle] - [\langle\langle (a + b), c \rangle\rangle] - [\langle\langle a(b + b), c \rangle\rangle] \\
= [\langle\langle (a + b), a \rangle\rangle] + [\langle\langle (a + b), b \rangle\rangle] - [\langle\langle a + b, ac \rangle\rangle] - [\langle\langle a + b, bc \rangle\rangle] \\
= [\langle\langle a + b, -b \rangle\rangle] + [\langle\langle a + b, b \rangle\rangle] - [\langle\langle a + b, -bc \rangle\rangle] - [\langle\langle a + b, bc \rangle\rangle] \\
= [\langle\langle a + b, a \rangle\rangle, -1\rangle\rangle] - [\langle\langle a + b, a \rangle\rangle, -1\rangle\rangle] = 0. \quad \Box
\end{align*}

\textbf{Theorem 4.22.} The ideal $I^2(F)$ is generated as an abelian group by the isometry classes $\langle\langle a, b \rangle\rangle$ of bilinear 2-fold Pfister forms for all $a, b \in F^\times$ subject to the generating relations

\begin{enumerate}[(1)]
\item $\langle\langle 1, 1 \rangle\rangle = 0$.
\item $\langle\langle ab, c \rangle\rangle + \langle\langle a, b \rangle\rangle = \langle\langle a, bc \rangle\rangle + \langle\langle b, c \rangle\rangle$ for all $a, b, c \in F^\times$.
\end{enumerate}
Clearly, we have well-defined homomorphisms
\[g : I_2(F) \rightarrow I^2(F) \] induced by \([[a]] \mapsto [b] \)
and
\[j : I_2(F) \rightarrow I(F) \] induced by \([[a, b]] \mapsto (a) + (b) - \langle a, b \rangle \)
the latter being the composition with the inclusion \(I^2(F) \subset I(F) \) using Example 4.10.

We show that the map \(g : I_2(F) \rightarrow I^2(F) \) is an isomorphism. Define
\[\gamma : F^\times \times F^\times \times F^\times \rightarrow I_2(F) \] by \((aF^\times, bF^\times) \mapsto [\langle a, b \rangle] \).
This is clearly well-defined. For convenience, write \((a)\) for \(aF^\times\). Using (2), we see that
\[
\gamma((b), (c)) - \gamma(ab, (c)) + \gamma((a), (bc)) - \gamma((a), (b)) \\
= \left[\langle b, c \rangle \right] - \left[\langle ab, c \rangle \right] + \left[\langle a, bc \rangle \right] - \left[\langle a, b \rangle \right] = 0
\]
so \(\gamma \) is a 2-cocycle. By Lemma 4.18, we have \([\langle 1, a \rangle] = 0 \) in \(I_2(F) \), so \(\gamma \) is a normalized 2-cocycle. The map \(\gamma \) defines an extension \(N = F^\times \times F^\times \times I_2(F) \) of \(I_2(F) \) by \(F^\times \times F^\times \) with
\[
\langle a \rangle \alpha + \langle b \rangle \beta = \langle ab \rangle \alpha + \beta + [\langle a, b \rangle] \]
As \(\gamma \) is symmetric, \(N \) is abelian. Let \(h : N \rightarrow I(F) \) be defined by \((a, \alpha) \mapsto \langle a \rangle + j(\alpha)\)
We see that the map \(h \) is a homomorphism:
\[
h((a, \alpha) + \langle b, \beta \rangle) = h((ab, \alpha + \beta + [\langle a, b \rangle]))
\]
\[
= \langle ab \rangle + j(\alpha) + j(\beta) + j([\langle a, b \rangle]) = \langle ab \rangle + \langle b \rangle + j(\alpha) + j(\beta)
\]
\[
= h((a, \alpha) + h((b, \beta)).
\]
Thus we have a commutative diagram
\[
\begin{array}{cccccc}
0 & \longrightarrow & I_2(F) & \longrightarrow & N & \longrightarrow & F^\times \times F^\times & \longrightarrow & 0 \\
& & g \downarrow & & h \downarrow & & f_1 \downarrow & & \\
0 & \longrightarrow & I^2(F) & \longrightarrow & I(F) & \longrightarrow & I(F)/I^2(F) & \longrightarrow & 0
\end{array}
\]
where \(f_1 \) is the isomorphism inverse of \(\bar{e}_1 \) in Proposition 4.13.
Let
\[f : I(F) \rightarrow N \] be induced by \(\langle a \rangle \mapsto (a, 0) \).
Using Lemma 4.15 and Corollary 4.9, we see that \(f \) is well-defined as
\[
((a, 0) + (b, 0) = (ab), [\langle a, b \rangle]) = (ab), [\langle a + b, ab(a + b) \rangle])
\]
if \(a + b \neq 0 \). As
\[
f(\langle a, b \rangle) = f(\langle a \rangle + \langle b \rangle - \langle ab \rangle) = (a, 0) + (b, 0) - (ab, 0)
\]
\[
= (ab), [\langle a, b \rangle]) - (ab, 0) = (ab, 0) + (1, [\langle a, b \rangle]) - (ab, 0) = (1, [\langle a, b \rangle]),
\]
we have
\[
(f \circ h)(c, [\langle a, b \rangle]) = f(\langle c \rangle + \langle a, b \rangle) = (c, [\langle a, b \rangle])).
\]
Hence $f \circ h$ is the identity on N. As $(h \circ f)(\langle a \rangle) = \langle a \rangle$, the composition $h \circ f$ is the identity on $I(F)$. Thus h is an isomorphism hence so is g. \hfill \Box

5. The Stiefel-Whitney Map

We shall use facts about Milnor K-theory. (Cf. Appendix, \textbf{99}) We write $k_*(F) := \coprod_{n \geq 0} k_n(F)$ for the graded ring $K_*(F)/2K_*(F) := \coprod_{n \geq 0} K_n(F)/2K_n(F)$. Abusing notation, if $\{a_1, \ldots, a_n\}$ is a symbol in $K_n(F)$, we shall also write it for its coset $\{a_1, \ldots, a_n\} + 2K_n(F)$.

The associated graded ring $GW_*(F) = \coprod_{n \geq 0} I_n(F)/I_{n+1}(F)$ of $W(F)$ with respect to the fundamental ideal $I(F)$ is called the graded Witt ring of bilinear forms. Note that since $2 \cdot I^n(F) = \langle 1, 1 \rangle \cdot I^n(F) \subset I^{n+1}(F)$ we have $2 \cdot GW_*(F) = 0$.

By Example \ref{example1} the map $F^x \rightarrow I(F)/I^2(F)$ defined by $a \mapsto \langle a \rangle + I^2(F)$ is a homomorphism. By the definition of the Milnor ring and Lemma \ref{lemma1}, this map gives rise to a graded ring homomorphism

\begin{equation}
 f_* : k_*(F) \rightarrow GW_*(F)
\end{equation}

taking the symbol $\{a_1, a_2, \ldots, a_n\}$ to $\langle\langle a_1, a_2, \ldots, a_n\rangle\rangle + I^{n+1}(F)$. Since the graded ring $GW_*(F)$ is generated by the degree one component $I(F)/I^2(F)$, the map f_* is surjective.

Note that the map $f_0 : k_0(F) \rightarrow W(F)/I(F)$ is the inverse of the map \tilde{e}_0 and the map $f_1 : k_1(F) \rightarrow I(F)/I^2(F)$ is the inverse of the map \tilde{e}_1 (cf. Proposition \ref{prop1}).

\textbf{Lemma 5.2.} Let $\langle\langle a, b \rangle\rangle$ and $\langle\langle c, d \rangle\rangle$ be isometric bilinear 2-fold Pfister forms. Then $\{a, b\} = \{c, d\}$ in $k_2(F)$.

\textbf{Proof.} If the form $\langle\langle a, b \rangle\rangle$ is metabolic then $b \in D(\langle\langle a \rangle\rangle)$ or $a \in F^x$ by Lemma \ref{lemma1}. In particular, if $\langle\langle a, b \rangle\rangle$ is metabolic then $\{a, b\} = 0$ in $k_2(F)$. Therefore, we may assume that $\langle\langle a, b \rangle\rangle$ is anisotropic. Using Witt Cancellation \ref{wittcancellation}, we see that $c = ax^2 + by^2 - abz^2$ for some $x, y, z \in F$. If $c \notin aF^x$ let $w = y^2 - az^2 \neq 0$. Then $\langle\langle a, b \rangle\rangle \simeq \langle\langle a, bw \rangle\rangle \simeq \langle\langle c, -abw \rangle\rangle$ by Lemma \ref{lemma1} and $\{a, b\} = \{a, bw\} = \{c, -abw\}$ in $k_2(F)$ by Appendix, Lemma \ref{appendixlemma}. Hence we may assume that $a = c$. By Witt Cancellation, $\langle\langle -b, ab \rangle\rangle \simeq \langle\langle -d, ad \rangle\rangle$ so $bd \in D(\langle\langle a \rangle\rangle)$, i.e., $bd = x^2 - ay^2$ in F for some $x, y \in F$. Thus $\{a, b\} = \{c, d\}$ by Appendix, Lemma \ref{appendixlemma}. \hfill \Box

\textbf{Proposition 5.3.} The homomorphism

\[e_2 : I^2(F) \rightarrow k_2(F) \]

given by $\langle\langle a, b \rangle\rangle \mapsto \{a, b\}$

is a well-defined surjection with $\ker(e_2) = I^3(F)$. Moreover, e_2 induces an isomorphism

\[\tilde{e}_2 : I^2(F)/I^3(F) \rightarrow k_2(F). \]

\textbf{Proof.} By Lemma 5.2 and the presentation of $I^2(F)$ in Theorem \ref{theorem12}, the map is well-defined. Since

\[\langle\langle a, b, c \rangle\rangle = \langle\langle a, c \rangle\rangle + \langle\langle b, c \rangle\rangle - \langle\langle ab, c \rangle\rangle, \]

we have $I^3(F) \subset \ker e_2$. As \tilde{e}_2 and f_2 are inverses of each other, the result follows. \hfill \Box
Define the graded ring by

\[k(F)[[t]] : = \prod_i k_i(F)t^i. \]

Let \(\mathfrak{F}(F) \) be the free abelian group on the set of isometry classes of non-degenerate 1-dimensional symmetric bilinear forms. Let \(w \) be the group homomorphism

\[w: \mathfrak{F}(F) \to (k(F)[[t]])^\times \]

given by \(\langle a \rangle \mapsto 1 + \{a\}t. \)

If \(a, b \in F^x \) satisfy \(a + b \neq 0 \) then by Appendix, Lemma 99.3 we have

\[w(\langle a \rangle + \langle b \rangle) = (1 + \{a\}t)(1 + \{b\}t) = 1 + \{a\}t + \{a, b\}t^2 = 1 + \{ab\}t + \{a, b\}t^2 = \frac{a + b}{a + ab + b}. \]

In particular, \(w \) factors through the relation \(\langle a \rangle + \langle b \rangle = \langle a + b \rangle + \langle ab(a + b) \rangle \) for all \(a, b \in F^x \) satisfying \(a + b \neq 0 \) hence induces a group homomorphism

\[w: \hat{W}(F) \to (k(F)[[t]])^\times \]

by Theorem 1.17 called the total Stiefel-Whitney map. If \(b \) is a non-degenerate symmetric bilinear form and \(\alpha \) is its class in \(\hat{W}(F) \) define the total Stiefel-Whitney class of \(w(b) \) to be \(w(\alpha) \).

Example 5.5. If \(b \) is a metabolic plane then \(b = \langle a \rangle + \langle -a \rangle \) in \(\hat{W}(F) \) for some \(a \in F^x \). (Note the hyperbolic plane equals \((1) + \langle -1 \rangle \) in \(\hat{W}(F) \) by Example 1.16(iv), so \(w(b) = 1 + \langle -1 \rangle t \) as \(\{a, -a\} = 1 \) in \(k_2(F) \) for any \(a \in F^x \).

Lemma 5.6. Let \(\alpha = ((1) - \langle a_1 \rangle) \cdots ((1) - \langle a_n \rangle) \) in \(\hat{W}(F) \). Let \(m = 2n-1 \). Then

\[w(\alpha) = (1 + \{a_1, \ldots, a_n, \underbrace{-1, \ldots, -1}_{m-n}\}t^m)^{-1}. \]

Proof. As

\[\alpha = \sum_{\varepsilon} s\varepsilon \langle a_1^{\varepsilon_1} \cdots a_n^{\varepsilon_n} \rangle, \]

where the sum runs over all \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in \{0, 1\}^n \) and \(s\varepsilon = (-1)\sum_i \varepsilon_i \), we have

\[w(\alpha) = \prod_{\varepsilon} (1 + \sum_i \varepsilon_i \{a_i\}t)^{s\varepsilon}. \]

Let

\[h = h(t_1, \ldots, t_n) = \prod_{\varepsilon} (1 + \varepsilon_1 t_1 t \cdots + \varepsilon_n t_n t)^{-s\varepsilon} \]

in \((\mathbb{Z}/2\mathbb{Z}[[t]])[[t_1, \ldots, t_n]] \). Substituting zero for any \(t_i \) in \(h \), yields one so

\[h = 1 + t_1 \cdots t_n g(t_1, \ldots, t_n) t^n \]

for some \(g \in (\mathbb{Z}/2\mathbb{Z}[[t]])[[t_1, \ldots, t_n]] \).
As \(\{a, a\} = \{a, -1\} \), we have
\[
w(\alpha)^{-1} = 1 + \{a_1, \ldots, a_n\}g(\{a_1\}, \ldots, \{a_n\})t^n = 1 + \{a_1, \ldots, a_n\}g(-1, \ldots, \{-1\})t^n.
\]
We have, with \(s \) a variable,
\[
1 + g(s, \ldots, s)t^n = h(s, \ldots, s) = \prod_{i}(1 + \sum_{i} \varepsilon_i st)^{-s_i} = (1 + st)^m = 1 + s^mt^n
\]
as \(\sum \varepsilon_i = 1 \) in \(\mathbb{Z}/2\mathbb{Z} \) exactly \(m \) times, so \(g(s, \ldots, s) = (st)^{m-n} \) and the result follows. \(\Box \)

Let \(w_0(\alpha) = 1 \) and
\[
w(\alpha) = 1 + \sum_{i \geq 1} w_i(\alpha)t^i
\]
for \(\alpha \in \hat{W}(F) \). The map \(w_i : \hat{W}(F) \to k_i(F) \) is called the \(i \)th Stiefel-Whitney class. Let \(\alpha, \beta \in \hat{W}(F) \). As \(w(\alpha + \beta) = w(\alpha)w(\beta) \), we have the Whitney formula
\[
w_n(\alpha + \beta) = \sum_{i+j=n} w_i(\alpha)w_j(\beta).
\]

Remark 5.8. Let \(K/F \) be a field extension and \(\alpha \in \hat{W}(F) \). Then
\[
\text{res}_{K/F} w_i(\alpha) = w_i(\alpha_K) \text{ in } k_i(F) \text{ for all } i.
\]

Corollary 5.9. Let \(m = 2^n-1 \). Then \(w_j(\hat{I}^n(F)) = 0 \) for \(j = 1, \ldots, m-1 \) and \(w_m : \hat{I}^n(F) \to k_m(F) \) is a group homomorphism mapping \((\langle 1 \rangle - \langle a_1 \rangle) \cdots (\langle 1 \rangle - \langle a_n \rangle) \) to \(\{a_1, \ldots, a_n, \underbrace{-1, \ldots, -1}_{m-n}\} \).

Proof. Let \(\alpha = (\langle 1 \rangle - \langle a_1 \rangle) \cdots (\langle 1 \rangle - \langle a_n \rangle) \). By Lemma 5.6, we have \(w_i(\alpha) = 0 \) for \(i = 1, \ldots, m-1 \). The result follows from the Whitney formula (5.7). \(\Box \)

Let \(j : \hat{I}(F) \to I(F) \) be the isomorphism sending \(\langle 1 \rangle - \langle a \rangle \mapsto \langle \langle a \rangle \rangle \). Let \(\bar{w}_m \) be the composition
\[
I^n(F) \xrightarrow{j^{-1}} \hat{I}^n(F) \xrightarrow{w_m|\hat{I}^n(F)} k_m(F).
\]
Corollary 5.9 shows that \(\bar{w}_i = e_i \) for \(i = 1, 2 \). The map \(\bar{w}_m : I^n(F) \to k_m(F) \) is a group homomorphism with \(I^{n+1}(F) \subset \ker \bar{w}_m \) so induces a homomorphism
\[
\bar{w}_m : I^n(F)/I^{n+1}(F) \to k_m(F).
\]
We have \(\bar{w}_i = \bar{e}_i \) for \(i = 1, 2 \). The composition \(\bar{w}_m \circ f_n \) is multiplication by \(\{\underbrace{-1, \ldots, -1}_{m-n}\} \).

In particular, \(\bar{w}_1 \) and \(\bar{w}_2 \) are isomorphisms, i.e.,
\[
(5.10) \quad \hat{I}^2(F) = \ker \bar{w}_1 \text{ and } \hat{I}^3(F) = \ker \bar{w}_2
\]
and
\[
(5.11) \quad \hat{I}^2(F) = \ker w_1|_{I(F)} \text{ and } \hat{I}^3(F) = \ker w_2|_{I(F)}.
\]

This gives another proof for Proposition 4.13 and Proposition 5.3.
Remark 5.12. Let \(\text{char } F \neq 2 \) and \(h^2_F : k_2(F) \to H^2(F) \) be the norm-residue homomorphism defined in Appendix §100. If \(b \) is a non-degenerate symmetric bilinear form then \(h_2 \circ w_2(b) \) is the classical Hasse-Witt invariant of \(b \). (Cf. [40], Definition V.3.17, [54], Definition 2.12.7.)

Example 5.13. Suppose that \(K \) is a real-closed field. (Cf. Appendix §94) Then \(k_i(K) = \mathbb{Z}/2\mathbb{Z} \) for all \(i \geq 0 \) and \(\hat{W}(K) = \mathbb{Z} \oplus \mathbb{Z}\xi \) with \(\xi = \langle -1 \rangle \) and \(\xi^2 = 1 \). The Stiefel-Whitney map \(w : \hat{W}(F) \to (k(K)[[t]])^\times \) is then the map \(n + m\xi \mapsto (1 + t)^m \). In particular, if \(b \) is a non-degenerate form then \(w(b) \) determines the signature of \(b \). Hence if \(b \) and \(c \) are two non-degenerate symmetric bilinear forms over \(K \), we have \(b \simeq c \) if and only if \(\dim b = \dim c \) and \(w(b) = w(c) \).

It should be noted that if \(b = \langle \langle a_1, \ldots, a_n \rangle \rangle \) then \(w(b) \) is not equal to \(w(\alpha) = \tilde{w}(\langle \langle b \rangle \rangle) \) where \(\alpha = (\langle 1 \rangle - \langle a_1 \rangle) \cdots (\langle 1 \rangle - \langle a_n \rangle) \) in \(\hat{W}(F) \) as the following exercise shows.

Exercise 5.14. Let \(m = 2^{n-1} \). If \(b \) is the bilinear \(n \)-fold Pfister form \(\langle \langle a_1, \ldots, a_n \rangle \rangle \) then
\[
 w(b) = 1 + \left(\left\{ -1, \ldots, -1 \right\} \underbrace{m}_{m} + \left\{ a_1, \ldots, a_n, -1, \ldots, -1 \right\} \underbrace{m-n}_{m-n} \right) t^m.
\]

The following fundamental theorem was proved by Voevodsky-Orlov-Vishik [45] in the case that \(\text{char } F \neq 2 \) and by Kato [35] in the case that \(\text{char } F = 2 \).

Fact 5.15. The map \(f_* : k_*(F) \to GW_*(F) \) is a ring isomorphism.

For \(i = 0, 1, 2 \), we have proven that \(f_i \) is an isomorphism in (4.11), Proposition (4.13), and Proposition 5.3, respectively.

6. Bilinear Pfister forms

The isometry classes of tensor products of non-degenerate binary symmetric bilinear forms representing one are the most interesting forms. These forms, called Pfister forms generate a filtration of the Witt ring by its fundamental ideal \(I(F) \). In this section, we derive the main elementary properties of these forms.

By Example 1.15, a bilinear 1-fold Pfister form \(b = \langle \langle a \rangle \rangle, a \in F^\times \), is round, i.e., \(D(\langle \langle a \rangle \rangle) = G(\langle \langle a \rangle \rangle) \). Because of this the next proposition shows that there are many round forms and, in particular, bilinear Pfister forms are round.

Proposition 6.1. Let \(b \) be a round bilinear form and let \(a \in F^\times \). Then

1. The form \(\langle \langle a \rangle \rangle \otimes b \) is also round.
2. If \(\langle \langle a \rangle \rangle \otimes b \) is isotropic then either \(b \) is isotropic or \(a \in D(b) \).

Proof. Set \(c = \langle \langle a \rangle \rangle \otimes b \).

(1). Since \(1 \in D(b) \), it suffices to prove that \(D(c) \subseteq G(c) \). Let \(c \) be a nonzero value of \(c \). Write \(c = x - ay \) for some \(x, y \in \hat{D}(b) \). If \(y = 0 \), we have \(c = x \in D(b) = G(b) \subseteq G(c) \). Similarly, \(y \in G(c) \) if \(x = 0 \) hence \(c = -ay \in G(c) \) as \(-a \in G(\langle \langle a \rangle \rangle) \subseteq G(c) \).
Now suppose that x and y are nonzero. Since b is round, $x, y \in G(b)$ and therefore
\[c = b \perp (-ab) \simeq b \perp (-axy^{-1})b = \langle ayx^{-1} \rangle \otimes b. \]
By Example 1.15 we know that $1 - ayx^{-1} \in G(\langle ayx^{-1} \rangle) \subset G(c)$. Since $x \in G(b) \subset G(c)$, we have $c = (1 - ayx^{-1})x \in G(c)$.

(2) Suppose that b is anisotropic. Since $c = b \perp (-ab)$ is isotropic, there exist $x, y \in D(b)$ such that $x - ay = 0$. Therefore $a = xy^{-1} \in D(b)$ as $D(b)$ is closed under multiplication.

\[\text{COROLLARY 6.2. \ Bilinear Pfister forms are round.} \]
\[\text{PROOF.} \]

0-fold Pfister forms are round. \(\square \)

\[\text{COROLLARY 6.3. \ A bilinear Pfister form is either anisotropic or metabolic.} \]
\[\text{PROOF.} \]

Suppose that c is an isotropic bilinear Pfister form. We show that c is metabolic by induction on the dimension of the c. Write $c = \langle a \rangle \otimes b$ for a Pfister form b. If b is metabolic then so is c. By the induction hypothesis we may assume that b is anisotropic. By Proposition 6.1 and Corollary 6.2, $a \in D(b) = G(b)$. Therefore $ab \simeq b$ hence the form $c \simeq b \perp (-ab) \simeq b \perp (-b)$ is metabolic. \(\square \)

\[\text{REMARK 6.4. Note that the only metabolic 1-fold Pfister form is $\langle 1 \rangle$. If $\text{char } F \neq 2$ there is only one metabolic bilinear n-fold Pfister form for all $n \geq 1$, viz., the hyperbolic one. It is universal by Corollary 1.26} \]

If $\text{char } F = 2$ then there may exist many metabolic n-fold Pfister forms for $n \geq 1$ including the hyperbolic one.

\[\text{EXAMPLE 6.5. If } \text{char } F = 2, \text{ a bilinear Pfister form } \langle a_1, \ldots, a_n \rangle \text{ is anisotropic if and only if } a_1, \ldots, a_n \text{ are } 2 \text{-independent. Indeed } [F^2(a_1, \ldots, a_n) : F^2] < 2^n \text{ if and only if } \langle a_1, \ldots, a_n \rangle \text{ is isotropic.} \]

\[\text{COROLLARY 6.6. Let } \text{char } F \neq 2. \text{ Let } z \in F^\times. \text{ Then } 2^n \langle \langle z \rangle \rangle = 0 \text{ in } W(F) \text{ if and only if } z \in D(2^n \langle 1 \rangle). \]
\[\text{PROOF.} \]

If $z \in D(2^n \langle 1 \rangle)$ then the Pfister form $2^n \langle \langle z \rangle \rangle$ is isotropic hence metabolic by Corollary 6.3.

Conversely, suppose that $2^n \langle \langle z \rangle \rangle$ is metabolic. Then $2^n \langle 1 \rangle = 2^n \langle z \rangle$ in $W(F)$. If $2^n \langle 1 \rangle$ is isotropic, it is universal as $\text{char } F \neq 2$, so $z \in D(2^n \langle 1 \rangle)$. If $2^n \langle 1 \rangle$ is anisotropic then $2^n \langle 1 \rangle \simeq 2^n \langle z \rangle$ by Proposition 2.4 so $z \in G(2^n \langle 1 \rangle) = D(2^n \langle 1 \rangle)$ by Corollary 6.2.

As additional corollaries, we have the following two theorems of Pfister.

\[\text{COROLLARY 6.7. } D(2^n \langle 1 \rangle) \text{ is a group for every non-negative integer } n. \]

The level of a field F is defined to be
\[s(F) := \min \{ n \mid \text{the element } -1 \text{ is a sum of } n \text{ squares} \} \]
or infinity if no such integer exists.

\[\text{COROLLARY 6.8. The level } s(F) \text{ of a field } F, \text{ if finite, is a power of two.} \]
\[\text{PROOF.} \]

Suppose that $s(F)$ is finite. Then $2^n \leq s(F) < 2^{n+1}$ for some n. By Proposition 6.1 (2), with $b = 2^n \langle 1 \rangle$ and $a = -1$, we have $-1 \in D(b)$. Hence $s(F) = 2^n$. \(\square \)
Since the isometry type of a 2-fold Pfister forms is easy to deal with, we use them to study \(n \)-fold Pfister forms.

Definition 6.9. Let \(a_1, \ldots, a_n, b_1, \ldots, b_n \in F^\times \) with \(n \geq 1 \). We say that \(\langle\langle a_1, \ldots, a_n\rangle\rangle \) and \(\langle\langle b_1, \ldots, b_n\rangle\rangle \) are simply \(p \)-equivalent if \(n = 1 \) and \(a_1 F^\times = b_1 F^\times \) or \(n \geq 2 \) and there exist \(i, j = 1, \ldots, n \) such that

\[
\langle\langle a_i, a_j \rangle\rangle \simeq \langle\langle b_i, b_j \rangle\rangle \quad \text{with} \quad i \neq j \quad \text{and} \quad a_l = b_l \quad \text{for all} \quad l \neq i, j.
\]

We say bilinear \(n \)-fold Pfister forms \(b, c \) are chain \(p \)-equivalent if there exist bilinear \(n \)-fold Pfister forms \(b_0, \ldots, b_m \) for some \(m \) such that \(b = b_0, \ c = b_m \) and \(b_i \) is simply \(p \)-equivalent to \(b_{i+1} \) for each \(i = 0, \ldots, m - 1 \).

Chain \(p \)-equivalence is clearly an equivalence relation on the set of anisotropic bilinear forms of the type \(\langle\langle a_1, \ldots, a_n\rangle\rangle \) with \(a_1, \ldots, a_n \in F^\times \) and is denoted by \(\approx \). As transpositions generate the symmetric group, we have \(\langle\langle a_1, \ldots, a_n\rangle\rangle \approx \langle\langle a_{\sigma(1)}, \ldots, a_{\sigma(n)}\rangle\rangle \) for every permutation \(\sigma \) of \(\{1, \ldots, n\} \). We shall show

Theorem 6.10. Let \(\langle\langle a_1, \ldots, a_n\rangle\rangle \) and \(\langle\langle b_1, \ldots, b_n\rangle\rangle \) be anisotropic. Then

\[
\langle\langle a_1, \ldots, a_n\rangle\rangle \simeq \langle\langle b_1, \ldots, b_n\rangle\rangle
\]

if and only if

\[
\langle\langle a_1, \ldots, a_n\rangle\rangle \approx \langle\langle b_1, \ldots, b_n\rangle\rangle.
\]

Of course we need only show isometric anisotropic bilinear Pfister forms are \(p \)-equivalent. We shall do this in a number of steps. If \(b \) is an \(n \)-fold Pfister form then we can write \(b = b' \perp \langle 1 \rangle \). If \(b' \) is anisotropic then it is unique up to isometry and we call \(b' \) the pure subform of \(b \).

Lemma 6.11. Suppose that \(b = \langle\langle a_1, \ldots, a_n\rangle\rangle \) is anisotropic. Let \(-b \in D(b') \) Then there exist \(b_2, \ldots, b_n \in F^\times \) such that \(b \approx \langle\langle b_2, \ldots, b_n\rangle\rangle \).

Proof. We induct on \(n \), the case \(n = 1 \) being trivial. Let \(c = \langle\langle a_1, \ldots, a_{n-1}\rangle\rangle \) so \(b' \simeq c' \perp -a_n c \) by Witt Cancellation [1.29]. Write

\[
b = -x + a_n y \quad \text{with} \quad -x \in \widetilde{D}(c'), \quad -y \in \widetilde{D}(b).
\]

If \(y = 0 \) then \(x \neq 0 \) and we finish by induction, so we may assume that \(0 \neq y = y_1 + z^2 \) with \(-y_1 \in \widetilde{D}(c') \) and \(z \in F \). If \(y_1 \neq 0 \) then \(c \approx \langle\langle y_1, \ldots, y_{n-1}\rangle\rangle \) for some \(y_i \in F^\times \) and, using Lemma [4.15],

\[
c \approx \langle\langle y_1, \ldots, y_{n-1}, a_n\rangle\rangle \approx \langle\langle y_1, \ldots, y_{n-1}, -a_n y\rangle\rangle \approx \langle\langle a_1, \ldots, a_{n-1}, -a_n y\rangle\rangle.
\]

This is also true if \(y_1 = 0 \). If \(x = 0 \), we are done. If not \(c \approx \langle\langle x, x_2 \ldots x_{n-1}\rangle\rangle \) some \(x_i \in F^\times \) and

\[
b \approx \langle\langle x, x_2 \ldots x_{n-1}, -a_n y\rangle\rangle \approx \langle\langle a_n y x, x_2 \ldots x_{n-1}, -a_n y + x\rangle\rangle \approx \langle\langle a_n y x, x_2 \ldots x_{n-1}, b\rangle\rangle
\]

by Lemma [4.15](2) as needed.

The argument to establish equation (6.12) yields \(\square \).
Corollary 6.13. Let \(b = \langle x_1, \ldots, x_n \rangle \) and \(y \in D(b) \). Let \(z \in F^\times \). If \(b \otimes \langle \langle z \rangle \rangle \) is anisotropic then \(\langle \langle x_1, \ldots, x_n, z \rangle \rangle \approx \langle \langle x_1, \ldots, x_n, yz \rangle \rangle \).

We also have the following generalization of Lemma 4.13.

Corollary 6.14. Let \(b \) be an anisotropic bilinear Pfister form over \(F \) and let \(a \in F^\times \). Then \(\langle \langle a \rangle \rangle \cdot b = 0 \) in \(W(F) \) if and only if either \(a \in F^{\times 2} \) or \(b \simeq \langle \langle b \rangle \rangle \otimes c \) for some \(b \in D(\langle \langle a \rangle \rangle) \) and bilinear Pfister form \(c \). In the latter case, \(\langle \langle a, b \rangle \rangle \) is metabolic.

Proof. Clearly \(\langle \langle a, b \rangle \rangle = 0 \) in \(W(F) \) if \(b \in D(\langle \langle a \rangle \rangle) \). Conversely, suppose that \(\langle \langle a \rangle \rangle \otimes b = 0 \). Hence \(a \in G(b) = D(b) \) by Corollary 6.2. Write \(a = x^2 - b \) for some \(x \in F \) and \(-b \in \bar{D}(b') \). If \(b = 0 \) then \(a \in F^{\times 2} \). Otherwise, \(b \in D(\langle \langle a \rangle \rangle) \) and \(b \simeq \langle \langle b \rangle \rangle \otimes c \) for some bilinear Pfister form \(c \) by Lemma 6.11. \(\square \)

The generalization of Lemma 6.11 is very useful in computation and is the key to proving further relations among Pfister forms.

Proposition 6.15. Let \(b = \langle a_1, \ldots, a_m \rangle \) and \(c = \langle b_1, \ldots, b_n \rangle \) be such that \(b \otimes c \) is anisotropic. Let \(-c \in D(b \otimes c')\) then
\[
\langle \langle a_1, \ldots, a_m, b_1, \ldots, b_n \rangle \rangle \approx \langle \langle a_1, \ldots, a_m, c_1, c_2, \ldots, c_{n-1}, c \rangle \rangle
\]
for some \(c_1, \ldots, c_{n-1} \in F^\times \).

Proof. We induct on \(n \). If \(n = 1 \) then \(-c = yb_1 \) for some \(-y \in D(b) \) and this case follows by Corollary 6.13 so assume that \(n > 1 \). Let \(d = \langle \langle b_1, \ldots, b_{n-1} \rangle \rangle \). Then \(c' \simeq b_n b \perp d' \) so \(bc' \simeq b_n \otimes d \perp b \otimes d' \). Write \(0 \neq -c = b_n y - z \) with \(-y \in D(b \otimes c) \) and \(-z \in \bar{D}(b \otimes c') \). If \(z = 0 \) then \(x \neq 0 \) and
\[
\langle \langle a_1, \ldots, a_m, b_1, \ldots, b_n \rangle \rangle \approx \langle \langle a_1, \ldots, a_m, b_1, \ldots, b_{n-1}, -yb_n \rangle \rangle
\]
by Corollary 6.13 and we are done. So we may assume that \(z \neq 0 \). By induction \(\langle \langle a_1, \ldots, a_m, b_1, \ldots, b_{n-1} \rangle \rangle \approx \langle \langle a_1, \ldots, a_m, c_1, c_2, \ldots, c_{n-2}, z \rangle \rangle \) for some \(c_1, \ldots, c_{n-2} \in F^\times \). If \(y = 0 \), tensoring this by \(\langle 1, -b_n \rangle \) completes the proof, so we may assume that \(y \neq 0 \). Then
\[
\langle \langle a_1, \ldots, a_m, b_1, \ldots, b_n \rangle \rangle \approx \langle \langle a_1, \ldots, a_m, b_1, \ldots, b_{n-1}, -yb_n \rangle \rangle \approx
\langle \langle a_1, \ldots, a_m, c_1, \ldots, c_{n-2}, z \rangle \rangle \approx \langle \langle a_1, \ldots, a_m, c_1, \ldots, c_{n-2}, z - yb_n, zyb_n \rangle \rangle \approx
\langle \langle a_1, \ldots, a_m, c_1, \ldots, c_{n-2}, c \rangle \rangle \approx \langle \langle a_1, \ldots, a_m, c_1, \ldots, c_{n-2}, c, zyb_n \rangle \rangle
\]
by Lemma 4.15(2). This completes the proof. \(\square \)

Corollary 6.16. (Common Slot Property) Let \(\langle \langle a_1, \ldots, a_{n-1}, x \rangle \rangle \) and \(\langle \langle b_1, \ldots, b_{n-1}, y \rangle \rangle \) be isometric anisotropic bilinear forms. Then there exists an \(z \in F^\times \) satisfying
\[
\langle \langle a_1, \ldots, a_{n-1}, z \rangle \rangle = \langle \langle a_1, \ldots, a_{n-1}, x \rangle \rangle \quad \text{and} \quad \langle \langle b_1, \ldots, b_{n-1}, z \rangle \rangle = \langle \langle b_1, \ldots, b_{n-1}, y \rangle \rangle.
\]

Proof. Let \(b = \langle \langle a_1, \ldots, a_{n-1} \rangle \rangle \) and \(c = \langle \langle b_1, \ldots, b_{n-1} \rangle \rangle \). As \(xb - yc = b' - c' \) in \(W(F) \), the form \(xb \perp -yc \) is isotropic. Hence there exists an \(z \in D(xb) \cap D(yc) \). The result follows by Proposition 6.15. \(\square \)
A non-degenerate symmetric bilinear form \(b \) is called a general bilinear \(n \)-fold Pfister form if \(b \simeq ac \) for some \(a \in F^\times \) and bilinear \(n \)-fold Pfister form \(c \). As Pfister forms are round, a general Pfister form is isometric to a Pfister form if and only if it represents one.

Corollary 6.17. Let \(c \) and \(b \) be general anisotropic bilinear Pfister forms. If \(c \) is a subform of \(b \) then \(b \simeq c \otimes d \) for some bilinear Pfister form \(d \).

Proof. If \(c = cc_1 \) for some Pfister form \(c_1 \) and \(c \in F^\times \) then \(c_1 \) is a subform of \(c \). In particular, \(cb \) represents one so is a Pfister form. Replacing \(b \) by \(cb \) and \(c \) by \(cc \), we may assume both are Pfister forms.

Let \(c = \langle \langle a_1, \ldots, a_n \rangle \rangle \) with \(a_i \in F^\times \). By Witt Cancellation \[1.29\], we have \(c' \) is a subform of \(b' \) hence \(b \simeq \langle \langle a_1 \rangle \rangle \otimes d_1 \) for some Pfister form \(d_1 \) by Lemma \[6.11\]. By induction, there exists a Pfister form \(d_k \) satisfying \(b \simeq \langle \langle a_1, \ldots, a_k \rangle \rangle \otimes d_k \). By Witt Cancellation \[1.29\], we have \(\langle \langle a_1, \ldots, a_k \rangle \rangle \otimes \langle \langle a_{k+1}, \ldots, a_n \rangle \rangle \) is a subform of \(\langle \langle a_1, \ldots, a_k \rangle \rangle \otimes d_k \) so \(-a_{k+1} \in D(\langle \langle a_1, \ldots, a_k \rangle \rangle \otimes d_k) \). By Proposition \[6.15\] we complete the induction step.

Let \(b \) and \(c \) be general Pfister forms. We say that \(c \) divides \(b \) if \(b \simeq c \otimes d \) for some Pfister form \(d \). The corollary says that \(c \) divides \(b \) if and only if it is a subform of \(b \).

We now prove Theorem \[6.10\].

Proof. Let \(a = \langle \langle a_1, \ldots, a_n \rangle \rangle \) and \(b = \langle \langle b_1, \ldots, b_m \rangle \rangle \) be isometric over \(F \). Clearly we may assume that \(n > 1 \). By Lemma \[6.11\], we have \(a \simeq \langle \langle b_1, a_2, \ldots, a_n \rangle \rangle \) for some \(a_i' \in F^\times \). Suppose that we have shown \(a \simeq \langle \langle b_1, \ldots, b_m, a'_m, \ldots, a_n' \rangle \rangle \) for some \(m \). By Witt Cancellation \[1.29\],

\[
\langle \langle b_1, \ldots, b_m \rangle \rangle \otimes \langle \langle b_{m+1}, \ldots, b_n \rangle \rangle' \simeq \langle \langle b_1, \ldots, b_m \rangle \rangle \otimes \langle \langle a'_{m+1}, \ldots, a'_{n} \rangle \rangle',
\]

so \(-b_{m+1} \in D(\langle \langle b_1, \ldots, b_m \rangle \rangle \otimes \langle \langle a'_{m+1}, \ldots, a'_{n} \rangle \rangle') \). By Proposition \[6.15\], we have

\[
a \simeq \langle \langle b_1, \ldots, b_{m+1}, a''_{m+2}, \ldots, a''_{n} \rangle \rangle
\]

for some \(a''_i \in F^\times \). This completes the induction step.

We need the following theorem:

Theorem 6.18. (Hauptsatz) Let \(0 \neq b \) be an anisotropic form lying in \(I^a(F) \). Then \(\dim b \geq 2^n \).

We shall prove this theorem in Theorem \[23.8\] below. Using it we show:

Corollary 6.19. Let \(b \) and \(c \) be two anisotropic general bilinear \(n \)-fold Pfister forms. If \(b \equiv c \mod I^{n+1}(F) \) then \(b \simeq ac \) for some \(a \in F^\times \). In addition, if \(D(b) \cap D(c) \neq \emptyset \) then \(b \simeq c \).

Proof. Choose \(a \in F^\times \) such that \(b \perp -ac \) is isotropic. By the Hauptsatz, this form must be metabolic. By Proposition \[2.4\], we have \(b \simeq ac \).

Suppose that \(x \in D(b) \cap D(c) \). Then \(b \perp -c \) is isotropic and one can take \(a = 1 \).

Theorem 6.20. Let \(a_1, \ldots, a_n, b_1, \ldots, b_n \in F^\times \). The following are equivalent:

1. \(\langle \langle a_1, \ldots, a_n \rangle \rangle = \langle \langle b_1, \ldots, b_n \rangle \rangle \) in \(W(F) \).
2. \(\langle \langle a_1, \ldots, a_n \rangle \rangle \equiv \langle \langle b_1, \ldots, b_n \rangle \rangle \mod I^{n+1}(F) \).
Let \(m \) be an integer, then this will follow from the next result.

\[a \equiv \langle \langle \cdot, \cdot \rangle \rangle \in B_0 \text{ is metabolic by Example 1.23(2) and i(b) > dim c. Therefore, the form} \]
\[c \otimes (d_1 \perp d_2) \text{ is isotropic hence there is a} \ a \in D(c \otimes d_1) \cap D(c \otimes d_2) \text{. By Proposition 6.15 we have} \]
\[b_1 \simeq c \otimes \langle \langle -a \rangle \rangle \otimes e_1 \text{ and } b_2 \simeq c \otimes \langle \langle -a \rangle \rangle \otimes e_2 \text{ for some bilinear Pfister forms} e_1 \text{ and} e_2 \text{. As} \]
\[b \simeq c \otimes (e_1 \perp -e_2) \perp (c \otimes \langle \langle -a \rangle \rangle \perp -c \otimes \langle \langle -a \rangle \rangle), \]

either \(i(b) = 2^{r+1} \) or we may repeat the argument. The result follows. \(\square \)

If a general bilinear \(r \)-fold Pfister form \(c \) is a common subform of two general Pfister forms \(b_1 \) and \(b_2 \), we call it a \emph{linkage} of \(b_1 \) and \(b_2 \) and say that \(b_1 \) and \(b_2 \) are \emph{\(r \)-linked}. The integer \(m = \max \{ r \mid b_1 \text{ and } b_2 \text{ are \(r \)-linked} \} \) is called the \emph{linkage number} of \(b_1 \) and \(b_2 \). The Proposition says that \(i(b_1 \perp -b_2) = 2^m \). If \(b_1 \) and \(b_2 \) are \(n \)-fold Pfister forms and \(r = n - 1 \), we say that \(b_1 \) and \(b_2 \) are \emph{linked}. By Corollary 6.17 the linkage of any pair of bilinear Pfister forms is a divisor of each.

If \(b \) is a non-degenerate symmetric bilinear form over \(F \) then the \emph{annihilator} of \(b \) in \(W(F) \)

\[\text{ann}_{W(F)}(b) := \{ c \in W(F) \mid b \cdot c = 0 \} \]
is an ideal in \(W(F) \). When \(b \) is a Pfister form this ideal has a nice structure that we now establish. First note that if \(b \) is an anisotropic Pfister form and \(x \in D(b) \) then, as \(b \) is round by Corollary 6.2, we have \(\langle \langle x \rangle \rangle \otimes b \simeq b \perp -xb \simeq b \perp -b \text{ is metabolic. It follows} \]

that \(\langle \langle x \rangle \rangle \in \text{ann}_{W(F)}(b) \). We shall show that these binary forms generate \(\text{ann}_{W(F)}(b) \). This will follow from the next result.
Proposition 6.22. Let \(b \) be an anisotropic bilinear Pfister form and \(c \) a non-degenerate symmetric bilinear form. Then there exists a symmetric bilinear form \(d \) satisfying all of the following:

1. \(b \cdot c = b \cdot d \) in \(W(F) \).
2. \(b \otimes d \) is anisotropic. Moreover, \(\dim d \leq \dim c \) and \(\dim d \equiv \dim c \mod 2 \).
3. \(c - d \) lies in the subgroup of \(W(F) \) generated by \(\langle \langle x \rangle \rangle \) with \(x \in D(b) \).

Proof. We prove this by induction on \(\dim c \). By the Witt Decomposition Theorem [1.28] we may assume that \(c \) is anisotropic. Hence \(c \) is diagonalizable by Corollary [1.20] say \(c = \langle x_1, \ldots, x_n \rangle \) with \(x_i \in F^\times \). If \(b \otimes c \) is anisotropic, the result is trivial, so assume it is isotropic. Therefore, there exist \(a_1, \ldots, a_n \in D(b) \) not all zero such that \(a_1 x_1 + \cdots + a_n x_n = 0 \). Let \(b_i = a_i \) if \(a_i \neq 0 \) and \(b_i = 1 \) otherwise. In particular, \(b_i \in G(b) \) for all \(i \). Let \(e = \langle b_1 x_1, \ldots, b_n x_n \rangle \). Then \(c - e = x_1 \langle \langle b_1 \rangle \rangle + \cdots + x_n \langle \langle b_n \rangle \rangle \) with each \(b_i \in D(b) \) as \(b \) is round by Corollary 6.2. Since \(e \) is isotropic, we have \(b \cdot c = b \cdot (e)_{an} \) in \(W(F) \). As \(\dim(e)_{an} < \dim c \), by the induction hypothesis there exists \(d \) such that \(b \otimes d \) is anisotropic and \(e - d \) and therefore \(c - d \) lies in the subgroup of \(W(F) \) generated by \(\langle \langle x \rangle \rangle \) with \(x \in D(b) \). As \(b \otimes d \) is anisotropic, it follows by (1) that \(\dim d \leq \dim c \). It follows from (3) that the dimension of \(c - d \) is even.

\[\square \]

Corollary 6.23. Let \(b \) be an anisotropic bilinear Pfister form. Then \(\operatorname{ann}_{W(F)}(b) \) is generated by \(\langle \langle x \rangle \rangle \) with \(x \in D(b) \).

If \(b \) is 2-dimensional, we obtain stronger results.

Lemma 6.24. Let \(b \) be a binary anisotropic bilinear form over \(F \) and \(c \) an anisotropic bilinear form over \(F \) such that \(b \otimes c \) is isotropic. Then \(c \simeq d \perp e \) for some binary bilinear form \(d \) annihilated by \(b \) and bilinear form \(e \) over \(F \).

Proof. Let \(\{e, f\} \) be a basis for \(V_c \). By assumption there exists vectors \(v, w \in V_c \) such that \(e \otimes v + f \otimes w \) is an isotropic vector for \(b \otimes c \). Choose a two-dimensional subspace \(W \subset V_c \) containing \(v \) and \(w \). Since \(c \) is anisotropic, so is \(c |_W \). In particular, \(c |_W \) is non-degenerate hence \(c = c |_W \perp c |_{W^\perp} \) by Proposition [1.7]. As \(b \otimes c |_W \) is an isotropic general 2-fold Pfister form it is metabolic by Corollary [6.3].

\[\square \]

Proposition 6.25. Let \(b \) be a binary anisotropic bilinear form over \(F \) and \(c \) an anisotropic form over \(F \). Then there exist forms \(c_1 \) and \(c_2 \) over \(F \) such that \(c \simeq c_1 \perp c_2 \) with \(b \otimes c_2 \) anisotropic and \(c_1 \simeq d_1 \perp \cdots \perp d_n \) where each \(d_i \) is a binary bilinear form annihilated by \(b \). In particular, if \(\det d_i = d_i F^\times \) then \(-d_i \in D(b) \) for each \(i \).

Proof. The first statement of the proposition follows from the lemma and the second from its proof.

\[\square \]

Corollary 6.26. Let \(b \) be a binary anisotropic bilinear form over \(F \) and \(c \) an anisotropic form over \(F \) annihilated by \(b \). Then \(c \simeq d_1 \perp \cdots \perp d_n \) for some binary forms \(d_i \) annihilated by \(b \) for \(1 \leq i \leq n \).
CHAPTER II

Quadratic Forms

7. Basics

In this section, we introduce the basic properties of quadratic forms over an arbitrary field \(F \). Their study arose from the investigation of homogeneous polynomials of degree two. If the characteristic of \(F \) is different from two, then this study and that of bilinear forms are essentially the same as the diagonal of a bilinear form is a quadratic form and each determines the other by the polar identity. However, they are different when the characteristic of \(F \) is two. It is because of this difference that we see that quadratic forms unlike bilinear forms have a rich geometric flavor in general. When studying symmetric bilinear forms, we saw that one could easily reduce to the study of non-degenerate forms. For quadratic forms, the situation is more complex. The polar form of a quadratic form no longer determines the quadratic form when the underlying field is of characteristic two. However, the radical of the polar form is invariant under field extension. This leads to two types of quadratic form. When the radical is the whole of the underlying space, the quadratic form may not be trivial in characteristic two. These forms are called totally singular forms. The other extreme is when the radical is as small as possible (which means of dimension zero or one), this gives rise to the non-degenerate forms. As in the study of bilinear forms, certain properties are not invariant under base extension. The most important of these is anisotropy. Analogous to the bilinear case, an anisotropic quadratic form is one having no nontrivial zero, i.e., no isotropic vectors. Every vector that is isotropic for the quadratic form is isotropic for its polar form. If the characteristic is two, the converse is false as every vector is an isotropic vector of the polar form. As in the previous chapter, we shall base this study on a coordinate free approach and strive to give uniform proofs in a characteristic free fashion.

Definition 7.1. Let \(V \) be a finite dimensional vector space over \(F \). A *quadratic form* on \(V \) is a map \(\varphi : V \to F \) satisfying

1. \(\varphi(av) = a^2\varphi(v) \) for all \(v \in V \) and \(a \in F \).
2. (Polar Identity) \(\mathfrak{b}_\varphi : V \times V \to F \) defined by

\[
\mathfrak{b}_\varphi(v, w) = \varphi(v + w) - \varphi(v) - \varphi(w)
\]

is a bilinear form.

The bilinear form \(\mathfrak{b}_\varphi \) is called the *polar form* of \(\varphi \). We call \(\dim V \) the *dimension* of the quadratic form and also write it as \(\dim \varphi \). We write \(\varphi \) is a quadratic form over \(F \) if \(\varphi \) is a quadratic form on a finite dimensional vector space over \(F \) and denote the underlying space by \(V_\varphi \).
II. QUADRATIC FORMS

Note that the polar form of a quadratic form is automatically symmetric and even alternating if char $F = 2$. If $b : V \times V \to F$ is a bilinear form (not necessarily symmetric), let $\varphi_b : V \to F$ be defined by $\varphi_b(v) = b(v, v)$ for all $v \in V$. We call φ_b the associated quadratic form of b. Then φ_b is a quadratic form and its polar form b_{φ_b} is $b + b^t$. In particular, if b is symmetric, the composition $b \mapsto \varphi_b \mapsto b_{\varphi_b}$ is multiplication by 2 as is the composition $\varphi \mapsto b_{\varphi} \mapsto \varphi_{b_{\varphi}}$.

Definition 7.2. Let φ and ψ be two quadratic forms. An isometry $f : \varphi \to \psi$ is a linear map $f : V_\varphi \to V_\psi$ such that $\varphi(v) = \psi(f(v))$ for all $v \in V_\varphi$. If such an isometry exists, we write $\varphi \simeq \psi$ and say that φ and ψ are isometric.

Example 7.3. If φ is a quadratic form over F and $v \in V$ satisfies $\varphi(v) \neq 0$ then the (hyperplane) reflection

$$\tau_v : \varphi \to \varphi \text{ given by } w \mapsto w - b_{\varphi}(v, w)\varphi(v)^{-1}v$$

is an isometry.

Let V be a finite dimensional vector space over F. Define the hyperbolic form on V to be $\mathbb{H}(V) = \varphi_H$ on $V \oplus V^*$ with

$$\varphi_H(v, f) := f(v)$$

for all $v \in V$ and $f \in V^*$. Note that the polar form of φ_H is $b_{\varphi_H} = \mathbb{H}_1(V)$. If φ is a quadratic form isometric to $\mathbb{H}(W)$ for some vector space W, we call φ a hyperbolic form. The form $\mathbb{H}(F)$ is called the hyperbolic plane and we denote it simply by \mathbb{H}. If $\varphi \simeq \mathbb{H}$, two vectors $e, f \in V_\varphi$ satisfying $\varphi(e) = \varphi(f) = 0$ and $b_{\varphi}(e, f) = 1$ are called a hyperbolic pair.

Let φ be a quadratic form on V and $\{v_1, \ldots, v_n\}$ be a basis for V. Let $a_{ij} = \varphi(v_i)$ for all i and

$$a_{ij} = \begin{cases} b_{\varphi}(v_i, v_j) & \text{for all } i < j \\ 0 & \text{for all } i > j. \end{cases}$$

As

$$\varphi(\sum_{i=1}^n x_i v_i) = \sum_{i,j} a_{ij} x_i x_j,$$

the homogeneous polynomial on the right hand side as well as the matrix (a_{ij}) determined by φ completely determines φ.

Notation 7.4. (1) Let $a \in F$. The quadratic form on F given by $\varphi(v) = av^2$ for all $v \in F$ will be denoted by $\langle a \rangle_q$ or simply $\langle a \rangle$.

(2) Let $a, b \in F$. The two dimensional quadratic form on F^2 given by $\varphi(x, y) = ax^2 + xy + by^2$ will be denoted by $[a, b]$. The corresponding matrix for φ in the standard basis is

$$\begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix},$$

while the corresponding matrix for b_{φ} is

$$\begin{pmatrix} 2a & 1 \\ 1 & 2b \end{pmatrix} = A + A^t.$$
Remark 7.5. Let φ be a quadratic form over V. Then the associated polar form b_φ is not the zero form if and only if there are two vectors v, w in V satisfying $b(v, w) = 1$. In particular, if φ is a nonzero binary form then $\varphi \simeq [a, b]$.

Example 7.6. Let $\varphi \simeq \mathbb{H}$ with $\{e, f\}$ is a hyperbolic pair. Using the basis $\{e, ae + f\}$, we have $\mathbb{H} \simeq [0, 0] \simeq [0, a]$ for any $a \in F$.

Example 7.7. Let $\text{char } F = 2$ and $\varphi : F \to F$ be the Artin-Schreier map $\varphi(x) = x^2 + x$. Let $a \in F$. Then the quadratic form $[1, a]$ is isotropic if and only if $a \in \varphi(F)$.

Let V be a finite dimension vector space over F. The set $\text{Quad}(V)$ of quadratic forms on V is a vector space over F. We have linear maps
\[
\text{Bil}(V) \to \text{Quad}(V) \text{ given by } b \mapsto \varphi_b
\]
and
\[
\text{Quad}(V) \to \text{Sym}(V) \text{ given by } \varphi \mapsto b_\varphi.
\]
Restricting the first map to $\text{Sym}(V)$ and composing shows the compositions
\[
\text{Sym}(V) \to \text{Quad}(V) \to \text{Sym}(V) \quad \text{and} \quad \text{Quad}(V) \to \text{Sym}(V) \to \text{Quad}(V)
\]
are multiplication by 2. In particular, if $\text{char } F \neq 2$ the map $\text{Quad}(V) \to \text{Sym}(V)$ given by $\varphi \mapsto \frac{1}{2}b_\varphi$ is an isomorphism inverse to the map $\text{Sym}(V) \to \text{Quad}(V)$ by $b \mapsto \varphi_b$. For this reason, we shall usually identify quadratic forms and symmetric bilinear forms over a field of characteristic different from two.

The correspondence between quadratic forms on a vector space V of dimension n and matrices defines a linear isomorphism $\text{Quad}(V) \to \mathbf{T}_n(F)$, where $\mathbf{T}_n(F)$ is the vector space of $n \times n$-upper triangular matrices. Therefore by the surjectivity of the linear epimorphism $\mathbf{M}_n(F) \to \mathbf{T}_n(F)$ given by $(a_{ij}) \mapsto (b_{ij})$ with $b_{ij} = a_{ij} + a_{ji}$ for all $i < j$, and $b_{ii} = a_{ii}$ for all i, and $b_{ij} = 0$ for all $j < i$ implies that the linear map $\text{Bil}(V) \to \text{Quad}(V)$ given by $b \mapsto \varphi_b$ is also surjective. We, therefore, have an exact sequence
\[
0 \to \text{Alt}(V) \to \text{Bil}(V) \to \text{Quad}(V) \to 0.
\]

Exercise 7.8. The natural exact sequence
\[
0 \to \wedge^2(V^*) \to V^* \otimes_F V^* \to S^2(V^*) \to 0
\]
can be identified with the sequence above via the isomorphism
\[
S^2(V^*) \to \text{Quad}(V) \text{ given by } f \cdot g \mapsto \varphi_{f,g} : v \mapsto f(v)g(v).
\]
If $\varphi, \psi \in \text{Quad}(V)$, we say φ is similar to ψ if there exists an $a \in F^\times$ such that $\varphi \simeq a\psi$.

Let φ be a quadratic form on V. A vector $v \in V$ is called anisotropic if $\varphi(v) \neq 0$ and isotropic if $v \neq 0$ and $\varphi(v) = 0$. We call φ anisotropic if there are no isotropic vectors in V and isotropic if there are. If $W \subset V$ is a subspace the restriction of φ on W is the quadratic form whose polar form is given by $b_{\varphi|_W} = b_\varphi|_W$. It is denoted by $\varphi|_W$ and called a subform of φ. Define W^\perp to be the orthogonal complement of W relative to the polar form of φ. The space W is called totally isotropic if $\varphi|_W = 0$. If this is the case, then $b_\varphi|_W = 0$.

Example 7.9. If F is algebraically closed then any homogeneous polynomial in more than one variable has a nontrivial zero. In particular, up to isometry, the only anisotropic quadratic forms over F are 0 and $\langle 1 \rangle$.

Remark 7.10. Let φ be a quadratic form on V over F. If $\varphi = \varphi_\mathfrak{b}$ for some symmetric bilinear form \mathfrak{b} then φ is isotropic if and only if \mathfrak{b} is. In addition, if $\text{char } F \neq 2$ then φ is isotropic if and only if its polar form \mathfrak{b}_φ is. However, if $\text{char } F = 2$ then every $0 \neq v \in V$ is an isotropic vector for \mathfrak{b}_φ.

Let ψ be a subform of a quadratic form φ. The restriction of φ on $(V_\psi)\perp$ is denoted by $\psi\perp$ and is called the complementary form of ψ in φ. If $V_\varphi = W \oplus U$ is a direct sum of vector spaces with $W \subset U\perp$, we write $\varphi = \varphi|_W \perp \varphi|_U$ and call it an internal orthogonal sum. So $\varphi(w + u) = \varphi(w) + \varphi(u)$ for all $w \in W$ and $u \in U$. Note that $\varphi|_U$ is a subform of $(\varphi|_W)^\perp$.

Remark 7.11. Let φ be a quadratic form with $\text{rad } b_\varphi = 0$. If ψ is a subform of φ then by Proposition 1.6, we have $\dim \psi\perp = \dim \varphi - \dim \psi$ and therefore $\psi^{\perp\perp} = \psi$.

Let φ be a quadratic form on V. We say that φ is totally singular if its polar form b_φ is zero. If $\text{char } F \neq 2$ then φ is totally singular if and only if φ is the zero quadratic form. If $\text{char } F = 2$ this may not be true. Define the quadratic radical of φ by

$$\text{rad } \varphi := \{ v \in \text{rad } b_\varphi | \varphi(v) = 0 \}.$$

This is a subspace of $\text{rad } b_\varphi$. We say that φ is regular if $\text{rad } \varphi = 0$. If $\text{char } F \neq 2$ then $\text{rad } \varphi = \text{rad } b_\varphi$. In particular, φ is regular if and only if its polar form is non-degenerate. If $\text{char } F = 2$, this may not be true.

Example 7.12. Every anisotropic quadratic form is regular.

Clearly, if $f : \varphi \to \psi$ is an isometry of quadratic forms then $f(\text{rad } b_\varphi) = \text{rad } b_\psi$ and $f(\text{rad } \varphi) = \text{rad } \psi$.

Let φ be a quadratic form on V and $\overline{\varphi} : V \to V/\text{rad } \varphi$ the canonical epimorphism. Let $\overline{\varphi}$ denote the quadratic form on \overline{V} given by $\overline{\varphi}(\overline{v}) := \varphi(v)$ for all $v \in V$. In particular, the restriction of $\overline{\varphi}$ to $\text{rad } b_\varphi/\text{rad } \varphi$ determines an anisotropic quadratic form. We have:

Lemma 7.13. Let φ be a quadratic form on V and W any subspace of V satisfying $V = \text{rad } \varphi \oplus W$. Then

$$\varphi = \varphi|_{\text{rad } \varphi} \perp \varphi|_W = 0|_{\text{rad } \varphi} \perp \varphi|_W,$$

with $\varphi|_W \simeq \overline{\varphi}$ the induced quadratic form on $V/\text{rad } \varphi$. In particular, $\varphi|_W$ is unique up to isometry.

If φ is a quadratic form, the form $\varphi|_W$, unique up to isometry will be called its regular part. The subform $\varphi|_W$ in the lemma is regular but $b_{\varphi|_W}$ may be degenerate if $\text{char } F = 2$. To obtain a further orthogonal decomposition of a quadratic form, we need to look at the regular part. The key is the following.
Proposition 7.14. Let \(\varphi \) be a regular quadratic form on \(V \). Suppose that \(V \) contains an isotropic vector \(v \). Then there exists a two-dimensional subspace \(W \) of \(V \) containing \(v \) such that \(\varphi|_W \simeq \mathbb{H} \).

Proof. As \(\text{rad} \, \varphi = 0 \), we have \(v \notin \text{rad} \, b_\varphi \). Thus there exists a vector \(w \in V \) such that \(a = b_\varphi(v, w) \neq 0 \). Replacing \(v \) by \(a^{-1}v \), we may assume that \(a = 1 \). Let \(W = Fv \oplus Fw \). Then \(v, w - \varphi(w)v \) is a hyperbolic pair. \(\square \)

We say that any isotropic regular quadratic form splits off a hyperbolic plane.

If \(K/F \) is a field extension let \(\varphi_K \) be the quadratic form on \(V_K \) defined by \(\varphi_K(x \otimes v) := x^2 \varphi(v) \) for all \(x \in K \) and \(v \in V \) with polar form \(b_{\varphi_K} := (b_\varphi)_K \). Although \((\text{rad} \, b_\varphi)_K = \text{rad} \, b_{\varphi_K} \), we only have \((\text{rad} \, \varphi)_K \subset \text{rad}(\varphi_K) \) with inequality possible.

Remark 7.15. If \(K/F \) is a field extension and \(\varphi \) a quadratic form over \(F \) then \(\varphi \) is regular if \(\varphi_K \) is.

The following is a useful observation. The proof analogous to that for Lemma 1.22 shows:

Lemma 7.16. Let \(\varphi \) be an anisotropic quadratic form over \(F \). If \(K/F \) is purely transcendental then \(\varphi_K \) is anisotropic.

To define non-degeneracy, we use the following lemma.

Lemma 7.17. Let \(\varphi \) be a quadratic form on \(V \). Then the following are equivalent:

1. \(\varphi_K \) is regular for every field extension \(K/F \).
2. \(\varphi_K \) is regular over an algebraically closed field \(K \) containing \(F \).
3. \(\varphi \) is regular and \(\dim \text{rad} \, b_\varphi \leq 1 \).

Proof. (1) \(\Rightarrow \) (2) is trivial.

(2) \(\Rightarrow \) (3): As \((\text{rad}(\varphi))_K \subset (\text{rad}(\varphi_K))_K = 0 \), we have \(\text{rad} \, \varphi = 0 \). To show the second statement, we may assume that \(F \) is algebraically closed. As \(\varphi|_{\text{rad} \, b_\varphi} = \varphi|_{\text{rad} \, b_{\varphi_K} / \text{rad} \, \varphi} \) is anisotropic and over an algebraically closed field any quadratic form of dimension greater than one is isotropic, \(\dim \text{rad} \, b_\varphi \leq 1 \).

(3) \(\Rightarrow \) (1): Suppose that \(\text{rad}(\varphi_K) \neq 0 \). Then \(\text{rad}(\varphi_K) = \text{rad}(b_{\varphi_K}) = (\text{rad}(b_\varphi))_K \) is one dimensional. Let \(0 \neq v \in \text{rad} \, b_\varphi \). Then \(v \in \text{rad}(\varphi_K) \) hence \(\varphi(v) = 0 \) contradicting \(\text{rad} \, \varphi = 0 \). \(\square \)

Definition 7.18. A quadratic form \(\varphi \) over \(F \) is called non-degenerate if the equivalent conditions of the lemma are satisfied.

Remark 7.19. If \(K/F \) is a field extension then \(\varphi \) is non-degenerate if and only if \(\varphi_K \) is non-degenerate by Lemma 7.17.

This definition of a non-degenerate quadratic form agrees with the one given in [39]. It is different than that found in some other texts. The geometric characterization of this definition of non-degeneracy explains our definition. In fact, if \(\varphi \) is a quadratic form on \(V \) of dimension at least two then the following are equivalent:

1. The quadratic form \(\varphi \) is non-degenerate.
The projective quadric \(X_\varphi \) associated to \(\varphi \) is smooth. (Cf. Proposition 22.1)

The even Clifford algebra \(C_0(\varphi) \) of \(\varphi \) is separable (i.e., is a product of finite dimensional simple algebras each central over a separable field extension of \(F \)). (Cf. Proposition 11.6)

The group scheme \(SO(\varphi) \) of all isometries of \(\varphi \) identical on \(\text{rad} \ varphi \) is reductive (semi-simple if \(\dim \ varphi \geq 3 \) and simple if \(\dim \ varphi \geq 5 \)). (Cf. [39], Chapter VI.)

Proposition 7.20. (i) The form \((a) \) is non-degenerate if and only if \(a \in F^\times \).
(ii) The form \([a, b] \) is non-degenerate if and only if \(1 - 4ab \neq 0 \). In particular this binary quadratic form as well as its polar form is always non-degenerate if \(\text{char} F = 2 \).
(iii) Hyperbolic forms are non-degenerate.
(iv) Every binary isotropic non-degenerate quadratic form is isomorphic to \(\mathbb{H} \).

Proof. (i) and (iii) are clear.
(ii) This follows by computing the determinant of the matrix representing the polar form corresponding to \([a, b] \). (Cf. Notation 7.4)
(iv) follows by Proposition 7.14.

Remark 7.21. Let \(\text{char} F \neq 2 \). Let \(\varphi \) and \(\psi \) be quadratic forms over \(F \).

(1) The form \(\varphi \) is non-degenerate if and only if \(\varphi \) is regular.
(2) If \(\varphi \) and \(\psi \) are both non-degenerate then \(\varphi \perp \psi \) is non-degenerate as \(b_{\varphi \perp \psi} = b_\varphi \perp b_\psi \).

Remark 7.22. Let \(\text{char} F = 2 \). Let \(\varphi \) and \(\psi \) be quadratic forms over \(F \).

(1) If \(\dim \varphi \) is even then \(\varphi \) is non-degenerate if and only if its polar form \(b_\varphi \) is non-degenerate.
(2) If \(\dim \varphi \) is odd then \(\varphi \) is non-degenerate if and only if \(\dim \text{rad} b_\varphi = 1 \) and \(\varphi |_{\text{rad} b_\varphi} \) is nonzero.
(3) If \(\varphi \) and \(\psi \) are non-degenerate quadratic forms over \(F \) at least one of which is of even dimension then \(\varphi \perp \psi \) is non-degenerate.

The important analogue of Proposition 1.7 is immediate:

Proposition 7.23. Let \(\varphi \) be a quadratic form on \(V \). Let \(W \) be a vector subspace such that \(b_{\varphi|W} \) is a non-degenerate bilinear form. Then \(\varphi|_W \) is non-degenerate and \(\varphi = \varphi|_W \perp \varphi|_{W^\perp} \). In particular, \((\varphi|_W)^\perp = \varphi|_{W^\perp} \)

Let \(\varphi_i \) be a quadratic form on \(V_i \) for \(i = 1, 2 \). Then their external orthogonal sum is defined by \(\varphi := \varphi_1 \perp \varphi_2 \) on \(V_1 \bigsqcup V_2 \) given by

\[
\varphi((v_1, v_2)) := \varphi_1(v_1) + \varphi_2(v_2)
\]

for all \(v_i \in V_i \), \(i = 1, 2 \). Note that \(b_{\varphi_1 \perp \varphi_2} = b_{\varphi_1} \perp b_{\varphi_2} \).

Example 7.24. Suppose \(\text{char} F = 2 \) and \(a, b, c \in F \). Let \(\varphi = [c, a] \perp [c, b] \) and \(\{e, f, e', f'\} \) be a basis for \(V_\varphi \) such that \(\varphi(e) = c = \varphi(e') \), \(\varphi(f) = a \), \(\varphi(f') = b \), and \(b_{\varphi}(e, f) = 1 = b(e', f') \). Then in the basis \(\{e, f + f', e + e', f'\} \), we have

\[
\varphi \simeq [c, a] \perp [c, b] \simeq [c, a + b] \perp \mathbb{H}
\]
by Example 7.6.

If \(n \) is a non-negative integer and \(\varphi \) is a quadratic form over \(F \), we let
\[
n\varphi := \varphi \perp \cdots \perp \varphi.
\]
In particular, if \(n \) is an integer, we do not interpret \(n\varphi \) with \(n \) viewed in the field. For example, if \(V \) is an \(n \)-dimensional vector space, \(\mathbb{H}(V) \simeq n\mathbb{H} \).

We denote \(\langle a_1 \rangle_q \perp \cdots \perp \langle a_n \rangle_q \) by
\[
\langle a_1, \ldots, a_n \rangle_q \text{ or simply } \langle a_1, \ldots, a_n \rangle.
\]

So \(\varphi \simeq \langle a_1, \ldots, a_n \rangle \) if and only if \(V_{\varphi} \) has an orthogonal basis. If \(V_{\varphi} \) has an orthogonal basis, we say \(\varphi \) is diagonalizable.

Remark 7.25. Suppose that \(\text{char } F = 2 \) and \(\varphi \) is a quadratic form over \(F \). Then \(\varphi \) is diagonalizable if and only if \(\varphi \) is totally singular, i.e., its polar form \(b_{\varphi} = 0 \). If this is the case then every basis for \(V_{\varphi} \) is orthogonal. In particular, there are no diagonalizable non-degenerate quadratic forms of dimension greater than one.

Exercise 7.26. A quadratic form \(\varphi \) is diagonalizable if and only if \(\varphi = \varphi|_{\text{rad}} \) for some symmetric bilinear form \(b \).

Example 7.27. Suppose that \(\text{char } F \neq 2 \). If \(a \in F^\times \) then \(\langle a, -a \rangle \simeq \mathbb{H} \).

Example 7.28. (Cf. Example 1.11) Let \(\text{char } F = 2 \) and \(\varphi = \langle 1, a \rangle \) with \(a \neq 0 \). If \(\{e, f\} \) is the basis on \(V_{\varphi} \) with \(\varphi(e) = 1 \) and \(\varphi(f) = a \) then computing on the orthogonal basis \(\{e, xe + yf\} \) with \(x, y \in F, \ y \neq 0 \) shows \(\varphi \simeq \langle 1, x^2 + ay^2 \rangle \). Consequently, \(\langle 1, a \rangle \simeq \langle 1, b \rangle \) if and only if \(b = x^2 + ay^2 \) with \(y \neq 0 \).

Proposition 7.29. Let \(\varphi \) be an \(2n \)-dimensional non-degenerate quadratic form on \(V \). Suppose that \(V \) contains a totally isotropic subspace \(W \) of dimension \(n \). Then \(\varphi \simeq n\mathbb{H} \). Conversely, every hyperbolic form of dimension \(2n \) contains a totally isotropic subspace of dimension \(n \).

Proof. Let \(0 \neq v \in W \). Then by Proposition 7.14 there exists a two dimensional subspace \(V_1 \) of \(V \) containing \(v \) with \(\varphi|_{V_1} \) a non-degenerate subform isomorphic to \(\mathbb{H} \). By Proposition 7.23, this subform splits off as an orthogonal summand. Since \(\varphi|_{V_1} \) is non-degenerate, \(W \cap V_1^- \) is one dimensional, so \(\dim W \cap V_1^+ = n-1 \). The first statement follows by induction applied to the totally isotropic subspace \(W \cap V_1^\perp \) of \(V_1^\perp \). The converse is easy. \(\square \)

We turn to splitting off anisotopic subforms of regular quadratic forms. It is convenient to write these decompositions separately for fields of characteristic two and not two.

Proposition 7.30. Let \(\text{char } F \neq 2 \) and let \(\varphi \) be a quadratic form on \(V \). Then there exists an orthogonal basis for \(V \). In particular, there exist one dimensional subspaces \(V_i \subset V, \ 1 \leq i \leq n \) for some \(n \) and an orthogonal decomposition
\[
\varphi = \varphi|_{\text{rad } b_{\varphi}} \perp \varphi|_{V_1} \perp \cdots \perp \varphi|_{V_n}.
\]
with \(\varphi|_{V_i} \simeq \langle a_i \rangle \), \(a_i \in F^\times \) for all \(1 \leq i \leq n \). In particular
\[
\varphi \simeq r\langle 0 \rangle \perp \langle a_1, \ldots, a_n \rangle
\]
with \(r = \dim \text{rad} \, b_\varphi \).

Proof. We may assume that \(\varphi \neq 0 \). Hence there exists an anisotropic vector \(0 \neq v \in V \). As \(b_\varphi|_{F_v} \) is non-degenerate, \(\varphi|_{F_v} \) splits off as an orthogonal summand of \(\varphi \) by Proposition 7.23. The result follows easily by induction. \(\square \)

Corollary 7.31. Suppose that \(\text{char} \, F \neq 2 \). Then every quadratic form over \(F \) is diagonalizable.

Proposition 7.32. Let \(\text{char} \, F = 2 \) and let \(\varphi \) be a quadratic form on \(V \). Then there exists two dimensional subspaces \(V_i \subset V, 1 \leq i \leq n \) for some \(n \), a subspace \(W \subset \text{rad} \, b_\varphi \), and an orthogonal decomposition
\[
\varphi = \varphi|_{\text{rad}(\varphi)} \perp \varphi|_W \perp \varphi|_{V_1} \perp \cdots \perp \varphi|_{V_n}
\]
with \(\varphi|_{V_i} \simeq [a_i, b_i] \) non-degenerate, \(a_i, b_i \in F \) for all \(1 \leq i \leq n \). Moreover, \(\varphi|_W \) is anisotropic, diagonalizable, and is unique up to isometry. In particular,
\[
\varphi \simeq r\langle 0 \rangle \perp \langle c_1, \ldots, c_s \rangle \perp [a_1, b_1] \perp \cdots \perp [a_n, b_n]
\]
with \(r = \dim \text{rad} \, \varphi \) and \(s = \dim W \) and \(c_i \in F^\times, 1 \leq i \leq s \).

Proof. Let \(W \subset V \) be a subspace such that \(\text{rad} \, b_\varphi = \text{rad} \, \varphi \oplus W \) and \(V' \subset V \) be a subspace such that \(V = \text{rad} \, b_\varphi \oplus V' \). Then \(\varphi = \varphi|_{\text{rad}(\varphi)} \perp \varphi|_W \perp \varphi|_{V'} \). The form \(\varphi|_W \) is diagonalizable as \(b_\varphi|_W = 0 \) and anisotropic as \(W \cap \text{rad} \, \varphi = 0 \). By Lemma 7.13, the form \(\varphi|_W = (\varphi|_{\text{rad} \, b_\varphi})|_W \) is unique up to isometry. So to finish we need only show that \(\varphi|_{V'} \) is an orthogonal sum of non-degenerate binary subforms of the desired isometry type. We may assume that \(V' \neq \{0\} \). Let \(0 \neq v \in V' \). Then there exists \(0 \neq v' \in V' \) such that \(c = b_\varphi(v, v') \neq 0 \). Replacing \(v' \) by \(c^{-1}v' \), we may assume that \(b_\varphi(v, v') = 1 \). In particular, \(\varphi|_{F_v \oplus F_v'} \simeq [\varphi(v), \varphi(v')] \). As \([\varphi(v), \varphi(v')] \) and its polar form are non-degenerate by Proposition 7.20, the subform \(\varphi|_{F_v \oplus F_v'} \) is an orthogonal direct summand of \(\varphi \) by Proposition 7.23. The decomposition follows by Lemma 7.13 and induction. \(\square \)

Example 7.33. Suppose that \(F \) is quadratically closed of characteristic two. Then every anisotropic form is isometric to \(\langle 1 \rangle \) or \([1, a] \) with \(a \in F \setminus \varphi(F) \) where \(\varphi : F \to F \) is the Artin-Schreier map.

Exercise 7.34. Every non-degenerate quadratic form over a separably closed field \(F \) is isometric to \(n\mathbb{H} \) or \(\langle a \rangle \perp n\mathbb{H} \) for some \(n \geq 0 \) and \(a \in F^\times \).

8. Witt’s Theorems

As with the bilinear case, the classical Witt theorems are more delicate to ascertain over fields of arbitrary characteristic. We shall give characteristic free proofs of these. The basic Witt theorem is the Witt Extension Theorem (cf. Theorem 8.3 below). We construct the quadratic Witt group of even dimensional anisotropic quadratic forms and use the Witt theorems to study this group.
To get further decompositions of a quadratic form, we need generalizations of the classical Witt theorems for bilinear forms over fields of characteristic different from two.

Let \(\varphi \) be a quadratic form on \(V \). Let \(v \) and \(v' \) in \(V \) satisfy \(\varphi(v) = \varphi(v') \). If the vector \(\bar{v} = v - v' \) is anisotropic then the reflection (cf. Example 7.3) \(\tau_\bar{v} : \varphi \to \varphi \) satisfies
\[
\tau_\bar{v}(v) = v'.
\]

What if \(\bar{v} \) is isotropic?

Lemma 8.2. Let \(\varphi \) be a quadratic form on \(V \) with polar form \(b \). Let \(v \) and \(v' \) lie in \(V \) and \(\bar{v} = v - v' \). Suppose that \(\varphi(v) = \varphi(v') \) and \(\varphi(\bar{v}) = 0 \). If \(w \in V \) is anisotropic and satisfies both \(b(w, v) \) and \(b(w, v') \) are nonzero then the vector \(w' = v - \tau_w(v') \) is anisotropic and \((\tau_w \circ \tau_{w'})(v) = v' \).

Proof. As \(w' = \bar{v} + b(v', w)\varphi(w)^{-1}w \), we have
\[
\varphi(w') = \varphi(\bar{v}) + b(\bar{v}, b(v', w)\varphi(w)^{-1}w) + b(v', w)^2\varphi(w)^{-1} = b(v, w)b(v', w)\varphi(w)^{-1} \neq 0.
\]
It follows from (8.1) that \(\tau_w(v) = \tau_{w'}(v) \) hence the result. \(\square \)

Theorem 8.3. (Witt Extension Theorem) Let \(\varphi \) and \(\varphi' \) be isometric quadratic forms on \(V \) and \(V' \) respectively. Let \(W \subset V \) and \(W' \subset V' \) be subspaces such that \(W \cap \text{rad} b_\varphi = 0 \) and \(W' \cap \text{rad} b_{\varphi'} = 0 \). Suppose that there is an isometry \(\alpha : \varphi|_W \to \varphi'|_{W'} \). Then there exists an isometry \(\bar{\alpha} : \varphi \to \varphi' \) such that \(\bar{\alpha}(W) = W' \) and \(\bar{\alpha}|_W = \alpha \).

Proof. It is sufficient to treat the case \(V = V' \) and \(\varphi = \varphi' \). Let \(b \) denote the polar form of \(\varphi \). We proceed by induction on \(n = \dim W \), the case \(n = 0 \) being obvious. Suppose that \(n > 0 \). In particular, \(\varphi \) is not identically zero. Let \(u \in V \) satisfy \(\varphi(u) \neq 0 \). As \(\dim W \cap (Fu)^\perp \geq n - 1 \), there exists a subspace \(W_0 \subset W \) of codimension one with \(W_0 \subset (Fu)^\perp \). Applying the induction hypothesis to \(\beta = \alpha|_{W_0} : \varphi|_{W_0} \to \varphi|_{\alpha(W_0)} \), there exists an isometry \(\bar{\beta} : \varphi \to \varphi \) satisfying \(\bar{\beta}(W_0) = \alpha(W_0) \) and \(\bar{\beta}|_{W_0} = \beta \). Replacing \(W' \) by \(\bar{\beta}^{-1}(W') \), we may assume that \(W_0 \subset W' \) and \(\alpha|_{W_0} \) is the identity.

Let \(v \) be any vector in \(W \setminus W_0 \) and set \(v' = \alpha(v) \in W' \). It suffices to find an isometry \(\gamma \) of \(\varphi \) such that \(\gamma(v) = v' \) and \(\gamma|_{W_0} = \text{Id} \). Let \(\bar{v} = v - v' \) as above and \(S = W_0^\perp \). Note that for every \(w \in W_0 \), we have \(\alpha(w) = w \), hence
\[
b(\bar{v}, w) = b(v, w) - b(\alpha(v), \alpha(w)) = 0,
\]
i.e., \(\bar{v} \in S \).

Suppose that \(\varphi(\bar{v}) \neq 0 \). Then \(\tau_\bar{v}(v) = v' \) using (8.1). Moreover, \(\tau_\bar{v}(w) = w \) for every \(w \in W_0 \) as \(\bar{v} \) is orthogonal to \(W_0 \). Then \(\gamma = \tau_\bar{v} \) works. So we may assume that \(\varphi(\bar{v}) = 0 \). We have
\[
0 = \varphi(\bar{v}) = \varphi(v) - b(v, v') + \varphi(v') = b(v, v) - b(v, v') = b(v, \bar{v}),
\]
i.e., \(\bar{v} \) is orthogonal to \(v \). Similarly, \(\bar{v} \) is orthogonal to \(v' \).

By Proposition 7.6, the map \(l_W : V \to W^* \) is surjective. In particular, there exists \(u \in V \) such that \(b(u, W_0) = 0 \) and \(b(u, v) = 1 \). In other words, \(v \) is not orthogonal to
Let S, i.e., the intersection $H = (Fv)^\perp \cap S$ is a subspace of codimension one in S. Similarly, $H' = (Fv')^\perp \cap S$ is also a subspace of codimension one in S. Note that $\bar{v} \in H \cap H'$.

Suppose that there exists an anisotropic vector $w \in S$ such that $w \notin H$ and $w \notin H'$. By Lemma 8.2, we have $(\tau_w \circ \tau_{w'})(v) = v'$ where
\[w' = v - \tau_w(v') = \bar{v} + b(v', w)\varphi(w)^{-1}w \in S. \]
As $w, w' \in S$, the map $\tau_w \circ \tau_{w'}$ is the identity on W_0. Setting $\gamma = \tau_w \circ \tau_{w'}$ produces the desired extension. Consequently, we may assume that $\varphi(w) = 0$ for every $w \in S \setminus (H \cup H')$.

Case 1: $|F| > 2$:
Let $w_1 \in H \cap H'$ and $w_2 \in S \setminus (H \cup H')$. Then $aw_1 + w_2 \in S \setminus (H \cup H')$ for any $a \in F$ so by assumption
\[0 = \varphi(aw_1 + w_2) = a^2\varphi(w_1) + ab(w_1, w_2) + \varphi(w_2). \]
Since $|F| > 2$, we must have $\varphi(w_1) = b(w_1, w_2) = \varphi(w_2) = 0$. So $\varphi(H \cap H') = 0$, $\varphi(S \setminus (H \cup H')) = 0$ and $H \cap H'$ is orthogonal to $S \setminus (H \cup H')$, i.e., $b(x, y) = 0$ for all $x \in H \cap H'$ and $y \in S \setminus (H \cup H')$.

Let $w \in H$ and $w' \in S \setminus (H \cup H')$. As $|F| > 2$, we see that $w + aw' \in S \setminus (H \cup H')$ for some $a \in F$. Hence the set $S \setminus (H \cup H')$ generates S. Consequently, $H \cap H'$ is orthogonal to S. In particular, $b(\bar{v}, S) = 0$. Thus $H = H'$. It follows that $\varphi(H) = 0$ and $\varphi(S \setminus H) = 0$, hence $\varphi(S) = 0$, a contradiction. This finishes the proof in this case.

Case 2: $F = \mathbb{F}_2$:
As $H \cup H' \neq S$, there exists a $w \in S$ such that $b(w, v) \neq 0$ and $b(w, v') \neq 0$. As $F = \mathbb{F}_2$, this means that $b(w, v) = 1 = b(w, v')$. Moreover, by our assumptions $\varphi(\bar{v}) = 0$ and $\varphi(w) = 0$. Consider the linear map
\[\gamma : V \to V \quad \text{by} \quad \gamma(x) = x + b(\bar{v}, x)w + b(w, x)\bar{v}. \]
Note that $b(w, \bar{v}) = b(w, v) + b(w, v') = 1 + 1 = 0$. A simple calculation shows that $\gamma^2 = \text{Id}$ and $\varphi(\gamma(x)) = \varphi(x)$ for any $x \in V$, i.e., γ is an isometry. Moreover, $\gamma(v) = v + \bar{v} = v'$. Finally, $\gamma|_{W_0} = \text{Id}$ since w and \bar{v} are orthogonal to W_0. \hfill \square

Theorem 8.4. (Witt Cancellation Theorem) Let φ, φ' be quadratic forms on V and V' respectively and ψ, ψ' quadratic forms on W and W' respectively with $\text{rad } b_\psi = 0 = \text{rad } b_{\psi'}$. If
\[\varphi \perp \psi \simeq \varphi' \perp \psi' \quad \text{and} \quad \psi \simeq \psi', \]
then $\varphi \simeq \varphi'$.

Proof. Let $f : \psi \to \psi'$ be an isometry. By the Witt Extension Theorem, this extends to an isometry $\bar{f} : \varphi \perp \psi \to \varphi' \perp \psi'$. As \bar{f} takes $V = W^\perp$ to $V' = (W')^\perp$, the result follows. \hfill \square

Witt Cancellation together with our previous computations allows us to derive the decomposition that we want.

Theorem 8.5. (Witt Decomposition Theorem) Let φ be a quadratic form on V. Then there exist subspaces V_1 and V_2 of V such that $\varphi = \text{rad}_\varphi \perp \varphi|_{V_1} \perp \varphi|_{V_2}$ with $\varphi|_{V_1}$ anisotropic and $\varphi|_{V_2}$ hyperbolic. Moreover, $\varphi|_{V_1}$ and $\varphi|_{V_2}$ are unique up to isometry.
We know that \(\varphi = \varphi|^\rho \perp \varphi|_V \) with \(\varphi|_V \) on \(V' \) unique up to isometry. Therefore, we can assume that \(\varphi \) is regular. Suppose that \(\varphi|_V \) is isotropic. By Proposition 7.14, we can split off a subform as an orthogonal summand isometric to the hyperbolic plane. The desired decomposition follows by induction. As every hyperbolic form is non-degenerate, the Witt Cancellation Theorem shows the uniqueness of \(\varphi|_{V_1} \) up to isometry hence \(\varphi|_{V_2} \) is unique by dimension count.

Definition 8.6. Let \(\varphi \) be a quadratic form on \(V \) and \(\varphi = \varphi|^\rho \perp \varphi|_{V_1} \perp \varphi|_{V_2} \) be the decomposition in the theorem. The anisotropic form \(\varphi|_{V_1} \), unique up to isometry, will be denoted \(\varphi_{an} \) on the space \(V_{\varphi_{an}} \) and be called the anisotropic part of \(\varphi \). As \(\varphi_{V_2} \) is hyperbolic, \(\dim V_2 = 2n \) for some unique non-negative number \(n \). The integer \(n \) is called the Witt index of \(\varphi \) and denoted by \(\i(\varphi) \). We say that two quadratic forms \(\varphi \) and \(\psi \) are Witt equivalent and write \(\varphi \sim \psi \) if \(\dim \rad \varphi = \dim \rad \psi \) and \(\varphi_{an} \simeq \psi_{an} \). Equivalently, \(\varphi \sim \psi \) if and only if \(\varphi \perp m\mathbb{H} \simeq \psi \perp m\mathbb{H} \) for some \(n \) and \(m \).

Note that if \(\varphi \sim \psi \) then \(\varphi_{K} \sim \psi_{K} \) for any field extension \(K/F \).

Witt cancellation does not hold in general for non-degenerate quadratic forms in characteristic two. We show in the next result, Proposition 8.8, that

\[
\tag{8.7} [a, b] \perp \langle a \rangle \simeq \mathbb{H} \perp \langle a \rangle
\]

if \(\text{char } F = 2 \) for all \(a, b \in F \) with \(a \neq 0 \). But \([a, b] \simeq \mathbb{H} \) if and only if \([a, b] \) is isotropic by Proposition 7.20(iv). Although Witt cancellation does not hold in general in characteristic two, we do have:

Proposition 8.8. Let \(\rho \) be a non-degenerate quadratic form of even dimension over a field \(F \) of characteristic 2. Then \(\rho \perp \langle a \rangle \sim \langle a \rangle \) for some \(a \in F^\times \) if and only if \(\rho \sim [a, b] \) for some \(b \in F \).

Proof. Let \(\varphi = [a, b] \perp \langle a \rangle \) with \(a, b \in F \) and \(a \neq 0 \). Clearly, \(\varphi \) is isotropic and it is non-degenerate as \(\varphi|^\rho_{\perp} = \langle a \rangle \). It follows by Proposition 7.14 that \([a, b] \perp \langle a \rangle \simeq \mathbb{H} \perp \langle a \rangle \sim \langle a \rangle \). Since \(\rho \sim [a, b] \), we have \(\rho \perp \langle a \rangle \sim \langle a \rangle \).

Conversely, suppose that \(\rho \perp \langle a \rangle \sim \langle a \rangle \) for some \(a \in F^\times \). We prove the statement by induction on \(n = \dim \rho \). If \(n = 0 \) we can take \(b = 0 \). So assume that \(n > 0 \). We may also assume that \(\rho \) is anisotropic. By assumption, the form \(\rho \perp \langle a \rangle \) is isotropic. Therefore \(a \in D(\rho) \) and we can find a decomposition \(\rho = \rho' \perp [a, d] \) for some non-degenerate form \(\rho' \) of dimension \(n - 2 \) and \(b \in F \). As \([a, d] \perp \langle a \rangle \simeq \mathbb{H} \perp \langle a \rangle \) by the first part of the proof, we have

\[
\langle a \rangle \sim \rho \perp \langle a \rangle = \rho' \perp [a, d] \perp \langle a \rangle \sim \rho' \perp \langle a \rangle.
\]

By the induction hypothesis, \(\rho' \simeq [a, c] \) for some \(c \in F \). Therefore by Example 7.24,

\[
\rho = \rho' \perp [a, d] \simeq [a, c] \perp [a, d] \simeq [a, c + d] \perp \mathbb{H} \sim [a, c + d].
\]

Remark 8.9. Let \(\varphi \) and \(\psi \) be a quadratic forms over \(F \).

1. If \(\varphi \) is non-degenerate and anisotropic over \(F \) and \(K/F \) a purely transcendental extension then \(\varphi_{K} \) remains anisotropic by Lemma 7.16. In particular, \(\i(\varphi) = \i(\varphi_{K}) \).
2. Let \(a \in F^\times \). Then \(\varphi \simeq a\psi \) if and only if \(\varphi_{an} \simeq a\psi_{an} \) as any form similar to a hyperbolic form is hyperbolic.
(3). If char $F = 2$, the quadratic form φ_{an} may be degenerate. This is not possible if char $F \neq 2$.

(4). If char $F \neq 2$ then every symmetric bilinear form corresponds to a quadratic form, hence the Witt theorems hold for symmetric bilinear forms in characteristic different from two.

Lemma 8.10. Let φ be a regular quadratic form on V. Let $W \subset V$ be a totally isotropic subspace of dimension m. Let ψ be the quadratic form on W^\perp/W induced by the restriction of φ on W^\perp. Then $\varphi \simeq \psi \perp m\perp$.

Proof. As $W \cap \text{rad } b_\varphi \subset \text{rad } \varphi$, the intersection $W \cap \text{rad } b_\varphi$ is trivial. Thus the map $V \to W^*$ by $v \mapsto l_v|_W : w \mapsto b_\varphi(v,w)$ is surjective by Proposition 1.6 and $\dim W^\perp = \dim V - \dim W$. Let $W' \subset V$ be a subspace mapping isomorphically onto W^*. Clearly, $W \cap W' = \{0\}$. Let $U = W \oplus W'$.

We show the form $\varphi|_U$ is hyperbolic. The subspace $W \oplus W'$ is non-degenerate with respect to b_φ. Indeed let $0 \neq v = w + w' \in W \oplus W'$. If $w' \neq 0$ there exists a $w_0 \in W$ such that $b_\varphi(w',w_0) \neq 0$ hence $b_\varphi(v,w_0) \neq 0$. If $w' = 0$, there exists $w'_0 \in W'$ such that $b_\varphi(w,w'_0) \neq 0$ hence $b_\varphi(v,w'_0) \neq 0$. Thus by Proposition 7.29 the form $\varphi|_U$ is isometric to $m\perp$ where $m = \dim W$.

By Proposition 7.23 we have $\varphi = \varphi|_{U^\perp} \perp \varphi|_U \simeq \varphi|_{U^\perp} \perp m\perp$. As W and U^\perp are subspaces of W^\perp and $U \cap W^\perp = W$, we have $W^\perp = W \oplus U^\perp$. Thus $W^\perp/W \simeq U^\perp$ and the result follows.

Proposition 8.11. Let φ be a regular quadratic form on V. Then every totally isotropic subspace of V is contained in a totally isotropic subspace of dimension $i_0(\varphi)$.

Proof. Let $W \subset V$ be a totally isotropic subspace of V. We may assume that it is a maximal totally isotropic subspace. In the notation of the proof of Lemma 8.10, we have $\varphi = \varphi|_{U^\perp} \perp \varphi|_U$ with $\varphi|_U \simeq m\perp$ where $m = \dim W$. The form $\varphi|_{U^\perp}$ is anisotropic by the maximality of W hence must be φ_{an} by the Witt Decomposition Theorem 8.5. In particular, $\dim W = i_0(\varphi)$.

Corollary 8.12. Let φ be a regular quadratic form on V. Then every totally isotropic subspace W of V has dimension at most $i_0(\varphi)$ with equality if and only if W is a maximal totally isotropic subspace of V.

Let ρ be a non-degenerate quadratic form and φ a subform of ρ. If b_φ is non-degenerate then $\rho = \varphi \perp \varphi^\perp$ hence $\rho \perp (-\varphi) \sim \varphi^\perp$. However, in general, $\rho \neq \varphi \perp \varphi^\perp$. We do always have:

Lemma 8.13. Let ρ be a non-degenerate quadratic form of even dimension and let φ be a regular subform of ρ. Then $\rho \perp (-\varphi) \sim \varphi^\perp$.

Proof. Let W be the subspace $W = \{(v,v) \mid v \in V_\varphi\}$ of $V_\rho \oplus V_\varphi$. Clearly W is totally isotropic with respect to the form $\rho \perp (-\varphi)$ on $V_\rho \oplus V_\varphi$. By the proof of Lemma 8.10, we have $\dim W^\perp/W = \dim V_\rho \oplus V_\varphi - 2 \dim W = \dim V_\rho - \dim V_\varphi$. By Remark 7.11 we also have $\dim V_\varphi^\perp = \dim V_\rho - \dim V_\varphi$. It follows that the linear map $W^\perp/W \to V_\varphi^\perp$ defined by
(v, v') \mapsto v - v' is an isometry. On the other hand, by Lemma [8.10], the form on W^\perp/W is Witt equivalent to $\rho \perp (-\varphi)$. □

Let V and W be vector spaces over F. Let b be a symmetric bilinear form on W and φ be a quadratic form on V. The tensor product of b and φ is the quadratic form $b \otimes \varphi$ on $W \otimes_F V$ defined by

\[(8.14) \quad (b \otimes \varphi)(w \otimes v) = b(w, w) \cdot \varphi(v)\]

for all $w \in W$ and $v \in V$ with the polar form of $b \otimes \varphi$ equal to $b \otimes b_{\varphi}$. For example, if $a \in F$ then $\langle a \rangle_b \otimes \varphi \simeq a\varphi$.

Example 8.15. If b is a symmetric bilinear form then $\varphi_b \simeq b \otimes \langle 1 \rangle_q$.

Lemma 8.16. Let b be a non-degenerate symmetric bilinear form over F and φ a non-degenerate quadratic form over F. In addition, assume that $\dim \varphi$ is even if characteristic of F is two. Then

1. The quadratic form $b \otimes \varphi$ is non-degenerate.
2. If either φ or b is hyperbolic then $b \otimes \varphi$ is hyperbolic.

Proof. (1): The bilinear form b_{φ} is non-degenerate by Remark [7.21] and by Remark [7.22] if characteristic of F is not two or two respectively. By Lemma [2.1], the form $b \otimes b_{\varphi}$ is non-degenerate hence so is $b \otimes \varphi$.

(2): Using Proposition [7.29], we see that $V_b \otimes \varphi$ contains a totally isotropic space of dimension $\frac{1}{2}\dim(b \otimes \varphi)$. □

As the orthogonal sum of even dimensional non-degenerate quadratic forms over F is non-degenerate, the isometry classes of even dimensional non-degenerate quadratic forms over F form a monoid under orthogonal sum. The quotient of the Grothendieck group of this monoid by the subgroup generated by the image of the hyperbolic plane is called the quadratic Witt group and will be denoted by $I_q(F)$. The tensor product of a bilinear with a quadratic form induces a $W(F)$-module structure on $I_q(F)$ by Lemma [8.16].

Remark 8.17. Let φ and ψ be two non-degenerate even dimensional quadratic forms over F. By the Witt Decomposition Theorem [8.5],

\[\varphi \simeq \psi \quad \text{if and only if} \quad \varphi = \psi \text{ in } I_q(F) \quad \text{and} \quad \dim \varphi = \dim \psi.\]

Remark 8.18. Let $F \to K$ be a homomorphism of fields. Analogous to Proposition [2.7], this map induces the **restriction map**

\[r_{K/F} : I_q(F) \to I_q(K).\]

It is a group homomorphism. If K/F is purely transcendental, the restriction map is injective by Lemma [7.16].

Suppose that $\text{char} F \neq 2$. Then we have an isomorphism $I(F) \to I_q(F)$ given by $b \mapsto \varphi_b$. We will use the correspondence $b \mapsto \varphi_b$ to identify bilinear forms in $W(F)$ with quadratic forms. In particular, we shall view the class of a quadratic form in the Witt ring of bilinear forms when char $F \neq 2$.
II. QUADRATIC FORMS

9. Quadratic Pfister Forms I

As in the bilinear case, there is a special class of forms built from tensor products of forms. If the characteristic of \(F \) is different from two, these forms can be identified with the bilinear Pfister forms. If the characteristic is two, these forms arise as the tensor product of a bilinear Pfister form and a binary quadratic form of the type \([1, a]\). In general, the quadratic 1-fold Pfister forms are just the norm forms of a quadratic étale \(F \)-algebra and the 2-fold quadratic Pfister forms are just the reduced norm forms of quaternion algebras. These forms as their bilinear analogue satisfy the property of being round. In this section, we begin their study.

Definition 9.1. Let \(\varphi \) be a quadratic form on \(V \) over \(F \). Let

\[
D(\varphi) := \{ \varphi(v) \mid v \in V, \varphi(v) \neq 0 \},
\]

the set on nonzero values of \(\varphi \) and

\[
G(\varphi) := \{ a \in F^\times \mid a\varphi \simeq \varphi \},
\]

a group called the group of similarity factors of \(\varphi \). If \(D(\varphi) = F^\times \), we say that \(\varphi \) is universal. Also set

\[
\tilde{D}(\varphi) := D(\varphi) \cup \{0\}.
\]

We say that elements in \(\tilde{D}(\varphi) \) are represented by \(\varphi \).

For example, \(G(\mathbb{H}) = F^\times \) (as for bilinear hyperbolic planes) and \(D(\mathbb{H}) = F^\times \). In particular, if \(\varphi \) is an regular isotropic quadratic form over \(F \) then \(\varphi \) is universal by Proposition 7.14.

The analogous proof of Lemma 1.14 shows:

Lemma 9.2. Let \(\varphi \) be a quadratic form. Then

\[
D(\varphi) \cdot G(\varphi) \subset D(\varphi).
\]

In particular, if \(1 \in D(\varphi) \) then \(G(\varphi) \subset D(\varphi) \).

The relationship between values and similarities of a symmetric bilinear form and the quadratic form it determines is given by the following.

Lemma 9.3. Let \(b \) a symmetric bilinear form on \(F \) and \(\varphi = \varphi_b \). Then

1. \(D(\varphi) = D(b) \).
2. \(G(b) \subset G(\varphi) \).

Proof. (1). By definition, \(\varphi(v) = b(v, v) \) for all \(v \in V \).

(2). Let \(a \in G(b) \) and \(\lambda : b \to ab \) an isometry. Then \(\varphi(\lambda(v)) = b(\lambda(v), \lambda(v)) = ab(v, v) = a\varphi(v) \) for all \(v \in V \).

A quadratic form is called round if \(G(\varphi) = D(\varphi) \). In particular, if \(\varphi \) is round then \(D(\varphi) \) is a group. For example, any hyperbolic form is round.

A basis example of round forms arises from quadratic \(F \)-algebras (Cf. Appendix §97.B):
EXAMPLE 9.4. Let \(K \) be a quadratic \(F \)-algebra. Then there exists an involution on \(K \) given by \(x \mapsto \bar{x} \) and a quadratic norm form \(\varphi = N \) given by \(x \mapsto xx \) (cf. Appendix \[97.3]). We have \(\varphi(xy) = \varphi(x)\varphi(y) \) for all \(x, y \in K \). If \(x \in K \) with \(\varphi(x) \neq 0 \) then \(x \in K \). Hence the map \(K \to K \) given by multiplication by \(x \) is an \(F \)-isomorphism and \(\varphi(x) \in G(\varphi) \). Thus \(D(\varphi) \subseteq G(\varphi) \). As \(1 \in D(\varphi) \), we have \(G(\varphi) \subseteq D(\varphi) \). In particular, \(\varphi \) is round.

Let \(K \) be a quadratic étale \(F \)-algebra. So \(K = \mathbb{F}_a \) for some \(a \in F \). The norm form \(N \) of \(\mathbb{F}_a \) in Example 9.4 is denoted by \(\langle\langle a\rangle\rangle \) and called a quadratic \(1 \)-fold Pfister form. In particular, it is round. Explicitly, we have:

EXAMPLE 9.5. For \(\mathbb{F}_a \) a quadratic étale \(F \)-algebra, we have

(1). (Cf. Example \[97.3\]) If \(\text{char } F = 2 \) then \(\mathbb{F}_a = F[j]/(j^2 - a) \) with \(a \in F \) and the quadratic form \(\langle\langle a\rangle\rangle = \{1, -a\}_q \simeq \langle\langle a\rangle\rangle_b \otimes \langle1\rangle_q \) is the norm form of \(\mathbb{F}_a \).

(2). (Cf. Example \[97.4\]) If \(\text{char } F = 2 \) then \(\mathbb{F}_a = F[j]/(j^2 + j + a) \) with \(a \in F \) and the quadratic form \(\langle\langle a\rangle\rangle = [1, a] \) is the norm form of \(\mathbb{F}_a \). In particular, \(\langle\langle a\rangle\rangle \simeq \langle\langle x^2 + x + a\rangle\rangle \) for any \(x \in F \).

Let \(n \geq 1 \). A quadratic form isomorphic to a quadratic form of the type

\[
\langle\langle a_1, \ldots, a_n\rangle\rangle := \langle\langle a_1, \ldots, a_{n-1}\rangle\rangle_b \otimes \langle\langle a_n\rangle\rangle
\]

for some \(a_1, \ldots, a_{n-1} \in F^\times \) and \(a_n \in F \) (with \(a_n \neq 0 \) if \(\text{char } F \neq 2 \)) is called a quadratic \(n \)-fold Pfister form. It is convenient to call the form isometric to \(\langle1\rangle_q \) a \(0 \)-fold Pfister form. Every quadratic \(n \)-fold Pfister form is non-degenerate by Lemma \[8.16\] We let

\[
P_n(F) := \{\varphi \mid \varphi \text{ a quadratic } n \text{-fold Pfister form}\}
\]

\[
P(F) := \bigcup P_n(F)
\]

\[
GP_n(F) := \{a\varphi \mid a \in F^\times, \varphi \text{ a quadratic } n \text{-fold Pfister form}\}
\]

\[
GP(F) := \bigcup GP_n(F).
\]

Forms in \(GP_n(F) \) are called general quadratic \(n \)-fold Pfister forms.

If \(\text{char } F \neq 2 \), the form \(\langle\langle a_1, \ldots, a_n\rangle\rangle \) is the associated quadratic form of the bilinear Pfister form \(\langle\langle a_1, \ldots, a_n\rangle\rangle_b \) by Example 9.5 (1). We shall also use the notation \(\langle\langle a_1, \ldots, a_n\rangle\rangle \) for the quadratic Pfister form \(\langle\langle a_1, \ldots, a_n\rangle\rangle \) in this case.

The class of an \(n \)-fold Pfister form belongs to

\[
I_q^n(F) := I_q^{n-1}(F) \cdot I_q(F).
\]

As \([a, b] = a[1, ab] \) for all \(a, b \in F \), every non-degenerate binary quadratic form is a general \(1 \)-fold Pfister form. In particular, \(GP_1(F) \) generates \(I_q(F) \). It follows that \(GP_n(F) \) generates \(I_q^n(F) \) as an abelian group. In fact, as

\[
a\langle\langle b, c\rangle\rangle = \langle\langle ab, c\rangle\rangle - \langle\langle a, c\rangle\rangle
\]

for all \(a, b \in F^\times \) and \(c \in F \) (with \(c \neq 0 \) if \(\text{char } F \neq 2 \)), \(P_n(F) \) generates \(I_q^n(F) \) as an abelian group for \(n > 1 \).
Note that in the case that char \(F \neq 2 \), under the identification of \(I(F) \) with \(I_q(F) \), the group \(I^*(F) \) corresponds to \(I^*_q(F) \) and a bilinear Pfister form \(\langle\langle a_1, \ldots, a_n\rangle\rangle_b \) corresponds to the quadratic Pfister form \(\langle\langle a_1, \ldots, a_n\rangle\rangle \).

Using the material in Appendix 397.E, we have the following example.

Example 9.7. Let \(A \) be a quaternion \(F \)-algebra

1. (Cf. Example 97.11.) Suppose that char \(F \neq 2 \). If \(A = \left(\begin{array}{cc} a & b \\ \, & F \end{array}\right) \) then reduced quadratic norm form is equal to the quadratic form \(\langle\langle 1, -a, -b, ab \rangle\rangle = \langle\langle a, b\rangle\rangle \).

2. (Cf. Example 97.12.) Suppose that char \(F = 2 \). If \(A = \left[\begin{array}{cc} a & b \\ \, & F \end{array}\right] \) then reduced quadratic norm form is equal to the quadratic form \([1, ab] \perp [a, b] \). This form is hyperbolic if \(a = 0 \) and is isomorphic to \(\langle\langle 1, a\rangle\rangle_b \otimes [1, ab] = \langle\langle a, ab\rangle\rangle \) otherwise.

Example 9.8. Let \(L/F \) be a separable quadratic field extension and \(Q = L \oplus Lj \) a quaternion \(F \)-algebra with \(j^2 = b \in F^x \) (cf. 97.E). For any \(q = l + l'j \in Q \), we have \(\text{Nrd}_Q(q) = N_L(l) - bN_L(l') \). Therefore, \(\text{Nrd}_Q \simeq \langle\langle b\rangle\rangle \otimes N_L \).

Proposition 9.9. Let \(\varphi \) be a round quadratic form and \(a \in F^x \). Then

1. The form \(\langle\langle a\rangle\rangle \otimes \varphi \) is also round.
2. If \(\varphi \) is regular then the following are equivalent:

 (i) \(\langle\langle a\rangle\rangle \otimes \varphi \) is isotropic.

 (ii) \(\langle\langle a\rangle\rangle \otimes \varphi \) is hyperbolic.

 (iii) \(a \in D(\varphi) \).

Proof. Set \(\psi = \langle\langle a\rangle\rangle \otimes \varphi \).

1. Since \(1 \in D(\varphi) \), it suffices to prove that \(D(\psi) \subset G(\psi) \). Let \(c \) be a nonzero value of \(\psi \). Write \(c = x - ay \) for some \(x, y \in D(\varphi) \). If \(y = 0 \), we have \(c = x \in D(\varphi) = G(\varphi) \subset G(\psi) \).

2. Similarly, \(y \in G(\psi) \) if \(x = 0 \) hence \(c = -ay \in G(\psi) \) as \(-a \in G(\langle\langle a\rangle\rangle) \subset G(\psi) \).

Now suppose that \(x \) and \(y \) are nonzero. Since \(\varphi \) is round, \(x, y \in G(\varphi) \) and therefore

\[
\psi = \varphi \perp (-a\varphi) \simeq \varphi \perp (-ayx^{-1})\varphi = \langle\langle ayx^{-1}\rangle\rangle \otimes \varphi.
\]

By Example 9.4 we know that \(1 - ayx^{-1} \in G(\langle\langle ayx^{-1}\rangle\rangle) \subset G(\psi) \). Since \(x \in G(\varphi) \subset G(\psi) \), we have \(c = (1 - ayx^{-1})x \in G(\psi) \).

2. (i) \(\Rightarrow \) (iii): If \(\varphi \) is isotropic then \(\varphi \) is universal by Proposition 7.14. So suppose that \(\varphi \) is anisotropic. Since \(\psi = \varphi \perp (-a\varphi) \) is isotropic, there exist \(x, y \in D(\varphi) \) such that \(x - ay = 0 \). Therefore \(a = xy^{-1} \in D(\varphi) \) as \(D(\varphi) \) is closed under multiplication.

(iii) \(\Rightarrow \) (ii): As \(\varphi \) is round, \(a \in D(\varphi) = G(\varphi) \) and \(\langle\langle a\rangle\rangle \otimes \varphi \) is hyperbolic.

(ii) \(\Rightarrow \) (i) is trivial.

Corollary 9.10. Quadratic Pfister forms are round.

Corollary 9.11. A quadratic Pfister form is either anisotropic or hyperbolic.
Let \(\varphi : F \to F \) defined by \(\varphi(x) = x^2 + x \) be the Artin-Schreier map. (Cf. Appendix 9.7.1) For a quadratic 1-fold Pfister form we have \(\langle \langle d \rangle \rangle \) is hyperbolic if and only if \(d \in \text{Im } \varphi \) by Example 9.7.4. More generally, we have:

Lemma 9.12. Let \(\mathfrak{b} \) be an anisotropic bilinear Pfister form and \(d \in F \). Then \(\mathfrak{b} \otimes \langle \langle d \rangle \rangle \) is hyperbolic if and only if \(d \in \text{Im } \varphi + \overline{D}(\mathfrak{b}') \).

Proof. Suppose that \(\mathfrak{b} \otimes \langle \langle d \rangle \rangle \) is hyperbolic and therefore isotropic. Let \(\{e, f\} \) be the standard basis of \(\langle \langle d \rangle \rangle \). Let \(v \otimes e + w \otimes f \) be an isotropic vector of \(\mathfrak{b} \otimes \langle \langle d \rangle \rangle \) where \(v, w \in V_6 \). We have \(a + b + cd = 0 \) where \(a = \mathfrak{b}(v, v) \), \(b = \mathfrak{b}(v, w) \) and \(c = \mathfrak{b}(w, w) \).

As \(\mathfrak{b} \) is anisotropic, we have \(w \neq 0 \), i.e., \(c \neq 0 \). Suppose first that \(v = sw \) for some \(s \in F \). Then \(0 = a + b + cd = c(s^2 + s + d) \), hence \(d = s^2 + s \in \text{Im } \varphi \).

Now suppose that \(v \) and \(w \) generate a 2-dimensional subspace \(W \) of \(V_6 \). The determinant of \(\mathfrak{b}|_W \) is equal to \(xF^{x^2} \) where \(x = b^2 + bc + c^2d \). Hence \(\mathfrak{b}|_W \simeq c\langle \langle x \rangle \rangle \) by Example 1.11. As \(c \in D(\mathfrak{b}) = G(\mathfrak{b}) \) by Corollary 9.24 the form \(\langle \langle x \rangle \rangle \) is isomorphic to a subform of \(\mathfrak{b} \). By the Bilinear Witt Cancellation Theorem 1.29 we have \(\langle x \rangle \) is a subform of \(\mathfrak{b}' \), i.e., \(x \in D(\mathfrak{b}') \). Hence \((b/c)^2 + (b/c) + d = x/c^2 \in D(\mathfrak{b}') \) and therefore \(d \in \text{Im } \varphi + D(\mathfrak{b}') \).

Conversely, let \(d = x + y \) where \(x \in \text{Im } \varphi \) and \(y \in \overline{D}(\mathfrak{b}') \). If \(y = 0 \) then \(\langle \langle d \rangle \rangle \) is hyperbolic hence so is \(\mathfrak{b} \otimes \langle \langle d \rangle \rangle \). So suppose that \(y \neq 0 \). By Lemma 6.11 there is a bilinear Pfister form \(\mathfrak{c} \) such that \(\mathfrak{b} \simeq \mathfrak{c} \otimes \langle \langle y \rangle \rangle \). Therefore \(\mathfrak{b} \otimes \langle \langle d \rangle \rangle \simeq \mathfrak{c} \otimes \langle \langle y, d \rangle \rangle \) is hyperbolic as \(\langle \langle y, d \rangle \rangle \simeq \langle \langle y, y \rangle \rangle \) by Example 9.7.4 which is hyperbolic.

Theorem 9.13. Let \(\varphi \) be anisotropic quadratic Pfister form. Then \(\text{ann}_{W(F)}(\varphi) \) is generated by binary symmetric bilinear forms \(\langle \langle x \rangle \rangle_b \) with \(x \in D(\varphi) \).

As in the bilinear case, if \(\varphi \) is 2-dimensional, we obtain stronger results. Indeed the same proof yielding Proposition 6.22 and Corollary 6.23 shows:

Lemma 9.14. (Cf. Lemma 6.24) Let \(\varphi \) be a binary anisotropic quadratic form over \(F \) and \(\mathfrak{c} \) an anisotropic bilinear form over \(F \) such that \(\mathfrak{c} \otimes \varphi \) is isotropic. Then \(\mathfrak{c} \simeq \mathfrak{d} \perp \mathfrak{c} \) for some binary bilinear form \(\mathfrak{d} \) annihilated by \(\varphi \) and bilinear form \(\mathfrak{c} \) over \(F \).

Proposition 9.15. (Cf. Proposition 6.25) Let \(\varphi \) be a binary anisotropic quadratic form over \(F \) and \(\mathfrak{c} \) an anisotropic bilinear form over \(F \). Then there exist bilinears \(\mathfrak{c}_1 \) and \(\mathfrak{c}_2 \) over \(F \) such that \(\mathfrak{c} \simeq \mathfrak{c}_1 \perp \mathfrak{c}_2 \) and \(\mathfrak{c}_2 \otimes \varphi \) anisotropic and \(\mathfrak{c}_1 \simeq \mathfrak{d}_1 \perp \cdots \perp \mathfrak{d}_n \).
where each d_i is a binary bilinear form annihilated by φ. In particular, $-\det d_i \in D(\varphi)$ for each i.

Corollary 9.16. (Cf. Corollary [6.26]) Let φ be a binary anisotropic quadratic form over F and c an anisotropic bilinear form over F annihilated by b. Then $c \simeq d_1 \perp \cdots \perp d_n$ for some binary bilinear forms d_i annihilated by b for $1 \leq i \leq n$.

10. Totally Singular Forms

Totally singular forms in characteristic different from two are zero forms but in characteristic two they become interesting. In this section, we look at totally singular forms in characteristic two. In particular, throughout most of this section, char $F = 2$.

Let char $F = 2$. Let φ be a quadratic form over F. Then φ is totally singular form if and only if it is diagonalizable. Moreover, if this is the case, then every basis of V_φ is orthogonal by Remark [7.25]. In particular, $\tilde{D}(\varphi)$ is a vector space over the field F^2.

We investigate the F-subspace $(\tilde{D}(\varphi))^{1/2}$ of $F^{1/2}$. Define an F-linear map

$$f : V_\varphi \to (\tilde{D}(\varphi))^{1/2} \text{ given by } f(v) = \sqrt{\varphi(v)}.$$

Then f is surjective and $\ker(f) = \text{rad} \varphi$. Let $\tilde{\varphi}$ be the quadratic form on $(\tilde{D}(\varphi))^{1/2}$ over F defined by $\tilde{\varphi}(\sqrt{a}) = a$. Clearly $\tilde{\varphi}$ is anisotropic. Consequently, if φ is the quadratic form induced on $V_\varphi/\text{rad} \varphi$ by φ then f induces an isometry between $\tilde{\varphi}$ and φ. Moreover $\tilde{\varphi} \simeq \varphi_{an}$. Therefore, if char $F = 2$, the correspondence $\varphi \mapsto \tilde{D}(\varphi)$ gives rise to a bijection

| Isometry classes of totally singular anisotropic quadratic forms | \sim | Finite dimensional F^2-subspaces of F |

Moreover, for any totally singular quadratic form φ, we have

$$\dim \varphi_{an} = \dim \tilde{D}(\varphi)$$

and if φ and ψ are two totally singular quadratic forms then

$$\varphi \simeq \psi \quad \text{if and only if} \quad D(\varphi) = D(\psi) \quad \text{and} \quad \dim \varphi = \dim \psi.$$

We also have $\tilde{D}(\varphi \perp \psi) = \tilde{D}(\varphi) + \tilde{D}(\psi)$.

Example 10.1. If F is a separably closed field of characteristic two, the anisotropic quadratic forms are diagonalizable hence totally singular.

Note that if b is an alternating bilinear form and ψ is a totally singular quadratic form then $b \otimes \psi = 0$. It follows that the tensor product of totally singular quadratic forms $\varphi \otimes \psi := c \otimes \psi$ is well-defined where c is a bilinear form with $\varphi = \varphi_c$. The space $\tilde{D}(\varphi \otimes \psi)$ is spanned by $D(\varphi) \cdot D(\psi)$ over F^2.

Proposition 10.2. Let char $F = 2$. If φ is a totally singular quadratic form then

$$G(\varphi) = \{ a \in F^\times \mid aD(\varphi) \subset D(\varphi) \}.$$
Proof. The inclusion ”⊂” follows from Lemma 9.2. Conversely, let \(a \in F^\times \) satisfy \(aD(\varphi) \subset D(\varphi) \). Then the \(F \)-linear map \(g : (\tilde{D}(\varphi))^{1/2} \to (\tilde{D}(\varphi))^{1/2} \) defined by \(g(b) = \sqrt{a}b \) is an isometry between \(\tilde{\varphi} \) and \(a\tilde{\varphi} \). Therefore \(a \in G(\tilde{\varphi}) = G(\varphi) \). \(\square \)

It follows from Proposition 10.2 that \(\tilde{G}(\varphi) := G(\varphi) \cup \{0\} \) is a subfield of \(F \) containing \(F^2 \) and \(\tilde{D}(\varphi) \) is a vector space over \(\tilde{G}(\varphi) \).

It is also convenient to introduce a variant of the notion of Pfister forms in all characteristics. A quadratic form \(\varphi \) is called a quasi-Pfister form if there exists a bilinear Pfister form \(b \) with \(\varphi = \varphi_b \), i.e.,

\[\varphi = \langle \langle a_1, \ldots, a_n \rangle_b \otimes \langle 1 \rangle_q \text{ denoted by } \langle \langle a_1, \ldots, a_n \rangle_q. \]

for some \(a_1, \ldots, a_n \in F^\times \). If char \(F \neq 2 \) then the classes of quadratic Pfister and quasi-Pfister forms coincide. If char \(F = 2 \) every quasi-Pfister form is totally singular. Quasi-Pfister forms have some properties similar to those for quadratic Pfister forms.

Corollary 10.3. Quasi-Pfister forms are round.

Proof. Let \(b \) be a bilinear Pfister form. As \(\langle 1 \rangle_q \) is a round quadratic form the form \(b \otimes \langle 1 \rangle_q \) is round by Proposition 9.9. \(\square \)

Remark 10.4. Let char \(F = 2 \). Let \(\rho = \langle \langle a_1, \ldots, a_n \rangle_q \) be an anisotropic quasi-Pfister form. Then \(\tilde{D}(\rho) \) is equal to the field \(F^2(a_1, \ldots, a_n) \) of degree \(2^n \) over \(F^2 \). Conversely every field \(K \) such that \(F^2 \subset K \subset F \) with \([K : F^2] = 2^n \) is generated by \(n \) elements and therefore \(K = \tilde{D}(\rho) \) for an anisotropic \(n \)-fold quasi-Pfister form \(\rho \). Thus we get a bijection

\[
\begin{array}{|c|c|}
\hline
\text{Isometry classes of anisotropic} & \text{Fields } K \text{ with } F^2 \subset K \subset F \\
\text{n-fold quasi-Pfister forms} & \text{and } [K : F^2] = 2^n \\
\hline
\end{array}
\]

Let \(\varphi \) be an anisotropic totally singular quadratic form. Then \(K = \tilde{G}(\varphi) \) is a field with \(K \cdot \tilde{D}(\varphi) \subset \tilde{D}(\varphi) \). We have \([K : F^2] < \infty \) and \(\tilde{D}(\varphi) \) is a vector space over \(K \). Let \(b_1, \ldots, b_m \) be a basis of \(\tilde{D}(\varphi) \) over \(K \) and set \(\psi = \langle b_1, \ldots, b_m \rangle_q \). Choose an anisotropic \(n \)-fold quasi-Pfister form \(\rho \) such that \(\tilde{D}(\rho) = \tilde{G}(\varphi) \). As \(\tilde{D}(\varphi) \) is the vector space spanned by \(K \cdot D(\psi) \) over \(F^2 \) we have \(\varphi \simeq \rho \otimes \psi \). In fact, \(\rho \) is the largest quasi-Pfister divisor of \(\varphi \).

11. The Clifford Algebra

To each quadratic form \(\varphi \) one associates a \(\mathbb{Z}/2\mathbb{Z} \)-graded algebra by factoring the tensor algebra on \(V_\varphi \) by the relation \(\varphi(v) = v^2 \). This algebra, called the Clifford Algebra generalizes the exterior algebra. In this section, we study the basic properties of Clifford algebras.

Let \(\varphi \) be a quadratic form on \(V \) over \(F \). Define the Clifford algebra of \(\varphi \) to be the factor algebra \(C(\varphi) \) of the tensor algebra \(T(V) = \bigoplus_{n \geq 0} V^\otimes n \) modulo the ideal \(I \) generated by \((v \otimes v) - \varphi(v) \) for all \(v \in V \). We shall view vectors in \(V \) as elements of \(C(\varphi) \) via the
natural F-linear map $V \to C(\varphi)$. Note that $v^2 = \varphi(v)$ in $C(\varphi)$ for every $v \in V$. The Clifford algebra of φ has a natural $\mathbb{Z}/2\mathbb{Z}$-grading

$$C(\varphi) = C_0(\varphi) \oplus C_1(\varphi)$$

as I is homogeneous if degree is viewed modulo two. The subalgebra $C_0(\varphi)$ is called the even Clifford algebra of φ. We have $\dim C(\varphi) = 2^{\dim \varphi}$ and $\dim C_0(\varphi) = 2^{\dim \varphi - 1}$. If K/F is a field extension $C(\varphi_K) = C(\varphi)_K$ and $C_0(\varphi_K) = C_0(\varphi)_K$.

Lemma 11.1. Let φ be a quadratic form on V over F with polar form b. Let $v, w \in V$. Then $b(v, w) = vw + vw$ in $C(\varphi)$. In particular, v and w are orthogonal if and only if $vw = -wv$ in $C(\varphi)$.

Proof. This follows from the polar identity. \hfill \Box

Example 11.2. (1) The Clifford algebra of the zero quadratic form on V coincides with the exterior algebra $\bigwedge V$.

(2) $C_0([a]) = F$.

(3) If char $F \neq 2$ then the Clifford algebra of the quadratic form $\langle a, b \rangle$ is $C([a, b]) = \begin{pmatrix} a, b \\ F \end{pmatrix}$ and $C_0([a, b]) = F_{-ab}$. In particular, $C_0([\langle b \rangle]) = F_b$.

(4) If char $F = 2$ then $C([a, b]) = \begin{pmatrix} a, b \\ F \end{pmatrix}$ and $C_0([a, b]) = F_{ab}$. In particular, $C_0([\langle b \rangle]) = F_b$.

By the construction, the Clifford algebra satisfies the following universal property:

For any F-algebra A and any F-linear map $f : V \to A$ satisfying $f(v)^2 = \varphi(v)$ for all $v \in V$, there exists a unique F-algebra homomorphism $\tilde{f} : C(\varphi) \to A$ such that $\tilde{f}(v) = f(v)$ for all $v \in V$.

Example 11.3. Let $C(\varphi)^{op}$ denote the Clifford algebra of φ with the opposite multiplication. The canonical linear map $V \to C(\varphi)^{op}$ extends to an involution $- : C(\varphi) \to C(\varphi)$ given by the algebra isomorphism $C(\varphi) \to C(\varphi)^{op}$. Note that if $x = v_1v_2\cdots v_n$ then $\tilde{x} = v_n\cdots v_2v_1$.

Proposition 11.4. Let φ be a quadratic form on V over F and let $a \in F^\times$. Then

(1) $C_0(a\varphi) \simeq C_0(\varphi)$, i.e., the even Clifford algebras of similar quadratic forms are isomorphic.

(2) Let $\varphi = \langle a \rangle \perp \psi$. Then $C_0(\varphi) \simeq C(-a\psi)$.

Proof. (1). Set $K = F[t]/(t^2 - a) = F \oplus F\bar{t}$. Since $(v \otimes \bar{t})^2 = \varphi(v) \otimes \bar{t}^2 = a\varphi(v) \otimes 1$ in $C(\varphi)_K = C(\varphi) \otimes_F K$, there is an F-algebra homomorphism $\alpha : C(a\varphi) \to C(\varphi)_K$ taking $v \in V$ to $v \otimes \bar{t}$ by the universal property of the Clifford algebra $a\varphi$. Since

$$(v \otimes \bar{t})(v' \otimes \bar{t}) = vv' \otimes \bar{t}^2 = avv' \otimes 1 \in C(\varphi) \subset C(\varphi)_K,$$

the map α restricts to an F-algebra homomorphism $C_0(a\varphi) \to C_0(\varphi)$. As this map is clearly a surjective map of algebras of the same dimension, it is an isomorphism.

(2). Let $V = Fv \oplus W$ with $\varphi(v) = a$ and $W \subset (Fv)^\perp$. Since

$$(vw)^2 = -v^2w^2 = -\varphi(v)\psi(w) = -a\psi(w)$$

for every $w \in W$, the map $W \to C_0(\varphi)$ defined by $w \mapsto vw$ extends to an F-algebra isomorphism $C(-a\psi) \overset{\sim}{\to} C_0(\varphi)$ by the universal property of Clifford algebras. \hfill \Box

Let φ be a quadratic form on V over F. Applying the universal property of Clifford algebras to the natural linear map $V \to V/\rad b_\varphi \to C(\bar{\varphi})$, where $\bar{\varphi}$ is the induced quadratic form on $V/\rad b_\varphi$, we get a surjective F-algebra homomorphism $C(\varphi) \to C(\bar{\varphi})$ with kernel $\rad(b_\varphi)C(\varphi)$. Consequently, we get canonical isomorphisms

$$C(\bar{\varphi}) \cong C(\varphi)/\rad(b_\varphi)C(\varphi),$$

$$C_0(\varphi) \cong C_0(\varphi)/\rad(b_\varphi)C_1(\varphi).$$

Example 11.5. Let $\varphi = \mathcal{H}(W)$ be the hyperbolic form on the vector space $V = W \oplus W^*$. Then

$$C(\varphi) \cong \End_F(\bigwedge W),$$

where the exterior algebra $\bigwedge W$ of V is considered as a vector space (Cf. \[39\], Proposition 8.3). Moreover,

$$C_0(\varphi) = \End_F(\bigwedge_0 W) \times \End_F(\bigwedge_1 W),$$

where $\bigwedge_0 W = \bigoplus_{i \geq 0} \bigwedge^{2i} W$ and $\bigwedge_1 W = \bigoplus_{i \geq 0} \bigwedge^{2i+1} W$ with W a nonzero vector space. In particular, $C(\varphi)$ is a split central simple F-algebra and the center of $C_0(\varphi)$ is the split quadratic étale F-algebra $F \times F$. Note also that the natural F-linear map $V \to C(\varphi)$ is injective.

Proposition 11.6. Let φ be a quadratic form over F.

1. If $\dim \varphi \geq 2$ is even then the following conditions are equivalent:
 a. φ is non-degenerate.
 b. $C(\varphi)$ is central simple.
 c. $C_0(\varphi)$ is separable with center $Z(\varphi)$ a quadratic étale quadratic algebra.

2. If $\dim \varphi \geq 3$ is odd then the following conditions are equivalent:
 a. φ is non-degenerate.
 b. $C_0(\varphi)$ is central simple.

Proof. We may assume that F is algebraically closed. Suppose first that φ is non-degenerate and even dimensional. Then φ is hyperbolic, and by Example \[11.5\], the algebra $C(\varphi)$ is a central simple F-algebra and $C_0(\varphi)$ is a separable F-algebra whose center is the split quadratic étale F-algebra $F \times F$.

Conversely, suppose that the even Clifford algebra $C_0(\varphi)$ is separable or $C(\varphi)$ is central simple. The ideals $I = \rad(b_\varphi)C_1(\varphi)$ in $C_0(\varphi)$ and $J = \rad(b_\varphi)C(\varphi)$ in $C(\varphi)$ satisfy $I^2 = 0 = J^2$. Consequently, $I = 0$ or $J = 0$ as $C_0(\varphi)$ is semi-simple or $C(\varphi)$ is central simple and therefore $\rad(b_\varphi) = 0$. Thus φ is non-degenerate.

Now suppose that $\dim \varphi$ is odd. Write $\varphi = \langle a \rangle \perp \psi$ for some $a \in F$ and an even dimensional form ψ. Let $v \in V_\varphi$ be a nonzero vector satisfying $\varphi(v) = a$ and v is orthogonal to V_ψ. If φ is non-degenerate then $a \neq 0$ and ψ is non-degenerate. It follows from Proposition \[11.4\](2) and the first part of the proof that the algebra $C_0(\varphi) \cong C(-a\psi)$ is central simple.
Conversely, suppose that the algebra \(C_0(\varphi) \) is central simple. As \(\dim \varphi \geq 3 \), the subspace \(I := vC_1(\varphi) \) of \(C_0(\varphi) \) is nonzero. If \(a = 0 \) then \(I \) is a nontrivial ideal of \(C_0(\varphi) \), a contradiction to the simplicity of \(C_0(\varphi) \). Thus \(a \neq 0 \) and by Proposition 11.4(2), \(C_0(\varphi) \simeq C(-a\psi) \). Hence by the first part of the proof, the form \(\psi \) is non-degenerate. Therefore, \(\varphi \) is also non-degenerate.

Lemma 11.7. Let \(\varphi \) be a non-degenerate quadratic form of positive even dimension. Then \(yx = \bar{y}x \) for every \(x \in Z(\varphi) \) and \(y \in C_1(\varphi) \).

Proof. Let \(v \in V_\varphi \) be an anisotropic vector hence a unit in \(C(\varphi) \). Since conjugation by \(v \) on \(C(\varphi) \) stabilizes \(C_0(\varphi) \), it stabilizes the center of \(C_0(\varphi) \), i.e., \(vZ(\varphi)v^{-1} = Z(\varphi) \). As \(C(\varphi) \) is a central algebra, conjugation by \(v \) induces a nontrivial automorphism on \(Z(\varphi) \) given by \(x \mapsto \bar{x} \) otherwise \(C_1(\varphi) = C_0(\varphi)v \) and therefore the full algebra \(C(\varphi) \) would commute with \(Z(\varphi) \). Thus \(vx = \bar{v}x \) for all \(x \in Z(\varphi) \). Let \(y \in C_1(\varphi) \). Writing \(y \) in the form \(y = zv \) for some \(z \in C_0(\varphi) \), we have \(yx = zvx = \bar{z}vx = zxv = \bar{x}zy = yx \) for every \(x \in Z(\varphi) \).

Corollary 11.8. Let \(\varphi \) be a non-degenerate quadratic form of positive even dimension. If \(a \) is a norm for the quadratic étale algebra \(Z(\varphi) \) then \(C(a\varphi) \simeq C(\varphi) \).

Proof. Let \(x \in Z(\varphi) \) satisfy \(N(x) = a \). By Lemma 11.7 we have \((vx)^2 = N(x)v^2 = a\varphi(v) \) in \(C(\varphi) \) for every \(v \in V \). By the universal property of the Clifford algebra \(a\varphi \), there is an algebra homomorphism \(\alpha : C(a\varphi) \rightarrow C(\varphi) \) mapping \(v \) to \(vx \). Since both algebras are simple of the same dimension, \(\alpha \) is an isomorphism.

12. Binary Quadratic Forms and Quadratic Algebras

In the appendices §97.E and §97.B, we review the theory of quadratic and quaternion algebras. In this section, we study the relationship between these algebras and quadratic forms.

If \(A \) is a quadratic \(F \)-algebra, we let \(N_A \) denote the quadratic norm form of \(A \) (see Appendix §97.B). Note that \(N_A \) is a binary form representing 1.

Conversely, if \(\varphi \) is a binary quadratic form over \(F \) then the even Clifford algebra \(C_0(\varphi) \) is a quadratic \(F \)-algebra. We have defined two maps

\[
\begin{array}{ccc}
\text{Quadratic} & \rightarrow & \text{Binary quadratic} \\
\text{F-algebras} & \leftarrow & \text{forms representing 1}
\end{array}
\]

Proposition 12.1. The above two maps induce a bijection on the set of isomorphism classes of quadratic \(F \)-algebras and the set of isometry classes of binary quadratic forms representing one. Under this bijection, we have:

1. Quadratic étale algebras correspond to non-degenerate binary forms.
2. Quadratic fields correspond to anisotropic binary forms.
3. Semisimple algebras correspond to regular binary quadratic forms.

Proof. Let \(A \) be a quadratic \(F \)-algebra. We need to show that \(A \simeq C_0(N_A) \). We have \(C_1(N_A) = A \). Therefore, the map \(\alpha : A \rightarrow C_0(N_A) \) defined by \(x \mapsto 1 \cdot x \) (where dot denotes the product in the Clifford algebra) is an \(F \)-linear isomorphism. We shall show that \(\alpha \) is
Let \((\cdot x) \cdot (\cdot y) = 1 \cdot xy\) for all \(x, y \in A\). The equality holds if \(x \in F\) or \(y \in F\). Since \(A\) is 2-dimensional over \(F\), it is suffices to check the equality when \(x = y\) and it does not lie in \(F\). We have \(1 \cdot x + x \cdot 1 = N_A(x + 1) - N_A(x) - N_A(1) = \text{Tr}_A(x),\) so

\[(1 \cdot x) \cdot (1 \cdot x) = (1 \cdot x) \cdot (\text{Tr}_A(x) - x \cdot 1) = 1 \cdot \text{Tr}_A(x) - 1 \cdot N_A(x) = 1 \cdot x^2\]
as needed.

Conversely, let \(\varphi\) be a binary quadratic form on \(V\) representing 1. We shall show that the norm form for the quadratic \(F\)-algebra \(C_0(\varphi)\) is isometric to \(\varphi\). Let \(v_0 \in V\) be a vector satisfying \(\varphi(v_0) = 1\). Let \(f : V \rightarrow C_0(\varphi)\) be the \(F\)-linear isomorphism defined by \(f(v) = v \cdot v_0\). The quadratic equation \((97.2)\) for \(v \cdot v_0 \in C_0(\varphi)\) in Appendix §97.B becomes

\[(v \cdot v_0)^2 = v \cdot (b(v, v_0) - v \cdot v_0) \cdot v_0 = b(v, v_0)(v \cdot v_0) - \varphi(v)\]
so \(N_{C_0(\varphi)}(v \cdot v_0) = \varphi(v)\) hence

\[N_{C_0(\varphi)}(f(v)) = N_{C_0(\varphi)}(v \cdot v_0) = \varphi(v),\]
i.e., \(f\) is an isometry of \(\varphi\) with the norm form of \(C_0(\varphi)\) as needed.

In order to prove that quadratic étale algebras correspond to non-degenerate binary forms it is sufficient to assume that \(F\) is algebraically closed. Then a quadratic étale algebra \(A\) is isomorphic to \(F \times F\) and therefore \(N_A \simeq \mathbb{H}\). Conversely, by Example 11.5 \(C_0(\mathbb{H}) \simeq F \times F\).

If a quadratic \(F\)-algebra \(A\) is a field, then obviously the norm form \(N_A\) is anisotropic. Conversely, if \(N_A\) is anisotropic, then for every nonzero \(a \in A\) we have \(a\overline{a} = N_A(a) \neq 0\), therefore \(a\) is invertible, i.e., \(A\) is a field.

Statement (3) follows from Statements (1) and (2), since a quadratic \(F\)-algebra is semisimple if and only if it is either a field or \(F \times F\); and a binary quadratic form is regular if and only if it is anisotropic or hyperbolic.

Corollary 12.2.

1. Let \(A\) and \(B\) be quadratic \(F\)-algebras. Then \(A\) and \(B\) are isomorphic if and only if the norm forms \(N_A\) and \(N_B\) are isometric.

2. Let \(\varphi\) and \(\psi\) be nonzero binary quadratic forms. Then \(\varphi\) and \(\psi\) are similar if and only if the even Clifford algebras \(C_0(\varphi)\) and \(C_0(\psi)\) are isomorphic.

Corollary 12.3. Let \(\varphi\) be an anisotropic binary quadratic form and let \(K/F\) be a quadratic field extension. Then \(\varphi_K\) is isotropic if and only if \(K \simeq C_0(\varphi)\).

Proof. By Proposition 12.1 the form \(\varphi_K\) is isotropic if and only if the 2-dimensional even Clifford \(K\)-algebra \(C_0(\varphi_K) = C_0(\varphi) \otimes K\) is not a field. The latter is equivalent to \(K \simeq C_0(\varphi)\).

We now consider the relationship between quaternion and Clifford algebras.

Proposition 12.4. Let \(Q\) be a quaternion \(F\)-algebra and let \(\varphi\) be the reduced norm quadratic form of \(Q\). Then \(C(\varphi) \simeq \mathbb{M}_2(Q)\).
II. QUADRATIC FORMS

Proof. For every $x \in Q$, let m_x be the matrix $\begin{pmatrix} 0 & x \\ \bar{x} & 0 \end{pmatrix}$ in $M_2(Q)$. Since $m_x^2 = x\bar{x} = \text{Nrd}(x) = \varphi(x)$, the F-linear map $Q \to M_2(Q)$ defined by $x \mapsto m_x$ extends to an F-algebra homomorphism $\alpha : C(\varphi) \to M_2(Q)$ by the universal property of Clifford algebras. As $C(\varphi)$ is a central simple algebra of dimension $16 = \dim M_2(Q)$, the map α is an isomorphism.

Corollary 12.5. Two quaternion algebras are isomorphic if and only if their reduced norm quadratic forms are isomorphic. In particular, a quaternion algebra is split if and only if its reduced norm quadratic form is hyperbolic.

Exercise 12.6. Let Q be a quaternion F-algebra and let φ' be the restriction of the reduced norm quadratic form to the space Q' of pure quaternions. Prove that $C_0(\varphi')$ is isomorphic to Q.

13. The Discriminant

A major objective is to define sufficiently many invariants of quadratic forms. The first, and simplest such invariant is the dimension. In this section, using quadratic étale algebras, we introduce a second invariant, the discriminant, of a non-degenerate quadratic form.

Let φ be a non-degenerate quadratic form over F of positive even dimension. The center $Z(\varphi)$ of $C_0(\varphi)$ is a quadratic étale F-algebra. The class of $Z(\varphi)$ in $\text{Ét}_2(F)$, the group of isomorphisms classes of quadratic étale F-algebras (cf. Appendix §97.B), is called the discriminant of φ and will be denoted by $\text{disc}(\varphi)$. Define the discriminant of the zero form to be trivial.

Example 13.1. By Example 11.2, we have $\text{disc}((a, b)) = F_{-ab}$ if $\text{char } F \neq 2$ and $\text{disc}([a, b]) = F_{ab}$ if $\text{char } F = 2$. It follows from Example 11.5 that the discriminant of a hyperbolic form is trivial.

The discriminant is a complete invariant for the similarity class of a non-degenerate binary quadratic form, i.e.,

Proposition 13.2. Two non-degenerate binary quadratic forms are similar if and only if their discriminants are equal.

Proof. Let $\text{disc}(\varphi) = \text{disc}(\psi)$, i.e., $C_0(\varphi) \simeq C_0(\psi)$. Write $\varphi = a\varphi'$ and $\psi = b\psi'$, where φ' and ψ' both represent 1. By Proposition 12.1, the forms φ' and ψ' are the norm forms for $C_0(\varphi') = C_0(\varphi)$ and $C_0(\psi') = C_0(\psi)$ respectively. Since these algebras are isomorphic, we have $\varphi' \simeq \psi'$. \(\Box \)

Corollary 13.3. A non-degenerate binary quadratic form φ is hyperbolic if and only if $\text{disc}(\varphi)$ is trivial.

Lemma 13.4. Let φ and ψ be non-degenerate quadratic forms of even dimension over F. Then $\text{disc}(\varphi \perp \psi) = \text{disc}(\varphi) * \text{disc}(\psi)$.

13. THE DISCRIMINANT

Proof. The even Clifford algebra \(C_0(\varphi \perp \psi) \) coincides with \((C_0(\varphi) \otimes_F C_0(\psi)) \oplus (C_1(\varphi) \otimes_F C_1(\psi)) \) and contains \(Z(\varphi) \otimes_F Z(\psi) \). By Lemma 11.7, we have \(yx = xy \) for every \(x \in Z(\varphi) \) and \(y \in C_1(\varphi) \). Similarly, \(wz = zw \) for every \(z \in Z(\psi) \) and \(w \in C_1(\psi) \). Therefore, the center of \(C_0(\varphi \perp \psi) \) coincides with the subalgebra \(Z(\varphi) \times Z(\psi) \) of all stable elements of \(Z(\varphi) \otimes_F Z(\psi) \) under the automorphism \(x \otimes y \mapsto \bar{x} \otimes \bar{y} \).

Example 13.5. (1) Let \(\text{char} F \neq 2 \). Then

\[
\text{disc}(a_1, a_2, \ldots, a_{2n}) = F_c
\]

where \(c = (-1)^n a_1 a_2 \ldots a_{2n} \). For this reason, the discriminant is often called the \textit{signed determinant} when the characteristic of \(F \) is different from two.

(2) Let \(\text{char} F = 2 \). Then

\[
\text{disc}([a_1, b_1] \perp \cdots \perp [a_n, b_n]) = F_c
\]

where \(c = a_1 b_1 + \cdots + a_n b_n \). The discriminant in the characteristic two case is often called the \textit{Arf invariant}.

Proposition 13.6. If \(\text{disc} \phi = 1 \) and \(\phi \perp \langle a \rangle \sim \langle a \rangle \) for some \(a \in F^\times \), then \(\phi \sim 0 \).

Proof. By Proposition 8.8 we have \(\rho \sim [a, b] \) for some \(b \in F \). Therefore \(\text{disc}[a, b] \) is trivial and \([a, b] \sim 0\).

It follows from Lemma 13.4 and Example 11.5 that the map

\[
e_1 : I_q(F) \to \hat{\text{Et}}_2(F)
\]

taking a form \(\varphi \) to \(\text{disc}(\varphi) \) is a well-defined group homomorphism.

The analogue of Proposition 4.13 is true, viz.,

Theorem 13.7. The homomorphism \(e_1 \) is surjective with kernel \(I_q^2(F) \).

Proof. The surjectivity follows from Example 13.1. Since similar forms have isomorphic even Clifford algebras, for any \(\varphi \in I_q(F) \) and \(a \in F^\times \), we have \(e_1(\langle \langle -a \rangle \rangle \cdot \varphi) = e_1(\varphi) + e_1(-a \varphi) = 0 \). Therefore, \(e_1(I_q^2(F)) = 0 \).

Let \(\varphi \in I_q(F) \) be a form with trivial discriminant. We show by induction on \(\text{dim} \varphi \) that \(\varphi \in I_q^2(F) \). The case \(\text{dim} \varphi = 2 \) follows from Corollary 13.3. Suppose that \(\text{dim} \varphi \geq 4 \). Write \(\varphi = \rho \perp \psi \) with \(\rho \) a binary form. Let \(a \in F^\times \) be chosen so that the form \(\varphi' = a\rho \perp \psi \) is isotropic. Then the class of \(\varphi' \) in \(I_q(F) \) is represented by a form of dimension less than \(\text{dim} \varphi \). As \(\text{disc}(\varphi') = \text{disc}(\varphi) \) is trivial, \(\varphi' \in I_q^2(F) \) by induction. Since \(\rho \equiv a \rho \mod I_q^2(F), \varphi \) also lies in \(I_q^2(F) \).

Remark 13.8. One can also define a discriminant like invariant for all non-degenerate quadratic forms. Let \(\varphi \) be a non-degenerate quadratic form. Define the \textit{determinant} \(\det \varphi \) of \(\varphi \) to be \(\det b_\varphi \) in \(F^\times / F^\times 2 \) if the bilinear form \(b_\varphi \) is non-degenerate. If \(\text{char} F = 2 \) and \(\text{dim} \varphi \) is odd (the only remaining case), define \(\det \varphi \) to be \(a F^\times 2 \) in \(F^\times / F^\times 2 \) where \(a \in F^\times \) satisfies \(\varphi_{\text{trad}} \simeq \langle a \rangle \).

Remark 13.9. Let \(\varphi \) be a non-degenerate quadratic form with trivial discriminant over \(F \), i.e., \(\varphi \in I_q^2(F) \). Then \(Z(\varphi) \simeq F \times F \), in particular \(C(\varphi) \) is not a division algebra, i.e., \(C(\varphi) \simeq M_2(C^+(\varphi)) \) for a central simple \(F \)-algebra \(C^+(\varphi) \) uniquely determined up to isomorphism. Moreover, \(C_0(\varphi) \simeq C^+(\varphi) \times C^+(\varphi) \).
14. The Clifford Invariant

A more delicate invariant of a non-degenerate even dimensional quadratic form arises from its associated Clifford algebra.

Let \(\varphi \) be a non-degenerate even dimensional quadratic form over \(F \). The Clifford algebra \(C(\varphi) \) is then a central simple \(F \)-algebra. Denote by \(\text{clif}(\varphi) \) the class of \(C(\varphi) \) in the Brauer group \(\text{Br}(F) \). It follows from Example [11.3] that \(\text{clif}(\varphi) \in \text{Br}_2(F) \). We call \(\text{clif}(\varphi) \) the Clifford invariant of \(\varphi \).

Example 14.1. Let \(\varphi \) be the reduced norm form of a quaternion algebra \(Q \). It follows from Proposition [12.4] that \(\text{clif}(\varphi) = Q \).

Lemma 14.2. Let \(\varphi \) and \(\psi \) be two non-degenerate even dimensional quadratic forms over \(F \). If \(\text{disc}(\varphi) \) is trivial then \(\text{clif}(\varphi \perp \psi) = \text{clif}(\varphi) \cdot \text{clif}(\psi) \).

Proof. Let \(e \in Z(\varphi) \) be a nontrivial idempotent and set \(s = e - \bar{e} = 1 - 2e \). We have \(\bar{s} = -s \) and \(s^2 = 1 \) and \(vs = \bar{s}v = -sv \) for every \(v \in V_\varphi \) by Lemma [11.7]. Therefore, in the Clifford algebra of \(\varphi \perp \psi \), we have \((v \otimes 1 + s \otimes w)^2 = \varphi(v) + \psi(w) \) for all \(v \in V_\varphi \) and \(w \in V_\psi \). It follows from the universal property of the Clifford algebra that the \(F \)-linear map \(V_\varphi \oplus V_\psi \to C(\varphi) \otimes_F C(\psi) \) defined by \(v \oplus w \mapsto v \otimes 1 + s \otimes w \) extends to an \(F \)-algebra homomorphism \(C(\varphi \perp \psi) \to C(\varphi) \otimes_F C(\psi) \). This map is an isomorphism as the Clifford algebra of an even dimensional form is central simple. \(\square \)

Theorem 14.3. The map

\[e_2 : I^2_q(F) \to \text{Br}_2(F) \]

taking a form \(\varphi \) to \(\text{clif}(\varphi) \) is a well-defined group homomorphism. Moreover, \(I^2_q(F) \subset \ker e_2 \).

Proof. It follows from Lemma [14.2] that \(e_2 \) is well-defined. Next let \(\varphi \in I^2_q(F) \) and \(a \in F^\times \). Since \(\text{disc}(\varphi) \) is trivial, it follows from Corollary [11.8] that \(C(a\varphi) \simeq C(\varphi) \). Therefore, \(e_2(\langle \langle a \rangle \rangle \otimes \varphi) = e_2(\varphi) - e_2(a\varphi) = 0 \). \(\square \)

In §16 below, we shall in fact see that \(I^3_q(F) = \ker e_2 \).

15. Chain \(p \)-Equivalence of Quadratic Pfister Forms

We saw that bilinear Pfister forms were \(p \)-chain equivalent if and only if they were isometric. This equivalence relation was based on isometries of 2-fold Pfister forms. In this section, we prove the analogous result for quadratic Pfister forms. To begin we therefore need to establish isometries of quadratic 2-fold Pfister forms in characteristic two. This is given by the following:

Lemma 15.1. Let \(F \) be a field of characteristic 2. Then in \(I_q(F) \) we have

1. \(\langle \langle a, b + b' \rangle \rangle = \langle \langle a, b \rangle \rangle + \langle \langle a, b' \rangle \rangle \).
2. \(\langle \langle aa', b \rangle \rangle \equiv \langle \langle a, b \rangle \rangle + \langle \langle a', b \rangle \rangle \mod I^3_q(F) \).
3. \(\langle \langle a + x^2, b \rangle \rangle = \langle \langle a, ab \rangle \rangle \)

\(\frac{a + x^2}{a} \).
(4) \(\langle a + a', b \rangle \equiv \langle a, \frac{ab}{a + a'} \rangle + \langle a', \frac{ab}{a + a'} \rangle \mod I_q^3(F) \).

Proof. (1). This follows by Example [7.24].

(2). Follows from the equality \(\langle a \rangle + \langle a' \rangle = \langle aa' \rangle + \langle a, a' \rangle \) in the Witt ring of bilinear forms by Example [4.10].

(3). Let \(c = b/(a + x^2) \) and

\[
A = [a, c]_F \quad \text{and} \quad B = [a + x^2, c]_F.
\]

By Corollary [12.5], it is sufficient to prove that \(A \simeq B \). Let \(\{1, i, j, ij\} \) be the standard basis of \(A \), i.e., \(i^2 = a, \ j^2 = b \) and \(ij + ji = 1 \). Considering the new basis \(\{1, i + x, j, (i + x)j\} \) with \((i + x)^2 = a + x^2 \) shows that \(A \simeq B \).

(4). We have by (1)-(3):

\[
\langle a + a', b \rangle \equiv \langle \frac{a}{a'} + 1, b \rangle + \langle a', b \rangle = \langle \frac{a}{a'}, \frac{ab}{a + a'} \rangle + \langle a', b \rangle \equiv \langle a, \frac{ab}{a + a'} \rangle + \langle a', \frac{ab}{a + a'} \rangle. \]

The definition for quadratic Pfister forms is slightly more involved than that for bilinear Pfister forms.

Definition 15.2. Let \(a_1, \ldots, a_{n-1}, b_1, \ldots, b_{n-1} \in F^x \) and \(a_n, b_n \in F \) with \(n \geq 2 \). We assume that \(a_n \) and \(b_n \) are nonzero if \(\text{char} \, F \neq 2 \). We say that the quadratic Pfister forms \(\langle a_1, \ldots, a_{n-1}, a_n \rangle \) and \(\langle b_1, \ldots, b_{n-1}, b_n \rangle \) are *simply p-equivalent* if either \(n = 1 \) and \(\langle a_1 \rangle \simeq \langle b_1 \rangle \) or \(n \geq 2 \) and there exist \(i \) and \(j \) with \(1 \leq i < j \leq n \) satisfying

\[
(15.2a) \quad \langle a_i, a_j \rangle \simeq \langle b_i, b_j \rangle \quad \text{with} \quad j < n \quad \text{and} \quad a_l = b_l \quad \text{for all} \quad l \neq i, j \quad \text{or}
\]

\[
(15.2b) \quad \langle a_i, a_n \rangle \simeq \langle b_i, b_n \rangle \quad \text{with} \quad j = n \quad \text{and} \quad a_l = b_l \quad \text{for all} \quad l \neq i, j.
\]

We say that two quadratic \(n \)-fold Pfister forms \(\varphi \) and \(\psi \) are *chain p-equivalent* if there exist quadratic \(n \)-fold Pfister forms \(\varphi_0, \ldots, \varphi_m \) for some \(m \) such that \(\varphi = \varphi_0 \), \(\psi = \varphi_m \) and \(\varphi_i \) is simply \(p \)-equivalent to \(\varphi_{i+1} \) for each \(i = 0, \ldots, m-1 \).

Theorem 15.3. Let \(\varphi_1, \varphi_2 \) be anisotropic quadratic \(n \)-fold Pfister forms as in Definition [15.2]. Then \(\varphi_1 \simeq \varphi_2 \) if and only if \(\varphi_1 \simeq \varphi_2 \).

We shall prove this result in a series of steps. Suppose that \(\varphi_1 \simeq \varphi_2 \). The case \(\text{char} \, F \neq 2 \) was considered in Theorem [6.10], so we may also assume that \(\text{char} \, F = 2 \). As before the map \(\varphi: F \to F \) is defined by \(\varphi(x) = x^2 + x \) when \(\text{char} \, F = 2 \).

Lemma 15.4. Let \(\text{char} \, F = 2 \). If \(b \) is an anisotropic bilinear Pfister form and \(d_1, d_2 \in F \) then \(b \otimes \langle d_1 \rangle \simeq b \otimes \langle d_2 \rangle \) if and only if \(b \otimes \langle d_1 \rangle \approx b \otimes \langle d_2 \rangle \).

Proof. Assume that \(b \otimes \langle d_1 \rangle \approx b \otimes \langle d_2 \rangle \). Then the form

\[
b \otimes \langle d_1 + d_2 \rangle \sim b \otimes \langle d_1 \rangle \perp b \otimes \langle d_2 \rangle
\]
is hyperbolic. By Lemma 6.12, we have $d_1 + d_2 = x + y$ where $x \in \text{Im} \varphi$ and $y \in \tilde{D}(b')$. If $y = 0$ then $\langle \langle d_1 \rangle \rangle \simeq \langle \langle d_2 \rangle \rangle$ and we are done. So suppose that $y \neq 0$. By Lemma 6.11, there is a bilinear Pfister form c such that $b \simeq c \otimes \langle \langle y \rangle \rangle$. As $\langle \langle y, d_1 \rangle \rangle \simeq \langle \langle y, d_2 \rangle \rangle$, we have $b \otimes \langle \langle d_1 \rangle \rangle \simeq c \otimes \langle \langle y, d_1 \rangle \rangle \simeq c \otimes \langle \langle y, d_2 \rangle \rangle \simeq b \otimes \langle \langle d_2 \rangle \rangle$.

Lemma 15.5. Let $\text{char} F = 2$. Let ρ be a quadratic Pfister form. For every $a \in F^\times$ and $z \in D(\rho)$, we have $\langle \langle a \rangle \rangle \otimes \rho \simeq \langle \langle az \rangle \rangle \otimes \rho$.

Proof. We proceed by induction on $\dim \rho$. Write $\rho = \langle \langle b \rangle \rangle \otimes \eta$ for some $b \in F^\times$ and quadratic Pfister form η. We have $z = x + by$ with $x, y \in D(\eta)$. If $y = 0$ then $x = z \neq 0$ and by the induction hypothesis $\langle \langle a \rangle \rangle \otimes \eta \simeq \langle \langle az \rangle \rangle \otimes \eta$, hence

$$\langle \langle a \rangle \rangle \otimes \rho = \langle \langle a, b \rangle \rangle \otimes \eta \simeq \langle \langle az, b \rangle \rangle \otimes \eta \simeq \langle \langle az \rangle \rangle \otimes \rho.$$

If $x = 0$ then $z = by$ and by the induction hypothesis $\langle \langle a \rangle \rangle \otimes \eta \simeq \langle \langle ay \rangle \rangle \otimes \eta$, hence

$$\langle \langle a \rangle \rangle \otimes \rho = \langle \langle a, b \rangle \rangle \otimes \eta \simeq \langle \langle ay, b \rangle \rangle \otimes \eta \simeq \langle \langle az, b \rangle \rangle \otimes \eta \simeq \langle \langle az \rangle \rangle \otimes \rho.$$

Now suppose that both x and y are nonzero. As η is round, $xy \in D(\eta)$. By the induction hypothesis and Lemma 4.15,

$$\langle \langle a \rangle \rangle \otimes \rho = \langle \langle a, b \rangle \rangle \otimes \eta \simeq \langle \langle ax, aby \rangle \rangle \otimes \eta$$

$$\approx \langle \langle az, bxy \rangle \rangle \otimes \eta \simeq \langle \langle az, b \rangle \rangle \otimes \eta \approx \langle \langle az \rangle \rangle \otimes \rho. \quad \square$$

Lemma 15.6. Let $\text{char} F = 2$. Let b be a bilinear Pfister form, $\rho \in P_n(F)$, $n \geq 1$, and $c \in F^\times$. Suppose there exists an $x \in D(b)$ with $c + x \neq 0$ satisfying $b \otimes \langle \langle c + x \rangle \rangle \otimes \rho$ is anisotropic. Then there exists a quadratic Pfister form ψ with $b \otimes \langle \langle c + x \rangle \rangle \otimes \rho \simeq b \otimes \langle \langle c \rangle \rangle \otimes \psi$.

Proof. We proceed by induction on the dimension of b. Suppose $b = \langle \langle 1 \rangle \rangle$. Then $x = y^2$ for some $y \in F$. We may assume that $\rho = \langle \langle d \rangle \rangle$ for $d \in F$. It follows from Lemma 15.1 that $\langle \langle c + y^2, d \rangle \rangle \approx \langle \langle c, cd/(c + y^2) \rangle \rangle$ and we are done.

So we may assume that $\dim b > 1$. Write $b = c \otimes \langle \langle a \rangle \rangle$ for some $a \in F^\times$ and bilinear Pfister form c. We have $x = y + az$ where $y, z \in \tilde{D}(c)$. If $c = az$ then $c + x = y$ belongs to $D(b)$, so the form $b \otimes \langle \langle c + x \rangle \rangle$ would be metabolic contradicting hypothesis.

Let $d := c + az$. We have $d \neq 0$. By the induction hypothesis,

$$c \otimes \langle \langle d \rangle \rangle \otimes \rho \simeq c \otimes \langle \langle d \rangle \rangle \otimes \mu$$ and

$$c \otimes \langle \langle ac + a^2z \rangle \rangle \otimes \mu \approx c \otimes \langle \langle ac \rangle \rangle \otimes \psi$$

for some quadratic Pfister forms μ and ψ. Hence by Lemma 4.15,

$$b \otimes \langle \langle c + x \rangle \rangle \otimes \rho = b \otimes \langle \langle d \rangle \rangle \otimes \rho \simeq c \otimes \langle \langle a, d + y \rangle \rangle \otimes \rho$$

$$\approx c \otimes \langle \langle a, d \rangle \rangle \otimes \mu = c \otimes \langle \langle a, c + az \rangle \rangle \otimes \mu \approx c \otimes \langle \langle a, ac + a^2z \rangle \rangle \otimes \mu$$

$$\approx c \otimes \langle \langle ac \rangle \rangle \otimes \psi \approx c \otimes \langle \langle ac \rangle \rangle \otimes \psi = b \otimes \langle \langle c \rangle \rangle \otimes \psi. \quad \square$$

If b is a bilinear Pfister form over a field F then $b = b' \perp \langle \langle 1 \rangle \rangle$ with the pure subform b' unique up to isometry. For quadratic Pfister form over a field of characteristic two, the analogue of this is not true. So, in this case, we have to modify our notion of a pure subform of a quadratic Pfister form. So suppose that $\text{char} F = 2$. Let $\varphi = b \otimes \langle \langle d \rangle \rangle$ be a quadratic Pfister form. We have $\varphi = \langle \langle d \rangle \rangle \perp \varphi^\circ = b' \otimes \langle \langle d \rangle \rangle$. The form
\(\varphi^0 \) depends on the presentation of \(b \). Let \(\varphi' := \langle 1 \rangle \perp b' \otimes \langle \langle d \rangle \rangle \). This form coincides with the complementary form \(\langle 1 \rangle^\perp \) in \(\varphi \). The form \(\varphi' \) is uniquely determined by \(\varphi \) up to isometry. Indeed, by Witt Extension Theorem 8.3, for any two vectors \(v, w \in V_\varphi \) with \(\varphi(v) = \varphi(w) = 1 \) there is an auto-isometry \(\alpha \) of \(\varphi \) such that \(\alpha(v) = w \). Therefore the orthogonal complements of \(Fv \) and \(Fw \) are isometric. We call the form \(\varphi' \) the pure subform of \(\varphi \).

Proposition 15.7. Let \(\text{char} \, F = 2 \). Let \(\rho \in P_n(F) \), \(n \geq 2 \), and let \(b \) be a bilinear Pfister form and set \(\varphi = b \otimes \rho \). Suppose that \(\varphi \) is anisotropic. Let \(c \in D(b \otimes \rho') \setminus D(b) \) be a nonzero element. Then \(\varphi \approx b \otimes \langle \langle c \rangle \rangle \otimes \psi \) for some quadratic Pfister form \(\psi \).

Proof. We proceed by induction on \(\dim \rho \). Write \(\rho = \langle \langle a \rangle \rangle \otimes \eta \) for some \(a \in F^\times \) and quadratic Pfister form \(\eta \). Then

\[
\quad b \otimes \rho' = b \otimes \langle 1 \rangle \perp b \otimes \eta' \perp a b \otimes \eta.
\]

We have \(c = x + y + az \) with \(x \in \widetilde{D}(b) \), \(y \in \widetilde{D}(b \otimes \eta') \), and \(z \in \widetilde{D}(b \otimes \eta) \). Suppose first that \(x = 0 \).

If in addition \(z = 0 \) then \(c = y \in D(b \otimes \eta') \setminus D(b) \). By the induction hypothesis, \(b \otimes \eta \approx b \otimes \langle \langle c \rangle \rangle \otimes \mu \) for some quadratic Pfister form \(\mu \). Hence

\[
\varphi = b \otimes \rho = b \otimes \langle \langle a \rangle \rangle \otimes \eta \approx b \otimes \langle \langle c \rangle \rangle \otimes \langle \langle a \rangle \rangle \otimes \mu.
\]

Now suppose that \(z \neq 0 \). By Lemma [15.5]

\[
\varphi = b \otimes \rho = b \otimes \langle \langle a \rangle \rangle \otimes \eta \approx b \otimes \langle \langle az \rangle \rangle \otimes \eta.
\]

If \(y = 0 \) then \(az = c \) and we are done. Assume that \(y \neq 0 \). By the induction hypothesis, \(b \otimes \eta \approx b \otimes \langle \langle y \rangle \rangle \otimes \mu \) for some quadratic Pfister form \(\mu \). Therefore by Lemma [4.15]

\[
\varphi \approx b \otimes \langle \langle az \rangle \rangle \otimes \eta \approx b \otimes \langle \langle y, az \rangle \rangle \otimes \mu \approx b \otimes \langle \langle c, ayz \rangle \rangle \otimes \mu.
\]

Finally we assume that \(x \neq 0 \).

Applying the above consideration to \(c + x \) instead of \(c \) we get \(\varphi \approx b \otimes \langle \langle c + x, ayz \rangle \rangle \otimes \mu \). By Lemma [15.6], the latter form is chain equivalent to \(b \otimes \langle \langle c \rangle \rangle \otimes \psi \) for some quadratic Pfister form \(\psi \). \(\Box \)

Proof. (of Theorem 15.3) Let \(\varphi_1 \) and \(\varphi_2 \) be isometric anisotropic quadratic \(n \)-fold Pfister forms over \(F \). We must show that \(\varphi_1 \approx \varphi_2 \). We may assume that \(\text{char} \, F = 2 \).

Claim 15.8. For every \(r = 0, \ldots, n - 1 \) there exist a bilinear \(r \)-fold Pfister form \(b \) and quadratic \((n - r) \)-fold Pfister forms \(\rho_1 \) and \(\rho_2 \) such that \(\varphi_i \approx b \otimes \rho_i \), \(i = 1, 2 \).

We prove the claim by induction on \(r \). The case \(r = 0 \) is obvious. Suppose we have such \(b, \rho_1 \) and \(\rho_2 \) for some \(r < n - 1 \). Write \(\rho_1 = \langle \langle c \rangle \rangle \otimes \psi_1 \) for some \(c \in F^\times \) and quadratic Pfister form \(\psi_1 \) so \(\varphi_1 \approx b \otimes \langle \langle c \rangle \rangle \otimes \psi_1 \). Note that as \(\varphi_1 \) is anisotropic, we have \(c \in D(b \otimes \rho'_1) \setminus D(b) \).

The form \(b \otimes \langle 1 \rangle \) is isometric to subforms of \(\varphi_1 \) and \(\varphi_2 \). As \(\text{rad} \, b_{\varphi_i} = 0 \) for \(i = 1, 2 \), by the Witt Extension Theorem 8.3 an isometry between these subforms extends to an isometry between \(\varphi_1 \) and \(\varphi_2 \). This isometry induces an isometry of orthogonal complements \(b \otimes \rho'_1 \) and \(b \otimes \rho'_2 \). Therefore, we have \(c \in D(b \otimes \rho'_1) \setminus D(b) = D(b \otimes \rho'_2) \setminus D(b) \).
II. QUADRATIC FORMS

It follows from Proposition [15.7] that $\varphi_2 \approx b \otimes \langle\langle c\rangle\rangle \otimes \psi_2$ for some quadratic Pfister form ψ_2. Thus $\varphi_i \approx b \otimes \langle\langle c\rangle\rangle \otimes \psi_i$ for $i = 1, 2$ and the claim is established.

Applying the claim in the case $r = n - 1$, we find a bilinear $(n - 1)$-fold Pfister form b and elements $d_1, d_2 \in F$ such that $\varphi_i \approx b \otimes \langle\langle d_i\rangle\rangle$, $i = 1, 2$. By Lemma [15.4] we have $b \otimes \langle\langle d_1\rangle\rangle \approx b \otimes \langle\langle d_2\rangle\rangle$, hence $\varphi_1 \approx \varphi_2$. □

16. Cohomological Invariants

A major problem in the theory of quadratic forms was to determine the relationship between quadratic forms and Galois cohomology. In this section, using the cohomology groups defined in Appendix §100, we introduce the problem.

Let $H^*(F)$ be the groups defined in Appendix §100. In particular,

$$H^n(F) \simeq \begin{cases} \hat{\text{Et}}_2(F), & \text{if } n = 1. \\ Br_2(F), & \text{if } n = 2. \end{cases}$$

If $\varphi = \langle\langle a_1, \ldots, a_n\rangle\rangle$ define its class $e_n(\varphi)$ in $H^n(F)$ by

$$e_n(\varphi) = \{a_1, a_2, \ldots, a_{n-1}\} \cdot [F_c],$$

the cohomological invariant of $\langle\langle a_1, \ldots, a_n\rangle\rangle$ where $[F_c]$ is the class of the étale quadratic extension F_c/F in $\hat{\text{Et}}_2(F) \simeq H^1(F)$.

The cohomological invariant e_n is well-defined on quadratic n-fold Pfister forms.

Proposition 16.1. Let φ and ψ be n-fold Pfister forms. If $\varphi \simeq \psi$ then $e_n(\varphi) = e_n(\psi)$ in $H^n(F)$.

Proof. This follows from Theorems [6.20] and [15.3]. □

As in the bilinear case, if we use the Hauptsatz [23.8] below, we even have if

$$\varphi \equiv \psi \mod I_q^{n+1}(F) \quad \text{then} \quad e_n(\varphi) = e_n(\psi)$$

in $H^n(F)$. (Cf. Corollary [23.10] below). In fact, we shall also show by elementary means in Proposition [24.6] below that if φ_1, φ_2 and φ_3 are general quadratic n-fold Pfister forms such that $\varphi_1 + \varphi_2 + \varphi_3 \in I_q^{n+1}(F)$ then $e_n(\varphi_1) + e_n(\varphi_2) + e_n(\varphi_3) = 0 \in H^n(F)$.

We call the extension of e_n to a group homomorphism $e_n : I_q^n(F) \rightarrow H^n(F)$ the nth cohomological invariant of $I_q^n(F)$.

Fact 16.2. The nth cohomological invariant e_n exists for all fields F and for all $n \geq 1$. Moreover, $\ker e_n = I_q^{n+1}(F)$. Equivalently, there is a unique isomorphism

$$\overline{e}_n : I_q^n(F)/I_q^{n+1}(F) \rightarrow H^n(F)$$

satisfying $\overline{e}_n(\varphi + I_q^{n+1}(F)) = e_n(\varphi)$ for every n-fold Pfister quadratic form φ.
Special cases of Fact 16.2 can be proven by elementary methods. Indeed we have already shown that the invariant \(e_1 \) is well-defined on all of \(I_q(F) \) and coincides with the discriminant in Theorem 13.7 and \(e_2 \) is well-defined on all of \(I_q^2(F) \) and coincides with the Clifford invariant by Theorem 14.3. Then by Theorems 13.7 and 14.3 the maps \(\bar{e}_1 \) and \(\bar{e}_2 \) are well-defined.

Suppose that \(\text{char } F \neq 2 \). Then the identification of bilinear and quadratic forms leads to the composition
\[
h_F^n : K_n(F)/2K_n(F) \xrightarrow{i} I^n(F)/I^{n+1}(F) = I_q^n(F)/I_q^{n+1}(F) \xrightarrow{\bar{e}_n} H^n(F),
\]
where \(h_F^n \) is the norm residue homomorphism of degree \(n \) defined in Appendix §100.

Voevodsky proved in [60] that \(h_F^n \) is an isomorphism and as was stated in Fact 5.15 the map \(f_n \) is an isomorphism for all \(n \). In particular, \(e_n \) is well-defined and \(\bar{e}_n \) is an isomorphism for all \(n \).

If \(\text{char } F = 2 \), Kato proved Fact 16.2 in [35].

We have proven that \(\bar{e}_1 \) is an isomorphism in Theorem 13.7. We shall prove that \(h_F^2 \) is an isomorphism in Chapter VIII below if the characteristic of \(F \) is different from two. It follows that \(\bar{e}_2 \) is an isomorphism. We now turn to the proof that \(\bar{e}_2 \) is an isomorphism if \(\text{char } F = 2 \).

Theorem 16.3. Let \(\text{char } F = 2 \). Then \(\bar{e}_2 : I_q^2(F)/I_q^3(F) \to \text{Br}_2(F) \) is an isomorphism.

Proof. The classes of quaternion algebras generate the group \(\text{Br}_2(F) \) by [1, Ch. VII, Th. 30]. It follows that \(\bar{e}_2 \) is surjective. So we need only show that \(\bar{e}_2 \) is injective.

Let \(\alpha \in I_q^2(F) \) satisfy \(e_2(\alpha) = 0 \). Write \(\alpha \) in the form \(\sum_{i=1}^n d_i \langle \langle a_i, b_i \rangle \rangle \). By assumption, the sum of all \(\left[\frac{a_i, c_i}{F} \right] \), where \(c_i = b_i/a_i \), in \(\text{Br } F \) is trivial.

We prove by induction on \(n \) that \(\alpha \in I_q^3(F) \). If \(n = 1 \), we have \(\alpha = \langle \langle a_1, b_1 \rangle \rangle \) and \(e_2(\alpha) = \left[\frac{a_1, c_1}{F} \right] = 0 \). Therefore the reduced norm form \(\alpha \) of the split quaternion algebra \(\left[\frac{a_1, c_1}{F} \right] \) is hyperbolic by Corollary 12.5 hence \(\alpha = 0 \).

In the general case, let \(L = F(a_1^{1/2}, \ldots, a_n^{1/2}) \). The field \(L \) splits \(\left[\frac{a_i, c_i}{F} \right] \) for all \(i = 1, \ldots, n - 1 \) and hence splits \(\left[\frac{a_n, c_n}{F} \right] \). By Lemma 97.16, \(\left[\frac{a_n, c_n}{F} \right] = \left[\frac{c, d}{F} \right] \), where \(c \) is the square of an element of \(L \), i.e., \(c \) is the sum of elements of the form \(g^2m \) where \(g \in F \) and \(m \) is a monomial in the \(a_i \), \(i = 1, \ldots, n - 1 \). It follows from Corollary 12.5 that \(\langle \langle a_m, b_n \rangle \rangle = \langle \langle c, d \rangle \rangle \). By Lemma 15.1 \(\langle \langle c, d \rangle \rangle \) is congruent modulo \(I_q^2(F) \) to the sum of 2-fold Pfister forms \(\langle \langle a_i, f_i \rangle \rangle \) with \(i = 1, \ldots, n - 1, f_i \in F \). Therefore we may assume that \(\alpha = \sum_{i=1}^{n-1} \langle \langle a_i, b_i' \rangle \rangle \) for some \(b_i' \). By the induction hypothesis, \(\alpha \in I_q^3(F) \). \(\square \)
CHAPTER III

Forms over Rational Function Fields

17. The Cassels-Pfister Theorem

Given a quadratic form \(\varphi \) over a field over \(F \), it is natural to consider values of the form \(\varphi(F(t)) \). The Cassels-Pfister Theorem shows that whenever \(\varphi \) represents a polynomial over \(F(t) \) then it already does so when viewed as a quadratic form over the polynomial ring \(F[t] \). This results in specialization theorems. As an \(n \)-dimensional quadratic form \(\psi \) can be viewed as a polynomial in \(F[T] := F[t_1, \ldots, t_n] \), one can also ask when is \(\psi(T) \) a value of \(\varphi_{F(T)} \)? If both the forms are anisotropic, we shall also show in this section the fundamental result that this is true if and only if \(\psi \) is a subform of \(\varphi \).

Computation 17.1. Let \(\varphi \) be an anisotropic quadratic form on \(V \) over \(F \) and \(\mathfrak{b} \) its polar form. Let \(v \) and \(u \) be two distinct vectors in \(V \) and set \(w = v - u \). Let \(\tau_w \) be the reflection with respect to \(w \) defined in Example 7.3. Then

1. \(\varphi(\tau_w(v)) = \varphi(v) \) as \(\tau_w \) is an isometry.
2. \(\tau_w(v) = u + \frac{\varphi(u) - \varphi(v)}{\varphi(w)} w \) as \(\mathfrak{b}_\varphi(v, w) = -\mathfrak{b}_\varphi(v, -w) = -\varphi(u) + \varphi(v) + \varphi(w) \) by definition.

Notation 17.2. If \(T = (t_1, \ldots, t_n) \) is a tuple of independent variables, let

\[
F[T] := F[t_1, \ldots, t_n] \quad \text{and} \quad F(T) := F(t_1, \ldots, t_n).
\]

If \(V \) is a finite dimensional vector space over \(F \), let

\[
V[T] := F[T] \otimes_F V \quad \text{and} \quad V(T) := V_{F(T)} := F(T) \otimes_F V.
\]

Note that \(V(T) \) is also the localization of \(V[T] \) at \(F[T] \setminus \{0\} \). In particular, if \(v \in V(T) \) then there exist \(w \in V[T] \) and nonzero \(f \in F[T] \) satisfying \(v = w/f \). For a single variable \(t \), we let \(V[t] := F[t] \otimes_F V \) and \(V(t) := V_{F(t)} := F(t) \otimes_F V \).

The following general form of the Classical Cassels-Pfister Theorem is true.

Theorem 17.3. (Cassels-Pfister Theorem) Let \(\varphi \) be a quadratic form on \(V \) and let \(h \in F[t] \cap D(\varphi_{F(t)}) \). Then there is \(w \in V[t] \) such that \(\varphi(w) = h \).

Proof. Suppose first that \(\varphi \) is anisotropic. Let \(v \in V(t) \) satisfy \(\varphi(v) = h \). There is a nonzero polynomial \(f \in F[t] \) such that \(fv \in V[t] \). Choose \(v \) and \(f \) so that \(\deg(f) \) is the smallest possible. It suffice to show that \(f \) is constant. Suppose \(\deg(f) > 0 \).

Using the analog of the Division Algorithm, we can divide the polynomial vector \(fv \) by \(f \) to get \(fv = fu + r \), where \(u, r \in V[t] \) and \(\deg(r) < \deg(f) \). If \(r = 0 \) then
We have \(\varphi(r) \neq 0 \) as \(\varphi \) is anisotropic. Set \(w = v - u = r/f \) and consider

\[
\tau_w(v) = u + \frac{\varphi(u) - h}{\varphi(r)/f} \tag{17.4}
\]
as in Computation \ref{computation:17.1} (2). We have \(\varphi(\tau_w(v)) = h \). We show that \(f' := \varphi(r)/f \) is a polynomial. As

\[
f^2h = \varphi(fv) = \varphi(fu + r) = f^2\varphi(u) + f\varphi(u, r) + \varphi(r),
\]
we see that \(\varphi(r) \) is divisible by \(f \). Equation \ref{equation:17.4} implies that \(f'\tau_w(v) \in V[t] \) and the definition of \(r \) yields

\[
\deg(f') = \deg(\varphi(r)) - \deg(f) < 2\deg(f) - \deg(f) = \deg(f),
\]
a contradiction to the minimality of \(\deg(f) \).

Now suppose that \(\varphi \) is isotropic. By Lemma \ref{lemma:7.13} we may assume that \(\rad \varphi = 0 \). In particular, a hyperbolic plane splits off as an orthogonal direct summand of \(\varphi \) by Lemma \ref{lemma:7.14}. Let \(e, e' \) be a hyperbolic pair for this hyperbolic plane. Then

\[
\varphi(he + e') = b_\varphi(he, e') = h \circ \varphi(e, e') = h.
\]

Corollary 17.5. Let \(b \) be a symmetric bilinear form on \(V \) and let \(h \in F[t] \cap D(\varphi_{F(t)}) \). Then there is \(v \in V[t] \) such that \(b(v, v) = h \).

Proof. Let \(\varphi \) be \(\varphi_b \), i.e., \(\varphi(v) = b(v, v) \) for all \(v \in V \). As \(D(\varphi) = D(b) \) by Lemma \ref{lemma:9.3}, the result follows from the Cassels-Pfister Theorem.

Corollary 17.6. Let \(f \in F[t] \) be a sum of \(n \) squares in \(F(t) \). Then \(f \) is a sum of \(n \) squares in \(F[t] \).

Corollary 17.7. (Substitution Principle) Let \(\varphi \) be a quadratic form over \(F \) and \(h \in D(\varphi_{F(T)}) \) with \(T = (t_1, \ldots, t_n) \). Suppose that \(h(x) \) is defined for \(x \in F^n \) and \(h(x) \neq 0 \) then \(h(x) \in D(\varphi) \).

Proof. As \(h(x) \) is defined, we can write \(h = f/g \) with \(f, g \in F[T] \) and \(g(x) \neq 0 \). Replacing \(h \) by \(g^2h \), we may assume that \(h \in F[T] \). Let \(T' = (t_1, \ldots, t_{n-1}) \) and \(x = (x_1, \ldots, x_n) \). By the theorem, there exists \(v(T', t_n) \in V(T'[t_n]) \) satisfying \(\varphi(v(T', t_n)) = h(T', t_n) \). Evaluating \(t_n \) at \(x_n \) shows that \(h(T', x_n) = \varphi(v(T', x_n)) \in D(\varphi_{F(T)}) \). The conclusion follows by induction on \(n \).

As above, we also deduce:

Corollary 17.8. (Bilinear Substitution Principle) Let \(b \) be a symmetric bilinear form over \(F \) and \(h \in D(b_{F(T)}) \) with \(T = (t_1, \ldots, t_n) \). Suppose that \(h(x) \) is defined for \(x \in F^n \) and \(h(x) \neq 0 \) then \(h(x) \in D(b) \).

We shall need the following slightly more general version of the Cassels-Pfister Theorem.

Proposition 17.9. Let \(\varphi \) be an anisotropic quadratic form on \(V \) and let \(s \in V \) and \(v \in V(t) \) satisfy \(\varphi(v) \in F[t] \) and \(b_\varphi(s, v) \in F[t] \). Then there is \(w \in V[t] \) such that \(\varphi(w) = \varphi(v) \) and \(b_\varphi(s, w) = b_\varphi(s, v) \).
Proof. It is sufficient to show the value $b_\phi(s,v)$ does not change when v is modified in the course of the proof of Theorem 17.3. Choose $v_0 \in V[t]$ satisfying $b_\phi(s,v_0) = b_\phi(s,v)$.

Let $f \in F[t]$ be a nonzero polynomial such that $fv \in V[t]$. As the remainder r on dividing fv and $fv - ft_0$ by f is the same and $fv - ft_0 \in (F(t)s)^\perp$, we have $r \in (F(t)s)^\perp$. Therefore, $b_\phi(s,\tau_0(v)) = b_\phi(s,v)$.

Lemma 17.10. Let ϕ be an anisotropic quadratic form and ρ a non-degenerate binary anisotropic quadratic form satisfying $\rho(t_1,t_2) + d \in D(\phi_{F(t_1,t_2)})$ for some $d \in F$. Then $\phi \simeq \rho \perp \mu$ for some form μ and $d \in \tilde{D}(\mu)$.

Proof. Let $\rho(t_1,t_2) = at_1^2 + bt_1t_2 + ct_2^2$. As $\rho(t_1,t_2) + d\rho_1^2$ is a value of ϕ over $F(t_1,t_2,t_3)$, there is a $u \in V = V_\phi$ such that $\phi(u) = a$ by the Substitution Principle 17.7. Applying the Cassels-Pfister Theorem 17.3 to the form $\phi_{F(t_2)}$, we find a $v \in V_{F(t_2)}[t_1]$ such that $\phi(v) = at_1^2 + bt_1t_2 + ct_2^2 + d$. Since ϕ is anisotropic, we have $\deg_t v \leq 1$, i.e., $v(t_1) = v_0 + v_1 t_1$ for some $v_0,v_1 \in V_{F(t_2)}$. Expanding we get

$$\phi(v_0) = a, \quad b(v_0,v_1) = bt_2, \quad \phi(v_1) = ct_2^2 + d,$$

where $b = b_\phi$. Clearly $v_0 \notin \text{rad}(b_{F(t_2)})$.

We claim that $u \notin \text{rad}(b)$. We may assume that $u \neq v_0$ and therefore

$$0 \neq \phi(u - v_0) = \phi(u) + \phi(v_0) - b(u,v_0) = b(u,u - v_0)$$

as $\phi_{F(t_2)}$ is anisotropic by Lemma 7.16 hence the claim.

By the Witt Extension Theorem 8.3, there is an isometry γ of $\phi_{F(t_2)}$ satisfying $\gamma(v_0) = u$. Replacing v_0 and v_1 by $u = \gamma(v_0)$ and $\gamma(v_1)$ respectively, we may assume that $v_0 \in V$.

Applying Proposition 17.9 to the vectors v_0 and v_1 we find $w \in V[t_2]$ such that $\phi(w) = ct_2^2 + d$ and $b(v_0,w) = bt_2$. In a similar fashion, we have $w = w_0 + w_1 t_2$ with $w_0,w_1 \in V$. Expanding, we have

$$\phi(v_0) = a, \quad b(v_0,w_1) = b, \quad \phi(w_1) = c, \quad \phi(w_0) = d, \quad b(v_0,w_0) = 0, \quad b(w_0,w_1) = 0.$$

It follows if W is the subspace generated by v_0 and w_1 then $\phi|_W \simeq \rho$ and $d \in \tilde{D}(\mu)$ where $\mu = \phi|_{W^\perp}$.

Corollary 17.11. Let ϕ and ψ be two anisotropic quadratic forms over F with $\dim \psi = n$. Let $T = (t_1, \ldots, t_n)$. Suppose that $\psi(T) \in D(\phi_{F(T)})$. If $\psi = \rho \perp \sigma$ with ρ a non-degenerate binary form and $T' = (t_3, \ldots, t_n)$ then $\phi \simeq \rho \perp \mu$ for some form μ and $\mu(T') \in \tilde{D}_{F(T')}(\phi_{F(T')})$.

Theorem 17.12. (Representation Theorem) Let ϕ and ψ be two anisotropic quadratic forms over F with $\dim \psi = n$. Let $T = (t_1, \ldots, t_n)$. Then the following are equivalent

1. $D(\psi_K) \subset D(\phi_K)$ for every field extension K/F.
2. $\psi(T) \in D(\phi_{F(T)})$.
3. ψ is isometric to a subform of ϕ.

In particular, if any of the above conditions hold then $\dim \psi \leq \dim \phi$.

We proceed by induction on n. The case $n = 1$ follows from the Substitution Principle [17.7]. Suppose that $n = 2$. Then we have $a_1 t^2 + a_2 \in D(\varphi_{F(t)})$. By the Cassels-Pfister Theorem, there is a $v \in V[t]$ where $V = V_{\varphi}$ satisfying $\varphi(v) = a_1 t^2 + a_2$. As φ is anisotropic, we have $v = v_1 + v_2 t$ for $v_1, v_2 \in V$ and therefore $\varphi(v_1) = a_1, \varphi(v_2) = a_2$ and $b(v_1, v_2) = 0$. The restriction of φ on the subspace spanned by v_1 and v_2 is isometric to ψ.

In the general case, set $T = (t_1, t_2, \ldots, t_n)$, $T' = (t_2, \ldots, t_n)$, $b = a_2 t^2 + \cdots + a_n t^2$. As $a_1 t^2 + b$ is a value of φ over $F(T')(t)$, by the case considered above there are vectors $v_1, v_2 \in V_{F(T')}$ satisfying

$$
\varphi(v_1) = a_1, \quad \varphi(v_2) = b \quad \text{and} \quad b(v_1, v_2) = 0.
$$

It follows from the Substitution Principle [17.7] that there is $w \in V$ such that $\varphi(w) = a_1$.

We claim that there is an isometry γ of φ over $F(T')$ such that $\varphi(v_1) = w$. We may assume that $w \neq v_1$ as $\varphi_{F(T')} = \varphi$ is anisotropic by Lemma [7.16]. We have

$$
0 \neq \varphi(w - v_1) = \varphi(w) + \varphi(v_1) - b(w,v_1) = b(w, w - v_1) = b(v_1 - w, v_1),
$$

therefore w and v_1 do not belong to $\text{rad } b$. The claim follows by the Witt Extension Theorem [8.3].

Replacing v_1 and v_2 by $\gamma(v_1) = w$ and $\gamma(v_2)$ respectively, we may assume that $v_1 \in V$. Set $W = (Fv_1)$. Note that $v_2 \in W_{F(T')}$, hence b is a value of $\varphi|_w$ over $F(T')$. By the induction hypothesis applied to the forms $\psi' = \langle a_2, \ldots, a_n \rangle$ and $\varphi|_w$, there is a subspace $V' \subset W$ such that $\varphi|_{V'} \simeq \langle a_2, \ldots, a_n \rangle$. Note that v_1 is orthogonal to V' and $v_1 \notin V'$ as ψ is anisotropic. Therefore the restriction of φ on the subspace $Fv_1 \oplus V'$ is isometric to ψ.

A field F is called formally real if -1 is not a sum of squares. In particular, $\text{char } F = 0$ if this is the case. (Cf. Appendix [994].)

Corollary 17.13. Suppose that F is formally real and $T = (t_1, \ldots, t_n)$. Then $t_0^2 + t_1^2 + \cdots + t_n^2$ is not a sum of n squares in $F(T)$.

Proof. If this is false then $t_0^2 + t_1^2 + \cdots + t_n^2 \in D(n\langle 1 \rangle)$. As $n + 1 \langle 1 \rangle$ is anisotropic, this contradicts the Representation Theorem.

The ideas above also allow us to develop a test for simultaneous zeros for quadratic forms.

Theorem 17.14. Let φ and ψ be two quadratic forms on a vector space V over F. Then the form $\varphi_{F(t)} + t\psi_{F(t)}$ on $V(t)$ over $F(t)$ is isotropic if and only if φ and ψ have a common isotropic vector in V.

Proof. Clearly, a common isotropic vector for φ and ψ is also an isotropic vector for $\rho := \varphi_{F(t)} + t\psi_{F(t)}$.

Conversely, let \(\varphi \) be anisotropic. There exists a nonzero \(v \in V[t] \) such that \(\varphi(v) = 0 \). Choose such a \(v \) of the smallest degree. We claim that \(\deg v = 0 \), i.e., \(v \in V \). If we show this, the equality \(\varphi(v) + t\psi(v) = 0 \) implies that \(v \) is a common isotropic vector for \(\varphi \) and \(\psi \).

Suppose \(n := \deg v > 0 \). Write \(v = w + t^n u \) with \(u \in V \) and \(w \in V[t] \) of degree less than \(n \). Note that by assumption \(\varphi(u) \neq 0 \). Consider the vector
\[
v' = \varphi(u) \cdot \tau_{n}(v) = \varphi(u)v - \varphi_{\rho}(v, u)u \in V[t].
\]
As \(\varphi(v) = 0 \), we have \(\varphi(v') = 0 \). It follows from the equality
\[
\deg (\varphi(v')v - \varphi(v, w)w) = \deg (v - t^n u)v - \varphi_{\rho}(v, v - t^n u)(v - t^n u) = n\deg (\varphi(u)v - \varphi_{\rho}(v, u)u)
\]
that
\[
v' = \frac{\varphi(v')v - \varphi(v, w)w}{n\deg (\varphi(u)v - \varphi_{\rho}(v, u)u)}.
\]
Note that \(\deg \varphi(v) \leq 2n - 1 \) and \(\deg \varphi_{\rho}(v, w) \leq 2n \). Therefore \(\deg v' < n \), a contradiction with the minimality of \(n \).

18. Values of Forms

Let \(\varphi \) be an anisotropic quadratic form over \(F \). Let \(p \in F[T] := F[t_1, \ldots, t_n] \) be irreducible and \(F(p) \) the quotient field of \(F[T]/(p) \). In this section, we determine what it means for \(\varphi_{F(p)} \) to be isotropic. This result has consequences for finite extensions \(K/F \). In particular, the classical Springer’s Theorem that forms remain anisotropic under odd degree extensions follows as well as a norm principle about values of \(\varphi_K \).

Order the group \(\mathbb{Z}^n \) lexicographically, i.e., \((i_1, \ldots, i_n) < (j_1, \ldots, j_n) \) if for the first integer \(k \) satisfying \(i_k \neq j_k \) with \(1 \leq k \leq n \) we have \(i_k < j_k \). Let \(T = (t_1, \ldots, t_n) \). If \(i = (i_1, \ldots, i_n) \) in \(\mathbb{Z}^n \) and \(a \in F^\times \), write \(aT^i \) for \(at_1^{i_1} \cdots t_n^{i_n} \) and call \(i \) the degree of \(aT^i \). The term \(aT^i \) is called the leading term of \(f \). We define the degree \(\deg f \) of \(f \) to be \(i \), the degree of the leading term, and the leading coefficient \(f^* \) of \(f \) to be \(a \), the coefficient of the leading term. Let \(T_f \) denote \(T^i \) if \(i \) is the degree of the leading term of \(f \). Then \(f = f^*T_f + f' \) with \(\deg f' < \deg T_f \). For convenience, we view \(\deg 0 < \deg f \) for every nonzero \(f \in F[T] \).

Let \(V \) be a finite dimensional vector space over \(F \). For every nonzero \(v \in V[T] \) define the degree \(\deg v \), the leading vector \(v^* \), and the leading term \(v^*T_v \) in a similar fashion. Let \(\deg 0 < \deg v \) for any nonzero \(v \in V[T] \). So if \(v \in V[T] \) is nonzero, we have \(v = v^*T_v + v' \) with \(\deg v' < \deg T_v \).

Lemma 18.1. Let \(\varphi \) be a quadratic form on \(V \) over \(F \) and \(g \in F[T] \). Suppose that \(g \in D(\varphi_{F(T)}) \). Then \(g^* \in D(\varphi) \). If, in addition, \(\varphi \) is anisotropic then \(\deg g \in 2\mathbb{Z}^n \).

Proof. Since \(\varphi \) on \(V \) and \(\varphi \) on \(V/\text{rad} \varphi \) have the same values, we may assume that \(\text{rad}(\varphi) = 0 \). In particular, if \(\varphi \) is isotropic it is universal so we may assume that \(\varphi \) anisotropic.
Let $g = \varphi(v)$ with $v \in V(T)$. Write $v = w/f$ with $w \in V[T]$ and nonzero $f \in F[T]$. Then $f^2g = \varphi(w)$. As $(f^2g)^* = (f^*)^2g^*$, we may assume that $v \in F[T]$. Let $v = v^*T_v + v'$ with $\deg v' < \deg v$. Then
\[
\begin{align*}
g &= \varphi(v^*T_v) + b_\varphi(v^*T_v, v') + \varphi(v') = \varphi(v^*)T_v^2 + b_\varphi(v^*, v')T_v + \varphi(v') \\
n &= \varphi(v^*)T_v^2 + \text{terms of lower degree}.
\end{align*}
\]
As φ is anisotropic, we must have $\varphi(v^*) \neq 0$, hence $g^* = \varphi(v^*) \in D(\varphi)$. As the leading term of g is $\varphi(v^*)T_v^2$, the second statement also follows.

Let $v \in V[T]$. Suppose that $f \in F[T]$ satisfies $\deg f > 0$. Let $T' = (t_2, \ldots, t_n)$. Viewing $v \in V(T')[t_1]$, the analog of the usual division algorithm produces an equation
\[
v = fw' + r' \quad \text{with} \quad w', r' \in V(T'[t_1]) \quad \text{and} \quad \deg r' < \deg f.
\]
Clearing denominators in $F[T']$, we get
\[
hv = fw + r
\]
(18.2) with $w, r \in V[T], \ 0 \neq h \in F[T']$ and $\deg r < \deg f$, so $\deg h < \deg f$, $\deg r < \deg f$.

If $p \in F[T]$ is irreducible, we write $F(p)$ for the quotient field of $F[T]/(p)$.

If φ is a quadratic form over F let $\langle D(\varphi) \rangle$ denote the subgroup in F^\times generated by $D(\varphi)$.

Theorem 18.3. (Quadratic Value Theorem) Let φ be an anisotropic quadratic form on V and let $f \in F[T]$ be a nonzero polynomial. Then the following conditions are equivalent:

1. $f^*f \in \langle D(\varphi_{F(T)}) \rangle$.
2. There exists an $a \in F^\times$ such that $af \in \langle D(\varphi_{F(T)}) \rangle$.
3. $\varphi_{F(p)}$ is isotropic for each irreducible divisor p occurring to an odd power in the factorization of f.

Proof. (1) \Rightarrow (2) is trivial.

(2) \Rightarrow (3). Let $af \in \langle D(\varphi_{F(T)}) \rangle$, i.e., there are $0 \neq h \in F[T]$ and $v_1, \ldots, v_m \in V[T]$ such that $ah^2f = \prod \varphi(v_i)$. Let p be an irreducible divisor of f to an odd power. Write $v_i = p^{k_i}v'_i$ so that v'_i is not divisible by p. Dividing out both sides by p^{2k}, where $k = \sum k_i$, we see that the product $\prod \varphi(v'_i)$ is divisible by p. Hence the residue of one of the $\varphi(v'_i)$ is trivial in the residue field $F(p)$ while the residue of v'_1 is not trivial. Therefore, $f_{F(p)}$ is isotropic.

(3) \Rightarrow (1). We proceed by induction on n and $\deg f$. The statement is obvious if $f = f^*$. In the general case, we may assume that f is irreducible. Therefore, by assumption $\varphi_{F(f)}$ is isotropic. In particular, we see that there exists a vector $v \in V_{\varphi[T]}$ such that $f \mid \varphi(v)$ and $f \not\mid v$. If $\deg f = 0$ let $T' = (t_2, \ldots, t_n)$ and let L denote the quotient field of $(F[T']/(f))$. Then $F(f) = L(t_1)$ so φ_L is isotropic by Lemma [7.16] and we are done by induction on
n. Therefore, we may assume that \(\deg_{q_i} f > 0 \). By (18.2), there exist \(0 \neq h \in F[T] \) and \(w, r \in V[T] \) such that \(hv = fw + r \) with \(\deg h < \deg f \) and \(\deg r < \deg f \). As
\[
\varphi(hv) = \varphi(fw + r) = f^2 \varphi(w) + f b \varphi(w, r) + \varphi(r),
\]
we have \(f \mid \varphi(r) \). If \(r = 0 \) then \(f \mid hv \). But \(f \) is irreducible and \(f \nmid v \) so \(f \mid h \). This is impossible as \(\deg h < \deg f \). Thus \(r \neq 0 \). Let \(\varphi(r) = fg \) for some \(g \in F[T] \). As \(\varphi \) is anisotropic \(g \neq 0 \). So we have \(fg \in D(\varphi_{F(T)}) \) hence also \((fg)^* = f^*g^* \in D(\varphi) \) by Lemma 18.1.

Let \(p \) be an irreducible divisor occurring to an odd power in the factorization of \(g \). As \(\deg \varphi(r) < 2 \deg f \), we have \(\deg g < \deg f \) hence \(p \) occurs with the same multiplicity in the factorization of \(fg \). By (2) \(\Rightarrow \) (3) applied to the polynomial \(fg \), the form \(\varphi_{F(p)} \) is isotropic. Hence the induction hypothesis implies that \(g^*g \in \langle D(\varphi_{F(T)}) \rangle \). Consequently, \(f^*f = f^2 \cdot (f^*g^*)^{-1} \cdot g^*g \cdot fg \cdot g^{-2} \in \langle D(\varphi_{F(T)}) \rangle \).

Theorem 18.4. (Bilinear Value Theorem) Let \(b \) be an anisotropic symmetric bilinear form on \(V \) and let \(f \in F[T] \) be a nonzero polynomial. Then the following conditions are equivalent:

1. \(f^*f \in \langle D(b_{F(T)}) \rangle \).
2. There exists an \(a \in F^\times \) such that \(af \in \langle D(b_{F(T)}) \rangle \).
3. \(b_{F(p)} \) is isotropic for each irreducible divisor \(p \) occurring to an odd power in the factorization of \(f \).

Proof. Let \(\varphi = \varphi_b \). As \(D(b_K) = D(\varphi_K) \) for every field extension \(K/F \) by Lemma 9.3 and \(b_K \) is isotropic if and only if \(\varphi_K \) is isotropic, the result follows by the Quadratic Value Theorem 18.3.

Corollary 18.5. (Springer’s Theorem) Let \(K/F \) be a finite extension of odd degree. Suppose that \(\varphi \) (respectively, \(b \)) is an anisotropic quadratic form (respectively, symmetric bilinear form) over \(F \). Then \(\varphi_K \) (respectively, \(b_K \)) is anisotropic.

Proof. By induction on \([K : F] \) we may assume that \(K = F(\theta) \) is a primitive extension. Let \(p \) be the minimal polynomial of \(\theta \) over \(F \). Suppose that \(\varphi_K \) is isotropic. Then \(ap \in \langle D(\varphi_{F(p)}) \rangle \) for some \(a \in F^\times \) by the Quadratic Value Theorem 18.3. It follows that \(p \) has even degree by Lemma 18.1. a contradiction. If \(b \) is a symmetric bilinear form over \(F \), applying the above to the quadratic form \(\varphi_b \) shows the theorem also holds in the bilinear case.

Corollary 18.6. If \(K/F \) is an extension of odd degree then \(r_{K/F} : W(F) \to W(K) \) and \(r_{K/F} : I_q(F) \to I_q(K) \) are injective.

Corollary 18.7. Let \(\varphi \) and \(\psi \) be two quadratic forms on a vector space \(V \) over \(F \) having no common isotropic vector in \(V \). Then for any field extension \(K/F \) of odd degree the forms \(\varphi_K \) and \(\psi_K \) have no common isotropic vector in \(V_K \).

Proof. This follows from Springer’s Theorem and Theorem 17.14.

Exercise 18.8. Let \(\text{char } F \neq 2 \) and \(K/F \) be a finite purely inseparable field extension. Then \(r_{K/F} : W(F) \to W(K) \) is an isomorphism.
COROLLARY 18.9. Let $K = F(\theta)$ be an algebraic extension of F and p the (monic) minimal polynomial of θ over F. Let φ be a regular quadratic form over F. Suppose that there exists a $c \in F$ such that $p(c) \notin \langle D(\varphi) \rangle$. Then φ_K is anisotropic.

PROOF. As rad $\varphi = 0$, if φ were isotropic it would be universal. Thus φ is anisotropic. In particular, p is not nilpotent hence $p(c) \neq 0$. Suppose that φ_K is isotropic. By the Quadratic Value Theorem [18.3], we have $p \in \langle D(\varphi_F(\theta)) \rangle$. By the Substitution Principle [17.7], we have $p(c) \in \langle D(\varphi) \rangle$ for all $c \in F$, a contradiction.

THEOREM 18.10. (Value Norm Principle) Let φ be a quadratic form over F and let K/F be a finite field extension. Then $N_{K/F}(D(\varphi_K)) \subset \langle D(\varphi) \rangle$.

PROOF. Let $V = V_\varphi$. Since the forms φ on V and φ on $V/\text{rad}(\varphi)$ have the same values, we may assume that rad$(\varphi) = 0$. If φ is isotropic then φ splits off a hyperbolic plane. In particular, φ is universal and the statement is obvious. Thus we may assume that φ is anisotropic. Moreover, we may assume that $\dim \varphi \geq 2$ and $1 \in D(\varphi)$.

Case 1. φ_K is isotropic:

Let $x \in D(\varphi_K)$. Suppose that $K = F(x)$. Let $p \in F[t]$ denote the (monic) minimal polynomial of x so $K = F(p)$. It follows from the Quadratic Value Theorem [18.3] that $p \in \langle D(\varphi_F(\theta)) \rangle$ and deg p is even. In particular, $N_{K/F}(x) = p(0)$ and by the Substitution Principle [17.7],

$$N_{K/F}(x) = p(0) \in \langle D(\varphi) \rangle.$$

If $F(x) \subset K$ let $m = [K : F(x)]$. If m is even then $N_{K/F}(x) \in F^{\times 2} \subset \langle D(\varphi) \rangle$. If m is odd then $\varphi_{F(x)}$ is isotropic by Springer’s Theorem [18.5]. Applying the above argument to the field extension $F(x)/F$ yields

$$N_{K/F}(x) = N_{F(x)/F}(x)^m \in \langle D(\varphi) \rangle$$

as needed.

Case 2. φ_K is anisotropic:

Let $x \in D(\varphi_K)$. Choose vectors $v, v_0 \in V_K$ such that $\varphi_K(v) = x$ and $\varphi_K(v_0) = 1$. Let $V' \subset V_K$ be a 2-dimensional subspace (over K) containing v and v_0. The restriction φ' of φ_K to V' is a binary anisotropic quadratic form over K representing x and 1. It follows from Proposition [12.1] that the even Clifford algebra $L = C_0(\varphi')$ is a quadratic field extension of K and $x = N_{L/K}(y)$ for some $y \in L^{\times}$. Moreover, since $C_0(\varphi') = C_0(\varphi') \otimes_K L = L \otimes_K L$ is not a field, by the same proposition, φ' and therefore φ is isotropic over L. Applying Case 1 to the field extension L/F yields

$$N_{K/F}(x) = N_{K/F}(N_{L/K}(y)) = N_{L/F}(y) \in \langle D(\varphi) \rangle.$$

\[\square \]

THEOREM 18.11. (Bilinear Value Norm Principle) Let b be a symmetric bilinear form over F and let K/F be a finite field extension. Then $N_{K/F}(D(b_K)) \subset \langle D(b) \rangle$.

PROOF. As $D(b_E) = D(\varphi_{b_E})$ for any field extension E/F, this follows from the quadratic version of the theorem. \[\square \]
19. Forms Over a Discrete Valuation Ring

We wish to look at similarity factors of bilinear and quadratic forms. To do so we need a few facts about such forms over a discrete valuation ring (DVR) which we now establish.

Throughout this section, R will be a DVR with quotient field K, residue field \bar{K}, and prime element π. If V is a free R-module of finite rank then the definition of a (symmetric) bilinear form and quadratic form on V is analogous to the field case. In particular, we can associate to every quadratic form its polar form $\phi : (v, w) \mapsto \varphi(v + w) - \varphi(v) - \varphi(w)$. Orthogonal complements are defined in the usual way. Orthogonal sums of bilinear (respectively, quadratic) forms are defined as in the field case. We use analogous notation as in the field case when clear. If $F \to R$ is a ring homomorphism and φ is a quadratic form over R, we let $\varphi_R = R \otimes_F \varphi$.

A bilinear form b on V is non-degenerate if $l : V \to \text{Hom}_R(V, R)$ defined by $v \mapsto l_v : w \mapsto b(v, w)$ is an isomorphism. As in the field case, we have the crucial

Proposition 19.1. Let R be a DVR. Let V be a free R-module of finite rank and W a submodule of V. If φ is a quadratic form on V with $b_\varphi|_W$ non-degenerate then $\varphi = \varphi|_W \perp \varphi|_{W^\perp}$.

Proof. As $b_\varphi|_W$ is non-degenerate, $W \cap W^\perp = \{0\}$ and if $v \in V$ there exists $w' \in W$ such that the linear map $W \to F$ by $w \mapsto b_\varphi(v, w)$ is given by $b_\varphi(v, w) = b_\varphi(w', w)$ for all $w \in W$. Consequently, $v = w + (v - w') \in W \oplus W^\perp$ and the result follows. \qed

Hyperbolic quadratic forms and planes are also defined in an analogous way. We let \mathbb{H} denote the quadratic hyperbolic plane.

If R is a DVR and V a vector space over the quotient field K of R. A vector $v \in V$ is called primitive if it is not divisible by a prime element π, i.e., the image \bar{v} of v in $\bar{K} \otimes_R V$ is not zero.

Arguing as in Proposition 7.14 we have

Lemma 19.2. Let R be a DVR. Let φ be a quadratic form on V whose polar form is non-degenerate. Suppose that V contains an isotropic vector v. Then there exists a submodule W of V containing v such that $\varphi|_W \simeq \mathbb{H}$.

Proof. Dividing v by π^n for an appropriate choice of n, we may assume that v is primitive. It follows easily that V/Rv is torsion-free hence free. In particular, $V \to V/Rv$ splits hence Rv is a direct summand of V. Let $f : V \to R$ be an R-linear map satisfying $f(v) = 1$. As $l : V \to \text{Hom}_R(V, R)$ is an isomorphism, there exists an element $w \in V$ such that $f = l_w$ hence $b_\varphi(v, w) = 1$. Let $W = Rv \oplus Rw$. Then $v, w - \varphi(w)v$ is a hyperbolic pair. \qed

By induction, we conclude:

Corollary 19.3. Let R be a DVR. Let φ be a quadratic form on V over R whose polar form is non-degenerate. Then $\varphi = \varphi|_{V_1} \perp \varphi|_{V_2}$ with V_1, V_2 submodules of V satisfying $\varphi|_{V_1}$ is anisotropic and $\varphi|_{V_2} \simeq m\mathbb{H}$ for some $m \geq 0$.
III. FORMS OVER RATIONAL FUNCTION FIELDS

Associated to a quadratic form \(\varphi \) on \(V \) over \(R \) are two forms: \(\varphi_K \) on \(K \otimes_R V \) over \(K \) and \(\bar{\varphi} = \varphi_K \) on \(K \otimes_R V \) over \(\bar{K} \).

Lemma 19.4. Let \(R \) be a complete DVR and let \(\varphi \) be an anisotropic quadratic form over \(R \) such that the associated bilinear form \(b_\varphi \) is non-degenerate. Then \(\bar{\varphi} \) is also anisotropic.

Proof. Let \(\{v_1, \ldots, v_n\} \) be a basis for \(V_\varphi \) and \(t_1, \ldots, t_n \) the respective coordinates. If \(w \in V_\varphi \) then \(\frac{\partial \varphi}{\partial t_i}(w) = b_\varphi(v_i, w) \). In particular, if \(\bar{w} \neq \bar{0} \) there exists an \(i \) such that \(\bar{b}_\varphi(v_i, \bar{w}) \neq 0 \). It follows by Hensel’s lemma that \(\varphi \) would be isotropic if \(\bar{\varphi} \) is. \(\square \)

Lemma 19.5. Let \(\varphi \) and \(\psi \) be two quadratic forms over a DVR \(R \) such that \(\bar{\varphi} \) and \(\bar{\psi} \) are anisotropic over \(\bar{K} \). Then \(\varphi_K \perp \pi \psi_K \) is anisotropic over \(K \).

Proof. Suppose that \(\varphi(u) + \pi \psi(v) = 0 \) for some \(u \in V_\varphi \) and \(v \in V_\psi \) with at least one of \(u \) and \(v \) primitive. Reducing modulo \(\pi \), we have \(\bar{\varphi}(\bar{u}) = 0 \). Since \(\bar{\varphi} \) is anisotropic, \(u = \pi w \) for some \(w \). Therefore \(\pi \varphi(w) + \psi(v) = 0 \) and reducing modulo \(\pi \) we get \(\bar{\psi}(\bar{v}) = 0 \). Since \(\bar{\psi} \) is also anisotropic, \(v \) is divisible by \(\pi \), a contradiction. \(\square \)

Corollary 19.6. Let \(\varphi \) and \(\psi \) be an anisotropic forms over \(F \). Then \(\varphi_{F(t)} \perp t \psi_{F(t)} \) is anisotropic.

Proof. In the lemma, let \(R = F[t]_t \), a DVR, \(\pi = t \) a prime. As \(\varphi_R = \varphi \) and \(\psi_R = \psi \), the result follows from the lemma. \(\square \)

Proposition 19.7. Let \(\varphi \) be a quadratic form over a complete DVR \(R \) such that the associated bilinear form \(b_\varphi \) is non-degenerate. Suppose that \(\varphi_K \simeq \pi \varphi_K \). Then \(\bar{\varphi} \) is hyperbolic.

Proof. Write \(\varphi = \psi \perp n \mathbb{H} \) with \(\psi \) anisotropic. By Lemma 19.4, we have \(\bar{\psi} \) is anisotropic. The form

\[
\varphi_K \perp (-\pi \varphi_K) \simeq \psi_K \perp (-\pi \psi_K) \perp 2n \mathbb{H}
\]

is hyperbolic and \(\psi_K \perp (-\pi \psi_K) \) is anisotropic over \(K \) by Lemma 19.5. We must have \(\psi = 0 \) by uniqueness of Witt decomposition over \(K \), hence \(\varphi = n \mathbb{H} \) is hyperbolic. It follows that \(\bar{\varphi} \) is hyperbolic. \(\square \)

Proposition 19.8. Let \(\varphi \) be a non-degenerate quadratic form over \(F \) of even dimension. Let \(f \in F[T] \) and \(p \in F[T] \) an irreducible polynomial factor of \(f \) of odd multiplicity. If \(\varphi_{F(T)} \simeq f \varphi_{F(T)} \) then \(\varphi_{F(p)} \) is hyperbolic.

Proof. Let \(R \) denote the completion of the DVR \(F[T]_p \) and let \(K \) be its quotient field. The residue field of \(R \) coincides with \(F(p) \). Modifying \(f \) by a square, we may assume that \(f = up \) for some \(u \in R^\times \). As \(\varphi_{F(T)} \simeq f \varphi_{F(T)} \), we have \(\varphi_{F(T)} \simeq up \varphi_{F(T)} \). Applying Proposition 19.7 to the form \(\varphi_R \) and \(\pi = up \) yields \((\varphi_R) = \varphi_{F(p)} \) is hyperbolic. \(\square \)

We shall also need the following:

Proposition 19.9. Let \(R \) be a DVR with quotient field \(K \). Let \(\varphi \) and \(\psi \) be two quadratic forms on \(V \) and \(W \) over \(R \) respectively such that their respective residues forms \(\varphi \) and \(\bar{\psi} \) are anisotropic. If \(\varphi_K \simeq \psi_K \) then \(\varphi \simeq \psi \) (over \(R \)).
21. FORMS OVER A DISCRETE VALUATION RING 73

Proof. Let $f : V_K \to W_K$ be an isometry between φ_K and ψ_K. It suffices to prove that $f(V) \subset W$ and $f^{-1}(W) \subset V$. Suppose that there exists a $v \in V$ such that $f(v)$ is not in W. Then $f(v) = w/\pi^k$ for some primitive $w \in W$ and $k > 0$. Since f is an isometry we have $\psi(w) = \pi^{2k}\varphi(v)$, i.e., $\psi(w)$ is divisible by π, hence \bar{w} is an isotropic vector of $\bar{\psi}$, a contradiction. Analogously, $f^{-1}(W) \subset V$. □

If R is a DVR then for each $x \in K^\times$ we can write $x = u\pi^n$ for some $u \in R^\times$ and $n \in \mathbb{Z}$.

Lemma 19.10. Let R be a DVR with quotient field K and residue field \bar{K}. Let π be a prime element in R. There exist group homomorphisms

$$\partial : W(K) \to W(\bar{K}) \quad \text{and} \quad \partial_\pi : W(K) \to W(\bar{K})$$

satisfying

$$\partial(\langle u\pi^n \rangle) = \begin{cases}
\langle \bar{u} \rangle & \text{if } n \text{ is even,} \\
0 & \text{if } n \text{ is odd}
\end{cases} \quad \text{and} \quad \partial_\pi(\langle u\pi^n \rangle) = \begin{cases}
\langle \bar{u} \rangle & \text{if } n \text{ is odd,} \\
0 & \text{if } n \text{ is even}
\end{cases}$$

for $u \in R^\times$ and $n \in \mathbb{Z}$.

Proof. It suffices to prove the existence of ∂ as we can take $\partial_\pi = \partial \circ \lambda_\pi$ where λ_π is the group homomorphism $\lambda_\pi : W(K) \to W(\bar{K})$ given by $b \mapsto \pi b$.

By Theorem 4.8 it suffices to check the generating relations of the Witt ring are respected. As $\langle 1 \rangle + \langle -1 \rangle = 0$ in $W(\bar{K})$, it suffices to show if $a, b \in R$ with $a + b \neq 0$ then

$$\partial(\langle a \rangle) + \partial(\langle b \rangle) = \partial(\langle a + b \rangle) + \partial(\langle ab(a + b) \rangle)$$

in $W(\bar{K})$.

Let

$$a = a_0 \pi^n, \quad b = b_0 \pi^m \quad a + b = \pi^l c_0 \quad \text{with } a_0, b_0, c_0 \in R^\times$$

and $m, n, l \in \mathbb{Z}$ satisfying $\min\{m, n\} \leq l$. We may assume that $n \leq m$.

Suppose that $n < m$. Then

$$a + b = \pi^n a_0 (1 + \pi^{m-n} \frac{b_0}{a_0}) \quad \text{and} \quad ab(a + b) = \pi^{2n+m} b_0 a_0^2 (1 + \frac{b_0}{a_0} \pi^{m-n}).$$

In particular, $\partial(\langle a \rangle) = \partial(\langle a + b \rangle)$ and $\partial(\langle b \rangle) = \partial(\langle ab(a + b) \rangle)$ as needed.

Suppose that $n = m$.

If $n = l$ then $a_0 + b_0 \in R^\times$ and the result follows by the Witt relation in $W(\bar{K})$.

So suppose that $n < l$. Then $\tilde{a}_0 = -\tilde{b}_0$ so the left hand side of (19.11) is zero. If l is odd then $\partial(\langle a + b \rangle) = 0 = \partial(\langle ab(a + b) \rangle)$ as needed. So we may assume that l is even. Then $\langle a + b \rangle \simeq \langle c_0 \rangle$ and $\langle ab(a + b) \rangle \simeq \langle a_0 b_0 c_0 \rangle$ over K. Hence the right hand side of (19.11) is $\langle \tilde{c}_0 \rangle + \langle \tilde{a}_0 \tilde{b}_0 \tilde{c}_0 \rangle = \langle \tilde{c}_0 \rangle + \langle -\tilde{c}_0 \rangle = 0$ in $W(K)$ also. □

The map $\partial : W(K) \to W(\bar{K})$ in the lemma does not dependent on the choice on the prime element π. It is called the first residue homomorphism with respect to R. The map $\partial_\pi : W(K) \to W(\bar{K})$ does depend on π. It is called the second residue homomorphism with respect to R and π.

Remark 19.12. Let \(R \) be a DVR with quotient field \(K \) and residue field \(\bar{K} \). Let \(\pi \) be a prime element in \(R \). If \(b \) is a non-degenerate diagonalizable bilinear form over \(K \), we can write \(b \) as
\[
b \simeq \langle u_1, \ldots, u_n \rangle \perp \pi \langle v_1, \ldots, v_m \rangle
\]
for some \(u_i, v_j \in R^\times \). Then \(\partial(b) = \langle \bar{u}_1, \ldots, \bar{u}_n \rangle \) in \(\bar{W}(\bar{K}) \) and \(\partial_{\pi}(b) = \langle \bar{v}_1, \ldots, \bar{v}_m \rangle \) in \(\bar{W}(\bar{K}) \).

Example 19.13. Let \(R \) be a DVR with quotient field \(K \) and residue field \(\bar{K} \). Let \(\pi \) be a prime element in \(R \). Let \(b = \langle \langle a_1, \ldots, a_n \rangle \rangle \), an anisotropic \(n \)-fold Pfister form over \(K \). Then we may assume that \(a_1 \in R^\times \) for all \(i \geq 1 \). As \(b = -a_1 \langle \langle a_2, \ldots, a_n \rangle \rangle \) if \(a_1 \in R^\times \) then \(\partial(b) = \langle \langle \bar{a}_1, \ldots, \bar{a}_n \rangle \rangle \) and \(\partial_{\pi}(b) = 0 \), and if \(a_1 = \pi u_1 \) then \(\partial(b) = \langle \langle \bar{a}_2, \ldots, \bar{a}_n \rangle \rangle \) and \(\partial_{\pi}(b) = -\bar{u}_1 \langle \langle \bar{a}_2, \ldots, \bar{a}_n \rangle \rangle \).

As \(n \)-fold Pfister forms generate \(I^n(F) \), we have, by the example the following:

Lemma 19.14. Let \(R \) be a DVR with quotient field \(K \) and residue field \(\bar{K} \). Let \(\pi \) be a prime element in \(R \). Then for every \(n \geq 1 \):

1. \(\partial(I^n(K)) \subset I^{n-1}(\bar{K}) \).
2. \(\partial_{\pi}(I^n(K)) \subset I^{n-1}(\bar{K}) \).

Exercise 19.15. Suppose that \(R \) is a complete DVR with quotient field \(K \) and residue field \(\bar{K} \). If \(\text{char} \, \bar{K} \neq 2 \) then the residue homomorphisms induce split exact sequences of groups:
\[
0 \to W(\bar{K}) \to W(K) \to W(\bar{K}) \to 0
\]
and
\[
0 \to I^n(\bar{K}) \to I^n(K) \to I^{n-1}(\bar{K}) \to 0.
\]

20. Similarities of Forms

Let \(\varphi \) be an anisotropic quadratic form over \(F \). Let \(p \in F[T] := F[t_1, \ldots, t_n] \) be irreducible and \(F(p) \) the quotient field of \(F[T]/(p) \). In this section, we determine what it means for \(\varphi_{F(p)} \) to be hyperbolic. We establish the analogous result for anisotropic bilinear forms over \(F \). We saw that for a form to become isotropic over \(F(p) \) was related to the values it represented over the polynomial ring \(F[T] \). We shall see that hyperbolicity is related to the similarity factors of the form over \(F[T] \). We shall also deduce norm principles for similarity factors of a form over \(F \). To establish these results, we introduce the transfer of forms from a finite extension of \(F \) to \(F \).

Let \(K/F \) be a finite field extension and \(s : K \to F \) an \(F \)-linear functional. If \(b \) is a symmetric bilinear form on \(V \) over \(K \) define the transfer \(s_*(b) \) of \(b \) induced by \(s \) to be the symmetric bilinear form on \(V \) over \(F \) given by
\[
s_*(b)(v, w) = s(b(v, w)) \quad \text{for all } v, w \in V.
\]
If \(\varphi \) is a quadratic form on \(V \) over \(K \) define the transfer \(s_*(\varphi) \) of \(\varphi \) induced by \(s \) to be the quadratic form on \(V \) over \(F \) given by \(s_*(\varphi)(v) = s(\varphi(v)) \) for all \(v \in V \) with polar form \(s_*(b_\varphi) \).

Note that \(\dim s_*(b) = [K : F] \dim b \).
20. SIMILARITIES OF FORMS

Lemma 20.1. Let \(K/F \) be a finite field extension and \(s : K \to F \) be an \(F \)-linear functional. The transfer \(s_* \) factors through orthogonal sums and preserves isometries.

Proof. Let \(v, w \in V_b \). If \(b(v, w) = 0 \) then \(s_*(b)(v, w) = s(b(v, w)) = 0 \). Thus \(s_*(b \perp c) = s_*(b) \perp s_*(c) \). If \(\sigma : b \to b' \) is an isometry then

\[
s_*(b') (\sigma(v), \sigma(w)) = s(b' (\sigma(v)), \sigma(w))) = s(b(v, w)) = s_*(b)(v, w),
\]
so \(\sigma : s_*(b) \to s_*(b') \) is also an isometry.

Proposition 20.2. (Frobenius Reciprocity) Let \(K/F \) be a finite extension of fields and \(s : K \to F \) an \(F \)-linear functional. Let \(b \) and \(c \) be symmetric bilinear forms over \(F \) and \(K \) respectively and let \(\phi \) and \(\psi \) be quadratic forms over \(F \) and \(K \) respectively. Then there exist canonical isometries:

\[
\begin{align*}
(20.3a) & \quad s_*(b_K \otimes_K c) \simeq b \otimes_F s_*(c). \\
(20.3b) & \quad s_*(b_K \otimes_K \psi) \simeq b \otimes_F s_*(\psi). \\
(20.3c) & \quad s_*(c \otimes_K \phi_K) \simeq s_*(c) \otimes_F \phi.
\end{align*}
\]

In particular,

\[
s_*(b_K) \simeq b \otimes_F s_*(1_b).
\]

Proof. (a). The canonical \(F \)-linear map \(V_{b_K} \otimes_K V_c \to V_b \otimes_F V_\psi \) given by \((a \otimes v) \otimes w \mapsto v \otimes aw \) is an isometry. Indeed

\[
s((b_K \otimes c)((a \otimes v) \otimes w, (a' \otimes v') \otimes w')) = s(aa' b(v, v') c(w, w')) \\
= b(v, v') s(c(aa' w, a' w')) = (b \otimes sc)(v \otimes aw, v' \otimes a' w').
\]

The last statement follows from the first by setting \(c = 1_1 \).

(b) and (c) are proved in a similar fashion.

Lemma 20.4. Let \(K/F \) be a finite field extension and \(s : K \to F \) a nonzero \(F \)-linear functional.

1. If \(b \) is a non-degenerate symmetric bilinear form on \(V \) over \(K \) then \(s_*(b) \) is non-degenerate on \(V \) over \(F \).
2. If \(\phi \) is an even dimensional non-degenerate quadratic form on \(V \) over \(K \) then \(s_*(\phi) \) is non-degenerate on \(V \) over \(F \).

Proof. Suppose that \(0 \neq v \in V \). As \(b \) is non-degenerate, there exists a \(w \in V \) such that \(1 = b(v, w) \). As \(s \) is not zero, there exists a \(c \in K \) such that \(0 \neq s(c) = s_*(b)((v, cw)) \). This shows (1). Statement (2) follows from (1) and Remark 7.22(1).

Corollary 20.5. Let \(K/F \) be a finite extension of fields and \(s : K \to F \) a nonzero \(F \)-linear functional.

1. If \(c \) is a bilinear hyperbolic form over \(K \) then \(s_*(c) \) is a hyperbolic form over \(F \).
2. If \(\phi \) is a quadratic hyperbolic form over \(K \) then \(s_*(\phi) \) is a hyperbolic form over \(F \).
III. FORMS OVER RATIONAL FUNCTION FIELDS

Proof. (1): As s_* respects orthogonality, we may assume that $c = \mathbb{H}_1$. By Frobenius Reciprocity,

$$s_*(\mathbb{H}_1) \simeq s_*(\mathbb{H}_1^-) \simeq (\mathbb{H}_1^-_F \otimes s_*(1)).$$

As $s_*(1)$ is non-degenerate by Lemma 20.4, we have $s_*(\mathbb{H}_1)$ is hyperbolic by Lemma 2.1.

(2): This follows in the same way as (1) using Lemma 8.16.

Definition 20.6. Let K/F be a finite field extension and $s : K \rightarrow F$ a nonzero F-linear functional. By Lemmas 20.4 and 20.5, the functional s induces group homomorphisms

$$s_* : \hat{W}(K) \rightarrow \hat{W}(F) \quad s_* : W(K) \rightarrow W(F) \quad \text{and} \quad s_* : I_q(K) \rightarrow I_q(F)$$

called transfer maps. Let b and c be non-degenerate symmetric bilinear form over F and K respectively and φ and ψ non-degenerate quadratic forms over F and K respectively. By Frobenius Reciprocity, we have

$$s_*(r_{K/F}b \cdot c) = b \cdot s_*(c)$$

in $\hat{W}(F)$ and $W(F)$, i.e., $s_* : \hat{W}(K) \rightarrow \hat{W}(F)$ is a $\hat{W}(F)$-module homomorphism and $s_* : W(K) \rightarrow W(F)$ is a $W(F)$-module homomorphism where we view $W(K)$ as a $W(F)$-module via $r_{K/F}$. Furthermore,

$$s_*(r_{K/F}(b) \cdot \psi) = b \cdot s_*(\psi) \quad \text{and} \quad s_*(c \cdot r_{K/F}(\varphi)) = s_*(c) \cdot \varphi$$

in $I_q(F)$. Note that $s_*(I(K)) \subset I(F)$.

Corollary 20.7. Let K/F be a finite field extension and $s : K \rightarrow F$ a nonzero F-linear functional. Then the compositions

$$s_* r_{K/F} : \hat{W}(F) \rightarrow \hat{W}(F) \quad s_* r_{K/F} : W(F) \rightarrow W(F) \quad \text{and} \quad s_* r_{K/F} : I_q(F) \rightarrow I_q(F)$$

are given by multiplication by $s_*(1)_b$, i.e., $b \mapsto b \cdot s_*(1)_b$ for a non-degenerate symmetric bilinear form b and $\varphi \mapsto s_*(1)_b \cdot \varphi$ for a non-degenerate quadratic form.

Corollary 20.8. Let K/F be a field extension and $s : K \rightarrow F$ a nonzero F-linear functional. Then $\text{im } s_*$ is an ideal in $\hat{W}(F)$ (respectively, $W(F)$) and is independent of s.

Proof. By Frobenius Reciprocity, $\text{im } s_*$ is an ideal. Suppose that $s_1 : K \rightarrow F$ is another nonzero F-linear functional. Let $K \rightarrow \text{Hom}_F(K, F)$ be the F-isomorphism given by $a \mapsto (x \mapsto s(ax))$. Hence there exists a unique $a \in K^\times$ such that $s_1(x) = s(ax)$ for all $x \in K$. Hence $(s_1)_*(b) = s_*(ab)$ for all non-degenerate symmetric bilinear forms b over K.

Let $K = F(x)/F$ be an extension of degree n and $a = N_{K/F}(x) \in F^\times$ the norm of x. Let

$$s : K \rightarrow F \text{ be the } F\text{-linear functional defined by } (20.9)$$

$$s(1) = 1 \text{ and } s(x^i) = 0 \text{ for all } i = 1, \ldots, n - 1.$$

Then $s(x^n) = (-1)^{n+1}a$.

LEMMA 20.10. The transfer induced by the F-linear functional s in (20.9) satisfies

$$s_*((1)_b) = \begin{cases}
(1)_b & \text{if } n \text{ is odd} \\
(1,-a)_b & \text{if } n \text{ is even.}
\end{cases}$$

PROOF. Let $b = s_*((1))$. Let $V \subset K$ be the F-subspace spanned by x^i with $i = 1, \ldots, n$, a non-degenerate subspace. Then $V^\perp = F$, consequently $K = F \oplus V$.

First suppose that $n = 2m+1$ is odd. The subspace of W spanned by x^i, $i = 1, \ldots, m$ is a Lagrangian of $b|_V$, hence $b|_V$ is metabolic and $b = b|_{V^\perp} = (1)$ in $W(F)$.

Next suppose that $n = 2m$ is even. We have

$$b(x^i, x^j) = \begin{cases}
0 & \text{if } i + j < n \\
-a & \text{if } i + j = n.
\end{cases}$$

It follows that $\det b = (-1)^naF^{\times 2}$ and the subspace $W' \subset W$ spanned by all x^i with $i \neq m$ and $1 \leq i \leq n$ is non-degenerate. In particular, $K = W' \oplus (W')^\perp$ by Proposition [1.7]. By dimension count $\dim(W')^\perp = 2$. As the subspace of W' spanned by x^i, $i = 1, \ldots, m-1$ is a Lagrangian of $b|_{W'}$, we have $b|_{W'}$ is metabolic. Computing determinants, yields $b|_{(W')^\perp} \simeq (1,-a)$, hence in $W(F)$ we have $b = b|_{(W')^\perp} = (1,-a)$.

COROLLARY 20.11. Suppose that $K = F(x)$ is a finite extension of even degree over F. Then $\ker r_{K/F} \subset \text{ann}_{W(F)}((\langle N_{K/F}(x) \rangle))$.

PROOF. Let s be the F-linear functional in (20.9). By Corollary 20.7 and Lemma 20.10, we have

$$\ker(r_{K/F} : W(F) \to W(K)) \subset \text{ann}_{W(F)}(s_*((1)) = \text{ann}_{W(F)}((\langle N_{K/F}(x) \rangle)).$$

COROLLARY 20.12. Let K/F be a finite field extension of odd degree. Then the map $r_{K/F} : W(F) \to W(K)$ is injective.

PROOF. If $K = F(x)$ and s is as in (20.9) then by Corollary 20.7 and Lemma 20.10, we have

$$\ker(r_{K/F} : W(F) \to W(K)) \subset \text{ann}_{W(F)}(s_*((1)) = \text{ann}_{W(F)}((\langle 1 \rangle)) = 0.$$

The general case follows by induction of the odd integer $[K : F]$.

Note that this corollary provides a more elementary proof of Corollary 18.6.

LEMMA 20.13. The transfer induced by the F-linear functional s in (20.9) satisfies

$$s_*((x)_b) = \begin{cases}
(1)_b & \text{if } n \text{ is odd} \\
0 & \text{if } n \text{ is even.}
\end{cases}$$

PROOF. Let $b = s_*((x))$. First suppose that $n = 2m+1$ is odd. Then

$$b(x^i, x^j) = \begin{cases}
0, & \text{if } i + j < n - 1 \\
a, & \text{if } i + j = n - 1.
\end{cases}$$

It follows that $\det b = (-1)^naF^{\times 2}$ and the subspace $W \subset K$ spanned by all x^i with $i \neq m$ and $1 \leq i \leq n$ is non-degenerate. In particular, $K = W \oplus W^\perp$ by Proposition [1.7] and W^\perp is 1-dimensional by dimension count. Computing determinants, we see that $b|_{W^\perp} \simeq (a)$.
As the subspace of W spanned by x^i, $i = 0, \ldots, m - 1$, is a Lagrangian of $b|_W$, the form $b|_W$ is metabolic. Consequently, $b = b|_{W^\perp} = \langle a \rangle$ in $W(F)$.

Next suppose that $n = 2m$ is even. The subspace of K spanned by x^i, $i = 0, \ldots, m - 1$ is a Lagrangian of b so b is metabolic and $b = 0$ in $W(F)$.

Corollary 20.14. Let s_* be the transfer induced by the F-linear functional s in (20.9). Then $s_*(\langle \langle x \rangle \rangle) = \langle \langle a \rangle \rangle$ in $W(F)$.

Theorem 20.15. (Similarity Norm Principle) Let K/F be a finite field extension and φ a non-degenerate even dimensional quadratic form over F. Then

$$N_{K/F}(G(\varphi_K)) \subseteq G(\varphi).$$

Proof. Let $x \in G(\varphi_K)$. Suppose first that $K = F(x)$. Let s be as in (20.9). As $\langle \langle x \rangle \rangle \cdot \varphi_K = 0$ in $I_q(K)$, applying the transfer $s_* : I_q(K) \to I_q(F)$ yields

$$0 = s_*(\langle \langle x \rangle \rangle \cdot \varphi_K) = s_*(\langle \langle x \rangle \rangle) \cdot \varphi = \langle \langle N_{K/F}(x) \rangle \rangle \cdot \varphi$$

in $I_q(F)$ by Frobenius Reciprocity [20.2] and Corollary [20.14]. Hence $N_{K/F}(x) \in G(\varphi)$ by Remark [8.17].

In the general case, set $k = [K : F(x)]$. If k is even we have

$$N_{K/F}(x) = N_{F(x)/F}(x)^k \in G(\varphi)$$

since $F^{\times 2} \subseteq G(\varphi)$. If k is odd, the homomorphism $I_q(F(x)) \to I_q(K)$ is injective by Remark [18.6] hence $\langle \langle x \rangle \rangle \cdot \varphi_{F(x)} = 0$. By the first part of the proof, $N_{F(x)/F}(x) \in G(\varphi)$. Hence $N_{K/F}(x) \in N_{F(x)/F}(x)F^{\times 2} \subseteq G(\varphi)$.

Lemma 20.16. Let φ be a non-degenerate quadratic form of even dimension and let $p \in F[t]$ be a monic irreducible polynomial (in one variable). If $\varphi_{F(p)}$ is hyperbolic then $p \in G(\varphi_{F(t)})$.

Proof. Let x be the image of t in $K = F(p) = F[t]/(p)$. We have p is the norm of $t - x$ in the extension $K(t)/F(t)$. Since $\varphi_{K(t)}$ is hyperbolic, $t - x \in G(\varphi_{K(t)})$. Applying the Norm Principle [20.15] to the form $\varphi_{F(t)}$ and the field extension $K(t)/F(t)$ yields $p \in G(\varphi_{F(t)})$.

Theorem 20.17. (Quadratic Similarity Theorem) Let φ be a non-degenerate quadratic form of even dimension and let $f \in F[T] = F[t_1, \ldots, t_n]$ be a nonzero polynomial. Then the following conditions are equivalent:

1. $f^* f \in G(\varphi_{F(T)})$.
2. There exists an $a \in F^\times$ such that $af \in G(\varphi_{F(T)})$.
3. For any irreducible divisor p of f to an odd power, the form $\varphi_{F(p)}$ is hyperbolic.

Proof. (1) \Rightarrow (2) is trivial.
(2) \Rightarrow (3) follows from Proposition [19.8].
(3) \Rightarrow (1). We proceed by induction on the number n of variables. We may assume that f is irreducible and $\deg t_1 f > 0$. In particular, f is an irreducible polynomial in t_1 over the field $E = F(T') = F(t_2, \ldots, t_n)$. Let $g \in F[T']$ be the leading term of f. In particular, $g^* = f^*$. As the polynomial $f' = fg^{-1}$ in $E[t_1]$ is monic irreducible and $E(f') = F(f)$,
the form $\varphi_{E(f')}$, is hyperbolic. Applying Lemma 20.16 to φ_E and the polynomial f', we have $fg = f' \cdot g^2 \in G(\varphi_{F(T)})$.

Let $p \in F[T']$ be an irreducible divisor of g to an odd power. Since p does not divide f, by the first part of the proof applied to the polynomial fg, the form $\varphi_{F(p)(t_1)}$ is hyperbolic. Since the homomorphism $I_q(F(p)) \to I_q(F(p)(t_1))$ is injective by Remark 8.18, we have $\varphi_{F(p)}$ is hyperbolic. Applying the induction hypothesis to g yields $g^*g \in G(\varphi_{F(T')})$. Therefore, $f^*f = g^*f = g^*g \cdot f g^{-2} \in G(\varphi_{F(T)})$. □

Theorem 20.18. (Bilinear Similarity Norm Principle) Let K/F be a finite field extension and let b be an anisotropic symmetric bilinear form over F of positive dimension. Then

$$N_{K/F}(G((b_K)_{an}) \subset G(b).$$

Proof. Let $x \in G((b_K)_{an})$. Suppose first that $K = F(x)$. Let s be as in (20.9). Let $b_K = (b_K)_{an} \perp c$ with c a metabolic form over K. Then xc is metabolic so

$$b_K = (b_K)_{an} = x(b_K)_{an} = x((b_K)_{an} + c) = xb_K$$
in $W(K)$. Consequently, $\langle \langle x \rangle \rangle \cdot b_K = 0$ in $I(K)$. Applying the transfer $s_s : W(K) \to W(F)$ yields

$$0 = s_s(\langle \langle x \rangle \rangle \cdot b_K) = s_s(\langle \langle x \rangle \rangle) \cdot b = \langle \langle N_{K/F}(x) \rangle \rangle \cdot b$$
by Frobenius Reciprocity 20.2 and Corollary 20.14. Hence $N_{K/F}(x)b = b$ in $W(F)$ with both sides anisotropic. It follows from Proposition 2.4 that $N_{K/F}(x) \in G(b)$.

In the general case, set $k = [K : F(x)]$. If k is even we have

$$N_{K/F}(x) = N_{F(x)/F}(x)^k \in G(b)$$
since $F^{x^2} \subset G(b)$. If k is odd, the homomorphism $W(F(x)) \to W(K)$ is injective by Corollary 18.6, hence $\langle \langle x \rangle \rangle \cdot (b_{F(x)})_{an} = 0$ in $W(F(x))$. Hence $x \in G((b_{F(x)})_{an})$ by Proposition 2.4. By the first part of the proof, $N_{F(x)/F}(x) \in G(b)$. Hence $N_{K/F}(x) \in N_{F(x)/F}(x)F^{x^2} \subset G(b)$. □

Lemma 20.19. Let b be a non-degenerate anisotropic symmetric bilinear form and let $p \in F[t]$ be a monic irreducible polynomial (in one variable). If $b_{F(p)}$ is metabolic then $p \in G(b_{F(t)})$.

Proof. Let x be the image of t in $K = F(p) = F[t]/(p)$. We have p is the norm of $t - x$ in the extension $K(t)/F(t)$. Since $b_{K(t)}$ is metabolic, $(b_{K(t)})_{an} = 0$. Thus $x - t \in G((b_{K(t)})_{an})$. Applying the Norm Principle 20.18 to the anisotropic form $b_{F(t)}$ and the field extension $K(t)/F(t)$ yields $p \in G(b_{F(t)})$. □

Theorem 20.20. (Bilinear Similarity Theorem) Let b be an anisotropic bilinear form of even dimension and let $f \in F[T] = F[t_1, \ldots, t_n]$ be a nonzero polynomial. Then the following conditions are equivalent:

1. $f^*f \in G(b_{F(T)})$.
2. There exists an $a \in F^\times$ such that $af \in G(b_{F(T)})$.
3. For any irreducible divisor p of f to an odd power, the form $b_{F(p)}$ is metabolic.
Let \(\varphi = \varphi_b \) be of dimension \(m \).

1. \(\Rightarrow \) (2) is trivial.

2. \(\Rightarrow \) (3). Let \(p \) be an irreducible factor of \(f \) to an odd degree. As \(F(T) \) is the quotient field of the localization \(F[T]_\mathfrak{p} \) and \(F[T]_\mathfrak{p} \) is a DVR, we have a group homomorphism \(\partial : W(F(T)) \to W(F(\mathfrak{p})) \) of Lemma [19.10]. Since \(p \) is a divisor to an odd power of \(f \),

\[
\diamond_{F(\mathfrak{p})} = \partial(\diamond_{F(T)}) \neq 0
\]

in \(W(F(\mathfrak{p})) \). Thus \(\diamond_{F(\mathfrak{p})} \) is metabolic.

3. \(\Rightarrow \) (1). The proof is analogous to the proof of (3) \(\Rightarrow \) (1) in the Quadratic Similarity Theorem [20.17] with Lemma [20.19] replacing Lemma [20.16] and hyperbolicity replaced by metabolicity. \(\square \)

Corollary 20.21. Let \(\varphi \) be an quadratic form (respectively, \(\diamond \) an anisotropic bilinear form) on \(V \) over \(F \) and \(f \in F[T] \) with \(T = (t_1, \ldots, t_n) \). Suppose that \(f \in G(\varphi_{F(T)}) \) (respectively, \(f \in G(\diamond_{F(T)}) \)). Suppose that \(f(a) \) is defined and nonzero with \(a \in F^n \). Then \(f(a) \in G(\varphi) \).

Proof. We may assume that \(\varphi \) is anisotropic as \(G(\varphi) = G(\varphi_{an}) \). (Cf. Remark 8.9.) By induction, we may assume that \(f \) is a polynomial in one variable \(t \). Let \(R = F[t](t-a) \), a DVR. As \(f(a) \neq 0 \), we have \(f \in R^\times \). Over \(F(t) \) we have \(\varphi_{F(t)} = f \varphi_{F(t)} \) hence \(\varphi_R \simeq f \varphi_R \) by Proposition 19.9. Since \(F \) is the residue class field of \(R \), upon taking the residue forms we see that \(\varphi = f(a) \varphi \) as needed.

As in the quadratic case, we reduce to \(f \) being a polynomial in one variable. We then have \(\diamond_{F(t)} \simeq f \diamond_{F(t)} \). Taking \(\partial \) of this equation relative to the DVR \(R = F[t](t-a) \) yields \(\diamond = f \diamond = f(a) \diamond \) in \(W(F) \) as \(f \in R^\times \). The result follows by Proposition [2.4]. \(\square \)

Corollary 20.22. Let \(\varphi \) be an quadratic form (respectively, \(\diamond \) an anisotropic bilinear form) on \(V \) over \(F \) and \(g \in F[T] \). Suppose that \(g \in G(\varphi_{F(T)}) \) (respectively, \(g \in G(\diamond_{F(T)}) \)). Then \(g^* \in G(\varphi) \) (respectively, \(g^* \in G(\diamond) \)).

Proof. We may assume that \(\varphi \) is anisotropic as \(G(\varphi) = G(\varphi_{an}) \). (Cf. Remark 8.9.) By induction on the number of variables, we may assume that \(g \in F[t] \). By Lemma 18.1 and Lemma 9.2, we must have deg \(g = 2r \) is even. Let \(h(t) = t^{2r}g(1/t) \in G(\varphi_{F(t)}) \). Then \(g^* = h(0) \in G(\varphi) \) by Corollary 20.21. An analogous proof shows the result for symmetric bilinear forms (using also Lemma 9.3 to see that deg \(g \) is even). \(\square \)

21. An Exact Sequence for \(W(F(t)) \)

Let \(\mathbb{A}_k^1 \) be the one dimensional affine line over \(F \). Let \(x \in \mathbb{A}_k^1 \) be a closed point and \(F(x) \) be the residue field of \(x \). Then there exists a unique monic irreducible polynomial \(f_x \in F[t] \) of degree \(d = \deg x \) such that \(F(x) = F[t]/(f_x) \). By Lemma 19.10, we have the first and second residue homomorphisms with respect to the DVR \(\mathcal{O}_{\mathbb{A}_k^1, x} \) and prime element \(f_x \):

\[
W(F(t)) \xrightarrow{\partial} W(F(x)) \quad \text{and} \quad W(F(t)) \xrightarrow{\partial_{f_x}} W(F(x)).
\]

Denote \(\partial_{f_x} \) by \(\partial_x \). If \(g \in F[t] \) then \(\partial_x(g) = 0 \) unless \(f_x \mid g \) in \(F[t] \). It follows if \(\diamond \) is a non-degenerate bilinear form over \(F(t) \) that \(\partial_x(\diamond) = 0 \) for almost all \(x \in \mathbb{A}_k^1 \).
We have

Theorem 21.1. The sequence

$$0 \to W(F) \xrightarrow{\rho_{F(t)/F}} W(F(t)) \xrightarrow{\partial} \prod_{x \in A^1_F} W(F(x)) \to 0$$

is split exact where $\partial = (\partial_x)$.

Proof. As anisotropic bilinear forms remain anisotropic under a purely transcendental extension, $r_{F(t)/F}$ is monic. It is split by the first residue homomorphism with respect to any rational point in A^1_F.

Let $F[t]_d := \{ g \mid g \in F[t], \deg g \leq d \}$ and $L_d \subset W(F(t))$ the subring generated by $\langle g \rangle$ with $g \in F[t]_d$. Then $L_0 \subset L_1 \subset L_2 \subset \cdots$ and $W(F(t)) = \cup_d L_d$. Note that $\text{im} r_{F(t)/F} = L_0$. Let S_d be the multiplicative monoid in $F[t]$ generated by $F[t]_d \setminus \{0\}$. As a group L_d is generated by one-dimensional forms of the type

$$(21.2) \quad \langle f_1 \cdots f_m g \rangle$$

with distinct monic irreducible polynomials $f_1, \ldots, f_m \in F[t]$ of degree d and $g \in S_{d-1}$.

Claim 21.3. The additive group L_d/L_{d-1} is generated by $\langle fg \rangle + L_{d-1}$ with $f \in F[t]$ monic irreducible of degree d and $g \in S_{d-1}$. Moreover, if $h \in F[t]_{d-1}$ satisfies $g \equiv h \mod (f)$ then $\langle fg \rangle \equiv \langle fh \rangle \mod L_{d-1}$.

We first must show that a generator of the form in (21.2) is a sum of the desired forms mod L_{d-1}. By induction on m, we need only do the case $m = 2$. Let f_1, f_2 be distinct irreducible monic polynomials of degree d and $g \in S_{d-1}$. Let $h = f_1 - f_2$ so $\deg h < d$. We have

$$\langle f_1 \rangle = \langle h \rangle + \langle f_2 \rangle - \langle f_1 f_2 h \rangle$$

in $W(F(t))$ by the Witt relation (4.2). Multiplying this equation by $\langle f_2 g \rangle$ and deleting squares, yields

$$\langle f_1 f_2 g \rangle = \langle f_2 gh \rangle + \langle g \rangle - \langle f_1 gh \rangle \equiv \langle f_2 gh \rangle - \langle f_1 gh \rangle \mod L_{d-1}$$

as needed.

Now suppose that $g = g_1 g_2$ with $g_1, g_2 \in F[t]_{d-1}$. As $f \nmid g$ by the Division Algorithm, there exist polynomials $q, h \in F[t]$ with $h \neq 0$ and $\deg h < d$ satisfying $g = f q + h$. It follows that $\deg q < d$. By the Witt relation (4.2), we have

$$\langle g \rangle = \langle f q \rangle + \langle h \rangle - \langle f q h g \rangle$$

in L_d hence multiplying by $\langle f \rangle$, we have

$$\langle f g \rangle = \langle q \rangle + \langle f h \rangle - \langle q h g \rangle \equiv \langle f h \rangle \mod L_{d-1}.$$}

The Claim now follows by induction on the number of factors for a general $g \in S_{d-1}$.

Let $x \in A^1_F$ be of degree d and $f = f_x$. Define

$$\alpha_x : W(F(x)) \to L_d/L_{d-1} \quad \text{by} \quad \langle g + (f) \rangle \mapsto \langle g \rangle + L_{d-1} \quad \text{for} \quad g \in F[t]_{d-1}.$$

We show this map is well-defined. If $h \in F[t]_{d-1}$ satisfies $gh^2 \equiv l \mod (f)$, with $l \in F[t]_{d-1}$ then $\langle fg \rangle = \langle fgh^2 \rangle \equiv \langle fl \rangle \mod L_{d-1}$ by the Claim, so the map is well-defined on
1-dimensional forms. If \(g_1, g_2 \in F[t]_{d-1} \) satisfy \(g_1 + g_2 \neq 0 \) and \(h \equiv (g_1 + g_2)g_1g_2 \mod (f) \) then
\[
\langle fg_1 \rangle + \langle fg_2 \rangle = \langle f(g_1 + g_2) \rangle + \langle f_1g_2g_1 + g_2 \rangle \equiv \langle f(g_1 + g_2) \rangle + \langle fh \rangle \mod L_{d-1}
\]
by the Claim. As \(\langle f \rangle + \langle -f \rangle = 0 \) in \(W(F(t)) \), it follows that \(\alpha_\varnothing \) is well-defined by Theorem 4.8.

Let \(x' \in \mathcal{A}_F^1 \) with \(\deg x' = d \). Then the composition
\[
W(F(x)) \xrightarrow{\alpha_\varnothing} L_d/L_{d-1} \xrightarrow{\partial x'} W(F(x'))
\]
is the identity if \(x = x' \) otherwise it is the zero map. It follows that the map
\[
\prod_{\deg x = d} W(F(x)) \xrightarrow{(\alpha_\varnothing)} L_d/L_{d-1}
\]
is split by \((\partial_x)_{\deg x = d} \). It follows by the Claim that this map is also surjective hence an isomorphism with inverse \((\partial_x)_{\deg x = d} \). By induction on \(d \), we check that
\[
(\partial_x)_{\deg x \leq d} : L_d/L_0 \longrightarrow \prod_{\deg x \leq d} W(F(x))
\]
is an isomorphism. As \(L_0 = W(F) \), passing to the limit yields the result.

Corollary 21.4. The sequence
\[
0 \rightarrow I^n(F) \xrightarrow{r_{F(t)/F}} I^n(F(t)) \xrightarrow{\varnothing} \prod_{x \in \mathcal{A}_F^1} I^{n-1}(F(x)) \rightarrow 0
\]
is split exact for each \(n \geq 1 \).

Proof. We show by induction on \(d = \deg x \) that \(I^{n-1}(F(x)) \in \im(\varnothing) \). Let \(g_2, \ldots, g_n \in F[t] \) be of degree \(< d \). We need to prove that \(b = \langle \langle \bar{g}_2, \ldots, \bar{g}_n \rangle \rangle \) lies in \(\im(\varnothing) \) where \(\bar{g}_i \) is the image of \(g_i \) in \(F(x) \). By Example 19.13, we have \(\partial_x(c) = b \) where \(c = \langle \langle -f_x, g_2, \ldots, g_n \rangle \rangle \). Moreover, \(c - b \in \prod_{\deg x < d} I^{n-1}(F(x)) \) and therefore \(c - b \in \im(\varnothing) \) by induction.

To finish, it suffices to show exactness at \(I^n(F(t)) \). Let \(b \in \ker(\varnothing) \). By Theorem 21.1, there exists \(c \in W(F) \) such that \(r_{F(t)/F}(c) = b \). We show \(c \in I^n(F) \). Let \(x \in \mathcal{A}_F^1 \) be a fixed rational point and \(f = t - t(x) \). Define \(\rho : W(F(t)) \rightarrow W(F) \) by \(\rho(\varnothing) = \partial_x(\langle \langle -f_x \rangle \rangle \cdot \varnothing) \). By Lemma 19.14, we have \(\rho(I^n(F(t))) \subset I^n(F) \) as \(F(x) = F \). By Example 19.13, the composition \(\rho \circ r_{F(t)/F} \) is the identity. It follows that \(c = \rho(b) \in I^n(F) \) as needed.

We wish to modify the sequence in Theorem 21.1 to the projective line \(\mathbb{P}_F^1 \). If \(x \in \mathcal{A}_F^1 \) is of degree \(n \), let \(s_x : F(x) \rightarrow F \) be the \(F \)-linear functional
\[
s_x(t^{n-1}(x)) = 1 \quad \text{and} \quad s_x(t^i(x)) = 0 \quad \text{for} \quad i < n - 1.
\]
The infinite point \(\infty \) corresponds to the \(1/t \)-adic valuation. It has residue field \(F \). The corresponding second residue homomorphism \(\partial_\infty : W(F(t)) \rightarrow W(F) \) is taken with respect to the prime \(1/t \). So if \(0 \neq h \in F[t] \) is of degree \(n \) and has leading coefficient \(a \), we have \(\partial_\infty(\langle h \rangle) = \langle a \rangle \) if \(n \) is odd and \(\partial_\infty(\langle h \rangle) = 0 \) otherwise. Define \((s_\infty)_* \) to be \(-\Id : W(F) \rightarrow W(F) \)
21. AN EXACT SEQUENCE FOR $W(F(t))$

Theorem 21.5. The sequence

$$0 \to W(F) \xrightarrow{r_{F(t)/F}} W(F(t)) \xrightarrow{\partial} \prod_{x \in \mathbb{P}^1_F} W(F(x)) \xrightarrow{s_*} W(F) \to 0$$

is exact where $\partial = (\partial_x)$ and $s_* = ((s_x)_*)$.

Proof. The map (s_*) is $-\text{Id}$. Hence by Theorem 21.1, it suffices to show $s_* \circ \partial$ is the zero map.

As 1-dimensional bilinear forms generate $W(F(t))$, it suffices to check the result on one-dimensional forms. Let $\langle af_1, \ldots, f_n \rangle$ be a one-dimensional form with $f_i \in F[t]$ monic of degree d_i and $a \in F^\times$ for $1 \leq i \leq n$. Let $x_i \in \mathbb{A}_F^1$ satisfy $f_i = f_{x_i}$ and $s_i = s_{x_i}$ for $1 \leq i \leq n$. We must show that

$$\sum_{X \in \mathbb{A}_F^1} (s_X)_* \partial_X(\langle af_1 \cdots f_n \rangle) = -(s_\infty)_* \partial_\infty(\langle af_1 \cdots f_n \rangle)$$

in $W(F)$. Multiplying through by $\langle a \rangle$, we may also assume that $a = 1$.

Set $A = F[t]/(f_1 \cdots f_n)$ and $d = \dim A$. Then $d = \sum d_i$. Let $\gamma : F[t] \to A$ be the canonical epimorphism and set $q_i = (f_1 \cdots f_n)/f_i$. We have an F-vector space homomorphism

$$\alpha : \prod_{i=1}^n F(x_i) \to A \text{ given by } (h_1(x_1), \ldots, h_n(x_i)) \mapsto \sum h_i \bar{q}_i \text{ for all } h \in F[t].$$

We show that α is an isomorphism. As both spaces have the same dimension, it suffices to show α is monic. As the q_i are relatively prime in $F[t]$, we have an equation $\sum_{i=1}^n g_i q_i = 1$ with $g_i \in F[t]$. Then the map

$$A \to \prod_{i=1}^n F(x_i) \text{ given by } \bar{h} \mapsto (h_1(x_1)g_1(x_1), \ldots, h_n(x_i)g_n(x_n))$$

splits α hence α is monic as needed. Set $A_i = \alpha(F(x_i))$ for $1 \leq i \leq n$.

Let $s : A \to F$ be the F-linear functional defined by $s(t^{d-1}) = 1$ and $s(t^i) = 0$ for $0 \leq i < d - 1$. Define b to be the bilinear form on A over F given by $b(f, h) = s(\bar{f} \bar{h})$ for $f, h \in F[t]$. If $i \neq j$, we have

$$b(\alpha(f(x_i)), \alpha(h(x_j))) = b(\bar{f} \bar{q}_i, \bar{h} \bar{q}_j) = s(\bar{f} \bar{h} \bar{q}_i \bar{q}_j) = s(0) = 0$$

for all $f, h \in F[t]$. Consequently, $b|_{A_i}$ is orthogonal to $b|_{A_j}$ if $i \neq j$.

Claim 21.6. $b|_{A_i} \simeq (s_i)_* (\partial_{f_i}(\langle f_1 \cdots f_n \rangle))$ for $i = 1, \ldots, n$:

Let $g, h \in F[t]$. Write

$$q_i gh = c_0 + \cdots + c_{d_i - 1} t^{d_i - 1} + f_i p$$

for some $c_i \in F$ and $p \in F[t]$.

By definition, we have

$$(s_i)_* (\partial_{f_i}(\langle f_1 \cdots f_n \rangle)(g(x_i), h(x_i))) = s_i (q_i(x_i)g(x_i)h(x_i)) = c_{d_i - 1}.$$

As $\deg q_i = d - d_i$, we have $\deg q_i t^{d_i - 1} = d - 1$. Thus

$$b|_{A_i}(\alpha(g(x_i), \alpha(h(x_i))) = b(\bar{g} \bar{q}_i, \bar{h} \bar{q}_i) = s(q_i^2 \bar{g} \bar{h}) = c_{d_i - 1}.$$
and the claim is established.

As $\partial_f(f_1 \cdots f_n) = 0$ for all irreducible monic polynomials $f \neq f_i, i = 1, \ldots, n$, in $F[t]$, we have, by the Claim,

$$b = \sum_{i=1}^{n} (s_i)_*(\partial_{x_i}(\langle f_1 \cdots f_n \rangle)) = \sum_{x \in \mathbb{A}_F^1} (s_x)_*(\partial_x(\langle f_1 \cdots f_n \rangle))$$

in $W(F)$.

Suppose that $d = 2e$ is even. The form b is then metabolic as it has a totally isotropic subspace of dimension e spanned by $1, \tilde{t}, \ldots, \tilde{t}^{e-1}$. We also have $(s_\infty)_* \circ \partial_\infty(b) = 0$ in this case.

Suppose that $d = 2e + 1$. Then b has a totally isotropic subspace spanned by $1, \tilde{t}, \ldots, \tilde{t}^{e-1}$ so $b \simeq (a) \perp c$ with c metabolic by the Witt Decomposition Theorem \[21.28\]. Computing $\det b$ on the basis $\{1, \tilde{t}, \ldots, \tilde{t}^{d-1}\}$, we see that $(a) = (1)$. As $(s_\infty)_* \circ \partial_\infty(b) = -\langle 1 \rangle$, the result follows. \[21.7\]

Corollary 21.7. Let K be a finite simple extension of F and $s : K \to F$ a non-trivial F-linear functional. Then $s_*(I^n(K)) \subset I^n(F)$ for all $n \geq 0$. Moreover, the induced map $\frac{I^n(K)}{I^{n+1}(K)} \to \frac{I^n(F)}{I^{n+1}(F)}$ is independent of the non-trivial F-linear functional s for all $n \geq 0$.

Proof. Let x lie in \mathbb{A}_F^1 with $K = F(x)$. Let $b \in I^n(K)$. By Lemma \[21.4\] there exists $c \in I^{n+1}(F(t))$ such that $\partial_y(c) = 0$ for all $y \in \mathbb{A}_F^1$ unless $y = x$ in which case $\partial_x(c) = b$. It follows by Theorem \[21.5\] that

$$0 = \sum_{y \in \mathbb{A}_F^1} (s_y)_* \circ \partial_y(c) = (s_x)_*(b) - \partial_\infty(c).$$

By Lemma \[19.14\] we have $\partial_\infty(c) \in I^n(F)$, so $(s_x)_*(b) \in I^n(F)$. Suppose that $s : K \to F$ is another non-trivial F-linear functional. As in the proof of Corollary \[20.8\] there exists a $c \in K^\times$ such that $(s)_*(c) = (s_x)_*(cc)$ for all symmetric bilinear forms c. In particular, $(s)_*(b) = (s_x)_*(cb)$ lies in $I^n(F)$. As $\langle c \rangle \cdot b \in I^{n+1}(K)$, we also have

$$s_*(b) - (s_x)_*(b) = (s_x)_*(\langle c \rangle \cdot b)$$

lies in $I^{n+1}(F)$. The result follows. \[21.8\]

The transfer induced by distinct non-trivial F-linear functionals $K \to F$, are not in general equal on $I^n(F)$.

Exercise 21.8. Show that Corollary \[21.7\] holds for arbitrary finite extensions K/F.

Corollary 21.9. The sequence

$$0 \to I^n(F) \xrightarrow{r_F(F)/P} I^n(F(t)) \xrightarrow{\partial} \prod_{x \in \mathbb{A}_F^1} I^{n-1}(F(x)) \xrightarrow{s_*} I^{n-1}(F) \to 0$$

is exact.
CHAPTER IV

Function Fields of Quadrics

22. Quadrics

A quadratic form φ over F defines a projective quadric X_{φ} over F. The quadric X_{φ} is smooth if and only if φ is non-degenerate (cf. Proposition 22.1). The quadric X_{φ} encodes information about isotropy properties of φ, namely the form φ is isotropic over a field extension E/F if and only if X_{φ} has a point over E. In the third part of the book we will use algebraic-geometric methods to study isotropy properties of φ.

If b is a symmetric bilinear form, the quadric X_{φ}/b reflects isotropy properties of b (and of φ as well). If the characteristic of F is two, only totally singular quadratic forms arise from symmetric bilinear forms. In particular quadric arising from bilinear forms are not smooth. Therefore algebraic-geometric methods have wider application in the theory of quadratic forms than in the theory of bilinear forms.

In the previous sections, we looked at quadratic forms over field extensions determined by irreducible polynomials. In particular, we were interested in when a quadratic form becomes isotropic over such a field. Viewing a quadratic form as a homogeneous polynomial of degree two, results from these sections apply.

Let φ and ψ be two quadratic forms. In this section, we begin our study of when φ becomes isotropic or hyperbolic over $F(\psi)$. It is natural at this point to introduce the geometric language that we shall use, i.e., to associate to a quadratic form a projective quadric.

Let φ be a quadratic form on V. Viewing $\varphi \in S^2(V^*)$ we define the projective quadric associated to φ to be the closed subscheme

$$X_{\varphi} = \text{Proj} \ S^\bullet(V^*)/(\varphi)$$

of the projective space $\mathbb{P}(V) = \text{Proj} \ S^\bullet(V^*)$. The scheme X_{φ} is equidimensional of dimension $\dim V - 2$ if $\varphi \neq 0$ and $\dim V \geq 2$. We define the Witt index of X_{φ} by $i_0(X_{\varphi}) := i_0(\varphi)$. By construction, for any field extension L/F, the set of L-points $X_{\varphi}(L)$ coincides with the set of isotropic lines in V_L. Therefore, $X_{\varphi}(L) = \emptyset$ if and only if φ_L is anisotropic.

For any field extension K/F we have $X_{\varphi_K} = (X_{\varphi})_K$.

Let φ' be a subform of φ. The inclusion of vector spaces $V' := \varphi' \subset V$ gives rise to a surjective graded ring homomorphism

$$S^\bullet(V^*)/(\varphi) \rightarrow S^\bullet(V'^*)/(\varphi')$$

which in its turn leads to a closed embedding $X_{\varphi'} \hookrightarrow X_{\varphi}$. We shall always identify $X_{\varphi'}$ with a closed subscheme of X_{φ}.
Proposition 22.1. Let φ be a nonzero quadratic form of dimension at least 2. Then the quadric X_φ is smooth if and only if φ is non-degenerate.

Proof. We may assume that F is algebraically closed. We claim that $\mathbb{P}(\text{rad } \varphi)$ is the singular locus of X_φ. Let $0 \neq u \in V$ be an isotropic vector. Then the isotropic line $U = Fu \subset V$ can be viewed as a rational point of X_φ. As $\varphi(u + \varepsilon v) = 0$ if and only if u is orthogonal to v (where $\varepsilon^2 = 0$), the tangent space $T_{X,U}$ is the subspace $\text{Hom}(U, U^1 / U)$ of the tangent space $T_{F(V),U} = \text{Hom}(U, V/U)$ (see Example 103.20). In particular the point U is regular on X if and only if $\dim T_{X,U} = \dim X = \dim V - 2$ if and only if $U^1 \neq V$, i.e., U is not contained in $\text{rad } \varphi$. Thus X_φ is smooth if and only if $\dim \varphi = 0$, i.e., φ is non-degenerate.

We say that the quadratic form φ on V is irreducible if φ is irreducible in the ring $S^\ast(V^\ast)$. If φ is nonzero and not irreducible, then $\varphi = l \cdot l'$ for some nonzero linear forms $l, l' \in V^\ast$. Then $\varphi = \ker l \cap \ker l'$ has codimension at most 2 in V. Therefore the form φ on $V/\text{rad } \varphi$ is either one-dimensional or a hyperbolic plane. It follows that a regular quadratic form φ is irreducible if and only if $\dim \varphi \geq 3$ or $\dim \varphi = 2$ and φ is anisotropic.

If φ is irreducible, X_φ is an integral scheme. The function field $F(X_\varphi)$ is called the function field of φ and will be denoted by $F(\varphi)$. By definition, $F(\varphi)$ is the subfield of degree 0 elements in the quotient field of the domain $S^\ast(V^\ast)/(\varphi)$. Note that the quotient field of $S^\ast(V^\ast)/(\varphi)$ is a purely transcendental extension of $F(\varphi)$ of degree 1. Clearly φ is isotropic over the quotient field of $S^\ast(V^\ast)/(\varphi)$ and therefore is isotropic over $F(\varphi)$.

Example 22.2. Let σ be an anisotropic binary quadratic form. As σ is isotropic over $F(\sigma)$, it follows from Corollary 12.3 that $F(\sigma) \simeq C_0(\sigma)$.

If K/F is a field extension such that φ_K is still irreducible, we simply write $K(\varphi)$ for $K(\varphi_K)$.

Example 22.3. Let φ and φ be irreducible quadratic forms. Then $F(X_\varphi \times X_\psi) \simeq F(\varphi)(\psi) \simeq F(\psi)(\varphi)$.

Let φ and ψ be two irreducible regular quadratic forms. We shall be interested in when $\varphi_F(\psi)$ is hyperbolic or isotropic. A consequence of the Quadratic Similarity Theorem 20.17 is:

Proposition 22.4. Let φ be a non-degenerate quadratic form of even dimension and ψ be an irreducible quadratic form of dimension n over F. Suppose that $T = (t_1, \ldots, t_n)$ and $b \in D(\psi)$. Then $\varphi_F(\psi)$ is hyperbolic if and only if $b \cdot \psi(T) \varphi_F(T) \simeq \varphi_F(T)$.

Proof. By the Quadratic Similarity Theorem 20.17, we have $\varphi_F(\psi)$ is hyperbolic if and only if $\psi^* \cdot \psi(T) \varphi_F(T) \simeq \varphi_F(T)$. Let $b \in D(\psi)$. Choosing a basis for V with first vector v satisfying $\psi(v) = b$, we have $\psi^* = b$.

Theorem 22.5. (Subform Theorem) Let φ be a nonzero anisotropic quadratic form and ψ be an irreducible anisotropic quadratic form such that the form $\varphi_F(\psi)$ is hyperbolic. Let $a \in D(\varphi)$ and $b \in D(\psi)$. Then $ab\psi$ is isometric to a subform of φ and, therefore, $\dim \psi \leq \dim \varphi$.

We view and the Let 9.3

Suppose that the field extension 7.28

Let the natural analogues of the Representation Theorem and Lemma 7.19 have $a\psi$ is not a subform of $b\psi$.

By the proof of the theorem and Corollary 20.21, we have

Corollary 22.6. Let φ be an anisotropic quadratic form and ψ an irreducible anisotropic quadratic form. If $\varphi_F(\psi)$ is hyperbolic then $D(\varphi)D(\psi) \subset G(\varphi)$. In particular, if $1 \in D(\psi)$ then $D(\psi) \subset G(\varphi)$.

Remark 22.7. The natural analogues of the Representation Theorem 17.12 and the Subform Theorem 22.5 are not true for bilinear forms in characteristic two. Let $b = \langle 1, b \rangle$ and $c = \langle 1, c \rangle$ be anisotropic symmetric bilinear forms with b and $c = x^2 + by^2$ nonzero and $bF^{\times 2} \neq cF^{\times 2}$ in a field F of characteristic two. Thus $b \not\simeq c$. However, $\varphi_b \simeq \varphi_c$ by Example 7.28. So $\varphi_c(t_1, t_2) \in D(\varphi_b F(t_1, t_2))$ and $\varphi_F(\varphi_b)$ is isotropic hence metabolic but $a\varphi_c$ is not a subform of b for any $a \neq 0$.

We do have, however, the following:

Corollary 22.8. Let b and c be anisotropic bilinear forms with dim $c \geq 2$ and b nonzero. Let ψ be the associated quadratic form of c. If $b_F(\psi)$ is metabolic then dim $c \leq$ dim b.

Proof. Let $\varphi = \varphi_b$. By the Bilinear Similarity Theorem 20.20 and Lemma 9.3, we have $a\psi(T) \in G(b_{F(T)}) \subset G(\varphi_F(T))$ for some $a \in F^\times$ where $T = (t_1, \ldots, t_{\dim \psi})$. It follows that $b\psi(T) \in D(\varphi_F(T))$ for some $b \in F^\times$. Consequently,

$$\dim b = \dim \varphi \geq \dim \psi = \dim c$$

by the Representation Theorem 17.12. \square

We turn to the case that a quadratic form becomes isotropic over the function field of another form or itself.

Proposition 22.9. Let φ be an irreducible regular quadratic form. Then the field extension $F(\varphi)/F$ is purely transcendental if and only if φ is isotropic.

Proof. Suppose that the field extension $F(\varphi)/F$ is purely transcendental. As $\varphi_F(\varphi)$ is isotropic, φ is isotropic by Lemma 7.16.

Now suppose that φ is isotropic. Then $\varphi = \mathbb{H} \perp \varphi'$ for some φ' by Proposition 7.14. Let $V = V_\varphi, V' = V_{\varphi'}$ and let $h, h' \in V$ be a hyperbolic pair of \mathbb{H}. Let $\psi = \varphi|_{F_\mathbb{H} \oplus V'}$ with $h' \in (V')^\perp$. It is sufficient to show that $X_{\varphi} \setminus X_\psi$ is isomorphic to an affine space. Every isotropic line in $X_{\varphi} \setminus X_\psi$ has the form $F(h + ah' + v')$ for unique $a \in F$ and $v' \in V'$ such that

$$0 = \varphi(h + ah' + v') = a + \varphi(v'),$$

i.e., $a = -\varphi(v')$. Therefore the morphism $X_{\varphi} \setminus X_\psi \to \mathbb{A}(V')$ taking $F(h + ah' + v')$ to v' is an isomorphism with the inverse $v' \mapsto F(h - \varphi(v')h' + v')$. \square
Remark 22.10. Let char $F = 2$ and let φ be an irreducible totally singular form. Then the field extension $F(\varphi)/F$ is not purely transcendental even if φ is isotropic.

Proposition 22.11. Let φ be an anisotropic quadratic form and let K/F be a quadratic field extension. Then φ_K is isotropic if and only if there is a binary subform σ of φ such that $F(\sigma) \simeq K$.

Proof. Let σ be a binary subform of φ with $F(\sigma) \simeq K$. Since σ is isotropic over $F(\sigma)$ we have φ isotropic over $F(\sigma) \simeq K$.

Conversely, suppose that $\varphi_K(v) = 0$ for some nonzero $v \in (V_\varphi)_K$. Since K is quadratic over F, there is a 2-dimensional subspace $U \subset V_\varphi$ such that $v \in U_K$. Therefore the form $\sigma = \varphi|_U$ is isotropic over K. As σ is also isotropic over $F(\sigma)$, it follows from Corollary 12.3 and Example 22.2 that $F(\sigma) \simeq C_0(\sigma) \simeq K$. □

Corollary 22.12. Let φ be an anisotropic quadratic form and σ a non-degenerate anisotropic binary quadratic form. Then $\varphi \simeq b \otimes \sigma \perp \psi$ with b a non-degenerate symmetric bilinear form and $\psi_{F(\sigma)}$ anisotropic.

Proof. Suppose that $\varphi_{F(\sigma)}$ is isotropic. By Proposition 22.11 there is a binary subform σ' of φ with $F(\sigma') = F(\sigma)$. By Corollary 12.2 and Example 22.2, we have σ' is similar to σ. Consequently, there exists an $a \in F^\times$ such that $\varphi \simeq a\sigma \perp \psi$ for some quadratic form ψ. The result follows by induction on dim φ. □

Recall that a field extension K/F is called separable if there exists and intermediate field E in K/F with E/F purely transcendental and K/E algebraic and separable. We show that regular quadratic forms remain regular after extending to a separable field extension.

Lemma 22.13. Let φ be a regular quadratic form and let K/F be a separable (possibly infinite) field extension. Then φ_K is regular.

Proof. We proceed in several steps.

Case 1: $[K : F] = 2$.
Let $v \in (V_\varphi)_K$ be an isotropic vector. Then $v \in U_K$ for a 2-dimensional subspace $U \subset V_\varphi$ such that $\varphi|_U$ is similar to the norm form N of K/F (cf. Proposition 12.1). As N is non-degenerate, $v \notin \text{rad}(b_{\varphi_K})$, therefore, $\text{rad}(\varphi_K) = 0$.

Case 2: K/F is of odd degree or purely transcendental.
We have $\varphi \simeq \varphi_{an} \perp n\mathbb{H}$. The anisotropic part φ_{an} stays anisotropic over K by Springer’s Theorem 18.5 or Lemma 7.16 respectively, therefore φ_K is regular.

Case 3: $[K : F]$ is finite.
We may assume that K/F is Galois by Remark 7.15. Then K/F is a tower of odd degree and quadratic extensions.

Case 4: The general case.
In general K/F is a tower of a purely transcendental and a finite separable extension. □

We turn to the function field of an irreducible quadratic form.
Lemma 22.14. Let \(\varphi \) be an irreducible quadratic form over \(F \). Then there exists a purely transcendental extension \(E \) of \(F \) with \([F(\varphi) : E] = 2 \). Moreover, if \(\varphi \) is not totally singular, the field \(E \) can be chosen with \(F(\varphi)/E \) is separable. In particular \(F(\varphi)/F \) is separable.

Proof. Let \(U \subset V_\varphi \) be an anisotropic line. The rational projection \(f : X_\varphi \rightarrow \mathbb{P} = \mathbb{P}(V/U) \) taking a line \(U' \) to \((U + U')/U \) is a double cover, so that \(F(\varphi)/E \) is a quadratic field extension where \(E \) is the purely transcendental extension \(F(\mathbb{P}) \) of \(F \).

Let \(\tau \) be the reflection of \(\varphi \) with respect to a nonzero vector in \(U \). Clearly, \(f(\tau U') = f(U') \) for every line \(U' \) in \(X_\varphi \). Therefore \(\tau \) induces an automorphism of every fiber of \(f \). In particular \(\tau \) induces an automorphism of the generic fiber and therefore an automorphism \(\varepsilon \) of the field \(F(\varphi) \) over \(E \).

If \(\varphi \) is not totally singular, we can choose \(U \) not in \(\mathrm{rad} \, \mathfrak{b}_\varphi \). Then the isometry \(\tau \) and the automorphism \(\varepsilon \) are nontrivial. Hence the field extension \(F(\varphi)/E \) is separable.

Let \(\varphi \) and \(\psi \) be anisotropic quadratic forms of dimension at least 2 over \(F \). We write \(\varphi \succ \psi \) if \(\varphi F(\psi) \) is isotropic and write \(\varphi \preceq \psi \) if \(\varphi \succ \psi \) and \(\psi \succ \varphi \). For example, if \(\psi \) is a subform of \(\varphi \) then \(\varphi \succ \psi \).

We have \(\varphi \succ \psi \) if and only if there exists a rational map \(X_\psi \rightarrow X_\varphi \).

We show that the relation \(\succ \) is transitive.

Lemma 22.15. Let \(\varphi \) and \(\psi \) be anisotropic quadratic forms over \(F \). If \(\psi \succ \mu \) then there exist a purely transcendental field extension \(E/F \) and a binary subform \(\sigma \) of \(\psi_E \) over \(E \) such that \(E(\sigma) = F(\mu) \).

Proof. By Lemma 22.14 there exist a purely transcendental field extension \(E/F \) such that \(F(\mu) \) is a quadratic extension of \(E \). As \(\psi \) is isotropic over \(F(\mu) \) it follows from Proposition 22.11 applied to the form \(\psi_E \) and the quadratic extension \(F(\mu)/E \) that \(\psi_E \) contains a binary subform \(\sigma \) over \(E \) such that \(E(\sigma) = F(\mu) \).

Proposition 22.16. Let \(\varphi \), \(\psi \), and \(\mu \) be anisotropic quadratic forms over \(F \). If \(\varphi \succ \psi \succ \mu \) then \(\varphi \succ \mu \).

Proof. Consider first the case when \(\mu \) is a subform of \(\psi \).

We may assume that \(\mu \) is of codimension one in \(\psi \). Let \(T = (t_1, \ldots, t_n) \) be the coordinates in \(V_\psi \) so that \(V_\mu \) is given by \(t_1 = 0 \). By assumption there is \(v \in V_\varphi[T] \) such that \(\varphi(v) \) is divisible by \(\psi(T) \) but \(v \) is not divisible by \(\psi(T) \). Since \(\psi \) is anisotropic, we have \(\deg t_i \psi = 2 \) for every \(i \). Applying the division algorithm on dividing \(v \) by \(\psi \) with respect to the variable \(t_2 \) we may assume that \(\deg t_2 v \leq 1 \). Moreover, dividing out a power of \(t_1 \) if necessary we may assume that \(v \) is not divisible by \(t_1 \). Therefore the vector \(w := v_{|t_1=0} \in V_\varphi[T'], \) where \(T' = (t_2, \ldots, t_n) \), is not zero. As \(\deg t_2 w \leq 1 \) and \(\deg t_2 \mu = 2 \), the vector \(w \) is not divisible by \(\mu(T') \). On the other hand, \(\varphi(w) \) is divisible by \(\psi(T)|_{t_1=0} = \mu(T') \), i.e., \(\varphi \) is isotropic over \(F(\mu) \).

Now consider the general case. By Lemma 22.15 there exist a purely transcendental field extension \(E/F \) and a binary subform \(\sigma \) of \(\psi_E \) over \(E \) such that \(E(\sigma) = F(\mu) \). By the first part of the proof applied to the forms \(\varphi_E \succ \psi_E \succ \sigma \) we have \(\varphi_E \) is isotropic over \(E(\sigma) = F(\mu) \), i.e., \(\varphi \succ \mu \).
Let \(\varphi, \psi, \text{ and } \mu \) be anisotropic quadratic forms over \(F \). If \(\varphi \prec \psi \) then \(\mu_{F(\varphi)} \) is isotropic if and only if \(\mu_{F(\psi)} \) is isotropic.

Proposition 22.18. Let \(\psi \) and \(\mu \) be anisotropic quadratic forms over \(F \) satisfying \(\psi \succ \mu \). Let \(\varphi \) be a quadratic form such that \(\varphi_{F(\psi)} \) is hyperbolic. Then \(\varphi_{F(\mu)} \) is hyperbolic.

Proof. Consider first the case when \(\mu \) is a subform of \(\psi \). Choose variables \(T' \) of \(\mu \) and variables \(T = (T', T'') \) of \(\psi \) so that \(\mu(T') = \psi(T', 0) \). As \(\varphi_{F(\psi)} \) is hyperbolic, by the Quadratic Similarity Theorem, we have \(\varphi_{F(T)} \simeq a\psi(T)\varphi_{F(T)} \) over \(F(T) \) for some \(a \in F^\times \). Specializing variables \(T'' = 0 \), we see by Corollary 20.21 that \(\varphi_{F(T'')} \simeq a\mu(T')\varphi_{F(T')} \) over \(F(T') \), and again it follows from the Quadratic Similarity Theorem 20.17 that \(\varphi_{F(\mu)} \) is hyperbolic.

Now consider the general case. By Lemma 22.15, there exist a purely transcendental field extension \(E/F \) and a binary subform \(\sigma \) of \(\psi_E \) over \(E \) such that \(E(\sigma) = F(\mu) \). As \(\varphi_{E(\psi)} \) is hyperbolic, by the first part of the proof applied to the forms \(\psi_E \succ \sigma \), we have \(\varphi_{E(\sigma)} = \varphi_{F(\mu)} \) is hyperbolic.

23. Quadratic Pfister Forms II

The introduction of function fields of quadrics allows us to determine the main characterization of general quadratic Pfister forms. They are precisely those forms that become hyperbolic over their function fields. In particular, Pfister forms can be characterized as universally round forms.

If \(\varphi \) is an anisotropic general quadratic Pfister form then \(\varphi_{F(\varphi)} \) is isotropic hence hyperbolic by Corollary 20.11. We wish to show the converse of this property. We begin by looking at subforms of Pfister forms.

Lemma 23.1. Let \(\varphi \) be an anisotropic quadratic form and let \(\rho \) be a subform of \(\varphi \). Suppose that \(D(\varphi_K) \) and \(D(\rho_K) \) are groups for all field extensions \(K/F \). Let \(a = -\varphi(v) \) for some \(v \in V^\perp_\rho \setminus V_\rho \). Then the form \(\langle \langle a \rangle \rangle \otimes \rho \) is isometric to a subform of \(\varphi \).

Proof. Let \(T = (t_1, \ldots, t_n) \) and \(T' = (t_{n+1}, \ldots, t_{2n}) \) be \(2n \) independent variables where \(n = \dim \rho \). We have

\[
\rho(T) - a\rho(T') = \rho(T'') \left[\frac{\rho(T)}{\rho(T'')} - a \right].
\]

As \(D(\varphi_{F(T,T'')}) \) is a group, we have \(\frac{\rho(T)}{\rho(T'')} \in D(\varphi_{F(T,T'')}) \) hence \(\frac{\rho(T)}{\rho(T'')} - a \in D(\varphi_{F(T,T'')}). \) As \(\rho(T') \in D(\varphi_{F(T,T'')}), \) we have

\[
\rho(T) - a\rho(T') \in D(\varphi_{F(T,T'')}).\]

By the Representation Theorem 17.12, \(\langle \langle a \rangle \rangle \otimes \rho \) is a subform of \(\varphi \).
Let Statements (1) and (2) are both equivalent to

\[\dim(\varphi_{F(T)}) \leq \dim(\varphi_{F(T)}) \]

we have

\[\varphi(T)\varphi(T') \in D(\varphi_{F(T,T')}). \]

(5) \(\varphi(T) \in G(\varphi_{F(T)}). \)

Proof. (2) \(\Rightarrow \) (3) \(\Rightarrow \) (4) are trivial.

(5) \(\Leftarrow \) (1) \(\Rightarrow \) (2): As quadratic Pfister forms are round by Corollary 23.2, the implications follow.

(5) \(\Rightarrow \) (4): We have \(\varphi(T) \in G(\varphi_{F(T)}) \subset G(\varphi_{F(T,T')}) \) and \(\varphi(T') \in D(\varphi_{F(T,T')}). \) It follows by Lemma 23.2 that \(\varphi(T)\varphi(T') \in D(\varphi_{F(T,T')}). \)

(4) \(\Rightarrow \) (3): If \(K/F \) is a field extension then \(\varphi(T)\varphi(T') \in D(\varphi_{K(T,T')}). \) By the Substitution Principle, it follows that \(D(\varphi_K) \) is a group.

(3) \(\Rightarrow \) (1): As \(1 \in D(\varphi) \) it suffices to show that \(\varphi \) is a general quadratic Pfister form. We may assume that \(\dim \varphi \geq 2. \) If \(\varphi \) is non-degenerate, \(\varphi \) contains a non-degenerate binary subform, i.e., a 1-fold general quadratic Pfister form. Let \(\rho \) be the largest quadratic general Pfister subform of \(\varphi \) if \(\varphi \) is non-degenerate and the largest quasi-Pfister form if \(\varphi \) is totally singular. Suppose that \(\rho \neq 0. \) If \(\varphi \) is non-degenerate then \(V_\rho \neq 0 \) and \(V_\rho \cap V_\rho = \rad \mathfrak{b}_\rho = 0 \) and if \(\varphi \) is totally singular then \(V_\rho = V_\rho \) and \(V_\rho \neq V_\rho. \) In either case, there exists a \(v \in V_\rho \setminus V_\rho. \) Set \(a = -\varphi(v). \) By Lemma 23.1, \(\langle \langle a \rangle \rangle \otimes \rho \) is isometric to a subform of \(\varphi, \) a contradiction.

Remark 23.3. Let \(\varphi \) be a non-degenerate isotropic quadratic form over \(F. \) As hyperbolic quadratic forms are universal and round, if \(\varphi \) is hyperbolic then \(\varphi(T) \in G(\varphi_{F(T)}). \) Conversely, suppose \(\varphi(T) \in G(\varphi_{F(T)}). \) As

\[(\varphi_{F(T)})_{an} \perp \mathfrak{p}_0(\varphi)\mathfrak{H} \simeq \varphi_{F(T)} \simeq \varphi(T)\varphi_{F(T)} \simeq \varphi(T)(\varphi_{F(T)})_{an} \perp \mathfrak{p}_0(\varphi)\varphi(T)\mathfrak{H}, \]

we have \(\varphi(T) \in G((\varphi_{F(T)})_{an}) \) by Witt Cancellation. If \(\varphi \) was not hyperbolic then the Subform Theorem would imply \(\dim \varphi_{F(T)} \leq \dim(\varphi_{F(T)})_{an}, \) a contradiction. Consequently, \(\varphi(T) \in G(\varphi_{F(T)}) \) if and only if \(\varphi \) is hyperbolic.

Corollary 23.4. Let \(\varphi \) be a non-degenerate anisotropic quadratic form of dimension at least two over \(F. \) Then the following are equivalent:

(1) \(\dim \varphi \) is even and \(\mathfrak{p}_1(\varphi) = \dim \varphi/2. \)

(2) \(\varphi_{F(\varphi)} \) is hyperbolic.

(3) \(\varphi \in GP_n(F) \) for some \(n \geq 1. \)

Proof. Statements (1) and (2) are both equivalent to \(\varphi_{F(\varphi)} \) contains a totally isotropic subspace of dimension \(\frac{1}{2} \dim \varphi. \) Let \(a \in D(\varphi). \) Replacing \(\varphi \) by \(\langle a \rangle \varphi \) we may assume that \(\varphi \) represents one. By Theorem 23.2, Condition (2) in the corollary is equivalent to Condition (5) of Theorem 23.2 hence conditions (2) and (3) above are equivalent. \(\square \)
IV. FUNCTION FIELDS OF QUADRICS

Corollary 23.5. Let \(\varphi \) and \(\psi \) be quadratic forms over \(F \) with \(\varphi \in P_n(F) \) anisotropic. Suppose that there exists an \(F \)-isomorphism \(F(\varphi) \simeq F(\psi) \). Then there exists an \(a \in F^\times \) such that \(\psi \simeq a\varphi \) over \(F \), i.e., \(\varphi \) and \(\psi \) are similar over \(F \).

Proof. As \(\varphi_{F(\varphi)} \) is hyperbolic so is \(\varphi_{F(\psi)} \). In particular, \(a \psi \) is a subform of \(\varphi \) for some \(a \in F^\times \) by the Subform Theorem [22.5]. Since \(F(\varphi) \simeq F(\psi) \), we have \(\dim \varphi = \dim \psi \) and the result follows. \(\square \)

In general the corollary does not generalize to non Pfister forms. Let \(F = \mathbb{Q}(t_1, t_2, t_3) \) the restriction map \(\psi \) a non anisotropic quadratic form of even dimension over \(F \), we can write \(\gamma = \langle \langle t_1, t_2 \rangle \rangle \perp \langle -t_3 \rangle \) and \(\varphi = \langle \langle t_1, t_3 \rangle \rangle \perp \langle -t_2 \rangle \) have isomorphic function fields but are not similar. (Cf. [40] Th. XII.2.15.)

Notation 23.6. Let \(r : F \to K \) be a homomorphism of fields. Denote the kernel of \(r_{K/F} : W(F) \to W(K) \) by \(W(K/F) \) and the kernel of \(r_{K/F} : I_q(F) \to I_q(K) \) by \(I_q(K/F) \). If \(\varphi \) is a non-degenerate even dimensional quadratic form over \(F \), we denote by \(W(F)\varphi \) the cyclic \(W(F) \)-module in \(I_q(F) \) generated by \(\varphi \).

Corollary 23.7. Let \(\varphi \) be an anisotropic quadratic \(n \)-fold Pfister form with \(n \geq 1 \) and \(\psi \) an anisotropic quadratic form of even dimension over \(F \). Then there is an isometry \(\psi \simeq b \otimes \varphi \) over \(F \) for some symmetric bilinear form \(b \) over \(F \) if and only if \(\psi_{F(\varphi)} \) is hyperbolic. In particular, \(I_q(F(\varphi)/F) = W(F)\varphi \).

Proof. If \(b \) is a bilinear form then \((b \otimes \varphi)_{F(\varphi)} = b_{F(\varphi)} \otimes \varphi_{F(\varphi)} \) is hyperbolic by Lemma 8.16 as \(\varphi_{F(\varphi)} \) is hyperbolic by Corollary 9.11. Conversely, suppose that \(\psi_{F(\varphi)} \) is hyperbolic. We induct on \(\dim \psi \). Assume that \(\dim \psi > 0 \). By the Subform Theorem 22.5 and Proposition 7.23, we have \(\psi \simeq a \varphi \perp \gamma \) for some \(a \in F^\times \) and quadratic form \(\gamma \). The form \(\gamma \) also satisfies \(\gamma_{F(\varphi)} \) is hyperbolic, so the result follows by induction. \(\square \)

We next prove a fundamental fact about forms in \(I^n(F) \) and \(I_q^n(F) \) due to Arason and Pfister known as the Hauptsatz.

Theorem 23.8. (Hauptsatz)

1. Let \(0 \neq \varphi \) be an anisotropic quadratic form lying in \(I^n_q(F) \). Then \(\dim \varphi \geq 2^n \).
2. Let \(0 \neq b \) be an anisotropic bilinear form lying in \(I^n_q(F) \). Then \(\dim(b) \geq 2^n \).

Proof. (1) As \(I^n_q(F) \) is additively generated by general quadratic \(n \)-fold Pfister forms, we can write \(\varphi = \sum_{i=1}^r \alpha_i \rho_i \) in \(W(F) \) for some anisotropic \(\rho_i \in P_n(F) \) and \(\alpha_i \in F^\times \). We prove the result by induction on \(r \). If \(r = 1 \) the result is trivial as \(\rho_1 \) is anisotropic, so we may assume that \(r > 1 \). As \((\rho_1)_{F(\rho_1)} \) is hyperbolic by Corollary 9.11, applying the restriction map \(r_{F(\rho_1)/F} : W(F) \to W(F(\rho_1)) \) to \(\varphi \) yields \(\varphi_{F(\rho_1)} = \sum_{i=1}^{r-1} \alpha_i (\rho_i)_{F(\rho_1)} \) in \(I^n_q(F(\rho)) \). If \(\varphi_{F(\rho_1)} \) is hyperbolic then \(2^n = \dim \rho \leq \dim \varphi \) by the Subform Theorem 22.5. If this does not occur then by induction \(2^n \leq \dim(\varphi_{F(\rho_1)})_{an} \leq \dim \varphi \) and the result follows.

(2) As \(I^n_q(F) \) is additively generated by bilinear \(n \)-fold Pfister forms, we can write \(b = \sum_{i=1}^r \varepsilon_i \xi_i \) in \(W(F) \) for some \(\xi_i \) anisotropic bilinear \(n \)-fold Pfister forms and \(\varepsilon_i \in \{\pm 1\} \). Let \(\varphi = \varphi_{\xi_i} \) the quadratic form associated to \(\xi_i \). Then \(\varphi_{F(\varphi)} \) is isotropic hence \((\xi_i)_{F(\varphi)} \) is isotropic hence metabolic by Corollary 6.3. If \(\psi_{F(\varphi)} \) is not metabolic then \(2^n \leq \dim(\psi_{F(\varphi)})_{an} \leq \dim b \) by induction on \(r \). If \(\psi_{F(\varphi)} \) is metabolic then \(2^n = \dim c \leq \dim b \) by Corollary 22.8. \(\square \)
An immediate consequence of the Hauptsatz is a solution to a problem of Milnor, viz.,

Corollary 23.9. $\bigcap_{i=1}^{\infty} I_i^n(F) = 0$ and $\bigcap_{i=1}^{\infty} I_i^n(F) = 0$.

The proof of the Hauptsatz for bilinear forms completes the proof of Corollary 6.19 and Theorem 6.20. We have an analogous result for quadratic Pfister forms.

Corollary 23.10. Let $\varphi, \psi \in GP_n(F)$. If $\varphi \equiv \psi \mod I_{q_i}^{n+1}(F)$ then $\varphi \simeq a\psi$ for some $a \in F^\times$, i.e., φ and ψ are similar over F. If, in addition, $D(\varphi) \cap D(\psi) \neq \emptyset$ then $\varphi \simeq \psi$.

Proof. By the Hauptsatz 23.8 we may assume both φ and ψ are anisotropic. As $\langle\langle a \rangle\rangle \otimes \psi \in GP_{n+1}(F)$, we have $a\psi \equiv \psi \mod I_{q_i}^{n+1}(F)$ for any $a \in F^\times$. Choose $a \in F^\times$ such that $\varphi \perp -a\psi$ in $I_{q_i}^{n+1}(F)$ is isotropic. By the Hauptsatz 23.8 the form $\varphi \perp -a\psi$ is hyperbolic hence $\varphi = a\psi$ in $I_q(F)$. As both forms are anisotropic, it follows by dimension count that $\varphi \simeq a\psi$ by Remark 8.17. If $D(\varphi) \cap D(\psi) \neq \emptyset$ then we can take $a = 1$. □

If φ is a nonzero subform of dimension at least two of an anisotropic quadratic form ρ then $\rho_{F(\varphi)}$ is isotropic. As φ must also be anisotropic $\rho \succ \varphi$. For general Pfister forms, we can say more. Let ρ be an anisotropic general quadratic Pfister form. Then $\rho_{F(\rho)}$ is hyperbolic so contains a totally isotropic subspace of dimension $(\dim \rho)/2$. Suppose that φ is a subform of ρ satisfying $\dim \varphi > (\dim \rho)/2$. Then $\varphi_{F(\rho)}$ is isotropic hence $\varphi \succ \rho$ also. This motivates the following:

Definition 23.11. An anisotropic quadratic form φ is called a Pfister neighbor if there is a general quadratic Pfister form ρ such that φ is isometric to a subform of ρ and $\dim \varphi > (\dim \rho)/2$.

For example, non-degenerate anisotropic forms of dimension at most 3 are Pfister neighbors.

Remark 23.12. Let φ be a Pfister neighbor isometric to a subform of a general Pfister form ρ with $\dim \varphi > (\dim \rho)/2$. By the above, $\varphi \leftrightarrow \rho$. Let ρ' be another form such that φ is isometric to a subform of ρ' and $\dim \varphi > (\dim \rho'/2$. As $\rho \leftrightarrow \varphi \leftrightarrow \rho'$ and $D(\rho) \cap D(\rho') \neq \emptyset$ we have $\rho' \simeq \rho$ by the Subform Theorem 22.5. Thus the general Pfister form ρ is uniquely determined by φ up to isomorphism. We call ρ the associated general Pfister form of φ. If φ represents one then ρ is a Pfister form.

24. Linkage of Quadratic Forms

In this section, we look at the quadratic analogue of linkage of bilinear Pfister forms. The Hauptsatz shows that anisotropic forms in $I_q^n(F)$ have dimension at least 2^n. We shall be interested in those dimensions that are realizable by anisotropic forms in $I_q^n(F)$. In this section, we determine the possible dimension of anisotropic forms that are the sum of two general quadratic Pfister forms as well as the meaning of when the sum of three general n-fold Pfister forms is congruent to zero $\mod I_q^n(F)$. We shall return to and expand these results in §35 and §81.

Proposition 24.1. Let $\varphi \in GP(F)$.

(1) Let $\rho \in GP_\varphi(F)$ be a subform of φ with $n \geq 1$. Then there is a bilinear Pfister form b such that $\varphi \simeq b \otimes \rho$.

(2) Let b be a general bilinear Pfister form such that φ_b is a subform of φ. Then there is $\rho \in P(F)$ such that $\varphi \simeq b \otimes \rho$.

Proof. We may assume that φ is anisotropic of dimension ≥ 2.

(1): Let b be a bilinear Pfister form of the largest dimension such that $b \otimes \rho$ is isometric to a subform ψ of φ. As $b \otimes \rho$ in non-degenerate, $V_\psi^\perp \cap V_\psi = 0$. We claim that $\psi = \varphi$. Suppose not. Then $V_\psi^\perp \neq 0$ hence $V_\psi^\perp \setminus V_\psi \neq \emptyset$. Choose $a = -\psi(v)$ with $v \in V_\psi^\perp \setminus V_\psi$. Lemma 23.1 implies that $\langle \langle a \rangle \rangle \otimes \rho$ is isometric to a subform of φ, contradicting the maximality of b.

(2): We may assume that $\text{char } F = 2$ and b is a Pfister form, so $1 \in D(\varphi_b) \subset D(\varphi)$. Let W be a subspace of V_φ such that $\varphi|_W \simeq \varphi_b$. Choose a vector $w \in W$ such that $\varphi_b(w) = 1$ and write the quasi-Pfister form $\varphi_b = \{1\} \perp \varphi'_{\varphi_b}$ where φ'_{φ_b} is any complementary subspace of FW in V_{φ_b}. Let $v \in V_\varphi$ satisfy v is orthogonal to V_{φ_b} but $b(v, w) \neq 0$. Then the restriction of φ on $W \oplus Fv$ is isometric to $\psi := \varphi'_b \perp [1, a]$ for some $a \in F^\times$. Note that ψ is isometric to subforms of both of the general Pfister forms φ and $\mu := b \otimes \langle \langle a \rangle \rangle$. In particular, ψ and μ are anisotropic. As $\dim \psi > \frac{1}{2} \dim \mu$, the form ψ is a Pfister neighbor of μ. Hence $\psi \prec \mu$ by Remark 23.12. Since $\varphi_{F(\psi)}$ is hyperbolic by Proposition 22.18 so is $\varphi_{F(\mu)}$. It follows from the Subform Theorem 22.5 that μ is isomorphic to a subform of φ as $1 \in D(\mu) \cap D(\varphi)$. By the first statement of the proposition, there is a bilinear Pfister form c such that $\varphi \simeq c \otimes \mu = c \otimes b \otimes \langle \langle a \rangle \rangle$. Hence $\varphi \simeq b \otimes \rho$ where $\rho = c \otimes \langle \langle a \rangle \rangle$. □

Let ρ be a general quadratic Pfister form ψ (respectively, a general bilinear Pfister form b) is a divisor ρ if $\varphi \simeq c \otimes \psi$ for some bilinear Pfister form c (respectively, $\varphi \simeq b \otimes \mu$ for some quadratic Pfister form μ). By Proposition 24.1, any general quadratic Pfister subform of ρ is a divisor of ρ and any general bilinear Pfister form b of ρ whose associated quadratic form is a subform of ρ is a divisor ρ.

Theorem 24.2. Let $\varphi_1, \varphi_2 \in GP(F)$ be anisotropic. Let $\rho \in GP(F)$ be a form of largest dimension such that ρ is isometric to subforms of φ_1 and φ_2. Then

$$i_0(\varphi_1 \perp -\varphi_2) = \dim \rho.$$

Proof. Note that $i_0 := i_0(\varphi_1 \perp -\varphi_2) \geq d := \dim \rho$. We may assume that $i_0 > 1$. We claim that φ_1 and φ_2 have isometric non-degenerate binary subforms. To prove the claim let W be a two-dimensional totally isotropic subspace of $V_{\varphi_1} \oplus V_{-\varphi_2}$. As φ_1 and φ_2 are anisotropic, the projections U_1 and U_2 of W to V_{φ_1} and $V_{-\varphi_2}$ are respectively 2-dimensional. Moreover, the binary forms $\psi_1 := \varphi_1|_{U_1}$ and $\psi_2 := \varphi_2|_{U_2}$ are isometric. We may assume that ψ_1 and ψ_2 are degenerate (and therefore, $\text{char } (F) = 2$). Hence ψ_1 and ψ_2 are isometric to φ_0, where b is a 1-fold general bilinear Pfister form. By Proposition 24.1(2), we have $\varphi_1 \simeq b \otimes \rho_1$ and $\varphi_2 \simeq b \otimes \rho_2$ for some $\rho_i \in P(F)$. Write $\rho_i = c_i \otimes \nu_i$ for bilinear Pfister forms c_i and 1-fold quadratic Pfister forms ν_i. Consider quaternion algebras Q_1 and Q_2 whose reduced norm forms are similar to $b \otimes \nu_1$ and $b \otimes \nu_2$ respectively. The algebras Q_1 and Q_2 are split by a quadratic field extension that splits b. By Theorem 97.19, the algebras Q_1 and Q_2 have subfields isomorphic to a separable quadratic extension L/F. By Example 98.8, the reduced norm forms of Q_1 and Q_2 are
Let the non-degenerate norm form of \(L/F \). Hence the forms \(b \otimes \nu_1 \) and \(b \otimes \nu_2 \) and therefore \(\varphi_1 \) and \(\varphi_2 \) have isometric non-degenerate binary subforms. The claim is proven.

By the claim, \(\rho \) is a general \(r \)-fold Pfister form with \(r \geq 1 \). Write \(\varphi_1 = \rho \perp \psi_1 \) and \(\varphi_2 = \rho \perp \psi_2 \) for some forms \(\psi_1 \) and \(\psi_2 \). We have \(\varphi_1 \perp (-\varphi_2) \simeq \psi_1 \perp (-\psi_2) \perp d\mathbb{H} \). Assume that \(i_0 > d \). Then the form \(\psi_1 \perp (-\psi_2) \) is isotropic, i.e., \(\psi_1 \) and \(\psi_2 \) have a common value, say \(a \in F^\times \). By Lemma 23.1, the form \(\langle (-a) \rangle \otimes \rho \) is isometric to subforms of \(\varphi_1 \) and \(\varphi_2 \), a contradiction.

Corollary 24.3. Let \(\varphi_1, \varphi_2 \in GP_n(F) \) be anisotropic forms. Then the possible values of \(i_0(\varphi_1 \perp -\varphi_2) \) are \(0, 1, 2, 4, \ldots, 2^n \).

Let \(\varphi_1 \in GP_n(F) \) and \(\varphi_2 \in GP_n(F) \) be anisotropic forms satisfying \(i(\varphi_1 \perp -\varphi_2) = 2^r > 0 \) with \(\rho \) a common general quadratic Pfister subform of dimension \(2^r \). We call \(\rho \) the linkage of \(\varphi_1 \) and \(\varphi_2 \) and say that \(\varphi_1 \) and \(\varphi_2 \) are \(r \)-linked. By Proposition 24.1, the linkage \(\rho \) is a divisor of \(\varphi_1 \) and \(\varphi_2 \). If \(m = n \) and \(r \geq n - 1 \), we say that \(\varphi_1 \) and \(\varphi_2 \) are linked.

Remark 24.4. Let \(\varphi_1 \) and \(\varphi_2 \) be general quadratic Pfister form. Suppose that \(\varphi_1 \) and \(\varphi_2 \) have isometric \(r \)-fold quasi-Pfister subforms. Then \(i_0(\varphi_1 \perp -\varphi_2) \geq 2^r \) and by Theorem 24.2 the forms \(\varphi_1 \) and \(\varphi_2 \) have isometric general quadratic \(r \)-fold Pfister subforms.

For three \(n \)-fold Pfister forms, we have:

Proposition 24.5. Let \(\varphi_1, \varphi_2, \varphi_3 \in P_n(F) \). If \(\varphi_1 + \varphi_2 + \varphi_3 \in I_q^{n+1}(F) \) then there exist a quadratic \((n-1)\)-fold Pfister form \(\rho \) and \(a_1, a_2, a_3 \in F^\times \) such that \(a_1a_2a_3 = 1 \) and \(\varphi_i \simeq \langle (a_i) \rangle \otimes \rho \) for \(i = 1, 2, 3 \). In particular, \(\rho \) is a common divisor of \(\varphi_i \) for \(i = 1, 2, 3 \).

Proof. We may assume that all \(\varphi_i \) are anisotropic Pfister forms by Corollary 9.11. In addition, we have \(\langle \varphi_3 \rangle_{F(P)} \) is hyperbolic. By Proposition 23.10, the form \(\langle \varphi_1 \perp -\varphi_2 \rangle_{F(P)} \) is also hyperbolic. As \(\varphi_3 \) is anisotropic, \(\varphi_1 \perp -\varphi_2 \) cannot be hyperbolic by the Hauptsatz 23.8. Consequently,

\[
(\varphi_1 \perp -\varphi_2)_{an} \simeq a\varphi_3 \perp \tau
\]

over \(F \) for some \(a \in F^\times \) and a quadratic form \(\tau \) by the Subform Theorem 22.5 and Proposition 7.23. As \(\dim \tau < 2^n \) and \(\tau \in I_q^{n+1}(F) \), the form \(\tau \) is hyperbolic by Hauptsatz 23.8 and therefore \(\varphi_1 - \varphi_2 = a\varphi_3 \) in \(I_q(F) \). It follows that \(i_0(\varphi_1 \perp -\varphi_2) = 2^{n-1} \) hence \(\varphi_1 \) and \(\varphi_2 \) are linked by Theorem 24.2.

Let \(\rho \) be a linkage of \(\varphi_1 \) and \(\varphi_2 \). By Proposition 24.1, \(\varphi_1 \simeq \langle (a_1) \rangle \otimes \rho \) and \(\varphi_2 \simeq \langle (a_2) \rangle \otimes \rho \) for some \(a_1, a_2 \in F^\times \). Then \(\varphi_3 \) is similar to \((\varphi_1 \perp -\varphi_2)_{an} \simeq -a_1\langle (a_1a_2) \rangle \otimes \rho \), i.e., \(\varphi_3 \simeq \langle (a_1a_2) \rangle \otimes \rho \).

Corollary 24.6. Let \(\varphi_1, \varphi_2, \varphi_3 \in P_n(F) \). Suppose that

\[
(24.7) \quad \varphi_1 + \varphi_2 + \varphi_3 \equiv 0 \mod I_q^{n+1}(F).
\]

Then

\[
e_{n}(\varphi_1) + e_{n}(\varphi_2) + e_{n}(\varphi_3) = 0 \text{ in } H^n(F).
\]
Let that purely transcendental extension. Then the splitting patterns of \(K \) is anisotropic over \(K \) by Proposition \[25.1\] that smallest field extensions \(K/F \) this to characterize elements of \(\mathbb{Z} \). We stop at \(q > 0 \). We begin by constructing a tower of field extensions of \(F \) with \(\varphi \) and quadratic forms \(\varphi \). The set of integers \(\{j_0(\varphi), \ldots, j_h(\varphi)\} \) is called the splitting pattern of \(\varphi \). Clearly one has

\[
0 \leq j_0(\varphi) < j_1(\varphi) < \cdots < j_h(\varphi) = [(\dim \varphi)/2].
\]

The set of integers \(\{j_0(\varphi), \ldots, j_h(\varphi)\} \) is called the splitting pattern of \(\varphi \).

Proposition 25.1. Let \(\varphi \) be a non-degenerate quadratic form with \(h = \mathfrak{h}(\varphi) \). The splitting pattern \(\{j_0(\varphi), \ldots, j_h(\varphi)\} \) of \(\varphi \) coincides with the set of Witt indices \(i_0(\varphi_K) \) over all field extensions \(K/F \).

Proof. Let \(K/F \) be a field extension. Define a tower of fields \(K_0 \subset K_1 \subset \cdots \subset K_h \) by \(K_0 = K \) and \(K_q = K_{q-1}(\varphi_{q-1}) \) for \(q > 0 \). Clearly \(F_q \subset K_q \) for all \(q \). Let \(q \geq 0 \) be the smallest integer such that \(\varphi_q \) is anisotropic over \(K_q \). It suffices to show that \(i_0(\varphi_K) = j_q(\varphi) \).

By definition of \(\varphi_q \) and \(j_q \), we have \(\varphi_{F_q} = \varphi_q \perp j_q(\varphi) \mathcal{H} \). Therefore \(\varphi_{K_q} = (\varphi_q)_{K_q} \perp j_q(\varphi) \mathcal{H} \). As \(\varphi_q \) is anisotropic over \(K_q \), we have \(i_0(\varphi_{K_q}) = j_q(\varphi) \).

We claim that the extension \(K_q/K \) is purely transcendental. This is clear if \(q = 0 \). Otherwise \(K_q = K_{q-1}(\varphi_{q-1}) \) is purely transcendental by Proposition \[22.9\] since \(\varphi_{q-1} \) is isotropic over \(K_{q-1} \) by the choice of \(q \) and is non-degenerate. It follows from the claim and Remark \[8.9\] that \(i_0(\varphi_K) = i_0(\varphi_{K_q}) = j_q(\varphi) \).

Corollary 25.2. Let \(\varphi \) be a non-degenerate quadratic form over \(F \) and \(K/F \) be a purely transcendental extension. Then the splitting patterns of \(\varphi \) and \(\varphi_K \) are the same.

Proof. This follows from Lemma \[7.16\].
We define the relative higher Witt indices $i_q(\varphi)$, $q = 1, \ldots, \mathfrak{h}(\varphi)$, of a non-degenerate quadratic form φ to be the differences

$$i_q(\varphi) = j_q(\varphi) - j_{q-1}(\varphi).$$

Clearly, $i_q(\varphi) > 0$ and $i_q(\varphi) = i_r(\varphi_s)$ for any $r > 0$ and $s \geq 0$ such that $r + s = q$.

Corollary 25.3. Let φ be a non-degenerate anisotropic quadratic form over F of dimension at least two. Then

$$i_1(\varphi) = j_1(\varphi) = \min\{i_0(\varphi_K) \mid K/F \text{ a field extension with } \varphi_K \text{ isotropic}\}.$$

Let φ be a non-degenerate non-hyperbolic quadratic form of even dimension over F with $h = \mathfrak{h}(\varphi)$. Let $F_0 \subset F_1 \subset \cdots \subset F_h$ be the generic splitting tower of φ. The form $\varphi_{h-1} = (\varphi_{F_{h-1}})_{an}$ is hyperbolic over its function field hence a general n-fold Pfister form for some integer $n \geq 1$ with $i_0(\varphi) = 2^{n-1}$ by Corollary 23.4. The form φ_{h-1} is called the leading form of φ and n is called the degree of φ and is denoted by $\deg \varphi$. The field F_{h-1} is called the leading field of φ. For convenience, we set $\deg \varphi = \infty$ if φ is hyperbolic.

Remark 25.4. Let φ be a non-degenerate quadratic form of even dimension with the generic splitting tower $F_0 \subset F_1 \subset \cdots \subset F_h$. If $\varphi_i = (\varphi_{F_i})_{an}$ with $i = 0, \ldots, \mathfrak{h}(\varphi) - 1$ then $\deg \varphi_i = \deg \varphi$.

Notation 25.5. Let φ be a non-degenerate quadratic form over F and $X = X_{\varphi}$. Let q be an integer satisfying $0 \leq q \leq \mathfrak{h}(\varphi)$. We shall let $X_q := X_{\varphi_q}^\circ$ and also write $j_q(X)$ (respectively, $i_q(X)$) for $i_q(\varphi)$ (respectively, $i_q(\varphi)$).

It is a natural problem to classify non-degenerate quadratic forms over a field F of a given height. This is still an open problem even for forms of height two. By Corollary 23.4, we do know

Proposition 25.6. Let φ be an even dimensional non-degenerate anisotropic quadratic form. Then $\mathfrak{h}(\varphi) = 1$ if and only if $\varphi \in GP(F)$.

Proposition 25.7. Let φ be a non-degenerate quadratic form of even dimension over F and let K/F be a field extension such that $(\varphi_K)_{an}$ is an m-fold general Pfister for some $m \geq 1$. Then $m \geq \deg \varphi$. In particular, $\deg \varphi$ is the smallest integer $n \geq 1$ such that $(\varphi_K)_{an}$ is a general n-fold Pfister form over an extension K/F.

Proof. It follows from Proposition 25.1 that

$$(\dim \varphi - 2^m)/2 = i_0(\varphi_K) \leq j_{\mathfrak{h}(\varphi)-1}(\varphi) = (\dim \varphi - 2^{\deg \varphi})/2,$$

hence the inequality.

Corollary 25.8. Let φ be a non-degenerate quadratic form of even dimension over F. Then $\deg \varphi_E \geq \deg \varphi$ for any field extension E/F.

For every $n \geq 1$ set

$$J_n(F) = \{\varphi \in I_q(F) \mid \deg \varphi \geq n\} \subset I_q(F).$$

Clearly $J_1(F) = I_q(F)$.
IV. FUNCTION FIELDS OF QUADRICS

Lemma 25.9. Let \(\rho \in GP_n(F) \) be anisotropic with \(n \geq 1 \). Let \(\varphi \in J_{n+1}(F) \). Then \(\deg(\rho \perp \varphi) \leq n \).

Proof. We may assume that \(\varphi \) is not hyperbolic. Let \(\psi = \rho \perp \varphi \). Let \(F_0, F_1, \ldots, F_h \) be the generic splitting tower of \(\varphi \) and let \(\varphi_i = (\varphi_{F_i})_{\text{an}} \). We show that \(\rho_{F_i} \) is anisotropic. Suppose not. Choose \(j \) maximal such that \(\rho_{F_j} \) is anisotropic. Then \(\rho_{F_{j+1}} \) is hyperbolic so \(\dim \varphi_j \leq \dim \rho \) by the Subform Theorem [22.5]. Hence

\[
2^n = \dim \rho \geq \dim \varphi_j \geq \deg 2^{\deg \varphi_j} = 2^{\deg \varphi} \geq 2^{n+1}
\]

which is impossible. Thus \(\rho_{F_0} \) is anisotropic.

As \(\varphi \) is hyperbolic over \(F_h \), we have \(\psi_{F_h} \sim \rho_{F_h} \). Consequently,

\[
\deg \psi \leq \deg \psi_{F_h} = \deg \rho_{F_h} = n
\]

hence \(\deg \psi \leq n \) as claimed. \(\square \)

Corollary 25.10. Let \(\varphi \) and \(\psi \) be even dimensional non-degenerate quadratic forms. Then \(\deg(\varphi \perp \psi) \geq \min(\deg \varphi, \deg \psi) \).

Proof. If either \(\varphi \) or \(\psi \) is hyperbolic, this is trivial, so assume that both forms are not hyperbolic. We may also assume that \(\varphi \perp \psi \) is not hyperbolic. Let \(K/F \) be a field extension such that \((\varphi \perp \psi)_K \sim \rho \) for some \(\rho \in GP_n(K) \) where \(n = \deg(\varphi \perp \psi) \). Then \(\varphi_K \sim \rho \perp (-\psi_K) \). Suppose that \(\deg \psi > n \). Then \(\deg \psi_K > n \) and applying the lemma to the form \(\rho \perp (-\psi_K) \) implies \(\deg \varphi_K \leq n \). Hence \(\deg \varphi \leq n = \deg(\varphi \perp \psi) \).

Proposition 25.11. \(J_n(F) \) is a \(W(F) \)-submodule of \(I_q(F) \) for every \(n \geq 1 \).

Proof. Corollary 25.10 shows that \(J_n(F) \) is a subgroup of \(I_q(F) \). Since \(\deg \varphi = \deg(a\varphi) \) for all \(a \in F^\times \), it follows that \(J_n(F) \) is also closed under multiplication by elements of \(W(F) \).

Corollary 25.12. \(I_q^n(F) \subset J_n(F) \).

Proof. As general quadratic \(n \)-fold Pfister forms clearly lie in \(J_n(F) \), the result follows from Proposition 25.11.

Proposition 25.13. \(I_q^2(F) = J_2(F) \).

Proof. Let \(\varphi \in J_2(F) \) and \(\varphi_i = \varphi_{F_i} \) with \(F_i, i = 0, \ldots, h \) the generic splitting tower. As \(\deg \varphi \geq 2 \) the field \(F_i \) is the function field of a smooth quadric of dimension at least 2 over \(F_{i-1} \), hence the field \(F_{i-1} \) is algebraically closed in \(F_i \). Since the form \(\varphi_h = 0 \) has trivial discriminant, by descending induction on \(i \) we get \(\varphi = \varphi_0 \) is of trivial discriminant. It follows from Theorem 13.7 that \(\varphi \in I_q^2(F) \).

Proposition 25.14. \(J_3(F) = \{ \varphi \mid \dim \varphi \text{ is even}, \text{ disc}(\varphi) = 1, \text{ clif}(\varphi) = 1 \} \).

Proof. Let \(\varphi \) be an anisotropic form of even dimension and trivial discriminant. Then \(\varphi \in I_q^2(F) = J_2(F) \) by Theorem 13.7 and Proposition 25.13. Suppose \(\varphi \) also has trivial Clifford invariant. We must show that \(\deg \varphi \geq 3 \). Let \(K \) be the leading field of \(\varphi \) and \(\rho \) its leading form. Then \(\rho \in GP_n(F) \) with \(n \geq 2 \). Suppose that \(n = 2 \). As \(e_2(\rho) = 0 \) in \(H^2(K) \), we have \(\rho \) is hyperbolic by Corollary 12.5, a contradiction. Therefore, \(\varphi \in J_3(F) \).
Let \(\varphi \in J_3(F) \). Then \(\varphi \in I_3^2(F) \) by Proposition 25.13. In particular, \(\text{disc}(\varphi) = 1 \) and \(\varphi = \sum_{i=1}^{\mu} \rho_i \) with \(\rho_i \in GP_3(F) \), \(1 \leq i \leq \mu \). We show that \(\text{clif}(\varphi) = 1 \) by induction on \(\mu \). Let \(\rho_r = b([a, d]) \) and \(K = F_d \). Then \(\varphi_K \in J_3(K) \) and satisfies \(\varphi_K = \sum_{i=1}^{\mu-1} (\rho_i)_K \) as \((\rho_r)_K \) is hyperbolic. By induction, \(\text{clif}(\varphi_K) = 1 \). Thus \(\text{clif}(\varphi) \) lies in kernel of \(\text{Br}(F) \rightarrow \text{Br}(K) \). Therefore the index of \(\text{clif}(\varphi) \) is at most two. Consequently, \(\text{clif}(\varphi) \) is represented by a quaternion algebra, hence there exists a 2-fold quadratic Pfister form \(\sigma \) satisfying \(\text{clif}(\varphi) = \text{clif}(\sigma) \). Thus \(\text{clif}(\varphi + \sigma) = 1 \) so \(\varphi + \sigma \) lies in \(J_3(F) \) by the first part of the proof. It follows that \(\sigma \) lies in \(J_3(F) \). Therefore, \(\sigma = 0 \) and \(\text{clif}(\varphi) = 1 \). \(\square \)

We showed that \(\tilde{e}_2 \) is an isomorphism in Chapter 16. Therefore, \(I_3^2(F) = J_3(F) \). We shall show that \(I_3^n(F) = J_n(F) \) for all \(n \) in Theorem 40.10.

Proposition 25.15. \(I_3^n(F)J_n(F) \subset J_{n+m}(F) \).

Proof. Clearly, it suffices to do the case that \(m = 1 \). Since 1-fold bilinear Pfister forms additively generate \(I(F) \), it also suffices to show that if \(\varphi \in J_n(F) \) and \(a \in F^\times \) then \(\langle [a] \rangle \otimes \varphi \in J_{n+1}(F) \). Let \(\psi \) be the anisotropic part of \(\langle [a] \rangle \otimes \varphi \). We may assume that \(\psi \neq 0 \).

First suppose that \(\psi \in GP(F) \). We prove that \(\deg \psi > n \) by induction on the height \(h \) of \(\varphi \). If \(h = 1 \) then \(\varphi \in GP(F) \) and the result is clear. So assume that \(h > 1 \). Suppose that \(\psi_{F(\varphi)} \) remains anisotropic. By the induction hypothesis applied to the form \(\varphi_{F(\varphi)} \) we have

\[
\deg \psi = \deg \psi_{F(\varphi)} > n.
\]

If \(\psi_{F(\varphi)} \) is isotropic, it is hyperbolic and therefore \(\dim \psi \geq \dim \varphi \) by the Subform Theorem 22.5. As \(h > 1 \) we have

\[
2^{\deg \psi} = \dim \psi \geq \dim \varphi > 2^{\deg \varphi} \geq 2^n,
\]

hence \(\deg \psi > n \).

Now consider the general case. Let \(K/F \) be a field extension such that \(\psi_K \) is Witt equivalent to a general Pfister form and \(\deg \psi_K = \deg \psi \). By the first part of the proof

\[
\deg \psi = \deg \psi_K > n.
\]

\(\square \)

26. The Separation Theorem

There are anisotropic quadratic forms \(\varphi \) and \(\psi \) such that \(\dim \varphi < \dim \psi \) and \(\varphi_{F(\psi)} \) is isotropic. For example, this is the case when \(\varphi \) and \(\psi \) are Pfister neighbors of the same Pfister form. In this section, we show that if two anisotropic quadratic forms \(\varphi \) and \(\psi \) are separated by a power of two, more precisely, if \(\dim \varphi \leq 2^n < \dim \psi \) for some \(n \geq 0 \) then \(\varphi_{F(\psi)} \) remains anisotropic.

We shall need the following observation.

Remark 26.1. Let \(\psi \) be a quadratic form. Then \(V_\psi \) contains a (maximal) totally isotropic subspace of dimension \(\ell'_0(\psi) := \ell_0(\psi) + \dim \text{rad}(\psi) \). Define the invariant \(s \) of a form by \(s(\psi) := \dim(\psi) - 2\ell'_0(\psi) = \dim \psi_n - \dim \text{rad}(\psi) \). If two quadratic forms \(\psi \) and \(\mu \) are Witt equivalent then \(s(\psi) = s(\mu) \).
A field extension L/F is called \textit{unirational} if there is a filed extension L'/L with L'/F purely transcendental. A tower of unirational field extensions is unirational. If L/F is unirational then every anisotropic quadratic form over F remains anisotropic over L by Lemma 7.16.

\textbf{Lemma 26.2.} Let φ be an anisotropic quadratic form over F satisfying $\dim \varphi \leq 2^n$ for some $n \geq 0$. Then there exists a field extension K/F and an $(n+1)$-fold anisotropic quadratic Pfister form ρ over K such that

1. φ_K is isometric to a subform of ρ.
2. The field extension $K(\rho)/F$ is unirational.

\textbf{Proof.} Let $K_0 = F(t_1, \ldots, t_{n+1})$ and let $\rho = \langle \langle t_1, \ldots, t_{n+1} \rangle \rangle$. Then ρ is anisotropic. Indeed by Corollary 19.6 and induction, it suffices to show $\langle \langle t \rangle \rangle$ is anisotropic over $F(t)$. If this is false there is an equation $f^2 + fg + tg^2 = 0$ with $f, g \in F[t]$. Looking at the highest term of t in this equation gives either $a^2 t^{2n} = 0$ or $b^2 t^{2n+1} = 0$ where a, b are the leading coefficients of f, g respectively. Neither is possible.

Consider the class \mathcal{F} of field extensions E/K_0 satisfying

1'. ρ is anisotropic over E.
2'. The field extension $E(\rho)/F$ is unirational.

We show that $K_0 \in \mathcal{F}$. By the above ρ is anisotropic. Let $L = K_0(\langle \langle 1, t \rangle \rangle)$. Then L/F is purely transcendental. As ρ_L is isotropic, $L(\rho)/L$ is also purely transcendental and hence so is $L(\rho)/F$. Since $K_0(\rho) \subset L(\rho)$, the field extension $K_0(\rho)/F$ is unirational.

For every field $E \in \mathcal{F}$, the form φ_E is anisotropic by (2'). As ρ_E is non-degenerate, the form $\rho_E \perp (-\varphi_E)$ is regular. We set

$$m(E) = i_0(\rho_E \perp (-\varphi_E)) = i'_0(\rho_E \perp (-\varphi_E))$$

and let m be the maximum of the $m(E)$ over all $E \in \mathcal{F}$.

\textbf{Claim 1:} We have $m(E) \leq \dim \varphi$ and if $m(E) = \dim \varphi$ then φ_E is isometric to a subform of ρ_E.

Let W be a totally isotropic subspace in $V_{\rho_E} \perp V_{-\varphi_E}$ of dimension $m(E)$. Since ρ_E and φ_E are anisotropic, the projections of W to V_{ρ_E} and $V_{-\varphi_E} = V_{\varphi_E}$ are injective. This gives the inequality. Suppose that $m(E) = \dim \varphi$. Then the projection $p : W \to V_{\varphi_E}$ is an isomorphism and the composition

$$V_{\varphi_E} \xrightarrow{p^{-1}} W \to V_{\rho_E}$$

identifies φ_E with a subform of ρ_E.

\textbf{Claim 2:} $m = \dim \varphi$.

Assume that $m < \dim \varphi$. We derive a contradiction. Let $K \in \mathcal{F}$ be a field satisfying $m = m(K)$ and set $\tau = (\rho_K \perp (-\varphi_K))_{an}$. As the form $\rho_K \perp (-\varphi_K)$ is regular we have $\tau \sim \rho_K \perp (-\varphi_K)$ and

$$\dim \rho + \dim \varphi = \dim \tau + 2m. \tag{26.3}$$

Let W be a totally isotropic subspace in $V_{\rho_K} \perp V_{-\varphi_K}$ of dimension m. Let σ denote the restriction of ρ_K on $V_{\rho_K} \cap W^\perp$. Thus σ is a subform of ρ_K of dimension $\geq 2^{n+1} - m > 2^n$.

IV. \textsc{Function fields of quadrics}
In particular, \(\sigma \) is a Pfister neighbor of \(\rho_K \). By Lemma \ref{lem:extension}, the natural map \(V_{\rho_K} \cap W^\perp \to W^\perp/W \) identifies \(\sigma \) with a subform of \(\tau \).

We show that the condition \((2')\) holds for \(K(\tau) \). Since \(\sigma \) is a Pfister neighbor of \(\rho_K \), the form \(\sigma \) and therefore \(\tau \) is isotropic over \(K(\rho) \). By Lemma \ref{lem:extension} the extension \(K(\rho)/K \) is separable hence \(\tau_{K(\rho)} \) is regular by Lemma \ref{lem:regularity}. Therefore, by Lemma \ref{lem:regularity} the extension \(K(\rho)(\tau)/K(\rho) \) is purely transcendental. It follows that \(K(\rho)(\tau) = K(\tau)(\rho) \) is unirational over \(F \) hence condition \((2')\) is satisfied.

As \(\tau \) is isotropic over \(K(\tau) \), we have \(m(K(\tau)) > m \), hence \(K(\tau) \notin \mathcal{F} \). Therefore condition \((1')\) does not hold for \(K(\tau) \), i.e., \(\rho_K \) is isotropic and therefore hyperbolic over \(K(\tau) \). As \(\emptyset \neq D(\sigma) \subset D(\rho_K) \cap D(\tau) \), the form \(\tau \) is isometric to a subform of \(\rho_K \) by the Subform Theorem \ref{subform}. Let \(\tau^\perp \) be the complementary form of \(\tau \) in \(\rho_K \). It follows from \ref{26.3} that
\[
\dim \tau^\perp = \dim \rho - \dim \tau = 2m - \dim \varphi < \dim \varphi.
\]

As \(\rho_K \perp (-\tau) \approx \tau^\perp \) by Lemma \ref{lem:orthogonality},
\[
\tau \perp (-\tau) \approx \rho_K \perp (-\varphi_K) \perp (-\tau) \approx \tau^\perp \perp (-\varphi_K).
\]

We now use the invariant \(s \) defined in Remark \ref{rem:invariant}. Since the space of \(\tau \perp (-\tau) \) contains a totally isotropic subspace of dimension \(\dim \tau \), it follows from \ref{26.4} and Remark \ref{rem:invariant} that
\[
s(\tau^\perp \perp (-\varphi_K)) = s(\tau \perp (-\tau)) = 0,
\]
i.e., the form \(\tau^\perp \perp (-\varphi_K) \) contains a totally isotropic subspace of half the dimension of the form. Since \(\dim \varphi > \dim \tau^\perp \), this subspace intersects \(V_{\varphi_K} \) nontrivially, consequently \(\varphi_K \) is isotropic contradicting condition \((2')\). This establishes the claim.

It follows from the claims that \(\varphi_K \) is isometric to a subform of \(\rho_K \). \(\square \)

Theorem 26.5. (Separation Theorem) Let \(\varphi \) and \(\psi \) be two anisotropic quadratic forms over \(F \). Suppose that \(\dim \varphi \leq 2^n < \dim \psi \) for some \(n \geq 0 \). Then \(\varphi \psi(\psi) \) is anisotropic.

Proof. Let \(\rho \) be an \((n+1)\)-fold Pfister form over a field extension \(K/F \) as in Lemma \ref{lem:pfister} with \(\varphi_K \) a subform of \(\rho \). By the lemma \(\psi_K(\rho) \) is anisotropic. Suppose that \(\varphi_K(\psi) \) is isotropic. Then \(\rho_K(\psi) \) is isotropic hence hyperbolic. By the Subform Theorem \ref{subform}, there exists an \(a \in F \) such that \(a\psi_K \) is a subform of \(\rho \). As \(\dim \psi > \frac{1}{2} \dim \rho \), the form \(a\psi_K \) is a neighbor of \(\rho \) hence \(\psi_K(\rho) \) is isotropic. This is a contradiction. \(\square \)

Corollary 26.6. Let \(\varphi \) and \(\psi \) be two anisotropic quadratic forms over \(F \) with \(\dim \psi \geq 2 \). If \(\dim \psi \geq 2 \dim \varphi - 1 \) then \(\varphi_F(\psi) \) is anisotropic.

27. A Further Characterization of Quadratic Pfister Forms

In this section, we give a further characterization of quadratic Pfister forms. We show if a non-degenerate anisotropic quadratic form \(\rho \) becomes hyperbolic over the function field of an irreducible anisotropic form \(\varphi \) satisfying \(\dim \varphi > \frac{1}{3} \dim \rho \) then \(\rho \) is a general quadratic Pfister form.

For a non-degenerate non-hyperbolic quadratic form \(\rho \) of even dimension, we set \(N(\rho) = \dim \rho - 2^{\deg \rho} \). Since the splitting patterns of \(\rho \) and \(\rho_F(\psi) \) are the same by Corollary \ref{cor:splitting}, we have \(N(\rho_F(\psi)) = N(\rho) \).
IV. FUNCTION FIELDS OF QUADRICS

Theorem 27.1. Let ρ be a non-hyperbolic quadratic form and φ be a subform of ρ of dimension at least 2. Suppose that

1. φ and its complementary form in ρ are anisotropic.
2. $\rho_{F(\varphi)}$ is hyperbolic.
3. $2 \dim \varphi > N(\rho)$.

Then ρ is an anisotropic general Pfister form.

Proof. Note that ρ is a non-degenerate form of even dimension by Remark 7.19 as $\rho_{F(\varphi)}$ is hyperbolic.

Claim 1: For any field extension K/F with φ_K anisotropic and ρ_K not hyperbolic, φ_K is isometric to a subform of $(\rho_K)_{an}$.

By Lemma 8.13, the form $\rho \perp (-\varphi)$ is Witt equivalent to $\psi := \varphi^\perp$. In particular $\dim \rho = \dim \varphi + \dim \psi$. Set $\rho' = (\rho_K)_{an}$. It follows from (3) that

$$\dim (\rho' \perp (-\varphi_K)) \geq 2 \deg \rho + \dim \varphi > \dim \rho - \dim \varphi = \dim \psi.$$

As $\rho' \perp (-\varphi_K) \sim \psi_K$ it follows that the form $\rho' \perp (-\varphi_K)$ is isotropic, therefore $D(\rho') \cap D(\varphi_K) \neq \emptyset$. Since $\rho_K(\varphi)$ is hyperbolic, the form φ_K is isometric to a subform of ρ' by the Subform Theorem 22.5 as needed.

Claim 2: ρ is anisotropic.

Applying Claim 1 to $K = F$ implies that φ is isometric to a subform of $\rho' = \rho_{an}$. Let ψ' be the complementary form of φ in ρ'. By Lemma 8.13,

$$\psi' \sim \rho' \perp (-\varphi) \sim \rho \perp (-\varphi) \sim \psi.$$

As both forms ψ and ψ' are anisotropic, we have $\psi' \simeq \psi$. Hence

$$\dim \rho = \dim \varphi + \dim \psi = \dim \varphi + \dim \psi' = \dim \rho' = \dim \rho_{an}.$$

Therefore ρ is anisotropic.

We now investigate the form $\varphi_{F(\rho)}$. Suppose it is isotropic. Then $\varphi \not\simeq \rho$ hence $\rho_{F(\rho)}$ is hyperbolic by Proposition 22.18. It follows that ρ is a general Pfister form by Corollary 23.4 and we are done. Thus we may assume that $\varphi_{F(\rho)}$ is anisotropic. Normalizing we may also assume that $1 \in D(\varphi)$. We shall prove that ρ is a Pfister form by induction on $\dim \rho$. Suppose that ρ is not a Pfister form. In particular, $\rho_1 := (\rho_{F(\rho)})_{an}$ is nonzero and $\dim \rho_1 \geq 2$. We shall finish the proof by obtaining a contradiction. Let $\varphi_1 = \varphi_{F(\rho)}$.

Note that $\deg \rho_1 = \deg \rho$ and $\dim \rho_1 < \dim \rho$ hence $N(\rho_1) < N(\rho)$.

Claim 3: ρ_1 is a Pfister form.

Applying Claim 1 to the field $K = F(\rho)$, we see that φ_1 is isometric to a subform of ρ_1. We have

$$2 \dim \varphi_1 = 2 \dim \varphi > N(\rho) > N(\rho_1).$$

By the induction hypothesis applied to the form ρ_1 and its subform, φ_1, we conclude that the form ρ_1 is a Pfister form proving the claim. In particular, $\dim \rho_1 = 2^{\deg \rho_1} = 2^{\deg \rho}$.

Claim 4: $D(\rho) = G(\rho)$.

Since \(G(\rho) \subset D(\rho) \), it suffices to show if \(x \in D(\rho) \) then \(x \notin G(\rho) \). Hence the anisotropic part \(\beta \) of the isotropic form \(\langle \langle x \rangle \rangle \otimes \rho \) is nonzero. It follows from Proposition 25.15 that \(\deg \beta \geq 1 + \deg \rho \).

Suppose that \(\beta_{F(\rho)} \) is hyperbolic. As \(\rho - \beta = -x\rho \) in \(I_q(F) \) the form \(\rho \perp (-\beta) \) is isotropic, hence \(D(\rho) \cap D(\beta) \neq \emptyset \). It follows from that \(\rho \) is isometric to a subform of \(\beta \) by the Subform Theorem 22.5. Let \(\beta \simeq \rho \perp \mu \perp (-x\rho) \) for some form \(\mu \). By Witt cancellation, \(\mu \sim -x\rho \). But \(\dim \beta < 2 \dim \rho \) hence \(\dim \mu < \dim \rho \). As \(\rho \) is anisotropic, this is a contradiction. It follows that the form \(\beta_1 = (\beta_{F(\rho)})_{an} \) is not zero and hence \(\dim \beta_1 \geq 2 \deg \beta \geq 2^{1+\deg \rho} \).

Since \(\rho \) is hyperbolic over \(F(\varphi) \), it follows from the Subform Theorem 22.5 that \(\varphi \) is isometric to a subform of \(x\rho \). Applying Claim 1 to the form \(x\rho_{F(\varphi)} \), we conclude that \(\varphi_1 \) is a subform of \(x\rho_1 \). As \(\varphi_1 \) is also a subform of \(\rho_1 \), the form \(\langle \langle x \rangle \rangle \otimes x\rho_1 \) contains \(\varphi_1 \perp (-\varphi_1) \) and therefore a totally isotropic subspace of dimension \(\dim \varphi_1 = \dim \varphi \). Therefore \(\dim(\langle \langle x \rangle \rangle \otimes x\rho_1)_{an} \leq 2 \dim \rho_1 - 2 \dim \varphi \). Consequently,

\[
2^{1+\deg \rho} \leq \dim \beta_1 = \dim(\langle \langle x \rangle \rangle \otimes x\rho_1)_{an} \leq 2 \dim \rho_1 - 2 \dim \varphi < 2^{1+\deg \rho},
\]
a contradiction. This proves the claim.

Let \(F(T) = F(T_1, \ldots, T_n) \) with \(n = \dim \rho \). We have \(\deg \rho_{F(T)} = \deg \rho \) and \(N(\rho_{F(T)}) = N(\rho) \). Working over \(F(T) \) instead of \(F \), we have the forms \(\varphi_{F(T)} \) and \(\rho_{F(T)} \) satisfy the conditions of the theorem. By Claim 4, we conclude that \(G(\rho_{F(T)}) = D(\rho_{F(T)}) \). It follows from Theorem 23.2 that \(\rho \) is a Pfister form, a contradiction.

Corollary 27.2. Let \(\rho \) be a nonzero anisotropic quadratic form and let \(\varphi \) be an irreducible anisotropic quadratic form satisfying \(\dim \varphi > \frac{1}{3} \dim \rho \). If \(\rho_{F(\varphi)} \) is hyperbolic then \(\rho \in GP(F) \).

Proof. As \(\rho_{F(\varphi)} \) is hyperbolic, the form \(\rho \) is non-degenerate. It follows by the Subform Theorem 22.5 that \(a\varphi \) is a subform of \(\rho \) for some \(a \in F^\times \). As \(\rho \) is anisotropic, the complementary form of \(a\varphi \) in \(\rho \) is anisotropic.

Let \(K \) be the leading field of \(\rho \) and \(\tau \) its leading form. We show that \(\varphi_K \) is anisotropic. If \(\varphi_{F(\rho)} \) is isotropic then \(\varphi \not\simeq \rho \). In particular, \(\rho_{F(\rho)} \) is hyperbolic by Proposition 22.18 hence \(K = F \) and \(\varphi \) is anisotropic by hypothesis. Thus we may assume that \(\varphi_{F(\rho)} \) is anisotropic. The assertion now follows by induction on \(h(\rho) \). As \(\tau_{K(\varphi)} \sim \rho_{K(\varphi)} \) is hyperbolic, \(\dim \varphi = \dim \varphi_K \leq \dim \tau = 2^{\deg \rho} \) by the Subform Theorem 22.5. Hence \(N(\rho) = \dim \rho - 2^{\deg \rho} \leq \dim \rho - \dim \varphi < 2 \dim \varphi \). The result follows by Theorem 27.1. □

A further application of Theorem 27.1 is given by:

Theorem 27.3. Let \(\varphi \) and \(\psi \) be non-degenerate quadratic forms over \(F \) of the same odd dimension. If \(i_0(\varphi_K) = i_0(\psi_K) \) for any field extension \(K/F \) then \(\varphi \) and \(\psi \) are similar.

Proof. We may assume that \(\varphi \) and \(\psi \) are anisotropic and have the same determinants (cf. Remark 13.8). Let \(n = \dim \varphi \). We shall show that \(\varphi \simeq \psi \) by induction on \(n \). The statement is obvious if \(n = 1 \), so assume that \(n > 1 \).

We construct a non-degenerate form \(\rho \) of dimension \(2n \) and trivial discriminant containing \(\varphi \) such that \(\varphi^\perp \simeq -\psi \) as follows: If \(\text{char} \ F \neq 2 \) let \(\rho = \varphi \perp (-\psi) \). If \(\text{char} \ F = 2 \)
write \(\varphi \simeq \langle a \rangle \perp \varphi' \) and \(\psi \simeq \langle a \rangle \perp \psi' \) for some \(a \in F^\times \) and non-degenerate forms \(\varphi' \) and \(\psi' \). Set \(\rho = [a, c] \perp \varphi' \perp \psi' \), where \(c \) is chosen so that \(\text{disc} \rho \) is trivial.

By induction applied to the anisotropic parts of \(\varphi_{F(\varphi)} \) and \(\psi_{F(\varphi)} \), we have \(\varphi_{F(\varphi)} \simeq \psi_{F(\varphi)} \). It follows from Witt Cancellation and Proposition 13.6 (in the case \(\text{char} F = 2 \)) that \(p_{F(\varphi)} \) is hyperbolic. If \(\rho \) itself is not hyperbolic, then by Theorem 27.11 the form \(\rho \) is an anisotropic general Pfister form of dimension \(2n \). In particular \(n \) is a power of \(2 \), a contradiction.

Thus \(\rho \) is hyperbolic. By Lemma 8.13, we have \(-\varphi \sim \rho \perp (-\varphi) \sim \varphi^\perp \sim -\psi \). As \(\varphi \) and \(\psi \) have the same dimension we conclude that \(\varphi \simeq \psi \).

28. Excellent Quadratic Forms

In general, if \(\varphi \) is a non-degenerate quadratic form and \(K/F \) a field extension then the anisotropic part of \(\varphi_K \) will not be isometric to a form defined over \(F \) and extended to \(K \). Those forms over a field \(F \) whose anisotropic part is universally defined over \(F \) are called excellent forms. We introduce them in this section.

Let \(K/F \) be a field extension and \(\psi \) a quadratic form over \(K \). We say that \(\psi \) is defined over \(F \) if there is a quadratic form \(\eta \) over \(F \) such that \(\psi \simeq \eta_K \).

Theorem 28.1. Let \(\varphi \) be an anisotropic non-degenerate quadratic form of dimension \(\geq 2 \). Then \(\varphi \) is a Pfister neighbor if and only if the quadratic form \((\varphi_{F(\varphi)})_{\text{an}} \) is defined over \(F \).

Proof. Let \(\varphi \) be a Pfister neighbor and let \(\rho \) be the associated general Pfister form so \(\varphi \) is a subform of \(\rho \). As \(\varphi_{F(\varphi)} \) is isotropic, the general Pfister form \(\rho_{F(\varphi)} \) is hyperbolic by Corollary 9.11. By Lemma 8.13, the form \(\varphi_{F(\varphi)} \) is Witt equivalent to \(-(\varphi^\perp)_{F(\varphi)} \). Since \(\dim \varphi^\perp < (\dim \rho)/2 \), it follows by Corollary 26.6 that \((\varphi^\perp)_{F(\rho)} \) is anisotropic. By Corollary 22.17, the form \((\varphi^\perp)_{F(\rho)} \) is also anisotropic as \(\varphi \not\prec\prec \rho \) by Remark 23.12. Consequently, \((\varphi_{F(\varphi)})_{\text{an}} \simeq (\varphi^\perp)_{F(\varphi)} \) is defined over \(F \).

Suppose now that \((\varphi_{F(\varphi)})_{\text{an}} \simeq \psi_{F(\varphi)} \) for some (anisotropic) form \(\psi \) over \(F \). Note that \(\dim \psi < \dim \varphi \).

Claim: There exists a form \(\rho \) satisfying

1. \(\varphi \) is a subform of \(\rho \).
2. The complementary form \(\varphi^\perp \) is isomorphic to \(-\psi \).
3. \(\rho_{F(\varphi)} \) is hyperbolic.

Moreover, if \(\dim \varphi \geq 3 \), then \(\rho \) can be chosen in \(I_q^2(F) \).

Suppose that \(\dim \varphi \) is even or \(\text{char} F \neq 2 \). Then \(\rho = \varphi \perp (-\psi) \) satisfies (1), (2), and (3). As \(F \) is algebraically closed in \(F(\varphi) \), if \(\dim \varphi \geq 3 \), we have \(\text{disc} \varphi = \text{disc} \psi \) hence \(\rho \in I_q^2(F) \).

So we may assume that \(\text{char} F = 2 \) and \(\dim \varphi \) is odd. Write \(\varphi = \varphi' \perp \langle a \rangle \) and \(\psi = \psi' \perp \langle b \rangle \) for non-degenerate forms \(\varphi' \), \(\psi' \) and \(a, b \in F^\times \). Note that \(\langle a \rangle \) (respectively, \(\langle b \rangle \)) is the restriction of \(\varphi \) (respectively, \(\psi \)) on \(\text{rad} h_\varphi \) (respectively, \(\text{rad} h_\psi \)) by Proposition 7.32. By definition of \(\psi \) we have \(\langle a \rangle_{F(\varphi)} \simeq \langle b \rangle_{F(\varphi)} \). Since \(F(\varphi)/F \) is a separable field extension by Lemma 22.14, we have \(\langle a \rangle \simeq \langle b \rangle \). Therefore we may assume that \(b = a \).
Choose $c \in F$ such that $\text{disc}(\varphi' \perp \psi') = \text{disc}[a, c]$ and set $\rho = \varphi' \perp \psi' \perp [a, c]$ so that $\rho \in I^2_q(F)$. Clearly φ is a subform of ρ and φ'^{\perp} is isomorphic to ψ. By Lemma 8.13, $\rho \perp \varphi \sim \psi$. Since φ and ψ are Witt equivalent over $F(\varphi)$, we have $\rho_{F(\varphi)} \perp \varphi_{F(\varphi)} \sim \varphi_{F(\varphi)}$. Cancelling the non-degenerate form $\varphi_{F(\varphi)}$ yields
\[
\rho_{F(\varphi)} \perp \langle a \rangle_{F(\varphi)} \sim \langle a \rangle_{F(\varphi)}.
\]
As $\rho \in I^2_q(F)$ by Proposition 13.6 we have $\rho_{F(\varphi)} \sim 0$ establishing the claim.

As $\dim \rho = \dim \varphi + \dim \psi < 2 \dim \varphi$ and φ is anisotropic, it follows that ρ is not hyperbolic. Moreover, φ and its complement $\varphi^{\perp} \simeq -\psi$ are anisotropic. Consequently, ρ is a general Pfister form by Theorem 27.1 hence φ is a Pfister neighbor. \square

Exercise 28.2. Let φ be a non-degenerate quadratic form of odd dimension. Then $h(\varphi) = 1$ if and only if φ is a Pfister neighbor of dimension $2^n - 1$ for some $n \geq 1$.

Theorem 28.3. Let φ be a non-degenerate quadratic form. Then the following two conditions are equivalent:

1. For any field extension K/F, the form $(\varphi_K)_{an}$ is defined over F.
2. There are anisotropic Pfister neighbors $\varphi_0 = \varphi_{an}, \varphi_1, \ldots, \varphi_r$ with associated general Pfister forms $\rho_0, \rho_1, \ldots, \rho_r$ respectively satisfying $\varphi_i \simeq (\rho_i \perp \varphi_{i+1})_{an}$ for all $i = 0, 1, \ldots, r$ (with $\varphi_{r+1} := 0$).

Proof. $(2) \Rightarrow (1)$ Let K/F be a field extension. If all general Pfister forms ρ_i are hyperbolic over K, the isomorphisms in (2) show that all the φ_i are also hyperbolic. In particular, $(\varphi_K)_{an}$ is the zero form and hence is defined over F.

Let s be the smallest integer such that $(\rho_s)_K$ is not hyperbolic. Then the forms $\varphi = \varphi_0, \varphi_1, \ldots, \varphi_s$ are Witt equivalent and $(\varphi_s)_K$ is a Pfister neighbor of the anisotropic general Pfister form $(\rho_s)_K$. In particular $(\varphi_s)_K$ is anisotropic and therefore $(\varphi_K)_{an} = (\varphi_s)_K$ is defined over F.

$(1) \Rightarrow (2)$ We prove the statement by induction on $\dim \varphi$. We may assume that $\dim \varphi_{an} \geq 2$. By Theorem 28.1 the form φ_{an} is a Pfister neighbor. Let ρ be the associated general Pfister form of φ_{an}. Consider the negative of the complimentary form $\psi = -(\varphi_{an})^{\perp}$ of φ_{an} in ρ. It follows from Lemma 8.13 that $\varphi_{an} \simeq (\rho \perp \psi)_{an}$.

We claim that the form ψ satisfies (1). Let K/F be a field extension. If ρ is hyperbolic over K, then φ_K and ψ_K are Witt equivalent. Therefore $(\psi_K)_{an} \simeq (\varphi_K)_{an}$ is defined over F. If ρ_K is anisotropic then so is ψ_K, therefore $(\psi_K)_{an} = \psi_K$ is defined over F. By the induction hypothesis applied to ψ, there are anisotropic Pfister neighbors $\varphi_1 = \psi, \varphi_2, \ldots, \varphi_r$ with the associated general Pfister forms $\rho_1, \rho_2, \ldots, \rho_r$ respectively such that $\varphi_i \simeq (\rho_i \perp \varphi_{i+1})_{an}$ for all $i = 1, \ldots, r$, where $\varphi_{r+1} = 0$. To finish the proof let $\varphi_0 = (\varphi)_{an}$ and $\rho_0 = \rho$. \square

A quadratic form φ satisfying equivalent conditions of Theorem 28.3 is called excellent. By Lemma 8.13, the form φ_{i+1} in Theorem 28.3(2) is isometric to the negative of the complement of φ_i in ρ_i. In particular, the sequences of forms φ_i and ρ_i are uniquely determined by φ up to isometry. Note that all forms φ_i are also excellent – this allows inductive proofs while working with excellent forms.
Example 28.4. If char $F \neq 2$ then the form $n(1)$ is excellent for every $n > 0$.

Proposition 28.5. Let φ be an excellent quadratic form. Then in the notation of Theorem 28.3 we have the following:

1. The integer r coincides with the height of φ.
2. If $F_0 = F, F_1, \ldots, F_r$ is the generic splitting tower of φ then $(\varphi_{F_i})_{an} \simeq (\varphi_i)_{F_i}$ for all $i = 0, \ldots, r$.

Proof. The last statement is obvious if $i = 0$. As ρ_0 is hyperbolic over $F_1 = F(\varphi_{an}) = F(\varphi_0)$, the forms φ_{F_1} and $(\varphi_1)_{F_1}$ are Witt equivalent. Since $\dim \varphi_1 < (\dim \rho_0)/2$, the form φ_1 is anisotropic over $F(\rho_0)$ by Corollary 26.6. As $\varphi_0 \prec \rho_0$, the form φ_1 is also anisotropic over $F_1 = F(\varphi_0)$ by Corollary [22.17]. Therefore, $(\varphi_{F_1})_{an} \simeq (\varphi_1)_{F_1}$. This proves the last statement for $i = 1$. Both statements of the proposition follow now by induction on r.

29. Excellent Field Extensions

A field extension E/F is called excellent if the anisotropic part φ_E of any quadratic form φ over F is defined over F, i.e., there is a quadratic form ψ over F satisfying $(\varphi_E)_{an} \simeq \psi_E$.

Example 29.1. Suppose that every anisotropic form over F remains anisotropic over E. Then for every quadratic form φ over F the form $(\varphi_{an})_E$ is anisotropic and therefore is isometric to the anisotropic part of φ_E. It follows that E/F is an excellent field extension. In particular, it follows from Lemma [7.16] and Springer’s Theorem [18.5] that purely transcendental field extensions and odd degree field extensions are excellent.

Example 29.2. Let E/F be a separable quadratic field extension. Then $E = F(\sigma)$, where σ is the (non-degenerate) binary norm form of E/F. It follows from Corollary [22.12] that E/F is an excellent field extension.

Example 29.3. Let E/F be a field extension such that every quadratic form over E is defined over F. Then E/F is obviously an excellent extension.

Exercise 29.4. Let E be either algebraic closure, or separable closure of a field F. Prove that every quadratic form over E is defined over F. In particular E/F is an excellent extension.

Let ρ be an irreducible non-degenerate quadratic form over F. If $\dim \rho = 2$, the extension $F(\rho)/F$ is separable quadratic and therefore is excellent by Example 29.2. We extend this result to non-degenerate forms of dimension 3.

Notation 29.5. Until the end of this section, let K/F be a separable quadratic field extension and let $a \in F^\times$. Consider the 3-dimensional quadratic form $\rho = N_{K/F} \perp (-a)$ on the space $U := K \oplus F$. Let X be the projective quadric of ρ. It is a smooth conic curve in $\mathbb{P}(U)$. In the projective coordinates $[s : t]$ on $K \oplus F$, the conic X is given by the equation $N_{K/F}(s) = at^2$. We write E for the field $F(\rho) = F(X)$.
The intersection of X with $\mathbb{P}(K)$ is Spec $F(x)$ for a point $x \in X$ of degree 2 with $F(x) \simeq K$. In fact, Spec $F(x)$ is the quadric of the form $N_{K/F} = \rho_{K}$. Over K the norm form $N_{K/F}(s)$ factors into a product $s \cdot s'$ of linear forms. Therefore there are two rational points y and y' of the curve X_K mapping to x under the natural morphism $X_K \to X$ so that $\text{div}(s/t) = y - y'$ and $\text{div}(s'/t) = y' - y$. Moreover, we have

\begin{equation}
N_{K/E}(s/t) = N_{K/F}(s)/t^2 = at^2/t^2 = a.
\end{equation}

For any $n \geq 0$ let L_n be the F-subspace

$$\{f \in E^\times \mid \text{div}(f) + nx \geq 0\} \cup \{0\}$$

of E. We have $F = L_0 \subset L_1 \subset L_2 \subset \cdots \subset E$ and $L_n \cdot L_m \subset L_{n+m}$ for all $n, m \geq 0$. In particular the union L of all L_n is a subring of E. In fact, E is the quotient field of L.

In addition, $O_{X,x} \cdot L_n \subset L_n$ and $\mathfrak{m}_{X,x} \cdot L_n \subset L_{n-1}$ for every $n \geq 1$. In particular, we have the structure of a K-vector space on L_n/L_{n-1} for every $n \geq 1$.

Set $\overline{L}_n = L_n/L_{n-1}$ for $n \geq 1$ and $\overline{L}_0 = K$. The graded group \overline{L}_s has the structure of a ring.

The following lemma is an easy case of the Riemann-Roch Theorem.

Lemma 29.7. In the notation above, we have $\dim_K(\overline{L}_n) = 1$ for all $n \geq 0$. Moreover, \overline{L}_s is a polynomial ring over K in one variable.

Proof. Let $f, g \in L_n \setminus L_{n-1}$ for $n \geq 1$. Since $f = (f/g)g$ and $f/g \in (O_{X,x})^\times$, the images of f and g in \overline{L}_n are linearly dependent over K. Hence $\dim_K(\overline{L}_n) \leq 1$. On the other hand, for a nonzero linear form l on K, we have $\text{div}(l/t) = z - x$ for some $z \neq x$. Hence $(l/t)^n \in L_n \setminus L_{n-1}$ and therefore $\dim_K(\overline{L}_n) \geq 1$. Moreover, $\overline{L}_s = K[l/t]$.

Proposition 29.8. Let $\varphi : V \to F$ be an anisotropic quadratic form and suppose that for some $n \geq 1$ there exists

$$v \in (V \otimes L_n) \setminus (V \otimes L_{n-1})$$

such that $\varphi(v) = 0$. Then there exists a subspace $W \subset V$ of dimension 2 such that

1. $\varphi|_W$ is similar to $N_{K/F}$,
2. there exists a nonzero $\tilde{v} \in V \otimes L_{n-1}$ such that $\tilde{\varphi}(\tilde{v}) = 0$ where $\tilde{\varphi}$ is the quadratic form $a(\varphi|_W) \perp \varphi|_W$ on V.

Proof. Denote by \tilde{v} the image of v under the canonical map $V \otimes L_n \to V \otimes \overline{L}_n$. We have $\tilde{v} \neq 0$ since $v \notin V \otimes L_{n-1}$. As \overline{L}_n is 2-dimensional over F by Lemma 29.7, there is a subspace $W \subset V$ of dimension 2 such that $\tilde{v} \in W \otimes \overline{L}_n$.

As \tilde{v} is an isotropic vector in $W \otimes \overline{L}_s$ and \overline{L}_s is a polynomial algebra over K, we have $W \otimes K$ is isotropic. It follows from Corollary 22.12 that the restriction $\varphi|_W$ is isometric to $cN_{K/F}$ for some $c \in F^\times$ and, in particular, non-degenerate.

By Proposition 22.23, we can write $v = w + w'$ with $w \in W \otimes L_n$ and $w' \in W^\perp \otimes L_n$. By construction of W we have $\tilde{w}' = 0$ in $V \otimes \overline{L}_n$, i.e., $w' \in V \otimes L_{n-1}$, therefore $\varphi(w') \in L_{2n-2}$. Since $0 = \varphi(v) = \varphi(w) + \varphi(w')$, we must have $\varphi(w) \in L_{2n-2}$.
We may therefore assume that $W = K$ and $\varphi|_K = cN_{K/F}$.

Thus we have $w \in K \otimes L_n \subset K \otimes E = K(X)$. Considering w as a function on X_K we have $\text{div}_\infty(w) = my + m'y'$ for some $m, m' \leq n$ where div_∞ is the divisor of poles. As $w \notin W \otimes L_{n-1}$ we must have one of the numbers m and m', say m, equal n.

Let σ be the generator of the Galois group of K/F. We have $\sigma(y) = y'$, hence $\text{div}_\infty(\sigma w) = m'y + m'y'$ and

$$\text{div}_\infty(\varphi(w) = \text{div}_\infty N_{K/F}(w) = \text{div}_\infty(w) + \text{div}_\infty(\sigma w) = (m + m')(y + y').$$

As $\varphi(w) \in L_{2n-2}$ we have $m + m' \leq 2n - 2$, i.e., $m' \leq n - 2$.

Note also that

$$\text{div}_\infty(ws/t) = \text{div}_\infty(w) + y - y' = (m - 1)y + (m' + 1)y'.$$

As both $m - 1$ and $m' + 1$ are at most $n - 1$ we have $ws/t \in K \otimes L_{n-1}$.

Now let $\tilde{\varphi}$ be the quadratic form $a(\varphi|_W) \perp \varphi|_W$ on $V = W \oplus W^\perp$ and set $\tilde{v} = a^{-1}ws/t + w' \in V \otimes L_{n-1}$. We have by (29.6) that

$$\tilde{\varphi}(\tilde{v}) = a\varphi(a^{-1}ws/t) + \varphi(w') = a^{-1}N_{K(X)/F(X)}(s/t)\varphi(w) + \varphi(w') = \varphi(w) + \varphi(w') = 0. \square$$

Corollary 29.9. Let φ be a quadratic form over F such that φ_E is isotropic. Then there exist an isotropic quadratic form ψ over F such that $\psi_E \simeq \varphi_E$.

Proof. Let $v \in V \otimes E$ be an isotropic vector of φ_E. Scaling v we may assume that $v \in V \otimes L_n$. Choose the smallest n such that $v \in V \otimes L_n$. We induct on n. If $n = 0$, i.e., $v \in V$, the form φ is isotropic and we can take $\psi = \varphi$.

Suppose that $n \geq 1$. By Proposition [29.8] there exist a 2-dimensional subspace $W \subset V$ such that $\varphi|_W$ is similar to $N_{K/F}$ and an isotropic vector $\tilde{v} \in V \otimes L_{n-1}$ for the quadratic form $\tilde{\varphi} = a(\varphi|_W) \perp (\varphi|_W^\perp)$ on V. As a is the norm in the quadratic extension KE/E, the forms $N_{K/E}$ and $aN_{K/E}$ are isometric over E, hence $\tilde{\varphi}_E \simeq \varphi_E$. By the induction hypothesis applied to the form $\tilde{\varphi}$, there is an isotropic quadratic form ψ over F such that $\psi_E \simeq \tilde{\varphi}_E \simeq \varphi_E$. \square

Theorem 29.10. Let ρ be a non-degenerate 3-dimensional quadratic form over F. Then the field extension $F(\rho)/F$ is excellent.

Proof. We may assume ρ is the form in Notation [29.5] as every non-degenerate 3-dimensional quadratic form over F is similar to such a form. Let $E = F(\rho)$ and let φ be a quadratic form over F. By induction on $\dim \varphi_an$ we show that $(\varphi_E)an$ is defined over F. If φ_an is anisotropic over E we are done since $(\varphi_E)an \simeq (\varphi_an)_E$.

Suppose that φ_an is isotropic over E. By Corollary [29.9] applied to φ_an, there exists an isotropic quadratic form ψ over F such that $\psi_E \simeq (\varphi_an)_E$. As $\dim \psi_an < \dim \varphi_an$, by the induction hypothesis there is a quadratic form μ over F such that $(\psi_E)an \simeq \mu_E$. Since $\mu_E \simeq \psi_E \simeq \varphi_E$, we have $(\varphi_E)an \simeq \mu_E$. \square

Corollary 29.11. Let $\varphi \in GP_3(F)$. Then $F(\varphi)/F$ is excellent.

Proof. Let ψ be a Pfister neighbor of φ of dimension three. Let $K = F(\varphi)$ and $L = F(\psi)$. By Remark [23.12] and Proposition [22.9] the field extensions KL/K and
Let KL/L are purely transcendental. Let ν be a quadratic form over F. By Theorem [29.10], there exists a quadratic form σ over F such that $(\nu_L)_an \simeq \sigma_L$. Hence

$$(\nu_K)_an \simeq (\nu_{KL})_an \simeq (\nu_L)_an \simeq \sigma_{KL}.$$

It follows that $(\nu_K)_an \simeq \sigma_K$. □

This result does not generalize. It is known, in general, for every $n > 2$, there exists a field F and a $\varphi \in GP_n(F)$ with $F(\varphi)/F$ not an excellent extension (cf. [27]).

30. Central Simple Algebras Over Function Fields of Quadratic Forms

Let D be a finite dimensional division algebra over a field F. Denote by $D[t]$ the $F[t]$-algebra $D \otimes_F F[t]$. Let $D(t)$ denote the $F(t)$-algebra $D \otimes_F F(t)$. As $D(t)$ has no zero divisors and is of finite dimension over $F(t)$, it is a division algebra.

A subring $A \subset D(t)$ is called an order over $F[t]$ if it is a finitely generated $F[t]$-submodule of $D(t)$.

Lemma 30.1. Let D be a finite dimensional division F-algebra. Then every order $A \subset D(t)$ over $F[t]$ is conjugate to a subring of $D[t]$.

Proof. As A is finitely generated as $F[t]$-module, there is a nonzero $f \in F[t]$ such that $A f \subset D[t]$. The subset DAf of $D[t]$ is a left ideal. The ring $D[t]$ admits both the left and the right Euclidean algorithm relative to degree. In follows that all one-sided ideals in $D[t]$ are principal. In particular $DAf = D[t]x$ for some $x \in D[t]$. As A is a ring, for every $y \in A$ we have

$$xy \in D[t]xy = DAfy \subset DAf = D[t]x,$$

hence $xyx^{-1} \in D[t]$. Thus $xAx^{-1} \subset D[t]$. □

Lemma 30.2. Let R be a commutative ring and S be a (not necessarily commutative) R-algebra. Let $X \subset S$ be an R-submodule generated by n elements. Suppose that every $x \in X$ satisfies the equation $x^2 + ax + b = 0$ for some $a, b \in R$. Then the R-subalgebra of S generated by X can be generated by 2^n elements as an R-module.

Proof. Let x_1, \ldots, x_n be generators of the R-module X. Writing quadratic equations for every pair of generators x_i, x_j and $x_i + x_j$, we see that $x_i x_j + x_j x_i + a x_i + b x_j + c = 0$ for some $a, b, c \in R$. Therefore, the R-subalgebra of S generated by X is generated by all monomials $x_{i_1} x_{i_2} \cdots x_{i_k}$ with $i_1 < i_2 < \cdots < i_k$ as an R-module. □

Let φ be a quadratic form on V over F and $v_0 \in V$ a vector such that $\varphi(v_0) = 1$. For every $v \in V$, the element $-v v_0$ in the even Clifford algebra $C_0(\varphi)$ satisfies the quadratic equation

(30.3) $$(-v v_0)^2 + b_\varphi (v_0, v)(-v v_0) + \varphi(v) = 0.$$

Choose a subspace $U \subset V$ such that $V = F v_0 \oplus U$. Let J be the ideal of the tensor algebra $T(U)$ generated by the elements $v \otimes v + b\varphi(v_0,v) v + \varphi(v)$ for all $v \in U$.

Lemma 30.4. With U as above, the F-algebra homomorphism $\alpha : T(U)/J \rightarrow C_0(\varphi)$ defined by $\alpha(v + J) = -v v_0$ is an isomorphism.
Suppose that for some nonzero
Therefore the assignment is a division algebra, we have Since quadratic equation
(We view the left hand side as the quadratic map \(f(30.7) \))
\[f^2 + lf + \varphi = 0. \] (We view the left hand side as the quadratic map \(v \mapsto f(v)^2 + l(v)f(v) + \varphi(v) \) on \(U \)).

If we establish the claim then the map \(f \) extends to an \(F \)-algebra homomorphism \(T(U)/J \to D \) and by Lemma 30.4, we get an \(F \)-algebra homomorphism \(C_0(\varphi) \to D \) as needed.

We prove the claim by induction on \(\dim U \). Suppose that \(\dim U = 1 \), i.e., \(U = Fv \) for some \(v \). By Example 22.2, we have \(F(\varphi) \cong C_0(\varphi) = F \oplus Fx \) with \(x \) satisfying the quadratic equation \(x^2 + ax + b = 0 \) with \(a = l(v) \) and \(b = \varphi(v) \) by equation (30.3). Since \(D_{F(\varphi)} \) is not a division algebra, there exists a nonzero element \(d' + dx \in D_{F(\varphi)} \) with \(d, d' \in D \) such that \((d' + dx)^2 = 0 \) or equivalently \(d'^2 = bd^2 \) and \(dd' + d'd = ad^2 \). Since \(D \) is a division algebra, we have \(d \neq 0 \). Then the element \(d'd^{-1} \) in \(D \) satisfies
\[(d'd^{-1})^2 - a(d'd^{-1}) + b = 0. \]
Therefore the assignment \(v \mapsto -d'd^{-1} \) gives rise to the desired map \(f : U \to D \).

Now consider the general case, \(\dim U \geq 2 \). Choose a decomposition
\[U = Fv_1 + Fv_2 + W \]
for some nonzero \(v_1, v_2 \in U \) and a subspace \(W \subset U \) and set \(V' = Fv_0 + Fv_1 + W, \)
\[U' = Fv_1 + W \] so that \(V' = Fv_0 + U' \). Consider the quadratic form \(\varphi' \) on the vector space \(V_{F(t)} \) over the function field \(F(t) \) defined by
\[\varphi'(av_0 + bv_1 + w) = \varphi(av_0 + bv_1 + btv_2 + w). \]
We show that the function fields \(F(\varphi) \) and \(F(t)(\varphi') \) are isomorphic over \(F \). Indeed, consider the injective \(F \)-linear map \(\theta : V^* \to V'^*_{F(t)} \) taking a linear functional \(z \) to the functional \(z' \) defined by \(z'(av_0 + bv_1 + w) = z(av_0 + bv_1 + btv_2 + w) \). The map \(\theta \) identifies the ring \(S^*(V^*) \) with a graded subring of \(S^*(V'^*_{F(t)}) \) so that \(\varphi \) is identified with \(\varphi' \). Let \(x_1 \) and \(x_2 \) be the coordinate functions of \(v_1 \) and \(v_2 \) in \(V \) respectively and \(x_1' \) the coordinate function of \(v_1 \) in \(V' \). We have \(x_1 = x_1' \) and \(x_2 = tx_1' \) in \(S^1(V'^*_{F(t)}) \). Therefore, the localization of the ring \(S^*(V^*) \) with respect to the multiplicative system \(F[x_1, x_2] \setminus \{0\} \) coincides with the localization of \(S^*(V'^*_{F(t)}) \) with respect to \(F(t)[x_1'] \setminus \{0\} \). Note that \(F[x_1, x_2] \cap (\varphi) = 0 \) and \(F(t)[x_1'] \cap (\varphi') = 0 \). It follows that the localizations \(S^*(V^*) \) and
\(S^{\bullet}(V''_{F(t)})_{(\varphi')} \) are equal. As the function fields \(F(\varphi) \) and \(F(t)(\varphi') \) coincide with the degree 0 components of the quotient fields of their respective localizations, the assertion follows.

Let \(l'(v) = b'_{\varphi}(v_0, v) \), so
\[
l'(av_0 + bv_1 + w) = l(av_0 + bv_1 + btv_2 + w).
\]
Applying the induction hypothesis, to the quadratic form \(\varphi' \) over \(F(t) \) and the \(F(t) \)-algebra \(D_{F(t)} \), there is an \(F(t) \)-linear map \(f' : U'_{F(t)} \to D_{F(t)} \) satisfying
\[
(30.8) \quad f'^2 + l'f' + \varphi' = 0.
\]
Consider the \(F[t] \)-submodule \(X = f'(U'_{F(t)}) \) in \(D_{F[t]} \). By Lemma 30.2 the \(F[t] \)-subalgebra generated by \(X \) is a finitely generated \(F[t] \)-module. It follows from Lemma 30.1 that, after applying an inner automorphism of \(D_{F(t)} \), we have \(f'(v) \in D_{F[t]} \) for all \(v \). Considering the highest degree terms of \(f' \) (with respect to \(t \)) and taking into account the fact that \(D \) is a division algebra, we see that \(\deg f' \leq 1 \), i.e., \(f' = g + ht \) for two linear maps \(g, h : U' \to D \). Comparison of degree 2 terms of (30.8) gives
\[
(h(v))^2 + bl(v_2)h(v) + b^2\varphi(v_2) = 0
\]
for all \(v = bv_1 + w \). In particular, \(h \) is zero on \(W \), therefore \(h(v) = bh(v_1) \). Thus (30.8) reads
\[
(30.9) \quad (g(v) + bth(v_1))^2 + l(bv_1 + btv_2)(g(v) + bth(v_1)) + \varphi(v + btv_2) = 0
\]
for every \(v = bv_1 + w \). Let \(f : U \to D \) be the \(F \)-linear map defined by the formula
\[
f(bv_1 + cv_2 + w) = g(bv_1 + w) + ch(v_1).
\]
Substituting \(c/b \) for \(t \) in (30.9), we see that (30.7) holds on all vectors \(bv_1 + cv_2 + w \) with \(b \neq 0 \) and therefore holds as an equality of quadratic maps. The claim is proven.

We now prove the converse. Suppose that there is an \(F \)-algebra homomorphism \(s : C_0(\varphi) \to D \). Consider the two \(F \)-linear maps \(p, q : V \to D \) given by \(p(v) = s(vv_0) \) and \(q(v) = s(vv_0 - l(v)) \). We have
\[
p(v)q(v) = s((vv_0)^2 - l(v)vv_0) = s(\varphi(v)) = \varphi(v)
\]
by equation (30.3). It follows that \(p \) and \(q \) are injective maps if \(\varphi \) is anisotropic. The maps \(p \) and \(q \) stay injective over any field extension. Let \(L/F \) be a field extension such that \(\varphi_L \) is isotropic (e.g., \(L = F(\varphi) \)). Then for a nonzero isotropic vector \(v' \in V_L \), we have \(p(v')q(v') = \varphi(v') = 0 \) but \(p(v') \neq 0 \) and \(q(v') \neq 0 \). It follows that \(D_L \) is not a division algebra.

It remains to consider the case when \(\varphi \) is isotropic. We first show that every isotropic vector \(v \in V \) belongs to \(\text{rad} \, b_{\varphi} \). Suppose this is not true. Then there is a \(u \in V \) satisfying \(b_{\varphi}(v, u) \neq 0 \). Let \(H \) be the 2-dimensional subspace generated by \(v \) and \(u \). The restriction of \(\varphi \) on \(H \) is a hyperbolic plane. Let \(w \in V \) be a nonzero vector orthogonal to \(H \) and let \(a = \varphi(w) \). Then
\[
M_2(F) = C(-aH) = C_0(Fw \perp H) \subset C_0(\varphi)
\]
by Proposition 11.4. The image of the matrix algebra \(M_2(F) \) under \(s \) is isomorphic to \(M_2(F) \) and therefore contains zero divisors, a contradiction proving the assertion.
Let V' be a subspace of V satisfying $V = \text{rad}\, \varphi \oplus V'$. As every isotropic vector belongs to $\text{rad}\, b_\varphi$, the restriction φ' of φ on V' is anisotropic. The natural map $C_0(\varphi) \to C_0(\varphi')$ induces an isomorphism $C_0(\varphi)/J \cong C_0(\varphi')$, where $J = \text{rad}(\varphi)C_1(\varphi)$. Since $J^2 = 0$ we have $s(J) = 0$. Therefore, s induces an F-algebra homomorphism $s': C_0(\varphi') \to D$. By the anisotropic case, D is not a division algebra over $F(\varphi')$. Since $F(\varphi')$ is a field extension of $F(\varphi)$, the algebra $D_{F(\varphi)}$ is also not a division algebra.

Corollary 30.10. Let D be a division F-algebra of dimension less than 2^{2n} and φ a non-degenerate quadratic form of dimension at least $2n + 1$ over F. Then $D_{F(\varphi)}$ is also a division algebra.

Proof. Let ψ be a subform of φ of dimension $2n + 1$. As $F(\psi)(\varphi)/F(\psi)$ is a purely transcendental extension by Proposition 30.11, we may replace φ by ψ and assume that $\dim \varphi = 2n + 1$. By Proposition 11.6, the algebra $C_0(\varphi)$ is simple of dimension 2^{2n}. If $D_{F(\varphi)}$ is not a division algebra then there is an F-algebra homomorphism $C_0(\varphi) \to D$ by Theorem 30.5. This homomorphism must be injective as $C_0(\varphi)$ is simple. But this is impossible by dimension count.

Corollary 30.11. Let D be a division F-algebra and let φ be a non-degenerate quadratic form over F satisfying:

1. If $\dim \varphi$ is odd or $\varphi \in I_3(F) \setminus I_2(F)$ then $C_0(\varphi)$ is not a division algebra.
2. If $\varphi \in I_2(F)$ then $C^+(\varphi)$ is not a division algebra over F (cf. Remark 13.9).

Then $D_{F(\varphi)}$ is a division algebra.

Proof. If $D_{F(\varphi)}$ is not a division algebra, there is an F-algebra homomorphism $f : C_0(\varphi) \to D$ by Theorem 30.5. If $\varphi \in I_2(F)$ we have $C_0(\varphi) \cong C^+(\varphi) \times C^+(\varphi)$ by Remark 13.9. Thus in every case the image of f lies in a non-division subalgebra of D. Therefore, D is not a division algebra, a contradiction.

Corollary 30.12. Let D be a division F-algebra and let $\varphi \in I_3(F)$ be a nonzero quadratic form. Then $D_{F(\varphi)}$ is a division algebra.

Proof. By Theorem 14.3, the Clifford algebra $C(\varphi)$ is split. In particular, $C^+(\varphi)$ is not division. The statement follows now from Corollary 30.11.
CHAPTER V

Bilinear and Quadratic Forms and Algebraic Extensions

31. Structure of the Witt Ring

In this section, we investigate the structure of the Witt ring of non-degenerate symmetric bilinear forms. For fields F whose level $s(F)$ is finite, i.e., non-formally real fields, the ring structure is quite simple. The Witt ring of such a field has a unique prime ideal, viz., the fundamental ideal and $W(F)$ (as an abelian group) has exponent $2s(F)$. As $s(F) = 2^n$ for some non-negative integer this means that the Witt ring is 2-primary torsion. The case of formally real fields F, i.e., fields of infinite level, is more involved. Orderings on such a field give rise to prime ideals in $W(F)$. The torsion in $W(F)$ is still 2-primary, but this is easy. Therefore, we do the two cases separately. We consider the case of non-formally real fields first.

A field F is called quadratically closed if $F = F^2$. For example, algebraically closed fields are quadratically closed. A field of characteristic two is quadratically closed if and only if it is perfect. The quadratic closure of the rationals \mathbb{Q} is the complex constructible numbers. Over a quadratically closed field the structure of the Witt ring is very simple. Indeed, we have

Lemma 31.1. A field F the following are equivalent:

1. F is quadratically closed.
2. $W(F) = \mathbb{Z}/2\mathbb{Z}$.
3. $I(F) = 0$.

Proof. As $W(F)/I(F) = \mathbb{Z}/2\mathbb{Z}$, we have $W(F) \cong \mathbb{Z}/2\mathbb{Z}$ if and only if $I(F) = 0$ if and only if $\langle 1, -a \rangle = 0$ in $W(F)$ for all $a \in F^\times$ if and only if $a \in F^{\times 2}$ for all $a \in F^\times$. □

Example 31.2. (1). Let F be a finite field with char $F = p > 0$ and $|F| = q$. If $p = 2$ then $F = F^2$ and F is quadratically closed. So suppose that $p > 2$. Then $F^{\times 2} \simeq F^\times/\{\pm 1\}$ so $|F^\times/F^{\times 2}| = 2$ and $|F^2| = \frac{1}{2}(q + 1)$. Let $F^\times/F^{\times 2} = \{F^{\times 2}, aF^{\times 2}\}$. If $x \in F$, the finite sets

$$F^2 \text{ and } \{a - y^2 \mid y \in F\}$$

both have $\frac{1}{2}(q + 1)$ elements, hence they intersect non-trivially. It follows that every element in F is a sum of two squares. We have $-1 \in F^{\times 2}$ if and only if $q \equiv 1 \mod 4$.

If $q \equiv 3 \mod 4$ then $-1 \notin F^{\times 2}$ and $s(F) = 2$. We may assume that $a = -1$. Then $\langle 1, 1, 1 \rangle = \langle 1, -1, -1 \rangle = \langle -1 \rangle$ in $W(F)$ so $W(F) = \{0, \langle 1 \rangle, \langle -1 \rangle, \langle 1, 1 \rangle \}$ and is isomorphic to the ring $\mathbb{Z}/4\mathbb{Z}$.

If $q \equiv 1 \mod 4$ then -1 is a square and $W(F)$ is $\{0, \langle 1 \rangle, \langle a \rangle, \langle 1, a \rangle \}$ is isomorphic to the group ring $\mathbb{Z}/2\mathbb{Z}[F^\times/F^{\times 2}]$.

113
(2). If F is not formally real with char $F \neq 2$ then $s = s(F)$ is finite so the symmetric bilinear form $(s + 1)(1)$ is isotropic hence universal by Corollary [1.26].

It follows by the above that any field F of positive characteristic has $s(F) = 1$ or 2. In general, if F is not formally real, $s(F) = 2^n$ by Corollary [6.8]. There exist fields of level 2^m for all $m \geq 1$.

Lemma 31.3. Let $2^m \leq n < 2^{m+1}$. Suppose that F satisfies $s(F) > 2^m$, e.g., F is formally real, and $\varphi = (n + 1)(1)_{\mathbb{Q}}$. Then $s(F(\varphi)) = 2^m$.

Proof. As $s(F) > 1$, the characteristic of F is not two. Since $\varphi_{F(\varphi)}$ is isotropic, it follows that $s(F(\varphi)) \leq 2^m$ by Corollary [6.8]. If φ was isotropic over F then $s(F) = s(F(\varphi)) \leq 2^m$ as $F(\varphi)/F$ is purely transcendental by Proposition [22.9]. This contradicts the hypothesis. So φ is anisotropic. If $s(F(\varphi)) < 2^m$ then the Pfister form $(2^m/1)_{F(\varphi)}$ is non-degenerate as char $F \neq 2$ hence is hyperbolic. It follows that $2^m = \dim 2^m(1) \geq \dim \varphi > 2^m$ by the Subform Theorem [22.5], a contradiction.

The ring structure of $W(F)$ is given by the following:

Proposition 31.4. Let F be non-formally real with $s(F) = 2^n$. Then

1. $\text{Spec } W(F) = \{I(F)\}$
2. $W(F)$ is a local ring of Krull dimension zero with maximal ideal $I(F)$.
3. $\text{nil}(W(F)) = \text{rad}(W(F)) = zd(F) = I(F)$.
4. $W(F)^{\times} = \{b \mid \dim b \text{ is odd}\}$
5. $W(F)$ is connected, i.e., 0 and 1 are the only idempotents in $W(F)$.
6. $W(F)$ is a 2-primary torsion group of exponent $2s(F)$.
7. $W(F)$ is artinian if and only if it is noetherian if and only if $|F^{\times}/F^{\times 2}|$ is finite if and only if $W(F)$ is a finite ring.

Proof. Let $s = s(F)$. The integer $2s$ is the smallest integer such that the bilinear Pfister form $2s(1)_b$ is metabolic hence zero in the Witt ring. Therefore, $2^{n+1}(a) = 0$ in $W(F)$ for every $a \in F^{\times}$. It follows that $W(F)$ is 2-primary torsion of exponent 2^{n+1}, i.e., (6) holds. As

$$\langle\langle a\rangle\rangle^{n+2} = \langle\langle a, \ldots, a\rangle\rangle = \langle\langle a, -1, \ldots, -1\rangle\rangle = 2^{n+1}\langle\langle a\rangle\rangle = 0$$

in $W(F)$ for every $a \in F^{\times}$ by Example [4.16], we have $I(F)$ lies in every prime ideal. Since $W(F)/I(F) \simeq \mathbb{Z}/2\mathbb{Z}$, the fundamental ideal $I(F)$ is maximal hence is the only prime ideal which is (1). As $I(F)$ is the only prime ideal (2) follows easily.

Finally, we show (7). Suppose that $W(F)$ is noetherian. Then $I(F)$ is a finitely generated $W(F)$-module so $I(F)/I^2(F)$ is a finitely generated $W(F)/I(F)$-module. As $F^{\times}/F^{\times 2} \simeq I(F)/I^2(F)$ by Proposition [4.13] and $\mathbb{Z}/2\mathbb{Z} \simeq W(F)/I(F)$, we have $F^{\times}/F^{\times 2}$ is finite. Conversely, suppose that $F^{\times}/F^{\times 2}$ is finite. By (2.6), we have a ring epimorphism $\mathbb{Z}[F^{\times}/F^{\times 2}] \rightarrow W(F)$. As the group ring $\mathbb{Z}[F^{\times}/F^{\times 2}]$ is noetherian, $W(F)$ is noetherian. As $2sW(F) = 0$ and $W(F)$ is generated by the classes of 1-dimensional forms, we see that $|W(F)| \leq |F^{\times}/F^{\times 2}|^{2s}$. Statement (7) now follows easily.

We turn to formally real fields, i.e., those fields with of infinite level. In particular, formally real fields are of characteristic zero, so the theories of symmetric bilinear forms
The structure of the Witt ring of a formally real field is more complicated as well as more interesting. We shall use the basic algebraic and topological structure of formally real fields which can be found in Appendices [94 and 95].

Recall that a formally real field F is called euclidean if every element in $F^×$ is a square or minus a square. So F is euclidean if and only if F is formally real and $F^×/F^{×2} = \{F^{×2}, -F^{×2}\}$. In particular, every real-closed field is euclidean. Sylvester’s Law of Inertia for real-closed fields generalizes to euclidean fields.

Proposition 31.5. (Sylvester’s Law of Inertia) Let F be a field. Then the following are equivalent:

1. F is euclidean.
2. F is formally real and if b is a non-degenerate symmetric bilinear form there exists unique non-negative integers m, n such that $b \simeq m\langle 1 \rangle \perp n\langle -1 \rangle$.
3. $W(F) \simeq \mathbb{Z}$ as rings.
4. F^2 is an ordering of F.

Proof. (1) \Rightarrow (2): As F is formally real, $\text{char } F = 0$ so every bilinear form is diagonalizable. Since $F^×/F^{×2} = \{F^{×2}, -F^{×2}\}$, every non-degenerate bilinear form is isometric to $m\langle 1 \rangle \perp n\langle -1 \rangle$ for some non-negative integers n and m. The integers n and m are unique by Witt Cancellation [1.29].

(2) \Rightarrow (3): By (2) every anisotropic quadratic form is isometric to $r\langle 1 \rangle$ for some unique integer r.

(3) \Rightarrow (4): Let $\text{sgn} : W(F) \to \mathbb{Z}$ be the isomorphism. Then $\text{sgn}\langle 1 \rangle = 1$ so $\langle 1 \rangle$ has infinite order, hence F is formally real. Let $a \in F$. Then $\text{sgn}\langle a \rangle = n$ for some integer n. Thus $\langle a \rangle = n\langle 1 \rangle$ in $W(F)$. In particular n is odd. Taking determinants, we must have $aF^{×2} = ±F^{×2}$. It follows that $F^×/F^{×2} = \{F^{×2}, -F^{×2}\}$. As F is formally real, $F^2 + F^2 \subset F^2$ hence F^2 is an ordering.

(4) \Rightarrow (1): As F has an ordering, it is formally real. As F^2 is an ordering, $F = F^2 \cup (-F^2)$ with $-1 \notin F^2$, so F is euclidean. \square

Definition 31.6. Let F be a euclidean field. If b is a non-degenerate symmetric bilinear form then $b \simeq m\langle 1 \rangle \perp n\langle -1 \rangle$ for unique non-negative integers n and m. The integer $m - n$ is called the signature of b and denoted $\text{sgn } b$. This induces an isomorphism $\text{sgn} : W(F) \to \mathbb{Z}$ taking the Witt class of b to $\text{sgn } b$ called the signature map.

Let

$$D(\langle 1 \rangle) := \bigcup_n D(n\langle 1 \rangle) = \{x \mid x \text{ is a nonzero sum of squares in } F\}$$

$$\tilde{D}(\langle 1 \rangle) := D(\langle 1 \rangle) \cup \{0\}.$$

A field F is called a pythagorean field if every sum of squares of elements in F is itself a square, i.e., $\tilde{D}(\langle 1 \rangle) = F^2$ and if char $F = 2$ then F is quadratically closed, i.e., perfect.

Remark 31.7. A field F of characteristic different from two is pythagorean if and only if every sum of two squares F is a square.
Example 31.8. Let F be a field.

(1). Every euclidean field is pythagorean.

(2). Let F be a field of characteristic different from two and $K = F((t))$, a *Laurent series field* over F. Then K is the quotient field of $F[[t]]$, a complete discrete valuation ring. If F is formally real then so is K as $n(1)$ is anisotropic over K for all n by Lemma 19.4. Suppose that F is formally real and pythagorean. If $x_i \in K^\times$ for $i = 1, 2$ then there exists integers m_i such that $x_i = t^{m_i}(a_i + ty_i)$ with $a_i \in F^\times$ and $y_i \in F[[t]]$ for $i = 1, 2$. Suppose that $m_1 \leq m_2$ then $x_1^2 + x_2^2 = t^{2m_1}(c + tz)$ with $z \in F[[t]]$ and $c = a_1^2$ if $m_1 < m_2$ and $c = a_2^2 + a_1^2$ if $m_1 = m_2$ hence c is a square in F in either case. As K is formally real, $c \neq 0$ in either case. Hence $c + tz$ is a square in K by Hensel’s Lemma. It follows that K is also pythagorean. In particular, the finitely iterated Laurent series field $F_n = F((t_1)) \cdots ((t_n))$ as well as the infinite iterated Laurent series field $F_\infty = \lim F_n = F((t_1)) \cdots ((t_n)) \cdots$ are formally real and pythagorean if F is.

(3). If F is not formally real and char $F \neq 2$ then $F = \overline{D}(\infty(1))$ by Example 31.2(2). It follows that if F is not formally real then F is pythagorean if and only if it is quadratically closed.

(4). Let $K = F((t))$ with char $F = 0$ and $F^\times/F^\times^2 = \{a_i F^\times^2 \mid i \in I\}$. It follows by Hensel’s Lemma that

$$K^\times/K^\times^2 = \{a_i K^\times^2 \mid i \in I\} \cup \{a_i t K^\times^2 \mid i \in I\}.$$\hspace{1cm}

and from Lemma 19.4 that this is a disjoint union and $a_i K^\times^2 = a_j K^\times^2$ if and only if $i = j$. In particular, if F is not formally real then Laurent series field K is not pythagorean as t is not a square.

Exercise 31.9. Let F be a formally real pythagorean field and let b be a bilinear form over F. Prove that the set $D(b)$ is closed under addition.

Proposition 31.10. Let F be a field. Then the following are equivalent:

1. F is pythagorean.
2. $I(F)$ is torsion-free.
3. There are no anisotropic torsion binary bilinear forms over F.

Proof. (1) \Rightarrow (2): If $s(F)$ is finite then F is quadratically closed so $W(F) = \{0, (1)\}$ and $I(F) = 0$. Therefore, we may assume that F is formally real. We show in this case that $W(F)$ is torsion-free. Let b be an anisotropic bilinear form over F that is torsion-free in $W(F)$, say $mb = 0$ in $W(F)$ for some positive integer m. As b is diagonalizable by Corollary 1.20, suppose that

$$b \simeq (a_1, \ldots, a_n)$$

with $a_i \in F^\times$. The form mb, is isotropic so there exists a nontrivial equation

$$\sum_j \sum_i a_i x_{ij}^2 = 0 \in F.$$\hspace{1cm}

As F is pythagorean, there exist $x_i \in F$ satisfying

$$x_i^2 = \sum_j x_{ij}^2.$$\hspace{1cm}

Since F is formally real not all the x_i can be zero. Thus (x_1, \ldots, x_n) is an isotropic vector for b, a contradiction.

(2) \Rightarrow (3) is trivial.

(3) \Rightarrow (1): Let $0 \neq z \in D(2(1))$. Then $2(\langle z \rangle) = 0$ in $W(F)$ by Corollary 6.6. By assumption, $\langle z \rangle = 0$ in $W(F)$ hence $z \in F^\times^2$. \hfill \square

Corollary 31.11. A field F is formally real and pythagorean if and only if $W(F)$ is torsion-free.
31. STRUCTURE OF THE WITT RING

Proof. Suppose that \(W(F) \) is torsion-free. Then \(I(F) \) is torsion-free so \(F \) is pythagorean. As (1) is not torsion, \(s(F) \) is infinite hence \(F \) is formally real.

Conversely, suppose that \(F \) is formally real and pythagorean. Then the proof of (1) \(\Rightarrow \) (2) in Proposition 31.10 shows that \(W(F) \) is torsion-free. \(\square \)

Lemma 31.12. The intersection of pythagorean fields is pythagorean.

Proof. Let \(F = \bigcap_i F_i \) with each \(F_i \) pythagorean. If \(z = x^2 + y^2 \) with \(x, y \in F \), then for each \(i \in I \) there exist \(z_i \in F_i \) with \(z_i^2 = z \). In particular, \(z_i = \pm z_j \) for all \(i, j \in I \). Thus \(z_j \in \bigcap_i F_i = F \) for every \(j \in I \) and \(z = z_j^2 \).

Exercise 31.13. Let \(K/F \) be a finite extension. Show if \(K \) is pythagorean so is \(F \). (Hint: If \(\text{char } F \neq 2 \) and \(a = 1 + x^2 \in F \setminus F^2 \), let \(z = a + \sqrt{a} \in K \). Show \(z \in F(\sqrt{a})^2 \) but \(N_{F(\sqrt{a})/F}(z) \notin F^2 \).)

Let \(F \) be a field and \(K/F \) an algebraic extension. We call \(K \) a pythagorean closure of \(F \) if \(K \) is pythagorean and if \(F \subseteq E \subseteq K \) is an intermediate field then \(E \) is not pythagorean. If \(\tilde{F} \) is an algebraic closure of \(F \) then the intersection of all pythagorean fields between \(F \) and \(\tilde{F} \) is pythagorean by the lemma. Clearly, this is a pythagorean closure of \(F \). In particular, a pythagorean closure is unique (after fixing an algebraic closure). We shall denote the pythagorean closure of \(F \) by \(F_{py} \). If \(F \) is not a formally real field then \(F_{py} \) is just the quadratic closure of \(F \), i.e., a quadratically closed field \(K \) algebraic over \(F \) such that if \(F \subseteq E \subseteq K \) then \(E \) is not quadratically closed. We shall also denote the quadratic closure of a field \(F \) by \(F_q \).

Exercise 31.14. Let \(E \) be a pythagorean closure of a field \(F \). Prove that \(E/F \) is an excellent extension. (Hint: in the formally real case use Exercise 31.9 to show that for any quadratic form \(\varphi \) over \(F \) the form \((\varphi_E)_{an} \) over \(E \) takes values in \(F \).)

We show how to construct the pythagorean closure of a field.

Definition 31.15. Let \(F \) be a field and \(\tilde{F} \) an algebraic closure. If \(K/F \) is a finite extension in \(\tilde{F} \) then we say \(K/F \) is admissible if there exists a tower

\[
F = F_0 \subset F_1 \subset \cdots \subset F_n = K \text{ where } \\
F_i = F_{i-1}(\sqrt{z_{i-1}}) \quad \text{with} \quad z_{i-1} \in D(1)_{F_{i-1}}.
\]

from \(F \) to \(K \).

Remark 31.17. If \(F \) is a formally real field and \(K \) is an admissible extension of \(F \) then \(K \) is formally real by Theorem 94.3 in Appendix 94.

Lemma 31.18. Let \(\text{char } F \neq 2 \). Let \(L \) be the union of all admissible extensions over \(F \). Then \(L = F_{py} \). If \(F \) is formally real so is \(F_{py} \).

Proof. Let \(\tilde{F} \) be a fixed algebraic closure of \(F \). If \(E \) and \(K \) are admissible extensions of \(F \) then the compositum of \(EK \) of \(E \) and \(K \) is also an admissible extension. It follows that \(L \) is a field. If \(z \in L \) satisfies \(z = x^2 + y^2 \), \(x, y \in L \), then there exist admissible extensions \(E \) and \(K \) of \(F \) with \(x \in E \) and \(y \in K \). Then \(EK(\sqrt{z}) \) is an admissible...
extension of F hence $\sqrt{z} \in EK(\sqrt{z}) \subset L$. Therefore, L is pythagorean. Let M be pythagorean with $F \subset M \subset \tilde{F}$. We show $L \subset M$. Let K/F be admissible. Let \((31.16) \) be a tower from F to K. By induction, we may assume that $F_i \subset M$. Therefore, $z_i \in M^2$ hence $F_i+1 \subset M$. Consequently, $K \subset M$. It follows that $L \subset M$ so $L = F_{py}$. If F is formally real then so is L by Remark\(31.17 \).

If F is an arbitrary field then the quadratic closure of F can also be constructed by taking the union of all square root towers

$$F = F_0 \subset F_1 \subset \cdots \subset F_n = K$$

where $F_i = F_{i-1}(\sqrt{z_{i-1}})$ with $z_{i-1} \in F_{i-1}^x$. over F.

Notation 31.19. Let

$$W_t(F) := \{ b \in W(F) \mid \text{there exists a positive integer } n \text{ such that } nb = 0 \},$$

the additive torsion in $W(F)$. It is an ideal in $W(F)$.

Recall if K/F is a field extension then $W(K/F) := \ker(r_{K/F}: W(F) \to W(K))$.

Lemma 31.20. Let $z \in D(2(1)) \setminus F^{x2}$. If $K = F(\sqrt{z})$ then

$$W(K/F) \subset \ann_{W(F)}(2(1)).$$

Proof. It follows from the hypothesis that $\langle z \rangle$ is anisotropic hence K/F is a quadratic extension. As z is a sum of squares and not a square, $\text{char } F \neq 2$. Therefore, by Corollary\(23.7 \) we have $W(K/F) = \langle z \rangle W(F)$. By Corollary\(6.6 \) we have $2\langle z \rangle = 0$ in $W(F)$ and the result follows. \hfill \Box

We have

Theorem 31.21. Let F be a formally real field.

1. $W_t(F)$ is 2-primary, i.e., all torsion elements of $W(F)$ have exponent a power of 2.
2. $W_t(F) = W(F_{py}/F)$.

Proof. As $W(F_{py})$ is torsion-free by Corollary\(31.11 \), the torsion subgroup $W_t(F)$ lies in $W(F_{py}/F)$, so it suffices to show $W(F_{py}/F)$ is a 2-primary torsion group. Let K be an admissible extension of F as in \((31.16) \). Since F_{py} is the union of admissible extensions by Lemma\(31.18 \), it suffices to show $W(K/F)$ is 2-primary torsion. By Lemma\(31.20 \) and induction, it follows that $W(K/F) \subset \ann_{W(F)}(2^n(1))$ as needed. \hfill \Box

Lemma 31.22. Let F be a formally real field and $b \in W(F)$ satisfy $2^n b \neq 0$ in $W(F)$ for any $n \geq 0$. Let K/F be an algebraic extension that is maximal with respect to b_K not having order a power of 2 in $W(K)$. Then K is euclidean. In particular, $\text{sgn } b_K \neq 0$.

Proof. Suppose K is not euclidean. As $2^n(1) \neq 0$, the field K is formally real. Since K is not euclidean, there exists an $x \in K^x$ such that $x \notin (K^x)^2 \cup -(K^x)^2$. In particular, both $K(\sqrt{x})/K$ and $K(\sqrt{-x})/K$ are quadratic extensions. By choice of K, there exists a positive integer n such that $c := 2^n b_K$ satisfies $c_{K(\sqrt{x})}$ and $c_{K(\sqrt{-x})}$ are metabolic, hence hyperbolic as char $F \neq 2$. By Corollary\(23.7 \), there exist forms c_1 and c_2 over K satisfying $c \simeq \langle x \rangle \otimes c_1 \simeq \langle -x \rangle \otimes c_2$. As $-x \langle x \rangle \simeq \langle x \rangle$ and $x \langle -x \rangle \simeq \langle -x \rangle$, we conclude
that \(xc \simeq c \simeq -xc \) and hence that \(2c \simeq c \perp c \simeq xc \perp -xc \) hence \(2c = 0 \) in \(W(K) \). This means that \(b_K \) is torsion of order \(2^{n+1} \), a contradiction. \(\square \)

Proposition 31.23. The following are equivalent:

1. \(F \) can be ordered, i.e., \(\mathcal{X}(F) \), the space of orderings of \(F \) is not empty.
2. \(F \) is formally real.
3. \(W_1(F) \neq W(F) \).
4. \(W(F) \) is not a 2-primary torsion group.
5. There exists an ideal \(\mathfrak{A} \subset W(F) \) such that \(W(F)/\mathfrak{A} \simeq \mathbb{Z} \).
6. There exists a prime ideal \(\mathfrak{P} \) in \(W(F) \) such that \(\text{char}(W(F)/\mathfrak{P}) \neq 2 \).

Moreover, if \(F \) is formally real then for any prime ideal \(\mathfrak{P} \) in \(W(F) \) with \(\text{char}(W(F)/\mathfrak{P}) \neq 2 \), the set

\[
P_\mathfrak{P} := \{ x \in F^\times | \langle\langle x\rangle\rangle \in \mathfrak{P} \} \cup \{0\}
\]

is an ordering of \(F \).

Proof. (1) \(\Rightarrow \) (2) is clear.

(2) \(\Rightarrow \) (3): By assumption, \(-1 \notin D_F(n(1))\) for any \(n > 0 \) so \(\langle1\rangle \notin W_1(F) \).

(3) \(\Rightarrow \) (4) is trivial.

(4) \(\Rightarrow \) (5): By assumption there exists \(\mathfrak{b} \in W(F) \) not having order a power of 2. By Lemma 31.22, there exists \(K/F \) with \(K \) euclidean. In particular, \(r_{K/F} \) is onto. Therefore, \(\mathfrak{A} = W(K/F) \) works by Lemma 31.22 and Sylvester’s Law of Inertia 31.5.

(5) \(\Rightarrow \) (6) is trivial.

(6) \(\Rightarrow \) (1). By Proposition 31.4, the field \(F \) is formally real. We show that (6) implies the last statement. This will also prove (1). Let \(\mathfrak{P} \) in \(W(F) \) be a prime ideal satisfying \(\text{char}(W(F)/\mathfrak{P}) \neq 2 \).

We must show

1. \(P_\mathfrak{P} \cup (-P_\mathfrak{P}) = F \).
2. \(P_\mathfrak{P} + P_\mathfrak{P} \subset P_\mathfrak{P} \).
3. \(P_\mathfrak{P} \cdot P_\mathfrak{P} \subset P_\mathfrak{P} \).
4. \(P_\mathfrak{P} \cap (-P_\mathfrak{P}) = \{0\} \).
5. \(-1 \notin P_\mathfrak{P} \).

Suppose that \(x \neq 0 \) and both \(\pm x \in P_\mathfrak{P} \). Then \(\langle\langle -1\rangle\rangle = \langle\langle -x\rangle\rangle + \langle\langle x\rangle\rangle \) lies in \(\mathfrak{P} \) so \(2\langle1\rangle + \mathfrak{P} = 0 \) in \(W(F)/\mathfrak{P} \), a contradiction. This shows (iv) and (v) hold. As \(\langle\langle x, -x\rangle\rangle = 0 \) in \(W(F) \), either \(\langle\langle x\rangle\rangle \) or \(\langle\langle -x\rangle\rangle \) lies in \(\mathfrak{P} \), so (i) holds. Next let \(x, y \in P_\mathfrak{P} \). Then \(\langle\langle xy\rangle\rangle = \langle\langle x\rangle\rangle + x \langle\langle y\rangle\rangle \) lies in \(\mathfrak{P} \) so \(xy \in \mathfrak{P} \) which is (iii). Finally, we show that (ii) holds, i.e., \(x + y \in P_\mathfrak{P} \). We may assume neither \(x \) nor \(y \) is zero. This implies that \(z := x + y \neq 0 \) else we have the equation \(\langle\langle -1\rangle\rangle = (1, x, -x, 1) = (1, -x, -y, 1) = \langle\langle x\rangle\rangle + \langle\langle y\rangle\rangle \) in \(W(F) \) which implies that \(\langle\langle -1\rangle\rangle \) lies in \(\mathfrak{P} \) contracting (v). Since \(\langle-x, -y\rangle \simeq -z\langle\langle -xy\rangle\rangle \) by Corollary 31.6, we have

\[
2\langle z\rangle = 2\langle-x, -y, zxy\rangle = \langle-x, -y, zxy, -z, -zxy, zxy\rangle = \langle\langle x\rangle\rangle + \langle\langle y\rangle\rangle - 2\langle1\rangle - z\langle\langle xy\rangle\rangle
\]
in \(W(F) \). As \(x, y \in P_\mathfrak{P} \) and \(xy \in P_\mathfrak{P} \) by (iii), it follows that \(2\langle z\rangle \in \mathfrak{P} \) as needed. \(\square \)
The proposition gives another proof of the Artin-Schreier Theorem that every formally real field can be ordered.

Let F be a formally real field and $\mathfrak{X}(F)$ the space of orderings. Let $P \in \mathfrak{X}(F)$ and F_P be the real closure of F at P (within a fixed algebraic closure). By Sylvester’s Law of Inertia [31.5], the signature map defines an isomorphism $\text{sgn}: W(F_P) \to \mathbb{Z}$. In particular, we have a signature map $\text{sgn}_P : W(F) \to \mathbb{Z}$ given by $\text{sgn}_P = \text{sgn} \circ r_{F_P/F}$. This is a ring homomorphism satisfying $W(F) \subset \ker r_{F_P/F} = \ker \text{sgn}_P$. We let

$$
\mathfrak{P}_P = \ker \text{sgn}_P \text{ in Spec } W(F).
$$

Note if $F \subset K \subset F_P$ and \mathfrak{b} is a non-degenerate symmetric bilinear form then $\text{sgn}_P \mathfrak{b} = \text{sgn}_{K/F} \mathfrak{b}_K$. In particular, if K is euclidean then $\text{sgn}_P \mathfrak{b} = \text{sgn} \mathfrak{b}_K$.

Theorem 31.24. (Local-Global Principle) The sequence

$$
0 \to W_t(F) \to W(F) \xrightarrow{(r_{F_P/F})} \prod_{X(F)} W(F_P)
$$

is exact.

Proof. We may assume that F is formally real by Proposition 31.24. We saw above that $W_t(F) \subset \ker \text{sgn}_P$ for every ordering $P \in \mathfrak{X}(F)$ so the sequence is a zero sequence. Suppose that $\mathfrak{b} \in W(F)$ is not torsion of 2-power order. By Lemma 31.22, there exists a euclidean field K/F with \mathfrak{b}_K not of 2-power order. As $K^2 \in \mathfrak{X}(K)$, we have $P = K^2 \cap F \in \mathfrak{X}(F)$. Thus $\text{sgn}_P \mathfrak{b} = \text{sgn} \mathfrak{b}_K \neq 0$. The result follows. \(\square\)

Corollary 31.25. The map

$$
\mathfrak{X}(F) \longrightarrow \{ \mathfrak{P} \in \text{Spec}(W(F)) \mid W(F)/\mathfrak{P} \simeq \mathbb{Z} \} \text{ given by } P \mapsto \mathfrak{P}_P
$$

is a bijection.

Proof. Let $\mathfrak{P} \subset W(F)$ be a prime ideal such that $W(F)/\mathfrak{P} \simeq \mathbb{Z}$. As in Proposition 31.23, let $P_\mathfrak{P} := \{ x \in F^\times \mid \langle x \rangle \in \mathfrak{P} \} \cup \{0\} \in \mathfrak{X}(F)$.

Claim 31.26. $\mathfrak{P} \mapsto P_\mathfrak{P}$ is the inverse, i.e., $P = P_\mathfrak{P}$ and $\mathfrak{P} = \mathfrak{P}_{P_\mathfrak{P}}$.

If $P \in \mathfrak{X}(F)$ then certainly, $P \subset P_\mathfrak{P}$, so we must have $P = P_\mathfrak{P}$ as both are orderings. By definition, we see that the composition $W(F) \to W(F)/\mathfrak{P} \xrightarrow{\sim} \mathbb{Z}$ maps $\langle x \rangle$ to $\text{sgn}_{P_\mathfrak{P}}(x)$. Hence $\ker \text{sgn}_{P_\mathfrak{P}} = \mathfrak{P}$. \(\square\)

Theorem 31.27. Spec$(W(F))$ consists of

1. The fundamental ideal $I(F)$.
2. \mathfrak{P}_P with $P \in \mathfrak{X}(F)$.
3. $\mathfrak{P}_{P,p} := P + pW(F) = \text{sgn}_P^{-1}(p\mathbb{Z})$, p an odd prime with $P \in \mathfrak{X}(F)$.

Moreover, all these ideals are different. The prime ideals in (1) and (3) are the maximal ideals of $W(F)$. If F is formally real then the ideals in (2) are the minimal primes of $W(F)$ and $\mathfrak{P}_P \subset \mathfrak{P}_{P,p} \cap I(F)$ for all $P \in \mathfrak{X}(F)$ and for all odd primes p.
31. Structure of the Witt Ring

Proof. We may assume that F is formally real by Proposition 31.4. Let \mathfrak{P} be a prime ideal in $W(F)$. Let $a \in F^\times$. As $\langle a, -a \rangle = 0$ in $W(F)$ either $\langle a \rangle \in \mathfrak{P}$ or $\langle -a \rangle \in \mathfrak{P}$. In particular, $\langle a \rangle \equiv \pm(1) \mod \mathfrak{P}$. Hence $W(F)/\mathfrak{P}$ is cyclic generated by $(1) + \mathfrak{P}$, so $W(F)/\mathfrak{P} \cong \mathbb{Z}$ or $\mathbb{Z}/p\mathbb{Z}$ for p a prime. If $x, y \in F^\times$ then $\langle x \rangle$ and $\langle y \rangle$ are units in $W(F)$, so do not lie in \mathfrak{P}. Suppose that $W(F)/\mathfrak{P} \cong \mathbb{Z}/2\mathbb{Z}$. Then we must have $\langle x, y \rangle \in \mathfrak{P}$ for all $x, y \in F^\times$ hence $\mathfrak{P} = I(F)$. So suppose that $W(F)/\mathfrak{P} \cong \mathbb{Z}/2\mathbb{Z}$. By Proposition 31.23, the set $P = P_\mathfrak{P} \in \mathfrak{X}(F)$. Since $W(F)/\mathfrak{P} \cong \mathbb{Z}$, we have $\mathfrak{P} \subseteq \mathfrak{P}$. Hence $\mathfrak{P} = \mathfrak{P}_P$ or $\mathfrak{P} = \mathfrak{P}_{P_P}$ for a suitable odd prime. As each $P \in \mathfrak{X}(F)$ determines a unique \mathfrak{P}_P and \mathfrak{P}_{P_P} by Corollary 31.23, the result follows.

Corollary 31.28. If F is formally real then $\dim W(F) = 1$ and the map $\mathfrak{X}(F) \to \operatorname{Min} \operatorname{Spec} W(F)$ given by $P \mapsto \ker \operatorname{sgn}_P$ is a homeomorphism.

Proof. As $\langle (1) \rangle$ does not lie in any minimal prime, for each $a \in F^\times$ either $a \in \mathfrak{P}_P$ or $-a \in \mathfrak{P}_P$ but not both where $P \in \mathfrak{X}(F)$. The sets $H(a) := \{P \mid -a \in P\}$ form a subbase for the topology of $\mathfrak{X}(F)$ (cf. 31.5). As $a \in P$ for $P \in \mathfrak{X}(F)$ if and only if $\langle (a) \rangle \in \mathfrak{P}_P$ if and only if \mathfrak{P}_P lies in the basic open set $\{\mathfrak{P} \mid a \notin \mathfrak{P}\}$ for $\mathfrak{P} \in \operatorname{Min} \operatorname{Spec} W(F)$, the result follows.

Proposition 31.29. Let F be formally real. Then

1. $\operatorname{nil}(W(F)) = \operatorname{rad}(W(F)) = W_1(F)$.
2. $W(F)^\times = \{b \mid \operatorname{sgn}_P b = \pm 1 \text{ for all } P \in \mathfrak{X}(F)\} = \{ \langle a \rangle + c \mid a \in F^\times \text{ and } c \in I^2(F) \cap W_1(F)\}$.
3. If F is not pythagorean then $\operatorname{zd}(W(F)) = I(F)$.
4. If F is pythagorean then $\operatorname{zd}(W(F)) = \bigcup \mathfrak{X}(F) \mathfrak{P}_P \subseteq I(F)$.
5. $W(F)$ is connected, i.e., 0 and 1 are the only idempotents in $W(F)$.
6. $W(F)$ is noetherian if and only if F^\times/F^\times^2 is finite.

Proof. (1): If $P \in \mathfrak{X}(F)$ then $\mathfrak{P}_P = \cap P_\mathfrak{P} \mathfrak{P}_{P_P}$ so $\operatorname{nil}(W(F)) = \operatorname{rad}(W(F))$. By the Local-Global Principle 31.24, we have

$$W_1(F) = \ker \left(\prod_{P \in \mathfrak{X}(F)} r_{P/F} \right) = \bigcap_{P \in \mathfrak{X}(F)} \ker(\operatorname{sgn}_P) = \bigcap_{X(F)} \mathfrak{P}_P = \bigcap_{X(F)} \mathfrak{P}_{P_P} = \operatorname{nil}(W(F)).$$

(2): We have $\operatorname{sgn}_P(W(F)^\times) \subseteq \{ \pm 1 \}$ for all $P \in \mathfrak{X}(F)$. Let b be a non-degenerate symmetric bilinear form satisfying $\operatorname{sgn}_P b = \pm 1$ for all $P \in \mathfrak{X}(F)$. Choose $a \in F$ such that $c := b - \langle a \rangle$ lies in $I^2(F)$ using Proposition 4.13. In particular, $\operatorname{sgn}_P b \equiv \operatorname{sgn}_P \langle a \rangle$ mod 4 hence $\operatorname{sgn}_P b = \operatorname{sgn}_P \langle a \rangle$ for all $P \in \mathfrak{X}(F)$. Consequently, $\operatorname{sgn}_P c = 0$ for all $P \in \mathfrak{X}(F)$ so is torsion by the Local-Global Principle 31.24. By (1), the form c is nilpotent hence $b \in W(F)^\times$.

(3), (4): As the set of zero divisors is a saturated multiplicative set, it follows by commutative algebra that it is a union of prime ideals.

Suppose that F is not pythagorean. Then $W_1(F) \neq 0$ by Corollary 31.11. In particular, $2^n b = 0 \in W(F)$ for some $b \neq 0$ in $W(F)$ and $n \geq 1$ by Theorem 31.24. Thus $\langle -1 \rangle$ is a zero divisor. As $I(F)$ is the only prime ideal containing $\langle -1 \rangle$, we have $I(F) \subseteq \operatorname{zd}(W(F))$. Since $n(1)$ is not a zero divisor for any odd integer n by Theorem 31.24, no \mathfrak{P}_{P_P} can lie in $\operatorname{zd}(W(F))$. It follows that $\operatorname{zd}(W(F)) = I(F)$, since $\mathfrak{P}_P \subseteq I(F)$ for all $P \in \mathfrak{X}(F)$.
Suppose that \(F \) is pythagorean. Then \(W_t(F) \) is torsion-free so \(n(1) \) is not a zero-
divisor for any nonzero integer \(n \). In particular, no maximal ideal lies in \(zd(W(F)) \). Let \(P \in \mathfrak{X}(F) \) and \(b \in \mathfrak{P}_P \). Then \(b \) is diagonalizable so we have \(b \simeq \langle a_1, \ldots, a_n, b_1, \ldots b_n \rangle \) with \(a_i, -b_j \in P \) for all \(i, j \). Let \(\epsilon = \langle a_1b_1, \ldots, a_nb_n \rangle \). Then \(b \) is non-zero in \(W(F) \) as \(sgn_P \epsilon = 2^n \). As \(\langle -a_i, b_i \rangle \cdot \epsilon = 0 \) in \(W(F) \) for all \(i \), we have \(b \cdot \epsilon = 0 \) hence \(b \in zd(W(F)) \). Consequently, \(\mathfrak{P}_P \subseteq zd(W(F)) \) for all \(P \in \mathfrak{X}(F) \) hence \(zd(W(F)) \) is the union of the minimal primes.

(5): If the result is false then \(1 = e_1 + e_2 \) for some nontrivial idempotents \(e_1, e_2 \). As \(e_1e_2 = 0 \), we have \(e_1, e_2 \in zd(W(F)) \subset I(F) \) which implies \(1 \in I(F) \), a contradiction.

(6): This follows by the same proof for the analogous result in Proposition 31.4.

Proposition 31.30. If \(F \) is formally real then \(W_t(F) \) is generated by \(\langle \langle x \rangle \rangle \) with \(x \in D(\infty(1)) \), i.e., \(I(F) \) is generated by torsion 1-fold Pfister forms.

Proof. Let \(b \in W_t(F) \). Then \(2^n b = 0 \) for some integer \(n > 0 \). Thus \(b \in \text{ann}(2^n(1)) \). By Corollary 6.23 there exist binary forms \(\mathfrak{d}_i \in \text{ann}(2^n(1)) \) satisfying \(b = \mathfrak{d}_1 + \cdots + \mathfrak{d}_m \) in \(W(F) \). The result follows.

Because \(I(F) \) is the unique ideal of index two in \(W(F) \), we can deduce the following:

Theorem 31.31. Let \(F \) and \(K \) be two fields. Then \(W(F) \) and \(W(K) \) are isomorphic
as rings if and only if \(W(F)/I^3(F) \) and \(W(K)/I^3(K) \) are isomorphic as rings.

Proof. The fundamental ideal is the unique ideal of index two in its Witt ring by
Theorem 31.27. Therefore any ring isomorphism \(W(F) \to W(K) \) induces a ring isomorphism
\(W(F)/I^3(F) \to W(K)/I^3(K) \).

Conversely, let \(g : W(F)/I^3(F) \to W(K)/I^3(K) \) be a ring isomorphism. By the first
argument, \(g \) induces an isomorphism \(I(F)/I^2(F) \to I(K)/I^2(K) \). By Proposition 4.13 it
induces an isomorphism \(h : F^x/I^2 \to K^x/I^2 \).

We adopt the following notation. For a coset \(x = xK^x \), write \(\langle x \rangle \) and \(\langle \langle x \rangle \rangle \) for
the forms \(\langle x \rangle \) and \(\langle \langle x \rangle \rangle \) in \(W(K) \) respectively. We also write \(s(a) \) for \(h(aF^x) \). Note that \(s(ab) = s(a)s(b) \) for all \(a, b \in F^x \).

By construction,
\[
g(\langle \langle a \rangle \rangle + I^3(F)) \equiv \langle s(a) \rangle \mod I^2(K)/I^3(K).
\]
As \(g(1) = 1 \), plugging in \(a = -1 \), we get \(\langle s(-1) \rangle = \langle -1 \rangle \). In particular,
\[
\langle s(1) \rangle + \langle s(-1) \rangle = \langle 1 \rangle + \langle -1 \rangle = 0 \in W(K).
\]

Since \(g \) is a ring homomorphism, we have
\[
g(\langle a, b \rangle + I^3(F)) = g(\langle a \rangle + I^3(F)) \cdot g(\langle b \rangle + I^3(F))
= \langle s(a) \rangle \cdot \langle s(b) \rangle + I^3(K)
= \langle s(a), s(b) \rangle + I^3(K).
\]
for every \(a, b \in F^x \).

If \(a + b \neq 0 \) we have \(\langle a, b \rangle \simeq \langle a + b, ab(a + b) \rangle \) by Lemma 4.15(3). Therefore,
\[
\langle s(a), s(b) \rangle \equiv \langle s(a + b), s(ab(a + b)) \rangle \mod I^3(K).
\]
By Theorem 6.20, these two 2-fold Pfister forms are equal in $W(K)$. Therefore,

\[(31.33) \quad \langle s(a) \rangle + \langle s(b) \rangle = \langle s(a + b) \rangle \]

in $W(K)$.

Let \mathcal{F} be the free abelian group with basis the set of isomorphism classes of 1-dimensional forms $\langle a \rangle$ over F. It follows from Theorem 4.8 and equations (31.32) and (31.33) that the map $\mathcal{F} \to W(K)$ taking $\langle a \rangle$ to $\langle s(a) \rangle$ gives rise to a homomorphism $s : W(F) \to W(K)$. Interchanging the roles of F and K, we have in similar fashion a homomorphism $W(K) \to W(F)$ which is the inverse of s.

\[\square \]

32. Addendum on Torsion

We know by Corollary 6.26 that if $b \in \text{ann}_{W(F)}(2\langle 1 \rangle)$, i.e., if $2b = 0$ in $W(F)$ that $b \simeq \mathfrak{a}_1 \perp \cdots \perp \mathfrak{a}_n$ where each \mathfrak{a}_i is a binary form annihilated by 2. In particular, if b is an anistropic bilinear Pfister form such that $2b = 0$ in $W(F)$ then $D(b^i) \cap D(2\langle 1 \rangle) \neq \emptyset$.

In general, if $2^n b = 0$ in $W(F)$ with $n > 1$, then b is not isometric to binary forms annihilated by 2^n nor does the pure subform of a torsion bilinear Pfister form represent a totally negative element. In this Addendum, we construct a counterexample. We use the following variant of the Cassels-Pfister Theorem 17.3.

Lemma 32.1. Let char $F \neq 2$. Let $\varphi = \langle a_1, \ldots, a_n \rangle$ be anisotropic over $F(t)$ with $a_1, \ldots, a_n \in F[t]$ all satisfying $\deg a_i \leq 1$. Suppose that $0 \neq q \in D(\varphi_{F(t)}) \cap F[t]$. Then there exist polynomials $f_1, \ldots, f_n \in F[t]$ such that $q = \varphi(f_1, \ldots, f_n)$, i.e., $F[t] \otimes_F \varphi$ represents q.

Proof. Let $\psi \simeq \langle -q \rangle \perp \varphi$ and let

$$Q := \{ f = (f_0, \ldots, f_n) \in F[t]^{n+1} \mid b_{\psi}(f, f) = 0 \}.$$

Choose $f \in Q$ such that $\deg f_0$ is minimal. Assume that the result is false. Then $\deg f_0 > 0$. Write $f_i = f_0 g_i + r_i$ with $r_i = 0$ or $\deg r_i < \deg f_0$ for each i using the Euclidean Algorithm. So $\deg r_i^2 \leq 2 \deg f_0 - 2$ for all i. Let $g = (1, g_1, \ldots, g_n)$ and define $h \in F[t]^{n+1}$ by $h = cf - dg$ with $c = b_{\psi}(g, g)$ and $d = -2b_{\psi}(f, g)$. We have

$$b_{\psi}(cf + dg, cf + dg) = c^2 b_{\psi}(f, f) + 2c d b_{\psi}(f, g) + d^2 b_{\psi}(g, g) = 0$$

so $h \in Q$. Therefore,

$$h_0 = b_{\psi}(g, g) - 2b_{\psi}(f, g) = b_{\psi}(f_0 g - 2f, g) = -b_{\psi}(f + r, g),$$

so

$$f_0 h_0 = -f_0 b_{\psi}(f + r, g) = -b_{\psi}(f + r, f - r) = b_{\psi}(r, r) = \sum_{i=1}^{n} a_i r_i$$

which is not zero as φ is anisotropic. Consequently,

$$\deg h_0 + \deg f_0 \leq \max_i \{ \deg a_i \} + 2 \deg f_0 - 2 \leq \deg f_0 + 1$$

as $\deg a_i \leq 1$ for all i. This is a contradiction. \[\square \]
Lemma 32.2. Let F be a formally real field and $x, y \in D(\langle 1 \rangle)$. Let $b = \langle \langle -t, x + ty \rangle \rangle$, a 2-fold Pfister form over $F(t)$. If $b \simeq \mathfrak{o}_1 \perp \mathfrak{o}_2$ over $F(t)$ with \mathfrak{o}_1 and \mathfrak{o}_2 binary torsion forms over $F(t)$ then there exists a $z \in D(\langle 1 \rangle)$ such that $x, y \in D(\langle \langle -z \rangle \rangle)$.

Proof. If one of x or y or xy is a square, let $z = y$ or $z = x$ to finish. So we may assume they are not squares. As b is round, we may also assume that $\mathfrak{o}_1 \simeq \langle \langle w \rangle \rangle$ with $w \in D(\langle 1 \rangle)$ by Corollary 6.6. In particular, $D(b_{F}) \cap -D(\langle 1 \rangle) \neq \emptyset$ by Lemma 6.11. Thus, there exists a positive integer n such that $b' \perp n \langle 1 \rangle$ is isotropic. Let $c = \langle t, -(x + yt) \rangle \perp n \langle 1 \rangle$. We have $t(x + yt) \in D(c)$. The form $\langle 1, -y \rangle$ is anisotropic as is $n \langle 1 \rangle$, since F is formally real. If z is isotropic, then we would have an equation $-tf^2 = \sum g_i^2 - (x + yt)h^2$ in $F[t]$ for some $f, g_i, h \in F[t]$. Comparing leading terms implies that y is a square. So z is anisotropic. By Lemma 32.1, there exist $c, d, f_i \in F[t]$ satisfying

$$f_1^2 + \cdots + f_n^2 + tc^2 - (x + yt)d^2 = t(x + yt).$$

Since $\langle 1, -y \rangle$ and $n \langle 1 \rangle$ are anisotropic and t^2 occurs on the right hand side, we must have c, d are constants and $\deg f_i \leq 1$ for all i. Write $f_i = a_i + b_i t$ with $a_i, b_i \in F$ for $1 \leq i \leq n$. Then

$$\sum_{i=1}^n a_i^2 = xd^2, \quad 2 \sum_{i=1}^n a_i b_i = -c^2 + x + yd^2, \quad \text{and} \quad \sum_{i=1}^n b_i^2 = y.$$

If $d = 0$ then $a_i = 0$ for all i and $x = c^2$ is a square which was excluded. So $d \neq 0$. Let

$$z = 4 \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2 - 4(\sum_{i=1}^n a_i b_i)^2 = 4xyd^2 - (x - c^2 + yd^2)^2.$$

Applying the Cauchy-Schwarz Inequality in each real closure of F, we see that z is non-negative in every ordering so $z \in \bar{D}(\langle 1 \rangle)$. As xy is not a square, $z \neq 0$. As $d \neq 0$, we have $xy \in D(\langle \langle -z \rangle \rangle)$. Now

$$z = 4xyd^2 - (x - c^2 + yd^2)^2 = 4xc^2 - (x - yd^2 + c^2)^2.$$

Thus $x \in D(\langle \langle -z \rangle \rangle)$. As $\langle \langle -z \rangle \rangle$ is round, $y \in D(\langle \langle -z \rangle \rangle)$ also.

Lemma 32.3. Let F_0 be a formally real field and $u, y \in D(\langle 1 \rangle_{F_0})$. Let $x = u + t^2$ in $F = F_0(t)$. If there exists a $z \in D(\langle 1 \rangle_F)$ such that $x, y \in D(\langle \langle -z \rangle \rangle)$ then $y \in D(\langle \langle -u \rangle \rangle)$.

Proof. We may assume that y is not a square. By assumption, we may write

$$z = (u + t^2)f_1^2 - g_1^2 = yf_2^2 - g_2^2 \quad \text{for some} \quad f_1, f_2, g_1, g_2 \in F_0(t).$$

Multiplying this equation by an appropriate square in $F_0(t)$, we may assume that $z \in F[t]$ and that $f_1, g_1, f_2, g_2 \in F_0[t]$ have no common nontrivial factor. As z is totally positive, i.e., lies in $D(\langle 1 \rangle)$, its leading term must be totally positive in F_0. Consequently,

$$\deg g_1 \leq 1 + \deg f_1 \quad \text{and} \quad \deg g_2 \leq \deg f_2.$$

It follows that $\frac{1}{2} \deg z \leq 1 + \deg f_1$. We have $\frac{1}{2} \deg z = \deg f_2$ otherwise $y \in F^2$, a contradiction. Thus, we have

$$\deg f_2 \leq 1 + \deg f_1 \quad \text{and} \quad \deg (g_1 \pm g_2) \leq 1 + \deg f_1.$$
If \(\text{deg}((u + t)^2f_1^2 - yf_2^2) < 2 \text{deg} f_1 + 2 \) then \(y \) would be a square in \(F_0 \), a contradiction. So
\[
\text{deg}((u + t^2)f_1^2 - yf_2^2) = 2 + 2 \text{deg} f_1.
\]
As \(((u + t^2)f_1^2 - yf_2^2) = g_1^2 - g_2^2 \), we have \(\text{deg}(g_1 \pm g_2) = 1 + \text{deg} f_1 \). It follows that either \(f_1 \) or \(g_1 - g_2 \) has a prime factor \(p \) of odd degree. Let \(F = F_0[t]/(p) \) and \(- : F_0[t] \rightarrow F \) be the canonical map. Suppose that \(f_1 = 0 \). Then \(z = -g_1^2 \) in \(F \). As \(z \) is a sum of squares in \(F_0[t] \) (possibly zero), we must also have \(z \) is a sum of squares in \(F \). But \([F : F_0] \) is odd hence \(F_0 \) is still formally real by Theorem 94.3 or Springer’s Theorem 18.5. Consequently, we must have \(z = g_1 = 0 \). This implies that \(yf_2^2 = g_2^2 \). As \(y \) cannot be a square in the odd degree extension \(F \) of \(F_0 \) by Springer’s Theorem 18.5 we must have \(f_2 = 0 = g_2 \). But there exist no prime \(p \) dividing \(f_1, f_2, g_1, \) and \(g_2 \). Thus \(p \nmid f_1 \) in \(F_0[t] \). It follows that \(g_1 = g_2 \) which in turn implies that \((u + t^2)f_1^2 - yf_2^2 = 0 \). As \(f_1 \neq 0 \), we have \(f_2 \neq 0 \), so we conclude that \(\langle u, 1, -y \rangle \) is isotropic over \(F_0 \) by Springer’s Theorem 18.5 i.e., \(y \in D(\langle -u \rangle) \) as needed.}

Example 32.4. We apply the above two lemmas in the following case. Let \(F_0 = \mathbb{Q}(t_1) \) and \(u = 1 \) and \(y = 3 \). The element \(y \) is a sum of three but not two squares in \(F_0 \) by the Substitution Principle 17.7. Let \(K = F_0(t_2) \) and \(b = \langle -t_2, 1 + t_2^2 + 3t_2 \rangle \) over \(K \). Then the Pfister form \(4b \) is isotropic hence metabolic so \(4b = 0 \) in \(W(K) \). As \(1, 3t_2^2 \in D(\langle -3t_2^2 \rangle) \) and \(3 \notin D(2\langle 1 \rangle_\mathbb{Q}(t_1)) \), the lemmas imply that \(b \) is not isometric to an orthogonal sum of binary torsion forms. In particular, it also follows that the form \(b \) has the property \(D(b') \cap -D(\infty \langle 1 \rangle_K) = \emptyset. \)

33. The Total Signature

We saw when \(F \) is a formally real field the torsion in the Witt ring \(W(F) \) is determined by the signatures at the orderings on \(F \). In this section, we view the relationship between bilinear forms over a formally real field \(F \) and the totality of continuous functions on the topological space \(\mathfrak{X} \) of orderings on \(F \) with integer values.

We shall use results in Appendices 94 and 95. Let \(F \) be a formally real field. The space of orderings \(\mathfrak{X}(F) \) is a boolean space, i.e., a totally disconnected compact Hausdorff space with a subbase the collection of sets
\[
\text{(33.1)} \quad H(a) = H_F(a) := \{ P \in \mathfrak{X}(F) \mid -a \in P \}.
\]

Let \(b \) be a non-degenerate symmetric bilinear form over \(F \). Then we define the **total signature of** \(b \) to be the map
\[
\text{(33.2)} \quad \text{sgn} \ b : \mathfrak{X}(F) \rightarrow \mathbb{Z} \text{ given by } \text{sgn} \ b(P) = \text{sgn}_P \ b.
\]

Theorem 33.3. Let \(F \) be formally real. Then
\[
\text{sgn} \ b : \mathfrak{X}(F) \rightarrow \mathbb{Z}
\]
is continuous with respect to the discrete topology on \(\mathbb{Z} \). The topology on \(\mathfrak{X}(F) \) the coarsest topology such that \(\text{sgn} \ b \) is continuous for all \(b \).
As any non-degenerate symmetric bilinear form is diagonalizable over a formally real field, we need only prove the result for $b = \langle a \rangle$, $a \in F^\times$. But

$$
(\text{sgn}(a))^{-1}(n) = \begin{cases}
\emptyset & \text{if } n \neq \pm 1 \\
H(a) & \text{if } n = -1 \\
H(-a) & \text{if } n = 1.
\end{cases}
$$

The result follows easily as the $H(a)$ form a subbase.

Let $C(\mathcal{X}(F), \mathbb{Z})$ be the ring of continuous functions $f : \mathcal{X}(F) \to \mathbb{Z}$ where \mathbb{Z} has the discrete topology. By the theorem, we have a map

$$
\text{sgn} : W(F) \to C(\mathcal{X}(F), \mathbb{Z}) \quad \text{given by} \quad b \mapsto \text{sgn} b
$$

called the total signature map. It is a ring homomorphism. The Local-Global Theorem \cite{31.24} in this terminology states

$$
W_1(F) = \ker(\text{sgn}).
$$

We turn to the cokernel of $\text{sgn} : W(F) \to C(\mathcal{X}(F), \mathbb{Z})$. We shall show that it too is a 2-primary torsion group. This generalizes the two observations that $C(\mathcal{X}(F), \mathbb{Z}) = 0$ if F is not formally real and $\text{sgn} : W(F) \to C(\mathcal{X}(F), \mathbb{Z})$ is an isomorphism if F is euclidean.

If $A \subset \mathcal{X}(F)$, write χ_A for the characteristic function of A. In particular, $\chi_A \in C(\mathcal{X}(F), \mathbb{Z})$ if A is clopen. Let $f \in C(\mathcal{X}(F), \mathbb{Z})$. Then $A_n = f^{-1}(n)$ is a clopen set. As $\{A_n \mid n \in \mathbb{Z}\}$ partition the compact space $\mathcal{X}(F)$, only finitely many A_n are non-empty. In particular, $f = \sum n \chi_{A_n}$ is a finite sum. This shows that $C(\mathcal{X}(F), \mathbb{Z})$ is additively generated by χ_A, as A varies over the clopen sets in the boolean space $\mathcal{X}(F)$.

The finite intersections of the subbase elements \eqref{33.1}

$$
H(a_1, \ldots, a_n) := H(a_1) \cap \cdots \cap H(a_n) \quad \text{with } a_1, \ldots, a_n \in F^\times
$$

form a base for the topology of $\mathcal{X}(F)$. As

$$
H(a_1, \ldots, a_n) = \text{supp}((\langle a_1, \ldots, a_n \rangle)),
$$

where $\text{supp} b := \{P \in \mathcal{X}(F) \mid \text{sgn}_P b \neq 0\}$ is the support of b, this base is none other than the collection of clopen sets

$$
\{\text{supp}(b) \mid b \text{ is a bilinear Pfister form}\}.
$$

We also have

$$
\text{sgn} b = 2^n \chi_{\text{supp}(b)} \quad \text{if} \quad b \text{ is a bilinear } n\text{-fold Pfister form}.
$$

Theorem 33.8. The cokernel of $\text{sgn} : W(F) \to C(\mathcal{X}(F), \mathbb{Z})$ is 2-primary torsion.

Proof. It suffices to prove for each clopen set $A \subset \mathcal{X}(F)$ that $2^n \chi_A \in \text{im} \text{sgn}$ for some $n \geq 0$. As $\mathcal{X}(F)$ is compact, A is a finite union of clopen sets of the form \eqref{33.6} whose characteristic functions lie in $\text{im} \text{sgn}$ by \eqref{33.7}. By induction, it suffices to show that if A and B are clopen sets in $\mathcal{X}(F)$ with $2^n \chi_A$ and $2^m \chi_B$ lying in $\text{im} \text{sgn}$ for some integers m and n then $2^s \chi_{A \cup B}$ lies in $\text{im} \text{sgn}$ for some s. But

$$
\chi_{A \cup B} = \chi_A + \chi_B - \chi_A \cdot \chi_B,
$$

which is a bilinear Pfister form, as required.
so
\begin{equation}
2^{m+n}\chi_{A \cup B} = 2^m(2^n\chi_A) + 2^n(2^m\chi_B) - (2^m\chi_A) \cdot (2^m\chi_B)
\end{equation}

lies in \text{im} \ sgn as needed. \hfill \Box

Refining the argument in the last theorem, we establish:

Lemma 33.11. Let \(C \subseteq \mathfrak{X}(F) \) be clopen. Then there exists an integer \(n > 0 \) and a \(b \in I^n(F) \) satisfying \(\text{sgn} \ b = 2^n\chi_A \). More precisely, there exists an integer \(n > 0 \), bilinear \(n \)-fold Pfister forms \(b_i \) satisfying \(\text{supp}(b_i) \subseteq A \), and integers \(k_i \) such that \(\sum k_i \text{sgn} b_i = 2^n\chi_A \).

Proof. As \(\mathfrak{X}(F) \) is compact and (33.6) is a base for the topology, there exists an \(r \geq 1 \) such that \(C = A_1 \cup \cdots \cup A_r \) with \(A_i = \text{supp}(b_i) \) for some \(m_i \)-fold Pfister forms \(b_i \), \(i = 1, \ldots, r \). We induct on \(r \). If \(r = 1 \) the result follows by (33.7), so assume that \(r > 1 \). Let \(A = A_1 \), \(b = b_1 \), and \(B = A_2 \cup \cdots \cup A_r \). By induction, there exists an \(m \geq 1 \) and a \(c \in I^m(F) \), a sum (and difference) of Pfister forms with the desired properties with \(\text{sgn} \ c = 2^m\chi_B \). Multiplying by a suitable power of 2, we may assume that \(m = m_1 \). Let \(d = 2^m(b \perp c) \perp (-b) \otimes c \). Then \(d \) is a sum (and difference) of Pfister forms whose supports all lie in \(C \) as \(\text{supp}(a) = \text{supp}(2a) \) for any bilinear form \(a \). By equations (33.9) and (33.10), we have
\begin{align*}
2^{2m}\chi_{A \cup B} &= 2^{2m}\chi_A + 2^{2m}\chi_B - 2^m\chi_A \cdot 2^m\chi_B \\
&= 2^m(\text{sgn} \ b + \text{sgn} \ c) - \text{sgn} \ b \cdot \text{sgn} \ c = \text{sgn} \ d,
\end{align*}

the result follows. \hfill \Box

Using the lemma, we can establish two useful results. The first is:

Theorem 33.12. (Normality Theorem) Let \(A \) and \(B \) be disjoint closed subsets of \(\mathfrak{X}(F) \). Then there exists an integer \(n > 0 \) and \(b \in I^n(F) \) satisfying
\begin{equation}
\text{sgn}_P b = \begin{cases}
2^n & \text{if } P \subseteq A \\
0 & \text{if } P \subseteq B.
\end{cases}
\end{equation}

Proof. The complement \(\mathfrak{X}(F) \setminus B \) is a union of clopen sets. As the closed set \(A \) is covered by this union of clopen sets and \(\mathfrak{X}(F) \) is compact, there exists a finite cover \(\{C_1, \ldots, C_r\} \) of \(A \) for some clopen sets \(C_i \), \(i = 1, \ldots, r \) lying in \(\mathfrak{X}(F) \setminus B \). As \(C_i \setminus \bigcup_{i \neq j} C_j \) is clopen for \(i = 1, \ldots, r \), we may assume this is a disjoint union. By Lemma 33.11, there exist \(b_i \in I^{m_i}(F) \), some \(m_i \), such that \(\text{sgn} \ b_i = 2^{m_i} \chi_{C_i} \). Let \(n = \max_i \{m_i \mid 1 \leq i \leq r\} \). Then \(b = \sum_i 2^{n-m_i} b_i \) lies in \(I^n(F) \) and satisfies \(b = 2^n \chi_{\bigcup_i C_i} \). Since \(A \subseteq \bigcup_i C_i \), the result follows. \hfill \Box

We now investigate the relationship between elements in \(f \in C(\mathfrak{X}(F), 2^m\mathbb{Z}) \) and bilinear forms \(b \) satisfying \(2^m \mid \text{sgn}_P b \) for all \(P \in \mathfrak{X}(F) \). We first need a useful trick.

If \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in \{\pm 1\}^n \) and \(b = \langle (a_1, \ldots, a_n) \rangle \) with \(a_i \in F^\times \), let
\[b_\varepsilon = \langle (\varepsilon_i a_1, \ldots, \varepsilon_n a_n) \rangle. \]
Then \(\text{supp}(b_\varepsilon) \cap \text{supp}(b_{\varepsilon'}) = \emptyset \) unless \(\varepsilon = \varepsilon' \).
Lemma 33.13. Let b be a bilinear n-fold Pfister form over an arbitrary field F. Then $2^n \langle 1 \rangle = \sum_\varepsilon b_\varepsilon$ in $W(F)$, where the sum runs over all $\varepsilon \in \{\pm 1\}^n$.

Proof. Let $b = \langle\langle a_1, \ldots, a_n\rangle\rangle$ and $c = \langle\langle a_1, \ldots, a_{n-1}\rangle\rangle$ with $a_i \in F^\times$. As $\langle\langle -1 \rangle\rangle = \langle\langle a \rangle\rangle + \langle\langle -a \rangle\rangle$ in $W(F)$ for all $a \in F^\times$, we have
\[
\sum_\varepsilon b_\varepsilon = \sum_{\varepsilon'} c_{\varepsilon'}\langle\langle a_n \rangle\rangle + \sum_{\varepsilon'} c_{\varepsilon'}\langle\langle -a_n \rangle\rangle = 2\sum_{\varepsilon'} c_{\varepsilon'}
\]
where the ε' run over all $\{\pm 1\}^{n-1}$. The result follows by induction on n. \qed

Using Lemma 33.11, we also establish:

Theorem 33.14. Let $f \in C(\mathcal{X}(F), 2^n \mathbb{Z})$. Then there is a positive integer n and a $b \in I^{m+n}(F)$ such that $2^n f = \text{sgn} b$. More precisely, there exists an integer n such that $2^n f$ can be written as a sum $\sum_{i=1}^r k_i \text{sgn} b_i$ for some integers k_i and bilinear $(n+m)$-fold Pfister forms b_i such that $\text{supp}(b_i) \subset \text{supp}(f)$ for every $i = 1, \ldots, r$ and whose supports are pairwise disjoint.

Proof. We first show:

Claim 33.15. Let $g \in C(\mathcal{X}(F), \mathbb{Z})$. Then there exists a non-negative integer n and bilinear n-fold Pfister forms c_i such that $2^n g = \sum_{i=1}^r s_i \text{sgn} c_i$ for some integers s_i with $\text{supp}(c_i) \subset \text{supp}(g)$ for every $i = 1, \ldots, r$.

The function g is a finite sum of functions $\sum_{i} i\chi_{g^{-1}(i)}$ where $i \in \mathbb{Z}$ and each $g^{-1}(i)$ is a clopen set. For each non-empty $g^{-1}(i)$, there exist a non-negative integer n_i, bilinear n_i-fold Pfister forms b_{ij} with $\text{supp}(b_{ij}) \subset g^{-1}(i)$ and integers k_j satisfying $2^{n_i}\chi_{g^{-1}(i)} = \sum_j k_j \text{sgn} b_{ij}$ by Lemma 33.11. Let $n = \max_i \{n_i\}$. Then $2^n g = \sum_{i,j} i k_j \text{sgn}(2^{n-n_i} b_{ij})$. This proves the Claim.

Let $g = f/2^m$. By the Claim, $2^n g = \sum_{i=1}^r s_i \text{sgn} c_i$ for some n-fold Pfister forms c_i whose supports lie in $\text{supp}(g) = \text{supp}(f)$. Thus $2^n f = \sum_{i=1}^r s_i \text{sgn} 2^m c_i$ with each $2^m c_i$ an $(n+m)$-fold Pfister form. Let $d = c_1 \otimes \cdots \otimes c_r$, an rn-fold Pfister form. By Lemma 33.13 we have $2^{(n+m)r} f = \sum_\varepsilon \text{sgn}(2^m s_i c_i \cdot d_\varepsilon)$ in $C(\mathcal{X}(F), \mathbb{Z})$ where ε runs over all $\{\pm 1\}^m$. For each i and ε, the form $c_i \cdot d_\varepsilon$ is isometric to either $2^{n+m} d_\varepsilon$ or is metabolic by Example 4.16(2) and (3). As the d_ε have pairwise disjoint supports, adding the coefficients of the isometric forms $c_i \cdot d_\varepsilon$ yields the result. \qed

Corollary 33.16. Let b be a non-degenerate symmetric bilinear form over F and fix $m > 0$. Then $2^n b \in I^{n+m}(F)$ for some $n \geq 0$ if and only if $\text{sgn} b \in C(\mathcal{X}(F), 2^n \mathbb{Z})$.

Proof. We may assume that F is formally real as $2s(F)W(F) = 0$.

\Rightarrow: If d is a bilinear n-fold Pfister form then $\text{sgn} d \in C(\mathcal{X}(F), 2^n \mathbb{Z})$. If follows that $\text{sgn}(I^n(F)) \subset C(\mathcal{X}(F), 2^n \mathbb{Z})$. Suppose that $2^n b \in I^{n+m}(F)$ for some $n \geq 0$. Then $2^n \text{sgn} b \in C(\mathcal{X}(F), 2^{n+m} \mathbb{Z})$ hence $\text{sgn} b \in C(\mathcal{X}(F), 2^{n+m} \mathbb{Z})$.

\Leftarrow: By Theorem 33.14 there exists $c \in I^{n+m}(F)$ such that $\text{sgn} c = 2^n \text{sgn} b$. As $W_t(F) = \ker(\text{sgn})$ is 2-primary torsion by the Local-Global Principle 31.24 there exists a non-negative integer k such that $2^{n+k} b = 2^k c \in I^{n+m+k}(F)$. \qed
This Corollary \[33.16\] suggests that if \(b \) is a non-degenerate symmetric bilinear form over \(F \) then
\[\text{sgn } b \in C(\mathfrak{X}(F), 2^n \mathbb{Z}) \quad \text{if and only if} \quad b \in I^n(F) + W_t(F). \]
In particular, in the case that \(F \) is a formally real pythagorean field, this suggests that
\(b \in I^n(F) \) if and only if \(2^n \mid \text{sgn}_P(b) \) for all \(P \in \mathfrak{X}(F) \)
as \(W(F) \) is then torsion-free.

Of course, if \(b \in I^n(F) + W_t(F) \) then \(b \in C(\mathfrak{X}(F), 2^n \mathbb{Z}) \). The converse would follow if
\[2^n b \in I^{n+m}(F) \]always implies that \(b \in I^n(F) + W_t(F) \).
If \(F \) were formally real pythagorean the converse would follow if
\[2^n b \in I^{n+m}(F) \]always implies that \(b \in I^n(F) \).

Because the nilradical of \(W(F) \) is the torsion \(W_t(F) \) when \(F \) is formally real, the total signature induces an embedding of the reduced Witt ring
\[W_{\text{red}}(F) := W(F)/\text{nil}(W(F)) = W(F)/W_t(F) \]
into \(C(\mathfrak{X}(F), \mathbb{Z}) \). Moreover, since \(W_t(F) \) is 2-primary, the images of two non-degenerate bilinear forms \(b \) and \(c \) are equal in the reduced Witt ring if and only if there exists a non-negative integer \(n \) such that \(2^n b = 2^n c \) in \(W(F) \). Let \(\overline{-} : W(F) \to W_{\text{red}}(F) \) be the canonical ring epimorphism. Then the problem above becomes: If \(b \) is a non-degenerate symmetric bilinear form over \(F \) then
\[\overline{b} \in I_{\text{red}}^n(F) \]
if and only if \(\text{sgn } b \in C(\mathfrak{X}(F), 2^n \mathbb{Z}) \).

This is all, in fact, true as we shall see in \[41\] (Cf. Corollaries \[41.9\] and \[41.10\]).

34. Bilinear and Quadratic Forms Under Quadratic Extensions

In this section we develop the relationship between bilinear and quadratic forms over a field \(F \) and over a quadratic extension \(K \) of \(F \). We know that bilinear and quadratic forms can become isotropic over a quadratic extension and exploit this. We also investigate the transfer map taking forms over \(K \) to forms over \(F \) induced by a nontrivial \(F \)-linear functional. This leads to useful exact sequences of Witt rings and Witt groups.

Proposition 34.1. Let \(K/F \) be a quadratic field extension and \(s : K \to F \) a nontrivial \(F \)-linear functional satisfying \(s(1) = 0 \). Let \(c \) be an anisotropic bilinear form over \(K \). Then there exist bilinear forms \(b \) over \(F \) and \(a \) over \(K \) such that \(c \simeq b_K \perp a \) and \(s_*(a) \) is anisotropic.

Proof. We induct on \(\dim c \). Suppose that \(s_*(c) \) is isotropic. It follows that there is a \(b \in D(c) \cap F \), i.e., \(c \simeq \langle b \rangle \perp c_1 \) for some \(c_1 \). Applying the induction hypothesis to \(c_1 \) completes the proof. \(\square \)

We need the following generalization of Proposition \[34.1\].
6.22 If there exists a bilinear anisotropic n-fold Pfister form over F and c a non-degenerate bilinear form over K such that $f_K \otimes c$ is anisotropic. Then there exists a bilinear form b over F and a bilinear form a over K such that $f_K \otimes c \simeq (f \otimes b)_K \perp f_K \otimes a$ and $f \otimes s_+(a)$ anisotropic.

Proof. Let $\mathfrak{d} = f_K \otimes c$. We may assume that $s_+(\mathfrak{d})$ is isotropic. Then there exists a $b \in D(\mathfrak{d}) \cap F$. If $c \simeq \langle a_1, \ldots, a_n \rangle$, there exist $x_i \in D(f_K)$, not all zero satisfying $b = x_1a_1 + \cdots + x_na_n$. Let $y_i = x_i$ if $x_i \neq 0$ and $y_i = 1$ otherwise. Then

$$f_K \otimes c \simeq f_K \otimes \langle y_1a_1, \ldots, y_na_n \rangle \simeq f_K \otimes \langle b, z_2, \ldots, z_n \rangle$$

for some $z_i \in K^\times$ as $G(f_K) = D(f_K)$. The result follows easily by induction. □

Corollary 34.3. Let K/F be a quadratic extension of F and $s : K \to F$ a nontrivial F-linear functional satisfying $s(1) = 0$. Let f be a bilinear anisotropic n-fold Pfister form and c an anisotropic bilinear form over K satisfying $f \otimes s_+(c)$ is hyperbolic. Then there exists a bilinear form b over F such that $\dim b = \dim c$ and $f_K \otimes c \simeq (f \otimes b)_K$.

Proof. If $f_K \otimes c$ is anisotropic, the result follows by Lemma 34.2, so we may assume that $f_K \otimes c$ is isotropic. If f_K is isotropic, it is hyperbolic and the result follows easily so we may assume the Pfister form f_K is anisotropic. Using Proposition 6.22, we see that there exists a bilinear form \mathfrak{d} with $f_K \otimes \mathfrak{d}$ anisotropic and an integer $n \geq 0$ with $\dim \mathfrak{d} + 2n = \dim c$ and $f_K \otimes c \simeq f_K \otimes (\mathfrak{d} \perp nH)$. Replacing c by \mathfrak{d}, we reduce to the anisotropic case. □

Note that if K/F is a quadratic extension and $s, s' : K \to F$ are F-linear functionals satisfying $s(1) = 0 = s'(1)$ with s nontrivial then $s'_+ = as_+$ for some $a \in F$.

Theorem 34.4. Let K/F be a quadratic field extension and $s : K \to F$ a nonzero F-linear functional such that $s(1) = 0$. Then the sequence

$$W(F) \xrightarrow{r_{K/F}} W(K) \xrightarrow{s} W(F)$$

is exact.

Proof. Let $b \in F^\times$ then the binary form $s_+(\langle b \rangle_K)$ is isotropic hence metabolic. Thus $s_+ \circ r_{K/F} = 0$. Let $c \in W(K)$. By Proposition 34.1 there exists a decomposition $c \simeq b_K \perp c_1$ with b a bilinear form over F and c_1 a bilinear form over K satisfying $s_+(c_1)$ is anisotropic. In particular, if $s_+(c) = 0$, we have $c = b_K$. This proves exactness. □

If K/F is a quadratic extension, denote the quadratic norm form of the quadratic algebra K by $N_{K/F}$. (Cf. Appendix 397.B)

Lemma 34.5. Let K/F be a quadratic extension and $s : K \to F$ a nontrivial F-linear functional. Let b be an anisotropic binary bilinear form over F such that the quadratic form $b \otimes N_{K/F}$ is isotropic. Then $b \simeq s_+(y)$ for some $y \in K^\times$.

Proof. Let $\{1, x\}$ be a basis of K over F. Let c be the polar form of $N_{K/F}$. We have

$$c(1, x) = N_{K/F}(1 + x) - N_{K/F}(x) - N_{K/F}(1) = \text{Tr}_{K/F}(x)$$
for every $x \in K$. By assumption there are nonzero vectors $v, w \in V_6$ such that

$$0 = (b \otimes N_{K/F})(v \otimes 1 + w \otimes x)$$

$$= b(v, v)N_{K/F}(1) + b(v, w)c(1, x) + b(w, w)N_{K/F}(x)$$

$$= b(v, v) + b(v, w)Tr_{K/F}(x) + b(w, w)N_{K/F}(x)$$

by the definition of tensor product (8.14). Let $f : K \to F$ be an F-linear functional satisfying $f(1) = b(w, w)$ and $f(x) = b(v, w)$. By (97.2), we have

$$f(x^2) = f(-Tr_{K/F}(x)x - N_{K/F}(x)) = -Tr_{K/F}(x)b(v, w) - N_{K/F}(x)b(w, w) = b(v, v).$$

Therefore, the F-linear isomorphism $K \to V_6$ taking 1 to w and x to v is an isometry between $c = f_*(1)$ and b. As f is the composition of s with the endomorphism of K given by multiplication by some element $y \in K^\times$, we have $b \simeq f_*(1) \otimes b$ and $b \otimes N_{K/F}$ is anisotropic.

Proposition 34.6. Let K/F be a quadratic extension and $s : K \to F$ a nontrivial F-linear functional. Let b be an anisotropic bilinear form over F. Then there exist bilinear forms c over K and ψ over F such that $b \simeq s_*(c) \perp \psi$ and $b \otimes N_{K/F}$ is anisotropic.

Proof. We induct on $\dim b$. Suppose that $b \otimes N_{K/F}$ is isotropic. Then there is a 2-dimensional subspace $W \subset V_6$ with $(b|_W) \otimes N_{K/F}$ isotropic. By Lemma 34.5, we have $b|_W \simeq s_*(\langle y \rangle)$ for some $y \in K^\times$. Applying the induction hypothesis to the orthogonal complement of W in V completes the proof.

Theorem 34.7. Let $K = F(\sqrt{a})$ be a quadratic field extension of F with $a \in F^\times$. Let $s : K \to F$ be a nontrivial F-linear functional such that $s(1) = 0$. Then the sequence

$$W(K) \xrightarrow{s_*} W(F) \xrightarrow{\langle\langle a \rangle\rangle} W(F)$$

is exact where the last homomorphism is multiplication by $\langle\langle a \rangle\rangle$.

Proof. For every $c \in W(F)$ we have $\langle\langle a \rangle\rangle s_*(c) = s_*(\langle\langle a \rangle\rangle_K c) = 0$ as $\langle\langle a \rangle\rangle_K = 0$. Therefore the composition of the two homomorphisms in the sequence is trivial. Since $N_{K/F} \simeq \langle\langle a \rangle\rangle_q$, the exactness of the sequence now follows from Proposition 34.6.

We now turn to quadratic forms.

Proposition 34.8. Let K/F be a separable quadratic field extension and let φ be an anisotropic quadratic form over F. Then $\varphi \simeq b \otimes N_{K/F} \perp \psi$ with b a non-degenerate symmetric bilinear form and ψ a quadratic form satisfying ψ_K is anisotropic.

Proof. Since K/F is separable, the binary form $\sigma := N_{K/F}$ is non-degenerate. As $F(\sigma) \simeq K$, the statement follows from Corollary 22.12.

Theorem 34.9. Let K/F be a separable quadratic field extension and $s : K \to F$ a nonzero functional such that $s(1) = 0$. Then the sequence

$$W(F) \xrightarrow{r_{K/F}} W(K) \xrightarrow{s_*} W(F) \xrightarrow{N_{K/F}} I_q(F) \xrightarrow{r_{K/F}} I_q(K) \xrightarrow{s_*} I_q(F)$$

is exact where the middle homomorphism is multiplication by $N_{K/F}$.
In view of Theorem 34.4 and Propositions 34.6 and 34.8 it suffices to prove exactness at $I_q(K)$. Let $\varphi \in I_q(K)$ be an anisotropic form such that $s_*(\varphi)$ is hyperbolic. We show by induction on $n = \dim_K \varphi$ that $\varphi \in \im r_{K/F}$. We may assume that $n > 0$. Let $W \subset V_\varphi$ be a totally isotropic F-subspace for the form $s_*(\varphi)$ of dimension n. As $\ker s = F$ we have $\varphi(W) \subset F$.

We claim that the K-space KW properly contains W, in particular,

$$\dim_K KW = \frac{1}{2} \dim_F KW > \frac{1}{2} \dim_F W = \frac{n}{2}. \tag{34.10}$$

To prove the claim choose an element $x \in K$ such that $x^2 \notin F$. Then for every nonzero $w \in W$, we have $\varphi(xw) = x^2 \varphi(w) \notin F$, hence $xw \in KW$ but $x \notin W$. It follows from the inequality (34.10) that the restriction of b_φ on KW and therefore on W is nonzero. Consequently, there is a 2-dimensional F-subspace $U \subset W$ such that $b_\varphi|_U$ is non-degenerate. Therefore, the K-space KU is also 2-dimensional and the restriction $\psi = \varphi|_U$ is a non-degenerate binary quadratic form over F satisfying $\psi_K \simeq \varphi|_{KU}$. Applying the induction hypothesis to $(\psi_K)^\perp$, we have $(\psi_K)^\perp \in \im r_{K/F}$. Therefore, $\varphi = \psi_K + (\psi_K)^\perp \in \im r_{K/F}$.

Remark 34.11. In Proposition 34.9, we have $\ker r_{K/F} = W(F)/\langle \langle a \rangle \rangle$ when $K = F_a$.

Corollary 34.12. Suppose that $\text{char } F \neq 2$ and $K = F(\sqrt{a})/F$ is a quadratic field extension with $a \in F^\times$. If $s : K \to F$ is a nontrivial F-linear functional such that $s(1) = 0$ then the triangle

$$\begin{array}{ccc}
W(K) & \xrightarrow{r_{K/F}} & W(F) \\
\downarrow{s_*} & & \downarrow{\langle \langle a \rangle \rangle} \\
W(F) & \xleftarrow{\langle \langle a \rangle \rangle} & W(F)
\end{array}$$

is exact.

Proof. Since the quadratic norm form $N_{K/F}$ coincides with φ_b where $b = \langle \langle a \rangle \rangle$, the map $W(F) \to I_q(F)$ given by multiplication by $N_{K/F}$ is identified with the map $W(F) \to I(F)$ given by multiplication by $\langle \langle a \rangle \rangle$. Note also that $\ker r_{K/F} \subset I(F)$, so the statement follows from Theorem 34.9.

Remark 34.13. Suppose that $\text{char } F \neq 2$ and $K = F(\sqrt{a})$ is a quadratic extension of F. Let b be an anisotropic bilinear form. Then by Proposition 34.8 and Example 9.5 we see that the following are equivalent:

1. b_K is metabolic.
2. $b \in \langle \langle a \rangle \rangle W(F)$.
3. $b \simeq \langle \langle a \rangle \rangle \otimes c$ for some symmetric bilinear form c.

In the case that $\text{char } F = 2$, Theorem 34.9 can be slightly improved.

We need the following computation:

Lemma 34.14. Let F be a field of characteristic 2 and K/F a quadratic field extension. Let $s : K \to F$ be a nonzero F-linear functional satisfying $s(1) = 0$. Then for every $x \in K$
we have
\[s_*(\langle\langle x\rangle\rangle) = \begin{cases} 0, & \text{if } x \in F \\ s(x)\langle\langle \Tr_{K/F}(x)\rangle\rangle, & \text{otherwise.} \end{cases} \]

In particular \(s_*(\langle\langle x\rangle\rangle) \equiv \langle\langle \Tr_{K/F}(x)\rangle\rangle \ mod I^2_q(F) \).

Proof. The element \(x \) satisfies the quadratic equation \(x^2 + ax + b = 0 \) for some \(a, b \in F \). We have \(\Tr_{K/F}(x) = a \) and \(s(x^2) = as(x) = s(x)\Tr_{K/F}(x) \). Let \(\bar{x} = \Tr_{K/F}(x) - x \). The element \(\bar{x} \) satisfies the same quadratic equation and \(s(\bar{x}^2) = s(x)\Tr_{K/F}(\bar{x}) \).

Let \(\{ v, w \} \) be the standard basis for the space \(V \) of the form \(\varphi := \langle\langle x\rangle\rangle \) over \(K \). If \(x \in F \) then \(v \) and \(w \) span the totally isotropic \(F \)-subspace of \(s_*(\varphi) \), i.e., \(s_*(\varphi) = 0 \).

Suppose that \(x \notin F \). We have \(V = W \perp W' \) where \(W = Fv \oplus Fxw \) and \(W' = F\bar{x}v \oplus Fw \). We have \(s_*(\varphi) \simeq s_*(\varphi)|_W \perp s_*(\varphi)|_{W'} \). As \(s_*(\varphi)(v) = s(1) = 0 \), the form \(s_*(\varphi)|_W \) is isotropic and therefore \(s_*(\varphi)|_{W'} \simeq \mathbb{H} \). Moreover,
\[s_*(\varphi)(\bar{x}v) = s(\bar{x}^2) = s(x)\Tr_{K/F}(x), \ s_*(\varphi)(w) = s(x) \text{ and } s_*(\mathbf{b}_\varphi(\bar{x}v, w)) = s(\bar{x} = s(x) \]

hence \(s_*(\varphi)|_{W'} \simeq s(x)|\langle\langle \Tr_{K/F}(x)\rangle\rangle \).

Corollary 34.15. Suppose that \(\text{char } F = 2 \). Let \(K/F \) be a separable quadratic field extension and \(s : K \to F \) a nonzero functional such that \(s(1) = 0 \). Then the sequence
\[
0 \to W(F) \xrightarrow{r_{K/F}} W(K) \xrightarrow{s} W(F) \xrightarrow{N_{K/F}} I_q(F) \xrightarrow{r_{K/F}} I_q(K) \xrightarrow{s} I_q(F) \to 0
\]
is exact.

Proof. To prove the injectivity of \(r_{K/F} \), it suffices to show that if \(\mathbf{b} \) is an anisotropic bilinear form over \(F \) then \(\mathbf{b}_K \) is also anisotropic. Let \(x \in K \setminus F \) be an element satisfying \(x^2 + x + a = 0 \) for some \(a \in F \) and let \(\mathbf{b}_K(v + xw, v + xw) = 0 \) for some \(v, w \in V_0 \). We have
\[0 = \mathbf{b}_K(v + xw, v + xw) = \mathbf{b}(v, v) + ab(w, w) + xb(w, w), \]
hence \(b(w, w) = 0 = b(v, v) \). Therefore \(v = w = 0 \) as \(b \) is anisotropic.

By Lemma 34.14, we have for every \(y \in K \), the form \(s_*|_{\langle\langle y\rangle\rangle} \) is similar to \(\langle\langle \Tr_{K/F}(y)\rangle\rangle \). As the map \(s_* \) is \(W(F) \)-linear, \(I_q(F) \) is generated by the classes of binary forms and the trace map \(\Tr_{K/F} \) is surjective, the last homomorphism \(s_* \) in the sequence is surjective.

We turn to the study of relations between the ideals \(I^n(F), I^n(K), I_q^n(F) \) and \(I_q^n(K) \) for a quadratic field extension \(K/F \).

Lemma 34.16. Let \(K/F \) be a quadratic extension. Let \(n \geq 1 \).

1. We have
\[I^n(K) = I^{n-1}(F)I(K), \]
i.e., \(I^n(K) \) is the \(W(F) \)-module generated by \(n \)-fold bilinear Pfister forms \(\mathbf{b}_K \otimes \langle\langle x\rangle\rangle \) with \(x \in K^\times \) and \(\mathbf{b} \) an \((n-1) \)-fold bilinear Pfister form over \(F \).

2. If \(\text{char } F = 2 \) then
\[I_q^n(K) = I^{n-1}(F)I_q(K) + I(K)I_q^{n-1}(F). \]
Proof. (1): Clearly, to show that $I^n(K) = I^{n-1}(F)I(K)$, it suffices to show this for the case $n = 2$. Let $x, y \in K \setminus F$. As $1, x, y$ are linearly dependent over F, there are $a, b \in F^\times$ such that $ax + by = 1$. Note that the form $\langle \langle ax, by \rangle \rangle$ is isotropic and therefore metabolic. Using the relation

$$\langle \langle uv, w \rangle \rangle = \langle \langle u, w \rangle \rangle + u \langle \langle v, w \rangle \rangle$$

in $W(K)$, we have

$$0 = \langle \langle ax, by \rangle \rangle = \langle \langle x, by \rangle \rangle + a \langle \langle x, by \rangle \rangle = \langle \langle a, b \rangle \rangle + b \langle \langle a, y \rangle \rangle + a \langle \langle x, b \rangle \rangle + ab \langle \langle x, y \rangle \rangle,$$

hence $\langle \langle x, y \rangle \rangle \in I(F)I(K)$.

(2): In view of (1), it is sufficient to consider the case $n = 2$. The group $I_2^q(K)$ is generated by the classes of 2-fold Pfister forms by (9.6). Let $x, y \in K$. If $x \in F$ then $\langle \langle x, y \rangle \rangle \in I(F)F_q(K)$. Otherwise $y = a + bx$ for some $a, b \in F$. Then, by Lemma 15.1 and Lemma 15.5,

$$\langle \langle x, y \rangle \rangle = \langle \langle x, a \rangle \rangle + \langle \langle x, bx \rangle \rangle = \langle \langle x, a \rangle \rangle + \langle \langle b, bx \rangle \rangle \in I(K)F_q(F) + I(F)F_q(K)$$

since $\langle \langle b, bx \rangle \rangle + \langle \langle bx, bx \rangle \rangle = 0$. \hfill \Box

Corollary 34.17. Let K/F be a quadratic extension and $s : L \to F$ a nonzero F-linear functional. Then for every $n \geq 1$:

1. $s_*(I^n(K)) \subset I^n(F)$.
2. $s_*(I^n_q(K)) \subset I^n_q(F)$.

Proof. (1): Clearly $s_*(I(K)) \subset I(F)$. It follows from Lemma 34.16 and Frobenius Reciprocity that

$$s_*(I^n(K)) = s_*(I^{n-1}(F)I(K)) = I^{n-1}(F)s_*(I(K)) \subset I^{n-1}(F)I(F) = I^n(F).$$

(2): This follows from (1) if char $F \neq 2$ and from Lemma 34.16(2) and Frobenius Reciprocity if char $F = 2$. \hfill \Box

Lemma 34.18. Let K/F be a quadratic extension and $s, s' : K \to F$ two nonzero F-linear functionals. Let $b \in I^n(K)$. Then $s_*(b) \equiv s'_*(b) \mod I^{n+1}(F)$.

Proof. As in the proof of Corollary 20.8, there exists a $c \in K^\times$ such that $s'_*(c) = s_*(cc)$ for all symmetric bilinear forms c. As $b \in I^n(K)$, we have $\langle \langle c \rangle \rangle \cdot b \in I^{n+1}(K)$. Consequently, $s_*(b) - s'_*(b) = s_*(\langle \langle c \rangle \rangle \cdot b)$ lies in $I^{n+1}(F)$. The result follows. \hfill \Box

Corollary 34.19. Let K/F be a quadratic field extension and $s : K \to F$ a nontrivial F-linear functional. Then $s_*(\langle \langle x \rangle \rangle) \equiv \langle \langle N_{K/F}(x) \rangle \rangle$ modulo $I^2(F)$ for every $x \in K^\times$.

Proof. By Lemma 34.18, we know that $s_*(\langle \langle x \rangle \rangle)$ is independent of the nontrivial F-linear functional s modulo $I^2(F)$. Using the functional defined in (20.9), the result follows by Corollary 20.14. \hfill \Box

Let K/F be a separable quadratic field extension and let $s : K \to F$ be a nontrivial F-linear functional such that $s(1) = 0$. It follows from Theorem 34.9 and Corollary 34.17 that we have well-defined complexes

$$I^n(F) \Xrightarrow{r_{K/F}} I^n(K) \overset{s_*}{\longrightarrow} I^n(F) \Xrightarrow{\cdot N_{K/F}} I^{n+1}(F) \Xrightarrow{r_{K/F}} I^{n+1}(K) \overset{s_*}{\longrightarrow} I^{n+1}(F)$$
and this induces (where by abuse of notation we label the maps in the same way)

\[(34.21) \quad T^n(F) \xrightarrow{\tau_{K/F}} T^n(K) \xrightarrow{s} T^n(F) \xrightarrow{\cdot N_{K/F}} T^{n+1}_q(F) \xrightarrow{\tau_{K/F}} T^{n+1}_q(K) \xrightarrow{s} T^{n+1}_q(F).\]

By Lemma 34.18 it follows that the homomorphism \(s_\ast\) in (34.21) is independent of the nontrivial \(F\)-linear functional \(K \to F\) although it is not independent in (33.20).

We show that the complexes (34.20) and (34.21) are exact on bilinear Pfister forms. More precisely we have

Theorem 34.22. Let \(K/F\) be a separable quadratic field extension and \(s : K \to F\) a nontrivial \(F\)-linear functional such that \(s(1) = 0\).

1. Let \(\mathfrak{c}\) be an anisotropic bilinear \(n\)-fold Pfister form over \(K\). If \(s_\ast(\mathfrak{c}) \in I^{n+1}(F)\) then there exists a bilinear \(n\)-fold Pfister form \(\mathfrak{b}\) over \(F\) such that \(\mathfrak{c} \simeq \mathfrak{b}_K\).
2. Let \(\mathfrak{b}\) be an anisotropic bilinear \(n\)-fold Pfister form over \(F\). If \(\mathfrak{b} \cdot N_{K/F} \in I^{n+2}(F)\), then there exists a bilinear \(n\)-fold Pfister form \(\mathfrak{c}\) over \(K\) such that \(\mathfrak{b} = s_\ast(\mathfrak{c})\).
3. Let \(\varphi\) be an anisotropic quadratic \((n+1)\)-fold Pfister form over \(F\). If \(r_{K/F}(\varphi) \in I^{n+2}(K)\) then there exists a bilinear \(n\)-fold Pfister form \(\mathfrak{b}\) over \(F\) such that \(\varphi \simeq \mathfrak{b} \otimes N_{K/F}\).
4. Let \(\psi\) be an anisotropic \((n+1)\)-fold quadratic Pfister form over \(K\). If \(s_\ast(\psi) \in I^{n+2}(F)\) then there exists a quadratic \((n+1)\)-fold Pfister form \(\varphi\) over \(F\) such that \(\psi \simeq \varphi_K\).

Proof. (1): As \(\mathfrak{c}\) represents \(1\), the form \(s_\ast(\mathfrak{c})\) is isotropic and belongs to \(I^{n+1}(F)\). It follows from the Hauptsatz 23.3 that \(s_\ast(\mathfrak{c}) = 0\) in \(W(F)\). We show by induction on \(k \geq 0\) that there is a bilinear \(k\)-fold Pfister form \(\mathfrak{d}\) over \(F\) and a bilinear \((n-k)\)-fold Pfister form \(\mathfrak{c}\) over \(K\) such that \(\mathfrak{c} \simeq \mathfrak{d}_K \otimes \mathfrak{c}\). The statement that we need follows when \(k = n\).

Suppose we have \(\mathfrak{d}\) and \(\mathfrak{c}\) for some \(k < n\). We have

\[0 = s_\ast(\mathfrak{c}) = s_\ast(\mathfrak{d}_K \otimes \mathfrak{c}' \perp \mathfrak{d}_K) = s_\ast(\mathfrak{d}_K \cdot \mathfrak{c}')\]

in \(W(F)\). In particular, \(s_\ast(\mathfrak{d}_K \otimes \mathfrak{c}')\) is isotropic. Thus there exists \(b \in F^\times \cap D(\mathfrak{d}_K \otimes \mathfrak{c}')\). It follows that \(\mathfrak{d}_K \otimes \mathfrak{c}' \simeq \mathfrak{d}_K \otimes \langle \langle b \rangle \rangle \otimes \mathfrak{f}\) for some Pfister form \(\mathfrak{f}\) over \(K\) by Theorem 6.15.

(2): By the Hauptsatz 23.3 we have \(\mathfrak{b} \otimes N_{K/F}\) is hyperbolic. We claim that \(\mathfrak{b} \simeq \langle \langle a \rangle \rangle \otimes a\) for some \(a \in N_{K/F}(K^\times)\) and an \((n-1)\)-fold bilinear Pfister form \(a\). If char \(F \neq 2\), the claim follows from Corollary 6.14. If char \(F = 2\) it follows from Lemma 9.12 that \(N_{K/F} \simeq \langle \langle a \rangle \rangle\) for some \(a \in D(\mathfrak{b}')\). Clearly \(a \in N_{K/F}(K^\times)\) and by Lemma 6.11 \(\mathfrak{b}\) is divisible by \(\langle \langle a \rangle \rangle\). The claim is proven.

As \(a \in N_{K/F}(K^\times)\) there is \(y \in K^\times\) such that \(s_\ast(\langle \langle y \rangle \rangle) = \langle \langle a \rangle \rangle\). It follows that \(s_\ast(\langle \langle y \rangle \rangle \cdot a) = \langle \langle a \rangle \rangle \cdot a = \mathfrak{b}\).

(3): By the Hauptsatz 23.3 we have \(r_{K/F}(\varphi) = 0\) in \(I_q(K)\). The field \(K\) is isomorphic to the function field of \(1\)-fold Pfister form \(N_{K/F}\). The statement now follows from Corollary 23.7.

(4): In the case char \(F \neq 2\) the statement follows from (1). So we may assume that char \(F = 2\). As \(\psi\) represents \(1\), the form \(s_\ast(\psi)\) is isotropic and belongs to \(I_q^{n+2}(F)\). It follows from the Hauptsatz 23.3 that \(s_\ast(\psi) = 0 \in I_q(F)\). We show by induction on \(k \geq 0\)
that there is a k-fold bilinear Pfister form \mathfrak{d} over F and a quadratic Pfister form ρ over K such that $\psi \simeq \mathfrak{d}_K \otimes \rho$.

Suppose we have \mathfrak{d} and ρ for some $k < n$. As $\dim(\mathfrak{d}_K \otimes \rho') > \frac{1}{2} \dim(\mathfrak{d}_K \otimes \rho)$, the subspace of $s_*(\mathfrak{d}_K \otimes \rho')$ intersects a totally isotropic subspace of $s_*(\mathfrak{d}_K \otimes \rho)$ and therefore is isotropic. Hence there is $c \in F$ such that $c \in D(\mathfrak{d}_K \otimes \rho) \setminus D(\mathfrak{d}_K)$. By Proposition 15.7, $\psi \simeq \mathfrak{d} \otimes \langle \langle c \rangle \rangle_K \otimes \mu$ for some quadratic Pfister form μ.

Applying the statement with $k = n$ we get an n-fold bilinear Pfister form \mathfrak{b} over F such that $\psi \simeq \mathfrak{b}_K \otimes \langle \langle y \rangle \rangle$ for some $y \in K$. As $s_*(\langle \langle y \rangle \rangle)$ is similar to $\langle \langle \operatorname{Tr}_{K/F}(y) \rangle \rangle$ we have $\mathfrak{b} \otimes \langle \langle \operatorname{Tr}_{K/F}(y) \rangle \rangle = 0 \in I_q(F)$. By Corollary 6.14, $\operatorname{Tr}_{K/F}(y) = b + b^2 + b'(v, v)$ for some $b \in F$ and $v \in V_0$. Let $x \in K \setminus F$ be an element such that $x^2 + x + a = 0$ for some $a \in F$. Set $z = xb + (xb)^2 + b'_K(xv, xv) \in K$ and $c = y + z$. Since $\operatorname{Tr}_{K/F}(x) = \operatorname{Tr}_{K/F}(x^2) = 1$ we have $\operatorname{Tr}_{K/F}(z) = \operatorname{Tr}_{K/F}(y)$. It follows that $c \in F$. By Corollary 6.14 again, $\mathfrak{b}_K \otimes \langle \langle z \rangle \rangle$ is hyperbolic and therefore

$$\psi = \mathfrak{b}_K \cdot \langle \langle y \rangle \rangle = \mathfrak{b}_K \cdot \langle \langle y + z \rangle \rangle = (b \cdot \langle \langle c \rangle \rangle)_K.$$

Remark 34.23. Suppose that $\operatorname{char} F \neq 2$ and $K = F(\sqrt{a})$ is a quadratic extension of F. Let \mathfrak{b} be an anisotropic bilinear n-fold Pfister form over F. Then $N_{K/F} = \langle \langle a \rangle \rangle$ so by Theorem 34.22(3), the following are equivalent:

1. $\mathfrak{b}_K \in I^{n+1}(K)$.
2. $\mathfrak{b} \in \langle \langle a \rangle \rangle W(F)$.
3. $\mathfrak{b} \simeq \langle \langle a \rangle \rangle \otimes \mathfrak{c}$ for some $(n-1)$-fold Pfister form \mathfrak{c}.

We now consider the case of a purely inseparable quadratic field extension K/F.

Lemma 34.24. Let K/F be a purely inseparable quadratic field extension and $s: K \to F$ a nonzero F-linear functional satisfying $s(1) = 0$. Let $b \in F^\times$. Then the following conditions are equivalent:

1. $b \in N_{K/F}(K^\times)$.
2. $\langle \langle b \rangle \rangle_K = 0 \in W(K)$.
3. $\langle \langle b \rangle \rangle = s_*(\langle \langle y \rangle \rangle)$ for some $y \in K^\times$.

Proof. The equality $N_{K/F}(K^\times) = K^2 \cap F^\times$ proves $(1) \iff (2)$. For any $y \in F^\times$, it follows by Corollary 34.19 that $s_*(\langle \langle y \rangle \rangle)$ is similar to $\langle \langle N_{K/F}(y) \rangle \rangle$. This proves that $(1) \iff (3)$. □

Proposition 34.25. Let K/F be a purely inseparable quadratic field extension and $s: K \to F$ a nontrivial F-linear functional such that $s(1) = 0$. Let \mathfrak{b} an anisotropic bilinear form over F. Then there exist bilinear forms \mathfrak{c} over K and \mathfrak{d} over F satisfying $\mathfrak{b} \simeq s_*(\mathfrak{c}) \perp \mathfrak{d}$ and \mathfrak{d}_K is anisotropic.

Proof. We induct on $\dim \mathfrak{b}$. Suppose that \mathfrak{b}_K is isotropic. Then there is a 2-dimensional subspace $W \subseteq V_0$ such that $(\mathfrak{b}|_W)_K$ is isotropic. By Lemma 34.24, we have $\mathfrak{b}|_W \simeq s_*(\langle \langle y \rangle \rangle)$ for some $y \in K^\times$. Applying the induction hypothesis to the orthogonal complement of W in V completes the proof. □

Theorem 34.4 and Proposition 34.25 yield
COROLLARY 34.26. Let K/F be a purely inseparable quadratic field extension and $s : K \to F$ a nonzero F-linear functional such that $s(1) = 0$. Then the sequence

\[W(F) \xrightarrow{r_{K/F}} W(K) \xrightarrow{s_s} W(F) \xrightarrow{r_{K/F}} W(K) \]

is exact.

Let K/F be a purely inseparable quadratic field extension and $s : K \to F$ a nonzero linear functional such that $s(1) = 0$. It follows from Corollaries 34.17 and 34.26 that we have well-defined complexes

\[(34.27) \quad I^n(F) \xrightarrow{r_{K/F}} I^n(K) \xrightarrow{s_s} I^n(F) \xrightarrow{r_{K/F}} I^n(K) \]

and

\[(34.28) \quad \bar{T}^n(F) \xrightarrow{r_{K/F}} \bar{T}^n(K) \xrightarrow{s_s} \bar{T}^n(F) \xrightarrow{r_{K/F}} \bar{T}^n(K). \]

As in the separable case, the homomorphism s_s in (34.28) is independent of the nontrivial F-linear functional $K \to F$ by Lemma 34.18 although it is not independent in (34.27).

We show that the complexes (34.27) and (34.28) are exact on quadratic Pfister forms.

THEOREM 34.29. Let K/F be a purely inseparable quadratic field extension and $s : K \to F$ a nontrivial F-linear functional such that $s(1) = 0$.

1. Let c be anisotropic n-fold bilinear Pfister form over K. If $s_s(c) \in I^{n+1}(F)$ then there exists an b over K such that $c \simeq b_K$.
2. Let b be anisotropic n-fold bilinear Pfister form over F. If $b_K \in I^{n+1}(K)$, then there exists an n-fold bilinear Pfister form c such that $b = s_s(c)$.

PROOF. (1) The proof is the same as in Theorem 34.22(1).

(2) By Hauptsatz 23.3, we have $b_K = 0 \in W(K)$. In particular, b_K is isotropic and hence there is a 2-dimensional subspace $W \subset V_b$ such that $b|_W$ is isotropic over K. Let $b \in F^\times$ such that the form $\langle\langle b \rangle\rangle$ is similar to $b|_W$. As $\langle\langle b \rangle\rangle_K = 0$, by Lemma 34.24 $\langle\langle b \rangle\rangle = s_s(\langle\langle y \rangle\rangle)$ for some $y \in K^\times$. By Corollary 6.17, $b \simeq \langle\langle b \rangle\rangle \otimes \delta$ for some bilinear Pfister form δ. Finally,

\[b = \langle\langle b \rangle\rangle \cdot \delta = s_s(\langle\langle y \rangle\rangle) \cdot \delta = s_s(\langle\langle y \rangle\rangle) \cdot \delta \in W(F). \]

We shall show in Theorems 34.20, 34.21, and 34.22 that the complexes (34.26) are exact for any n. Note that the exactness for small n (up to 2) can be shown by elementary means.

We turn to the transfer of the torsion ideal in the Witt ring of a quadratic extension. We need the following lemma.

LEMMA 34.30. Let K/F be a quadratic field extension of F and b be a bilinear Pfister form over F.

1. If c is an anisotropic bilinear form over K such that $b_K \otimes c$ is defined over F then there exists a form δ defined over F such that $b_K \otimes c \simeq (b \otimes \delta)_K$.
2. $r_{K/F}(W(F)) \cap b_K W(K) = r_{K/F}(b W(F))$.
Let \(c = \langle a_1, \ldots, a_n \rangle \). We induct on \(\dim c = n \). By hypothesis, there is a \(c \in F^\times \cap D(b_K \otimes c) \). Write \(c = a_1 b_1 + \cdots + a_n b_n \) with \(b_i \in \widetilde{D}(b_K) \). Let \(c_i = b_i \) if \(b_i \neq 0 \) and \(1 \) if not. Then \(c := \langle a_1 c_1, \ldots, a_n c_n \rangle \) represents \(c \) so \(c \simeq \langle c \rangle \perp f \). Since \(b_i \in G_K(b) \), we have

\[
\mathbb{b}_K \otimes c \simeq \mathbb{b}_K \otimes \langle c \rangle \perp \mathbb{b}_K \otimes f.
\]

As \(\mathbb{b}_K \otimes f \in \operatorname{im}(r_{K/F}) \), its anisotropic part is defined over \(F \) by the Proposition 34.11 and Theorem 34.4. By induction, there exists a form \(g \) such that \(\mathbb{b}_K \otimes f \simeq \mathbb{b}_K \otimes g_K \). Then \(\langle c \rangle \perp g \) works.

(2) follows easily from (1).

\[\text{□} \]

Proposition 34.31. Let \(K = F(\sqrt{a})/F \) be a quadratic extension with \(a \in F^\times \) and \(s : K \to F \) a nontrivial \(F \)-linear functional such that \(s(1) = 0 \). Let \(b \) be an \(n \)-fold bilinear Pfister form. Then

\[
s_* (W(K)) \cap \operatorname{ann}_{W(F)}(b) = s_*(\operatorname{ann}_{W(K)}(b_K)).
\]

Proof. By Frobenius Reciprocity, we have

\[
s_*(\operatorname{ann}_{W(K)}(b_K)) \subset s_*(W(K)) \cap \operatorname{ann}_{W(F)}(b).
\]

Conversely, if \(c \in s_*(W(K)) \cap \operatorname{ann}_{W(F)}(b) \), we can write \(c = s_*(\mathfrak{d}) \) for some form \(\mathfrak{d} \) over \(K \). By Theorem 34.4 and Lemma 34.30,

\[
\mathbb{b}_K \otimes \mathfrak{d} \in r_{K/F}(W(F)) \cap \mathbb{b}_K W(K) = r_{K/F}(bW(F)).
\]

Hence there exists a form \(\mathfrak{e} \) defined over \(F \) such that \(\mathbb{b}_K \otimes \mathfrak{e} = (b \otimes \mathfrak{e})_K \). Let \(f = \mathfrak{d} \perp -\mathfrak{e}_K \). Then \(c = s_*(\mathfrak{d}) = s_*(f) \in s_*(\operatorname{ann}_{W(K)}(b_K)) \) as needed.

The torsion \(W_t(F) \) of \(W(F) \) is \(2 \)-primary. Thus applying the proposition to \(\rho = 2^n \langle 1 \rangle \) for all \(n \) yields

Corollary 34.32. Let \(K = F(\sqrt{a}) \) be a quadratic extension of \(F \) with \(a \in F^\times \) and \(s : K \to F \) a nontrivial \(F \)-linear functional such that \(s(1) = 0 \). Then \(W_t(F) \cap s_*(W(K)) = s_*(W_t(K)) \).

We also have the following:

Corollary 34.33. Suppose that \(F \) is a field of characteristic different from two and \(K = F(\sqrt{a}) \) a quadratic extension of \(F \). Let \(s : K \to F \) be a non-trivial \(F \)-linear functional such that \(s(1) = 0 \). Then

\[
\langle \langle a \rangle \rangle W(F) \cap \operatorname{ann}_{W(F)}(2\langle 1 \rangle) = \ker(r_{K/F}) \cap s_*(W(K)) \subset \operatorname{ann}_{W(F)}(2\langle 1 \rangle) \cap \operatorname{ann}_{W(F)}(\langle \langle a \rangle \rangle) = s_*(\operatorname{ann}_{W(K)}(2\langle 1 \rangle))
\]

Proof. As \(\langle \langle a, a \rangle \rangle \simeq \langle \langle -1, a \rangle \rangle \), we have

\[
\langle \langle a \rangle \rangle W(F) \cap \operatorname{ann}_{W(F)}(2\langle 1 \rangle) = \langle \langle a \rangle \rangle W(F) \cap \operatorname{ann}_{W(F)}(\langle \langle a \rangle \rangle)
\]

which yields the first equality by Corollary 34.12. As \(\langle \langle a \rangle \rangle W(F) \subset \operatorname{ann}_{W(F)}(\langle \langle a \rangle \rangle) \), we have the inclusion. Finally, \(s_*(W(K)) \cap \operatorname{ann}_{W(F)}(2\langle 1 \rangle) = s_*(\operatorname{ann}_{W(K)}(2\langle 1 \rangle)) \) by Proposition 34.31, so Corollary 34.12 yields the second equality. \[\text{□} \]
Remark 34.34. Suppose that F is a formally real field and K a quadratic extension. Let $s_* : W(K) \to W(F)$ the a transfer induced by a nontrivial F-linear functional such that $s(1) = 0$. Then it follows by the Corollaries 34.12 and 34.32 that the maps induced by $r_{K/F}$ and s_* induce an exact sequence

$$0 \to W_{red}(K/F) \to W_{red}(F) \xrightarrow{r_{K/F}} W_{red}(K) \xrightarrow{s_*} W_{red}(F)$$

(again abusing notation for the maps) where $W_{red}(K/F) := \ker(W_{red}(F) \to W_{red}(K))$.

By Corollary 33.14, we have a zero sequence

$$0 \to I^n_{red}(K/F) \to I^n_{red}(F) \xrightarrow{r_{K/F}} I^n_{red}(K) \xrightarrow{s_*} I^n_{red}(F)$$

where $I^n_{red}(K/F) := \ker(I^n_{red}(F) \to I^n_{red}(K))$.

In fact, we shall see in §41 that this sequence is also exact.

35. Torsion in $I^n(F)$ and Torsion Pfister Forms

In this section we study the property that $I(F)$ is nilpotent, i.e., that there exists an n such that $I^n(F) = 0$. For such an n to exist, the field must be non-formally real. In order to study all fields we broaden this investigation to the study of the existence of an n such that $I^n(F)$ is torsion-free. We wish to establish the relationship between this occurring over F and over a quadratic field extension K. This more general case is more difficult, so in this section we look at the simpler property that there are no torsion bilinear n-fold Pfister forms over the field F. This would be equivalent to $I^n(F)$ being torsion-free if we knew that torsion bilinear n-fold Pfister forms generate the torsion in $I^n(F)$. This is in fact true as we shall later see, but cannot be proven by elementary methods.

In this section we study torsion in $I^n(F)$ for a field F. We set

$$I^n_t(F) := W_t(F) \cap I^n(F).$$

Note that the group $I^n_t(F)$ is generated by torsion binary forms by Proposition 31.30.

It is obvious that

$$I^n_t(F) \supset I^{n-1}(F)I_t(F).$$

Proposition 35.1. $I^n_t(F) = I(F)I_t(F)$.

Proof. Note that for all $a, a' \in F^\times$ and $w, w' \in D(\infty \langle 1 \rangle)$, we have

$$a \langle w \rangle + a' \langle w' \rangle = a \langle -aa', w \rangle + a'w \langle w' \rangle,$$

hence

$$a \langle w \rangle + a' \langle w' \rangle \equiv a'w \langle w' \rangle \mod I(F)I_t(F).$$

Let $b \in I^n_t(F)$. By Proposition 31.30, we have b is a sum of binary forms $a \langle w \rangle$ with $a \in F^\times$ and $w \in D(\infty \langle 1 \rangle)$. Repeated application of the congruence above shows that b is congruent to a binary form $a \langle w \rangle$ modulo $I(F)I_t(F)$. As $a \langle w \rangle \in I^2(F)$ we have $a \langle w \rangle = 0$ and therefore $b \in I(F)I_t(F)$. \qed

We shall prove in §41 that the equality $I^n_t(F) = I^{n-1}(F)I_t(F)$ holds for every n.

It is easy to determine Pfister forms of order 2 (cf. Corollary 6.14).
Lemma 35.2. Let b be a bilinear n-fold Pfister form. Then $2b = 0$ in $W(F)$ if and only if either $\text{char } F = 2$ or $b = \langle\langle w \rangle\rangle \otimes c$ for some $w \in D(2\langle 1 \rangle)$ and c an $(n-1)$-fold Pfister form.

Proposition 35.3. Let F be a field and $n \geq 1$ an integer. The following conditions are equivalent.

1. There are no n-fold Pfister forms of order 2 in $W(F)$.
2. There are no anisotropic n-fold Pfister forms of finite order in $W(F)$.
3. For every $m \geq n$ there are no anisotropic m-fold Pfister forms of finite order in $W(F)$.

Proof. The implications $(3) \Rightarrow (2) \Rightarrow (1)$ are trivial.

(1) \Rightarrow (3). If $\text{char } F = 2$, the statement is clear as $W(F)$ is torsion. Assume that $\text{char } F \neq 2$. Let $2^k b = 0$ in $W(F)$ for some $k \geq 1$ and b an m-fold Pfister form with $m \geq n$. By induction on k we show that $b = 0$ in $W(F)$. It follows from Lemma 35.2 that $2^{k-1}b \simeq \langle\langle w \rangle\rangle \otimes c$ for some $w \in D(2\langle 1 \rangle)$ and a $(k+m-2)$-fold Pfister form c. Let d be an $(n-1)$-fold Pfister form dividing c. Again by Lemma 35.2, the form $2\langle\langle w \rangle\rangle \cdot d = 0$ in $W(F)$, hence by assumption, $\langle\langle w \rangle\rangle \cdot d = 0$ in $W(F)$. It follows that $2^{k-1}b = \langle\langle w \rangle\rangle \cdot c = 0$ in $W(F)$. By the induction hypothesis, $b = 0$ in $W(F)$.

We say that a field F satisfies A_n if the equivalent conditions of Proposition 35.3 hold. It follows from the definition that the condition A_n implies A_m for every $m \geq n$. It follows from Proposition 35.1 that F satisfies A_1 if and only if F is pythagorean.

If F is not formally real, the condition A_n is equivalent to $I^n(F) = 0$ as the group $W(F)$ is torsion.

Exercise 35.4. Suppose that F is a field of characteristic not two. If K is a quadratic extension of F, let $s^K : K \to F$ be an F-linear functional such that $s^K(1) = 0$. Show the following are equivalent:

1. F satisfies A_{n+1}.
2. $s^{F(\sqrt{w})}_F(P_n(F(\sqrt{w}))) = P_n(F)$ for every $w \in D(\infty\langle 1 \rangle)$.
3. $s^{F(\sqrt{w})}_F(I^n(F(\sqrt{w}))) = I^n(F)$ for every $w \in D(\infty\langle 1 \rangle)$.

Now we study the property A_n under field extensions. The case of fields of characteristic two is easy.

Lemma 35.5. Let K/F be a finite extension of fields of characteristic two. Then $I^n(F) = 0$ if and only if $I^n(K) = 0$.

Proof. The property $I^n(E) = 0$ for a field E is equivalent to $[E : E^2] < 2^n$ by Example 6.5. We have $[K : F] = [K^2 : F^2]$, as the Frobenius map $K \to K^2$ given by $x \mapsto x^2$ is an isomorphism. Hence

\[
[K : K^2] = [K^2 : F^2] = [K : F^2]/[K : F] = [F : F^2].
\]

Thus we have $I^n(K) = 0$ if and only if $I^n(F) = 0$. \qed
Let F_0 be a formally real field satisfying A_1, i.e., a pythagorean field. Let $F_n = F_0((t_1)) \cdots ((t_n))$ be the iterated Laurent series field over F_0. Then F_n is also formally real pythagorean (cf. Example 31.8), hence F_n satisfies A_n for all $n \geq 1$. However, $K_n = F_n(\sqrt{-1})$ does not satisfy A_n as $\langle t_1, \ldots, t_n \rangle$ is an anisotropic form over the non-regularly real field K_n. Thus the property A_n is not preserved under quadratic extensions. Nevertheless, we have

Proposition 35.7. Suppose that F satisfies A_n. Let $K = F(\sqrt{a})$ be a quadratic extension of F with $a \in F^\times$. Then K satisfies A_n if either of the following two conditions hold:

(i) $a \in D(\infty(1))$.

(ii) Every bilinear n-fold Pfister form over F becomes metabolic over K.

Proof. If $\text{char } F = 2$ then $I^n(F) = 0$ hence $I^n(K) = 0$ by Lemma 35.5. So we may assume that $\text{char } F \neq 2$. Let $y \in K^\times$ satisfy $y \in D(2\langle 1 \rangle_K)$ and let ε be an $(n - 1)$-fold Pfister form over K. By Lemma 35.24, it suffices to show that $b := \langle y \rangle \otimes \varepsilon$ is trivial in $W(K)$. Let $s_* : W(K) \to W(F)$ be the transfer induced by a nontrivial F-linear functional $s(1) = 0$.

We claim that $s_*(b) = 0$. Suppose that $n = 1$. Then $s_*(b) \in I_1(F) = 0$. So we may assume that $n \geq 2$. As $I^{n-1}(K)$ is generated by Pfister forms of the form $\langle z \rangle \otimes \alpha_K$ with $z \in K^\times$ and α an $(n - 2)$-fold Pfister form over F by Lemma 34.16, we may assume that $b = \langle y, z \rangle \otimes \alpha_K$.

We have $s_*(\langle y, z \rangle) \in I_1^2(F) = I(F)I_1(F)$ by Proposition 35.1. So $s_*(\langle y, z \rangle) \cdot \alpha_K = s_*(\langle y, z \rangle) \cdot \alpha$ lies in $I^{n-1}(F)I_1(F)$ which is trivial by A_n. The claim is proven.

It follows that $b = \alpha_K$ for some n-fold Pfister form α over F by Theorem 34.22. Thus we are done if every n-fold Pfister form over F becomes hyperbolic over K. So assume that $a \in D(\infty(1))$. As b is torsion in $W(K)$, there exists an m such that $2^m b = 0$ in $W(F)$. Thus $2^m c_K$ is hyperbolic so $2^m \alpha$ is a sum of binary forms $x\langle ay^2 + x^2 \rangle$ in $W(F)$ for some $x, y, z \in F$ by Corollary 34.12. In particular, $2^m \alpha$ is torsion so trivial by A_n for F. The result follows.

Corollary 35.8. Suppose that $I^n(F) = 0$ (in particular F is not formally real). Let K/F be a quadratic extension. Then $I^n(K) = 0$.

In general, the above corollary does not hold if K/F is not quadratic. For example, let F be the quadratic closure of the rationals, so $I(F) = 0$. There exist algebraic extensions K of F such that $I(K) \neq 0$, e.g., $K = F(\sqrt[3]{2})$. It is true, however, that in this case $I^2(K) = 0$. It is still an unanswered question whether $I^2(K) = 0$ when K/F is finite and F is an arbitrary quadratically closed field, equivalently whether the cohomological 2-dimension of a quadratically closed field is at most one.

If $I^n(F)$ is torsion-free then F satisfies A_n. Conversely, if F satisfies A_1, then $I(F)$ is torsion-free by Proposition 31.11. If F satisfies A_2 then it follows from Proposition 35.1 that $I^2(F)$ is torsion-free as $I_1(F)$ is generated by torsion binary forms.

Proposition 35.9. A field F satisfies A_3 if and only if $I^3(F)$ is torsion-free.
Proof. The statement is obvious if F is not formally real, so we may assume that $\text{char } F \neq 2$. Let $b \in I^3(F)$ be a torsion element. By Proposition 35.1
$$b = \sum_{i=1}^{r} x_i \langle\langle y_i, w_i \rangle\rangle$$
for some $x_i, y_i \in F^\times$ and $w_i \in D(\infty(1))$. We show by induction on r that $b = 0$.

It follows from Proposition 35.7 that $K = F(\sqrt{w})$ with $w = w_r$ satisfies A_3. By the induction hypothesis, we have $b_K = 0$. Thus $b = \langle\langle w \rangle\rangle \cdot c$ for some $c \in W(F)$ by Corollary 34.12. Then c must be even dimensional as the determinant of c is trivial. Choose $d \in F^\times$ such that $d := c + \langle\langle d \rangle\rangle \in I^2(F)$.

Thus in $W(F)$,
$$b = \langle\langle w \rangle\rangle \cdot d - \langle\langle w, d \rangle\rangle.$$
Note that $\langle\langle w \rangle\rangle \cdot d = 0$ in $W(F)$ by A_3. Consequently, $\langle\langle w, d \rangle\rangle \in I^3(F)$, so it is zero in $W(F)$ by the Hauptsatz 23.8. This shows $b = 0$. □

We shall show in Corollary 41.5 below that if $I^n(F)$ is torsion-free if and only if F satisfies A_n for every $n \geq 1$.

We have an application for quadratic forms.

Theorem 35.10. (Classification Theorem) Let F be a field.

(1). Dimension and total signature classify the isometry classes of non-degenerate quadratic forms over F if and only if $I_q(F)$ is torsion-free, i.e. F is pythagorean. In particular, if F is not formally real then dimension classify the isometry classes of forms over F if and only if F is quadratically closed.

(2). Dimension, discriminant and total signature classify the isometry classes of non-degenerate even dimensional quadratic forms over F if and only if $I^2_q(F)$ is torsion-free. In particular, if F is not formally real then dimension and discriminant classify the isometry classes of a forms over F if and only if $I^2_q(F) = 0$.

(3). Dimension, discriminant, Clifford invariant, and total signature classify the isometry classes of non-degenerate even dimensional quadratic forms over F if and only if $I^3_q(F)$ is torsion-free. In particular, if F is not formally real then dimension, discriminant, and Clifford invariant classify the isometry classes of forms over F if and only if $I^3_q(F) = 0$.

Proof. We prove (3) as the others are similar (and easier). If $I^3_q(F)$ is not torsion-free, then there exists an anisotropic torsion form $\varphi \in P_q(F)$ by Proposition 35.9 if F is formally real and trivially if F is not formally real as then $I_q(F)$ is torsion. As φ and $4H$ have the same dimension, discriminant, Clifford invariant, and total signature but are not isometric, these invariants do not classify.

Conversely, assume that $I^3_q(F)$ is torsion-free. Let non-degenerate even-dimensional quadratic forms φ and ψ have the same dimension, discriminant, Clifford invariant, and total signature. Then by Theorem 13.7 we have $\theta := \varphi \perp -\psi$ lies in $I^3_q(F)$ and is torsion. As φ and ψ have the same dimension, it suffices to show that θ is hyperbolic. Thus the result is equivalent to showing:
If a torsion form $\theta \in I^2_q(F)$ has trivial Clifford invariant and $I^3_q(F)$ is torsion-free then θ is hyperbolic.

The case $\text{char } F = 2$ follows from Theorem 16.3. So we may assume that $\text{char } F \neq 2$. By Proposition 35.1, we can write $\theta = \sum_{i=1}^{r} \langle \langle b_i, c_i \rangle \rangle$ in $I_q(F)$ with $\langle \langle c_i \rangle \rangle$ torsion forms. We prove that θ is hyperbolic by induction on r.

Let $K = F_c$ with $c = c_r$. Clearly, $\theta_K \in I^2_q(K)$ is torsion and has trivial Clifford invariant. By Proposition 35.7 and Corollary 35.9, we have $I^3_q(K)$ is torsion-free. By the induction hypothesis, θ_K is hyperbolic. By Corollary 23.7, we conclude that $\theta = \psi \cdot \langle \langle c \rangle \rangle$ in $I_q(F)$ for some quadratic form ψ. As disc(θ) is trivial, dim ψ is even. Choose $d \in F^\times$ such that $\tau := \psi + \langle \langle d \rangle \rangle \in I^2(F)$. Then

$$\theta = \tau \cdot \langle \langle c \rangle \rangle - \langle \langle d, c \rangle \rangle$$

in $W(F)$.

As the torsion form $\tau \otimes \langle \langle c \rangle \rangle$ belongs to $I^3_q(F)$, it is hyperbolic. As the Clifford invariant of θ is trivial, it follows that the Clifford invariant of $\langle \langle d, c \rangle \rangle$ must also be trivial. By Corollary 12.5, $\langle \langle d, c \rangle \rangle$ is hyperbolic and hence θ is hyperbolic.

\[\Box\]

Remark 35.11. The Stiefel-Whitney classes introduced in (5.4) are defined on non-degenerate bilinear forms. If b is such a form then the $w_i(b)$ determine $\text{sgn } b$ for every $P \in \mathfrak{X}(F)$ by Remark 5.8 and Example 5.13. We also have $w_i = e_i$ for $i = 1, 2$ by Corollary 5.9.

Let b and b' be two non-degenerate symmetric bilinear forms of the same dimension. Suppose that $w(b) = w(b')$, then $w([b] - [b']) = 1$, where $[\]$ is the class of a form in $\hat{W}(F)$. It follows that $[b] - [b']$ lies in $\hat{I}^3(F)$ by (5.11) hence $b - b'$ lies in $I^3(F)$. As the w_i determine the total signature of a form, we have $b - b'$ is torsion by the Local-Global Principle 31.24. It follows that the dimension and total Stiefel-Whitney class determines the isometry class of anisotropic bilinear forms if and only if $I^3(F)$ is torsion-free.

Suppose that char $F \neq 2$. Then all metabolic forms are hyperbolic, so in this case the dimension and total Stiefel-Whitney class determines the isometry class of non-degenerate symmetric bilinear forms if and only if $I^3(F)$ is torsion-free. In addition, we can define another Stiefel-Whitney map

$$\hat{w} : \hat{W}(F) \rightarrow (H^*(F)[[t]])^\times$$

to be the composition of w and the map $k_*(F)[[t]] \rightarrow H^*(F)[[t]]$ induced by the norm residue homomorphism $h^*_F : k_*(F) \rightarrow H^*(F)$ in $\S 100.5$. Then dimension and \hat{w} classifies the isometry classes of non-degenerate bilinear forms if and only if $I^3(F)$ is torsion-free by Theorem 35.10. h_* is an isomorphism if F is a real closed field and \hat{w}_2, is the classical Hasse invariant so determines the Clifford invariant.

We turn to the question on whether the property A_n goes down.

Theorem 35.12. Let K/F be a finite normal extension. If K satisfies A_n so does F.
Proof. Let \(G = \text{Gal}(K/F) \) and let \(H \) be a Sylow 2-subgroup of \(G \). Set \(E = K^H \), \(L = K^G \). The field extension \(L/F \) is purely inseparable, so \([L:F]\) is either odd or \(L/F \) is a tower of successive quadratic extensions. The extension \(K/E \) is a tower of successive quadratic extensions and \([E:L]\) is odd. Thus we may assume that \([K:F]\) is either 2 or odd. Springer’s Theorem \([18.5]\) solves the case of odd degree. Hence we may assume that \(K/F \) is a quadratic extension.

The case \(\text{char} F = 2 \) follows from Lemma \([35.5]\). Thus we may assume that the characteristic of \(F \) is different from two and therefore \(K = F(\sqrt{a}) \) with \(a \in F^\times \). Let \(s : K \to F \) be a nontrivial \(F \)-linear functional with \(s(1) = 0 \).

Let \(b \) be a 2-torsion bilinear \(n \)-fold Pfister form. We must show that \(b = 0 \) in \(W(F) \). As \(b_K = 0 \) we have \(b \in \langle\langle a \rangle\rangle W(F) \cap \text{ann}_{W(F)}(2(1)) \) by Corollary \([34.12]\). As \(\langle\langle a,a \rangle\rangle = \langle\langle a,-1 \rangle\rangle \), it follows that \(\langle\langle a \rangle\rangle \cdot b = 0 \) in \(W(F) \) hence by Corollary \([6.14]\), we can write \(b \simeq \langle\langle b \rangle\rangle \otimes c \) for some \((n-1)\)-fold Pfister form \(c \) and \(b \in D(\langle\langle a \rangle\rangle) \). Choose \(x \in K^\times \) such that \(s_*(\langle x \rangle) = \langle\langle b \rangle\rangle \) and let \(d = xc_K \). Then
\[
s_*(d) = s_*(\langle x \rangle)c = \langle\langle b \rangle\rangle c = b.
\]
If \(d = 0 \) then \(b = 0 \) and we are done. So we may assume that \(d \) and therefore \(c_K \) is anisotropic.

We have \(s_*(2d) = 2b = 0 \) in \(W(F) \), hence the form \(s_*(2d) \) is isotropic. Therefore \(2d \) represents an element \(c \in F^\times \) so that there exist \(u, v \in D(c_K) \) such that \(x(u+v) = c \). But the form \(\langle\langle u+v \rangle\rangle \otimes c \) is 2-torsion and \(K \) satisfies \(A_n \). Consequently, \(u+v \in D(c_K) = G(c_K) \) as \(c_K \) is anisotropic. We have
\[
d = xc_K \simeq x(u+v)c_K = cc_K.
\]
Therefore, \(0 = s_*(d) = b \) in \(W(F) \) as needed. \qed

Corollary 35.13. Let \(K/F \) be a finite normal extension with \(F \) not formally real. If \(I^n(K) = 0 \) for some \(n \) then \(I^n(F) = 0 \).

Corollary 35.14. Let \(K/F \) be a quadratic extension.

1. Suppose that \(I^n(K) = 0 \). Then \(L \) satisfies \(A_n \) for every extension \(L/F \) such that \([L:F] \leq 2\).

2. Suppose that \(I^n(K) = 0 \). Then \(I^n(F) = \langle\langle -w \rangle\rangle I^{n-1}(F) \) for every \(w \in D(\langle\langle 1 \rangle\rangle) \).

3. Suppose that \(I^n(F) = \langle\langle -w \rangle\rangle I^{n-1}(F) \) for some \(w \in F^\times \). Then both \(F \) and \(K \) satisfy \(A_{n+1} \) and if \(\text{char} F \neq 2 \) then \(w \in D(\langle\langle 1 \rangle\rangle) \).

Proof. (1), (2): By Corollary \([35.8]\) and \([35.13]\) if \(F \) is not formally real then \(I^n(F) = 0 \) if and only if \(I^n(L) = 0 \) for any quadratic extension \(L/F \). In particular (1) and (2) follow if \(F \) is not formally real. So suppose that \(F \) is formally real. We may assume that \(K = F(\sqrt{a}) \) with \(a \in F^\times \). Then \(I^n(L(\sqrt{a})) = 0 \) by Proposition \([35.7]\) hence \(I^n(L) \) satisfies \(A_n \) by Theorem \([35.12]\). This establishes (1).

Let \(w \in D(\langle\langle 1 \rangle\rangle) \). Then \(F(\sqrt{-w}) \) is not formally real. By (1), the field \(F(\sqrt{-w}) \) satisfies \(A_n \) hence \(I^n(F(\sqrt{-w})) = 0 \). In particular, if \(b \) is a bilinear \(n \)-fold Pfister form then \(b_{F(\sqrt{-w})} \) is metabolic. Thus \(b \simeq \langle\langle -w \rangle\rangle \otimes c \) for some \((n-1)\)-fold Pfister form \(c \) over \(F \) by Remark \([34.23]\) and (2) follows.
(3): If char $F = 2$ then $I^n(F) = 0$ hence $I^n(K) = 0$ by Corollary 35.8. So we may assume that char $F \neq 2$. By Remark 34.23, we have $2^n(1) \cong \langle \langle -w \rangle \rangle \otimes b$ for some bilinear $(n - 1)$-fold Pfister form b. As $2^n(1)$ only represents elements in $\tilde{D}(\infty(1))$, we have $w \in D(\infty(1))$.

To show the first statement, it suffices to show that $L = F(\sqrt{-w})$ satisfies A_{n+1} by (1) and (2). Since $I^{n+1}(L)$ is generated by Pfister forms of the type $\langle \langle x \rangle \rangle \otimes c$, where $x \in L^\times$ and c is an n-fold Pfister form over F by Lemma 34.16, we have $I^{n+1}(L) \subset \langle \langle -w \rangle \rangle I^n(L) = \{0\}$.

If F is the field of 2-adic numbers then $I^2(F) = 2I(F)$ and K satisfies $I^3(K) = 0$ for all finite extensions K/F but no such K satisfies $I^2(K) = 0$. In particular, statement (3) of Corollary 35.14 is the best possible.

Corollary 35.15. Let F be a field extension of transcendence degree n over a real closed field. Then $D(2^n(1)) = D(\infty(1))$.

Proof. As $F(\sqrt{-1})$ is a C_n-field by Theorem 96.7 below, we have $I^n(F(\sqrt{-1}) = 0$. Therefore, F satisfies A_n by Corollary 35.14. □

Let b be a bilinear Pfister form. We set for simplicity

$$I_b(F) = \{ c \in I(F) \mid b \cdot c = 0 \in W(F) \} = I(F) \cap \text{ann}_{W(F)}(b) \subset I(F).$$

We note if b is metabolic then $I_b(F) = I(F)$. We tacitly assume that b is anisotropic below.

Lemma 35.16. Let c be a bilinear $(n - 1)$-fold Pfister form, and $d \in D_F(b \otimes c)$. Then $\langle \langle d \rangle \rangle \cdot c \in I^{n-1}(F)I_b(F)$.

Proof. We induct on n. The hypothesis implies that $b \cdot \langle \langle d \rangle \rangle \cdot c = 0$ in $W(F)$ hence $\langle 1, -d \rangle \cdot \gamma \in I_b(F)$. In particular, the case $n = 1$ is trivial. So assume that $n > 1$ and that the lemma holds for $(n - 2)$-fold Pfister forms. Write $c = \langle \langle a \rangle \rangle \otimes \varnothing$ where \varnothing is an $(n - 2)$-fold Pfister form. Then $d = e_1 - ae_2$, where $e_1, e_2 \in \tilde{D}(b \otimes \varnothing)$. If $e_2 = 0$ then we are done by the induction hypothesis. So assume that $e_2 \neq 0$. Then $d = e_2(e - a)$, where $e = e_1/e_2 \in \tilde{D}(b \otimes \varnothing)$. By the induction hypothesis, we have

$$\langle \langle d \rangle \rangle \cdot c = \langle \langle e_2(e - a) \rangle \rangle \cdot c = \langle \langle e - a \rangle \rangle \cdot c + \langle \langle e - a, e_2 \rangle \rangle \cdot c \equiv \langle \langle e - a \rangle \rangle \cdot c \mod I^{n-1}(F)I_b(F).$$

It follows that we may assume that $e_2 = 1$, hence that $d = e - a$. But then

$$\langle \langle d, a \rangle \rangle = \langle \langle e - a, a \rangle \rangle = \langle \langle e, a' \rangle \rangle$$

for some $a' \neq 0$ by Lemma 4.15, hence

$$\langle \langle d \rangle \rangle \cdot c = \langle \langle d, a \rangle \rangle \cdot \varnothing = \langle \langle e, a' \rangle \rangle \cdot \varnothing.$$

By the induction hypothesis, it follows that $\langle \langle d \rangle \rangle \cdot c \in I^{n-1}(F)I_b(F)$.

Lemma 35.17. Let c be a bilinear n-fold Pfister form, and $b \in D(b \otimes c')$. Then there is a bilinear $(n - 1)$-fold Pfister form \cdot such that $c \equiv \langle \langle b \rangle \rangle \cdot \cdot \mod I^{n-1}(F)I_b(F)$.
Proof. We induct on n. If $n = 1$ then $e' = \langle a \rangle$ and $b = ax$ for some $x \in D(-b)$. It follows that
\[
\langle \langle b \rangle \rangle = \langle \langle ax \rangle \rangle = \langle \langle a \rangle \rangle + a \langle \langle x \rangle \rangle \equiv \langle \langle a \rangle \rangle \quad \text{mod } I_b(F).
\]

Now assume that $n > 1$ and that the lemma holds for $(n-1)$-fold Pfister forms. Write $e = \langle \langle a \rangle \rangle \otimes d$ with d an $(n-1)$-fold Pfister form. Then $b = c + ad$, where $c \in \widetilde{D}(b \otimes d')$ and $d \in \widetilde{D}(b \otimes d)$. If $d = 0$ then we are through by the induction hypothesis. So assume that $d \neq 0$. Then
\[
\langle \langle ad \rangle \rangle \cdot d = \langle \langle a \rangle \rangle \cdot d + a \langle \langle d \rangle \rangle \cdot d
\equiv \langle \langle a \rangle \rangle \cdot d \quad \text{mod } I_{n-1}(F)I_b(F).
\]
by Lemma 35.16. It follows that we may assume that $d = 1$, hence $b = c + a$. If $c = 0$ then $b = a$ and there is nothing to prove. So assume that $c \neq 0$. By the induction hypothesis, we can write
\[
d \equiv \langle \langle c \rangle \rangle \cdot g \quad \text{mod } I_{n-2}(F)I_b(F)
\]
with g an $(n-2)$-fold Pfister form. As
\[
\langle \langle a, c \rangle \rangle = \langle \langle b - c, a \rangle \rangle \simeq \langle \langle b, c' \rangle \rangle
\]
for some $c' \neq 0$ by Lemma 4.15, it follows that
\[
eq \langle \langle b, c' \rangle \rangle \cdot g \quad \text{mod } I_{n-1}(F)I_b(F)
\]
as needed. \hfill \Box

Lemma 35.18. Let e be a bilinear n-fold Pfister form, and h a bilinear form over F.
(1) If $e \in I_b(F)$ then $e \in I_{n-1}(F)I_b(F)$.
(2) If $h \cdot e \in I_b(F)$ then $h \cdot e \in I_{n-1}(F)I_b(F)$.

Proof. (1): The hypothesis implies that $b \cdot e = 0$ in $W(F)$. In particular, $b \otimes e = b \perp b \otimes e'$ is isotropic. It follows that there exists an element $b \in D_F(b) \cap D_F(b \otimes e')$. By Lemma 35.17,
\[
eq \langle \langle b \rangle \rangle \cdot f \equiv 0 \quad \text{mod } I_{n-1}(F)I_b(F).
\]
(2): The hypothesis implies that $h \cdot b \cdot e = 0$ in $W(F)$. If $b \cdot e = 0$ in $W(F)$ then, by (1), we have $e \in I_{n-1}(F)I_b(F)$ and we are through. Else we have $h \in I_{b \otimes e}(F)$, which is generated by the $\langle \langle x \rangle \rangle$, with $x \in D(b \otimes e)$. It therefore suffices to prove the claim in the case $b = \langle \langle x \rangle \rangle$. But then, by (1), we even have $h \cdot e \in I^n(F)I_b(F)$. \hfill \Box

Lemma 35.19. Let bilinear n-fold Pfister forms e, f satisfy
\[
af \equiv bf \quad \text{mod } I_b(F)
\]
with $a, b \in F^\times$. Then
\[
af \equiv bf \quad \text{mod } I_{n-1}(F)I_b(F).
\]
Proof. We induct on n. As the case $n = 1$ is trivial, we may assume that $n > 1$ and that the claim holds for $(n-1)$-fold Pfister forms. The hypothesis implies that $a b \otimes e \simeq b b \otimes f$, in particular, $b/a \in D_F(b \otimes e)$. By Lemma 35.16 we therefore have

$$ae \equiv bf \mod I^{n-1}(F)I_b(F)$$

(actually, $\mod I^n(F)I_b(F)$). Hence we may assume that $a = b$. Dividing by a, we may even assume that $a = b = 1$. Write

$$e = \langle \langle c \rangle \rangle \otimes \partial \text{ and } f = \langle \langle d \rangle \rangle \otimes \delta$$

with ∂, δ being $(n-1)$-fold Pfister forms. The hypothesis now implies that $b \otimes e' \simeq b \otimes f'$. In particular, $d \in D(b \otimes e')$. By Lemma 35.17 we can write $e \equiv \langle \langle d \rangle \rangle \cdot \partial_1 \mod I^{n-1}(F)I_b(F)$ with ∂_1 an $(n-1)$-fold Pfister form. It follows that we may assume that $c = d$. By the induction hypothesis, we then have $\partial \equiv \partial_1 \mod I^{-2}(F)I_b\langle \langle d \rangle \rangle(F)$, hence

$$\langle \langle d \rangle \rangle \cdot \partial \equiv \langle \langle d \rangle \rangle \cdot \partial_1 \mod I^{-2}(F)I_b\langle \langle d \rangle \rangle(F).$$

We are therefore finished if we can show that $\langle \langle d \rangle \rangle I_b\langle \langle d \rangle \rangle(F) \subseteq I(F)I_b(F)$. Now, $I_b\langle \langle d \rangle \rangle(F)$ is generated by the $\langle \langle x \rangle \rangle$, with $x \in D(b \otimes \langle \langle d \rangle \rangle)$. For such a generator $\langle \langle x \rangle \rangle$, we have $b \cdot \langle \langle d, x \rangle \rangle = 0$ in $W(F)$, hence, by Lemma 35.18 the form $\langle \langle d, x \rangle \rangle$ lies in $I(F)I_b(F)$.

Proposition 35.20. Let e, f, g be bilinear n-fold Pfister forms. Assume that

$$ae \equiv bf + cg \mod I_b(F).$$

Then

$$ae \equiv bf + cg \mod I^{n-1}(F)I_b(F).$$

Proof. The hypothesis implies that $a b \cdot e = b b \cdot f + c b \cdot g$ in $W(F)$. In particular, the form $b b \otimes f \perp c b \otimes g$ is isotropic. It follows that there exists $d \in D(b b \otimes f) \cap D(-c b \otimes g)$. By Lemma 35.16 we then have

$$bf \equiv df \mod I^{n-1}(F)I_b(F) \text{ and } cg \equiv -dg \mod I^{n-1}(F)I_b(F)$$

(actually, $\mod I^n(F)I_b(F)$). Hence we may assume that $c = -b$. Dividing by b, we may even assume that $b = 1$ and $c = -1$. Then the hypothesis implies that $a b \cdot e = b \cdot f - b \cdot g$ in $W(F)$ and we have to prove that $ae \equiv f - g \mod I^{n-1}(F)I_b(F).

As $ab \cdot e = b \cdot f - b \cdot g$ in $W(F)$, it follows that $b \otimes f$ and $b \otimes g$ are linked using Proposition 6.21 and with b dividing the linkage. Hence there exists an $(n-1)$-fold Pfister form ∂ and elements $b', c' \neq 0$ such that $b \otimes f \simeq b \otimes \partial \otimes \langle \langle b' \rangle \rangle$ and $b \otimes g \simeq b \otimes \partial \otimes \langle \langle c' \rangle \rangle$ (and hence $b \otimes e \simeq b \otimes \partial \otimes \langle \langle b' \rangle \rangle \rangle$). By Lemma 35.19 we then have

$$f \equiv \partial \cdot \langle \langle b' \rangle \rangle \text{ and also } g \equiv \partial \cdot \langle \langle c' \rangle \rangle \mod I^{n-1}(F)I_b(F).$$

We may therefore assume that $f = \partial \otimes \langle \langle b' \rangle \rangle$ and $g = \partial \otimes \langle \langle c' \rangle \rangle$. Then $f - g = \partial \cdot (-b', c') = -b' \partial \cdot \langle \langle b'c' \rangle \rangle$ in $W(F)$. The lemma now follows by Lemma 35.19.

Remark 35.21. From Lemmas 35.16-35.19 and Proposition 35.20, we easily see that the corresponding results hold for the torsion part $I_t(F)$ of $I(F)$ instead of $I_b(F)$. Indeed, in each case we only have to use our result for $b = 2^k \langle 1 \rangle$ for some $k \geq 0$.

We always have $2I^n(F) \subseteq I^{n+1}(F)$ for a field F. For some interesting fields, we have equality, i.e., $2I^n(F) = I^{n+1}(F)$ for some positive integer n. In particular, we shall see in Lemma 31.1 below this is true for any field of finite transcendence degree over its prime field. (This is easy if the field has positive characteristic but depends on the Fact 16.2 when characteristic of F is zero.) We shall now investigate when this phenomenon holds for a field.

Proposition 35.22. Let F be a field. Then $2I^n(F) = I^{n+1}(F)$ if and only if every anisotropic bilinear $(n+1)$-fold Pfister form b is divisible by $2(1)$, i.e., $b \simeq 2c$ for some n-fold Pfister form c.

Proof. If $2(1)$ is metabolic, the result is trivial so assume not. In particular, we may assume that $\text{char } F \neq 2$. Suppose $2I^n(F) = I^{n+1}(F)$ and b is an anisotropic bilinear $(n+1)$-fold Pfister form. By assumption, there exist $d \in I^n(F)$ such that $b = 2d$ in $W(F)$. By Remark 34.23, we have $b \simeq 2c$ for some n-fold Pfister form c.

It is also useful to study a variant of the property that $2I^n(F) = I^{n+1}(F)$. We shall show this property is characterized by the cokernel of the signature map

$$\text{sgn} : W(F) \to C(\mathfrak{X}(F), \mathbb{Z})$$

Recall that this cokernel is a 2-primary group by Theorem 33.8.

Proposition 35.23. Suppose the exponent of $\text{coker}(\text{sgn} : W(F) \to C(\mathfrak{X}(F), \mathbb{Z}))$ is finite and 2^n. Then n is the least integer such that $2I^n_{\text{red}}(F) = I^{n+1}_{\text{red}}(F)$. Moreover, for any bilinear $(n+1)$-fold Pfister form b, there exists an n-fold Pfister form c such that $b \equiv 2c \mod W_t(F)$.

Proof. Let b be an anisotropic bilinear $(n+1)$-fold Pfister form. In particular, $\text{sgn } b \in C(\mathfrak{X}(F), 2^{n+1} \mathbb{Z})$. By assumption, there exists a bilinear form \mathfrak{d} satisfying $\text{sgn } \mathfrak{d} = \frac{1}{2} \text{sgn } b$. Thus $b - 2\mathfrak{d} \in W_t(F)$ hence there exists an integer m such that $2^m b = 2^{m+1} \mathfrak{d}$ in $W(F)$ by Theorem 31.21. If $2^m b$ is metabolic the result is trivial, so we may assume it is anisotropic. By Proposition 6.22, there exists f such that $2^m b \simeq 2^{m+1} f$. Therefore, $2^m b \simeq 2^{m+1} c$ for some bilinear n-fold Pfister form c by Corollary 6.17. Hence $2I^m_{\text{red}}(F) = I^{m+1}_{\text{red}}(F)$.

Conversely, suppose that $2I^m_{\text{red}}(F) = I^{m+1}_{\text{red}}(F)$. Let $f \in C(\mathfrak{X}(F), \mathbb{Z})$. It suffices to show that there exists a bilinear form b satisfying $\text{sgn } b = 2^n f$. By Theorem 33.14, there exists an integer m and a bilinear form $b \in I^m(F)$ satisfying $\text{sgn } b = 2^m f$. So we are done if $m \leq n$. If $m > n$ then there exists $c \in I^n(F)$ such that $\text{sgn } b = \text{sgn } 2^{m-n} c$ and $2^m f = \text{sgn } c$. □

Remark 35.24. If $2I^m_{\text{red}}(F) = I^{m+1}_{\text{red}}(F)$ then for any bilinear $(n+m)$-fold Pfister form b there exists an n-fold Pfister form c such that $b \equiv 2^m c \mod I_t(F)$ and $I^{n+m}_{\text{red}}(F) = 2^m I^n_{\text{red}}(F)$. Similarly, if $2I^n(F) = I^{n+1}(F)$ then for any bilinear $(n+m)$-fold Pfister form b there exists an n-fold Pfister form c such that $b \simeq 2^m c$ and $I^{n+m}(F) = 2^m I^n(F)$.

Suppose that \(2I^{n}_{\text{red}}(F) = I^{n+1}_{\text{red}}(F)\). Let \(b\) be a \(n\)-fold Pfister form over \(F\) and let \(d \in F^{\times}\). Write
\[
\langle\langle d \rangle \rangle \cdot b \equiv 2e \mod I_t(F) \quad \text{and} \quad \langle\langle -d \rangle \rangle \cdot b \equiv 2f \mod I_t(F)
\]
for some \(n\)-fold Pfister forms \(e\) and \(f\) over \(F\). Adding, we then get \(2b \equiv 2e + 2f \mod I_t(F)\), hence also \(b \equiv e + f \mod I_t(F)\). By Proposition 35.20, it follows that we even have \(b \equiv e + f \mod I^{n-1}(F)I_t(F)\).

We generalize this as follows:

Lemma 35.25. Suppose that \(2I^{n}_{\text{red}}(F) = I^{n+1}_{\text{red}}(F)\). Let \(b\) be a bilinear \(n\)-fold Pfister form and let \(d_1, \ldots, d_m \in F^{\times}\). Write
\[
\langle\langle \varepsilon_1 d_1, \ldots, \varepsilon_m d_m \rangle \rangle \cdot b \equiv 2^m c_{\varepsilon} \mod I_t(F)
\]
with \(c_{\varepsilon}\) a bilinear \(n\)-fold Pfister form for every \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_m) \in \{\pm 1\}^m\). Then
\[
b \equiv \sum_{\varepsilon} c_{\varepsilon} \mod I^{n-1}(F)I_t(F).
\]

Proof. We induct on \(m\). The case \(m = 1\) is done above. So assume that \(m > 1\). Write \(\langle\langle \varepsilon_2 d_2, \ldots, \varepsilon_m d_m \rangle \rangle \cdot b \equiv 2^{m-1} d_{\varepsilon'} \mod I_t(F)\) with \(d_{\varepsilon'}\) a bilinear \(n\)-fold Pfister form for every \(\varepsilon' = (\varepsilon_2, \ldots, \varepsilon_m) \in \{\pm 1\}^{m-1}\). By the induction hypothesis, we then have \(b \equiv \sum_{\varepsilon'} d_{\varepsilon'} \mod I^{n-1}(F)I_t(F)\). It therefore suffices to show that
\[
d_{\varepsilon'} \equiv c_{(+1, \varepsilon')} + c_{(-1, \varepsilon')} \mod I^{n-1}(F)I_t(F)
\]
for every \(\varepsilon'\). Since
\[
2^m d_{\varepsilon'} \equiv 2\langle\langle \varepsilon_2 d_2, \ldots, \varepsilon_m d_m \rangle \rangle \cdot e = \langle\langle d \rangle \rangle + \langle\langle -d \rangle \rangle \cdot \langle\langle \varepsilon_2 d_2, \ldots, \varepsilon_m d_m \rangle \rangle \cdot e
\]
\[
\equiv 2^m c_{(+1, \varepsilon')} + 2^m c_{(-1, \varepsilon')} \mod I_t(F)
\]
in \(W(F)\), hence also \(d_{\varepsilon'} = c_{(+1, \varepsilon')} + c_{(-1, \varepsilon')} \mod I_t(F)\). By Proposition 35.20, it follows that \(d_{\varepsilon'} \equiv c_{(+1, \varepsilon')} + c_{(-1, \varepsilon')} \mod I^{n-1}(F)I_t(F)\). \(\square\)

Theorem 35.26. Let \(2I^{n}_{\text{red}}(F) = I^{n+1}_{\text{red}}(F)\). Then
\[
I^{n}(F) = I^{n-1}(F)I_t(F).
\]

Proof. Suppose that \(\sum_{i=1}^{r} a_i b_i \in I_t(F)\), where \(b_1, \ldots, b_r\) are bilinear \(n\)-fold Pfister forms and \(a_i \in F^{\times}\). We prove by induction on \(r\) that this implies that \(\sum_{i=1}^{r} a_i b_i \in I^{n-1}(F)I_t(F)\). The case \(r = 1\) is simply Lemma 35.18, so assume that \(r > 1\).

Write \(b_i = \langle\langle a_i, \ldots, a_m \rangle \rangle\) for \(i = 1, \ldots, r\) and let \(m = r n\) and
\[
(d_1, \ldots, d_m) = (a_1, \ldots, a_{1n}, a_{21}, \ldots, a_{2n}, \ldots, a_{r1}, \ldots, a_r).
\]
Write \(\langle\langle \varepsilon_1 d_1, \ldots, \varepsilon_m d_m \rangle \rangle \cdot b_i \equiv 2^m c_{\varepsilon_i} \mod I_t(F)\) with \(c_{\varepsilon_i}\) bilinear \(n\)-fold Pfister forms for every \(i = 1, \ldots, r\) and every \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_m) \in \{\pm 1\}^m\). By Lemma 35.25,
\[
\sum_{i=1}^{r} a_i b_i \equiv \sum_{\varepsilon} \sum_{i=1}^{r} a_i c_{\varepsilon_i} \mod I^{n-1}(F)I_t(F).
\]
If \(\varepsilon^{(1)} \neq \varepsilon^{(2)} \) then \(\text{sgn}\langle \varepsilon^{(1)}_1 d_1, \ldots, \varepsilon^{(1)}_m d_m \rangle \) and \(\text{sgn}\langle \varepsilon^{(2)}_1 d_1, \ldots, \varepsilon^{(2)}_m d_m \rangle \) have disjoint supports on \(F(\mathfrak{X}) \), hence the same holds for \(\text{sgn}\mathfrak{c}_{\varepsilon^{(1)}} \) and \(\text{sgn}\mathfrak{c}_{\varepsilon^{(2)}} \). It therefore follows from the hypothesis that
\[
\sum_{i=1}^{r} a_i \mathfrak{c}_{\varepsilon} \equiv 0 \mod I_t(F) \quad \text{for each } \varepsilon.
\]

Clearly, it suffices to show that \(\sum_{i=1}^{r} a_i \mathfrak{c}_{\varepsilon} \equiv 0 \mod I^{n-1}(F)I_t(F) \) for each \(\varepsilon \).

Fix \(\varepsilon \). Suppose that \(\varepsilon \neq (1, \ldots, 1) \). If \(-1\) occurs in a component of \(\varepsilon \) corresponding to the \(j \)-th block then \(\langle \varepsilon_1 d_1, \ldots, \varepsilon_m d_m \rangle \cdot b_j = 0 \) in \(W(F) \) and we may assume that for all such \(j \) that \(\mathfrak{c}_{j\varepsilon} = 0 \) in \(W(F) \). In particular, if \(\varepsilon \neq (1, \ldots, 1) \), then
\[
\sum_{i=1}^{r} a_i \mathfrak{c}_{\varepsilon} = \sum_{i \neq j}^{r} a_i \mathfrak{c}_{\varepsilon} \equiv 0 \mod I^{n-1}(F)I_t(F)
\]

by the induction hypothesis. So we may assume that \(\varepsilon = (1, \ldots, 1) \). Then
\[
\langle \varepsilon_1 d_1, \ldots, \varepsilon_m d_m \rangle \otimes b_i \simeq \langle d_1, \ldots, d_m \rangle \otimes b_i \simeq 2^n \langle d_1, \ldots, d_m \rangle
\]
is independent of \(i \). We therefore may assume that \(\mathfrak{c}_{\varepsilon} \), for \(i = 1, \ldots, r \), are all equal to a single \(\mathfrak{c} \). Let \(\mathfrak{d} = \langle a_1, \ldots, a_r \rangle \) then
\[
\mathfrak{d} \cdot \mathfrak{c} = \sum_{i=1}^{r} a_i \mathfrak{c}_{\varepsilon} \equiv 0 \mod I_t(F).
\]

By Lemma 35.18, we conclude that \(\mathfrak{d} \cdot \mathfrak{c} \in I^{n-1}(F)I_t(F) \) and the theorem follows. \(\square \)

Corollary 35.27. The following are equivalent for a field \(F \) of characteristic different from two:

1. \(I^{n+1}(\sqrt{-1})/F) = 0 \).
2. \(F \) satisfies \(A_{n+1} \) and \(2I^n(F) = I^{n+1}(F) \).
3. \(F \) satisfies \(A_{n+1} \) and \(2I^n_{\text{red}}(F) = I^{n+1}_{\text{red}}(F) \).
4. \(I^{n+1}(F) \) is torsion-free and \(2I^n(F) = I^{n+1}(F) \).

Proof. (1) \(\Rightarrow \) (2): By Theorem 35.12, \(F \) satisfies \(A_{n+1} \). Theorem 34.22 applied to the quadratic extension \(F(\sqrt{-1})/F \) gives \(2I^n(F) = I^{n+1}(F) \).

(2) \(\Rightarrow \) (3) is trivial as \(2I^n_{\text{red}}(F) = I^{n+1}_{\text{red}}(F) \) if \(2I^n(F) = I^{n+1}(F) \).

(3) \(\Rightarrow \) (4): As the torsion \((n+1)\)-fold Pfister forms generate the torsion in \(I^{n+1}(F) \) by Theorem 35.26, we have \(I^{n+1}(F) \) is torsion-free. Suppose that \(\mathfrak{b} \) is an \((n+1)\)-fold Pfister form. Then there exist \(\mathfrak{c} \in I^n(F) \) and \(\mathfrak{d} \in W_t(F) \) such that \(\mathfrak{b} = 2\mathfrak{c} + \mathfrak{d} \) in \(W(F) \). Hence for some \(N \), we have \(2^N \mathfrak{b} = 2^{N+1} \mathfrak{c} \). As \(I^{n+1}(F) \) is torsion-free, we have \(\mathfrak{b} = 2\mathfrak{c} \) in \(W(F) \), hence \(\mathfrak{b}_{F,\sqrt{-1}} \) is hyperbolic. By Theorem 34.22 there exists an \(n \)-fold Pfister form \(\mathfrak{f} \) such that \(\mathfrak{b} \simeq 2\mathfrak{f} \). It follows that \(2I^n_{\text{red}}(F) = I^{n+1}_{\text{red}}(F) \).

(4) \(\Rightarrow \) (1) follows from Theorem 34.22 for the quadratic extension \(F(\sqrt{-1})/F \) as forms in \(W(K) \) transfer to torsion forms in \(W(F) \). \(\square \)

Corollary 35.28. Let \(F \) be a real closed field and \(K/F \) a finitely generated extension of transcendence degree \(n \). Then \(I^{n+1}(K) \) is torsion-free and \(2I^n(K) = I^{n+1}(K) \).
35. TORSION IN $I^n(F)$ AND TORSION PFISTER FORMS

Proof. As $K(\sqrt{-1})$ is a C_n-field by Theorem 96.7, we have $I^{n+1}(K(\sqrt{-1})) = 0$ and hence $2I^n(K) = I^{n+1}(K)$ by Corollary 35.27 applied to the field K. \[\square\]

Corollary 35.29. Let F be a field satisfying $I^{n+1}(F) = 2I^n(F)$. Then $I^{n+2}(F)$ is torsion-free.

Proof. If $-1 \in F^2$ then $I^{n+1}(F) = 0$ and the result follows. In particular, we may assume that char $F \neq 2$. By Theorem 35.26, it suffices to show that F satisfies A_{n+2}. Let b be an $(n+2)$-fold Pfister form such that $2b = 0$ in $W(F)$. By Lemma 35.2, we can write $b = \langle \langle w \rangle \rangle \cdot c$ in $W(F)$ with c an $(n+1)$-fold Pfister form and $w \in D(2\langle 1 \rangle)$. By assumption, $c = 2\mathfrak{a}$ in $W(F)$ for some n-fold Pfister form \mathfrak{a}. Hence $b = 2\langle \langle w \rangle \rangle \cdot \mathfrak{a} = 0$ in $W(F)$. \[\square\]

Remark 35.30. Any local field F satisfies $I^3(F) = 0$ (cf. [40, Cor. VI.2.15]). Let \mathbb{Q}_2 be the field of 2-adic numbers. Then, up to isomorphism, \begin{pmatrix} -1 & 1 \\ 0 & \mathbb{Q}_2 \end{pmatrix} is the unique quaternion algebra (cf. [40, Cor. VI.2.24]) hence $I^2(\mathbb{Q}_2) = 2I(\mathbb{Q}_2) = \{0, 4\langle 1 \rangle\} \neq 0$. Thus, in general, $I^{n+2}(F)$ cannot be replaced by $I^{n+1}(F)$ in the corollary above.

We shall return to these matters in §41.
CHAPTER VI

\textit{u}-invariants

36. The \bar{u}-invariant

Given a field F, it is interesting to see if there exists a uniform bound on the dimension of anisotropic forms over F, i.e., if there exists an integer n such that every quadric over F has a rational point and if such exists what is the minimum. For example, a consequence of the Chevalley-Warning Theorem is that over a finite field every three dimensional quadratic form is isotropic and a consequence of the Lang-Nagata Theorem is that every (2^n+1)-dimensional form over a field of transcendence degree n over an algebraically closed field is isotropic. Unlike the characteristic different from two case, totally singular quadratic forms over fields of characteristic two, i.e., the quadratic form associated to a bilinear form also give interesting degenerate anisotropic forms. We shall, therefore, define two types of uniform bounds below. If F is a formally real field then $\bar{u}(F)$ can never be isotropic. To obtain meaningful arithmetic data about formally real fields, we shall strengthen the condition on our forms. Although this makes computation more delicate, it is a useful generalization. In this section, we shall, for the most part, look at the simpler case of fields that are not formally real.

Let F be a field. We call a quadratic form φ over F \emph{locally hyperbolic} if φ_{F_p} is hyperbolic at each real closure F_p of F (if any). If F is formally real then the dimension of every locally hyperbolic form is even. If F is not formally real, every form is locally hyperbolic. We define the u-\textit{invariant} of F to be the smallest integer $u(F) \geq 0$ such that every non-degenerate locally hyperbolic quadratic form over F of dimension $> u(F)$ is isotropic (or infinity if no such integer exists) and the \bar{u}-\textit{invariant} of F to be the smallest integer $\bar{u}(F) \geq 0$ such that every locally hyperbolic quadratic form over F of dimension $> \bar{u}(F)$ is isotropic (or infinity if no such integer exists).

For any field F of characteristic different from two, a locally hyperbolic form is one that is torsion in the Witt ring $W(F)$. If F is not formally real then every non-degenerate quadratic form over F is locally hyperbolic.

\textbf{Remark 36.1.} (1). We have $\bar{u}(F) \geq u(F)$.

(2). If char $F \neq 2$, every anisotropic form is non-degenerate hence $\bar{u}(F) = u(F)$.

(3). If F is formally real, the integer $\bar{u}(F) = u(F)$ is even.

(4). As any (non-degenerate) quadratic form contains (non-degenerate) subforms of all smaller dimensions, if F is not formally real, we have $u(F) \leq n$ if and only if every non-degenerate quadratic form of dimension $n+1$ is isotropic and $\bar{u}(F) \leq n$ if and only if every quadratic form of dimension $n+1$ is isotropic.

153
Example 36.2. (1) If F is a formally real field then $\bar{u}(F) = 0$ if and only if F is pythagorean.

(2) Suppose that F is an quadratically closed field. If char $F \neq 2$ then $\bar{u}(F) = 1$ as every form is diagonalizable. If char $F = 2$ then $\bar{u}(F) \leq 2$ with equality if F is not separably closed by Example 7.33.

(3) If F is a finite field then $\bar{u}(F) = 2$.

(4) Suppose that F is not formally real. If $\bar{u}(F)$ is finite then $\bar{u}(F((t))) = 2\bar{u}(F)$. If char $F \neq 2$, this follows from Lemma 19.5. (Cf. [5] for the case that char $F = 2$.) If F is formally real, the same result holds as any torsion form ϕ over $F((t))$ is isometric to $\psi_0 \perp t\psi_1$ for some torsion forms ψ_0 and ψ_1 over F.

(5) If F is a C_n field then $\bar{u}(F) \leq 2^n$.

(6) If F is a local field then $\bar{u}(F) = 4$. If char $F = 0$ this follows from [13]. If char $F > 0$ then $u(F) = 4$ by Example (4).

(7) If F is a global field then $\bar{u}(F) = 4$. If char $F = 0$ this follows from the Hasse-Minkowski Theorem 40, VI.3.1. If char $F > 0$ then F is a C_2-field by Appendix Theorem 96.7.

Proposition 36.3. Let F be a field with $I^3_q(F) = 0$. If $1 < u(F) < \infty$ then $u(F)$ is even.

Proof. We may assume that F is not formally real. Suppose that $u(F) > 1$ is odd and let φ be a non-degenerate anisotropic quadratic form with dim $\varphi = u(F)$. We claim that $\varphi \simeq \psi \perp \langle -a \rangle$ for some $\psi \in I^2_q(F)$ and $a \in F^\times$. If char $F \neq 2$ then $\varphi \perp \langle a \rangle \in I^2_q(F)$ for some $a \in F^\times$. This form is isotropic, hence $\varphi \perp \langle a \rangle \simeq \psi \perp \mathbb{H}$ for some $\psi \in I^2_q(F)$ and therefore $\varphi \simeq \psi \perp \langle -a \rangle$. If char $F = 2$ write $\varphi \simeq \mu \perp \langle a \rangle$ for some form μ and $a \in F^\times$. Choose $b \in F$ such that the discriminant of the form $\mu \perp [a, b]$ is trivial, i.e., $\mu \perp [a, b] \in I^2_q(F)$. By assumption the form $\mu \perp [a, b]$ is isotropic, i.e., $\mu \perp [a, b] \simeq \psi \perp \mathbb{H}$ for a form $\psi \in I^2_q(F)$. It follows from (8.7) that

$$\varphi \simeq \mu \perp \langle a \rangle \sim \mu \perp [a, b] \perp \langle a \rangle \sim \psi \perp \langle a \rangle,$$

hence $\varphi \simeq \psi \perp \langle a \rangle$ as these forms have the same dimension. This proves the claim.

Let $b \in D(\psi)$. As $\langle\langle ab \rangle\rangle \otimes \psi \in I^3_q(F) = 0$ we have $ab \in G(\psi)$. Therefore $a = ab/b \in D(\psi)$ and hence the form φ is isotropic, a contradiction. \qed

Corollary 36.4. The u-invariant of a field is not equal to $3, 5$ or 7.

Let $r > 0$ be an integer. Define the \bar{u}_r-invariant of F to be the smallest integer $\bar{u}_r(F) \geq 0$ such that every set of r quadratic forms on a vector space over F of dimension $\geq \bar{u}_r(F)$ has common nontrivial zero.

In particular, if $\bar{u}_r(F)$ is finite then F is not a formally real field. We also have $\bar{u}_1(F) = \bar{u}(F)$ when F is not formally real.

Theorem 36.5. Let F be a field then for every $r > 1$ we have

$$\bar{u}_r(F) \leq r\bar{u}_1(F) + \bar{u}_{r-1}(F).$$
PROOF. We may assume that \(\bar{u}_{r-1}(F) \) is finite. Let \(\varphi_1, \ldots, \varphi_r \) be quadratic forms on a vector space \(V \) over \(F \) of dimension \(n > r\bar{u}_1(F) + \bar{u}_{r-1}(F) \). We shall show that the forms have an isotropic vector in \(V \). Let \(W \) be a totally isotropic subspace of \(F \) of the forms \(\varphi_1, \ldots, \varphi_{r-1} \) of the largest dimension \(d \). Let \(V_i \) be the orthogonal complement of \(W \) in \(V \) relative to \(\varphi_i \) for each \(i = 1, \ldots, r-1 \). We have \(\dim V_i \geq n - d \).

Let \(U = V_1 \cap \cdots \cap V_{r-1} \). Then \(W \subset U \) and \(\dim U \geq n - (r-1)d \). Choose a subspace \(U' \subset U \) such that \(U = W \oplus U' \). We have

\[
\dim U' \geq n - rd > r(\bar{u}_1(F) - d) + \bar{u}_{r-1}(F).
\]

If \(d \leq \bar{u}_1(F) \) then \(\dim U' > \bar{u}_{r-1}(F) \), hence the forms \(\varphi_1, \ldots, \varphi_{r-1} \) have an isotropic vector \(u \in U' \). Then the subspace \(W \oplus Fu \), totally isotropic for these forms, contradicting the maximality of \(W \).

It follows that \(d > \bar{u}_1(F) \). The form \(\varphi_r \) therefore has an isotropic vector in \(U' \) which is isotropic for all the \(\varphi_i \)'s.

\(\Box \)

COROLLARY 36.6. If \(F \) is not formally real then \(\bar{u}_r(F) \leq \frac{1}{2}(r+1)\bar{u}(F) \).

COROLLARY 36.7. Let \(K/F \) be a finite field extension of degree \(r \). If \(F \) is not formally real then \(\bar{u}(K) \leq \frac{1}{2}(r+1)\bar{u}(F) \).

PROOF. Let \(s_1, s_2, \ldots, s_r \) be a basis for the space of \(F \)-linear functionals on \(K \). Let \(\varphi \) be a quadratic form over \(K \) of dimension \(n > \frac{1}{2}(r+1)\bar{u}(F) \) on the vector space \(V \). As \(\dim(s_i)(\varphi) = rn > \frac{1}{2}r(r+1)\bar{u}(F) \) for each \(i = 1, \ldots, r \), by Corollary 36.6 the forms \((s_i)_*(\varphi) \) have common isotropic vector which is then an isotropic vector for \(\varphi \).

Let \(K/F \) be a finite extension with \(F \) not formally real. We shall show that if \(\bar{u}(K) \) is finite then so is \(\bar{u}(F) \). We begin with the case that \(F \) is a field of characteristic two.

LEMMA 36.8. Let \(F \) be a field of characteristic two. Let \(\varphi \) be an even dimensional non-degenerate quadratic form over \(F \) and \(\psi \) a totally singular quadratic form over \(F \). If \(\varphi \perp \psi \) is anisotropic then

\[
\frac{1}{2} \dim \varphi + \dim \psi \leq [F : F^2].
\]

PROOF. Let \(\varphi \simeq [a_1, b_1] \perp \cdots \perp [a_m, b_m] \) with \(a_i, b_i \in F \) and \(\psi \simeq (c_1, \ldots, c_n) \) with \(c_i \in F^\times \). For each \(1 = 1, \ldots, m \) let \(d_i \in D([a_i, b_i]) \). Then \(\{d_1, \ldots, d_n, c_1, \ldots, c_m\} \) is \(F^2 \)-linearly independent. The result follows.

\(\Box \)

PROPOSITION 36.9. Let \(F \) be a field of characteristic two and \(K/F \) a finite extension. Then \(\bar{u}(F) \leq 2\bar{u}(K) \leq 4\bar{u}(F) \).

PROOF. If \(c_1, \ldots, c_n \) are \(F^2 \)-linearly independent then \((c_1, \ldots, c_n) \) is anisotropic. By the lemma, it follows that we have

\[
[F : F^2] \leq \bar{u}(F) \leq 2[F : F^2].
\]

As \([F : F^2] = [K : K^2] \) (cf. (35.6)), we have

\[
\bar{u}(F) \leq 2[F : F^2] = 2[K : K^2] \leq 2\bar{u}(K) \leq 4[K : K^2] = 4[F : F^2] \leq 4\bar{u}(F).
\]

\(\Box \)
Remark 36.10. Let F be a field of characteristic two. The proof above shows that every anisotropic totally singular quadratic form has dimension at most $[F : F^2]$ and if $[F : F^2]$ is finite then there exist anisotropic totally singular quadratic forms of dimension $[F : F^2]$.

Remark 36.11. Let F be a field of characteristic two such that $[F : F^2]$ is infinite but F separably closed. Then $\bar{u}(F)$ is infinite but $u(F) = 1$ by Exercise 7.34.

We now look at finiteness of \bar{u} coming down from a quadratic extension.

Proposition 36.12. Let K/F be a quadratic extension with F not formally real. If $\bar{u}(K)$ is finite then $\bar{u}(F) < 4\bar{u}(K)$.

Proof. If $\text{char } F = 2$ then $\bar{u}(F) \leq 2\bar{u}(K)$, so we may assume that char $F \neq 2$.
We first show that $\bar{u}(F)$ is finite. Let φ be an anisotropic quadratic form over F. By Proposition 34.8 there exist quadratic forms φ_1 and μ_0 over F with $(\mu_0)_F$ anisotropic satisfying
$$\varphi \simeq \langle \langle a \rangle \rangle \otimes \varphi_1 \perp \mu_0.$$
In particular, $\dim(\mu_0) \leq \bar{u}(K)$. Analogously, there exist quadratic forms φ_2 and μ_1 over F with $(\mu_1)_F$ anisotropic satisfying
$$\varphi_1 \simeq \langle \langle a \rangle \rangle \otimes \varphi_2 \perp \mu_1.$$
Hence
$$\varphi \simeq \langle \langle a \rangle \rangle \otimes \langle \langle a \rangle \rangle \otimes \varphi_2 \perp \mu_1 \perp \mu_0 \simeq 2\langle \langle a \rangle \rangle \otimes \varphi_2 \perp \langle \langle a \rangle \rangle \otimes \mu_1 \perp \mu_0$$
as $\langle \langle a, a \rangle \rangle = 2\langle \langle a \rangle \rangle$. Continuing in this way, we see that
$$\varphi \simeq 2^{n-1}\langle \langle a \rangle \rangle \otimes \varphi_n \perp 2^{n-2}\langle \langle a \rangle \rangle \otimes \mu_n \perp \cdots \perp \langle \langle a \rangle \rangle \otimes \mu_1 \perp \mu_0$$
for some forms φ_i and μ_i over F satisfying $\dim \mu_i \leq \bar{u}(K)$ for all i. By Proposition 31.4, there exists an integer n such that $2^n\langle \langle a \rangle \rangle = 0$ in $W(F)$. It follows that
$$\dim \varphi \leq (2^n + \cdots + 2 + 1)\bar{u}(K) \leq 2^{n+1}\bar{u}(K)$$
hence is finite.

We now show that $\bar{u}(F) < 4\bar{u}(K)$. As $\bar{u}(F)$ is finite, there exists an anisotropic form φ over F of dimension $\bar{u}(F)$. Let $s : K \rightarrow F$ be a non-trivial F-linear functional satisfying $s(1) = 0$. We can write
$$\varphi \simeq \mu \perp s_*(\psi)$$
with quadratic forms ψ over K and μ over F satisfying $\mu \otimes N_{K/F}$ is anisotropic by Proposition 34.6. Then
$$\dim s_*(\psi) \leq 2\bar{u}(K) \quad \text{and} \quad \dim \mu \leq \frac{1}{2}\bar{u}(F).$$
If $\dim s_*(\psi) = 2\bar{u}(K)$ then ψ is a $\bar{u}(K)$-dimensional form over K hence universal as every $(\bar{u}(K) + 1)$-dimensional form is isotropic over the non formally real field K. In particular, $\psi \simeq \langle x \rangle_K \perp \psi_1$ for some $x \in F^\times$. Thus $s_*(\psi) = s_*(\psi_1)$ in $W(F)$ so $s_*(\psi)$ is isotropic, a contradiction. Therefore, we have $\dim s_*(\psi) < 2\bar{u}(K)$, hence
$$2\bar{u}(K) > \dim s_*(\psi) = \dim \varphi - \dim \mu \geq \bar{u}(F) - \bar{u}(F)/2 \geq \bar{u}(F)/2.$$
The result follows. \hfill \square
Proposition 36.13. Let K/F be a finite extension with F not formally real. Then $\bar{u}(F)$ is finite if and only if $\bar{u}(K)$ is finite.

Proof. If $\text{char } F = 2$, the result follows by Proposition 36.9, so we may assume that $\text{char } F \neq 2$. By Theorem 36.6, we need only show if $\bar{u}(K)$ is finite then $\bar{u}(F)$ is also finite. Let L be the normal closure of K/F and E_0 the fixed field of the Galois group of L/F. Then E_0/F is of odd degree as $\text{char } F \neq 2$. Let E be the fixed field of a Sylow 2-subgroup of the Galois group of L/F. Then E/F is also of odd degree. Therefore, if $\bar{u}(E)$ is finite so is $\bar{u}(F)$ by Springer’s Theorem 18.5. Hence we may assume that $E = F$, i.e., K/F is a Galois 2-extension. By induction on $[K : F]$, we may assume that K/F is a quadratic extension, the case established in Proposition 36.12.

Let K/F be a normal extension of degree 2^mr with r odd and F not formally real. If $\bar{u}(K)$ is finite the argument in Proposition 36.13 and the bound in Proposition 36.12 shows that $\bar{u}(F) \leq 4^r\bar{u}(K)$. We shall improve this bound in Remark 37.3 below.

37. The u-invariant for Formally Real Fields

If F is formally real and K/F finite then $\bar{u}(K)$ can be infinite and $\bar{u}(F)$ finite. Indeed, let F_0 be the euclidean field of real constructible numbers. Then there exists extensions E_{n}/F_0 of degree n none of which are both pythagorean and formally real. In particular, $\bar{u}(E_n) > 0$. It is easy to see that $\bar{u}(E_r) \leq 4$. (In fact, it can be shown that $\bar{u}(E_r) \leq 2$.) For example, E_2 is the quadratic closure of the rational numbers. Let $F = F_0((t_1)) \cdots ((t_n)) \cdots$ the iterated power series in infinitely many variables. Then F is pythagorean by Example 36.2(1) so $\bar{u}(F) = 0$. However, $K_r = E_r((t_1)) \cdots ((t_n)) \cdots$ has infinite u-invariant by Example 36.2(4). In fact, in [15] for each positive integer n, formally real fields F_n are constructed with $\bar{u}(F_n) = 2^n$ and having a formally real quadratic extension K/F_n with $u(K) = \infty$ and formally fields F_n' are constructed with $\bar{u}(F_n') = 2^n$ and such that every finite non-formally real extension L of F has infinite \bar{u}-invariant.

However, we can determine when finiteness of the \bar{u}-invariant persists when going up a quadratic extension and when coming down one. Since we already know this when the base field is not formally real, we shall mostly be interested in the formally real case. In particular, we shall assume, for the most part, that the fields in this section are of characteristic different from two and hence the \bar{u}-invariant and u-invariant are identical.

We need some preliminaries.

Lemma 37.1. Let F be a field of characteristic different from two and $K = F(\sqrt{a})$ a quadratic extension of F. Let $b \in F^x \setminus F^{x^2}$ and $\varphi \in \text{ann}_{W(F)}(\langle \langle b \rangle \rangle)$ be anisotropic. Then $\varphi \simeq \varphi_1 + \varphi_2$ in $W(F)$ for some forms φ_1 and φ_2 over F satisfying

1. $\varphi_1 \in \langle \langle a \rangle \rangle W(F) \cap \text{ann}_{W(F)}(\langle \langle b \rangle \rangle)$ is anisotropic.
2. $\varphi_2 \in \text{ann}_{W(F)}(\langle \langle b \rangle \rangle)$.
3. $(\varphi_2)_K$ is anisotropic.

Proof. By Corollary 6.23 the dimension of φ is even. We induct on $\dim \varphi$. If φ_K is hyperbolic then $\varphi = \varphi_1$ works by Corollary 34.12 and if φ_K is anisotropic then
\(\varphi = \varphi_2 \) works. So we may assume that \(\varphi_2 \) is isotropic but not hyperbolic. In particular, \(\dim \varphi \geq 4 \). By Proposition 34.8 we can write
\[
\varphi \simeq x\langle a \rangle \perp \mu
\]
for some \(x \in F^\times \) and even dimensional form form \(\mu \) over \(F \). As \(\varphi \in \text{ann}_{W(F)}(\langle b \rangle) \), we have \(\langle b \rangle \cdot \mu = -x\langle b, a \rangle \) in \(W(F) \), so \(\dim(\langle b \rangle \otimes \mu)_{an} = 0 \) or 4. Therefore, by Proposition 6.25 we can write
\[
\mu \simeq \mu_1 \perp y\langle c \rangle
\]
for some \(y, c \in F^\times \) and even dimensional form \(\mu_1 \in \text{ann}_{W(F)}(\langle b \rangle) \). Substituting in the previous isometry and taking determinants, we see that \(ac \in D(\langle b \rangle) \) by Proposition 6.25. Thus \(c = az \) for some \(z \in D(\langle b \rangle) \). Consequently,
\[
\varphi \simeq x\langle a \rangle \perp y\langle az \rangle \perp \mu_1 = x\langle a, -xyz \rangle + y\langle z \rangle + \mu_1
\]
in \(W(F) \). Let \(\mu_2 \simeq (y\langle z \rangle \perp \mu_1)_{an} \). As \(y\langle z \rangle \) lies in \(\text{ann}_{W(F)}(\langle b \rangle) \), so does \(\mu_2 \) and hence also \(x\langle a, -xyz \rangle \). By induction on \(\dim \varphi \), we can write \(\mu_2 = \bar{\varphi}_1 + \bar{\varphi}_2 \) in \(W(F) \) where \(\bar{\varphi}_1 \) satisfies condition (1) and \(\bar{\varphi}_2 \) satisfies conditions (2) and (3). It follows that
\[
\varphi_1 \simeq (\langle a, -xyz \rangle \perp \bar{\varphi}_1)_{an} \quad \text{and} \quad \varphi_2 \simeq \bar{\varphi}_2
\]
work. \(\square \)

Exercise 37.2. Let \(\varphi \) and \(\psi \) be 2-fold Pfister forms respectively over a field of characteristic not 2. Prove that the group \(\varphi W(F) \cap \text{ann}_{W(F)}(\psi) \cap T^2(F) \) is generated by 2-fold Pfister forms \(\rho \) in \(\text{ann}_{W(F)}(\psi) \) that are divisible by \(\varphi \). This exercise generalizes. (Cf. Exercise 47.8 below.)

To test finiteness of the \(u \)-invariant, it suffices to look at \(\text{ann}_{W(F)}(2\langle 1 \rangle) \). Define
\[
\nu(F) := \max\{\dim \varphi \mid \varphi \text{ is an anisotropic form over } F \text{ and } 2\varphi = 0 \text{ in } W(F)\}
\]
or \(\infty \) if no such maximum exists.

Lemma 37.3. \(\nu(F) \) is finite if and only if \(u(F) \) is finite. Moreover, if \(u(F) \) is finite then \(u(F) = \nu(F) = 0 \) or \(u(F) \leq u(F) < 2\nu(F) \).

Proof. We may assume that \(\text{char } F \neq 2 \) and \(\nu(F) > 0 \), i.e., that \(F \) is not a formally real pythagorean field. Let \(\varphi \) be an \(n \)-dimensional anisotropic form over \(F \). Suppose that \(n \geq 2\nu(F) \). By Proposition 6.25 we can write \(\varphi \simeq \mu_1 \perp \varphi_1 \) with \(\mu_1 \in \text{ann}_{W(F)}(2\langle 1 \rangle) \) and \(2\varphi_1 \) anisotropic. By assumption, \(\dim \mu_1 \leq \nu(F) \). Thus
\[
2\nu(F) \leq \dim \varphi = \dim \mu_1 + \dim \varphi_1 \leq \nu(F) + \dim \varphi_1
\]
hence \(2\nu(F) \leq \dim 2\varphi_1 \). As \((2\varphi)_{an} \simeq 2\varphi_1 \), we have \(\dim(2\varphi)_{an} \geq 2\nu(F) \). Repeating the argument, we see inductively that \(\dim(2^m \varphi)_{an} \geq 2\nu(F) \) for all \(m \). In particular, \(\varphi \) is not torsion. The result follows. \(\square \)

Hoffmann has shown that there exist fields \(F \) satisfying \(u'(F) < u(F) \). (Cf. 22.)

Let \(K/F \) be a quadratic extension. As it is not true that \(u(F) \) is finite if and only if \(u(K) \) is when \(F \) is formally real, we need a further condition for this to be true. This condition is given by a relative \(u \)-invariant.
Let L/F be a field extension. The relative u-invariant of L/F is defined as
\[u(L/F) := \max \{ \dim(\varphi_L)_{an} \mid \varphi \text{ a quadratic form over } F \text{ with } \varphi_L \text{ torsion in } W(L) \} \]
or ∞ if no such integer exists.

We shall prove

Theorem 37.4. Let F be a field of characteristic different than two and K a quadratic extension of F. Then $u(F)$ and $u(K/F)$ are both finite if and only if $u(K)$ is finite. Moreover, we have:

1. If $u(F)$ and $u(K/F)$ are both finite then $u(K) \leq u(F) + u(K/F)$. If, in addition, K is not formally real then $u(K) \leq \frac{1}{2} u(F) + u(K/F)$.
2. If $u(K)$ is finite then $u(K/F) \leq u(K)$ and $u(F) < 6u(K)$ or $u(F) = u(K) = 0$. If, in addition, K is not formally real then $u(F) < 4u(K)$.

Proof. Let $K = F(\sqrt{a})$ and $s_* : W(K) \to W(F)$ be the transfer induced by the F-linear functional defined by $s(1) = 0$ and $s(\sqrt{a}) = 1$.

Claim 37.5. Let φ be an anisotropic quadratic form over K such that $s_*(\varphi)$ is torsion in $W(F)$. Then there exist a form σ over F and a form ψ over K satisfying

(a) $\dim \sigma = \dim \varphi$.
(b) ψ is a torsion form in $W(K)$.
(c) $\dim \psi \leq 2 \dim \varphi$ and $\varphi \simeq (\sigma_K \perp \psi)_{an}$.
(d) If $s_*(\varphi)$ is anisotropic over F then $\dim \varphi \leq \dim \psi$.

In particular, if $u(F)$ is finite and $s_*(\varphi)$ is anisotropic and torsion then $\dim \varphi \leq \frac{1}{2} u(F)$ and $\dim \psi \leq u(F)$:

Let $2^n s_*(\varphi) = 0$ in $W(F)$ for some integer n. By Corollary 34.3 with $\rho = 2^n(1)$, there exists a form σ over F such that $\dim \sigma = \dim \varphi$ and $2^n \varphi \simeq 2^n \sigma_K$. Let $\psi \simeq (\varphi \perp (-\sigma))_{an}$. Then ψ is a torsion form in $W(K)$ as it has trivial total signature. Condition (c) holds by construction and (d) holds as $s_*(\psi) = s_*(\varphi)$ in $W(F)$.

We now prove (1). Suppose that both $u(F)$ and $u(K/F)$ are finite. Let τ be an anisotropic torsion form over K. By Proposition 34.1, there exists an isometry $\tau \simeq \varphi \perp \mu_K$ for some form τ over K satisfying $s_*(\varphi)$ is anisotropic and form μ over F. As $s_*(\varphi) = s_*(\tau)$ is torsion, we can apply the claim to φ. Let σ over F and ψ over K be forms as in the claim. By the last statement of the claim, we have $\dim \varphi \leq \frac{1}{2} u(F)$. In particular, we have $\dim \psi \leq 2 \dim \varphi \leq u(F)$ and $\varphi = \psi + \sigma_K$ in $W(K)$. Since τ and ψ are torsion so is $(\sigma + \mu)_K$. As $\tau = \psi + ((\sigma \perp \mu)_K)_{an}$ in $W(K)$, it follows that $\dim \tau \leq u(F) + u(K/F)$ as needed.

Finally, if K is not formally real then as above, we have $\tau \simeq \varphi \perp \mu_K$ with $\dim \varphi \leq \frac{1}{2} u(F)$. As every F-form is torsion in $W(K)$, we have $\dim \mu_K \leq u(K/F)$ and the proof of (1) is complete.

We now prove (2). Suppose that $u(K)$ is finite. Certainly $u(K/F) \leq u(K)$. We show the rest of the first statement. By Lemma 37.3, it suffices to show that $u'(F) \leq 3u'(K)$. Let $\varphi \in \text{ann}_{W(F)}(2(1))$ be anisotropic. By Lemma 37.1 and Corollary 34.3, we can
decompose $\varphi \simeq \varphi_1 + \varphi_2$ in $W(F)$ with $\varphi_2 \in \ann_{W(F)}(2\langle a \rangle)$ satisfying $(\varphi_2)_K$ is anisotropic and φ_1 is anisotropic over F and lies in

$$\langle \langle a \rangle \rangle W(F) \cap \ann_{W(F)}(2\langle a \rangle) \subset \ann_{W(F)}(\langle \langle a \rangle \rangle) \cap \ann_{W(F)}(2\langle a \rangle)$$

using Lemma 34.33. In particular, $(\varphi_2)_K \in \ann_{W(K)}(2\langle a \rangle)$ so $\dim \varphi_2 \leq u'(K)$. Consequently, to show that $u'(F) \leq 3u'(K)$, it suffices to show $\dim \varphi_1 \leq 2u'(K)$. This follows from (i) of the following (with $\sigma = \varphi_1$):

Claim 37.6. Let σ be a non-degenerate quadratic form over F.

(i) If $\sigma \in \ann_{W(F)}(\langle \langle a \rangle \rangle) \cap \ann_{W(F)}(2\langle a \rangle)$ then $\dim \sigma_{an} \leq 2u'(K)$.

(ii) If $\sigma \in \ann_{W(F)}(\langle \langle a \rangle \rangle) \cap W_i(F)$ then $\dim \sigma_{an} \leq 2u(K)$ with inequality if K is not formally real.

By Corollary 34.33, in the situation of (i), there exists $\tau \in \ann_{W(K)}(2\langle a \rangle)$ such that $\sigma = s_*(\tau)$. Then $\dim \sigma_{an} \leq \dim s_*(\tau_{an}) \leq 2 \dim \tau_{an} \leq 2u'(K)$ as needed.

We turn to the proof of (ii) which implies the the bound on $u(F)$ in Statement (2) for arbitrary K (with $\sigma = \varphi_1$). In the situation of (ii), we have $\dim \sigma_{an} \leq u(K)$ by Corollaries 34.12 and 34.32. If K is not formally real then any $u(K)$-dimensional form τ over K is universal. In particular, $D(\tau) \cap F^\times \neq \emptyset$ and (ii) follows.

Now assume that K is not formally real. Let φ be an anisotropic torsion form over F of dimension $u(F)$. As $\im s_* = \ann_{W(F)}(\langle \langle a \rangle \rangle)$ by Corollary 34.12, using Proposition 6.25, we have a decomposition $\varphi \simeq \varphi_3 \perp \varphi_4$ with φ_4 a form over F satisfying $\langle \langle a \rangle \rangle \otimes \varphi_4$ is anisotropic and $\varphi_3 \simeq s_*(\tau)$ for some form τ over K. Since φ_3 lies in

$$s_*(W(K)) = s_*(W_i(K)) = \ann_{W(F)}(\langle \langle a \rangle \rangle) \cap W_i(F)$$

by Corollary 34.12 and Corollary 34.32, we have $\dim \varphi_3 < 2u(K)$ by Claim 37.6. As $\langle \langle a \rangle \rangle \cdot \varphi_4 = \langle \langle a \rangle \rangle \cdot \varphi$ in $W(F)$ hence is torsion, we have $\dim \varphi_4 \leq u(F)/2$. Therefore, $2u(K) > \dim \varphi_3 = \dim \varphi - \dim \varphi_4 \geq u(F) - u(F)/2$ and $u(F) < 4u(K)$. \hfill \Box

Of course, by Theorem 36.6 if F is not formally real and $K = F(\sqrt{a})$ is a quadratic extension then $u(K) \leq \frac{3}{2}u(F)$.

Corollary 37.7. Let F be a field of transcendence degree n over a real closed field. Then $u(F) < 2^{n+2}$.

Proof. $F(\sqrt{-1})$ is a C_n-field by Corollary 96.7 \hfill \Box

Remark 37.8. Let F be a field of characteristic different than two and K/F a finite normal extension. Suppose that $u(K)$ is finite. If K/F is quadratic then the proof of Theorem 37.4 shows that $u'(F) \leq 3u'(K)$. If K/F is of degree $2^m m$ with m odd, arguing as in Proposition 36.13 shows that $u'(F) \leq 3' u'(K)$ hence $u(F) \leq 2 \cdot 3' u(K)$.

One case where the bound in the remark can be sharpened is the following which generalizes the case of a pythagorean field of characteristic different from two.

Proposition 37.9. Let F be a field of characteristic different from two and K/F a finite normal extension. If $u(K) \leq 2$ then $u(F) \leq 2$.
By Proposition 34.8, we know for a field E that $I^2(E)$ is torsion-free if and only if E satisfies A_2, i.e., there are no anisotropic 2-fold torsion Pfister forms. In particular, as $u(K) \leq 2$, we have $I^2(K)$ is torsion-free. Arguing as in Proposition 36.13, we reduce to the case that $K = F(\sqrt{a})$ is a quadratic extension of F, hence $I^2(F)$ is also torsion-free by Theorem 35.12. It follows that every torsion element ρ in $I(F)$ lies in $\text{ann}_{W(F)}(2(1))$. In particular, by Proposition 6.25, we can write $\rho \simeq \langle \langle w \rangle \rangle \mod I^2(F)$ for some $w \in D(2(1))$ hence $\rho \simeq \langle \langle w \rangle \rangle$ some $w \in D(2(1))$ and is universal. In particular, every even dimensional anisotropic torsion form over F is of dimension at most two. Suppose that there exists an odd dimensional anisotropic torsion form φ over F. Then F is not formally real hence all forms are torsion. As every two dimensional form over F is universal by the above, we must have $\dim \varphi = 1$. The result follows. \hfill \Box

Corollary 37.10. Let F be a field of transcendence degree one over a real closed field. Then $u(F) \leq 2$.

Exercise 37.11. Let F be a field of arbitrary characteristic and $a \in F^\times$ totally positive. If $K = F(\sqrt{a})$ then $u(K) \leq 2u(F)$.

We next show if K/F is a quadratic extension with K not formally real then the relative u-invariant already determines finiteness. We note

Remark 37.12. Suppose that char $F \neq 2$ and $K = F(\sqrt{a})$ is a quadratic extension of F that is not formally real. If φ is a non-degenerate quadratic form over F then, by Proposition 34.8, there exist forms φ_1 and ψ such that $\varphi \simeq \langle \langle a \rangle \rangle \otimes \psi \perp \varphi_1$ with $\dim \varphi_1 \leq u(K/F)$.

We need the following simple lemma.

Lemma 37.13. Let F be a field of characteristic different from two and $K = F(\sqrt{a})$ a quadratic extension of F that is not formally real. Suppose that $u(K/F) < 2^m$. Then $I^{m+1}(F)$ is torsion-free, $I^{m+1}(K) = 0$, and the exponent of $W_1(F)$ is at most 2^{m+1}.

Proof. If $\rho \in P_m(F)$ then $r_{K/F}(\rho) = 0$ as K is not formally real. So $I^m(F) = \langle \langle a \rangle \rangle I^{m-1}(F)$ by Theorem 34.22. It follows that $I^{m+1}(K) = 0$ by Lemma 34.16. Hence $I^{m+1}(F(\sqrt{-1})) = 0$ by Corollary 35.14. The result follows by Corollary 35.27. \hfill \Box

If F is a local field in the above then one can show that $u(K/F) = 2$ for any quadratic extension K of F but neither $I^2(F)$ nor $I^2(K)$ is torsion-free.

Theorem 37.14. Let F be a field of characteristic different from two. Suppose that K is a quadratic extension of F and K is not formally real. Then $u(K/F)$ is finite if and only if $u(K)$ is finite.

Proof. By Theorem 37.1 we may assume that $u(K/F)$ is finite and must show that $u(F)$ is also finite. Let φ be an anisotropic form over F satisfying $2\varphi = 0$ in $W(F)$. By the lemma, $I^{n-1}(F)$ is torsion-free for some $n \geq 1$. We apply the Remark 37.12 iteratively. In particular, if $\dim \varphi$ is large then $\varphi \simeq x\rho \perp \psi$ for some $\rho \in P_n(F)$ (cf. the proof of Proposition 36.12). Indeed, computation shows that if $u(K/F) < 2^n$ and $\dim \varphi > 2^n(2^{m+2} - 1)$ then $n = m + 2$ works. As ρ is an anisotropic Pfister form and $I^n(F)$ is torsion-free, 2ρ is also anisotropic. Scaling φ, we may assume that $x = 1$. Write
ψ ≃ ϕ ⊥ ϕ_2 with 2ϕ_1 = 0 in W(F) and 2ϕ_2 anisotropic. Then we have 2ρ ≃ 2(−ϕ_2).
If b ∈ D(−ϕ_2) then 2⟨⟨b⟩⟩ · ρ is isotropic hence is zero in W(F). As I^n(F) is torsion-
free, ⟨⟨b⟩⟩ · ρ = 0 in W(F) and b ∈ D(ρ). It follows that ϕ cannot be anisotropic if
dim ϕ > 2^m(2^{m+2} − 1). By Lemma 37.3, it follows that u(F) ≤ 2^m+1(2^{m+2} − 1) and the
result follows by Theorem 37.4.

The bounds in the proof can be improved but are still very weak. The theorem does
not generalize to the case when K is formally real. Indeed let F_0 be a formally real subfield
of the algebraic closure of the rationals having square classes represented by ±1, ±w where
w is a sum of (two) squares. Let F = F_0((t_1)((t_2)) · · · and K = F(√w). Then, using
Corollary 34.12, we see that u(K/F) = 0 but both u(F) and u(K) are infinite.

Corollary 37.15. Let F be a field of characteristic different from two. Then u(K)
is finite for all finite extensions of F if and only if u(F(√−1)) is finite if and only if
u(F(√−1)/F) is finite.

38. Construction of Fields with Even u-invariant

By taking iterated Laurent series fields over the complex numbers, we can construct
fields whose u-invariant is 2^n for any n ≥ 0. (We also know that formally real pythagorean
fields have u-invariant zero.) In this section, given any even integer m > 0, we construct
fields whose u-invariant is m.

Lemma 38.1. Let ϕ ∈ I^2_q(F) be a form of dimension 2n ≥ 2. Then ϕ is a sum of
n − 1 general quadratic 2-fold Pfister forms in I^2_q(F) and ind clif(ϕ) ≤ 2^{n−1}.

Proof. We induct on n. If n = 1, we have ϕ = 0 and the statement is clear. If n = 2,
ϕ is a general 2-fold Pfister form and by Proposition 12.4, we have clif(ϕ) = [Q], where
Q is a quaternion algebra such that Nrd_q is similar to ϕ. Hence ind clif(ϕ) ≤ 2.

In the case n ≥ 3 write ϕ = σ ⊥ ψ where σ is a binary form. Choose a ∈ F^× such
that the form aσ ⊥ ψ is isotropic, i.e., aσ ⊥ ψ ∼ H ⊥ μ for some form μ of dimension
2n − 2. We have in I_q(F):

ϕ = σ + ψ = ⟨⟨a⟩⟩σ + μ

and therefore clif(ϕ) = clif(⟨⟨a⟩⟩σ) · clif(μ) by Lemma 14.2. Applying the induction
hypothesis to μ, we have ϕ is a sum of n − 1 general quadratic 2-fold Pfister forms and

ind clif(ϕ) ≤ ind clif(⟨⟨a⟩⟩σ) · ind clif(μ) ≤ 2 · 2^{n−2} = 2^{n−1}.

Corollary 38.2. In the condition of the lemma assume that ind clif(ϕ) = 2^{n−1}. Then
ϕ is anisotropic.

Proof. Suppose ϕ is isotropic, i.e., ϕ ∼ H ⊥ ψ for some ψ of dimension 2n − 2.
Applying Lemma 38.1 to ψ, we have ind clif(ϕ) = ind clif(ψ) ≤ 2^{n−2}, a contradiction.

Lemma 38.3. Let D be a tensor product of n − 1 quaternion algebras (n ≥ 1). Then
there is a ϕ ∈ I^2_q(F) of dimension 2n such that clif(ϕ) = [D] in Br(F).
Proof. We induct on \(n \). The case \(n = 1 \) follows from Proposition [12.4. If \(n \geq 2 \)
write \(D = Q \otimes B \), where \(Q \) is a quaternion algebra and \(B \) is a tensor product of \(n - 2 \)
quaternion algebras. By the induction hypothesis, there is \(\psi \in I_2^2(F) \) of dimension \(2n - 2 \)
such that \(\text{clif}(\psi) = [B] \). Choose a quadratic 2-fold Pfister form \(\sigma \) with \(\text{clif}(\sigma) = [Q] \)
and an element \(a \in F^\times \) such that \(a\sigma \perp \psi \) is isotropic, i.e., \(a\sigma \perp \psi \simeq H \perp \varphi \) for some \(\varphi \) of
dimension \(2n \). Then \(\varphi \) works as \(\text{clif}(\varphi) = \text{clif}(\sigma) \cdot \text{clif}(\psi) = [Q] \cdot [B] = [D] \). \(\square \)

Let \(\mathfrak{A} \) be a set (of isometry classes) of irreducible quadratic forms. For any finite
subset \(S \subset \mathfrak{A} \) let \(X_S \) be the product of all the quadrics \(X_\varphi \) with \(\varphi \in S \). If \(S \subset T \) are two subsets of \(\mathfrak{A} \) we have the dominant projection \(X_T \to X_S \) and therefore the inclusion
of function fields \(F(X_S) \to F(X_T) \). Set \(F_\mathfrak{A} = \text{colim} F_S \) over all finite subsets \(S \subset \mathfrak{A} \). By construction, all quadratic forms \(\varphi \in \mathfrak{A} \) are isotropic over the field extension \(F_\mathfrak{A}/F \).

Theorem 38.4. Let \(F \) be a field and \(n \geq 1 \) an integer. Then there is a field extension
\(E \) of \(F \) satisfying

\[
\begin{align*}
(1) & \quad u(E) = 2n. \\
(2) & \quad I_q^3(E) = 0. \\
(3) & \quad E \text{ is } 2\text{-special.}
\end{align*}
\]

Proof. To every field \(L \), we associate three fields \(L^{(1)}, L^{(2)}, \) and \(L^{(3)} \) as follows:

Let \(\mathfrak{A} \) be the set (of isometry classes) of all non-degenerate quadratic forms over \(L \)
of dimension \(2n + 1 \). We set \(L^{(1)} = L_\mathfrak{A} \). Every non-degenerate quadratic form over \(L \) of
dimension \(2n + 1 \) is isotropic over \(L^{(1)} \).

Let \(\mathfrak{B} \) be the set (of isometry classes) of all quadratic 3-fold Pfister forms over \(L \). We
set \(L^{(2)} = L_\mathfrak{B} \). By construction, every quadratic 3-fold Pfister form over \(L \) is isotropic
over \(L^{(2)} \).

Finally let \(L^{(3)} \) be a 2-special closure of \(L \) (cf. Appendix §7).

Let \(D \) be a central division \(L \)-algebra of degree \(2^{n-1} \). By Corollaries 30.10, 30.12,
and Appendix (???, \(D \) remains a division algebra over \(L^{(1)}, L^{(2)}, \) and \(L^{(3)} \).

Let \(L \) be a field extension of \(F \) such that there is a central division algebra \(D \) over \(L \)
that is a tensor product of \(n - 1 \) quaternion algebras (Example ???). By Lemma 38.3 there is \(\varphi \in I_q^3(L) \) of dimension \(2n \) such that \(\text{clif}(\varphi) = [D] \) in \(\text{Br}(L) \).

We construct a tower of field extensions \(E_0 \subset E_1 \subset E_2 \subset \ldots \) by induction. We set
\(E_0 = L \). If \(E_i \) is defined we set \(E_{i+1} = (((E_i)^{(1)})^{(2)})^{(3)} \). Note that the field \(E_{i+1} \) is 2-special
and all non-degenerate quadratic forms of dimension \(2n + 1 \) and all 3-fold Pfister forms
over \(E_i \) are isotropic over \(E_{i+1} \). Moreover the algebra \(D \) remains a division algebra over
\(E_{i+1} \).

Now set \(E = \cup E_i \). Clearly \(E \) has the following properties:

\[
\begin{align*}
(i) & \quad \text{All } (2n + 1)\text{-dimensional Pfister forms over } E \text{ are isotropic. In particular, } u(E) \leq 2n. \\
(ii) & \quad \text{The field } E \text{ is } 2\text{-special.} \\
(iii) & \quad \text{All quadratic } 3\text{-fold Pfister forms over } E \text{ are isotropic. In particular } I_q^3(E) = 0. \\
(iv) & \quad \text{The algebra } D_E \text{ is a division algebra.}
\end{align*}
\]
As \(\text{clif}(\varphi_E) = [D_E] \), it follows from Corollary \([38.2]\) that \(\varphi_E \) is anisotropic. In particular, \(u(E) = 2n \) and \(I^2_q(E) \neq 0 \) as \(\varphi_E \) is a nonzero form in \(I^2_q(E) \).

\[\Box \]

39. Addendum: Linked Fields and the Hasse Number

Theorem 39.1. Let \(F \) be a field. Then the following conditions are equivalent:

1. Every pair of quadratic 2-fold Pfister forms over \(F \) are linked.
2. Every 6-dimensional form in \(I^2_q(F) \) is isotropic.
3. The tensor product of two quaternion algebras over \(F \) is not a division algebra.
4. Every two division quaternion algebras over \(F \) have isomorphic separable quadratic subfields.
5. Every two division quaternion algebras over \(F \) have isomorphic quadratic subfields.
6. The classes of quaternion algebras in \(\text{Br}(F) \) form a subgroup.

Proof. \((1) \Rightarrow (2) \): Let \(\psi \) be a 6-dimensional form in \(I^2_q(F) \). By Lemma \([38.1]\) we have \(\psi = \varphi_1 + \varphi_2 \), where \(\varphi_1 \) and \(\varphi_2 \) are general quadratic 2-fold Pfister forms. By assumption, \(\varphi_1 \) and \(\varphi_2 \) are linked. Therefore, the class of \(\psi \) in \(I^2_q(F) \) is represented by a form of dimension 4, hence \(\psi \) is isotropic.

\((2) \Rightarrow (4) \): Let \(Q_1 \) and \(Q_2 \) be division quaternion algebras over \(F \). Let \(\varphi_1 \) and \(\varphi_2 \) be the reduced norm quadratic forms of \(Q_1 \) and \(Q_2 \) respectively. By assumption, \(\varphi_1 \) and \(\varphi_2 \) are linked. In particular, \(\varphi_1 \) and \(\varphi_2 \) are split by a separable quadratic field extension \(L/F \). Hence \(L \) splits \(Q_1 \) and \(Q_2 \) and therefore \(L \) is isomorphic to subfields of \(Q_1 \) and \(Q_2 \).

\((3) \Leftrightarrow (4) \Leftrightarrow (5) \) is proven in Theorem \([97.19]\).

\((3) \Leftrightarrow (6) \) is obvious.

\((4) \Rightarrow (1) \): Let \(\varphi_1 \) and \(\varphi_2 \) be two anisotropic 2-fold Pfister forms over \(F \). Let \(Q_1 \) and \(Q_2 \) be two division quaternion algebras with the reduced norm forms \(\varphi_1 \) and \(\varphi_2 \) respectively. By assumption, \(Q_1 \) and \(Q_2 \) have quadratic subfields isomorphic to a separable quadratic extension \(L/F \). By Example \([9.8]\), the forms \(\varphi_1 \) and \(\varphi_2 \) are divisible by the norm form of \(L/F \) and hence are linked.

A field \(F \) is called linked if \(F \) satisfies the conditions of Theorem \([39.1]\).

For a formally real field \(F \), the \(u \)-invariant can be thought of as a weak Hasse Principle, i.e., every locally hyperbolic form of dimension \(> u(F) \) is isotropic. A variant of the \(u \)-invariant naturally arises. We call a quadratic form \(\varphi \) over \(F \) locally isotropic or totally indefinite if \(\varphi_{F_P} \) is isotropic at each real closure \(F_P \) of \(F \) (if any) i.e., \(\varphi \) is indefinite at each real closure of \(F \) (if any). The Hasse number of a field \(F \) is define to be

\[\tilde{u}(F) := \max\{\dim \varphi \mid \varphi \text{ is a locally isotropic anisotropic form over } F\} \]

or \(\infty \) if no such maximum exists. For fields that are not formally real this coincides with the \(\tilde{u} \)-invariant. If a field is formally real, finiteness of its \(\tilde{u} \)-invariant is a very strong condition and is a form of a strong Hasse Principle. For example, if \(F \) is a global field then \(\tilde{u}(F) = 4 \) by Meyer’s Theorem \([44]\) (a forerunner of the Hasse-Minkowski Principle \([54]\)) and if \(F \) is the function field of a real curve then \(\tilde{u}(F) = 2 \) (cf. Example \([39.11]\))
below), but if \(F/\mathbb{R} \) is formally real and finitely generated of transcendence degree \(> 1 \) then, although \(u(F) \) is finite, its Hasse number \(\tilde{u}(F) \) is infinite.

Exercise 39.2. Show if the Hasse number is finite then it cannot be 3, 5, or 7.

We establish another characterization of \(\tilde{u}(F) \). We say \(F \) satisfies Property \(H_n \) with \(n > 1 \) if there exist no anisotropic, locally isotropic forms of dimension \(n \). Thus if \(\tilde{u}(F) \) is finite

\[
\tilde{u}(F) + 1 = \min\{n \mid F \text{ satisfies } H_m \text{ for all } m \geq n\}.
\]

Remark 39.3. Every 6-dimensional form in \(I^2_q(F) \) is locally isotropic, since every element in \(I^2(F) \) has signature divisible by 4 at every ordering. Hence if \(\tilde{u}(F) \leq 4 \) then \(F \) is linked by Theorem 39.1.

Lemma 39.4. Let \(F \) be a linked field of characteristic not two. Then
1. Any pair of \(n \)-fold Pfister forms are linked for \(n \geq 2 \).
2. If \(\varphi \in P_n(F) \) then \(\varphi \simeq \langle \langle -w_1, x \rangle \rangle \) if \(n = 2 \) and \(\varphi = 2^{n-3}\langle \langle -w_1, -w_2, x \rangle \rangle \) for some \(w_1, w_2 \in D(3(1)) \) and \(x \in F^\times \) for \(n \geq 3 \).
3. For every \(n \geq 0 \) and \(\varphi \in I^n(F) \), there exists an integer \(m \) and \(\rho_i \in GP_i(F) \) with \(n \leq i \leq m \) satisfying \(\varphi = \sum_{i=n}^m \rho_i \) in \(W(F) \). Moreover, if \(\varphi \) is a torsion element then each \(\rho_i \) is torsion.
4. \(I^4(F) \) is torsion-free.

Proof. (1), (2): Any pair of \(n \)-fold Pfister forms are easily seen to be linked by induction so (1) is true. As any 2-fold Pfister form is linked to 4(1), statement (2) holds for \(n = 2 \). Let \(\rho = \langle \langle a, b, c \rangle \rangle \) be a 3-fold Pfister form then applying the \(n = 2 \) case gives \(\rho = \langle \langle w_1, x, y \rangle \rangle \) for some \(w_1, w_2 \in D(3(1)) \) and \(x, y, z \in F^\times \). This establishes the \(n = 3 \) case. Let \(\rho = \langle \langle a, b, c, d \rangle \rangle \) be a 4-fold Pfister form. By assumption, there exist \(x, y, z \in F^\times \) such that \(\langle \langle a, b \rangle \rangle \simeq \langle \langle x, y \rangle \rangle \) and \(\langle \langle c, d \rangle \rangle \simeq \langle \langle x, z \rangle \rangle \). Thus

\[
\rho = \langle \langle a, b, c, d \rangle \rangle \simeq \langle \langle x, y, x, z \rangle \rangle \simeq \langle \langle -1, y, x, z \rangle \rangle = 2\langle \langle y, x, z \rangle \rangle.
\]

Statement (2) follows.

(3): Let \(\psi \) and \(\tau \) be \(n \)-fold Pfister forms. As they are linked \(\psi - \tau = a\langle \langle b \rangle \rangle \cdot \mu \) in \(W(F) \) for some \((n-1)\)-fold Pfister form \(\mu \) and \(b \in F^\times \). Then

\[
x\psi + y\tau = x\psi - x\tau + x\tau + y\tau = ax\langle \langle b \rangle \rangle \cdot \mu + x\langle \langle -xy \rangle \rangle \cdot \tau
\]

The first part now follows by repeating this argument. If \(\varphi \) is torsion, then inductively, each \(\rho_i \) is torsion by the Hauptsatz 33.3, so the second statement follows.

(4): By (3), it suffices to show there are no anisotropic torsion \(n \)-Pfister forms with \(n > 3 \). By Proposition 35.3, it suffices to show if \(\rho \in P_4(F) \) satisfies \(2\rho = 0 \) in \(W(F) \) then \(\rho = 0 \) in \(W(F) \). By Lemma 35.2, we can write \(\rho \simeq \langle \langle a, b, c, w \rangle \rangle \) with \(w \in D(2(1)) \) and \(a, b, c \in F^\times \). Applying equation (39.5) with \(d = w \), we have \(\rho \simeq 2\langle \langle y, x, z \rangle \rangle \simeq 2\langle \langle y, c, w \rangle \rangle \) which is hyperbolic. The result follows.

Lemma 39.6. Let \(\text{char } F \neq 2 \) and \(n \geq 2 \). If \(F \) is linked and \(F \) satisfies \(H_n \) then it satisfies \(H_{n+1} \).
Let \(\varphi \) be an \((n + 1)\)-dimensional anisotropic quadratic form with \(n \geq 2 \). Replacing \(\varphi \) by \(x\varphi \) for an appropriate \(x \in F^\times \), we may assume that \(\varphi = \langle w, b, wb \rangle \bot \varphi_1 \) for some \(w, b \in F^\times \) and form \(\varphi_1 \) over \(F \) and by Lemma 39.4 that \(w \in D(3(1)) \). Let \(\varphi_2 = \langle w, b \rangle \bot \varphi_1 \). As \(\text{sgn}_P(b) = \text{sgn}_P(wb) \) for all \(P \in \mathfrak{X}(F) \), the form \(\varphi \) is locally isotropic if and only if \(\varphi_2 \) is. The result follows by induction. \(\square \)

Remark 39.7. If \(\text{char} F \neq 2 \) and \(n \geq 4 \) then \(F \) satisfies Property \(H_{n+1} \) if it satisfies Property \(H_n \). However, in general, \(H_3 \) does not imply \(H_4 \) (cf. [14]).

Exercise 39.8. Let \(F \) be a formally real pythagorean field. Then \(\tilde{u}(F) \) is finite if and only if \(I^2(F) = 2I(F) \). Moreover, if this is the case then \(\tilde{u}(F) = 0 \).

Theorem 39.9. Let \(\text{char} F \neq 2 \). Let \(F \) be a linked field. Then \(u(F) = \tilde{u}(F) \) and \(\tilde{u}(F) = 0, 1, 2, 4, \) or \(8 \).

Proof. We first show that \(\tilde{u}(F) = 0, 1, 2, 4, \) or \(8 \). We know that \(I^4(F) \) is torsion-free by Lemma 39.4. We first show that \(F \) satisfies \(H_3 \) hence \(\tilde{u}(F) \leq 8 \) by Lemma 39.6. Let \(\varphi \) be a 9-dimensional locally isotropic form over \(F \). Replacing \(\varphi \) by \(x\varphi \) for an appropriate \(x \in F^\times \), we can assume that \(\varphi = \langle 1 \rangle + \varphi_1 \) in \(W(F) \) with \(\varphi_1 \in I^2(F) \) using Proposition 4.13. By Lemma 39.4 we have a congruence

\[
\varphi \equiv \langle 1 \rangle + \rho_2 - \rho_3 \mod I^4(F)
\]

for some \(\rho_i \in P_1(F) \) with \(i = 2, 3 \). Write \(\rho_2 \simeq \langle \langle a, b \rangle \rangle \) and \(\rho_3 \simeq \langle \langle c, d, e \rangle \rangle \). As \(F \) is linked, we may assume that \(e = b \) and \(-d \in D_F(\rho'_2) \). Thus we have

\[
\varphi \equiv \langle 1 \rangle + \langle \langle a, b \rangle \rangle - \langle \langle c, d, b \rangle \rangle
\]

\[
\equiv \langle 1 \rangle - d(\langle \langle a, b \rangle \rangle - \langle \langle c, b \rangle \rangle - \langle \langle c, b \rangle \rangle)
\]

\[
\equiv -cd\langle \langle ac, b \rangle \rangle - \langle \langle c, b \rangle \rangle \mod I^4(F)
\]

Let \(\mu = \varphi \bot cd\langle \langle ac, b \rangle \rangle \bot \langle \langle c, b \rangle \rangle' \), a locally isotropic form over \(F \) lying in \(I^4(F) \). In particular, for all \(P \in \mathfrak{X}(F) \), we have \(16 | \text{sgn}_P \mu \). As the locally isotropic form \(\mu \) is sixteen dimensional, \(|\text{sgn}_P \mu| < 16 \) for all \(P \in \mathfrak{X}(F) \) so \(\text{sgn}_P \mu = 0 \) for all \(P \in \mathfrak{X}(F) \) and \(\mu \in I^4(F) = 0 \). Consequently, \(\varphi = -cd\langle \langle ac, b \rangle \rangle - \langle \langle c, b \rangle \rangle' \) in \(W(F) \) so \(\varphi \) is isotropic and \(\tilde{u}(F) \leq 8 \).

Suppose that \(\tilde{u}(F) < 8 \). Then there are no anisotropic torsion 3-fold Pfister forms over \(F \). It follows that \(I^3(F) \) is torsion-free by Lemma 39.4. We show \(\tilde{u}(F) \leq 4 \). To do this it suffices to show that \(F \) satisfies \(H_5 \) by Lemma 39.6. Let \(\varphi \) be a 5-dimensional, locally isotropic space over \(F \). Arguing as above but going mod \(I^3(F) \), we may assume that

\[
\varphi \equiv \langle 1 \rangle - \langle \langle a, b \rangle \rangle = -\langle \langle a, b \rangle \rangle' \mod I^3(F)
\]

Let \(\mu = \varphi \bot \langle \langle a, b \rangle \rangle' \), an 8-dimensional, locally isotropic form over \(F \) lying in \(I^3(F) \). As above, it follows that \(\mu \) is locally hyperbolic hence \(\mu \in I^3(F) = 0 \). Thus \(\varphi = -\langle \langle a, b \rangle \rangle' \) in \(W(F) \) so isotropic and \(\tilde{u}(F) < 4 \). In a similar way, we see that \(\tilde{u}(F) = 0, 1, 2, 4 \) are the only other possibilities. This shows that \(\tilde{u}(F) = 0, 1, 2, 4, 8 \). The argument above and Lemma 39.4 show that \(u(F) = \tilde{u}(F) \).

Note the proof shows if \(F \) is linked and \(I^n(F) \) is torsion-free then \(\tilde{u}(F) \leq 2^{n-1} \).
Example 39.11. (1) If $F(\sqrt{-1})$ is a C_1 field then $I^2(F(\sqrt{-1})) = 0$. It follows that $I^2(F) = 2I(F)$ and is torsion free by Corollary 35.14 and Proposition 35.1 (or Corollary 35.27). In particular, F is linked and $\tilde{u}(F) \leq 2$.

(2). If F is a local or global field then $\tilde{u}(F) = 4$.

(3). Let F_0 be a local field and $F = F_0((t))$ be a Laurent series field. As $u(F_0) = 4$, and F is not formally real, we have $\tilde{u}(F) = u(F) = 8$. This field F is linked by the following exercise:

Exercise 39.12. Let $F = F_0((t))$ with char $F \neq 2$. Show there exist no 4-dimensional anisotropic spaces of discriminant different from $F_0 \times^2$ over F_0 if and only if F is linked.

There exist linked formally real fields with Hasse number 8, but the construction of such fields is more delicate (cf. [15]).

Remark 39.13. Let F be a formally real field. Then it can be shown that $\tilde{u}(F)$ is finite if and only if $u(F)$ if finite and $I^2(F_{py}) = 2I^n(F_{py})$ (cf. [15]). If both of these invariants are finite, they may be different (cf. [50].)
CHAPTER VII

Applications of the Milnor Conjecture

40. Exact Sequences for Quadratic Extensions

In this section, we derive the first consequences of the validity of the Milnor Conjecture for fields of characteristic different from two. In particular, we show that the infinite complexes of the powers of I- (cf. 34.20) and \overline{I}- (cf. 34.21) arising from a quadratic extension of a field of characteristic different from two are in fact exact. For fields of characteristic two, we also show this to be true for separable quadratic extensions as well as proving the exactness of the corresponding complexes (34.27) and (34.28) for purely inseparable quadratic extensions. In addition, we show that for all fields, the ideals $I^n_q(F)$ coincide with the ideals $J^n(F)$ based on the splitting patterns of quadratic forms.

We need the following lemmas.

Lemma 40.1. Let K/F be a quadratic field extension and let $s : K \to F$ be a nonzero F-linear functional such that $s(1) = 0$. Then for every $n \geq 0$, the diagram

$$
\begin{array}{ccc}
k_n(K) & \xrightarrow{c_{K/F}} & k_n(F) \\
\downarrow f_n & & \downarrow f_n \\
\overline{I}_n(K) & \xrightarrow{s^*} & \overline{I}_n(F)
\end{array}
$$

commutes where the vertical homomorphisms are defined in (5.1).

Proof. All the maps in the diagram are $K^*_a(F)$-linear, in view of Lemma 34.16, it is sufficient to check commutativity only when $n = 1$. The statement follows now from Corollary 34.19. □

Lemma 40.2. Let F be a field of characteristic 2 and let K/F be a quadratic field extension. Let $s : K \to F$ be a nonzero F-linear functional satisfying $s(1) = 0$. Then the diagram

$$
\begin{array}{ccc}
\overline{T}_q^n(K) & \xrightarrow{s^*} & \overline{T}_q^n(F) \\
\downarrow \overline{e}_n & & \downarrow \overline{e}_n \\
H^n(K) & \xrightarrow{c_{K/F}} & H^n(F)
\end{array}
$$

is commutative.

Proof. It follows from Lemmas 34.14 and 34.16 that it is sufficient to prove the statement in the case $n = 1$. This follows from Lemma 34.14 since the corestriction map
Let \(I \) be a quadratic extension with \(x^2 = a \in F^\times \). Let \(s : K \to F \) be an \(F \)-linear functional such that \(s(1) = 0 \). Then the following infinite sequences

\[
\cdots \to I^{n-1}(F) \xrightarrow{\cdot(a)} I^n(F) \xrightarrow{r_{K/F}} I^n(K) \xrightarrow{\cdot(a)} I^{n+1}(F) \to \cdots.
\]

\[
\cdots \to \mathcal{T}^{n-1}(F) \xrightarrow{\cdot(a)} \mathcal{T}^n(F) \xrightarrow{r_{K/F}} \mathcal{T}^n(K) \xrightarrow{\cdot(a)} \mathcal{T}^{n+1}(F) \to \cdots.
\]

are exact.

Proof. Consider the diagram

\[
\begin{array}{ccccccccc}
k_{n-1}(F) & \xrightarrow{\cdot(a)} & k_n(F) & \xrightarrow{r_{K/F}} & k_n(K) & \xrightarrow{c_{K/F}} & k_n(F) & \xrightarrow{\cdot(a)} & k_{n+1}(F) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\mathcal{T}^{n-1}(F) & \xrightarrow{\cdot(a)} & \mathcal{T}^n(F) & \xrightarrow{r_{K/F}} & \mathcal{T}^n(K) & \xrightarrow{\cdot(a)} & \mathcal{T}^{n+1}(F)
\end{array}
\]

where the vertical homomorphisms are defined in (5.1). It follows from Lemma 4.1 that the diagram is commutative. By Fact 5.15, the vertical maps in the diagram are isomorphisms. The top sequence in the diagram is exact by Proposition 100.10. Therefore, the bottom sequence is also exact.

To prove exactness of the first sequence in the statement consider the commutative diagram

\[
\begin{array}{ccccccccc}
I^{n+1}(F) & \to & I^{n+1}(K) & \to & I^{n+1}(F) & \to & I^{n+2}(F) & \to & I^{n+2}(K) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
I^{n-1}(F) & \to & I^n(F) & \to & I^n(K) & \to & I^n(F) & \to & I^{n+1}(F) & \to & I^{n+1}(K) \\
\downarrow & & \downarrow \\
\mathcal{T}^{n-1}(F) & \to & \mathcal{T}^n(F) & \to & \mathcal{T}^n(K) & \to & \mathcal{T}^n(F) & \to & \mathcal{T}^{n+1}(F)
\end{array}
\]

with the horizontal sequences considered above and natural vertical maps. By the first part of the proof the bottom sequence is exact. Therefore exactness of the middle sequence implies exactness of the top one. Thus the statement follows by induction on \(n \) (with the start of the induction given by Corollary 34.12).

Remark 40.4. Let char \(F \neq 2 \). Then the second exact sequence in Theorem 40.3 can be rewritten as

\[
\begin{array}{ccc}
GW(K) & \xrightarrow{r_{K/F}} & GW(F) \\
\downarrow & & \downarrow \\
GW(F) & \xrightarrow{s_*} & GW(F)
\end{array}
\]
is exact (cf. Corollary [34.12]).

Now consider the case of fields of characteristic 2. We consider separately the cases of separable and purely inseparable quadratic field extensions.

Theorem 40.5. Let F be a field of characteristic 2 and let K/F be a separable quadratic field extension. Let $s : K \to F$ be a nonzero F-linear functional such that $s(1) = 0$. Then the following sequences

$$0 \to I^n(F) \xrightarrow{r_{K/F}} I^n(K) \xrightarrow{s} I^n(F) \xrightarrow{N_{K/F}} I^{n+1}_q(F) \xrightarrow{r_{K/F}} I^{n+1}(K) \xrightarrow{s} I^{n+1}_q(F) \to 0,$$

$$0 \to T^n(F) \xrightarrow{r_{K/F}} T^n(K) \xrightarrow{s} T^n(F) \xrightarrow{N_{K/F}} T^{n+1}_q(F) \xrightarrow{r_{K/F}} T^{n+1}(K) \xrightarrow{s} T^{n+1}_q(F) \to 0$$

are exact.

Proof. Consider the diagram

$$
\begin{array}{cccccccc}
0 & \to & k_n(F) & \xrightarrow{r_{K/F}} & k_n(K) & \xrightarrow{c_{K/F}} & k_n(F) & \xrightarrow{[K]} H^{n+1}(F) & \xrightarrow{r_{K/F}} H^{n+1}(K) & \xrightarrow{c_{K/F}} H^{n+1}(F) & \to 0 \\
& \downarrow & \\
0 & \to & T^n(F) & \xrightarrow{r_{K/F}} & T^n(K) & \xrightarrow{s} T^n(F) & \xrightarrow{N_{K/F}} T^{n+1}_q(F) & \xrightarrow{r_{K/F}} T^{n+1}(K) & \xrightarrow{s} T^{n+1}_q(F) & \to 0
\end{array}
$$

where the vertical homomorphisms are defined in (5.1) and Fact [16.2] and the middle map in the top row is the multiplication by the class $[K] \in H^1(F)$. By Proposition [100.12] the top sequence is exact. By Facts [5.15] and [16.2] the vertical maps are isomorphisms. Therefore the bottom sequence is exact.

Exactness of the other sequence follows by induction on n from the first part of the proof and commutativity of the diagram

$$
\begin{array}{cccccccc}
0 & \to & I^{n+1}(F) & \to & I^{n+1}(K) & \to & I^{n+1}(F) & \to I_q^{n+2}(F) & \to I_q^{n+2}(K) & \to I_q^{n+2}(F) & \to 0 \\
& \downarrow & \\
0 & \to & I^n(F) & \to & I^n(K) & \to & I^n(F) & \to I_q^{n+1}(F) & \to I_q^{n+1}(K) & \to I_q^{n+1}(F) & \to 0 \\
& \downarrow & \\
0 & \to & T^n(F) & \to & T^n(K) & \to & T^n(F) & \to T_q^{n+1}(F) & \to T_q^{n+1}(K) & \to T_q^{n+1}(F) & \to 0
\end{array}
$$

The base of the induction follows from Corollary [34.15].

Theorem 40.6. Let F be a field of characteristic 2 and let K/F be a purely inseparable quadratic field extension. Let $s : K \to F$ be an F-linear functional such that $s(1) = 0$. Then the following sequences

$$\cdots \xrightarrow{s} I^n(F) \xrightarrow{r_{K/F}} I^n(K) \xrightarrow{s} I^n(F) \xrightarrow{r_{K/F}} I^n(K) \xrightarrow{s} \cdots,$$

$$\cdots \xrightarrow{s} T^n(F) \xrightarrow{r_{K/F}} T^n(K) \xrightarrow{s} T^n(F) \xrightarrow{r_{K/F}} T^n(K) \xrightarrow{s} \cdots,$$

are exact.
Proof. Consider the diagram
\[
\begin{array}{cccccc}
 k_n(F) & \overset{r_{K/F}}{\longrightarrow} & k_n(K) & \overset{c_{K/F}}{\longrightarrow} & k_n(F) & \overset{r_{K/F}}{\longrightarrow} & k_n(K) \\
 \downarrow & & \downarrow & & \downarrow & & \downarrow \\
 \mathcal{T}_n(F) & \overset{r_{K/F}}{\longrightarrow} & \mathcal{T}_n(K) & \overset{s^*}{\longrightarrow} & \mathcal{T}_n(F) & \overset{r_{K/F}}{\longrightarrow} & \mathcal{T}_n(K)
\end{array}
\]
where the vertical homomorphisms are defined in (5.1). The diagram is commutative by Lemma 40.1. By Fact 5.15 the vertical maps in the diagram are isomorphisms. The top sequence in the diagram is exact by Proposition 99.12. Therefore the bottom sequence is also exact. The proof of exactness of the second sequence in the statement of the theorem is similar to the one in Theorems 40.3 and 40.5. □

Fact 40.7. Let $\text{char } F \neq 2$ and let ρ be a quadratic n-fold Pfister form over F. Then the sequence
\[
\prod H^*(L) \xrightarrow{\Sigma_{\mathcal{C}L/F}} H^*(F) \xrightarrow{\cup e_n(\rho)} H^{*+n}(F) \xrightarrow{r_{F(\rho)/F}} H^{*+n}(F(\rho)),
\]
where the direct sum is taken over all quadratic field extensions L/F such that ρ_L is isotropic, is exact.

Fact 40.8. Let $\text{char } F = 2$ and let ρ be a quadratic n-fold Pfister form over F. Then the kernel of $r_{F(\rho)/F} : H^n(F) \to H^n(F(\rho))$ coincides with $\{0, e_n(\rho)\}$.

Corollary 40.9. Let ρ be a quadratic n-fold Pfister form over an arbitrary field F. Then the kernel of the natural homomorphism $\mathcal{T}^n_q(F) \to \mathcal{T}^n_q(F(\rho))$ coincides with $\{0, \bar{\rho}\}$.

Proof. Under the isomorphism $\mathcal{T}^n_q(F) \simeq H^n(F)$ (cf. Fact 16.2) the homomorphism in the statement is identified with $H^n(F) \to H^n(F(\rho))$. The statement now follows from Fact 40.7 if $\text{char } F \neq 2$ and Fact 40.8 if $\text{char } F = 2$. □

The following statement generalizes Proposition 25.13.

Theorem 40.10. If F is a field then $J_n(F) = I^n_q(F)$ for every $n \geq 1$.

Proof. By Corollary 25.12 we have an inclusion $I^n_q(F) \subset J_n(F)$. Let $\varphi \in J_n(F)$. We show by induction on n that $\varphi \in I^n_q(F)$. As $\varphi \in J_{n-1}(F)$, by the induction hypothesis, we have $\varphi \in I^{n-1}_q(F)$. Let φ be a sum of m general $(n-1)$-fold Pfister forms in $I^{n-1}_q(F)$ and let ρ be one of them. Let $K = F(\rho)$. Since φ_K is a sum of $m-1$ general $(n-1)$-Pfister forms in $I^{n-1}_q(K)$, by induction on m we have $\varphi_K \in I^n_q(K)$. By Corollary 40.9, we have either $\varphi \in I^n_q(F)$ or $\varphi \equiv \rho$ modulo $I^n_q(F)$. But the latter case does not occur as $\varphi \in J_n(F)$ and $\rho \notin J_n(F)$.

41. Annihilators of Pfister Forms

The main purpose of this section is to establish the generalization of Corollary 6.23 and Theorem 9.13 on the annihilators of bilinear and quadratic Pfister forms and show these annihilators respect the grading induced by the fundamental ideal. We even show if α is a bilinear or quadratic Pfister form then the annihilator $\text{ann}_{W(F)}(\alpha) \cap I^n(F)$ is not only generated by bilinear Pfister forms annihilated by α but is in fact generated
by bilinear n-fold Pfister forms of the type $b \otimes c$ with $b \in \text{ann}_{W(F)}(\alpha)$ a 1-fold bilinear Pfister form and c a bilinear $(n - 1)$-fold Pfister form. In particular, Pfister forms of the type $\langle w, a_2, \ldots, a_n \rangle$ with $w \in D(\infty(1))$ and $a_i \in F^\times$ generate $I_t^n(F)$ thus solving the problems raised at the end of \S33.

Let F be a field. The smallest integer n such that $I^{n+1}(F) = 2I^n(F)$ and $I^{n+1}(F)$ is torsion free is called the stable range of F and is denoted by $\text{st}(F)$. We say that F has finite stable range if such an n exists and write $\text{st}(F) = \infty$ if such an n does not exist. By Corollary 35.29, a field F has stable range if and only if $I^{n+1}(F) = 2I^n(F)$ for some integer n. If F is not formally real then $\text{st}(F)$ is the smallest integer n such that $I^{n+1}(F) = 0$. If F is formally real then it follows from Corollary 35.27 that $\text{st}(F) = \text{st}(F(\sqrt{-1}))$, i.e., $\text{st}(F)$ is the smallest integer n such that $I^{n+1}(F(\sqrt{-1})) = 0$.

Lemma 41.1. Suppose that F has finite transcendence degree n over its prime subfield. Then $\text{st}(F) \leq n + 2$ if $\text{char} \ F = 0$ and $\text{st}(F) \leq n + 1$ if $\text{char} \ F > 0$.

Proof. If the characteristic of F is positive then F is a C_{n+1}-field (cf. Appendix 96.7) as finite fields are C_1 fields by the Chevalley-Warning Theorem (cf. 55, I.2, Theorem 3) and therefore every $(n+2)$-fold Pfister form is isotropic, so $I^{n+2}(F) = 0$, i.e., $\text{st}(F) \leq n + 1$. If the characteristic of F is zero then the cohomological 2-dimension of $F(\sqrt{-1})$ is at most $n + 2$ by \S56, II.4.1, Proposition 10 and II.4.2, Proposition 11. By Fact 16.2 and the Hauptsatz 23.8, we have $I^{n+3}(F(\sqrt{-1})) = 0$. Thus $\text{st}(F) \leq n + 2$. \hfill \square

As many problems in a field F reduce to finitely many elements over its prime field, we can often reduce to a problem over a given field to another over a field having finite stable range. We then can try to solve the problem when the stable range is finite. We shall use this idea repeatedly below.

Exercise 41.2. Let K/F be a finite simple extension of degree r. If $I^n(F) = 0$ then $I^{n+r}(K) = 0$. In particular, if a field has finite stable range then any finite extension also has finite stable range.

Next we study graded annihilators.

Let b be a bilinear n-fold Pfister form. For any $m \geq 0$ set

\[
\text{ann}_m(b) = \{ a \in I^m(F) \mid a \cdot b = 0 \in W(F) \},
\]

\[
\overline{\text{ann}}_m(b) = \{ \bar{a} \in T^m(F) \mid \bar{a} \cdot \bar{b} = 0 \in GW(F) \}.
\]

Similarly, for a quadratic n-fold Pfister form ρ and any $m \geq 0$ set

\[
\text{ann}_m(\rho) = \{ a \in I^m(F) \mid a \cdot \rho = 0 \in I_q(F) \},
\]

\[
\overline{\text{ann}}_m(\rho) = \{ \bar{a} \in T^m(F) \mid \bar{a} \cdot \bar{\rho} = 0 \in T_q(F) \}.
\]

It follows from Corollary 6.23 and Theorem 9.13 that $\text{ann}_1(b)$ and $\text{ann}_1(\rho)$ are generated by the binary forms in them. Thus the following theorem determines completely the graded annihilators.
Theorem 41.3. Let \mathfrak{b} and ρ be bilinear and quadratic n-fold Pfister forms respectively. Then for any $m \geq 1$, we have
\[
\text{ann}_m(\mathfrak{b}) = \mathfrak{I}^{m-1}(F) \cdot \text{ann}_1(\mathfrak{b}), \quad \text{ann}_m(\rho) = \mathfrak{I}^{m-1}(F) \cdot \text{ann}_1(\rho), \quad \text{ann}_m(\rho) = \mathfrak{I}^{m-1}(F) \cdot \text{ann}_1(\rho).
\]

Proof. The case $\text{char } F = 2$ is proven in [?]. Aravire, Baeza, Th.1.1 and 1.2. We assume that $\text{char } F \neq 2$. It is sufficient to consider the case of the bilinear form \mathfrak{b}.

It follows from Fact 40.7 that the sequence
\[
\prod \mathfrak{I}^m(L) \xrightarrow{\sum_s \mathfrak{s}} \mathfrak{I}^m(F) \xrightarrow{\mathfrak{b}} \mathfrak{I}^{m+n}(F),
\]
is exact where the direct sum is taken over all quadratic field extensions L/F such that \mathfrak{b}_L is isotropic. By Lemma 34.16, we have $\mathfrak{I}^m(L) = \mathfrak{I}^{m-1}(F)I(L)$ hence the image of $s_* : \mathfrak{I}^m(L) \to \mathfrak{I}^m(F)$ is contained in $\mathfrak{I}^{m-1}(F) \cdot \text{ann}_1(\mathfrak{b})$. Therefore, the kernel of the second map in the sequence coincides with the image of $\mathfrak{I}^{m-1}(F) \cdot \text{ann}_1(\mathfrak{b})$ in $\mathfrak{I}^m(F)$. This proves $\text{ann}_m(\mathfrak{b}) = \mathfrak{I}^{m-1}(F) \cdot \text{ann}_1(\mathfrak{b})$.

Let $c \in \text{ann}_m(\mathfrak{b})$. We need to show that $c \in \mathfrak{I}^{m-1}(F) \cdot \text{ann}_1(\mathfrak{b})$. We may assume that F is finitely generated over its prime field and hence F has finite stable range by Lemma 41.1. Let k be an integer such that $k + m > \text{st}(F)$. Repeatedly applying exactness of the sequence above, we see that c is congruent to an element $a \in \mathfrak{I}^{k+m}(F)$ modulo $\mathfrak{I}^{m-1}(F) \cdot \text{ann}_1(\mathfrak{b})$. Replacing c by a we may assume that $m > \text{st}(F)$.

We claim that it suffices to prove the result for c an m-fold Pfister form. By Theorem 33.14 for any $c \in \mathfrak{I}^m(F)$, there is an integer n such that
\[
2^n \text{ sgn } c = \sum_{i=1}^r k_i \cdot \text{ sgn } c_i,
\]
with $k_i \in \mathbb{Z}$ and $(n+m)$-fold Pfister forms c_i with pairwise disjoint supports. As $m > \text{st}(F)$, it follows from Proposition 35.22 that $c_i \simeq 2^n \mathfrak{d}_i$ for some m-fold Pfister forms \mathfrak{d}_i. Since $\mathfrak{I}^m(F)$ is torsion free, we have
\[
c = \sum_{i=1}^r k_i \cdot \mathfrak{d}_i
\]
in $\mathfrak{I}^m(F)$ and the supports of the \mathfrak{d}_i’s are pairwise disjoint. In particular, if $\mathfrak{b} \otimes c$ is hyperbolic then $\text{supp}(\mathfrak{b}) \cap \text{supp}(c) = \emptyset$, so $\text{supp}(\mathfrak{b}) \cap \text{supp}(\mathfrak{d}_i) = \emptyset$ for every i. As $\mathfrak{I}^m(F)$ is torsion free, this would mean that $\mathfrak{b} \otimes c_i$ is hyperbolic for every i and establish the Claim. Therefore, we may assume that c is a Pfister form.

The result now follows from Lemma 35.18(1). \qed

We turn to the generators for $\mathfrak{I}^n(F)$, the torsion in $\mathfrak{I}^n(F)$.

Theorem 41.4. For any field F we have $\mathfrak{I}^n(F) = \mathfrak{I}^{n-1}(F)I_t(F)$.

Proof. Let $c \in \mathfrak{I}^n(F)$. Then $2^n c = 0$ for some m. Applying Theorem 41.3 to the Pfister form $\mathfrak{b} = 2^n(1)$, we have
\[
c \in \text{ann}_n(\mathfrak{b}) = \mathfrak{I}^{n-1}(F) \cdot \text{ann}_1(\mathfrak{b}) \subset \mathfrak{I}^{n-1}(F)I_t(F). \quad \square
Recall that by Proposition 31.30, the group $I_t(F)$ is generated by binary torsion forms. Hence Theorem 41.4 yields

Corollary 41.5. A field F satisfies property A_n if and only if $I^n(F)$ is torsion-free.

Remark 41.6. By Theorem 41.4, every torsion bilinear n-fold Pfister form \mathfrak{b} can be written as a \mathbb{Z}-linear combination of the (torsion) forms $\langle a_1, a_2, \ldots, a_n \rangle$ with $a_i \in D(\infty \langle 1 \rangle)$. Note that \mathfrak{b} itself may not be isometric to a form like this (cf. Example 32.4).

Theorem 41.7. Let \mathfrak{b} and ρ be bilinear and quadratic n-fold Pfister forms respectively. Then for any $m \geq 0$, we have

\[
W(F)\mathfrak{b} \cap I^{n+m}(F) = I^m(F)\mathfrak{b},
\]

\[
W(F)\rho \cap I^{n+m}(F) = I^m(F)\rho.
\]

Proof. We prove the first equality (the second being similar). Let $\mathfrak{c} \in W(F)\mathfrak{b} \cap I^{n+m}(F)$. We show by induction on m that $\mathfrak{c} \in I^m(F)\mathfrak{b}$. Suppose that $\mathfrak{c} = a \cdot \mathfrak{b}$ in $W(F)$ for some $a \in I^{m-1}(F)$, i.e., $\bar{a} \in \overline{\text{ann}}_{m-1}(\mathfrak{b})$. By Theorem 41.3, we have $\bar{a} = \bar{c} \cdot \bar{\mathfrak{b}}$ for some $\bar{c} \in I^{m-2}(F)$ and $\bar{\mathfrak{b}} \in W(F)$ satisfying $\bar{c} \in \overline{\text{ann}}_1(\bar{\mathfrak{b}})$. Let f be a binary bilinear form congruent to \mathfrak{c} modulo $I^2(F)$. As $\bar{f} \mathfrak{b} = \bar{e} \bar{\mathfrak{b}} = 0 \in I^{n+1}(F)$, the general $(n + 1)$-fold Pfister form $f \otimes \mathfrak{b}$ belongs to $I^{n+2}(F)$. By the Hauptsatz 23.8, we have $f \cdot \mathfrak{b} = 0$ in $W(F)$. Since $a \equiv df$ modulo $I^n(F)$ it follows that $\mathfrak{c} = ab \in I^m(F)\mathfrak{b}$. \hfill \Box

Exercise 41.8. Let \mathfrak{b} and \mathfrak{c} be bilinear k-fold and n-fold Pfister forms respectively over a field F of characteristic not 2. Prove that for any $m \geq 1$ the group

\[
W(F)\mathfrak{c} \cap \text{ann}_{W(F)}(\mathfrak{b}) \cap I^{n+m}(F)
\]

is generated by $(m + n)$-fold Pfister forms \mathfrak{d} in $\text{ann}_{W(F)}(\mathfrak{b})$ that are divisible by \mathfrak{c}.

The theorem allows us to answer the problems raised at the end of §33.

Corollary 41.9. Let \mathfrak{b} be a form over F. If $2^m \mathfrak{b} \in I^{n+m}(F)$ then $\mathfrak{b} \in I^m(F) + W_t(F)$. In particular,

\[
\text{sgn}(\mathfrak{b}) \in C(\mathfrak{X}(F), 2^n\mathbb{Z}) \quad \text{if and only if} \quad \mathfrak{b} \in I^m(F) + W_t(F).
\]

Proof. Suppose that $\text{sgn} \mathfrak{b} \in C(\mathfrak{X}(F), 2^n\mathbb{Z})$. By Theorem 33.14, there exists a form $a \in I^{n+m}(F)$ such that $2^n \text{sgn} \mathfrak{b} = \text{sgn} a$ for some n. In particular, $2^n \mathfrak{b} - a \in W_t(F)$. Therefore $2^{k+n} \mathfrak{b} = 2^k a$ for some k. By Theorem 41.7 applied to the form $2^{k+n} \langle 1 \rangle$, we may write $2^k a = 2^{k+n} c$ for some $c \in I^n(F)$. Then $b - c$ lies in $W_t(F)$ as needed. \hfill \Box

Corollary 41.10. Let F be a formally real pythagorean field. Let \mathfrak{b} be a form over F. If $2^m \mathfrak{b} \in I^{n+m}(F)$ then $\mathfrak{b} \in I^m(F)$. In particular, $\text{sgn}(I^m(F)) = C(\mathfrak{X}(F), 2^n\mathbb{Z})$.

If F is a formally real let $GC(\mathfrak{X}(F), \mathbb{Z})$ be the graded ring

\[
GC(\mathfrak{X}(F), \mathbb{Z}) := \coprod 2^n C(\mathfrak{X}(F), \mathbb{Z})/2^{n+1} C(\mathfrak{X}(F), \mathbb{Z}) = \coprod C(\mathfrak{X}(F), 2^n\mathbb{Z}/2^{n+1}\mathbb{Z})
\]

and $GW_t(F)$ the graded ideal in $GW(F)$ induced by $I_t(F)$. Then Corollary 41.9 implies that the signature induces an exact sequence

\[
0 \rightarrow GW_t(F) \rightarrow GW(F) \rightarrow GC(\mathfrak{X}(F), \mathbb{Z})
\]
and Corollary \[41.10\] says if \(F \) is a formally real pythagorean field then the signature induces an isomorphism \(GW(F) \to GC(\mathcal{X}(F), \mathbb{Z}) \).

We interpret this result in terms of the reduced Witt ring and prove the result mentioned at the end of \[34\].

Theorem 41.11. Let \(K \) be a quadratic extension and let \(s : K \to F \) be a nonzero \(F \)-linear functional such that \(s(1) = 0 \). Then the sequence

\[
0 \to I^n_{\text{red}}(K/F) \to I^n_{\text{red}}(F) \xrightarrow{r_{K/F}} I^n_{\text{red}}(K) \xrightarrow{s} I^n_{\text{red}}(F)
\]

is exact.

Proof. We need only to show exactness at \(I^n_{\text{red}}(K) \). Let \(c \in I^n_{\text{red}}(K) \) satisfy \(s_*(c) \) is trivial in \(I^n_{\text{red}}(F) \), i.e., the form \(s_*(c) \) is torsion. By Theorem \[41.4\] we have \(s_*(c) = \sum a_i b_i \) with \(a_i \in I^{n-1}(F) \) and \(b_i \in I_1(F) \). It follows by Corollary \[34.32\] that \(b_i = s_*(\mathfrak{o}_i) \) for some torsion forms \(\mathfrak{o}_i \in I(K) \). Therefore, the form \(c := c - \sum (a_i)_K \mathfrak{o}_i \) belongs to the kernel of \(s_* : I^n(K) \to I^n(F) \). It follows from Theorems \[40.3\] and \[40.5\] that \(c = r_{K/F}(f) \) for some \(f \in I^n(F) \). Therefore \(c \equiv r_{K/F}(f) \) modulo torsion. \(\square \)

42. Presentation of \(I^n(F) \)

In this section, using the validity of the Milnor conjecture, we show that the presentation established for \(I^2(F) \) in Theorem \[4.22\] generalizes to a presentation for \(I^n(F) \).

Let \(n \geq 2 \) and let \(L_n(F) \) be the abelian group generated by all the isometry classes \([b]\) of bilinear \(n \)-fold Pfister forms \(b \) subject to the generating relations:

1. \([\langle 1, 1, \ldots, 1 \rangle] = 0\).
2. \([\langle ab, c \rangle \otimes \mathfrak{o}] + [\langle a, b \rangle \otimes \mathfrak{o}] = [\langle a, bc \rangle \otimes \mathfrak{o}] + [\langle b, c \rangle \otimes \mathfrak{o}]\) for all \(a, b, c \in F^\times \) and bilinear \((n-2)\)-fold Pfister forms \(\mathfrak{o} \).

Note that the group \(L_2(F) \) was defined earlier in Section \[4.1\].

There is a natural surjective group homomorphism \(g_n : L_n(F) \to I^n(F) \) taking the class \([b]\) of a bilinear \(n \)-fold Pfister form \(b \) to \(b \in I^n(F) \). The map \(g_2 \) is an isomorphism by Theorem \[4.22\].

As in the proof of Lemma \[4.18\], applying both relations repeatedly, we find that \([\langle a_1, a_2, \ldots, a_n \rangle] = 0 \) if \(a_1 = 1 \). It follows that for any bilinear \(m \)-fold Pfister form \(b \), the assignment \(a \mapsto a \otimes b \) gives rise to a well defined homomorphism

\[
L_n(F) \to L_{n+m}(F)
\]

taking \([a]\) to \([a \otimes b]\).

Lemma 42.1. Let \(b \) be a metabolic bilinear \(n \)-fold Pfister form. Then \([b]\) is in \(L_n(F) \).

Proof. We prove the statement by induction on \(n \). Since \(g_2 \) is an isomorphism, the statement is true if \(n = 2 \). In the general case, we write \(b = \langle a \rangle \otimes c \) for some \(a \in F^\times \) and a bilinear \((n-1)\)-fold Pfister form \(c \). We may assume by induction that \(c \) is anisotropic. It follows from Corollary \[6.14\] that \(c \simeq \langle b \rangle \otimes \mathfrak{o} \) for some \(b \in F^\times \) and bilinear \((n-2)\)-fold Pfister form \(\mathfrak{o} \) such that \(\langle a, b \rangle \) is metabolic. By the case \(n = 2 \), we have \([\langle a, b \rangle] = 0 \) in \(L_2(F) \), hence \([b] = [\langle a, b \rangle] \otimes \mathfrak{o} = 0 \) in \(L_n(F) \). \(\square \)
For each n, let $\alpha_n : I_{n+1}(F) \to I_n(F)$ be the homomorphism map given by

$$[[\langle a, b \rangle] \otimes c] \mapsto [[\langle a \rangle] \otimes c] + [[\langle b \rangle] \otimes c] - [[\langle ab \rangle] \otimes c].$$

We show that this map is well defined. Let $\langle a, b \rangle \otimes c$ and $\langle a', b' \rangle \otimes c'$ be isometric bilinear n-fold Pfister forms. We need to show that

$$[[\langle a, b \rangle] \otimes c] + [[\langle b \rangle] \otimes c] - [[\langle ab \rangle] \otimes c] = [[\langle a' \rangle] \otimes c'] + [[\langle b' \rangle] \otimes c'] - [[\langle a'b' \rangle] \otimes c']$$

in $I_n(F)$. By Theorem 6.10, the forms $\langle a, b \rangle \otimes c$ and $\langle a', b' \rangle \otimes c'$ are chain p-equivalent. Thus we may assume that one of the following cases hold:

1. $a = a'$, $b = b'$ and $c \simeq c'$.
2. $\langle a, b \rangle \simeq \langle a', b' \rangle$ and $c = c'$.
3. $a = a'$, $c = \langle c' \rangle \otimes \mathfrak{d}$, and $c' = \langle c' \rangle \otimes \mathfrak{d}$ for some $c \in F^\times$ and bilinear $(n-2)$-fold Pfister form \mathfrak{d} and $\langle b, c \rangle \simeq \langle b', c' \rangle$.

It follows that it is sufficient to prove the statement in the case $n = 2$. The equality (42.2) holds if we compose the morphism α_2 with the homomorphism $g_2 : I_2(F) \to I^2(F)$. But g_2 is an isomorphism, hence α_n is well defined.

The homomorphism α_n fits in the commutative diagram

$$\begin{array}{ccc}
I_{n+1}(F) & \xrightarrow{\alpha_n} & I_n(F) \\
g_{n+1} & \downarrow & \downarrow g_n \\
I^{n+1}(F) & \longrightarrow & I^n(F)
\end{array}$$

with the bottom map the inclusion.

Lemma 42.3. The natural homomorphism

$$\gamma : \text{coker}(\alpha_n) \to I^n(F)$$

is an isomorphism.

Proof. Consider the map

$$\tau : (F^\times)^n \to \text{coker}(\alpha_n) \text{ given by } (a_1, a_2, \ldots, a_n) \mapsto [[\langle a_1, a_2, \ldots, a_n \rangle]] + \text{Im}(\alpha_n).$$

Clearly τ is symmetric with respect to permutations of the a_i's.

By definition of α_n we have

$$[[\langle a \rangle] \otimes c] + [[\langle b \rangle] \otimes c] \equiv [[\langle ab \rangle] \otimes c] \mod \text{Im}(\alpha_n)$$

for any bilinear $(n-1)$-fold Pfister form c. It follows that τ is multilinear.

The map τ also satisfies the Steinberg condition. Indeed if $a_1 + a_2 = 1$, then $[[\langle a_1, a_2 \rangle]] = 0$ in $I_2(F)$ as g_2 is an isomorphism and therefore $[[\langle a_1, a_2, \ldots, a_n \rangle]] = 0$ in $I_n(F)$.

As the group $\text{coker}(\alpha_n)$ has exponent 2, the map τ induces a group homomorphism

$$k_n(F) = K_n(F)/2K_n(F) \to \text{coker}(\alpha_n)$$

which we also denote by τ. The composition $\gamma \circ \tau$ takes a symbol $\{a_1, a_2, \ldots, a_n\}$ to $[[\langle a_1, a_2, \ldots, a_n \rangle]] + I^{n+1}(F)$. By Fact 5.15, the map $\gamma \circ \tau$ is an isomorphism. As τ is surjective, we have γ is an isomorphism. \qed
It follows from Lemma 42.3 that we have a commutative diagram

\[
\begin{array}{c}
\mathcal{L}_{n+1}(F) \xrightarrow{g_{n+1}} \mathcal{L}_n(F) \xrightarrow{g_n} \mathcal{T}^n(F) \xrightarrow{\alpha_n} 0 \\
0 \xrightarrow{} \mathcal{I}^{n+1}(F) \xrightarrow{g_{n+1}} \mathcal{I}^n(F) \xrightarrow{g_n} \mathcal{T}^n(F) \xrightarrow{\alpha_n} 0
\end{array}
\]

with exact rows. It follows that if \(g_{n+1} \) is an isomorphism then \(g_n \) is also an isomorphism.

Theorem 42.4. If \(n \geq 2 \), the abelian group \(\mathcal{I}^n(F) \) is generated by the isometry classes of bilinear \(n \)-fold Pfister forms subject to the generating relations

1. \(\langle\langle 1, 1, \ldots, 1 \rangle\rangle \cdot \mathfrak{d} = 0 \).
2. \(\langle\langle ab, c \rangle\rangle \cdot \mathfrak{d} + \langle\langle a, b \rangle\rangle \cdot \mathfrak{d} = \langle\langle a, bc \rangle\rangle \cdot \mathfrak{d} \) for all \(a, b, c \in F^\times \) and bilinear \((n-2) \)-fold Pfister forms \(\mathfrak{d} \).

Proof. We shall show that the surjective map \(g_n : \mathcal{L}_n(F) \to \mathcal{I}^n(F) \) is an isomorphism. Any element in the kernel of \(g_n = g_{n,F} \) belongs to the image of the natural map \(g_{n,F'} \to g_{n,F} \) where \(F' \) is a subfield of \(F \) finitely generated over the prime subfield. Thus we may assume that \(F \) is finitely generated. It follows from Lemma 41.1 that \(F \) has finite stable range. The discussion preceding the theorem shows that we may also assume that \(n > \text{st}(F) \).

If \(F \) is not formally real then \(\mathcal{I}^n(F) = 0 \), i.e., every bilinear \(n \)-fold Pfister form is metabolic. By Lemma 42.1 the group \(\mathcal{L}_n(F) \) is trivial and we are done.

In what follows we may assume that \(F \) is formally real, in particular, \(\text{char} F \neq 2 \).

We let \(M \) be the abelian group given by generators \(\{b\} \), the isometry classes of bilinear \(n \)-fold Pfister forms \(b \) over \(F \), and relations \(\{b\} = \{c\} + \{d\} \) where the bilinear \(n \)-fold Pfister forms \(b, c \) and \(d \) satisfy \(b = c + d \) in \(W(F) \). In particular, \(\{b\} = 0 \) in \(M \) if \(b = 0 \) in \(W(F) \).

We claim that the homomorphism

\[
\delta : M \to \mathcal{L}_n(F) \quad \text{given by} \quad \{b\} \mapsto [b]
\]

is well defined. To see this, it suffices to check that if \(b, c \) and \(d \) satisfy \(b = c + d \) in \(W(F) \) then \([b] = [c] + [d]\) in \(\mathcal{L}_n(F) \). As \(\text{char} F \neq 2 \), it follows from Proposition 24.5 that there are \(c, d \in F^\times \) and a bilinear \((n-1)\)-fold Pfister form \(\mathfrak{a} \) such that

\[
c \simeq \langle\langle c \rangle\rangle \otimes \mathfrak{a}, \quad \mathfrak{d} \simeq \langle\langle d \rangle\rangle \otimes \mathfrak{a}, \quad b \simeq \langle\langle cd \rangle\rangle \otimes \mathfrak{a}.
\]

The equality \(b = c + d \) implies that \(\langle\langle c, d \rangle\rangle \cdot \mathfrak{a} = 0 \) in \(W(F) \). Therefore

\[
0 = \alpha_n([\langle\langle c, d \rangle\rangle \otimes \mathfrak{a}]) = [c] + [d] - [b]
\]

in \(\mathcal{L}_n(F) \), hence the claim.

Let \(b \) be a bilinear \(n \)-fold Pfister form and \(d \in F^\times \). As \(I^{n+1}(F) = 2I^n(F) \), we can write \(\langle\langle d \rangle\rangle \cdot b = 2c \) and \(\langle\langle -d \rangle\rangle \cdot b = 2d \) in \(W(F) \) with \(c, d \) bilinear \(n \)-fold Pfister forms. Adding, we then get \(2b = 2c + 2d \) in \(W(F) \), hence \(b = c + d \) since \(I^n(F) \) is torsion free. It follows that \([b] = [c] + [d]\) in \(M \). We generalize this as follows:
Lemma 42.5. Let \(F \) be a formally real field having finite stable range. Suppose that \(n \) is a positive integer in the stable range. Let \(b \in P_n(F) \) and \(d_1, \ldots, d_m \in F^\times \). For every \(\epsilon = (\epsilon_1, \ldots, \epsilon_m) \in \{\pm 1\}^m \) write \(\langle \langle \epsilon_1 d_1, \ldots, \epsilon_m d_m \rangle \rangle \otimes b \simeq 2^m c_\epsilon \) with \(c_\epsilon \in P_n(F) \). Then \([b] = \sum \epsilon [c_\epsilon] \) in \(M \).

Proof. We induct on \(m \): The case \(m = 1 \) was done above. So we assume that \(m > 1 \). For every \(\epsilon' = (\epsilon_1, \ldots, \epsilon_m) \in \{\pm 1\}^{m-1} \) write

\[
\langle \langle \epsilon_2 d_2, \ldots, \epsilon_m d_m \rangle \rangle \otimes b \simeq 2^{m-1} \mathcal{D}_{\epsilon'}
\]

with \(\mathcal{D}_{\epsilon'} \in P_n(F) \). By the induction hypothesis, we then have \([b] = \sum \epsilon' [\mathcal{D}_{\epsilon'}] \) in \(M \). It therefore suffices to show that \([\mathcal{D}_{\epsilon'}] = [c_{1,\epsilon'}] + [c_{-1,\epsilon'}] \) for every \(\epsilon' \). But

\[
2^m \mathcal{D}_{\epsilon'} = 2 \langle \langle \epsilon_2 d_2, \ldots, \epsilon_m d_m \rangle \rangle \cdot b
= \langle \langle d_1 \rangle \rangle + \langle \langle -d_1 \rangle \rangle \cdot \langle \langle \epsilon_2 d_2, \ldots, \epsilon_m d_m \rangle \rangle \cdot b
= 2^m c_{1,\epsilon'} + 2^m c_{-1,\epsilon'}
\]

in \(W(F) \) hence \(\mathcal{D}_{\epsilon'} = c_{1,\epsilon'} + c_{-1,\epsilon'} \) in \(W(F) \). Consequently, \([\mathcal{D}_{\epsilon'}] = [c_{1,\epsilon'}] + [c_{-1,\epsilon'}] \) in \(M \). \(\square \)

Proposition 42.6. Let \(F \) be a formally real field having finite stable range. Suppose that \(n \) is a positive integer in it. Then every element in \(M \) can be written as a \(\mathbb{Z} \)-linear combination \(\sum j=1^s l_j [c_j] \) with forms \(c_1, \ldots, c_s \in P_n(F) \) having pairwise disjoint supports in \(\mathcal{X}(F) \).

Proof. Let \(a = \sum i=1^r k_i \cdot [b_i] \in M \). Write \(b_i \simeq \langle \langle a_{i1}, \ldots, a_{in} \rangle \rangle \) for \(i = 1, \ldots, r \). For every matrix \(\epsilon = (\epsilon_{ik})_{i=1,k=1}^{r,n} \in \{\pm 1\}^{r \times n} \) let \(f_\epsilon \simeq \bigotimes j=1^r \bigotimes l=1^n \langle \langle \epsilon_{jl} a_{jl} \rangle \rangle \) and write \(f_\epsilon \otimes b_i \simeq 2^n c_{i,\epsilon} \) with \(c_{i,\epsilon} \) bilinear \(n \)-fold Pfister forms for \(i = 1, \ldots, r \). By Lemma 42.5, we have \([b_i] = \sum \epsilon [c_{i,\epsilon}] \) in \(M \) for \(i = 1, \ldots, r \), hence

\[
a = \sum i=1^r k_i \cdot [b_i] = \sum i=1^r k_i \cdot \sum \epsilon [c_{i,\epsilon}] = \sum \epsilon \sum i=1^r k_i \cdot [c_{i,\epsilon}]
\]

in \(M \).

For each \(\epsilon \) write \(f_\epsilon \simeq 2^{nr-n} \mathcal{D}_\epsilon \) with \(\mathcal{D}_\epsilon \) a bilinear \(n \)-fold Pfister form. Clearly, the \(f_\epsilon \) have pairwise disjoint supports, hence also the \(\mathcal{D}_\epsilon \). Now look at a pair \((i, \epsilon) \). If all the \(\epsilon_{ik}, k = 1, \ldots, r, \) are 1 then \(f_\epsilon \otimes b_i = 2^n f_\epsilon = 2^n \mathcal{D}_\epsilon \) hence \(c_{i,\epsilon} = \mathcal{D}_\epsilon \). If, however, some \(\epsilon_{ik}, k = 1, \ldots, r, \) is -1 then \(f_\epsilon \otimes b_i = 0 \) hence \(c_{i,\epsilon} = 0 \). It follows that for each \(\epsilon \) we have \(\sum i=1^r k_i \cdot [c_{i,\epsilon}] = l_\epsilon \cdot \mathcal{D}_\epsilon \) for some integer \(l_\epsilon \). Consequently,

\[
a = \sum \epsilon \sum i=1^r k_i \cdot [c_{i,\epsilon}] = \sum \epsilon l_\epsilon \cdot \mathcal{D}_\epsilon.
\]

Applying Proposition 42.6 to an element in the kernel of the composition

\[
M \xrightarrow{\delta} L_n(F) \xrightarrow{\rho_n} \text{I}^n(F) \xrightarrow{\text{sgn}} C(\mathcal{X}(F), \mathbb{Z})
\]
we see that all the coefficients l_j are 0. Hence the composition is injective. Since δ is surjective, it follows that g_n is injective and therefore is an isomorphism. The proof of Theorem 42.4 is complete. □

43. Going Down and Torsion-freeness

We show in this section that if K/F is a finite extension with $I^n(K)$ torsion free then $I^n(F)$ is torsion free. Since we already know this to be true if char $F = 2$ by Lemma 35.5, we need only show this when char $F \neq 2$. In this case we use the solution of the Milnor conjecture that the norm residue map is an isomorphism.

Let F be a field of characteristic not 2. For any integer $k, n \geq 0$ consider Galois cohomology groups (cf. Appendix §100)

$$H^n(F, k) := H^{n,n-1}(F, \mathbb{Z}/2^k\mathbb{Z}).$$

In particular $H^n(F, 1) = H^n(F)$.

According to (Appendix §100, Corollary 100.7) there is an exact sequence

$$0 \to H^n(F, r) \to H^n(F, r + s) \to H^n(F, s).$$

For a field extension L/F set

$$H^n(L/F, k) := \ker\left(H^n(F, k) \xrightarrow{r_{L/F}} H^n(L, k) \right).$$

For all $r, s \geq 0$, we have an exact sequence

$$0 \to H^n(L/F, r) \to H^n(L/F, r + s) \to H^n(L/F, s). \tag{43.1}$$

Proposition 43.2. Let char $F \neq 2$. Suppose $I^n(F) = 0$. Then $H^n(F_{py}/F, k) = 0$ for all k.

Proof. Let $\alpha \in H^n(F_{py}/F)$. As F_{py} is the union of admissible extensions over F (cf. Definition 31.15), there is an admissible sub-extension L/F of F_{py}/F such that $\alpha_L = 0$. We prove by induction on the degree $[L : F]$ that $\alpha = 0$. Let E be a subfield of L such that E/F is admissible and $L = E(\sqrt{d})$ where $d \in D(2(1)_E)$. It follows from the exactness of the cohomology sequence (Appendix §Theorem 98.13) for the quadratic extension L/E that $\alpha_E \in H^{n-1}(E) \cup (d)$. By Proposition 35.7, the field E Satisfies A_n. Hence all the torsion Pfister forms $\langle\langle a_1, \ldots, a_{n-1}, d\rangle\rangle$ over E are trivial, hence $H^{n-1}(E) \cup (d) = 0$ by Fact 16.2 and therefore $\alpha_E = 0$. By the induction hypothesis, $\alpha = 0$.

We have shown that $H^n(F_{py}/F) = 0$. Triviality of the group $H^n(F_{py}/F, k)$ follows then by induction on k from exactness of the sequence (43.1).

Exercise 43.3. Let char $F \neq 2$. Show that if $H^n(F_{py}/F) = 0$ then $I^n(F)$ is torsion free.

Lemma 43.4. A field F of characteristic different from two is pythagorean if and only if F has no cyclic extensions of degree 4.
Proof. Consider the exact sequence
\[H^1(F, 2) \xrightarrow{g} H^1(F) \xrightarrow{b} H^2(F), \]
where \(b \) is the Bockstein homomorphism, \(b((a)) = (a) \cup (-1) \) (cf. Appendix §?? (100.13)). The field \(F \) is not pythagorean if there is non-square \(a \in F^\times \) such that \(a \in D(2(1)) \). The later is equivalent to \((a) \cup (-1) = 0 \) in \(H^2(F) = Br_2(F) \) which in its turn is equivalent to \((a) \in \text{im}(g) \), i.e., the quadratic extension \(F(\sqrt{a})/F \) can be embedded into a cyclic extension of degree 4.

Let \(F \) be a field of characteristic different from two such that \(\mu_{2^n} \subset F \) with \(n > 1 \) and \(m \leq n \). Then Kummer theory implies that the natural map
\[(43.5)\]
\[F^\times /F^\times 2^n = H^1(F, n) \rightarrow H^1(F, m) = F^\times /F^\times 2^m \]
is surjective.

Lemma 43.6. Let \(F \) be a pythagorean field of characteristic different from two. Then
\[c_{F(\sqrt{-1})/F} : H^1(F(\sqrt{-1}), s) \rightarrow H^1(F, s) \]
is trivial for every \(s \).

Proof. If \(F \) is non-real then it is quadratically closed, so \(H^1(F, s) = 0 \). Therefore, we may assume that \(F \) is formally real. In particular, \(F(\sqrt{-1}) \neq F \).

Let \(\beta \in H^1(F, s + 1) = \text{Hom}_\text{cont}(\Gamma_F, \mathbb{Z}/2^{s+1}\mathbb{Z}) \). Then the kernel of \(\beta \) is an open subgroup \(U \) of \(\Gamma_F \) with \(\Gamma_F/U \) cyclic of 2-power order. As \(F \) is pythagorean, \(F \) has no cyclic extensions of a 2-power order greater than 2 by Lemma 43.4. It follows that \([\Gamma_F : U] \leq 2 \) hence \(\beta \) lies in the image of \(H^1(F) \rightarrow H^1(F, s + 1) \). Consequently, \(\beta \) lies in the kernel of \(H^1(F, s + 1) \rightarrow H^1(F, s) \). This shows that the natural map \(H^1(F, s + 1) \rightarrow H^1(F, s) \) is trivial. The statement now follows from the commutativity of the diagram
\[H^1(F, s + 1) \xrightarrow{c_{F(\sqrt{-1})/F}} H^1(F, s + 1) \]
\[\downarrow \quad \downarrow 0 \]
\[H^1(F(\sqrt{-1}), s) \xrightarrow{c_{F(\sqrt{-1})/F}} H^1(F, s) \]
together with the surjectivity of \(H^1(F(\sqrt{-1}), s + 1) \rightarrow H^1(F(\sqrt{-1}), s) \) which holds by (43.5) as \(\mu_{2^n} \subset \mathbb{Q}_{py}(-1) \subset F(\sqrt{-1}) \).

Lemma 43.7. Let \(F \) be a field of characteristic different from two satisfying \(\mu_{2^n} \subset F(\sqrt{-1}) \). Then for every \(d \in D(2(l)) \) the class \((d) \) belongs to the image of the natural map \(H^1(F_{py}/F, s) \rightarrow H^1(F_{py}/F) \).

Proof. By (43.5), the natural map \(g : H^1(F(\sqrt{-1}), s) \rightarrow H^1(F(\sqrt{-1})) \) is surjective. As \(d \in N_{F(\sqrt{-1})/F}(F(\sqrt{-1})) \), there exists a \(\gamma \in H^1(F(\sqrt{-1}), s) \) satisfying \((d) = g(c_{F(\sqrt{-1})/F}(\gamma)) \). By Lemma 43.6, we have \(c_{F(\sqrt{-1})/F}(\gamma) \in H^1(F_{py}/F, s) \) and the image of \(c_{F(\sqrt{-1})/F}(\gamma) \) in \(H^1(F_{py}/F) \) coincides with \((d) \).

Theorem 43.8. Let \(\text{char} F \neq 2 \). Let \(K/F \) be a finite field extension. If \(I^n(K) \) is torsion free for some \(n \) then \(I^n(F) \) is also torsion free.
Proof. Let 2^r be the largest power of 2 dividing $[K : F]$. Suppose first that the field $F(\sqrt{-1})$ contains μ_{2^r+1}.

By Theorem 41.4, the group $I^n_t(F)$ is generated by the bilinear n-fold Pfister forms $\langle a_1, \ldots, a_{n-1}, d \rangle$ satisfying $d \in D(2\langle 1 \rangle)$. By Lemma 43.7, there is $\alpha \in H^1(F_{py}/F, r+1)$ such that the natural map $H^1(F_{py}/F, r+1) \to H^1(F_{py}/F)$ takes α to (d).

Recall that the graded group $H^*(F_{py}/F, r+1)$ has natural structure of a module over the Milnor ring $K_*(F)$ (cf. Appendix, (100.5)). Consider the element

$$\beta = \{a_1, \ldots, a_{n-1}\} \cdot \alpha \in H^n(F_{py}/F, r+1).$$

As $I^n_t(K) = 0$, we have $H^n(K_{py}/K, r+1) = 0$ by Proposition 43.2. Therefore

$$[K : F] \cdot \beta = c_{K/F} \circ r_{K/F}(\beta) = 0$$

hence $2^r \beta = 0$. The composition

$$H^n(F, r+1) \to H^n(F) \to H^n(F, r+1)$$

coincide with the multiplication by 2^r. Since the second homomorphism is injective by (43.1), the image $\langle a_1, \ldots, a_{n-1} \rangle \cdot (d) = (a_1, \ldots, a_{n-1}, d)$ of β in $H^n(F)$ is trivial. Therefore, $\langle a_1, \ldots, a_{n-1}, d \rangle$ is hyperbolic by Fact 16.2.

Consider the general case. As $\mu_{2^\infty} \subset F_{py}(\sqrt{-1})$ there is a subfield $E \subset F_{py}$ such that $\mu_{2^r+1} \subset E(\sqrt{-1})$ and E/F is an admissible extension. Then $L := KE$ is an admissible extension of K. In particular, $I^n(L)$ is torsion free by Proposition 35.7 and Corollary 41.5. Note also that the degree $[L : E]$ divides $[K : F]$. By the first part of the proof applied to the extension L/E we have $I^n_t(E) = 0$. It follows from Theorem 35.12 and Corollary 41.5 that $I^n_t(F) = 0$. □

Corollary 43.9. Let K be a finite extension of a non formally real field F. If $I^n(K) = 0$ then $I^n(F) = 0$.

Proof. If $\text{char } F = 2$, this was shown in Lemma 35.5. If $\text{char } F \neq 2$, this follows from Theorem 43.8 □
CHAPTER VIII

On the norm residue homomorphism of degree two

In this chapter we prove the following case of Fact 100.6:

Theorem 43.10. For every field F of characteristic not 2, the norm residue homomorphism

$$h_F = h_F^2 : K_2 F / 2 K_2 F \to \text{Br}_2 F,$$

taking $\{a, b\} + 2K_2 F$ to the class $[a, b]$ of the quaternion algebra $\left(\frac{a, b}{F} \right)$, is an isomorphism.

Corollary 43.11. Let F be a field of characteristic not 2. Then

1. The group $\text{Br}_2 F$ is generated by the classes of quaternion algebras.
2. The following is the list of the defining relations between classes of quaternion algebras:
 1. $\left(\frac{aa', b}{F} \right) = \left(\frac{a, b}{F} \right) \cdot \left(\frac{a', b}{F} \right)$ and $\left(\frac{a, bb'}{F} \right) = \left(\frac{a, b}{F} \right) \cdot \left(\frac{a, b'}{F} \right)$ for all $a, a', b, b' \in F^\times$.
 2. $\left(\frac{a, b}{F} \right)^2 = 1$.
 3. $\left(\frac{a, b}{F} \right) = 1$ if $a + b = 1$.

The main idea of the proof is to compare the norm residue homomorphisms h_F and $h_{F(C)}$, where C is a smooth conic curve over F. The function field $F(C)$ is a generic splitting field for a symbol in $k_2(F)$, so passing from F to $F(C)$ allows us to carry out inductive arguments.

44. Geometry of conic curves

In this section we establish interrelations between projective conic curves and corresponding quaternion algebras.

44.A. Quaternion algebras and conic curves. Let Q be a quaternion algebra over a field F. Recall (Appendix 97.E) that Q carries the canonical involution $a \mapsto \bar{a}$, the reduced trace linear map

$$\text{Trd} : Q \to F, \quad a \mapsto a + \bar{a}$$

and the reduced norm quadratic map

$$\text{Nrd} : Q \to F, \quad a \mapsto a \bar{a}.$$
Every element $a \in Q$ satisfies the quadratic equation

$$a^2 - \text{Trd}(a)a + \text{Nrd}(a) = 0.$$

Set

$$V_Q := \text{Ker}(\text{Trd}) = \{a \in Q \mid \bar{a} = -a\},$$

so V_Q is a 3-dimensional subspace of Q. Note that $x^2 = -\text{Nrd}(x) \in F$ for any $x \in V_Q$, and the map $\varphi_Q : V_Q \to F$ given by $\varphi_Q(x) = x^2$ is a quadratic form on V_Q. The space V_Q is the orthogonal complement to 1 in Q with respect to the non-degenerate bilinear form on Q:

$$(a,b) \mapsto \text{Trd}(ab).$$

The quadric C_Q of the form $\varphi_Q(x)$ in the projective plane $\mathbb{P}(V_Q)$ is a smooth projective conic curve. Conversely, every smooth projective conic curve (1-dimensional quadric) is of the form C_Q for some quaternion algebra Q (cf. Exercise ??).

Proposition 44.1. The following conditions are equivalent:

1. Q is split.
2. C_Q is isomorphic to the projective line \mathbb{P}^1.
3. C_Q has a rational point.

Proof. $(1) \Rightarrow (2)$: The algebra Q is isomorphic to the matrix algebra $M_2(F)$. Hence V_Q is the space of trace 0 matrices and C_Q is given by the equation $X^2 + YZ = 0$. The morphism $C_Q \to \mathbb{P}^1$, given by $[X : Y : Z] \mapsto [X : Y] = -[Z : X]$ is an isomorphism.

$(2) \Rightarrow (3)$ is obvious.

$(3) \Rightarrow (1)$: There is a nonzero element $x \in Q$ such that $x^2 = 0$. In particular, Q is not a division algebra and therefore Q is split. \qed

If Q is a division algebra, the degree of any finite splitting field extension is even. Therefore, the degree of every closed point of C_Q is even. Moreover, since Q splits over a quadratic subfield of Q, the conic C_Q has a point of degree 2. Thus, the image of the degree homomorphism $\deg : \text{CH}^0(C_Q) \to \mathbb{Z}$ is equal to $2\mathbb{Z}$ (cf. Corollary 70.3). Note also that the degree homomorphism is injective by Corollary 70.4. Consequently, any divisor on C_Q of degree zero is principal.

Example 44.2. If $char F \neq 2$, there is a basis $1, i, j, k$ of Q such that $a = i^2 \in F^\times$, $b = j^2 \in F^\times$, $k = ij = -ji$ (see Example 97.11). Then $V_Q = Fi \oplus Fj \oplus Fk$ and C_Q is given by the equation $aX^2 + bY^2 - abZ^2 = 0$.

Example 44.3. If $char F = 2$, there is a basis $1, i, j, k$ of Q such that $a = i^2 \in F$, $b = j^2 \in F$, $k = ij = ji + 1$ (see Example 97.12). Then $V_Q = F1 \oplus Fi \oplus Fj$ and C_Q is given by the equation $X^2 + aY^2 + bZ^2 + YZ = 0$.

For every $a \in Q$ define the F-linear function l_a on V_Q by the formula

$$l_a(x) = \text{Trd}(ax).$$

Since Trd is a non-degenerate bilinear form on Q (this is sufficient and easy to check over a splitting field where Q is isomorphic to a matrix algebra), hence every F-linear function on V_Q is equal to l_a for some $a \in Q$.

Lemma 44.4. Let $a, b \in Q$ and $\alpha, \beta \in F$. Then

1. $l_a = l_b$ if and only if $a - b \in F$.
2. $l_{\alpha a + \beta b} = \alpha l_a + \beta l_b$.
3. $l_\pi = -l_a$;
4. $l_{a^{-1}} = -(\text{Nrd} a)^{-1} l_a$ if a is invertible.

Proof. (1): This follows from the fact that V_Q is orthogonal to F with respect to the bilinear form.
(2) is obvious.
(3) For any $x \in V_Q$ we have $l_\pi(x) = \text{Trd}(\bar{a}x) = \text{Trd}(\bar{a}\bar{x}) = \text{Trd}(\bar{x}a) = -\text{Trd}(xa) = -\text{Trd}(ax) = -l_a(x)$.
(4) It follows from (2) and (3) that $(\text{Nrd} a)l_{a^{-1}} = l_\pi = -l_a$.

Every element $a \in Q \setminus F$ generates a quadratic subalgebra $F[a] = F \oplus Fa$ of Q. Conversely, every quadratic subalgebra K of Q is of the form $F[a]$ for any $a \in K \setminus F$. By Lemma 44.4, the linear form l_a on V_Q is independent, up to a multiple, on the choice of $a \in K \setminus F$. Hence the line in $\mathbb{P}(V_Q)$ given by the equation $l_a(x) = 0$ is determined by K. The intersection of this line with the conic C_Q is a degree two effective divisor on C_Q.

Thus, we get the following maps

| Quadratic subalgebras of Q | Rational points of $\mathbb{P}(V_Q^*)$ | Lines in $\mathbb{P}(V_Q)$ | Degree 2 effective divisors on C_Q |

Proposition 44.5. These two maps are bijections.

Proof. The first map is a bijection since every line in $\mathbb{P}(V_Q)$ is given by the equation $l_a = 0$ for some $a \in Q \setminus F$ and a generates a quadratic subalgebra of Q. The second map is a bijection since the embedding of C_Q as a closed subscheme of $\mathbb{P}(V_Q)$ is given by a complete linear system.

Remark 44.6. Degree 2 effective divisors on C_Q are rational points of the symmetric square S^2C_Q. Proposition 44.5 essentially asserts that S^2C_Q is isomorphic to the projective plane $\mathbb{P}(V_Q^*)$.

Suppose Q is a division algebra. The conic curve C_Q has no rational points. Quadratic subalgebras of Q are quadratic (maximal) subfields of Q. A degree 2 effective cycle on C_Q is a closed point of degree 2. Thus, by Proposition 44.5, we have bijections

| Quadratic subfields of Q | Rational points of $\mathbb{P}(V_Q^*)$ | Lines in $\mathbb{P}(V_Q)$ | Points of degree 2 in C_Q |

In what follows we shall frequently use this constructed bijection between the set of quadratic subfields of Q and the set of degree 2 closed points of C_Q.

44.B. Key identity. In the following proposition we write a multiple of the quadratic form \(\varphi_Q \) on \(V_Q \) as a degree two polynomial of linear forms.

Proposition 44.7. Let \(Q \) be a quaternion algebra over \(F \). For any \(a, b, c \in Q \),

\[
l_{ab} \cdot l_c + l_{b\bar{c}} \cdot l_a + l_{c\bar{a}} \cdot l_b = (\text{Trd}(cba) - \text{Trd}(abc)) \cdot \varphi_Q.
\]

Proof. We write \(T \) for \(\text{Trd} \) in the proof. For every \(x \in V_Q \) we have:

\[
l_{ab}(x) \cdot l_c(x) = T(abx)T(cx)
= T(a(T(b) - b)x)T(cx)
= T(ax)T(b)(T(cx) - T(abx)T(cx)
= T(ax)T(b)(T(cx) - T(abT(cx)x)
= T(ax)T(b)(T(cx) - (abc)x^2 + T(abx\bar{c}x),
\]

\[
l_{b\bar{c}}(x) \cdot l_a(x) = T(b\bar{c}x)T(ax)
= T((T(b) - \bar{b}\bar{c})x)T(ax)
= T(cx)T(b)(T(ax) - T(b\bar{c}x)T(ax)
= -T(ax)T(b)(T(cx) - T(\bar{b}\bar{c}x(ax + \bar{x}a))
= -T(ax)T(b)(T(cx) - T(b\bar{c}xax) + T(b\bar{c}a)x^2
= -T(ax)T(b)(T(cx) - T(ax\bar{b}\bar{c}x) + T(cba)x^2
\]

\[
l_{c\bar{a}}(x) \cdot l_b(x) = T(c\bar{a}x)T(bx)
= -T(\bar{a}\bar{c}x)T(bx)
= -T(aT(bx)\bar{c}x)
= -T(abx\bar{c}x) + T(ax\bar{b}\bar{c}x).
\]

Adding the equalities yields the result. \(\square \)

44.C. Residue fields of points of \(C_Q \) and quadratic subfields of \(Q \). Suppose the quaternion algebra \(Q \) is a division algebra. Recall that quadratic subfields of \(Q \) correspond bijectively to degree 2 points of \(C_Q \). We shall show how to identify a quadratic subfield of \(Q \) with the residue field of the corresponding point in \(C_Q \) of degree 2.

Choose a quadratic subfield \(K \subset Q \). For every \(a \in Q \setminus K \), one has \(Q = K \oplus aK \). We define the map

\[
\mu_a : V_Q^* \to K
\]

by the rule: if \(c = u + av \) for \(u, v \in K \), then \(\mu_a(l_c) = v \). Clearly,

\[
\mu_a(l_c) = 0 \iff c \in K.
\]
By Lemma [44.4], the map μ_a is well defined and F-linear. If $b \in Q \setminus K$ is another element, we have

$$\mu_b(l_c) = \mu_b(l_a)\mu_a(l_c),$$

hence the maps μ_a and μ_b differ by the multiple $\mu_b(l_a) \in K^\times$. The map μ_a extends to an F-algebra homomorphism

$$\mu_a : S^*(V_Q^*) \to K$$

in the usual way (where S^* denotes the symmetric algebra).

Let $x \in C_Q \subset \mathbb{P}(V_Q)$ be the point of degree 2 corresponding to the quadratic subfield K. The local ring $O_{\mathbb{P}(V_Q),x}$ is the subring of the quotient field of the symmetric algebra $S^*(V_Q^*)$ generated by the fractions l_c/l_d for all $c \in Q$ and $d \in Q \setminus K$.

Fix an element $a \in Q \setminus F$. We define the F-algebra homomorphism

$$\mu : O_{\mathbb{P}(V_Q),x} \to K$$

by the formula

$$\mu\left(\frac{\ell_c}{\ell_d}\right) = \frac{\mu_a(\ell_c)}{\mu_a(\ell_d)}.$$

Note that $\mu_a(\ell_d) \neq 0$ since $d \notin K$ and the map μ is independent of the choice of $a \in Q \setminus K$ by (44.8).

We claim that the map μ vanishes on the quadratic form φ_Q defining C_Q in $\mathbb{P}(V_Q)$. Proposition [44.7] gives a formula for a multiple of the quadratic form φ_Q with the coefficient $\alpha := \text{Trd}(eba) - \text{Trd}(abc)$.

Lemma 44.9. There exist $a \in Q \setminus K$, $b \in K$ and $c \in Q$ such that $\alpha \neq 0$.

Proof. Pick any $b \in K \setminus F$ and any $a \in Q$ such that $ab \neq ba$. Clearly, $a \in Q \setminus K$. Then $\alpha = \text{Trd}((ba - ab)c)$ is nonzero for some $c \in Q$ since the bilinear form Trd is non-degenerate on Q.

Choose a, b and c as in Lemma [44.9]. We have $\mu_a(l_b) = 0$ since $b \in K$. Also $\mu_a(l_1) = 1$ and $\mu_a(l_{ab}) = b$. Write $c = u + av$ for $u, v \in K$ then $\mu_a(l_c) = v$. As

$$b\bar{c} = b\bar{u} + b\bar{v}a = b\bar{u} + \text{Trd}(b\bar{v}a) - av\bar{b},$$

we have $\mu_a(l_{\bar{c}}) = -v\bar{b}$ and by Proposition [44.7],

$$\alpha \mu(\varphi_Q) = \mu_a(l_{\bar{a}})\mu_a(l_c) + \mu_a(l_{\bar{a}})\mu_a(l_1) + \mu_a(l_{\bar{a}})\mu_a(l_2) = b\bar{v} - v\bar{b} = 0.$$

Since $\alpha \neq 0$, we have $\mu(\varphi_Q) = 0$ as claimed.

The local ring $O_{C_Q,x}$ coincides with the factor ring $O_{\mathbb{P}(V_Q),x}/\varphi_QO_{\mathbb{P}(V_Q),x}$. Therefore, μ factors through an F-algebra homomorphism

$$\mu : O_{C_Q,x} \to K.$$

Let $e \in K \setminus F$. The function l_e/l_a is a local parameter of the local ring $O_{C_Q,x}$, i.e., it generates the maximal ideal of $O_{C_Q,x}$. Since $\mu(l_e/l_a) = 0$, the map μ induces a field isomorphism

$$F(x) \sim K$$

of degree 2 field extensions of F. We have proved
Let Milnor’s computation of

Consider the

Every function in

Note that

From Lemma

the statement of Theorem

we can choose a function

and a point

So we may (and will) assume that

with

induced by the discrete valuation of the local ring

\[K \]

is canonically isomorphic to

subfield and

\[x \]

188 VIII. ON THE NORM RESIDUE HOMOMORPHISM OF DEGREE TWO

Proposition 44.11. Let Q be a division quaternion algebra. Let $K \subset Q$ be a quadratic subfield and $x \in C_Q$ be the corresponding point of degree 2. Then the residue field $F(x)$ is canonically isomorphic to K over F. Let $a \in Q$ and $b \in Q \setminus K$. Write $a = u + bv$ for unique $u, v \in K$. Then the value $(l_a/l_b)(x) \in F(x)$ of the function l_a/l_b at the point x corresponds to the element $v \in K$ under the isomorphism (44.10).

45. Key exact sequence

In this section we prove exactness of a sequence that compares the groups $K_2 F$ and $K_2 F(C)$.

Let C be a smooth curve over a field F. For every (closed) point $x \in C$ there is residue homomorphism

\[\partial_x : K_2 F(C) \to K_1 F(x) = F(x)^\times \]

induced by the discrete valuation of the local ring $O_{C,x}$ (cf. (48.A)).

In this section we prove the following

Theorem 45.1. Let C be a conic curve over a field F. The sequence

\[K_2 F \to K_2 F(C) \xrightarrow{\partial} \prod_{x \in C} F(x)^\times \xrightarrow{c} F^\times, \]

with $\partial = (\partial_x)$ and $c = (c_{F(x)/F})$, is exact.

45.A. Filtration on $K_2 F(C)$. Let C be a conic over F. If C splits, i.e., $C \simeq \mathbb{P}^1_F$, the statement of Theorem 45.1 is Milnor’s computation of $K_2 F(t)$ given in Theorem 99.7. So we may (and will) assume that C is not split. We know that the degree of every closed point of C is even.

Fix a closed point $x_0 \in C$ of degree 2. As in 829 for any $n \in \mathbb{Z}$ let L_n be the F-subspace

\[\{ f \in F(C)^\times \mid \text{div}(f) + nx_0 \geq 0 \} \cup \{0\} \]

of $F(C)$. Clearly $L_n = 0$ if $n < 0$. Recall that $L_0 = F$ and $L_n \cdot L_m \subset L_{n+m}$. It follows from Lemma 29.7 that $\dim L_n = 2n + 1$ if $n \geq 0$.

We write L^\times_n for $L_n \setminus \{0\}$. Note that the value $g(x)$ in $F(x)$ is defined for every $g \in L^\times_n$ and a point $x \neq x_0$.

Since any divisor on C of degree zero is principal, for every point $x \in C$ of degree $2n$ we can choose a function $p_x \in L^\times_n$ such that $\text{div}(p_x) = x - nx_0$. In particular, $p_{x_0} \in F^\times$. Note that p_x is uniquely determined up to a scalar multiple. Clearly, $p_x(x) = 0$ if $x \neq x_0$. Every function in L^\times_n can be written as the product of a nonzero constant and finitely many p_x for some points x of degree at most $2n$.

Lemma 45.2. Let $x \in C$ be a point of degree $2n$ different from x_0. If $g \in L_m$ satisfies $g(x) = 0$ then $g = p_x q$ for some $q \in L_{m-n}$. In particular, $g = 0$ if $m < n$.

Proof. Consider the F-linear map

\[e_x : L_m \to F(x), \quad e_x(g) = g(x). \]

If $m < n$, the map e_x is injective since x does not belong to the support of the divisor of a function in L^\times_m. Suppose that $m = n$ and $g \in \text{Ker } e_x$. Then $\text{div}(g) = x - nx_0$ and hence
g is a multiple of \(p_x \). Thus, the kernel of \(e_x \) is 1-dimensional. By dimension count, \(e_x \) is surjective.

Therefore, for arbitrary \(m \geq n \), the map \(e_x \) is surjective and

\[
\dim \text{Ker} \ e_x = \dim L_m - \deg(x) = 2m + 1 - 2n.
\]

The image of the injective linear map \(L_{m-n} \to L_m \) given by multiplication by \(p_x \) is contained in \(\text{Ker} \ e_x \) and of dimension \(\dim L_{m-n} = 2m + 1 - 2n \). Therefore, \(\text{Ker} \ e_x = p_x L_{m-n} \). □

For every \(n \in \mathbb{Z} \), let \(M_n \) be the subgroup of \(K_2 F(C) \) generated by the symbols \(\{f, g\} \) with \(f, g \in L_n^x \), i.e., \(M_n = \{L_n^x, L_0^x\} \). We have the following filtration:

\[
0 = M_{-1} \subset M_0 \subset M_1 \subset \cdots \subset K_2 F(C).
\]

Note that \(M_0 \) coincides with the image of the homomorphism \(K_2 F \to K_2 F(C) \) and \(K_2 F(C) \) is the union of all \(M_n \). Indeed, the group \(F(C)^\times \) is the union of the subsets \(L_n^x \).

If \(f \in L_n^x \), the degree of every point of the support of \(\text{div}(f) \) is at most \(2n \). In particular, \(\partial_x (M_{n-1}) = 0 \) for every point \(x \) of degree \(2n \). Therefore, for every \(n \geq 0 \) we have a well defined homomorphism

\[
\partial_n : M_n / M_{n-1} \to \coprod_{\deg x = 2n} F(x)^\times
\]

induced by \(\partial_x \) over all points \(x \in C \) of degree \(2n \).

We refine the filtration (45.3) by adding an extra term \(M' \) between \(M_0 \) and \(M_1 \). Set \(M' := \{L_1^x, L_0^x\} = \{L_1^x, F^\times\} \), so the group \(M' \) is generated by \(M_0 \) and symbols of the form \(\{p_x, \alpha\} \) for all points \(x \in C \) of degree 2 and all \(\alpha \in F^\times \).

Denote by \(A' \) the subgroup of \(\coprod_{\deg x = 2} F(x)^\times \) consisting of all families \((\alpha_x) \) such that \(\alpha_x \in F^\times \) for all \(x \) and \(\prod_x \alpha_x = 1 \). Clearly, \(\partial_1 (M'/M_0) \subset A' \).

Theorem 45.1 is a consequence of the following three propositions.

Proposition 45.4. If \(n \geq 2 \), the map

\[
\partial_n : M_n / M_{n-1} \to \coprod_{\deg x = 2n} F(x)^\times
\]

is an isomorphism.

Proposition 45.5. The restriction \(\partial' : M'/M_0 \to A' \) of \(\partial_1 \) is an isomorphism.

Proposition 45.6. The sequence

\[
0 \to M_1 / M' \xrightarrow{\partial_1} \left(\coprod_{\deg x = 2} F(x)^\times \right) / A' \xrightarrow{\iota} F^\times
\]

is exact.

Proof of Theorem 45.1 Since \(K_2 F(C) \) is the union of \(M_n \), it is sufficient to prove that the sequence

\[
0 \to M_n / M_0 \xrightarrow{\partial} \coprod_{\deg x \leq 2n} F(x)^\times \xrightarrow{\iota} F^\times
\]
is exact for every \(n \geq 1 \). We proceed by induction on \(n \). The case \(n = 1 \) follows from Propositions \(45.5 \) and \(45.6 \). The induction step is guaranteed by Proposition \(45.4 \).

45.B. Proof of Proposition \(45.4 \). We will construct the inverse map of \(\partial_n \).

Lemma 45.7. Let \(x \in C \) be a point of degree \(2n > 2 \). Then for every \(u \in F(x)^\times \), there exist \(f \in L_{n-1}^\times \) and \(h \in L_1^\times \) such that \((f/h)(x) = u \).

Proof. The \(F \)-linear map

\[
e_x : L_{n-1} \to F(x), \quad f \mapsto f(x)
\]
is injective by Lemma \(45.2 \). Hence

\[
\dim \text{Coker } e_x = \deg(x) - \dim L_{n-1} = 2n - (2n-1) = 1.
\]
Consider the \(F \)-linear map

\[
g : L_1 \to \text{Coker } e_x, \quad g(h) = u \cdot h(x) + \text{Im } e_x.
\]
Since \(\dim L_1 = 3 \), the kernel of \(g \) contains a nonzero function \(h \in L_1^\times \). We have \(u \cdot h(x) = f(x) \) for some \(f \in L_{n-1}^\times \). Since \(\deg x > 2 \) the value \(h(x) \) is nonzero. Hence \(u = (f/h)(x) \).

Let \(x \in C \) be a point of degree \(2n > 2 \). We define a map

\[
\psi_x : F(x)^\times \to M_n/M_{n-1}
\]
as follows. By Lemma \(45.7 \), for each element \(u \in F(x)^\times \) we can choose \(f \in L_{n-1}^\times \) and \(h \in L_1^\times \) such that \((f/h)(x) = u \). We set

\[
\psi_x(u) = \{ p_x, \frac{f}{h} \} + M_{n-1}.
\]

Lemma 45.8. The map \(\psi_x \) is a well-defined homomorphism.

Proof. Let \(f' \in L_{n-1}^\times \) and \(h' \in L_1^\times \) be two functions with \((\frac{f'}{h'})(x) = u \). Then \(f'h - fh' \in L_n \) and \((f'h - fh')(x) = 0 \). By Lemma \(45.2 \) we have \(f'h - fh' = \lambda p_x \) for some \(\lambda \in F \). If \(\lambda = 0 \), then \(f/h = f'/h' \).

Suppose \(\lambda \neq 0 \). Since \((\lambda p_x)/(f'h) + (fh')/(f'h) = 1 \), we have

\[
0 = \left\{ \frac{\lambda p_x}{f'h}, \frac{fh'}{f'h} \right\} \equiv \left\{ p_x, \frac{f}{h} \right\} - \left\{ p_x, \frac{f'}{h'} \right\} \mod M_{n-1}.
\]

Hence, \(\{ p_x, f/h \} + M_{n-1} = \{ p_x, f'/h' \} + M_{n-1} \), so that the map \(\psi \) is well defined.

Let \(u_3 = u_1u_2 \in F(x)^\times \). Choose \(f_i \in L_{n-1}^\times \) and \(h_i \in L_1^\times \) satisfying \((f_i/h_i)(x) = u_i \) for \(i = 1, 2, 3 \). The function \(f_1f_2h_3 - f_3h_1h_2 \) belongs to \(L_{2n-1} \) and has zero value at \(x \). We have \(f_1f_2h_3 - f_3h_1h_2 = p_xq \) for some \(q \in L_{n-1} \) by Lemma \(45.2 \). Since \((p_xq)/(f_1f_2h_3) + (f_3h_1h_2)/(f_1f_2h_3) = 1 \)

\[
0 = \left\{ \frac{p_xq}{f_1f_2h_3}, \frac{f_3h_1h_2}{f_1f_2h_3} \right\} \equiv \left\{ p_x, \frac{f_3}{h_3} \right\} - \left\{ p_x, \frac{f_1}{h_1} \right\} - \left\{ p_x, \frac{f_2}{h_2} \right\} \mod M_{n-1}.
\]
Thus, \(\psi_x(u_3) = \psi_x(u_1) + \psi_x(u_2) \).
45. KEY EXACT SEQUENCE

By Lemma [45.8], we have a homomorphism
\[\psi_n = \sum \psi_x : \prod_{\deg x = 2n} F(x)^\times \to M_n/M_{n-1}. \]
We claim that \(\partial_n \) and \(\psi_n \) are isomorphisms inverse to each other. If \(x \) is a point of degree \(2n > 2 \) and \(u \in F(x)^\times \), choose \(f \in L_{n-1}^\times \) and \(h \in L_1^\times \) such that \((\frac{f}{h})(x) = u \). We have
\[\partial_x(\{p_x, f, h\}) = (\frac{f}{h})(x) = u \]
and the symbol \(\{p_x, f, h\} \) has no nontrivial residues at other points of degree \(2n \). Therefore, \(\partial_n \circ \psi_n \) is the identity.

To finish the proof of Proposition [45.4], it suffices to show that \(\psi_n \) is surjective. The group \(M_n/M_{n-1} \) is generated by classes of the form \(\{p_x, g\} + M_{n-1} \) and \(\{p_x, p_y\} + M_{n-1} \), where \(g \in L_{n-1}^\times \) and \(x, y \) are distinct points of degree \(2n \). Clearly
\[\{p_x, g\} + M_{n-1} = \psi_x(g(x)), \]
hence \(\{p_x, g\} + M_{n-1} \in \text{Im} \psi_n \).

By Lemma [45.7], there are elements \(f \in L_{n-1}^\times \) and \(h \in L_1^\times \) such that \(p_x(y) = (\frac{f}{h})(y) \). The function \(p_x h - f \) belongs to \(L_{n+1}^\times \) and has zero value at \(y \). Therefore \(p_x h - f = p_y q \) for some \(q \in L_1^\times \) by Lemma [45.2]. Since \((p_y q)/(p_x h) + (f)/(p_x h) = 1 \) we have
\[0 = \left\{ \frac{p_y q}{p_x h}, \frac{f}{p_x h} \right\} \equiv \{p_x, p_y\} \mod \text{Im}(\psi_n). \]

45.C. Proof of Proposition [45.5]. We define a homomorphism
\[\rho : A' \to M'/M_0 \]
by the rule
\[\rho \left(\prod \alpha_x \right) = \sum \{p_x, \alpha_x\} + M_0. \]
Since \(\partial_x \{p_x, \alpha\} = \alpha \) and \(\partial_{x_0} \{p_x, \alpha\} = \alpha^{-1} \) for every \(x \neq x_0 \) and the product of all \(\alpha_x \) is equal to 1, the composition \(\partial' \circ \rho \) is the identity. Clearly, \(\rho \) is surjective.

45.D. Generators and relations of \(A(Q)/A' \). It remains to prove Proposition [45.6]. Let \(Q \) be a quaternion division algebra such that \(C \cong C_Q \). By Proposition [44.11], the norm homomorphism
\[\prod_{\deg x = 2} F(x)^\times \to F^\times \]
is canonically isomorphic to the norm homomorphism
\[\prod K^\times \to F^\times, \]
where the coproduct is taken over all quadratic subfields \(K \subset Q \). Note that the norm map \(N_{K/F} : K^\times \to F^\times \) is the restriction of the reduced norm \(
rd \) on \(K \). Let \(A(Q) \) be the kernel of the norm homomorphism \((45.9)\). Under the above canonical isomorphism the subgroup \(A' \) of \(\prod F(x)^\times \) corresponds to the subgroup of \(A(Q) \) (we still denote it by \(A' \)) consisting of all families \((a_K) \) satisfying \(a_K \in F^\times \) and \(\prod a_K = 1 \), i.e., \(A' \) is the intersection
of $A(Q)$ and $\prod F^\times$. Therefore Proposition 45.6 asserts that the canonical homomorphism

$$\partial_1 : M_1/M' \to A(Q)/A'$$

is an isomorphism. In the proof of Proposition 45.6 we shall construct the inverse isomorphism. In order to do so, it is convenient to have a presentation of the group $A(Q)/A'$ by generators and relations.

We define a map (not a homomorphism!)

$$Q^\times \to \left(\prod K^\times\right)/A', \ a \mapsto \tilde{a}$$

as follows. If $a \in Q^\times$ is not a scalar, it is contained in a unique quadratic subfield K of Q. Therefore, a defines an element of the coproduct $\prod K^\times$. We denote by \tilde{a} the corresponding class in $\left(\prod K^\times\right)/A'$. If $a \in F^\times$, of course, a belongs to all quadratic subfields. Nevertheless a defines a unique element \tilde{a} of the factor group $\left(\prod K^\times\right)/A'$ (we place a in any quadratic subfield). Clearly

$$\left(\tilde{a}b\right) = \tilde{a} \cdot \tilde{b} \quad \text{if } a \text{ and } b \text{ commute.}$$

(Not that we are using multiplicative notation for the operation in the factor group.) Obviously, the group $\left(\prod K^\times\right)/A'$ is an abelian group generated by the \tilde{a} for all $a \in Q^\times$ with the set of defining relations given by (45.11).

The group $A(Q)/A'$ is generated (as an abelian group) by the products $\tilde{a}_1\tilde{a}_2\cdots\tilde{a}_n$ with $a_i \in Q^\times$ and $\text{Nrd}(a_1a_2\cdots a_n) = 1$, with the following set of defining relations:

1. $\left(\tilde{a}_1\tilde{a}_2\cdots\tilde{a}_n\right) \cdot \left(\tilde{a}_{n+1}\tilde{a}_{n+2}\cdots\tilde{a}_{n+m}\right) = \left(\tilde{a}_1\tilde{a}_2\cdots\tilde{a}_{n+m}\right)$;
2. $\tilde{a}\tilde{b}(a^{-1})(b^{-1}) = 1$;
3. If a_{i-1} and a_i commute, then $\tilde{a}_1\cdots\tilde{a}_{i-1}\tilde{a}_i\cdots\tilde{a}_n = \tilde{a}_1\cdots\tilde{a}_{i-1}a_i\cdots\tilde{a}_n$.

The set of generators is too large for our purposes. In the next subsection, we shall find another presentation of $A(Q)/A'$ (Corollary 45.26). More precisely, we will define an abstract group G by generators and relations (with the “better” set of generators) and prove that G is isomorphic to $A(Q)/A'$.

45.E. The group G. Let Q be a division quaternion algebra over a field F. Consider the abelian group G defined by generators and relations as follows. The sign \ast will be used to denote the operation in G (and 1 for the identity element).

Generators: Symbols (a, b, c) for all ordered triples a, b, c of elements of Q^\times such that $abc = 1$. Note that if (a, b, c) is a generator of G then so are the cyclic permutations (b, c, a) and (c, a, b).

Relations:

(R1) : $(a, b, cd) \ast (ab, c, d) = (b, c, da) \ast (bc, d, a)$ for all $a, b, c, d \in Q^\times$ such that $abcd = 1$;

(R2) : $(a, b, c) = 1$ if a and b commute.

For an (ordered) sequence $a_1, a_2, \ldots, a_n \ (n \geq 1)$ of elements in Q^\times satisfying $a_1a_2\cdots a_n = 1$, we define a symbol

$$(a_1, a_2, \ldots, a_n) \in G$$
by induction on \(n \) as follows. The symbol is trivial if \(n = 1 \) or \(2 \). If \(n \geq 3 \), we set
\[
(a_1, a_2, \ldots, a_n) := (a_1, a_2, \ldots, a_{n-2}, a_{n-1}a_n) \ast (a_1a_2 \cdots a_{n-2}, a_{n-1}, a_n).
\]
Note that if \(a_1a_2 \ldots a_n = 1 \) then \(a_2 \ldots a_na_1 = 1 \).

Lemma 45.12. The symbols do not change under cyclic permutations, i.e., \((a_1, a_2, \ldots, a_n) = (a_2, \ldots, a_n, a_1) \) if \(a_1a_2 \ldots a_n = 1 \).

Proof. Induction on \(n \). The statement is clear if \(n = 1 \) or \(2 \). If \(n = 3 \),
\[
(a_1, a_2, a_3) = (a_1, a_2, a_3) \ast (a_1a_2, a_3, 1) \text{ (relation } R2) = (a_2, a_3, a_1) \ast (a_2a_3, 1, a_1) \text{ (relation } R1)
\]
\[
= (a_2, a_3, a_1) \text{ (relation } R2).
\]

Suppose that \(n \geq 4 \). We have
\[
(a_1, a_2, \ldots, a_n) = (a_1, \ldots, a_{n-2}, a_{n-1}a_n) \ast (a_1a_2 \cdots a_{n-2}, a_{n-1}, a_n) \text{ (definition)}
\]
\[
= (a_2, \ldots, a_{n-2}, a_{n-1}a_n, a_1) \ast (a_1a_2 \cdots a_{n-2}, a_{n-1}, a_n) \text{ (induction)}
\]
\[
= (a_2, \ldots, a_{n-2}, a_{n-1}a_n, a_1) \ast (a_2a_3 \cdots a_{n-2}, a_{n-1}a_n, a_1)
\]
\[
\ast (a_1a_2 \cdots a_{n-2}, a_{n-1}, a_n) \text{ (definition)}
\]
\[
= (a_2, \ldots, a_{n-2}, a_{n-1}a_n, a_1) \ast (a_1a_2 \cdots a_{n-2}, a_{n-1}, a_n) \text{ (case } n = 3)
\]
\[
= (a_2, \ldots, a_{n-2}, a_{n-1}a_n, a_1) \ast (a_2a_3 \cdots a_{n-2}, a_{n-1}, a_n)
\]
\[
\ast (a_1a_2 \cdots a_{n-2}, a_{n-1}, a_n) \text{ (relation } R1)
\]
\[
= (a_2, \ldots, a_{n-2}, a_{n-1}, a_1) \ast (a_2a_3 \cdots a_{n-2}, a_{n-1}, a_n) \text{ (definition)}
\]
\[
= (a_2, \ldots, a_n, a_1) \text{ (definition)}.
\]

Lemma 45.13. If \(a_1a_2 \ldots a_n = 1 \) and \(a_{i-1} \) commutes with \(a_i \) for some \(i \), then
\[
(a_1, \ldots, a_{i-1}, a_i, \ldots, a_n) = (a_1, \ldots, a_{i-1}a_i, \ldots, a_n).
\]

Proof. We may assume that \(n \geq 3 \) and \(i = n \) by Lemma [45.12]. We have
\[
(a_1, \ldots, a_{n-2}, a_{n-1}, a_n) = (a_1, \ldots, a_{n-2}, a_{n-1}a_n) \ast (a_1a_2 \cdots a_{n-2}, a_{n-1}, a_n) \text{ (definition)}
\]
\[
= (a_1, \ldots, a_{n-2}, a_{n-1}a_n) \ast (a_1a_2 \cdots a_{n-2}, a_{n-1}, a_n) \text{ (relation } R2).
\]

Lemma 45.14. \((a_1, \ldots, a_n) \ast (b_1, \ldots, b_m) = (a_1, \ldots, a_n, b_1, \ldots, b_m)\).

Proof. We induct on \(m \). By Lemma [45.13], we may assume that \(m \geq 3 \). We have
\[
L.H.S. = (a_1, \ldots, a_n) \ast (b_1, \ldots, b_{m-1}b_m) \ast (b_1b_2 \cdots b_{m-2}, b_{m-1}, b_m) \text{ (definition)}
\]
\[
= (a_1, \ldots, a_n, b_1, \ldots, b_{m-1}b_m) \ast (b_1b_2 \cdots b_{m-2}, b_{m-1}, b_m) \text{ (induction)}
\]
\[
= (a_1, \ldots, a_n, b_1, \ldots, b_m) \text{ (definition)}.
\]

As usual, we write \([a, b] \) for the commutator \(aba^{-1}b^{-1} \).
LEMMA 45.15. Let \(a, b \in Q^\times \).

(1) For every nonzero \(b' \in Fb + Fba \) one has \([a, b] = [a', b']\). Similarly, \([a, b] = [a', b']\) for every nonzero \(a' \in Fa + Fab \).

(2) For every nonzero \(b' \in Fb + Fba + Fbab \) there exists \(a' \in Q^\times \) such that \([a, b] = [a', b']\).

PROOF. (1): We have \(b' = bx \), where \(x \in F + Fa \). Hence \(x \) commutes with \(a \) so \([a, b] = [a', b']\). The proof of the second statement is similar.

(2): There is nonzero \(a' \in Fa + Fab \) such that \(b' \in Fb + Fab' \). By the first part, \([a, b] = [a', b']\).

COROLLARY 45.16. (1) Let \([a, b] = [c, d]\). Then there are \(a', b' \in Q^\times \) such that \([a, b] = [a', b'] = [c, b'] = [c, d]\).

(2) Every pair of commutators in \(Q^\times \) can be written in the form \([a, b]\) and \([c, d]\) with \(b = c \).

PROOF. (1): If \([a, b] = 1 = [c, d]\), we can take \(a' = b' = 1 \). Otherwise, both sets \\{\(b, ba, bab \)\} and \\{\(d, dc \)\} are linearly independent. Let \(b' \) be a nonzero element in the intersection of the subspaces \(Fb + Fba + Fbab \) and \(Fd + Fdc \). The statement follows from Lemma 45.15.

(2): Let \([a, b]\) and \([c, d]\) be two commutators. We may clearly assume that \([a, b] \neq 1 \neq [c, d]\), so that both sets \\{\(b, ba, bab \)\} and \\{\(c, cd \)\} are linearly independent. Choose a nonzero element \(b' \) in the intersection of \(Fb + Fba + Fbab \) and \(Fc + Fcd \). By Lemma 45.15 \([a, b] = [a', b']\) for some \(a' \in Q^\times \) and \([c, d] = [b', d]\).

LEMMA 45.17. Let \(h \in Q^\times \). The following conditions are equivalent:

(1) \(h = [a, b] \) for some \(a, b \in Q^\times \).

(2) \(h \in [Q^\times, Q^\times] \).

(3) \(\text{Nrd}(h) = 1 \).

PROOF. The implications (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) are obvious.

(3) \(\Rightarrow \) (1): Let \(K \) be a separable quadratic subfield containing \(h \). (If \(h \) is purely inseparable, then \(h^2 \in F \) and therefore \(h = 1 \).) Since \(N_{K/F}(h) = \text{Nrd}(h) = 1 \), by the classical Hilbert theorem 90, we have \(h = b b^{-1} \) for some \(b \in K^\times \). By the Noether-Skolem Theorem, \(\tilde{b} = aba^{-1} \) for some \(a \in Q^\times \).

Let \(h \in Q^\times \) satisfy \(\text{Nrd}(h) = 1 \). Then \(h = [a, b] = aba^{-1}b^{-1} \) for some \(a, b \in Q^\times \) by Lemma 45.17. Consider the following element

\[\hat{h} = (b, a, b^{-1}, a^{-1}, h) \in G. \]

LEMMA 45.18. The element \(\hat{h} \) does not depend on the choice of \(a \) and \(b \).

PROOF. Let \(h = [a, b] = [c, d] \). By Corollary 45.16(1), we may assume that either \(a = c \) or \(b = d \). Consider the first case (the latter case is similar). We can write \(d = bx \),
where x commutes with a. We have
\[
(d, a, d^{-1}, a^{-1}, h) = (bx, a, x^{-1}b^{-1}, a^{-1}, h)
\]
\[
= (bx, x^{-1}, b^{-1}) * (b, x, a, x^{-1}b^{-1}, a^{-1}, h) \quad \text{(Lemmas 45.13, 45.14)}
\]
\[
= (bx, x^{-1}, b^{-1}) * (a^{-1}, h, b, x, a, x^{-1}b^{-1}) \quad \text{(Lemma 45.12)}
\]
\[
= (a^{-1}, h, b, x, a, x^{-1}b^{-1}, bx, x^{-1}, b^{-1}) \quad \text{(Lemma 45.14)}
\]
\[
= (a^{-1}, h, b, a, b^{-1}) \quad \text{(Lemma 45.13)}
\]
\[
= (b, a, b^{-1}, a^{-1}, h) \quad \text{(Lemma 45.12)}.
\]

Lemma 45.19. For every $h_1, h_2 \in [Q^\times, Q^\times]$ we have
\[
\hat{h}_1h_2 = \hat{h}_1 \ast \hat{h}_2 \ast (h_1h_2, h_2^{-1}, h_1^{-1}).
\]

Proof. By Corollary 45.16(2), we have $h_1 = [a_1, c]$ and $h_2 = [c, b]$ for some $a_1, b_2, c \in Q^\times$. Then $h_1h_2 = [a_1b_2^{-1}, b_2cb_2^{-1}]$ and
\[
\hat{h}_1 \ast \hat{h}_2 \ast (h_1h_2, h_2^{-1}, h_1^{-1}) = (c, a_1, c^{-1}, a_1^{-1}, h_1, h_2, b_2, c, b_2^{-1}, c^{-1}) \ast (h_1h_2, h_2^{-1}, h_1^{-1})
\]
\[
= (b_2, c, b_2^{-1}, c^{-1}, a_1, c^{-1}, a_1^{-1}, h_1, h_2) \ast (h_1h_2, h_1^{-1}h_1h_2)
\]
\[
= (b_2, c, b_2^{-1}, a_1, c^{-1}, a_1^{-1}, h_1h_2)
\]
\[
= (b_2, c, b_2^{-1}, b_2c^{-1}b_2^{-1}) \ast (b_2cb_2^{-1}, a_1, c^{-1}, a_1^{-1}, h_1h_2)
\]
\[
= (b_2^{-1}, b_2c^{-1}b_2^{-1}, b_2, c) \ast (c^{-1}, a_1^{-1}, h_1h_2, b_2cb_2^{-1}, a_1)
\]
\[
= (b_2^{-1}, b_2c^{-1}b_2^{-1}, b_2, c, c^{-1}, a_1^{-1}, h_1h_2, b_2cb_2^{-1}, a_1)
\]
\[
= (b_2^{-1}, b_2c^{-1}b_2^{-1}, b_2, a_1^{-1}, h_1h_2, b_2cb_2^{-1}, a_1b_2^{-1}, a_2b_2^{-1}, a_1)
\]
\[
= (b_2^{-1}, b_2c^{-1}b_2^{-1}, b_2, a_1^{-1}, h_1h_2, b_2cb_2^{-1}, a_1b_2^{-1}, b_2c^{-1}b_2^{-1})
\]
\[
= (b_2a_1^{-1}, a_1b_2^{-1}, b_2, a_1^{-1}, h_1h_2, b_2cb_2^{-1}, a_1b_2^{-1}, b_2c^{-1}b_2^{-1})
\]
\[
= (b_2a_1^{-1}, h_1h_2, b_2cb_2^{-1}, a_1b_2^{-1}, b_2c^{-1}b_2^{-1})
\]
\[
= (b_2cb_2^{-1}, a_1b_2^{-1}, b_2c^{-1}b_2^{-1}, b_2a_1^{-1}, h_1h_2)
\]
\[
= \hat{h}_1h_2.
\]

Let $a_1, a_2, \ldots, a_n \in Q^\times$ such that $\text{Nrd}(h) = 1$ where $h = a_1a_2 \ldots a_n$. We set
\[
((a_1, a_2, \ldots, a_n)) := (a_1, a_2, \ldots, a_n, h^{-1}) \ast \hat{h} \in G.
\]

Lemma 45.20. $((a_1, a_2, \ldots, a_n)) \ast ((b_1, b_2, \ldots, b_m)) = ((a_1, \ldots, a_n, b_1, \ldots, b_m))$.

Proof. Set $h := a_1 \cdots a_n$ and $h' := b_1 \cdots b_m$. We have
\[
L.H.S. = (a_1, a_2, \ldots, a_n, h^{-1}) \ast (b_1, b_2, \ldots, b_m, (h')^{-1}) \ast \hat{h} \ast \hat{h}'
\]
\[
= (a_1, a_2, \ldots, a_n, b_1b_2, \ldots, b_m, (h')^{-1}, h^{-1}) \ast \hat{h} \ast \hat{h}'
\]
\[
= (a_1, a_2, \ldots, a_n, b_1b_2, \ldots, b_m, (hh')^{-1}) \ast (hh', (h')^{-1}, h) \ast \hat{h} \ast \hat{h}'
\]
\[
= (a_1, a_2, \ldots, a_n, b_1b_2, \ldots, b_m, (hh')^{-1}) \ast \hat{h}h' \quad \text{(Lemma 45.19)}
\]
\[
= R.H.S.
\]
The following Lemma is a consequence of the definition and Lemma 45.13.

Lemma 45.21. If \(a_{i-1} \) commutes with \(a_i \) for some \(i \), then

\[
((a_1, \ldots, a_{i-1}, a_i, \ldots, a_n)) = ((a_1, \ldots, a_{i-1}a_i, \ldots, a_n)).
\]

Lemma 45.22. \((a, b, a^{-1}, b^{-1})) = 1\).

Proof. Set \(h = [a, b] \). We have

\[
L.H.S. = (a, b, a^{-1}, b^{-1}, h^{-1}) \ast \tilde{h} = (a, b, a^{-1}, b^{-1}, h^{-1}) \ast (b, a, b^{-1}, a^{-1}, h) = 1. \quad \square
\]

We would like to establish an isomorphism between \(G \) and \(A(Q)/A' \). We define a map \(\pi : G \rightarrow A(Q)/A' \) by the formula

\[
\pi(a, b, c) = \tilde{a}\tilde{b}\tilde{c} \in A(Q)/A',
\]

where \(a, b, c \in Q^\times \) satisfy \(abc = 1 \). Clearly, \(\pi \) is well defined.

Let \(a_1, a_2, \ldots, a_n \in Q^\times \) with \(a_1a_2 \cdots a_n = 1 \). By induction on \(n \) we have

\[
\pi(a_1, a_2, \ldots, a_n) = \tilde{a}_1\tilde{a}_2 \cdots \tilde{a}_n \in A(Q)/A'.
\]

Hence \(\pi \) is a homomorphism by Lemma 45.14.

Let \(h \in [Q^\times, Q^\times] \). Write \(h = [a, b] \) for \(a, b \in Q^\times \). We have

\[
\pi(\tilde{h}) = \pi(b, a, b^{-1}, a^{-1}, h) = \tilde{h}.
\]

If \(a_1, a_2, \ldots, a_n \in Q^\times \) satisfies \(\text{Nrd}(h) = 1 \) with \(h = a_1a_2 \cdots a_n \), then

\[
\pi((a_1, a_2, \ldots, a_n)) = \pi(a_1, a_2, \ldots, a_n, h^{-1}) \ast \pi(\tilde{h}) = \tilde{a}_1\tilde{a}_2 \cdots \tilde{a}_n.
\]

Define a homomorphism \(\theta : A(Q)/A' \rightarrow G \) as follows. Let \(a_1, a_2, \ldots, a_n \in Q^\times \) satisfy \(\text{Nrd}(a_1a_2 \cdots a_n) = 1 \). We set

\[
\theta(\tilde{a}_1\tilde{a}_2 \cdots \tilde{a}_n) = ((a_1, a_2, \ldots, a_n)).
\]

The relation at the end of subsection 45.D and Lemmas 45.20, 45.21 and 45.22 show that \(\theta \) is a well defined homomorphism. Formulas (45.23) and (45.24) yield

Proposition 45.25. The maps \(\pi \) and \(\theta \) are isomorphisms inverse to each other.

Corollary 45.26. The group \(A(Q)/A' \) is generated by the products \(\tilde{a}\tilde{b}\tilde{c} \) for all ordered triples \(a, b, c \) of elements of \(Q^\times \) such that \(abc = 1 \) satisfying the following set of defining relations:

\[
(R1') \quad (\tilde{a}\tilde{b}(\tilde{c}\tilde{d})) \cdot ((\tilde{a}\tilde{b})\tilde{c}\tilde{d}) = (\tilde{b}\tilde{c}(\tilde{d}\tilde{a})) \cdot ((\tilde{d}\tilde{a})\tilde{b}\tilde{c}) \text{ for all } a, b, c, d \in Q^\times \text{ such that } abcd = 1;
\]

\[
(R2') \quad \tilde{a}\tilde{b}\tilde{c} = 1 \text{ if } a \text{ and } b \text{ commute}.
\]

45.F. Proof of Proposition 45.6. We need to prove that the homomorphism \(\partial_l \) in (45.10) is an isomorphism.

The fraction \(l_a/l_b \) for \(a, b \in Q \setminus F \) can be considered as a nonzero rational function on \(C \), i.e., \(l_a/l_b \in F(C)^\times \).

Lemma 45.27. Let \(K_0 \) be the quadratic subfield of \(Q \) corresponding to the point \(x_0 \) on \(C \) and let \(b \in K_0 \setminus F \). Then the space \(L_1 \) consists of all the fractions \(l_a/l_b \) with \(a \in Q \).

Proof. Obviously \(l_a/l_b \in L_1 \). It follows from Lemma 43.4 that the space of all fractions \(l_a/l_b \) is 3-dimensional. On the other hand, \(\dim L_1 = 3 \). \(\square \)
By Lemma 45.27, the group M' is generated by symbols of the form $\{l_a/l_b, \alpha\}$ for all $a, b \in Q \setminus F$ and $\alpha \in F^\times$ and the group M_1 is generated by symbols $\{l_a/l_b, l_c/l_d\}$ for all $a, b, c, d \in Q \setminus F$.

Let $a, b, c \in Q$ satisfy $abc = 1$. We define an element

$$[a, b, c] \in M_1/M'$$

as follows. If at least one of a, b and c belongs to F^\times we set $[a, b, c] = 0$. Otherwise the linear forms l_a, l_b and l_c are nonzero and we set

$$[a, b, c] := \left\{ \frac{l_a}{l_c}, \frac{l_b}{l_c} \right\} + M'.$$

Lemma 44.4 and the equality $\{u, -u\} = 0$ in $K_2F(C)$ yield:

Lemma 45.28. Let $a, b, c \in Q^\times$ be such that $abc = 1$ and let $\alpha \in F^\times$. Then

1. $[a, b, c] = [b, c, a]$;
2. $[\alpha a, \alpha^{-1} b, c] = [a, b, c]$;
3. $[a, b, c] + [c^{-1}, b^{-1}, a^{-1}] = 0$;
4. If a and b commute, then $[a, b, c] = 0$.

Lemma 45.29. $\partial_1([a, b, c]) = \tilde{abc}$.

Proof. We may assume that none of a, b and c is a constant. Let x, y and z be the points of C of degree 2 corresponding to quadratic subfields $F[a], F[b]$, and $F[c]$ that we identify with $F(x), F(y)$ and $F(z)$ respectively.

Consider the following element in the class $[a, b, c]$:

$$w = \left\{ \frac{l_a}{l_c}, \frac{l_b}{l_c} \right\} + \left\{ \frac{l_b}{l_c}, \text{Nrd}(a) \right\} + \left\{ \frac{l_b}{l_a}, -\text{Nrd}(b) \right\}.$$

By Proposition 44.11 (we identify residue fields with the corresponding quadratic extensions) and Lemma 44.4,

$$\partial_x(w) = \frac{l_b}{l_c}(x)(-\text{Nrd}(b))^{-1} = -\text{Nrd}(b)\frac{l_{b^{-1}}}{l_{b^{-1}a^{-1}}}(x)(-\text{Nrd}(b))^{-1} = a,$n

$$\partial_y(w) = \frac{l_c}{l_a}(y)(-\text{Nrd}(ab)) = -\text{Nrd}(a)^{-1}\frac{l_{b^{-1}a^{-1}}}{l_{a^{-1}}}(x)(-\text{Nrd}(ab))$$

$$= -\text{Nrd}(a)^{-1}\tilde{b}^{-1}(-\text{Nrd}(ab)) = b,$$

$$\partial_z(w) = -\frac{l_a}{l_b}(z)\text{Nrd}(a)^{-1} = \text{Nrd}(a)\frac{l_{bc}}{l_b}(x)\text{Nrd}(a)^{-1} = c.$$

Lemma 45.30. Let $a, b, c, d \in Q \setminus F$ be such that $cd, da \notin F$ and $abcd = 1$. Then

$$\left\{ \frac{l_{a}l_c}{l_{cd}l_{da}}, \frac{l_{bl_d}}{l_{cd}l_{da}} \right\} \in M'.$$

Proof. Plugging in Proposition 44.7 the elements c^{-1}, ab and b for a, b and c respectively and using Lemma 44.4 we get elements $\alpha, \beta, \gamma \in F^\times$ such that on the conic C,

$$\alpha l_a l_c + \beta l_{bl_d} + \gamma l_{cd} l_{da} = 0.$$
Then

\[-\frac{\alpha l_a l_c}{\gamma l_c l_d a} - \frac{\beta b l_d}{\gamma l_c l_d a} = 1\]

and

\[0 = \left\{ -\frac{\alpha l_a l_c}{\gamma l_c l_d a}, -\frac{\beta b l_d}{\gamma l_c l_d a} \right\} \equiv \left\{ \frac{l_a l_c}{l_c l_d a}, \frac{l_b l_d}{l_c l_d a} \right\} \mod M'. \]

Proposition 45.31. Let \(a, b, c, d \in Q^\times\) be such that \(abcd = 1\). Then

\([a, b, cd] + [ab, c, d] = [b, c, da] + [bc, d, a].\)

Proof. We first note that if one of the elements \(a, b, ab, c, d, cd\) belongs to \(F^\times\), the equality holds. For example, if \(a \in F^\times\) then the equality reads \([ab, c, d] = [b, c, da]\) and follows from Lemma [45.28] and if \(\alpha = ab \in F^\times\), then again by Lemma [45.28]

\[L.H.S. = 0 = [b, c, da] + [(da)^{-1}, \alpha^{-1} c^{-1}, ab^{-1}] = R.H.S.\]

So we may assume that none of the elements belong to \(F^\times\). It follows from Lemma [44.3] (4) that \(l_{cd}/l_{ab}\) and \(l_{da}/l_{bc}\) belong to \(F^\times\). By Lemmas [45.28] and [45.30] we have in \(M_1/M'\):

\[0 = \left\{ \frac{l_a l_c}{l_c l_d a}, \frac{l_b l_d}{l_c l_d a} \right\} + M'\]

\[= \left\{ \frac{l_a}{l_c}, \frac{l_b}{l_d} \right\} + \left\{ \frac{l_c}{l_d}, \frac{l_b}{l_d} \right\} + \left\{ \frac{l_a}{l_c}, \frac{l_d}{l_d} \right\} + \left\{ \frac{l_a}{l_c}, \frac{l_d}{l_d} \right\} + M'\]

\[= [a, b, cd] - [b, c, da] + \left(\left\{ \frac{l_a}{l_d}, \frac{l_d}{l_d} \right\} + \left\{ \frac{l_c}{l_d}, \frac{l_d}{l_d} \right\} \right) + \left\{ \frac{l_a}{l_d}, \frac{l_d}{l_d} \right\} + M'\]

\[= [a, b, cd] - [b, c, da] - [bc, d, a] + \left(\left\{ \frac{l_a}{l_d}, \frac{l_d}{l_d} \right\} + \left\{ \frac{l_c}{l_d}, \frac{l_d}{l_d} \right\} \right) + M'\]

\[= [a, b, cd] - [b, c, da] - [bc, d, a] + [ab, c, d]. \]

We shall use the presentation of the group \(A(Q)/A'\) by generators and relations given in Corollary [45.26]. We define a homomorphism

\[\mu : A(Q)/A' \rightarrow M_1/M'\]

by the formula

\[\mu(\tilde{abc}) = [a, b, c]\]

for all \(a, b, c \in Q\) such that \(abc = 1\). It follows from Lemma [45.28] (4) and Proposition [45.31] that \(\mu\) is well defined. Lemma [45.29] implies that \(\partial_1 \circ \mu\) is the identity.

To show that \(\mu\) is the inverse of \(\partial_1\) it is sufficient to prove that \(\mu\) is surjective.

The group \(M_1/M'\) is generated by elements of the form \(w = \{l_a/l_c, l_b/l_c\} + M'\) for \(a', b', c' \in Q \setminus F\). We may assume that \(1, a', b'\) and \(c'\) are linearly independent (otherwise, \(w = 0\)). In particular, \(1, a', b'\) and \(a'b'\) form a basis of \(Q\), hence

\[c' = \alpha + \beta a' + \gamma b' + \delta a'b'\]

for some \(\alpha, \beta, \gamma, \delta \in F\) with \(\delta \neq 0\). We have

\[(\gamma \delta^{-1} + a')(\beta + \delta b') = \varepsilon + c'\]
for \(\varepsilon = \beta \gamma \delta^{-1} - \alpha \). Set
\[
a := \gamma \delta^{-1} + a', \quad b := \beta + \delta b', \quad c := (\varepsilon + c')^{-1}.
\]
We have \(abc = 1 \). It follows from Lemma 44.4 that
\[
w = \left\{ \eta \in \frac{\mathcal{L}}{\mathcal{L}^*} \right\} + M' = \left\{ \eta \in \frac{\mathcal{L}}{\mathcal{L}^*} \right\} + M' = [a, b, c].
\]
By definition of \(\mu \), we have \(\mu(\tilde{a} \tilde{b} \tilde{c}) = [a, b, c] = w \), hence \(\mu \) is surjective. The proof of Proposition 45.6 is complete. \(\square \)

46. Hilbert theorem 90 for \(K_2 \)

In this section we prove the \(K_2 \)-analog of the classical Hilbert Theorem 90.

Let \(L/F \) be a Galois quadratic field extension with the Galois group \(G = \{1, \sigma\} \). For every field extension \(E/F \) linearly disjoint with \(L/F \), the field \(LE = L \otimes_F E \) is a quadratic Galois extension of \(E \) with Galois group isomorphic to \(G \). The group \(G \) acts naturally on \(K_2(LE) \). We write \((1 - \sigma)u\) for \(\sigma(u) - u \), \(u \in K_2(LE) \). Set
\[
\mathcal{V}(E) = K_2(LE)/(1 - \sigma)K_2(LE).
\]
If \(E \to E' \) is a homomorphism of field extensions of \(F \) linearly disjoint \(L/F \), there is a natural homomorphism
\[
\mathcal{V}(E) \to \mathcal{V}(E').
\]

Proposition 46.1. Let \(C \) be a conic curve over \(F \) and \(L/F \) a Galois quadratic field extension such that \(C \) is split over \(L \). Then the natural homomorphism \(\mathcal{V}(F) \to \mathcal{V}(F(C)) \) is injective.

Proof. Let \(u \in K_2L \) satisfy \(u_{L(C)} = (1 - \sigma)v \) for some \(v \in K_2L(C) \). For a closed point \(x \in C \) the \(L \)-algebra \(L(x) = L \otimes_F F(x) \) is isomorphic to the product of the residue fields \(L(y) \) for all closed points \(y \in C_L \) over \(x \in C \). We denote the product of \(\partial_y(v) \in L(y)^\times \) for all \(y \) over \(x \) by \(\partial_x(v) \in L(x)^\times \).

Set \(a_x = \partial_x(v) \in L(x)^\times \). We have
\[
a_x/\sigma(a_x) = \partial_x(v)/\sigma(\partial_x(v)) = \partial_x((1 - \sigma)v) = \partial_x(u_{L(C)}) = 1,
\]
i.e., \(a_x \in F(x)^\times \). By Theorem 45.1 applied to \(C_L \),
\[
\prod_{x \in C} N_{c_F(x)/F}(a_x) = c_L/F \left(\prod_{y \in C_L} c_{L(y)/L}(a_y) \right) = c_L/F \left(\prod_{y \in C_L} c_{L(y)/L}(\partial_y(v)) \right) = 1.
\]
Applying Theorem 45.1 to \(C \), there is a \(w \in K_2F(C) \) satisfying \(\partial_x(w) = a_x \) for all \(x \in C \). Set \(v' = v - w_{L(X)} \in K_L(C) \). As
\[
\partial_x(v') = \partial_x(v)\partial_x(w)^{-1} = a_xa_x^{-1} = 1,
\]
applying Theorem 45.1 to \(C_L \), there exists an \(s \in K_2L \) with \(s_{L(C)} = v' \). We have
\[
(1 - \sigma)s_{L(C)} = (1 - \sigma)v' = (1 - \sigma)v = u_{L(C)},
\]
i.e., \((1 - \sigma)s - u \) splits over \(L(C) \). Since \(L(C)/L \) is a purely transcendental extension, we have \((1 - \sigma)s - u = 0 \) (cf. Example 99.6) hence \(u = (1 - \sigma)s \in \text{Im}(1 - \sigma) \). \(\square \)
Corollary 46.2. For any finitely generated subgroup $H \subset F^\times$, there is a field extension F'/F linearly disjoint to L/F such that the natural homomorphism $V(F) \to V(F')$ is injective and $H \subset c_{L/F}(L^\times)$ where $L' = LF'$.

Proof. By induction it suffices to assume that H is generated by one element b. Set $F' = F(C)$, where $C = C_Q$ is the conic curve associated with the quaternion algebra $Q = \left(\frac{a,b}{F} \right)$, where $a \in F^\times$ satisfies $L = F(\sqrt{a})$. Since Q is split over F', we have $b \in c_{L'/F'}(L'^\times)$ by Example 97.13(4). The conic C is split over L, therefore, the homomorphism $V(F) \to V(F')$ is injective by Proposition 46.1.

For any two elements $x, y \in L^\times$, we write $\langle x, y \rangle$ for the class of the symbol $\{x, y\}$ in $V(F)$. Let f be the group homomorphism

$$f = f_F : c_{L/F}(L^\times) \otimes F^\times \to V(F), \quad f(c_{L/F}(x) \otimes a) = \langle x, a \rangle.$$

The map f is well defined. Indeed, if $c_{L/F}(x) = c_{L/F}(y)$ for $x, y \in L^\times$ then $y = xz\sigma(z)^{-1}$ for some $z \in L^\times$ by the classical Hilbert theorem 90. Hence $\{y, a\} = \{x, a\} + (1 - \sigma)\{z, a\}$ and consequently $\langle y, a \rangle = \langle x, a \rangle$.

Lemma 46.3. Let $b \in c_{L/F}(L^\times)$. Then $f(b \otimes (1 - b)) = 0$.

Proof. If $b = d^2$ for some $d \in F^\times$ then

$$f(b \otimes (1 - b)) = \langle d, 1 - d^2 \rangle = \langle d, 1 - d \rangle + \langle d, 1 + d \rangle = \langle -1, 1 + d \rangle = 0$$

since $-1 = z\sigma(z)^{-1}$ for some $z \in L^\times$.

Now assume that b is not a square in F. Set

$$F' = F[t]/(t^2 - b), \quad L' = L[t]/(t^2 - b).$$

Note that L' is either a field or product of two copies of the field F'. Let $u \in F'$ be the class of t, so that $u^2 = b$. Choose $x \in L^\times$ with $c_{L/F}(x) = b$. Note that $c_{L'/F'}(\frac{x}{u}) = \frac{b}{u^2} = 1$ and $c_{L'/L}(1 - u) = 1 - b$.

The automorphism σ extends to an automorphism of L' over F'. Applying the classical Hilbert Theorem 90 to the extension L'/F', there is a $v \in L'^\times$ such that $v\sigma(v)^{-1} = x/u$. We have

$$f(b, 1 - b) = \langle x, 1 - b \rangle = \langle x, c_{L'/L}(1 - u) \rangle = c_{L'/L}(x, 1 - u) = c_{L'/L}(\langle \frac{x}{u}, 1 - u \rangle) = c_{L'/L}(\langle v\sigma(v)^{-1}, 1 - u \rangle) = (1 - \sigma)c_{L'/L}(\langle v, 1 - u \rangle) = 0.$$

\box

Theorem 46.4 (Hilbert Theorem 90 for K_2). Let L/F be a Galois quadratic extension and σ the generator of $\text{Gal}(L/F)$. Then the sequence

$$K_2L \xrightarrow{1-\sigma} K_2L \xrightarrow{c_{L/F}} K_2F$$

is exact.

Proof. Let $u \in K_2L$ satisfy $c_{L/F}(u) = 0$. By Proposition 99.2, the group K_2L is generated by symbols of the form $\{x, a\}$ with $x \in L^\times$ and $a \in F^\times$. Therefore we can write

$$u = \sum_{j=1}^m \{x_j, a_j\}$$
for some \(x_j \in L^\times \) and \(a_j \in F^\times \), and
\[
c_{L/F}(u) = \sum_{j=1}^{m} \{ c_{L/F}(x_j), a_j \} = 0.
\]
Hence by definition of \(K_2 F \), we have in \(F^\times \otimes F^\times \):
\[
(46.5) \quad \sum_{j=1}^{m} c_{L/F}(x_j) \otimes a_j = \sum_{i=1}^{n} \pm (b_i \otimes (1 - b_i))
\]
for some \(b_i \in F^\times \). Clearly, the equality (46.5) holds in \(H \otimes F^\times \) for some finitely generated subgroup \(H \subset F^\times \) containing all the \(c_{L/F}(x_j) \) and \(b_i \).

By Corollary 46.2, there is a field extension \(F'/F \) such that the natural homomorphism \(V(F) \rightarrow V(F') \) is injective and \(H \subset c_{L'/F'}(L'^\times) \) where \(L' = LF' \). The equality (46.5) then holds in \(c_{L'/F'}(L'^\times) \otimes F'^\times \). Now we apply the map \(f_{F'} \) to both sides of (46.5). By Lemma 46.3, the class of \(u_{L'} \) in \(V(F') \) is equal to
\[
\sum_{j=1}^{m} \langle x_j, a_j \rangle = f_{F'}(\sum_{j=1}^{m} c_{L/F}(x_j) \otimes a_j) = \sum_{i=1}^{n} \pm f_{F'}(b_i \otimes (1 - b_i)) = 0,
\]
i.e., \(u_{L'} \in (1 - \sigma)K_2 L' \). Since the map \(V(F) \rightarrow V(F') \) is injective, we conclude that \(u \in (1 - \sigma)K_2 L \).

Theorem 46.6. Let \(u \in K_2 F \) satisfy \(2u = 0 \). Then \(u = \{-1, a\} \) for some \(a \in F^\times \). In particular, \(u = 0 \) if \(\text{char}(F) = 2 \).

Proof. Let \(G = \{1, \sigma\} \). Consider a \(G \)-action on the field \(L = F((t)) \) of Laurent power series defined by
\[
\sigma(t) = \begin{cases}
-t & \text{if } \text{char} F \neq 2; \\
\frac{t}{1+t} & \text{if } \text{char} F = 2.
\end{cases}
\]
We have a quadratic Galois extension \(L/E \) where \(E = L^G \).

Consider the diagram
\[
\begin{array}{ccc}
K_2 L & \xrightarrow{1-\sigma} & K_2 L \\
\partial \downarrow & & \downarrow s \\
F^\times & \xrightarrow{(-1)} & K_2 F,
\end{array}
\]
where \(\partial \) is the residue homomorphism of the canonical discrete valuation of \(L \), the map \(s = s_t \) is the specialization homomorphism of the parameter \(t \) (cf. [99.1]), and the bottom homomorphism is multiplication by \(\{-1\} \). We claim that the diagram is commutative. The group \(K_2 L \) is generated by elements of the form \(\{f, g\} \) and \(\{t, g\} \) with \(f \) and \(g \) in \(F[[t]] \) having nonzero constant term. If \(\text{char} F \neq 2 \), we have
\[
s \circ (1 - \sigma)(\{f, g\}) = s(\{f, g\} - \{\sigma f, \sigma g\})
\]
\[
= \{f(0), g(0)\} - \{(\sigma f)(0), (\sigma g)(0)\}
\]
\[
= 0 = \{-1\} \cdot \partial\{f, g\}
\]
and

\[s \circ (1 - \sigma)(\{t, g\}) = s(\{-t, g\} - \{t, \sigma g\}) = \{-1, g(0)\} = \{-1\} \cdot \partial\{t, g\}. \]

If \(\text{char } F = 2 \), we obviously have \(s(u) = s(\sigma u) \) for every \(u \in K_2L \), hence \(s \circ (1 - \sigma) = 0 \).

Since \(c_{L/F}(u_L) = 2u_E = 0 \), by Theorem [46.4] we have \(u = (1 - \sigma)v \) for some \(v \in K_2L \). The commutativity of the diagram yields

\[u = s(u_L) = s((1 - \sigma)v) = \{-1, \partial(v)\}. \]

\[\square \]

47. Proof of the main theorem

In this section we prove Theorem [43.10]

47.A. Injectivity of \(h_F \).

From now on we assume that \(F \) is a field of characteristic different from 2. Let \(h_F(u + 2K_2F) = 1 \) for an element \(u \in K_2F \). Let \(u \) be a sum of \(n \) symbols. We prove by induction on \(n \) that \(u \in 2K_2F \).

First consider the case \(n = 1 \), i.e., \(u = \{a, b\} \). Since \(\left(\begin{array}{c} a \, b \\ F \end{array} \right) \) is a split quaternion algebra, there are \(x, y \in F \) such that \(ax^2 + by^2 = 1 \). If \(x = 0 \), we have \(by^2 = 1 \), i.e., \(b \) is a square, therefore, \(\{a, b\} \in 2K_2F \). The case \(x = 0 \) is similar. Thus we may assume that \(x \) and \(y \) are nonzero. Then

\[0 = \{ax^2, by^2\} \equiv \{a, b\} \pmod{2K_2F}, \]

hence \(\{a, b\} \in 2K_2F \).

Next consider the case \(n = 2 \), i.e. \(u = \{a, b\} + \{c, d\} \). By assumption, the algebra \(\left(\begin{array}{cc} a, b \\ F \end{array} \right) \otimes \left(\begin{array}{cc} c, d \\ F \end{array} \right) \) is split, or equivalently, \(\left(\begin{array}{cc} a, b \\ F \end{array} \right) \) and \(\left(\begin{array}{cc} c, d \\ F \end{array} \right) \) are isomorphic. By Chain Lemma [97.15] we may assume that \(a = c \) and hence \(u = \{a, bd\} \) and the statement follows from the case \(n = 1 \).

Now consider the general case. Write \(u \) in the form \(u = \{a, b\} + v \) for \(a, b \in F^\times \) and an element \(v \in K_2F \) that is a sum of \(n - 1 \) symbols. Let \(C = C_Q \) be the conic curve over \(F \) corresponding to the quaternion algebra \(Q = \left(\begin{array}{cc} a, b \\ F \end{array} \right) \) and set \(L = F(C) \). The conic \(C \) is given by the equation

\[aX^2 + bY^2 = abZ^2 \]

in the projective coordinates. Set \(x = \frac{X}{Z} \) and \(y = \frac{Y}{Z} \). Since \(\frac{x^2}{b} + \frac{y^2}{a} = 1 \), we have

\[0 = \left\{ \frac{x^2}{b}, \frac{y^2}{a} \right\} = 2\left\{ x, \frac{y^2}{a} \right\} - 2\{b, y\} - \{a, b\} \]

and therefore \(\{a, b\} = 2r \) in \(K_2L \) with \(r = \{x, \frac{y^2}{a}\} - \{b, y\} \). Let \(p \in C \) be the degree 2 point given by \(Z = 0 \). The element \(r \) has only one nontrivial residue at the point \(p \) and \(\partial_p(r) = -1 \).
Since the quaternion algebra $\left(\frac{a, b}{F} \right)$ is split over L, we have $h_L(v_L + 2K_2L) = 1$. By induction, $v_L = 2w$ for some element $w \in K_2L$.

Set $c_x = \partial_x(w)$ for every point $x \in C$. Since

$$c_x^2 = \partial_x(2w) = \partial_x(v_L) = 1,$$

we have $c_x = (-1)^{n_x}$ for $n_x = 0$ or 1. The degree of every point of C is even, hence

$$\sum_{x \in C} n_x \deg(x) = 2m$$

for some $m \in \mathbb{Z}$. Since every degree zero divisor on C is principal, there is a function $f \in L^\times$ with the degree zero divisor $\sum n_x x - mp$. Set

$$w' = w + \{-1, f\} + kr \in K_2L$$

where $k = m + n_p$. If $x \in C$ is a point different from p, we have

$$\partial_x(w') = \partial_x(w) \cdot (-1)^{n_x} = 1.$$

Since also

$$\partial_p(w') = \partial_p(w) \cdot (-1)^m \cdot (-1)^k = (-1)^{n_p+m+k} = 1,$$

we have $\partial_x(w') = 1$ for all $x \in C$. By Theorem [45.1], it follows that $w' = s_L$ for some $s \in K_2F$. Hence

$$v_L = 2w = 2w' - 2kr = 2s_L - \{a^k, b\}_L.$$

Set $v' = v - 2s + \{a^k, b\} \in K_2F$; we have $v'_L = 0$. The conic C splits over the quadratic extension $E = F(\sqrt{a})$. The field extension E/C is purely transcendental and $v'_E = 0$. Hence $\partial_{E(C)}(v') = 0$ (see Example [99.6] and therefore $2v' = N_{E/F}(v'_E) = 0$. By Theorem [46.6], $v' = \{-1, d\}$ for some $d \in F^\times$. Hence modulo $2K_2F$ the element v is the sum of two symbols $\{a^k, b\}$ and $\{-1, d\}$. Thus we are reduced to the case $n = 2$ that has already been considered. \hfill \qed

47.B. Surjectivity of h_F. We write k_2F for $K_2F/2K_2F$.

Proposition 47.1. Let L/F be a quadratic extension. Then the sequence

$$k_2F \xrightarrow{r_{L/F}} k_2L \xrightarrow{c_{L/F}} k_2F$$

is exact.

Proof. Let $u \in K_2L$ such that $c_{L/F}(u) = 2v$ for some $v \in K_2F$. Then $c_{L/F}(u - v_L) = 2v - 2v = 0$ and by Theorem [46.4] we have $u - v_L = (1 - \sigma)w$ for some $w \in K_2L$. Hence

$$u = v_L + (1 - \sigma)w = (v + c_{L/F}(w))_L - 2\sigma w. \hfill \qed$$

We now finish the proof of Theorem [43.10]. Let $s \in Br_2F$. Suppose first that the field F is 2-special (cf. [100.B]). By induction on the index of s we prove that $s \in \text{Im}(h_F)$. By Proposition [100.15], there exists a quadratic extension L/F such that $\text{ind}(s_L) < \text{ind}(s)$. By induction, $s_L = h_L(u)$ for some $u \in k_2L$. By Proposition [100.9], we have

$$h_F(c_{L/F}(u)) = c_{L/F}(h_L(u)) = c_{L/F}(s_L) = 1.$$
It follows from the injectivity of h_F that $c_{L/F}(u) = 0$ and by Proposition 47.1, we have $u = v_L$ for some $v \in k_2 F$. Then

$$h_F(v)_L = h_L(v_L) = h_L(u) = s_L$$

hence $s - h_F(v)$ is split over L and therefore it is the class of a quaternion algebra. Thus $s - h_F(v) = h_F(w)$, where $w \in k_2 F$ is a symbol and $s = h_F(v + w) \in \text{Im}(h_F)$.

In the general case, by the first part of the proof applied to a maximal odd degree extension of F (cf. 100.13 and Proposition 100.16), there exists an odd degree extension E/F such that $s_E = h_E(v)$ for some $v \in k_2 E$. Then again by Proposition 100.9

$$s = c_{E/F}(s_E) = c_{E/F}(h_E(v)) = h_F(c_{E/F}(v)).$$

□

NOTES:

Theorem 43.10 was originally proven in [43]. The proof used a specialization argument reducing the problem to the study of the function field of a conic curve and a comparison theorem of Suslin [57] on behavior of the norm residue homomorphism over the function field of a conic curve.

The “elementary” proof presented in this chapter does not rely on a specialization argument nor on higher K-theory. The key point of the proof is Theorem 45.1. It is also a consequence of Quillen’s computation of higher K-theory of a conic curve [51, §8, Th. 4.1] and a theorem of Rehmann and Stuhler on the group K_2 of a quaternion algebra given in [52].

Other “elementary” proofs of the bijectivity of h_F, avoiding higher K-theory, but still using a specialization argument were given in [2] and [63].
Part

Algebraic cycles
CHAPTER IX

Homology and cohomology

The word “scheme” in the book always means a separated scheme and a “variety” is an integral scheme.

In this chapter we develop the K-homology and K-cohomology theories of schemes over a field generalizing the Chow groups. We follow the approach of [53] given by Rost. There are two advantages of having such theories rather than just the Chow groups. First we have a long (infinite) localization exact sequence. This tool together with the 5-lemma allows us to give simple proofs of some basic results in the theory such as the Homotopy Invariance and Projective Bundle Theorems. Secondly, the construction of the deformation map (called the specialization homomorphism in [17]), used in the definition of the pull-back homomorphisms, is much easier – it does not require intersections with Cartier divisors.

The K-homology is viewed as a covariant functor from the category of schemes of finite type over a field to the category of abelian groups and the K-cohomology is a contravariant functor from the category of smooth schemes of finite type over a field. The fact that K-homology groups for smooth schemes coincide with K-cohomology groups should be viewed as Poincaré duality.

48. The complex $C_*(X)$

The purpose of this section is to construct complexes $C_*(X)$ giving the homology and cohomology theories that we need.

Throughout this section, we consider the class of excellent schemes of finite dimension. A Noetherian scheme X is called excellent if the local ring $O_{X,x}$ is excellent for every $x \in X$ [42]. The class of excellent schemes of finite dimension contains:

1. Schemes of finite type over a field.
2. Closed and open subschemes of excellent schemes.
3. Spec $O_{X,x}$ where x is a point of a scheme X of finite type over a field.
4. Spec R where R is a complete Noetherian local ring.

We shall use the following properties of excellent schemes:

A. If X is excellent integral then the normalization morphism $\tilde{X} \to X$ is finite and \tilde{X} is excellent.

B. An excellent scheme X is catenary, i.e., given irreducible closed subschemes $Z \subset Y \subset X$, all maximal chains of closed irreducible subsets between Z and Y have the same length.

C. If R is a local excellent ring and \widehat{R} is its completion then the induced morphism Spec $\widehat{R} \to$ Spec R is flat.
If x is a point of a scheme X, we write $\kappa(x)$ for the residue field of x (and we shall use the standard notation $F(x)$ when X is a scheme over a field F). We write $\dim x$ for the dimension of the closure $\{x\}$ and $X(p)$ for the set of point of X of dimension p.

An integral scheme is called a variety.

48.A. Residue homomorphism for local rings. Let R be a 1-dimensional local excellent domain with quotient field L and residue field E. Let \tilde{R} denote the integral closure of R in L. The ring \tilde{R} is semilocal, 1-dimensional, and finite as R-algebra. Let M_1, M_2, \ldots, M_n be all maximal ideals of \tilde{R}. Each localization \tilde{R}_{M_i} is integrally closed, Noetherian and 1-dimensional hence a DVR. Denote by v_i the discrete valuation of \tilde{R}_{M_i} and by E_i its residue field. The field extension E_i/E is finite. We define the residue homomorphism

$$\partial_R : K_*(L) \to K_{*-1}(E),$$

where K_* denotes the Milnor K-groups (Appendix 99), by the formula

$$\partial_R = \sum_{i=1}^n c_{E_i/E} \circ \partial_{v_i},$$

where

$$\partial_{v_i} : K_*(L) \to K_{*-1}(E_i)$$

is the residue homomorphism associated with the discrete valuation v_i on L (cf. (98.D)) and

$$c_{E_i/E} : K_{*-1}(E_i) \to K_{*-1}(E)$$

is the norm homomorphism (cf. (99.E)).

Let X be an excellent scheme. For every pair of points $x, x' \in X$, we define a homomorphism

$$\partial_{x'}^\alpha : K_*\kappa(x) \to K_*\kappa(x')$$

as follows. Let Z be the closure of $\{x\}$ in X considered as a reduced closed subscheme of X. If $x' \in Z$ (in this case we say that x' is a specialization of x) and $\dim x = \dim x' + 1$, then the local ring $R = O_{Z,x'}$ is a 1-dimensional excellent local domain with quotient field $\kappa(x)$ and residue field $\kappa(x')$. We set $\partial_{x'}^\alpha = \partial_R$. Otherwise $\partial_{x'}^\alpha = 0$.

Lemma 48.1. Let X be an excellent scheme of finite dimension. For each $x \in X$ and every $\alpha \in K_*\kappa(x)$ the residue $\partial_{x'}^\alpha(\alpha)$ is nontrivial for only finitely many points $x' \in X$.

Proof. We may assume that $X = \text{Spec } A$ where A is an integrally closed domain, x is the generic point of X and $\alpha = \{a_1, a_2, \ldots, a_n\}$ with nonzero $a_i \in A$. For every point $x' \in X$ of codimension 1, let $v_{x'}$ be the corresponding discrete valuation of the quotient field of A. For each i, there is a bijection between the set of all x' satisfying $v_{x'}(a_i) \neq 0$ and the set of minimal prime ideals of the (Noetherian) ring A/a_iA and hence is finite. Thus, for all but finitely many x' we have $v_{x'}(a_i) = 0$ for all i and therefore $\partial_{x'}^\alpha(\alpha) = 0$. □

It follows from Lemma 48.1 that there is a well defined endomorphism $d = d_X$ of the direct sum

$$C(X) := \prod_{x \in X} K_*\kappa(x)$$

such that the (x, x')-component of d is equal to $\partial_{x'}^\alpha$.
Example 48.2. Let X be an excellent scheme of finite dimension, $x \in X$, and $f \in \kappa(x)^\times$. We view f as an element of $K_1\kappa(x) \subset C(X)$. Then the element

$$d_X(f) \in \coprod_{x \in X} K_0\kappa(x) \subset C(X)$$

is called the *divisor* of f and is denoted by $\text{div}(f)$.

The group $C(X)$ is graded: we write for any $p \geq 0$,

$$C_p(X) := \coprod_{x \in X_{(p)}} K_0^{*}\kappa(x).$$

The endomorphism d of $C^{*}(X)$ has degree -1 with respect to this grading. We also set

$$C_{p,n}(X) := \coprod_{x \in X_{(p)}} K_{p+n}^{*}\kappa(x),$$

hence $C_p(X)$ is the coproduct of $C_{p,n}(X)$ over all n. Note that the graded group $C^{*},n(X)$ is invariant under d_X for every n.

Let X be a scheme over a field F. Then the group $C_p(X)$ has a natural structure of a left and right $K^{*}F$-module for all p and d_X is a homomorphism of right $K^{*}F$-modules.

If X is the disjoint union of two schemes X_1 and X_2, we have

$$C^{*}(X) = C^{*}(X_1) \oplus C^{*}(X_2)$$

and $d_X = d_{X_1} \oplus d_{X_2}$.

48.B. Multiplication with an invertible function. Let a be an invertible regular function on an excellent scheme X. For every $\alpha \in C^{*}(X)$, we write $\{a\} \cdot \alpha$ for the element of $C^{*}(X)$ satisfying

$$\{(a) \cdot \alpha\}_x = \{a(x)\} \cdot \alpha_x$$

for every $x \in X$. We denote by $\{a\}$ the endomorphism of $C^{*}(X)$ given by $\alpha \mapsto \{a\} \cdot \alpha$.

The product $\alpha \cdot \{a\}$ is defined similarly.

Let a_1, a_2, \ldots, a_n be invertible regular functions on an excellent scheme X. We write $\{a_1, a_2, \ldots, a_n\} \cdot \alpha$ for the product $\{a_1\} \cdot \{a_2\} \cdot \ldots \cdot \{a_n\} \cdot \alpha$ and $\{a_1, a_2, \ldots, a_n\}$ for the endomorphism of $C^{*}(X)$ given by $\alpha \mapsto \{a_1, a_2, \ldots, a_n\} \cdot \alpha$.

Proposition 48.3. Let a be an invertible function on an excellent scheme X and $\alpha \in C^{*}(X)$. Then

$$d_X(\alpha \cdot \{a\}) = d_X(\alpha) \cdot \{a\} \quad \text{and} \quad d_X(\{a\} \cdot \alpha) = -\{a\} \cdot d_X(\alpha).$$

Proof. The statement follows from Proposition 99.4(1) and the projection formula for the norm map in Proposition 99.8(3).

By Proposition 99.1 it follows that

$$\{a_1, a_2\} = -\{a_2, a_1\} \quad \text{and} \quad \{a_1, a_2\} = 0 \quad \text{if} \quad a_1 + a_2 = 1.$$
48.C. Push-forward homomorphisms. Let \(f : X \to Y \) be a morphism of excellent schemes. We define the **push-forward homomorphism**

\[
f_* : C_*(X) \to C_*(Y)
\]
as follows. Let \(x \in X \) and \(y \in Y \). If \(y = f(x) \in Y \) and the field extension \(\kappa(x)/\kappa(y) \) is finite we set

\[
(f_*)_y^x := c_{\kappa(x)/\kappa(y)} : K_\kappa(x) \to K_\kappa(y)
\]
and \((f_*)_y^x = 0\) otherwise. It follows from transitivity of the norm map that if \(g : Y \to Z \) is another morphism then \((g \circ f)_* = g_* \circ f_*\).

If either

1. \(f \) is a morphism of schemes of finite type over a field or
2. \(f \) is a finite morphism,

the push-forward \(f_* \) is a graded homomorphism of degree 0. Indeed if \(y = f(x) \) then \(\dim y = \dim x \) if and only if \(\kappa(x)/\kappa(y) \) is a finite extension for all \(x \in X \).

If \(f \) is a morphism of schemes over a field \(F \) then \(f_* \) is a homomorphism of left and right \(K_\kappa F \)-modules.

Example 48.4. If \(f : X \to Y \) is a closed embedding then \(f_* \) is a monomorphism satisfying \(f_* \circ d_X = d_Y \circ f_* \). Moreover, if in addition \(f \) is a bijection on points (e.g., if \(f \) is the canonical morphism \(Y_{\text{red}} \to Y \)) then \(f_* \) is an isomorphism.

Remark 48.5. Let \(X \) be a localization of a scheme \(Y \) (e.g., \(X \) is an open subscheme of \(Y \)) and \(f : X \to Y \) the natural morphism. For every point \(x \in X \), the natural ring homomorphism \(O_{Y,f(x)} \to O_{X,x} \) is an isomorphism. It follows from definitions that for any \(x, x' \in X \), we have

\[
(f_* \circ d_X)_{y'}^x = (f_* \circ d_X)_{y'}^{x'} = (d_Y)_{y'}^{y} \circ (f_*)^{x}\]

where \(y = f(x) \) and \(y' = f(x') \). Note that if \(y'' \in Y \) does not belong to the image of \(f \) then \((f_* \circ d_X)_{y''}^x = 0\) but in general \((d_Y \circ f_*)_{y''}^x \) may be nonzero.

The following rule is a consequence of the projection formula for Milnor’s \(K \)-groups.

Proposition 48.6. Let \(f : X \to Y \) be a morphism of schemes and let \(a \) be an invertible regular function on \(Y \). Then

\[
f_* \circ \{a'\} = \{a\} \circ f_*
\]

where \(a' = f^*(a) = a \circ f \).

Proposition 48.7. Let \(f : X \to Y \) be either

1. a proper morphism of schemes of finite type over a field or
2. a finite morphism.

Then the diagram

\[
\begin{array}{ccc}
C_p(X) & \xrightarrow{d_X} & C_{p-1}(X) \\
\downarrow f_* & & \downarrow f_* \\
C_p(Y) & \xrightarrow{d_Y} & C_{p-1}(Y)
\end{array}
\]
is commutative.
Proof. Let \(x \in X(p) \) and \(y' \in Y(p-1) \). The \((x, y')\)-component of both compositions in the diagram can be nontrivial only if \(y' \) belongs to the closure of the point \(y = f(x) \), i.e., if \(y' \) is a specialization of \(y \). We have
\[
p = \dim x \geq \dim y \geq \dim y' = p - 1,
\]
therefore, \(\dim y \) can be either equal to \(p \) or \(p - 1 \). Note that if \(f \) is finite then \(\dim y = p \).

Case 1. \(\dim(y) = p \):
In this case, the field extension \(\kappa(x)/\kappa(y) \) is finite. Replacing \(X \) by the closure of \(\{x\} \) and \(Y \) by the closure of \(\{y\} \) we may assume that \(x \) and \(y \) are the generic points of \(X \) and \(Y \) respectively.

First suppose that \(X \) and \(Y \) are normal. Since the morphism \(f \) is proper, the points \(x' \in X_{p-1} \) satisfying \(f(x') = y' \) are in a bijective correspondence with the extensions of the valuation \(v_{y'} \) of the field \(\kappa(y) \) to the field \(\kappa(x) \). Hence by Proposition 99.8(4),
\[
(d_Y \circ f_*)^{x'} = \partial^y_{y'} \circ C_{\kappa(x)/\kappa(y)} = \sum_{f(x') = y'} c_{\kappa(x')/\kappa(y')} \circ \partial^x_{x'},
\]
\[
= \sum_{f(x') = y'} (f_*)^{x'} \circ (d_X)^{x'} = (f_* \circ d_X)^{y'}.
\]

In the general case let \(g : \tilde{X} \to X \) and \(h : \tilde{Y} \to Y \) be the normalizations and let \(\tilde{x} \) and \(\tilde{y} \) be the generic points of \(\tilde{X} \) and \(\tilde{Y} \) respectively. Note that \(\kappa(\tilde{x}) \simeq \kappa(x) \) and \(\kappa(\tilde{y}) \simeq \kappa(y) \). There is a natural morphism \(\tilde{f} : \tilde{X} \to \tilde{Y} \) over \(f \).

Consider the following diagram

\[
\begin{array}{ccc}
K_*\kappa(\tilde{x}) & \xrightarrow{d_{\tilde{g}}} & C_{p-1}(\tilde{X}) \\
\downarrow c_{\kappa(\tilde{x})/\kappa(\tilde{y})} & & \sim \downarrow g_* \\
K_*\kappa(\tilde{y}) & \xrightarrow{d_{\tilde{f}}} & C_{p-1}(\tilde{Y}) \\
\downarrow c_{\kappa(x)/\kappa(y)} & & \sim \downarrow f_* \\
K_*\kappa(x) & \xrightarrow{d_X} & C_{p-1}(X) \\
\downarrow h_* & & \downarrow \ \\
K_*\kappa(y) & \xrightarrow{d_Y} & C_{p-1}(Y)
\end{array}
\]

By the first part of the proof, the back face of the diagram is commutative. The left face is obviously commutative. The right face is commutative by functoriality of the pushforward. The upper and the bottom faces are commutative by definition of the maps \(d_X \) and \(d_Y \). Hence the front face is also commutative, i.e., the \((x, y')\)-components of the compositions \(f_* \circ d_X \) and \(d_Y \circ f_* \) coincide.

Note that we have proved the proposition in the case when \(f \) is finite. Before proceeding to Case 2, a corollary we also deduce
Theorem 48.8 (Weil’s Reciprocity Law). Let X be a complete integral curve over a field F. Then the composition

$$K^{*+1}_F(X) \xrightarrow{d_X} \coprod_{x \in X(0)} K_\kappa(x) \xrightarrow{\sum c_\kappa(x)/F} K_\kappa$$

is trivial.

Proof. The case $X = \mathbb{P}^1_F$ follows from Theorem 99.7. The general case can be reduced to the case of the projective line as follows. Let f be a nonconstant rational function on X. We view f as a finite morphism $f : X \to \mathbb{P}^1_F$ over F. By the first case of the proof of Proposition 48.7, the left square of the diagram

$$
\begin{array}{ccc}
K^{*+1}_F(X) & \xrightarrow{d_X} & \coprod_{x \in X(0)} K_\kappa(x) \xrightarrow{\sum c_\kappa(x)/F} K_\kappa \\
\downarrow f_* & & \downarrow f_* \\
K^{*+1}_F(\mathbb{P}^1) & \xrightarrow{d_{\mathbb{P}^1}} & \coprod_{y \in \mathbb{P}^1(0)} K_\kappa(y) \xrightarrow{\sum c_\kappa(y)/F} K_\kappa \\
\end{array}
$$

is commutative. The right square is commutative by the transitivity property of the norm map. Finally, the statement of the theorem follows from the commutativity of the diagram. \qed

Weil’s Reciprocity Law can be reformulated as follows:

Corollary 48.9. Proposition 48.7 holds for the structure morphism $X \to \text{Spec } F$.

We return to the proof of Proposition 48.7.

Case 2. $\dim(y) = p - 1$.

In this case $y' = y$. We replace Y by $\text{Spec } \kappa(y)$ and X by the fiber $X \times_Y \text{Spec } \kappa(y)$ of f over y. We can further replace X by the closure of x in X. Thus, X is a proper integral curve over the field $\kappa(y)$ and the result follows from Corollary 48.9. \qed

48.D. Pull-back homomorphisms. Let $g : Y \to X$ be a flat morphism of excellent schemes. We say that g is of relative dimension d if for every $x \in X$ in the image of g and for every generic point y of $g^{-1}(\{x\})$ we have $\dim y = \dim x + d$.

In what follows in the book all flat morphisms are of constant relative dimension.

Let $g : Y \to X$ be a flat morphism of relative dimension d. For every point $x \in X$, denote by Y_x the fiber scheme

$$Y \times_X \text{Spec } \kappa(x)$$

over $\kappa(x)$. We identify the underlying topological space of Y_x with a subspace of X.

The following statement is a consequence of the going-down theorem [42, ??].

Lemma 48.10. For every $x \in X$ we have:

1. $\dim y \leq \dim x + d$ for every $y \in Y_x$;
2. A point $y \in Y_x$ is generic in Y_x if and only if $\dim y = \dim x + d$.

If \(y \) is a generic point of \(Y_x \), the local ring \(O_{Y_x,y} \) is Noetherian 0-dimensional and hence is Artinian. We define the \textit{ramification index of} \(y \) by
\[
e_y(f) := l(O_{Y_x,y}),
\]
where \(l \) denotes the length (cf. Appendix [101]).

The \textit{pull-back homomorphism}
\[
g^* : C_*(X) \to C_{*+d}(Y)
\]
is defined as follows. Let \(x \in X \) and \(y \in Y \). If \(g(y) = x \) and \(y \) is a generic point of \(Y_x \), we set
\[
(g^*)_y^x := e_y(g) \cdot r_{\kappa(y)/\kappa(x)} : K_\kappa(x) \to K_\kappa(y)
\]
where \(r_{\kappa(y)/\kappa(x)} \) is the restriction homomorphism (cf. Appendix [99.A]) and \((g^*)_y^x = 0 \) otherwise.

\textbf{Example 48.11}. Let \(Z \subset X \) be a closed subscheme and let \(z_1, z_2, \ldots \) be all of the generic points of \(Z \). We set
\[
[Z] := \sum m_i z_i \in \prod_{x \in X} K_0 \kappa(x) \subset C_*(X),
\]
where \(m_i = l(O_{Z,z_i}) \) is the length of the local ring \(O_{Z,z_i} \). The element \([Z] \) is called the \textit{cycle of} \(Z \) on \(X \).

Suppose that \(Z \) is of pure dimension \(d \) over a field \(F \). The structure morphism \(p : Z \to \text{Spec} F \) is flat of relative dimension \(d \). The image of the identity under the composition
\[
p^* : Z = K_0(F) = C_{0,0}(\text{Spec} F) \xrightarrow{p^*} C_{d,-d}(Z) \xrightarrow{i^*} C_{d,-d}(X),
\]
where \(i : Z \to X \) is the closed embedding, is equal to \([Z] \).

\textbf{Example 48.12}. Let \(p : E \to X \) be a vector bundle of rank \(r \). Then \(p \) is a flat morphism of relative dimension \(r \) and \(p^*([X]) = [E] \).

\textbf{Example 48.13}. Let \(X \) be a scheme of finite type over \(F \) and let \(L/F \) be an arbitrary field extension. The natural morphism \(g : X_L \to X \) is flat of relative dimension 0. The pull-back homomorphism
\[
g^* : C_p(X) \to C_p(X_L)
\]
is called the \textit{change of field homomorphism}.

\textbf{Example 48.14}. An open embedding \(j : U \to X \) is a flat morphism of relative dimension 0. The pull-back homomorphism
\[
j^* : C_p(X) \to C_p(U)
\]
is called the \textit{restriction homomorphism}.

The following proposition is an immediate consequence of definitions.

\textbf{Proposition 48.15}. Let \(g : Y \to X \) be a flat morphism and \(a \) an invertible function on \(X \). Then
\[
g^* \circ \{a\} = \{a'\} \circ g^*,
\]
where \(a' = g^*(a) = a \circ g \).
Let \(g \) be a morphism of schemes over a field \(F \). It follows from Proposition 48.15 that \(g^* \) is a homomorphism of left and right \(K_*F \)-modules.

Let \(g : Y \to X \) and \(h : Z \to Y \) be flat morphisms. Let \(z \in Z \) and \(y = h(z) \), \(x = g(y) \). It follows from Lemma 48.10 that \(z \) is a generic point of \(Z_x \) if and only if \(z \) is a generic point of \(Z_y \) and \(y \) is a generic point of \(Y_x \).

Lemma 48.16. Let \(z \) be a generic point of \(Z_x \). Then \(e_z(g \circ h) = e_z(h) \cdot e_y(g) \).

Proof. The statement follows from Corollary 101.2 with \(B = O_{Y_x,y} \) and \(C = O_{Z_x,z} \). Note that \(C/mC = O_{Z_y,z} \) where \(m \) is the maximal ideal of \(B \). □

Proposition 48.17. Let \(g : Y \to X \) and \(h : Z \to Y \) be flat morphisms of constant relative dimension. Then \((g \circ h)^* = h^* \circ g^* \).

Proof. Let \(x \in X \) and \(z \in Z \). We compute the \((z, x)\)-components of both sides of the equality. We may assume that \(x = (g \circ h)(z) \). Let \(y = h(z) \). By Lemma 48.16, we have
\[
(g \circ h)^x_z = e_z(g \circ h) \cdot r_{\kappa(z)/\kappa(x)} = e_z(h) \cdot e_y(g) \cdot r_{\kappa(z)/\kappa(y)} \circ r_{\kappa(y)/\kappa(x)} = (h^*)^y_z \circ (g^*)^x_y = (h^* \circ g^*)^x_z.
\]

Consider a fiber product diagram
\[
\begin{array}{ccc}
X' & \xrightarrow{g'} & X \\
\downarrow{f'} & & \downarrow{f} \\
Y' & \xrightarrow{g} & Y \\
\end{array}
\]

(48.18)

Proposition 48.19. Let \(g \) and \(g' \) in (48.18) be flat morphisms of relative dimension \(d \). Suppose that either
1. \(f \) is a morphism of schemes of finite type over a field or
2. \(f \) is a finite morphism.

Then the diagram
\[
\begin{array}{ccc}
C_p(X) & \xrightarrow{g'^*} & C_{p+d}(X') \\
\downarrow{f_*} & & \downarrow{f'_*} \\
C_p(Y) & \xrightarrow{g^*} & C_{p+d}(Y')
\end{array}
\]

is commutative.

Proof. Let \(x \in X_{(p)} \) and \(y' \in Y'_{(p+d)} \). We shall compare the \((x, y')\)-components of both compositions in the diagram. These components are trivial unless \(g(y') = f(x) \). Denote this point by \(y \). By Lemma 48.10,
\[
p + d = \dim y' \leq \dim y + d \leq \dim x + d = p + d,
\]
hence \(\dim y = \dim x = p \) and \(y' \) is a generic point of \(Y'_{y} \). In particular, the field extension \(\kappa(x)/\kappa(y) \) is finite.
Let S be the set of all $x' \in X'$ such that $f'(x') = y'$ and $g'(x') = x$. Again by Lemma 48.10

$$p + d = \dim y' \leq \dim x' \leq \dim x + d = p + d,$$

hence $\dim x' = \dim y' = p + d$ and x' is a generic point of X'_x. In particular, the field extension $\kappa(x')/\kappa(y')$ is finite. The set S is in a natural bijective correspondence with the finite set $\Spec \kappa(y') \otimes_{\kappa(x)} \kappa(x)$.

The local ring $C = O_{X', x'}$ is a localization of the ring $O_{Y', y'} \otimes_{\kappa(y)} \kappa(x)$ and hence is flat over $B = O_{Y', y'}$. Let m be the maximal ideal of B. The factor ring C/mC is the localization of the tensor product $\kappa(y') \otimes_{\kappa(x)} \kappa(x)$ at the prime ideal corresponding to x'. Denote by l_x the length of C/mC.

By Corollary 101.2

(48.20) \[e_{x'}(g') = l_x \cdot e_{y'}(g) \]

for every $x' \in S$. It follows from (48.20) and Proposition 99.8(5) that

\[
(f'_* \circ g'^*)_y^x = \sum_{x' \in S} (f'_*)_{y'}^{x'} \circ (g'^*)_x^x,
\]

\[
= \sum_{x' \in S} e_{x'}(g') \cdot c_{\kappa(x')/\kappa(y')} \circ r_{\kappa(x')/\kappa(x)}
\]

\[
= e_{y'}(g) \cdot \sum_{x' \in S} l_{x'} \cdot c_{\kappa(x')/\kappa(y')} \circ r_{\kappa(x')/\kappa(x)}
\]

\[
= e_{y'}(g) \cdot r_{\kappa(y')/\kappa(x)} \circ c_{\kappa(x)/\kappa(y)}
\]

\[
= (g^*)_y^y \circ (f_*)_y^x
\]

\[
= (g^* \circ f_*)_y^x. \quad \square
\]

Remark 48.21. It follows from the definitions that Proposition 48.19 holds for arbitrary f if Y' is a localization of Y (cf. Remark 48.5).

Proposition 48.22. Let $g : Y \to X$ be a flat morphism of relative dimension d. Then the diagram

\[
\begin{array}{ccc}
C_p(X) & \xrightarrow{d_X} & C_{p-1}(X) \\
\downarrow g^* & & \downarrow g^* \\
C_{p+d}(Y) & \xrightarrow{d_Y} & C_{p+d-1}(Y)
\end{array}
\]

is commutative.

Proof. Let $x \in X_{(p)}$ and $y' \in Y_{(p+d-1)}$. We compare the (x, y')-components of both compositions in the diagram. Let y_1, \ldots, y_k be all generic points of $Y_x \subset Y$ satisfying $y' \in \{y_i\}$. We have

(48.23) \[(d_Y \circ g^*)_y^x = \sum_{i=1}^k (d_Y)_{y_i}^y \circ (g^*)_{y_i}^x = \sum_{i=1}^k e_{y_i}(g) \cdot (d_Y)_{y_i}^y \circ r_{\kappa(y_i)/\kappa(x)}. \]

Set $x' = g(y')$. If $x' \notin \{x\}$, then both components $(g^* \circ d_X)_y^x$ and $(d_Y \circ g^*)_y^x$ are trivial.
Suppose \(x' \in \{x\} \). We have
\[
p = \dim x \geq \dim x' \geq \dim y' - d = p - 1.
\]
Therefore, \(\dim x' \) is either \(p \) or \(p - 1 \).

Case 1. \(\dim(x') = p \), i.e., \(x' = x \).
The component \((g^* \circ d_X)^x_{y'}\) is trivial since \((g^*)^x_{y'} = 0\) for every \(x' \neq x' \). By assumption, every discrete valuation of \(\kappa(y_i) \) with center \(y' \) is trivial on \(\kappa(x) \). Therefore the map \((d_Y)^{y_i}_{y'}\) is trivial on the image of \(r_{\kappa(y_i)/\kappa(x)} \). It follows from formula \((48.23)\) that \((d_Y \circ g^*)^x_{y'} = 0\).

Case 2. \(\dim(x') = p - 1 \).
We have \(y' \) is a generic point of \(Y_{x'} \) and
\[
(48.24) \quad (g^* \circ d_X)^x_{y'} = (g^*)^{x'}_{y'} \circ (d_X)^x_{y'} = c_{y'}(g) \cdot r_{\kappa(y')/\kappa(x')} \circ \partial^{x'}_{x'}.
\]
Replacing \(X \) by \(\{x\} \) and \(Y \) by \(g^{-1}(\{x\}) \), we may assume that \(X = \{x\} \). By Propositions \([48.7] \) and \([48.19] \), we can replace \(X \) by its normalization \(\tilde{X} \) and \(Y \) by the fiber product \(Y \times_X \tilde{X} \), so we may assume that \(X \) is normal.

Let \(Y_1, \ldots, Y_k \) be all irreducible components of \(Y \) containing \(y' \), so that \(y_i \) is the generic point of \(Y_i \) for all \(i \). Let \(\tilde{Y}_i \) be the normalization of \(Y_i \) and let \(\tilde{y}_i \) be the generic points of \(\tilde{Y}_i \).
We have \(\kappa(\tilde{y}_i) = \kappa(y_i) \). Let \(t \) be a prime element of the discrete valuation ring \(R = O_{X,x'} \).

The local ring \(A = O_{Y,y'} \) is one-dimensional; its minimal prime ideals are in a bijective correspondence with the set of points \(y_1, \ldots, y_k \).

Fix \(i = 1, \ldots, k \). We write \(A_i \) for the factor ring of \(A \) by the corresponding minimal prime ideal. Since \(A \) is flat over \(R \), the prime element \(t \) is not a zero divisor in \(A \), hence the image of \(t \) in \(A_i \) is not zero for every \(i \). Let \(\tilde{A}_i \) be the normalization of the ring \(A_i \).

Let \(S_i \) be the set of all points \(w \in \tilde{Y}_i \) such that \(g(w) = x' \). There is a natural bijection between \(S_i \) and the set of all maximal ideals of \(\tilde{A}_i \). Moreover, if \(Q \) is a maximal ideal of \(\tilde{A}_i \) corresponding to a point \(w \in S_i \) then the local ring \(O_{Y_{i,w}} \) coincides with the localization of \(\tilde{A}_i \) with respect to \(Q \).

Denote by \(l_{i,w} \) the length of the ring \(O_{Y_{i,w}}/tO_{Y_{i,w}} \). Applying Lemma \([101.3] \) to the \(A \)-algebra \(\tilde{A}_i \) and \(M = \tilde{A}_i/t\tilde{A}_i \), we have
\[
(48.25) \quad l_A(\tilde{A}_i/t\tilde{A}_i) = \sum_{w \in S_i} l_{i,w} \cdot [\kappa(w) : \kappa(y')].
\]

On the other hand, \(l_{i,w} \) is the ramification index of the discrete valuation ring \(O_{Y_{i,w}} \) over \(R \). It follows from Proposition \([99.4(2)] \) that
\[
(48.26) \quad \partial^{\tilde{y}_i}_{w} \circ r_{\kappa(y_i)/\kappa(x)} = l_{i,w} \cdot r_{\kappa(w)/\kappa(x')} \circ \partial^{x'}_{x'},
\]
for every \(w \in S_i \).
By (48.25), (48.26) and Proposition [99.8](3), we have for every i,
\[
(d_Y)^{y_i}_y \circ r_{\kappa(y_i)/\kappa(x)} = \sum c_{\kappa(w)/\kappa(y')} \circ \partial_{w}^{y_i} \circ r_{\kappa(y_i)/\kappa(x)} \\
= \sum c_{\kappa(w)/\kappa(y')} \cdot l_{i,w} \cdot r_{\kappa(w)/\kappa(x')} \circ \partial_{w}^{x'} \\
= \sum l_{i,w} \cdot c_{\kappa(w)/\kappa(y')} \circ r_{\kappa(w)/\kappa(y')} \circ r_{\kappa(y')/\kappa(x')} \circ \partial_{w}^{x'} \\
= \sum l_{i,w} \cdot [\kappa(w) : \kappa(y')] \cdot r_{\kappa(y')/\kappa(x')} \circ \partial_{w}^{x'} \\
= l_A(\tilde{A}_i/t\tilde{A}_i) \cdot r_{\kappa(y')/\kappa(x')} \circ \partial_{w}^{x'},
\]
(where all summations are taken over all $w \in S_i$.)

The factor A-module \tilde{A}_i/A_i is of finite length hence by Lemma [101.4], we have $h(t,A_i) = h(t,\tilde{A}_i)$ where h is the Herbrand index. Since t is not a zero divisor in either A_i or in \tilde{A}_i, we have $l_A(\tilde{A}_i/t\tilde{A}_i) = l_A(A_i/tA_i) = l(A_i/tA_i)$. Therefore
\[
(48.27) \quad (d_Y)^{y_i}_y \circ r_{\kappa(y_i)/\kappa(x)} = l(A_i/tA_i) \cdot r_{\kappa(y')/\kappa(x')} \circ \partial_{w}^{x'}.
\]

The local ring $O_{Y,y_i} = O_{Y',y_i}$ is the localization of A with respect to the minimal prime ideal corresponding to y_i. The ring O_{Y',y_i} is canonically isomorphic to A/tA.

Applying Lemma [101.5] to the ring A and the module $M = A$ we get the equality
\[
(48.28) \quad e_{y'}(g) = h(t,A) = \sum_{i=1}^k l(O_{Y,y_i}) \cdot l(A_i/tA_i) = \sum_{i=1}^k e_{y_i}(g) \cdot l(A_i/tA_i).
\]

It follows from (48.24), (74.1) and (48.28) that
\[
(d_Y \circ g^*)^x_{y'} = \sum_{i=1}^k e_{y_i}(g) \cdot (d_Y)^{y_i}_y \circ r_{\kappa(y_i)/\kappa(x)} \\
= \sum_{i=1}^k e_{y_i}(g) \cdot l(A_i/tA_i) \cdot r_{\kappa(y')/\kappa(x')} \circ \partial_{w}^{x'} \\
= e_{y'}(g) \cdot r_{\kappa(y')/\kappa(x')} \circ \partial_{w}^{x'} \\
= (g^* \circ d_X)^x_{y'} \quad \square
\]

Proposition 48.29. For every scheme X, the map d_X is a differential of $C_*(X)$, i.e., $(d_X)^2 = 0$.

Proof. We will prove the statement in several steps.

Step 1. $X = \text{Spec } R$, where $R = F[[s,t]]$ and F is a field:
A polynomial $t^n + a_1 t^{n-1} + a_2 t^{n-2} + \cdots + a_n$ over the ring $F[[s]]$ is called *marked* if $a_i \in s F[[s]]$ for all i. We shall use the following properties of marked polynomials derived from the Weierstrass Preparation Theorem [7] CH.VII,§3, n° 8:

A. Every height 1 ideal of the ring R is either equal to $s R$ or is generated by a unique marked polynomial.

B. A marked polynomial f is irreducible in R if and only if f is irreducible in $F((s))[t]$.
It follows that the multiplicative group $F((s, t))^\times$ is generated by R^\times, s, t and the set H of all power series of the form $t^{-n} \cdot f$ where f is a marked polynomial of degree n.

If $r \in R^\times$ and $\alpha \in K_s F((s, t))^\times$ then by Proposition 48.3,

$$(d_X)^2(\{r\} \cdot \alpha) = -d_X(\{\bar{r}\} \cdot d_X(\alpha)) = \{\bar{r}\} \cdot (d_X)^2(\alpha),$$

where $\bar{r} \in F$ is the residue of r. Thus it is sufficient to prove the following:

(i) $(d_X)^2(\{s, t\}) = 0$,

(ii) $(d_X)^2(\{f, g_1, \ldots, g_n\}) = 0$ where $f \in H$ and all g_i belong to the subgroup generated by s, t and H.

For every point $x \in X(1)$ set $\partial_x = \partial^y_x$, where y is the generic point of X and $\partial_x = \partial^z_x$, where z is the closed point of X. Thus,

$$((d_X)^2)_x^y = \sum_{x \in X(1)} \partial^x \circ \partial_x : K_s F((s, t)) \to K_{s-2} F.$$

To prove (i) let x_s and x_t be the points of $X(1)$ given by the ideals sR and tR respectively. We have

$$\sum_{x \in X(1)} \partial^x \circ \partial_x(\{s, t\}) = \partial^{x_1}(\{t\}) - \partial^{x_1}(\{s\}) = 1 - 1 = 0.$$

To prove (ii) consider the field $L = F((s))$ and the natural morphism

$$h : X' = \text{Spec } R[\frac{1}{s}] \to \text{Spec } L[t] = A^1_L.$$

By the properties of marked polynomials, the map h identifies the set $X'_(0) = X(1) - \{x_s\}$ with the subset of the closed points of A^1_L given by irreducible marked polynomials. For every $x \in X'$ we write \bar{x} for the point $h(x) \in A^1_L$. Note that for $x \in X'_(0) = X(1) - \{x_s\}$, the residue fields $\kappa(x)$ and $L(\bar{x})$ are canonically isomorphic. In particular, the field $\kappa(x)$ can be viewed as a finite extension of L. By Proposition 99.8(4), we have $\partial^x = \partial \circ c_{\kappa(x)/L}$, where $\partial : K_s L \to K_{s-1} F$ is given by the canonical discrete valuation of L.

Let $x \in X'_(0) = X(1) - \{x_s\}$. We write $\partial_{\bar{x}}$ for $\partial^y_{\bar{x}}$. Under the identification of $\kappa(x)$ with $L(\bar{x})$ we have $\partial_{\bar{x}} = \partial_x \circ i$ where $i : K_s L(t) \to K_s F((s, t))$ is the canonical homomorphism. Therefore

$$\sum_{x \in X'_(0)} \partial^x \circ \partial_x \circ i = \partial^{x_s} \circ \partial_{x_s} \circ i + \partial \circ \sum_{x \in X'_(0)} c_{\kappa(x)/L} \circ \partial_x \circ i = \partial^{x_s} \circ \partial_{x_s} \circ i + \partial \circ \sum_{x \in X'_(0)} c_{L(\bar{x})/L} \circ \partial_{\bar{x}}$$

Let $\alpha = \{f, g_1, \ldots, g_n\} \in K_{n+1} L(t)$ with f and g_i as in (ii). Note that the divisors in A^1_L of the functions f and g_i are supported in the image of h. Hence $\partial_p(\alpha) = 0$ for every closed point A^1_L that is not in the image of h. Moreover, for the point q of \mathbb{P}^1_L at infinity, $f(q) = 1$ and therefore, $\partial_q(\alpha) = 0$. Hence, by Weil’s Reciprocity Law 48.8 applied to \mathbb{P}^1_L,

$$\sum_{x \in X'_(0)} c_{L(\bar{x})/L} \circ \partial_{\bar{x}}(\alpha) = \sum_{p \in \mathbb{P}^1_L} c_{L(p)/L} \circ \partial_p(\alpha) = 0.$$
Notice also that \(f(x_s) = 1 \) hence \(\partial_{x_s} \circ i(\alpha) = 0 \) and therefore,

\[
(d_X)^2(\{f, g_1, \ldots, g_n\}) = \sum_{x \in X_{(1)}} \partial^x \circ \partial_x \circ i(\alpha) = 0.
\]

Step 2. \(X = \text{Spec} \, S \), where \(S \) is a (Noetherian) local complete two-dimensional equi-characteristic ring:

Let \(\mathfrak{m} \subset S \) be the maximal ideal. By Cohen’s theorem [65, Ch. VIII, Th.27], there is a subfield \(F \subset S \) such that the natural ring homomorphism \(F \to S/\mathfrak{m} \) is an isomorphism.

Choose local parameters \(s, t \in \mathfrak{m} \) and consider the subring \(R = F[[s, t]] \subset S \). Denote by \(\mathfrak{p} \) the maximal ideal of \(R \). There is an integer \(r \) such that \(\mathfrak{m}^r \subset \mathfrak{p}S \). We claim that the \(R \)-algebra \(S \) is finite. Indeed, first of all,

\[
\cap_{n>0} \mathfrak{p}^n S \subset \cap_{n>0} \mathfrak{m}^n = 0.
\]

Since \(S/\mathfrak{m}^r \) is of finite length and there is a natural surjection \(S/\mathfrak{m}^r \to S/\mathfrak{p}S \), the ring \(S/\mathfrak{p}S \) is a finitely generated \(R/\mathfrak{p} \)-module. Since the ring \(R \) is complete, \(S \) is a finitely generated \(R \)-module.

It follows from the claim that the natural morphism \(f : X \to Y = \text{Spec} \, R \) is finite. By Proposition [48.7] and Step 1,

\[
f_s \circ (d_X)^2 = (d_Y)^2 \circ f_s = 0.
\]

The rings \(R \) and \(S \) have isomorphic residue fields, hence \((d_X)^2 = 0 \).

Step 3. \(X = \text{Spec} \, S \) where \(S \) is a two-dimensional (Noetherian) local equi-characteristic ring:

Let \(\hat{S} \) be the completion of \(S \). The natural morphism \(f : Y = \text{Spec} \, \hat{S} \to X \) is flat of relative dimension 0. By Proposition [48.22] and Step 2,

\[
g^* \circ (d_X)^2 = (d_Y)^2 \circ g^* = 0.
\]

The rings \(\hat{S} \) and \(S \) have isomorphic residue fields, hence \((d_X)^2 = 0 \).

Step 4. \(X \) is an arbitrary (excellent) scheme:

Let \(x \) and \(x' \) be two points of \(X \) such \(x' \) is of codimension 2 in \(\{x\} \). We need to show that the \((x, x') \)-component of \((d_X)^2 \) is trivial. We may assume that \(X = \{x\} \). The ring \(S = O_{X,x'} \) is local 2-dimensional. The natural morphism \(f : Y = \text{Spec} \, S \to X \) is flat of constant relative dimension. By Proposition [48.22] and Step 3,

\[
f^* \circ (d_X)^2 = (d_Y)^2 \circ f^* = 0.
\]

The field \(\kappa(x') \) and the residue field of \(S \) are isomorphic, therefore, the \((x, x') \)-component of \((d_X)^2 \) is trivial.

\[\square\]

48.E. Boundary map. Let \(X \) be a scheme of finite type over a field and \(Z \subset X \) a closed subscheme. Set \(U = X \setminus Z \). For every \(p \geq 0 \), the set \(X_{(p)} \) is the disjoint union of \(Z_{(p)} \) and \(U_{(p)} \), hence

\[
C_p(X) = C_p(Z) \oplus C_p(U).
\]

Consider the closed embedding \(i : Z \to X \) and the open immersion \(j : U \to X \). The sequence of complexes

\[
0 \to C_*(Z) \xrightarrow{i_*} C_*(X) \xrightarrow{j^*} C_*(U) \to 0
\]
is exact. This sequence is not split in general as a sequence of complexes, but it splits canonically termwise. Let \(v : C_*(U) \to C_*(X) \) and \(w : C_*(X) \to C_*(Z) \) be the canonical inclusion and projection. Note that \(v \) and \(w \) do not commute with the differentials in general. We have \(j^* \circ v = \text{id} \) and \(w \circ i_* = \text{id} \).

We define the boundary map
\[
\partial^U_Z : C_p(U) \to C_{p-1}(Z)
\]
by \(\partial^U_Z = w \circ d_X \circ v \).

Example 48.30. Let \(X = \mathbb{A}^1_F \), \(Z = \{0\} \), and \(U = \mathbb{G}_m = \mathbb{A}^1_F \setminus \{0\} \). Then
\[
\partial^U_Z(t \cdot [U]) = [Z],
\]
where \(t \) is the coordinate function on \(\mathbb{A}^1_F \).

Proposition 48.31. Let \(X \) be a scheme and \(Z \subset X \) a closed subscheme. Set \(U = X \setminus Z \). Then \(d_Z \circ \partial^U_Z = - \partial^U_Z \circ d_U \).

Proof. By the definition of \(\partial = \partial^U_Z \), we have \(i_* \circ \partial = d_X \circ v - v \circ d_U \). Hence by Propositions [48.7] and [48.29],
\[
i_* \circ d_Z \circ \partial = d_X \circ i_* \circ \partial
\]
\[
= d_X \circ (d_X \circ v - v \circ d_U)
\]
\[
= - d_X \circ v \circ d_U
\]
\[
= (v \circ d_U - d_X \circ v) \circ d_U
\]
\[
= - i_* \circ \partial \circ d_U.
\]
Since \(i_* \) is injective, we have \(d_Z \circ \partial = - \partial \circ d_U \).

Proposition 48.32. Let \(a \) be an invertible function on \(X \) and let \(a', a'' \) be the restrictions of \(a \) on \(U \) and \(Z \) respectively. Then
\[
\partial^U_Z(\alpha \cdot \{a'\}) = \partial^U_Z(\alpha) \cdot \{a''\}
\]
and
\[
\partial^U_Z(\{a'\} \cdot \alpha) = - \{a''\} \cdot \partial^U_Z(\alpha)
\]
for every \(\alpha \in C_*(U) \).

Proof. The homomorphisms \(v \) and \(w \) commute with the products. The statement follows from Proposition [48.3].

Let
\[
\begin{align*}
Z' & \xrightarrow{i'} X' & \xleftarrow{j'} U' \\
\downarrow g & \quad \downarrow f & \quad \downarrow h \\
Z & \xrightarrow{i} X & \xleftarrow{j} U
\end{align*}
\]
be a commutative diagram. Suppose that \(i \) and \(i' \) are closed embeddings, \(j \) and \(j' \) are open embeddings and \(U = X \setminus Z, U' = X' \setminus Z' \).

Proposition 48.34. Suppose that we have the diagram (48.33).
(1) If f, g and h are proper morphisms of schemes of finite type over a field then the diagram

\[
\begin{array}{ccc}
 C_p(U') & \xrightarrow{\partial_{2}'} & C_{p-1}(Z') \\
 h^* \downarrow & & g^* \\
 C_p(U) & \xrightarrow{\partial_{2}} & C_{p-1}(Z)
\end{array}
\]

is commutative.

(2) Suppose that both squares in the diagram (48.33) are fiber squares. If f is flat of constant relative dimension d then so are g and h and the diagram

\[
\begin{array}{ccc}
 C_p(U') & \xrightarrow{\partial_{2}'} & C_{p-1}(Z') \\
 h^* \downarrow & & g^* \\
 C_{p+d}(U') & \xrightarrow{\partial_{2}'} & C_{p+d-1}(Z')
\end{array}
\]

is commutative.

Proof. (1) Consider the diagram

\[
\begin{array}{ccc}
 C_p(U') & \xrightarrow{v'} & C_p(X') & \xrightarrow{d_{x}'} & C_{p-1}(X') & \xrightarrow{w'} & C_{p-1}(Z') \\
 h^* \downarrow & & f^* \downarrow & & f^* \downarrow & & g^* \downarrow \\
 C_p(U) & \xrightarrow{v} & C_p(X) & \xrightarrow{d_{x}} & C_{p-1}(X) & \xrightarrow{w} & C_{p-1}(Z).
\end{array}
\]

The left and the right squares are commutative by the local nature of definition of the push-forward homomorphisms. The middle square is commutative by Proposition 48.7. The proof of (2) is similar - one uses Proposition 48.22. As both squares of the diagram are fiber squares, for any point $z \in Z$ (respectively, $u \in U$), the fibers Z'_z and $X'_{i(z)}$ (respectively, U'_u and $X'_{j(u)}$) are naturally isomorphic. \(\square\)

Let Z_1 and Z_2 be closed subschemes of a scheme X. Set

\[T_1 = Z_1 \setminus Z_2, \quad T_2 = Z_2 \setminus Z_1, \quad U_1 = X \setminus Z_1, \quad U = U_1 \cap U_2, \quad Z = Z_1 \cap Z_2.\]

We have the following fiber product diagram of open and closed embeddings:

\[
\begin{array}{ccc}
 Z & \rightarrow & Z_2 \leftarrow & T_2 \\
 \downarrow & & \downarrow & \downarrow \\
 Z_1 & \rightarrow & X \leftarrow & U_1 \\
 \uparrow & & \uparrow & \uparrow \\
 T_1 & \rightarrow & U_2 \leftarrow & U.
\end{array}
\]

Denote by $\partial_t, \partial_b, \partial_l, \partial_r$ the boundary homomorphisms for the top, bottom, left and right triples of the diagram respectively.
Proposition 48.35. The morphism
\[\partial_t \circ \partial_b + \partial_t \circ \partial_r : C_*(U) \to C_{*-2}(Z) \]
is homotopic to zero.

Proof. The differential of \(C_*(X) \) relative to the decomposition
\[C_*(X) = C_*(U) \oplus C_*(T_1) \oplus C_*(T_2) \oplus C_*(Z) \]
is given by the matrix
\[
d_X = \begin{pmatrix}
 d_U & * & * & *\\
 \partial_b & * & * & * \\
 \partial_r & * & * & * \\
 h & \partial_t & \partial_t & d_Z
\end{pmatrix}
\]
where \(h : C_*(U) \to C_{*-1}(Z) \) is some morphism. The equality \((d_X)^2 = 0\) gives
\[h \circ d_U + d_Z \circ h + \partial_t \circ \partial_b + \partial_t \circ \partial_r = 0. \]
In other words, \(-h\) is a contracting homotopy for \(\partial_t \circ \partial_b + \partial_t \circ \partial_r \). \(\Box \)

49. External products

From now on the word “scheme” means a separated scheme of finite type over a field. Let \(X \) and \(Y \) be two schemes over \(F \). We define the external product
\[C_p(X) \times C_q(Y) \to C_{p+q}(X \times Y), \quad (\alpha, \beta) \mapsto \alpha \times \beta \]
as follows. For a point \(v \in (X \times Y)_{(p+q)} \), we set \((\alpha \times \beta)_v = 0\) unless the point \(v \) projects to a point \(x \) in \(X_{(p)} \) and \(y \) in \(Y_{(q)} \). In the latter case
\[(\alpha \times \beta)_v = l_v \cdot r_{F(v)/F(x)}(\alpha_x) \cdot r_{F(v)/F(y)}(\beta_y), \]
where \(l_v \) is the length of the local ring of \(v \) on \(\text{Spec} \, F(x) \times \text{Spec} \, F(y) \).

The external product is graded symmetric with respect to \(X \) and \(Y \). More precisely, if \(\alpha \in C_{p,n}(X) \) and \(\beta \in C_{q,m}(Y) \) then
\[\beta \times \alpha = (-1)^{(p+n)(q+m)}(\alpha \times \beta). \]

For every point \(x \in X \) we write \(Y_x \) for \(X \times \text{Spec} \, F(x) \) and \(h_x \) for the canonical flat morphism \(Y_x \to Y \) of relative dimension 0. Note that \(Y_x \) is a scheme over \(F(x) \), in particular, \(C_*(Y_x) \) is a module over \(K_*(F(x)) \). Denote by \(i_x : Y_x \to X \times Y \) the canonical morphism. Let \(\alpha \in C_p(X) \) and \(\beta \in C_q(Y) \). Unfolding the definitions, we see that
\[
\alpha \times \beta = \sum_{x \in X_{(p)}} (i_x)_*(\alpha_x \cdot (h_x)^*(\beta)).
\]
Symmetrically, for every point \(y \in Y \), we write \(X_y \) for \(X \times \text{Spec} \, F(y) \) and \(k_y \) for the canonical flat morphism \(X_y \to X \) of relative dimension 0. Note that \(X_y \) is a scheme over \(F(y) \), in particular, \(C_*(X_y) \) is a module over \(K_*(F(y)) \). Denote by \(j_y : X_y \to X \times Y \) the canonical morphism. Let \(\alpha \in C_p(X) \) and \(\beta \in C_q(Y) \). Then
\[
\alpha \times \beta = \sum_{y \in Y_{(q)}} (j_y)_*((k_y)^*(\alpha) \cdot \beta_y). \]
Proposition 49.2. For every $\alpha \in C_s(X)$, $\beta \in C_s(Y)$ and $\gamma \in C_s(Z)$ we have

$$(\alpha \times \beta) \times \gamma = \alpha \times (\beta \times \gamma).$$

Proof. It is sufficient to show that for every point $w \in (X \times Y \times Z)_{(p+q+r)}$ projecting to $x \in X_{(p)}$, $y \in Y_{(q)}$ and $z \in Z_{(r)}$ respectively, the w-components of both sides of the equality is equal to

$$r_{F(w)/F(x)}(\alpha_x) \cdot r_{F(w)/F(y)}(\beta_y) \cdot r_{F(w)/F(z)}(\gamma_z)$$

times the multiplicity that is the length of the local ring C of the point w on $\text{Spec} \ F(x) \times \text{Spec} \ F(y) \times \text{Spec} \ F(z)$. Let $v \in (X \times Y)_{(p+q)}$ be the projection of w. The multiplicity of the v-component of $\alpha \times \beta$ is equal to the length of the local ring B of the point v on $\text{Spec} \ F(x) \times \text{Spec} \ F(y)$. Clearly, C is flat over B. Let \mathfrak{m} be the maximal ideal of B. The factor ring $C/\mathfrak{m}C$ is the local ring of w on $\text{Spec} \ F(v) \times \text{Spec} \ F(z)$. Then the multiplicity of the w-component of the left hand side of the equality is equal to $l(B) \cdot l(C/\mathfrak{m}C)$. By Corollary [101.2], the latter number is equal to $l(C)$. The multiplicity of the right hand side of the equality can be computed similarly. \qed

Proposition 49.3. For every $\alpha \in C_{p,n}(X)$ and $\beta \in C_{q,m}(Y)$ we have

$$d_{X \times Y}(\alpha \times \beta) = d_X(\alpha) \times \beta + (-1)^{p+n} \alpha \times d_Y(\beta).$$

Proof. We may assume that $\alpha \in K_{p+n}F(x)$ and $\beta \in K_{q+m}F(y)$ for some points $x \in X_{(p)}$ and $y \in Y_{(q)}$. For a point $z \in (X \times Y)_{(p+q-1)}$ the z-components of all three terms in the formula are trivial unless the projections of z to X and Y are specializations of x and y respectively. By dimension count, z projects either to x or to y.

Consider the first case. We have $(d_X(\alpha) \times \beta)_z = 0$. The point z belongs to the image of i_x and the morphism i_x factors as $Y_z \to \{x\} \times Y \hookrightarrow X \times Y$. The scheme Y_z is a localization of $\{x\} \times Y$. By Remark [48.5] and Proposition [48.7], the z-components of $d_{X \times Y} \circ (i_x)_* \times (i_x)_* \circ d_Y$ are equal.

By Propositions [48.3] and [48.22] we have

$$[d_{X \times Y}(\alpha \times \beta)]_z = [d_{X \times Y} \circ (i_x)_* (\alpha \cdot (h_x)^*(\beta))]_z$$

$$= [(i_x)_* \circ d_Y (\alpha \cdot (h_x)^*(\beta))]_z$$

$$= (-1)^{p+n} [(i_x)_* (\alpha \cdot d_Y \circ (h_x)^*(\beta))]_z$$

$$= (-1)^{p+n} [(i_x)_* (\alpha \cdot (h_x)^*(d_Y(\beta))]_z$$

$$= (-1)^{p+n} [\alpha \times d_Y(\beta)]_z. \quad \Box$$

In the second case, symmetrically, we have $((\alpha \times d_Y(\beta))_z = 0$ and

$$d_{X \times Y}(\alpha \times \beta)_z = (d_X(\alpha) \times \beta)_z. \quad \Box$$

Proposition 49.4. Let $f : X \to X'$ and $g : Y \to Y'$ be morphisms. Then for every $\alpha \in C_p(X)$ and $\beta \in C_q(Y)$ we have

$$(f \times g)_*(\alpha \times \beta) = f_*(\alpha) \times g_*(\beta).$$
We may assume that \(f \) is the identity of \(X \). Let \(x \in X(p) \) and let \(i'_x : Y'_x \to X \times Y' \), \(h'_x : Y'_x \to Y' \) and \(g_x : Y_x \to Y'_x \) be canonical morphisms. We have
\[
(1_X \times g) \circ i_x = i'_x \circ g_x \quad \text{and} \quad g \circ h_x = h'_x \circ g_x.
\]
By Propositions 48.6 and 48.19, we have
\[
(1_X \times g)_*(\alpha \times \beta) = (1_X \times g)_* \circ \sum (i_x)_*(\alpha \cdot (h_x)^*(\beta))
\]
\[
= \sum (i'_x)_* \circ (g_x)_*(\alpha \cdot (h_x)^*(\beta))
\]
\[
= \sum (i'_x)_*(\alpha \cdot (g_x)_*(h_x)^*(\beta))
\]
\[
= \sum (i'_x)_*(\alpha \cdot (h'_x)^* g_x(\beta))
\]
\[
= \alpha \times g_x(\beta).
\]

Proposition 49.5. Let \(f : X' \to X \) and \(g : Y' \to Y \) be flat morphisms. Then for every \(\alpha \in C_p(X) \) and \(\beta \in C_q(Y) \) we have
\[
(f \times g)^*(\alpha \times \beta) = f^*(\alpha) \times g^*(\beta).
\]

Proof. We may assume that \(f \) is the identity of \(X \). Let \(x \in X(p) \) and let \(i'_x : Y'_x \to X \times Y' \), \(h'_x : Y'_x \to Y' \) and \(g_x : Y_x \to Y'_x \) be canonical morphisms. We have
\[
(1_X \times g) \circ i'_x = i_x \circ g_x \quad \text{and} \quad g \circ h'_x = h_x \circ g_x.
\]
Note that the scheme \(Y_x \) is a localization of \(\overline{\{x\}} \times Y \). By Proposition 48.19 and Remark 48.21
\[
(1_X \times g)^* \circ (i_x)_* = (i'_x)_* \circ (g_x)^*.
\]
By Propositions 48.15 and 48.17, we have
\[
(1_X \times g)^*(\alpha \times \beta) = (1_X \times g)^* \circ \sum (i_x)_*(\alpha \cdot (h_x)^*(\beta))
\]
\[
= \sum (i'_x)_* \circ (g_x)^*(\alpha \cdot (h_x)^*(\beta))
\]
\[
= \sum (i'_x)_*(\alpha \cdot (g_x)^*(h_x)^*(\beta))
\]
\[
= \sum (i'_x)_*(\alpha \cdot (h'_x)^* g_x(\beta))
\]
\[
= \alpha \times g_x(\beta). \]

Corollary 49.6. Let \(f : X \times Y \to X \) be the projection. Then for every \(\alpha \in C_*(X) \), we have \(f^*(\alpha) = \alpha \times [Y] \).

Proof. We apply Proposition 49.5 and Example 48.11 to \(f = 1_X \times g \), where \(g : Y \to \text{Spec} F \) is the structure morphism.

Proposition 49.7. Let \(X \) and \(Y \) be schemes over \(F \). Let \(Z \subset X \) be a closed subscheme and \(U = X \setminus Z \). Then for every \(\alpha \in C_p(U) \) and \(\beta \in C_q(Y) \) we have
\[
\partial^U_Z(\alpha) \times \beta = \partial^U_{Z \times Y}(\alpha \times \beta).
\]
We may assume that \(\beta \in K_*, F(y) \) for some \(y \in Y \). By Propositions \([48.34](1)\) and \([49.4]\) we may also assume that \(Y = \{y\} \). For any scheme \(V \) denote by \(k^V : V_y \to V \) and \(j^V : V_y \to V \times Y \) the canonical morphisms. Let \(v \in (Z \times Y)_{(p+q-1)} \). The \(v \)-component of both sides of the equality are trivial unless \(v \) belongs to the image of \(j^Z \). By Remark \([48.5]\), the \(v \)-component of \(j^Z \circ \partial^U_{Z_y} \) and \(\partial^U_{Z \times Y} \circ j_s^V \) are equal. It follows from Propositions \([48.32]\) and \([48.34](2)\) that

\[
[\partial^U_{Z}(\alpha) \times \beta]_v = [j^Z_*((k^Z)^* (\partial^U_{Z}(\alpha) \cdot \beta))]_v \\
= [j^Z_*(\partial^U_{Z_y} (k^U)^* (\alpha) \cdot \beta)]_v \\
= [j^Z_* \circ \partial^U_{Z_y} ((k^U)^* (\alpha) \cdot \beta)]_v \\
= [\partial^U_{Z \times Y} \circ j_s^V ((k^U)^* (\alpha) \cdot \beta)]_v \\
= [\partial^U_{Z \times Y} (\alpha \times \beta)]_v. \tag*{□}
\]

Proposition 49.8. Let \(X \) and \(Y \) be two schemes and let \(a \) be an invertible regular function on \(X \). Then for every \(\alpha \in C_\mu(X) \) and \(\beta \in C_q(Y) \) we have

\[
(\{a\} \alpha) \times \beta = \{a'\}(\alpha \times \beta),
\]
where \(a' \) is the pull-back of \(a \) on \(X \times Y \).

Proof. Let \(\bar{a} \) be the pull-back of \(a \) on \(X_y \). It follows from Propositions \([48.6]\) and \([48.15]\) that

\[
(\{a\} \alpha) \times \beta = \sum (j_y)_*((k_y)^* (\{a\} \alpha) \cdot \beta_y) \\
= \sum (j_y)_* (\{\bar{a}\}(k_y)^* (\alpha) \cdot \beta_y) \\
= \sum (a') (j_y)_* (k_y)^* (\alpha) \cdot \beta_y \\
= \{a'\}(\alpha \times \beta). \tag*{□}
\]

50. Deformation homomorphisms

We construct deformation homomorphisms in this section. We shall use them later to define pull-back homomorphisms. Recall that we only consider separated schemes of finite type over a field.

Let \(f : Y \to X \) be a closed embedding. Recall that the deformation scheme \(D_f \) possesses an open subscheme isomorphic to \(\mathbb{G}_m \times X \) and the closed complement \(C_f \), the normal cone of \(f \) (see Appendix \([103.E]\)). We define the deformation homomorphism as the composition

\[
\sigma_f : C_*(X) \xrightarrow{q^*} C_{*+1}(\mathbb{G}_m \times X) \xrightarrow{(t)} C_{*+1}(\mathbb{G}_m \times X) \xrightarrow{\partial} C_*(C_f)
\]

where \(q : \mathbb{G}_m \times X \to X \) is the projection, the coordinate \(t \) of \(\mathbb{G}_m \) is considered as an invertible function on \(\mathbb{G}_m \times X \) and \(\partial = \partial_{\mathbb{G}_m \times X} \) is taken with respect to the open and closed subsets of the deformation scheme \(D_f \).
Example 50.1. Let $f = 1_X$ for a scheme X. Then $D_f = \mathbb{A}^1 \times X$ and $C_f = X$. We claim that σ_f is the identity. Indeed, it is sufficient to prove that the composition

$$C_*(X) \xrightarrow{p^*} C_{*+1} (\mathbb{G}_m \times X) \xrightarrow{(t)} C_{*+1} (\mathbb{G}_m \times X) \xrightarrow{\partial} C_*(X)$$

is the identity. By Propositions 49.5, 49.7, 49.8 and Example 48.30, for every $\alpha \in C_*(X)$ we have

$$\partial(\{t\} \cdot p^*(\alpha)) = \partial(\{t\} \cdot (\mathbb{G}_m \times \alpha))$$

$$= \partial(\{t\} \cdot [\mathbb{G}_m] \times \alpha)$$

$$= \partial(\{t\} \cdot [\mathbb{G}_m]) \times \alpha$$

$$= \{0\} \times \alpha$$

$$= \alpha.$$

The following statement is a consequence of Propositions 48.3, 48.22 and 48.31.

Proposition 50.2. Let $f : Y \to X$ be a closed embedding. Then $\sigma_f \circ d_X = d_{C_f} \circ \sigma_f$.

Consider a fiber product diagram

$$\begin{array}{ccc}
Y' & \xrightarrow{f'} & X' \\
\downarrow g & & \downarrow h \\
Y & \xrightarrow{f} & X
\end{array}$$

(50.3)

where f and f' are closed embeddings. We have the fiber product diagram (see Appendix 103.E)

$$\begin{array}{ccc}
C_{f'} & \longrightarrow & D_{f'} \\
\downarrow k & & \downarrow 1 \times h \\
C_f & \longrightarrow & D_f
\end{array}$$

(50.4)

$$\begin{array}{c}
\mathbb{G}_m \times X'
\end{array}$$

$$\begin{array}{c}
\mathbb{G}_m \times X
\end{array}$$

Proposition 50.5. If h is a flat morphism of relative dimension d in diagram (50.3), then k in (50.4) is flat of relative dimension d and the diagram

$$\begin{array}{ccc}
C_p(X) & \xrightarrow{\sigma_f} & C_p(C_f) \\
\downarrow h^* & & \downarrow k^* \\
C_{p+d}(X') & \xrightarrow{\sigma_{f'}} & C_{p+d}(C_{f'})
\end{array}$$

is commutative.

Proof. By Proposition 103.23, we have $D_{f'} = D_f \times_X X'$, hence the morphisms l and k in the diagram (50.4) are flat of relative dimension, say, d. It follows from Propositions 48.15, 48.17, and 48.34(2) that the diagram

$$\begin{array}{ccc}
C_*(X) & \xrightarrow{p^*} & C_{*+1} (\mathbb{G}_m \times X) \\
\downarrow h^* & & \downarrow (1 \times h)^* \\
C_{*+d}(X') & \xrightarrow{p^*} & C_{*+d+1} (\mathbb{G}_m \times X')
\end{array}$$

$$\begin{array}{ccc}
C_{*+1} (\mathbb{G}_m \times X) & \xrightarrow{(t)} & C_{*+1} (\mathbb{G}_m \times X) \\
\downarrow (1 \times h)^* & & \downarrow (1 \times h)^* \\
C_{*+d+1} (\mathbb{G}_m \times X') & \xrightarrow{(t)} & C_{*+d+1} (\mathbb{G}_m \times X')
\end{array}$$

$$\begin{array}{ccc}
C_*(X) & \xrightarrow{\partial} & C_*(C_f) \\
\downarrow k^* & & \downarrow k^* \\
C_{*+d}(X') & \xrightarrow{\partial} & C_{*+d}(C_{f'})
\end{array}$$
is commutative.

Proposition 50.6. If \(h \) in (50.3) is a proper morphism then the diagram

\[
\begin{array}{ccc}
C^\ast(X') & \xrightarrow{\sigma_f'} & C^\ast(C_f') \\
\downarrow h^\ast & & \downarrow k^\ast \\
C^\ast(X) & \xrightarrow{\sigma_f} & C^\ast(C_f)
\end{array}
\]

is commutative.

Proof. The natural morphism \(D_f \to D_f \times_X X' \) is a closed embedding by Proposition 103.23, hence the morphism \(l \) in the diagram (50.4) is proper. It follows from Propositions 48.6, 48.19 and 48.34 (1) that the diagram

\[
\begin{array}{ccc}
C^\ast(X') & \xrightarrow{p^\ast} & C_{s+1}(\mathbb{G}_m \times X') \\
\downarrow h^\ast & \xrightarrow{(1 \times h)^\ast} & \downarrow (1 \times h)^\ast \\
C^\ast(X) & \xrightarrow{p^\ast} & C_{s+1}(\mathbb{G}_m \times X)
\end{array}
\]

\[
\begin{array}{ccc}
& & \xrightarrow{\partial} & C^\ast(C_f') \\
& & \downarrow k^\ast & \\
& & \downarrow k^\ast
\end{array}
\]

is commutative. \(\square \)

Corollary 50.7. Let \(f : Y \to X \) be a closed embedding. Then the composition \(\sigma_f \circ f^\ast \) coincides with the push-forward map \(C^\ast(Y) \to C^\ast(C_f) \) for the zero section \(Y \to C_\ast \).

Proof. The statement follows from Proposition 50.6, applied to the fiber product square

\[
\begin{array}{ccc}
Y & \xrightarrow{=} & Y \\
\downarrow f & & \downarrow f \\
Y & \xrightarrow{f} & X
\end{array}
\]

and Example 50.1. \(\square \)

Lemma 50.8. Let \(f : X \to \mathbb{A}^1 \times W \) be a morphism. Suppose that the composition \(X \to \mathbb{A}^1 \times W \to \mathbb{A}^1 \) and the restrictions of \(f \) on \(f^{-1}(\mathbb{G}_m \times W) \) and \(f^{-1}(\{0\} \times W) \) are flat. Then \(f \) is flat.

Proof. Let \(x \in X \), \(y = f(x) \), and \(z \in \mathbb{A}^1 \) the projection of \(y \). Set \(A = O_{\mathbb{A}^1,z} \), \(B = O_{\mathbb{A}^1 \times W, y} \), and \(C = O_{X,x} \). We need to show that \(C \) is flat over \(B \). If \(z \neq 0 \), this follows from the flatness of the restrictions of \(f \) on \(f^{-1}(\mathbb{G}_m \times W) \).

Suppose that \(z = 0 \). Let \(\mathfrak{m} \) be the maximal ideal of \(A \). The rings \(B/\mathfrak{m}B \) and \(C/\mathfrak{m}C \) are the local rings of \(y \) on \(\{0\} \times W \) and of \(x \) on \(f^{-1}(\{0\} \times W) \) respectively. By assumption, \(C/\mathfrak{m}C \) is flat over \(B/\mathfrak{m}B \) and \(C \) is flat over \(A \). It is proven in [42, 20G] that \(C \) is flat over \(B \). \(\square \)

Lemma 50.9. Let \(f : U \to V \) be a closed embedding and \(g : V \to W \) a flat morphism. Suppose the the composition

\[
q : C_f \to U \xrightarrow{f} V \xrightarrow{g} W
\]

is flat. Then \(\sigma_f \circ g^\ast = q^\ast \).
Proof. Consider the composition $u : D_f \to \mathbb{A}^1 \times V \xrightarrow{1 \times g} \mathbb{A}^1 \times W$. The restriction of u on $u^{-1}(\mathbb{G}_m \times W)$ is isomorphic to $1 \times g : \mathbb{G}_m \times V \to \mathbb{G}_m \times W$ and therefore is flat. The restriction of u on $u^{-1}(W \times \{0\})$ coincides with q and is also flat by assumption. The projection $D_f \to \mathbb{A}^1$ is also flat. By Lemma 50.8, the morphism u is flat.

Consider the fiber product diagram

\[
\begin{array}{c}
C_f \xrightarrow{q} D_f \xleftarrow{u} \mathbb{G}_m \times V \\
\downarrow \quad \downarrow 1 \times g \\
W \xrightarrow{f} \mathbb{A}^1 \times W \xleftarrow{g} \mathbb{G}_m \times W.
\end{array}
\]

By Propositions 48.15, 48.17, and 48.34(2), the following diagram is commutative:

\[
\begin{array}{c}
C_*(W) \xrightarrow{p^*} C_{*+1}(\mathbb{G}_m \times W) \xrightarrow{(t)} C_{*+1}(\mathbb{G}_m \times W) \xrightarrow{\partial} C_*(W) \\
\downarrow 1 \times g^* \quad \downarrow 1 \times g^* \quad \downarrow q^* \\
C_*(V) \xrightarrow{g^*} C_{*+1}(\mathbb{G}_m \times V) \xrightarrow{(t)} C_{*+1}(\mathbb{G}_m \times V) \xrightarrow{\partial} C_*(C_f).
\end{array}
\]

It remains to observe that, by Example 50.1, the composition in the top row of the diagram is the identity. □

If $f : Y \to X$ is a regular closed embedding, we write N_f for the normal bundle C_f.

Let $g : Z \to Y$ and $f : Y \to X$ be regular closed embeddings. Then $f \circ g : Z \to X$ is also a regular closed embedding by Proposition 103.15. The normal bundles of the regular closed embeddings $i : N_f|_Z \to N_f$ and $j : N_g \to N_{f \circ g}$ are canonically isomorphic, we denote them by N (cf. Appendix 103.E).

Lemma 50.10. In the setup above, the morphisms of complexes $\sigma_i \circ \sigma_f$ and $\sigma_j \circ \sigma_{f \circ g} : C_*(X) \to C_*(N)$ are homotopic.

Proof. Let D be the double deformation scheme (see Appendix 103.F). We have the following fiber product diagram of open and closed embeddings:

\[
\begin{array}{c}
N \xrightarrow{} D_i \xleftarrow{} N_f \times \mathbb{G}_m \\
\downarrow \quad \downarrow \quad \downarrow \\
D_j \xrightarrow{} D \xleftarrow{} D_f \times \mathbb{G}_m \\
\uparrow \quad \uparrow \quad \uparrow \\
\mathbb{G}_m \times N_{f \circ g} \xrightarrow{} \mathbb{G}_m \times D_{f \circ g} \xleftarrow{} \mathbb{G}_m \times X \times \mathbb{G}_m.
\end{array}
\]

We shall use the notation $\partial_t, \partial_b, \partial_l, \partial_r$ for the boundary morphisms as in (48.E). For every scheme V, denote by p_V any of the projections $V \times \mathbb{G}_m \to V$ or $\mathbb{G}_m \times V \to V$. We write p for the projection $\mathbb{G}_m \times X \times \mathbb{G}_m \to X$.
By Proposition 48.32 and 50.5, we have
\[
\sigma_i \circ \sigma_f = \partial_t \circ \{s\} \circ p^*_f \circ \sigma_f \\
= \partial_t \circ \{s\} \circ \sigma_f \times \mathbb{G}_m \circ p_X^* \\
= \partial_t \circ \{s\} \circ \partial_r \circ \{t\} \circ p^*_r \\
= - \partial_t \circ \partial_r \circ \{s, t\} \circ p^*.
\]
and similarly
\[
\sigma_j \circ \sigma_{fg} = \partial_t \circ \{t\} \circ p^*_{f \circ g} \circ \sigma_{fg} \\
= \partial_t \circ \{t\} \circ \sigma_{f \circ g} \circ p_X^* \\
= \partial_t \circ \{t\} \circ \partial_b \circ \{s\} \circ p^*_b \\
= - \partial_t \circ \partial_b \circ \{t, s\} \circ p^*.
\]
We have \(\{s, t\} = -\{t, s\}\) (cf. (48.3)) and the compositions \(\partial_t \circ \partial_r\) and \(-\partial_t \circ \partial_b\) are homotopic by Proposition 48.35.

51. \(K\)-homology groups

Let \(X\) be a separated scheme of finite type over a field \(F\). The complex \(C_\ast(X)\) is the coproduct of complexes \(C_{\ast q}(X)\) over all \(q \in \mathbb{Z}\). The \(p\)-th homology group of the complex \(C_{\ast q}(X)\) is denoted by \(A_p(X, K_q)\) and called the \(K\)-homology groups. In other words, \(A_p(X, K_q)\) is the homology group of the complex
\[
\prod_{\dim x = p+1} K_{p+q+1}F(x) \xrightarrow{d_X} \prod_{\dim x = p} K_{p+q}F(x) \xrightarrow{d_X} \prod_{\dim x = p-1} K_{p+q-1}F(x).
\]
It follows from the definition that \(A_p(X, K_q) = 0\) if \(p + q < 0\) or \(p < 0\), or \(p > \dim X\).

The group \(A_p(X, K_{-p})\) is the factor group of \(\prod_{\dim x = p} K_0K(x)\). If \(Z \subset X\) is a closed subscheme, the coset of the cycle \([Z]\) of \(Z\) in \(A_p(X, K_{-p})\) (cf. Example 48.11) will be still denoted by \([Z]\).

If \(X\) is the disjoint union of two schemes \(X_1\) and \(X_2\) then
\[
A_p(X, K_q) = A_p(X_1, K_q) \oplus A_p(X_2, K_q).
\]

Example 51.1. We have
\[
A_p(\text{Spec } F, K_q) = \begin{cases}
K_qF, & \text{if } p = 0; \\
0, & \text{otherwise}.
\end{cases}
\]
It follows from Theorem 99.5 that
\[
A_p(\mathbb{A}^1_F, K_q) = \begin{cases}
K_q+1F, & \text{if } p = 1; \\
0, & \text{otherwise}.
\end{cases}
\]
51.A. Push-forward homomorphisms. If \(f : X \rightarrow Y \) is a proper morphism of schemes, the push-forward homomorphism \(f_* : C_{s q}(X) \rightarrow C_{s q}(Y) \) is a morphism of complexes by Proposition 48.7. We then get the push-forward homomorphism of the \(K \)-homology groups
\[
f_* : A_p(X, K_q) \rightarrow A_p(Y, K_q).
\]
Thus, the assignment \(X \mapsto A_*(X, K_*) \) gives rise to a functor from the category of schemes and proper morphisms to the category of bi-graded abelian groups and graded homomorphisms.

Example 51.2. Let \(f : X \rightarrow Y \) be a closed embedding such that \(f \) is a bijection on points. It follows from Example 48.4 that the push-forward homomorphism \(f_* \) is an isomorphism.

51.B. Pull-back homomorphism. If \(g : Y \rightarrow X \) is a flat morphism of relative dimension \(d \), the pull-back homomorphism \(g^* : C_{s q}(X) \rightarrow C_{s+q-d}(Y) \) is a morphism of complexes by Proposition 48.22. We then get the pull-back homomorphism of the \(K \)-homology groups
\[
g^* : A_p(X, K_q) \rightarrow A_{p+d}(Y, K_{q-d}).
\]
The assignment \(X \mapsto A_*(X, K_*) \) gives rise to a contravariant functor from the category of schemes and flat morphisms to the category of bi-graded abelian groups.

Example 51.3. If \(X \) is a variety of dimension \(d \) over \(F \) then the flat structure morphism \(p : X \rightarrow \text{Spec } F \) of relative dimension \(d \) induces natural pull-back homomorphism
\[
p^* : K_q F = A_0(\text{Spec } F, K_q) \rightarrow A_d(X, K_{q-d})
\]
giving \(A_*(X, K_*) \) a structure of a \(K_*(F) \)-module.

Example 51.4. It follows from Example 51.1 that the pull-back homomorphism
\[
f^* : A_p(\text{Spec } F, K_q) \rightarrow A_{p+1}(\mathbb{A}^1_F, K_{q-1})
\]
given by the flat structure morphism \(f : \mathbb{A}^1_F \rightarrow \text{Spec } F \) is an isomorphism.

51.C. Product. Let \(X \) and \(Y \) be two schemes. It follows from Proposition 49.3 that there is a well defined pairing
\[
A_p(X, K_n) \otimes A_q(Y, K_m) \rightarrow A_{p+q}(X \times Y, K_{n+m})
\]
taking the classes of cycles \(\alpha \) and \(\beta \) to the class of the external product \(\alpha \times \beta \).

51.D. Localization. Let \(X \) be a scheme and \(Z \subset X \) a closed subscheme. Set \(U = X \setminus Z \) and consider the closed embedding \(i : Z \rightarrow X \) and the open immersion \(j : U \rightarrow X \). The exact sequence of complexes
\[
0 \rightarrow C_*(Z) \xrightarrow{i_*} C_*(X) \xrightarrow{j_*} C_*(U) \rightarrow 0
\]
induces long localization exact sequence of \(K \)-homology groups
\[
0 \rightarrow C_*(Z) \xrightarrow{i_*} A_p(Z, K_q) \xrightarrow{j^*} A_p(X, K_q) \xrightarrow{\delta} A_{p-1}(U, K_q) \rightarrow \ldots
\]
The map \(\delta \) is called the connecting homomorphism. It is induced by the boundary map of complexes \(\partial^*_Z : C_*(U) \rightarrow C_{*-1}(Z) \) (cf. Proposition 48.31).
51. **Deformation.** Let $f : Y \to X$ be a closed embedding. It follows from Proposition 50.2 that the deformation homomorphism σ_f of complexes induce the deformation homomorphism of homology groups

$$\sigma_f : A_p(X, K_q) \to A_p(C_f, K_q),$$

where C_f is the normal cone of f.

Proposition 51.6. Let Z be a closed equidimensional subscheme of X and $g : f^{-1}(Z) \to Z$ the restriction of f. Then $\sigma_f([Z]) = h_*([C_g])$, where $h : C_g \to C_f$ is the closed embedding.

Proof. Let $i : Z \to X$ be the closed embedding and $q : Z \to \text{Spec } F$, $r : C_f \to \text{Spec } F$ the structure morphisms. Consider the diagram

$$
\begin{array}{ccc}
A_0(\text{Spec } F, K_0) & \xrightarrow{q} & A_d(Z, K_{-d}) \\
\| & & \| \\
A_0(\text{Spec } F, K_0) & \xrightarrow{r} & A_d(C_g, K_{-d}) \\
\end{array}
$$

$$
\begin{array}{ccc}
& & \downarrow\sigma_g \\
& & \downarrow\sigma_f \\
& & \\
A_0(\text{Spec } F, K_0) & \xrightarrow{r} & A_d(C_g, K_{-d}) \\
\| & & \| \\
A_0(\text{Spec } F, K_0) & \xrightarrow{r} & A_d(C_f, K_{-d})
\end{array}
$$

where $d = \text{dim } Z$. The left square is commutative by Lemma 50.9 and the right one - by Proposition 50.6. We have $\sigma_f([Z]) = \sigma_f \circ i_* \circ q^*(1) = h_* \circ r^*(1) = h_*([C_g])$. \hfill \square

51. **Continuity.** Let X be a variety of dimension n and $f : Y \to X$ a dominant morphism. Denote by x the generic point of X and by Y_x the generic fiber of f. For every nonempty open subscheme $U \subset X$, the natural flat morphism $g_U : Y_x \to f^{-1}(U)$ is of relative dimension $-n$. Hence we have the pull-back homomorphism

$$g_U^* : C_*(f^{-1}(U)) \to C_{* - n}(Y_x).$$

The following proposition is a straightforward consequence of definition of the complexes C_*.\hfill \[\square \]

Proposition 51.7. The pull-back homomorphisms g_U^* induce isomorphisms

$$\text{colim } C_p(f^{-1}(U)) \simeq C_{p - n}(Y_x), \quad \text{colim } A_p(f^{-1}(U), K_q) \simeq A_{p-n}(Y_x, K_{q+n})$$

for all p and q, where the colimits are taken over all nonempty open subschemes U of X.

51. **Homotopy invariance.** Let $g : Y \to X$ be a morphism of schemes over F. Recall that for every $x \in X$, we denote by Y_x the fiber scheme $g^{-1}(x) = Y \times_X \text{Spec } F(x)$ over the field $F(x)$.

Proposition 51.8. Let $g : Y \to X$ be a flat morphism of relative dimension d. Suppose that for every $x \in X$, the pull-back homomorphism

$$A_p(\text{Spec } F(x), K_q) \to A_{p+d}(Y_x, K_{q-d})$$

is an isomorphism for every p. Then the pull-back homomorphism

$$g^* : A_p(X, K_q) \to A_{p+d}(Y, K_{q-d})$$

is an isomorphism for every p and q.\hfill \square
Proof. Step 1. X is a variety:
We proceed by induction on $n = \dim X$. The case $n = 0$ is obvious. In general, let $U \subset X$ be a nonempty open subset and $Z = X \setminus U$ with the structure of a reduced scheme. Set $V = g^{-1}(U)$ and $T = g^{-1}(Z)$. We have closed embeddings $i : Z \to X$, $k : T \to Y$ and open immersions $j : U \to X$, $l : V \to Y$. By induction, the pull-back homomorphisms $(g|_T)^*$ in the diagram

$$
\begin{array}{ccccccc}
A_{p+1}(U, K_q) & \xrightarrow{\delta} & A_p(Z, K_q) & \xrightarrow{i^*} & A_p(X, K_q) & \xrightarrow{j^*} & A_p(U, K_q) & \xrightarrow{\delta} & A_{p-1}(Z, K_q) \\
(g|_V)^* & \downarrow & (g|_T)^* & \downarrow & g^* & \downarrow & (g|_V)^* & \downarrow & (g|_T)^* \\
A_{p+d+1}(V, K_{q-d}) & \xrightarrow{\delta} & A_{p+d}(T, K_{q-d}) & \xrightarrow{k^*} & A_{p+d}(Y, K_{q-d}) & \xrightarrow{l^*} & A_{p+d}(V, K_{q-d}) & \xrightarrow{\delta} & A_{p+d-1}(T, K_q)
\end{array}
$$

are isomorphisms. The diagram is commutative by Propositions 48.17, 48.19, and $48.34(2)$.

Let $x \in X$ be the generic point. By Proposition 51.7, the colimit of the homomorphisms $(g|_V)^* : A_p(U, K_q) \to A_{p+d}(V, K_{q-d})$ over all nonempty open subschemes U of X is isomorphic to the pull-back homomorphism $A_{p-n}(\text{Spec } F(x), K_{q+n}) \to A_{p-n+d}(Y_x, K_{q+n-d})$.

By assumption, it is an isomorphism. Taking the colimits of all terms of the diagram, we conclude by 5-lemma that g^* is an isomorphism.

Step 2. X is reduced:
We proceed by induction on the number m of the irreducible components of X. The case $m = 1$ is the Step 1. Let Z be a (reduced) irreducible component of X and let $U = X \setminus Z$. Consider the commutative diagram as in Step 1. By Step 1, $(g|_T)^*$ is an isomorphism. The pull-back $(g|_V)^*$ is also an isomorphism by the induction hypothesis. By 5-lemma, g^* is an isomorphism.

Step 3. X is an arbitrary scheme:
Let X' be the reduced scheme X_{red}. Consider the fiber product diagram

$$
\begin{array}{ccc}
Y' & \xrightarrow{g'} & X' \\
\downarrow f & & \downarrow h \\
Y & \xrightarrow{g} & X,
\end{array}
$$

where f and h are closed embeddings. By Proposition 48.19, we have $g^* \circ h_* = f_* \circ g^*$. In view of Example 51.2, the maps f_* and h_* are isomorphisms. Finally, g^* is an isomorphism by Step 2, and we conclude that g^* is also an isomorphism. \qed

Corollary 51.9. The pull-back homomorphism

$$g^* : A_p(X, K_q) \to A_{p+d}(X \times \mathbb{A}_F^d, K_{q-d})$$

given by the projection $g : X \times \mathbb{A}_F^d \to X$ is an isomorphism. In particular,

$$A_p(\mathbb{A}_F^d, K_q) = \begin{cases}
K_{q+d}F, & \text{if } p = d; \\
0, & \text{otherwise.}
\end{cases}$$
52. PROJECTIVE BUNDLE THEOREM

Proof. Example 51.4 and Proposition 51.8 give the statement in the case \(d = 1 \). The general case follows by induction. \(\square \)

A morphism \(g : Y \to X \) is called an affine bundle of rank \(d \) if \(g \) is flat and the fiber of \(g \) over any point \(x \in X \) is isomorphism to the affine space \(\mathbb{A}_F^d(x) \). For example, a vector bundle of rank \(d \) is an affine bundle of rank \(d \).

The following statement is a useful criterion of recognizing an affine bundle.

Lemma 51.10. A morphism \(Y \to X \) over \(F \) is an affine bundle of rank \(d \) if for any local commutative \(F \)-algebra \(R \) and any morphism \(\text{Spec} \ R \to X \) over \(F \) the fiber product \(\text{Spec} \ R \times_X Y \) is isomorphic to \(\mathbb{A}_R^d \) over \(R \).

Proof. Applying the condition to the local ring \(R = O_{X,x} \) for all \(x \in X \), we see that \(f \) is flat and the fiber of \(f \) over \(x \) is the affine space \(\mathbb{A}_F^d(x) \). \(\square \)

The following theorem essentially asserts that the affine spaces are negligible for \(K \)-homology.

Theorem 51.11 (Homotopy Invariance). Let \(g : Y \to X \) be an affine bundle of rank \(d \). Then the pull-back homomorphism \(g^* : A_p(X, K_q) \to A_{p+d}(Y, K_{q-d}) \) is an isomorphism for every \(p \) and \(q \).

Proof. Since for every \(x \in X \), we have \(Y_x \cong \mathbb{A}_F^d(x) \). Applying Corollary 51.9 to \(X = \text{Spec} F(x) \), we see that the pull-back homomorphism \(A_p(\text{Spec} F(x), K_q) \to A_{p+d}(Y_x, K_{q-d}) \) is an isomorphism for every \(p \) and \(q \). By Proposition 51.8, the map \(g^* \) is an isomorphism. \(\square \)

Corollary 51.12. Let \(f : E \to X \) be a vector bundle of rank \(d \). Then the pull-back homomorphism \(f^* : A_p(X, K_\ast) \to A_{p+d}(E, K_{\ast-d}) \) is an isomorphism for every \(p \).

52. Projective Bundle Theorem

In this section we compute \(K \)-homology for projective spaces and more generally for projective bundles.

52.A. Euler class. Let \(p : E \to X \) be a vector bundle of rank \(r \). Denote by \(s : X \to E \) the zero section. Note that \(p \) is a flat morphism of relative dimension \(r \) and \(s \) is a closed embedding. By Corollary 51.12, the pull-back homomorphism \(p^* \) is an isomorphism. The composition \(e(E) = (p^*)^{-1} \circ s_* : A_* (X, K_\ast) \to A_{\ast-r}(X, K_{\ast+r}) \) is called the Euler class of \(E \). Note that isomorphic vector bundles over \(X \) have equal Euler classes.
Proposition 52.1. Let $0 \to E' \xrightarrow{f} E \xrightarrow{g} E'' \to 0$ be an exact sequence of vector bundles over X. Then $e(E) = e(E'') \circ e(E')$.

Proof. Consider the fiber product diagram

$$
\begin{array}{ccc}
E' & \xrightarrow{f} & E \\
p' \downarrow & & \downarrow g \\
X & \xrightarrow{\pi''} & E''
\end{array}
$$

By Proposition [48.19], $g^* \circ s'' = f_* \circ p'^*$, hence

$$
e(E'') \circ e(E') = (p''^*)^{-1} \circ s'' \circ (p'^*)^{-1} \circ s_*
= (p''^*)^{-1} \circ g^* \circ f_* \circ s_*
= (p'' \circ g)^* \circ (f \circ s')_*
= p'^{-1} \circ s_*
= e(E).
$$

Corollary 52.2. The Euler classes of any two vector bundles E and E' over X commute: $e(E') \circ e(E) = e(E) \circ e(E')$.

Proof. By Proposition [52.1], we have

$$
e(E') \circ e(E) = e(E' \oplus E) = e(E \oplus E') = e(E) \circ e(E')\text{.}$$

Proposition 52.3. Let $f : Y \to X$ be a morphism and let E be a vector bundle over X. Then the pull-back $E' = f^* E$ is a vector bundle over Y and

1. If f is proper then $e(E) \circ f_* = f_* \circ e(E')$.
2. If f is flat then $f^* \circ e(E) = e(E') \circ f^*$.

Proof. We have two fiber product diagrams

$$
\begin{array}{ccc}
E' & \xrightarrow{g} & E \\
p' \downarrow & & \downarrow p \\
Y & \xrightarrow{\pi} & X
\end{array} \quad \quad
\begin{array}{ccc}
Y & \xrightarrow{\pi} & X \\
\downarrow j & & \downarrow i \\
E' & \xrightarrow{g} & E
\end{array}
$$

where p and q are natural morphisms and i and j are the zero sections.

1. By Proposition [48.19], we have $p^* \circ f_* = g_* \circ q^*$. Hence

$$
e(E) \circ f_* = (p^*)^{-1} \circ i_* \circ f_*
= (p^*)^{-1} \circ g_* \circ j_*
= f_* \circ (q^*)^{-1} \circ j_*
= f_* \circ e(E').$$
(2) Again by Proposition 48.19, we have \(g^* \circ i_* = j_* \circ f^* \). Hence
\[
f^* \circ e(E) = f^* \circ (p^*)^{-1} \circ i_* = (q^*)^{-1} \circ g^* \circ i_* = (q^*)^{-1} \circ j_* \circ f^* = e(E') \circ f^*.
\]

Proposition 52.4. Let \(p : E \to X \) and \(p' : E' \to X' \) be vector bundles. Then
\[
e(E \times E')(\alpha \times \alpha') = e(E)(\alpha) \times e(E')(\alpha')
\]
for every \(\alpha \in A_*(X, K_\ast) \) and \(\alpha \in A_*(X', K_\ast) \).

Proof. Let \(s : X \to E \) and \(s' : X' \to E' \) be zero sections. It follows from Propositions 49.4 and 49.5 that
\[
e(E \times E')(\alpha \times \alpha') = (p \times p')^*\circ (s \times s')_*(\alpha \times \alpha')
\]
\[
= (p'^{-1} \times p'^{-1}) \circ (s \times s')_*(\alpha \times \alpha')
\]
\[
= (p'^{-1} \circ s_*(\alpha)) \times (p'^{-1} \circ s'_*(\alpha')
\]
\[
= e(E)(\alpha) \times e(E')(\alpha').
\]

Proposition 52.5. The Euler class \(e(1) \) is trivial.

Proof. It is sufficient to prove that the push-forward homomorphism \(s_* \) for the zero section \(s : X \to \mathbb{A}^1 \times X \) is trivial. Let \(t \) be the coordinate on \(\mathbb{A}^1 \). We view \(\{t\} \) as an element of \(C_1(\mathbb{A}^1) = K_1 F(\mathbb{A}^1) \). Clearly, \(d_{\mathbb{A}^1}(\{t\}) = \text{div}(t) = [0] \). It follows from Proposition 49.3 that for every \(\alpha \in A^*(X, K_\ast) \), one has in \(A^*(\mathbb{A}^1 \times X, K_\ast) \):
\[
s_*(\alpha) = [0] \times \alpha = d_{\mathbb{A}^1}(\{t\}) \times \alpha = d_{\mathbb{A}^1 \times X}(\{t\} \times \alpha) = 0.
\]

52.B. K-homology of projective spaces

Consider the projective space \(X = \mathbb{P}_F(V) \), where \(V \) is a vector space of dimension \(d + 1 \) over \(F \). For every \(p = 0, \ldots, d \), let \(V_p \) be a subspace of \(V \) of dimension \(p + 1 \). We view \(\mathbb{P}(V_p) \) as a subvariety of \(X \). Let \(x_p \in X \) be the generic point of \(\mathbb{P}(V_p) \). Consider the generator \(1_p \) of \(K_0(F(x_p)) = \mathbb{Z} \) viewed as a subgroup of \(C_{d-p}(X) \). We claim that the class \(l_p \) of the generator \(1_p \) in \(A_p(X, K_{-p}) \) does not depend on the choice of \(V_p \).

The statement is trivial if \(p = d \). Let \(p < d \) and let \(V'_p \) be another subspace of dimension \(p + 1 \). We may assume that \(V_p \) and \(V'_p \) are subspaces of a space \(W \subset V \) of dimension \(p + 1 \). Let \(h \) and \(h' \) be linear forms on \(W \) such that \(\text{Ker}(h) = V_p \) and \(\text{Ker}(h') = V'_p \). The ratio \(f = h/h' \) can be viewed as a rational function on \(\mathbb{P}_F(W) \) so that \(\text{div}(f) = 1_p - 1_{p'} \). By definition of the \(K \)-homology group \(A_p(X, K_{-p}) \), the classes \(l_p \) and \(l_{p'} \) of \(1_p \) and \(1_{p'} \) respectively in \(A_p(X, K_{-p}) \) coincide.

Let \(X \) be a scheme over \(F \) and set \(\mathbb{P}^d_X = \mathbb{P}^d_F \times X \). For every \(i = 0, \ldots, d \) consider the external product homomorphism
\[
A_{d-i}(X, K_{s+i}) \to A_* \left(\mathbb{P}^d_X, K_* \right), \quad \alpha \mapsto l_i \times \alpha.
\]

The following proposition computes \(K \)-homology of the projective space \(\mathbb{P}^d_X \).
Proposition 52.6. For any scheme X, the homomorphism

$$
\prod_{i=0}^{d} A_{s-i}(X, K_{s+i}) \to A_{s}(\mathbb{P}^d_X, K_{s})
$$

taking $\sum \alpha_i$ to $\sum l_i \times \alpha_i$ is an isomorphism.

Proof. We proceed by induction on d. The case $d = 0$ is obvious since $\mathbb{P}^d_X = X$. If $d > 0$ we view \mathbb{P}^{d-1}_X as a closed subscheme of \mathbb{P}^d_X with the open complement \mathbb{A}^d_X. Consider the closed and open embeddings $f : \mathbb{P}^{d-1}_X \to \mathbb{P}^d_X$ and $g : \mathbb{A}^d_X \to \mathbb{P}^d_X$. In the diagram

$$
\begin{array}{ccccccc}
0 & \longrightarrow & \prod_{i=0}^{d-1} A_{s-i}(X, K_{s+i}) & \longrightarrow & \prod_{i=0}^{d} A_{s-i}(X, K_{s+i}) & \longrightarrow & A_{s-d}(X, K_{s+d}) & \longrightarrow & 0 \\
& & \downarrow & & \downarrow & & h^* & & \\
& & \ldots & & \delta & & f_* & & \delta & & \ldots
\end{array}
$$

the bottom row is the localization exact sequence and $h : \mathbb{A}^d_X \to X$ is the canonical morphism. The left square is commutative by Proposition 49.4 and the right square - by Proposition 49.5.

Let $g : \mathbb{P}^d_X \to X$ be the projection. Since $h = q \circ g$, we have $h^* = g^* \circ q^*$. By Corollary 51.9 we have h^* is an isomorphism, hence g^* is surjective. Therefore, all connecting homomorphisms δ in the bottom localization exact sequence are trivial. It follows that the map f_* is injective, i.e., the bottom sequence of two maps f_* and g^* is short exact. By the induction hypothesis, the left vertical homomorphism is an isomorphism. By 5-lemma so is the middle one. \[\Box\]

Corollary 52.7.

$$
A_p(\mathbb{P}^d_F, K_q) = \begin{cases}
(K_{p+q}F) \cdot l_p, & \text{if } 0 \leq p \leq d; \\
0, & \text{otherwise}.
\end{cases}
$$

Example 52.8. Let L be the canonical line bundle over $X = \mathbb{P}^d_F$. We claim that $e(L)(l_p) = l_{p-1}$ for every $p = 1, \ldots, d$. Consider first the case $p = d$. By Appendix 103.C, we have $L = \mathbb{P}^{d+1} \setminus \{0\}$, where $0 = \{0 : \ldots : 0 : 1\}$ and the morphism $f : L \to X$ takes $[S_0 : \ldots : S_n : S_{n+1}]$ to $[S_0 : \ldots : S_n]$. The image Z of the zero section $s : X \to L$ is given by $S_{n+1} = 0$. Let $H \subset X$ be the hyperplane given by $S_0 = 0$. We have $\text{div}(S_{n+1}/S_0) = [Z] - [f^{-1}(H)]$ and therefore, in $A_{d-1}(X, K_{1-d})$:

$$
e(L)(l_d) = (f^*)^{-1}s_*([X]) = (f^*)^{-1}[Z] = (f^*)^{-1}[f^{-1}(H)] = [H] = l_{d-1}.
$$

In the general case consider a linear closed embedding $g : \mathbb{P}^d_F \to \mathbb{P}^d_F$. The pull-back $L' = g^*L$ is the canonical bundle over \mathbb{P}^d_F. By the first part of the proof and Proposition 52.3(1),

$$
e(L)(l_p) = e(L)(g_*(l_p)) = g_*(e(L')(l_p)) = g_*(l_{p-1}) = l_{p-1}.
$$

Example 52.9. Let L' be the tautological line bundle over $X = \mathbb{P}^d_F$. Similarly to Example 52.8 we get $e(L')(l_p) = -l_{p-1}$ for every $p = 1, \ldots, d$.

52.C. Projective Bundle Theorem. Let $E \to X$ be a vector bundle of rank $r \geq 1$. Consider the associated projective bundle morphism $q : \mathbb{P}(E) \to X$. Note that q is a flat morphism of relative dimension $r - 1$. Let $L \to \mathbb{P}(E)$ be either the canonical or the tautological line bundle and e the Euler class of L.

Theorem 52.10 (Projective Bundle Theorem). Let $E \to X$ be a vector bundle of rank r. Then the homomorphism

$$\varphi(E) = \prod_{i=1}^{r} e^{r-i} \circ q^* : \prod_{i=1}^{r} A_{s-i+1}(X, K_{s+i-1}) \to A_s(\mathbb{P}(E), K_s)$$

is an isomorphism. In other words, every $\alpha \in A_s(\mathbb{P}(E), K_s)$ can be written in the form

$$\alpha = \sum_{i=1}^{r} e^{r-i}(q^* \alpha_i)$$

for uniquely determined elements $\alpha_i \in A_{s-i+1}(X, K_{s+i-1})$.

Proof. We suppose that L is the canonical line bundle. The case of the tautological bundle is treated similarly. If E is a trivial vector bundle, we have $\mathbb{P}(E) = X \times \mathbb{P}^{r-1}_F$. Let L' be the canonical line bundle over \mathbb{P}^{r-1}_F. It follows from Example 52.8 that

$$e(L)^{r-i}(q^* \alpha) = e(L)^{r-i}(l_{r-1} \times \alpha) = e(L')^{r-i}(l_{r-1}) \times \alpha = l_{i-1} \times \alpha.$$

Hence the map $\varphi(E)$ coincides with the one in Proposition 52.6, consequently is an isomorphism.

In general, we proceed by induction on $d = \dim X$. If $d = 0$, the vector bundle is trivial. If $d > 0$ choose an open subscheme $U \subset X$ such that dimension of $Z = X \setminus U$ is less than d and the vector bundle $E|_U$ is trivial. In the diagram

$$\ldots \to \prod_{i=1}^{r} A_{s-i+1}(Z, K_{s+i-1}) \to \prod_{i=1}^{r} A_{s-i+1}(X, K_{s+i-1}) \to \prod_{i=1}^{r} A_{s-i+1}(U, K_{s+i-1}) \to A_s(\mathbb{P}(E|_Z), K_s) \to A_s(\mathbb{P}(E|_{U}), K_s) \to A_s(\mathbb{P}(E|_U), K_s) \to \ldots$$

with the rows localization long exact sequences, the homomorphisms $\varphi(E|_Z)$ are isomorphisms by the induction hypothesis and $\varphi(E|_U)$ are isomorphisms since $E|_U$ is trivial. The diagram is commutative by Proposition 52.3. The statement follows by 5-lemma. □

Remark 52.11. It follows from Propositions 48.17, 48.19 and 52.3 that the isomorphisms $\varphi(E)$ are natural with respect to push-forward homomorphisms for proper morphisms of the base schemes and with respect to pull-back homomorphisms for flat morphisms.

Corollary 52.12. The pull-back homomorphism $q^* : A_{s-r+1}(X, K_{s+r-1}) \to A_s(\mathbb{P}(E), K_s)$ is a split injection.
Proposition 52.13 (Splitting Principle). Let $E \rightarrow X$ be a vector bundle. Then there is a flat morphism $f : Y \rightarrow X$ of constant relative dimension, say d, such that:

1. The pull-back homomorphism $f^* : A_s(X, K_s) \rightarrow A_{s+d}(Y, K_{s+d})$ is injective.
2. The vector bundle f^*E has a filtration by sub-bundles with quotients line bundles.

Proof. We induct on the rank r of E. Consider the projective bundle $q : \mathbb{P}(E) \rightarrow X$. The pull-back homomorphism q^* is injective by Corollary 52.12. The tautological line bundle L over $\mathbb{P}(E)$ is a sub-bundle of the vector bundle q^*E. Applying the induction hypothesis to the factor bundle $E' = (q^*E)/L$ over $\mathbb{P}(E)$ we find a flat morphism $g : Y \rightarrow \mathbb{P}(E)$ of constant relative dimension satisfying the conditions (1) and (2). Then obviously the composition $f = q \circ g$ works. □

To prove various relations between K-homology classes, the splitting principle allows us to assume that all the vector bundles involved have filtration by sub-bundles with line factors.

53. Chern classes

In this section we construct Chern classes of vector bundles as certain operations on the K-homology.

Let $E \rightarrow X$ be a vector bundle of rank $r > 0$ and let $q : \mathbb{P}(E) \rightarrow X$ be the associated projective bundle. By Theorem 52.10 for every $\alpha \in A_s(X, K_s)$ there exist unique $\alpha_i \in A_{s-i}(X, K_{s+i})$, $i = 0, \ldots, r$ such that

$$-e^r(q^*\alpha) = \sum_{i=1}^{r} (-1)^i e^{r-i}(q^*\alpha_i),$$

where e is the Euler class of the tautological line bundle L over $\mathbb{P}(E)$. In other words,

$$(53.1) \sum_{i=0}^{r} (-1)^i e^{r-i}(q^*\alpha_i) = 0,$$

where $\alpha_0 = \alpha$. Thus we have obtained group homomorphisms

$$(53.2) \quad c_i(E) : A_s(X, K_s) \rightarrow A_{s-i}(X, K_{s+i}), \quad \alpha \mapsto \alpha_i = c_i(E)(\alpha)$$

for every $i = 0, \ldots, r$, called the Chern classes of E. By definition, c_0 is the identity. We also set $c_i = 0$ for $i > r$ or $i < 0$ and define the total Chern class of E by

$$c(E) = c_0(E) + c_1(E) + \cdots + c_r(E)$$

viewed as an endomorphism of $A_s(X, K_s)$. If E is the zero bundle (of rank 0) then we set $c_0(E) = 1$ and $c_i(E) = 0$ if $i \neq 0$.

Proposition 53.3. If E is a line bundle then $c_1(E) = e(E)$.

Proof. If E is a line bundle we have $\mathbb{P}(E) = X$ and $L = E$ by Example 103.19. Therefore the equality (53.1) reads $e(E)(\alpha) - \alpha_1 = 0$, hence $c_1(E)(\alpha) = \alpha_1 = e(E)(\alpha)$. □

Example 53.4. If L is a line bundle, then $c(L) = 1 + e(L)$. In particular, $c(1) = 1$ by Proposition 52.5.
Proposition 53.5. Let \(f : Y \to X \) be a morphism and \(E \) a vector bundle over \(X \). Set \(E' = f^* E \). Then

(1) If \(f \) is proper then \(c(E) \circ f_* = f_* \circ c(E') \).

(2) If \(f \) is flat then \(f^* \circ c(E) = c(E') \circ f^* \).

Proof. Let \(\text{rank } E = r \). Consider the fiber product diagram

\[
\begin{array}{ccc}
P(E') & \xrightarrow{h} & P(E) \\
\downarrow q' & & \downarrow q \\
Y & \xrightarrow{f} & X
\end{array}
\]

with flat morphisms \(q \) and \(q' \) of constant relative dimension \(r - 1 \). Denote by \(e \) and \(e' \) the Euler classes of the tautological line bundle \(L \) over \(P(E) \) and \(L' \) over \(P(E') \) respectively. Note that \(L' = h^* L \).

(1): By Proposition \([48.19]\) we have \(h_* \circ (q')^* = q^* \circ f_* \). By definition of Chern classes, for every \(\alpha' \in A_*(Y, K_*) \) and \(\alpha'_i = c_i(E')(\alpha') \) we have:

\[
\sum_{i=0}^{r} (-1)^i (e')^{r-i} (q^* \alpha'_i) = 0.
\]

Applying \(h_* \), by Propositions \([48.19]\) and \([52.3]\) we have

\[
0 = h_* \left(\sum_{i=0}^{r} (-1)^i (e')^{r-i} (q^* \alpha'_i) \right)
\]

\[
= \sum_{i=0}^{r} (-1)^i e^{r-i} (h_* q^* \alpha'_i)
\]

\[
= \sum_{i=0}^{r} (-1)^i e^{r-i} (q^* f_* \alpha'_i).
\]

Hence \(c_i(E)(f_* \alpha') = f_* (\alpha'_i) = f_* c_i(E')(\alpha') \).

(2): By definition of the Chern classes, for every \(\alpha \in A_*(X, K_*) \) and \(\alpha_i = c_i(E)(\alpha) \) we have

\[
\sum_{i=0}^{r} (-1)^i e^{r-i} (q^* \alpha_i) = 0.
\]

Applying \(h^* \), by Proposition \([52.3]\) we have

\[
0 = h^* \sum_{i=0}^{r} (-1)^i e^{r-i} (q^* \alpha_i)
\]

\[
= \sum_{i=0}^{r} (-1)^i (e')^{r-i} (h^* q^* \alpha_i)
\]

\[
= \sum_{i=0}^{r} (-1)^i (e')^{r-i} (q'^* f^* \alpha_i).
\]
Hence \(c_i(E')(f^*\alpha) = f^*(\alpha_i) = f^*c_i(E)(\alpha) \). \(\square \)

Proposition 53.6. Let \(E \) be a vector bundle over \(X \) possessing a filtration by sub-bundles with factors line bundles \(L_1, L_2, \ldots , L_r \). Then for every \(i = 1, \ldots , r \), we have

\[
c_i(E) = \sigma_i(\epsilon(L_1), \ldots , \epsilon(L_r))
\]

where \(\sigma_i \) is the \(i \)-th elementary symmetric function. In other words,

\[
c(E) = \prod_{i=1}^{r} (1 + \epsilon(L_i)) = \prod_{i=1}^{r} \epsilon(L_i).
\]

Proof. As usual, let \(q : \mathbb{P}(E) \to X \) be the canonical morphism and let \(\epsilon \) be the Euler class of the tautological line bundle \(L \) over \(\mathbb{P}(E) \). It follows from the formula \((53.1)\) and Propositions \(53.5 \) that it is sufficient to prove that

\[
\prod_{i=1}^{r} (\epsilon(L) - \epsilon(q^*L_i)) = 0
\]

as an operation on \(A_*(\mathbb{P}(E), K_x) \). We proceed by induction on \(r \). The case \(r = 1 \) follows from the fact that the tautological bundle \(L \) coincides with \(E \) over \(\mathbb{P}(E) = X \) (cf. Example \(103.19 \)). In the general case let \(E' \) be a sub-bundle of \(E \) having a filtration by sub-bundles with factors line bundles \(L_1, L_2, \ldots , L_{r-1} \) and with \(E/E' \cong L_r \). Consider the natural morphism \(f : U = \mathbb{P}(E) \setminus \mathbb{P}(E') \to \mathbb{P}(L_r) \). Under the identification of \(\mathbb{P}(L_r) \) with \(X \), the bundle \(L_r \) is the tautological line bundle over \(\mathbb{P}(L_r) \). Hence \(f^*(L_r) \) is isomorphic to the restriction of \(L \) to \(U \). In other words, \(L|_U \cong q^*(L_r)|_U \) and therefore \(\epsilon(L|_U) = \epsilon(q^*(L_r)|_U) \). It follows from Proposition \(52.3 \) that for every \(\alpha \in A_*(\mathbb{P}(E'), K_x) \), we have

\[
\epsilon(L) - \epsilon(q^*L_r) \mid U = \epsilon(L|_U) - \epsilon(q^*(L_r)|_U) \mid U = 0.
\]

By localization \(51.5 \), there is a \(\beta \in A_*(\mathbb{P}(E'), K_x) \) such that

\[
i_*(\beta) = \epsilon(L) - \epsilon(q^*L_r) \mid U = 0.
\]

where \(i : \mathbb{P}(E') \to \mathbb{P}(E) \) is the closed embedding. Let \(L' \) be the the tautological line bundle over \(\mathbb{P}(E') \) and let \(q' : \mathbb{P}(E') \to X \) be the canonical morphism. We have \(q' = q \circ i \).

By induction and Proposition \(52.3 \),

\[
\prod_{i=1}^{r} (\epsilon(L) - \epsilon(q^*L_i)) \mid U = \prod_{i=1}^{r-1} (\epsilon(L) - \epsilon(q^*L_i)) (i_*(\beta))
\]

\[
= i_* \left(\prod_{i=1}^{r-1} (\epsilon(L') - \epsilon(i^*q^*L_i)) (\beta) \right)
\]

\[
= i_* \left(\prod_{i=1}^{r-1} (\epsilon(L') - \epsilon(q^*L_i)) (\beta) \right)
\]

\[
= 0. \square
\]
Proposition 53.7 (Whitney Sum Formula). Let \(0 \to E' \xrightarrow{f} E \xrightarrow{g} E'' \to 0 \) be an exact sequence of vector bundles over \(X \). Then \(c(E) = c(E') \circ c(E'') \). In other words,
\[
c_n(E) = \sum_{i+j=n} c_i(E') \circ c_j(E'')
\]
for every \(n \).

Proof. By the splitting principle (Proposition 52.13 and Proposition 53.5(2)), we may assume that \(E' \) and \(E'' \) have filtrations by sub-bundles with quotients line bundles \(L_1', \ldots, L_r' \) and \(L_1'', \ldots, L_s'' \) respectively. Hence \(E \) has a filtration with factors \(L_1', \ldots, L_r', L_1'', \ldots, L_s'' \). It follows from Proposition 53.6 that
\[
c(E') \circ c(E'') = \prod_{i=1}^r c(L_i') \circ \prod_{j=1}^s c(L_j'') = c(E).
\]
The last statement follows from Proposition 57.9. \(\square \)

The same proof as in Corollary 52.2 yields:

Corollary 53.8. The Chern classes of any two vector bundles \(E \) and \(E' \) over \(X \) commute: \(c(E') \circ c(E) = c(E) \circ c(E') \).

By Example 53.4, we have

Corollary 53.9. If \(E \) is a vector bundle over \(X \), then \(c(E \oplus) = c(E) \). In particular, if \(E \) is a trivial vector bundle then \(c(E) = 1 \).

The Whitney Sum Formula allows us to define Chern classes not only for vector bundles over a scheme \(X \) but also for elements of the Grothendieck group \(K_0(X) \). Note that for a vector bundle \(E \) over \(X \) the endomorphisms \(c_i(E) \) are nilpotent for \(i > 0 \), therefore the total Chern class \(c(E) \) is an invertible endomorphism. By the Whitney Sum Formula, the assignment \(E \mapsto c(E) \in \text{Aut} A_*(X, K_*) \) gives rise to the total Chern class homomorphism
\[
c : K_0(X) \to \text{Aut} A_*(X, K_*)
\]

54. Gysin and pull-back homomorphisms

In this section we consider contravariant properties of \(K \)-homology.

54.A. Gysin homomorphisms. Let \(f : Y \to X \) be a regular closed embedding of codimension \(r \) and let \(p_f : N_f \to Y \) be the canonical morphism. We define Gysin homomorphism as the composition
\[
f^* : A_*(X, K_*) \xrightarrow{\sigma_f} A_*(N_f, K_*) \xrightarrow{(p_f^*)^{-1}} A_{*-r}(Y, K_{*-r}).
\]

Proposition 54.1. Let \(Z \xrightarrow{g} Y \xrightarrow{f} X \) be regular closed embeddings. Then \((f \circ g)^* = g^* \circ f^* \).
PROOF. The normal bundles of the regular closed embeddings $i : N_f|_Z \to N_f$ and $j : N_g \to N_{fg}$ are canonically isomorphic, denote them by N. Consider the diagram

\[
\begin{array}{ccc}
C_*(X) & \xrightarrow{\sigma f} & C_*(N_{fg}) \\
\downarrow{\sigma f} & & \downarrow{\sigma j} \\
C_*(N_f) & \xrightarrow{\sigma i} & C_*(N) \\
\uparrow{p^*_f} & & \uparrow{p^*_j} \\
C_*(Y) & \xrightarrow{\sigma g} & C_*(N_g) \\
\end{array}
\]

The bottom right square is commutative by Proposition 48.17. The bottom left and upper right squares are commutative by Proposition 50.5 and Lemma 50.9 respectively. The upper left square is commutative up to homotopy by Lemma 50.10. The statement follows from commutativity of the diagram. \hfill \square

Let

\[
\begin{array}{ccc}
Y' & \xrightarrow{f'} & X' \\
\downarrow{g} & & \downarrow{h} \\
Y & \xrightarrow{f} & X \\
\end{array}
\]

be a fiber product diagram with f and f' regular closed embeddings. The natural morphisms $i : N_{f'} \to g^*N_f$ of normal bundles over Y' is a closed embedding. The factor bundle $E = g^*N_f/N_{f'}$ over Y' is called the excess vector bundle.

Proposition 54.3 (Excess Formula). Let h be a proper morphism. Then in the notation of diagram (54.2),

\[f^* \circ h_* = g_* \circ e(E) \circ f'^*. \]

Proof. Let

\[p : N_f \to Y, \quad p' : N_{f'} \to Y', \quad i : N_{f'} \to g^*N_f, \quad r : g^*N_f \to N_f \quad \text{and} \quad t : g^*N_f \to Y' \]

be canonical morphisms. It is sufficient to prove that the diagram

\[
\begin{array}{ccc}
C_*(X') & \xrightarrow{\sigma f'} & C_*(N_{f'}) \\
\downarrow{h_*} & & \downarrow{(ri)_*} \\
C_*(X) & \xrightarrow{\sigma f} & C_*(N_f) \\
\end{array}
\]

is commutative.
The commutativity everywhere but the top parallelogram follows by Propositions 48.19 and 50.6. Hence it is sufficient to show that $t^* \circ e(E) = i_* \circ p'^*$. Consider the fiber product diagram

$$
\begin{array}{ccc}
N_{f'} & \overset{i}{\longrightarrow} & g^* N_f \\
p' & \downarrow & j \\
X & \overset{s}{\longrightarrow} & E,
\end{array}
$$

where j is a natural morphism of vector bundles and s is the zero section. Let $q : E \to Y'$ be the natural morphism. It follows from the equality $q \circ j = t$ and Proposition 48.19 that

$$t^* \circ e(E) = t^* \circ q^* \circ s_* = j^* \circ s_* = i_* \circ p'^*.
$$

\[\square \]

Corollary 54.4. Suppose in the conditions of Proposition 54.3 that f and f' are regular closed embeddings of the same codimension. Then $f^* \circ h_* = g_* \circ f'^*$. Proof. In this case, $E = 0$ so $e(E)$ is the identity. \[\square \]

The following statement is a consequence of Propositions 48.17 and 50.5.

Proposition 54.5. Suppose in the diagram (54.2) that g is a flat morphism of relative dimension d. Then the diagram

$$
\begin{array}{ccc}
A_p(X, K_n) & \overset{f^*}{\longrightarrow} & A_p(Y, K_n) \\
h^* & \downarrow & g^* \\
A_{p+d}(X', K_{n-d}) & \overset{f'^*}{\longrightarrow} & A_{p+d}(Y', K_{n-d})
\end{array}
$$

is commutative.

Proposition 54.6. Let $f : Y \to X$ be a regular closed embedding of equidimensional schemes. Then $f^*(([X]) = [Y]$. Proof. By Example 48.12 and Proposition 51.6,

$$f^*(([X]) = (p_f^*)^{-1} \circ \sigma_f(([X]) = (p_f^*)^{-1}([N_f]) = [Y].$$

\[\square \]

Lemma 54.7. Let $i : U \to V$ and $g : V \to W$ be a regular closed embedding and a flat morphism respectively and let $h = g \circ i$. If h is flat then $h^* = i^* \circ g^*$. Proof. Let $p : N_i \to U$ be the canonical morphism. By Lemma 50.9, we have $\sigma_i \circ g^* = (h \circ p)^* = p^* \circ h^*$ hence $i^* \circ g^* = (p^*)^{-1} \circ \sigma_i \circ g^* = h^*$. \[\square \]

We now study the functorial behavior of Euler and Chern classes under Gysin homomorphisms. The next proposition is a consequence of Corollary 54.4 and Proposition 54.5 (cf. the proof of Proposition 52.3).

Proposition 54.8. Let $f : Y \to X$ be a regular closed embedding and L a line bundle over X. Set $L' = f^* L$. Then $f^* \circ e(L) = e(L') \circ f^*$. As is in the proof of Proposition 53.5, we get
Let $f : Y \to X$ be a regular closed embedding and E a vector bundle over X. Set $E' = f^*E$. Then $f^* \circ c(E) = c(E') \circ f^*$.

Proposition 54.10. Let $f : Y \to X$ be a regular closed embedding. Then $f^* \circ f_* = e(N_f)$.

Proof. Let $p : N_f \to Y$ and $s : Y \to N_f$ be the canonical morphism and the zero section of the normal bundle respectively. By Corollary 54.11.

$$f^* \circ f_* = (p^*)^{-1} \circ \sigma_f \circ f_* = (p^*)^{-1} \circ s_* = e(N_f).$$

Proposition 54.11. Let $f : Y \to X$ be a regular closed embedding given by a sheaf of locally principal ideals $I \subset O_X$. Let $f' : Y' \to X$ be the closed embedding given by the sheaf of ideals I^n for some $n > 0$ and $g : Y \to Y'$ the canonical morphism. Then

$$f^* = n(g_* \circ f^*).$$

Proof. We define a natural finite morphism $h : D_f \to D_{f'}$ of deformation schemes as follows. We may assume that X is affine, $X = \text{Spec}(A)$ and $Y = \text{Spec}(A/I)$. We have $D_f = \text{Spec}(\tilde{A})$ and $D_{f'} = \text{Spec}(\tilde{A}')$ (cf. 103.E), where

$$\tilde{A} = \bigoplus_{k \in \mathbb{Z}} I^{-k} t^k, \quad \tilde{A}' = \bigoplus_{k \in \mathbb{Z}} I^{-kn} (t')^k.$$

The morphism h is induced by the ring homomorphism $\tilde{A}' \to \tilde{A}$ taking a component $I^{-kn} t^k$ identically to $I^{-kn} t^{kn}$. In particular, the image of t' is equal to t^n.

The morphism h yields a commutative diagram

$$
\begin{array}{ccc}
N_f & \longrightarrow & D_f \\
\downarrow r & & \downarrow h \\
N_{f'} & \longrightarrow & D_{f'}
\end{array}
\quad \text{with} \quad \begin{array}{c}
\mathbb{G}_m \times X \\
\mathbb{G}_m \times X,
\end{array}
$$

where q is the identity on X and the n-th power morphism on \mathbb{G}_m. Let ∂ (respectively, ∂') be the boundary map with respect to the top row (respectively, the bottom row) of the diagram. It follows from Proposition 54.12 that

$$r_* \circ \partial = \partial' \circ q_*.$$

For any $\alpha \in C_*(X)$ we have

$$q_\alpha \{t\} \cdot ([\mathbb{G}_m] \times \alpha) = \{\pm t'\} \cdot ([\mathbb{G}_m] \times \alpha)$$

since the norm of t in the field extension $F(t)/F(t')$ is equal to $\pm t'$. By (54.12) and (54.13), we have

$$(r_* \circ \sigma_f)(\alpha) = (r_* \circ \partial) \{t\} \cdot ([\mathbb{G}_m] \times \alpha)$$

$$= (\partial' \circ q_\alpha) \{t\} \cdot ([\mathbb{G}_m] \times \alpha)$$

$$= \partial' \{\pm t'\} \cdot ([\mathbb{G}_m] \times \alpha)$$

$$= \sigma_f'^*(\alpha),$$

hence

$$r_* \circ \sigma_f = \sigma_f'.$$
The morphism p factors into the composition in the first row of the commutative diagram

$$
\begin{array}{c}
N_f \xrightarrow{i} (N_f)^n \xrightarrow{j} N'_{f'} \\
p \downarrow \quad s \downarrow \quad p' \downarrow \\
Y \quad Y \quad g \\
\end{array}
$$

of morphisms of vector bundles. The morphism i is finite flat of degree n, hence the composition $i_* \circ i^*$ is multiplication by n. The right square of the diagram is a fiber square. Hence by Proposition 48.19, we have

$$r^* \circ p^* = j^* \circ i_* \circ i^* \circ s^* = n(j_* \circ s^*) = n(p'^* \circ g_*)$$

Therefore, it follows from (54.14) that

$$f^* = (p'^*)^{-1} \circ \sigma_{f'} = (p'^*)^{-1} \circ r_* \circ \sigma_f = n(g_* \circ (p'^*)^{-1} \circ \sigma_f) = n(g_* \circ f^*).$$

\[\square \]

54.B. The pull-back homomorphisms. Let $f : Y \to X$ be a morphism of equidimensional schemes with X smooth. By Corollary 103.14, the morphism

$$i = (1_Y, f) : Y \to Y \times X$$

is a regular closed embedding of codimension $d_X = \dim X$ with the normal bundle $N_i = f^*T_X$, where T_X is the tangent bundle of X (cf. Corollary 103.14). The projection $p : Y \times X \to X$ is a flat morphism of relative dimension d_Y. Set $d = d_X - d_Y$. We define the pull-back homomorphism

$$f^* : A_*(X, K_*) \to A_{*-d}(Y, K_{*-d})$$

as the composition $i^* \circ p^*$.

We use the same notation for the pull-back homomorphism just defined and the flat pull-back. The following proposition justifies this notation.

Proposition 54.15. Let $f : Y \to X$ be a flat morphism of equidimensional schemes and let X be smooth. Then the pull-back f^* defined above, coincides with the flat pull-back homomorphism.

Proof. Apply Lemma 54.7 to the closed embedding $i = (1_Y, f) : Y \to Y \times X$ and the projection $g : Y \times X \to X$. \[\square \]

Proposition 54.16. Let $Z \xrightarrow{g} Y \xrightarrow{f} X$ be morphisms of equidimensional schemes with X smooth and g flat. Then $(f \circ g)^* = g^* \circ f^*$.

Proof. Consider the fiber product diagram

$$
\begin{array}{c}
Z \xrightarrow{\quad g \quad} \quad Y \\
\downarrow \quad i_Z \downarrow \quad \quad \downarrow \quad i_Y \\
Z \times X \xrightarrow{\quad h \quad} \quad Y \times X,
\end{array}
$$

where i_Z and i_Y are the respective closed embeddings.
where \(i_Y = (1_Y, f) \), \(i_Z = (1_Z, fg) \), \(h = (g, 1_X) \) and two projections \(p_Y : Y \times X \to X \) and \(p_Z : Z \times X \to X \). We have \(p_Z = p_Y \circ h \). By Propositions 48.17 and 54.5:

\[
(f \circ g)^* = i_Z^* \circ p_Z^*
\]

\[
= i_Z^* \circ h^* \circ p_Y^*
\]

\[
= g^* \circ i_Y^* \circ p_Y^*
\]

\[
= g^* \circ f^*.
\]

\[\Box\]

Proposition 54.17. Let \(Z \xrightarrow{g} Y \xrightarrow{f} X \) be morphisms of equidimensional schemes with \(Y \) and \(X \) smooth. Then \((f \circ g)^* = g^* \circ f^*\).

Proof. Consider the commutative diagram

\[
\begin{array}{ccc}
Z & \xrightarrow{(1_Z, g)} & Z \times Y \\
\downarrow & & \downarrow h \\
Z \times Y \times X & \xrightarrow{(1_Y, f)} & Y \times X \\
\downarrow l & & \downarrow q \\
Z \times X & \xrightarrow{d} & X
\end{array}
\]

where

\[
k = (1_Z, f, fg), \quad h(z, y) = (z, y, f(y)), \quad l(z, x) = (z, g(z), x),
\]

and all unmarked arrows are the projections. Applying the Gysin homomorphisms or the flat pull-backs for all arrows in the diagram, we get a diagram of homomorphisms of the \(K \)-homology groups that is commutative by Propositions 48.17, 54.1, 54.5, and Lemma 54.7.

The pull-back homomorphism for a regular closed embedding coincides with the Gysin homomorphism:

Proposition 54.18. Let \(f : Y \to X \) be a regular closed embedding of equidimensional schemes with \(X \) smooth. Then \(f^* = f^* \).

Proof. The commutative diagram

\[
\begin{array}{ccc}
Y & \xrightarrow{d} & Y \times Y \\
\downarrow 1_Y & & \downarrow h \\
Y & \xrightarrow{p} & Y \times X \\
\downarrow f & & \downarrow q \\
& X
\end{array}
\]

where \(d \) is the diagonal embedding and \(h = 1_Y \times f \), gives rise to a diagram

\[
\begin{array}{cc}
A_*(X, K_*) & \xrightarrow{f^*} A_*(Y, K_*) \\
p^* \downarrow & \downarrow 1 \\
A_*(Y \times X, K_*) & \xrightarrow{p^*} A_*(Y \times Y, K_*) & \xrightarrow{d^*} A_*(Y, K_*).
\end{array}
\]
The square is commutative by Proposition 54.5 and the triangle – by Lemma 54.7. Let
\(g = h \circ d \). We have
\[
f^* = g^* \circ q^* = d^* \circ h^* \circ q^* = f^*.
\]

PROPOSITION 54.19. Let \(f : X' \to X \) and \(g : Y' \to Y \) be morphisms of equidimensional schemes with \(X \) and \(Y \) smooth. Then for every \(\alpha \in C_*(X) \) and \(\beta \in C_*(Y) \), we have
\[
(f \times g)^* (\alpha \times \beta) = f^*(\alpha) \times g^*(\beta).
\]

Proof. We may assume that \(g = 1_Y \) and by Proposition 49.5 that \(f \) is a regular closed embedding. Denote by \(q_X : \mathbb{G}_m \times X \to X \) and \(p_f : N_f \to X' \) the canonical morphisms. Note that \(N_{f \times 1_Y} = N_f \times Y \). Consider the diagram
\[
\begin{array}{cccccc}
C_*(X) & \xrightarrow{q_X^*} & C_*(\mathbb{G}_m \times X) & \xrightarrow{(t)} & C_*(\mathbb{G}_m \times X) & \xrightarrow{\partial} & C_*(N_f) & \xrightarrow{p_f^*} & C_*(X') \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
C_*(X \times Y) & \xrightarrow{q_{X \times Y}^*} & C_*(\mathbb{G}_m \times X \times Y) & \xrightarrow{(t)} & C_*(\mathbb{G}_m \times X \times Y) & \xrightarrow{\partial} & C_*(N_{f \times 1_Y}) & \xrightarrow{\partial \times 1_Y} & C_*(X' \times Y)
\end{array}
\]
where all vertical homomorphisms are given by the external product with \(\beta \). The commutativity of all squares follow from Propositions 49.5, 49.7, and 49.8. \(\square \)

PROPOSITION 54.20. Let \(f : Y \to X \) be a morphism of equidimensional schemes with \(X \) smooth. Then \(f^*([X]) = [Y] \).

Proof. Let \(i = (1_Y, f) : Y \to Y \times X \) be the graph of \(f \) and let \(p : Y \times X \to X \) be the projection. It follows from Corollary 49.6 and Proposition 54.6 that
\[
f^*([X]) = i^* \circ p^*([X]) = i^*([Y \times X]) = [Y].
\]

The following statement is a consequence of Propositions 55.5(2) and 54.9.

PROPOSITION 54.21. Let \(f : Y \to X \) be a morphism of equidimensional schemes with \(X \) smooth and \(E \) a vector bundle over \(X \). Set \(E' = f^*E \). Then \(f^* \circ c(E) = c(E') \circ f^* \).

55. **K-cohomology ring of smooth schemes**

We now consider the case that our scheme \(X \) is smooth and introduce the **K-cohomology groups** \(A^*(X, K_q) \) as follows. If \(X \) is irreducible of dimension \(d \), we set
\[
A^p(X, K_q) := A_{d-p}(X, K_{q-d}).
\]
In the general case, let \(X_1, X_2, \ldots, X_s \) be (disjoint) irreducible components of \(X \). We set
\[
A^p(X, K_q) := \prod_{i=1}^{s} A^p(X_i, K_q).
\]
In particular, if \(X \) is an equidimensional smooth scheme of dimension \(d \), then \(A^p(X, K_q) = A_{d-p}(X, K_{q-d}) \).

Let \(f : Y \to X \) be a morphism of smooth schemes. We define the pull-back homomorphism
\[
f^* : A^p(X, K_q) \to A^p(Y, K_q)
\]
as follows. If \(X \) and \(Y \) are both irreducible of dimension \(d_X \) and \(d_Y \) respectively, we define \(f^* \) as in (54.3):

\[
f^*: A^p(X, K_q) = A_{d_X-p}(X, K_{q-d_X}) \xrightarrow{f} A_{d_Y-p}(X, K_{q-d_Y}) = A^p(Y, K_q).
\]

If just \(Y \) is irreducible, we have \(f(Y) \subset X_i \) for an irreducible component \(X_i \) of \(X \). We define the pull-back as the composition

\[
A^p(X, K_q) \rightarrow A^p(X_1, K_q) \xrightarrow{f^*} A^p(Y, K_q),
\]

where the first map is the canonical projection. Finally, in the general case, we define \(f^* \) as the direct sum of the homomorphisms \(A^p(X, K_q) \rightarrow A^p(Y_j, K_q) \) over all irreducible components \(Y_j \) of \(Y \).

It follows from Proposition 54.17 that if \(Z \xrightarrow{g} Y \xrightarrow{f} X \) are morphisms of smooth schemes then \((f \circ g)^* = g^* \circ f^*\).

Let \(X \) be a smooth scheme. Denote by \(d = d_X : X \rightarrow X \times X \) the diagonal closed embedding. The composition

\[
A^p(X, K_q) \otimes A^p(X, K_{q'}) \xrightarrow{\times} A^{p+p'}(X \times X, K_{q+q'}) \xrightarrow{d^*} A^{p+p'}(X, K_{q+q'})
\]

defines a product on \(A^*(X, K_\ast) \).

Remark 55.2. If \(X = X_1 \coprod X_2 \) then \(A^*(X, K_\ast) = A^*(X_1, K_\ast) \oplus A^*(X_2, K_\ast) \). Since the image of the diagonal morphism \(d_X \) does not intersect \(X_1 \times X_2 \), the product of two classes from \(A^*(X_1, K_\ast) \) and \(A^*(X_2, K_\ast) \) is zero.

Proposition 55.3. The product in (55.1) is associative.

Proof. Let \(\alpha, \beta, \gamma \in A^*(X, K_\ast) \). By Proposition 54.19 we have,

\[
(\alpha \times \beta) \times \gamma = d^*(d^*(\alpha \times \beta) \times \gamma)
\]

\[
= d^* \circ (d \times 1_X)^*(\alpha \times \beta \times \gamma)
\]

\[
= ((d \times 1_X) \circ d)^*(\alpha \times \beta \times \gamma)
\]

\[
= c^*(\alpha \times \beta \times \gamma),
\]

where \(c : X \rightarrow X \times X \times X \) is the diagonal embedding. Similarly, \(\alpha \times (\beta \times \gamma) = c^*(\alpha \times \beta \times \gamma) \).

Proposition 55.4. For every smooth scheme \(X \), the product in \(A^*(X, K_\ast) \) is bi-graded commutative, i.e., if \(\alpha \in A^p(X, K_q) \) and \(\alpha' \in A^{p'}(X, K_{q'}) \) then

\[
\alpha \cdot \alpha' = (-1)^{(p+q)(p'+q')} \alpha' \cdot \alpha.
\]

Proof. It follows from (49.1) that

\[
\alpha \cdot \alpha' = d^*(\alpha \times \alpha') = (-1)^{(p+q)(p'+q')} d^*(\alpha' \times \alpha) = (-1)^{(p+q)(p'+q')} \alpha' \cdot \alpha.
\]
PROPOSITION 55.5. The class \([X]\) is the identity in \(A^*(X, K_*)\) under the product.

PROOF. We may assume that \(X\) is irreducible. Let \(f : X \times X \to X\) be the first projection. Since \(f \circ d = 1_X\), it follows from Corollary 49.6 and Proposition 54.15 that

\[
\alpha \cdot [X] = d^*(\alpha \times [X]) = d^* f^*(\alpha) = \alpha.
\]

\(\square\)

We have proven:

THEOREM 55.6. Let \(X\) be a smooth scheme. Then \(A^*(X, K_*)\) is a bi-graded commutative associative ring with the identity \([X]\).

REMARK 55.7. If \(X_1, \ldots, X_n\) are the irreducible components of a smooth scheme \(X\), the ring \(A^*(X, K_*)\) is the product of the rings \(A^*(X_1, K_*)\), \ldots, \(A^*(X_n, K_*)\).

PROPOSITION 55.8. Let \(f : Y \to X\) be a morphism of smooth schemes. Then \(f^*(\alpha \cdot \beta) = f^*(\alpha) \cdot f^*(\beta)\) for all \(\alpha, \beta \in A^*(X, K_*)\) and \(f^*([X]) = [Y]\).

PROOF. Since \((f \times f) \circ d_Y = d_X \circ f\), it follows from Propositions 54.17 and 54.19 that

\[
f^*(\alpha \cdot \beta) = f^* \circ d_Y^* (\alpha \times \beta)
= d_X^* (f^*(\alpha \times f^*(\beta))
= f^* (\alpha) \cdot f^*(\beta).
\]

The second equality follows from Proposition 54.20. \(\square\)

It follows from Proposition 55.8 that the correspondence \(X \mapsto A^*(X, K_*)\) gives rise to a co-functor from the category of smooth schemes and arbitrary morphisms to the category of bi-graded rings and homomorphisms of bi-graded rings.

PROPOSITION 55.9 (Projection Formula). Let \(f : Y \to X\) be a proper morphism of smooth schemes. Then

\[
f_*(\alpha \cdot f^*(\beta)) = f_*(\alpha) \cdot \beta
\]

for every \(\alpha \in A^*(Y, K_*)\) and \(\beta \in A^*(X, K_*)\).

PROOF. Let \(g = (1_Y \times f) \circ d_Y\). Then we have the fiber product diagram

\[
\begin{array}{ccc}
Y & \longrightarrow & Y \times X \\
\downarrow f & & \downarrow f \times 1_X \\
X & \longrightarrow & X \times X.
\end{array}
\]

It follows from Propositions 48.19 and 54.19 that

\[
f_*(\alpha \cdot f^*(\beta)) = f_* \circ d_Y^* (\alpha \times f^*(\beta))
= f_* \circ d_Y^* (1_Y \times f)^* (\alpha \times \beta)
= f_* \circ g^* (\alpha \times \beta)
= d_X^* (f_*(\alpha) \times \beta)
= d_X^* (f_*(\alpha) \times \beta).
\]

\(\square\)
The projection formula asserts that the push-forward homomorphism f_* is $A^*(X, K_*)$-linear if we view $A^*(Y, K_*)$ as a $A^*(X, K_*)$-module via f^*.

The following statement is an analog of the projection formula.

Proposition 55.11. Let $f : Y \to X$ be a morphism of equidimensional schemes with X smooth. Then

$$f_*(f^*(\beta)) = f_*([Y]) \cdot \beta$$

for every $\beta \in A^*(X, K_*)$.

Proof. The closed embeddings g and d_X in the diagram (55.10) are regular of the same codimension (cf. Corollary 103.14). Let $p : X \times X \to X$ be the second projection. Then the composition $q = p \circ (f \times 1_X) : Y \times X \to X$ is also the projection. By Propositions 49.4, 49.5, 54.16, 54.20 and Corollaries 49.6, 54.4, we have

$$f_*(f^*(\beta)) = f_* \circ g^* \circ q^*(\beta)$$

$$= f_* \circ g^* \circ (f \times 1_X)^* \circ p^*(\beta)$$

$$= d_X^* \circ (f \times 1_X)_* \circ (f \times 1_X)^* \circ p^*(\beta)$$

$$= d_X^* \circ (f_\times \text{id}) \circ (f^* \times \text{id})([X] \times \beta)$$

$$= d_X^* (f_\times f^*([X]) \times \beta)$$

$$= d_X^* (f_\times ([Y]) \times \beta)$$

$$= f_*(Y) \cdot \beta.$$

□

NOTES

In [53], M. Rost defined complexes $C_*(X, M)$ for a scheme X and a cycle module M over X. We follow his definition in the case when M is the cycle module of Milnor K-groups K_*. Proposition 48.29 was proven by Kato in [36]. We follow Rost’s approach in the definition of deformation homomorphisms in [50]. Deformation homomorphisms are called *specialization homomorphism* in [17].
CHAPTER X

Chow groups

In this chapter we study Chow groups as special cases of K-homology and K-cohomology theories, so we can apply results from the previous chapter. Chow groups will remain the main tool in the rest of the book. We also develop the theory of Segre classes that will be used in the chapter on the Steenrod operations that follows.

56. Definition of Chow groups

Recall that a scheme is a separated scheme of finite type over a field. A variety is an integral scheme.

56.A. Two equivalent definitions of the Chow groups. Let X be a scheme over F and let $p \in \mathbb{Z}$. The group

$$
\text{CH}_p(X) = A_p(X, K_{-p})
$$

is called the Chow group of dimension p cycles on X. By definition,

$$
\text{CH}_p(X) := \text{Coker} \left(\prod_{x \in X^{(p+1)}} K_1 F(x) \xrightarrow{d_x} \prod_{x \in X^{(p)}} K_0 F(x) \right).
$$

Note that $K_1 F(x) = F(x)^\times$ and $K_0 F(x) = \mathbb{Z}$. Thus the Chow group $\text{CH}_p(X)$ is the factor group of the free abelian group

$$
Z_p(X) = \prod_{x \in X^{(p)}} \mathbb{Z},
$$

called the group of p-dimensional cycles on X, by the subgroup generated by the divisors $d_x(f) = \text{div}(f)$ for all $f \in F(x)^\times$ and $x \in X^{(p+1)}$.

A point $x \in X$ of dimension p gives rise to a prime cycle in $Z_p(X)$, denoted by $[x]$. Thus, an element of $Z_p(X)$ is a finite formal linear combination $\sum n_x[x]$ with $n_x \in \mathbb{Z}$ and $\dim x = p$. We will often write $\{x\}$ instead of x, so that an element of $Z_p(X)$ is a finite formal linear combination $\sum n_Z[Z]$ where the sum is taken over closed subvarieties $Z \subset X$ of dimension p. We will use the same notation for the classes of cycles in $\text{CH}_p(X)$. Note that a closed subscheme $W \subset X$ (not necessarily integral) defines a cycle $[W] \in Z(X)$ (cf. Example 48.11).

Example 56.1. Let X be a scheme of dimension d. The group $\text{CH}_d(X) = Z_d(X)$ is free with basis the classes of irreducible components (generic points) of X of dimension d.

251
Let the divisor of a function can be computed in a simpler way. Let R be a 1-dimensional Noetherian local domain with quotient field L. We define the order homomorphism
\[\text{ord}_R : L^\times \to \mathbb{Z} \]
by the formula $\text{ord}_R(r) = l(R/rR)$ for every nonzero $r \in R$.

Let Z be a variety over \mathbb{F} of dimension d. For any point $x \in Z$ of dimension $d - 1$, the local ring $O_{Z,x}$ is 1-dimensional. Hence the order homomorphism
\[\text{ord}_x = \text{ord}_{O_{Z,x}} : F(Z)^\times \to \mathbb{Z} \]
is well defined.

Proposition 56.2. Let Z be a variety over \mathbb{F} and $f \in F(Z)^\times$. Then $\text{div}(f) = \sum \text{ord}_x(f) \cdot x$, where the sum is taken over all points $x \in Z$ of dimension $d - 1$.

Proof. Let R be the local ring $O_{Z,x}$, where x is a point of dimension $d - 1$. Let \tilde{R} denote the integral closure of R in $F(Z)$. For every nonzero $f \in R$, the x-component of $\text{div}(f)$ is equal to
\[\sum l(\tilde{R}_Q/f\tilde{R}_Q) \cdot [\tilde{R}/Q : F(x)], \]
where the sum is taken over all maximal ideals Q of \tilde{R}. Applying Lemma 101.3 to the \tilde{R}-module $M = \tilde{R}/f\tilde{R}$, we have the x-component equals $l_R(\tilde{R}/f\tilde{R})$. Since \tilde{R}/R is an R-module of finite length, $l_R(\tilde{R}/f\tilde{R}) = l_R(R/fR) = \text{ord}_x(f)$. \square

We next give an equivalent definition of Chow groups.

Let Z be a variety over \mathbb{F} of dimension d and $f : Z \to \mathbb{P}^1$ a dominant morphism. Thus f is a flat morphism of relative dimension $d - 1$. For any rational point $a \in \mathbb{P}^1$, the pull-back scheme $f^{-1}(a)$ is an equidimensional subscheme of Z of dimension $d - 1$. Note that we can view f as a rational function on Z.

Lemma 56.3. Let f be as above. Then $\text{div}(f) = [f^{-1}(0)] - [f^{-1}(\infty)]$ on Z.

Proof. Let $x \in Z$ be a point of dimension $d - 1$ with the x-component of $\text{div}(f)$ nontrivial. Then $f(x) = 0$ or $f(x) = \infty$.

Consider the first case, so $f \in O_{Z,x}$. By Proposition 56.2, the x-component of $\text{div}(f)$ is equal to $\text{ord}_x(f)$. The local ring $O_{f^{-1}(0),x}$ coincides with $O_{Z,x}/fO_{Z,x}$, therefore, the x-component of $[f^{-1}(0)]$ is equal to
\[l(O_{f^{-1}(0),x}) = l(O_{Z,x}/fO_{Z,x}) = \text{ord}_x(f). \]
Similarly (applying the above argument to the function f^{-1}), we see that in the second case the x-component of $[f^{-1}(\infty)]$ is equal to $-\text{ord}_x(f^{-1}) = -\text{ord}_x(f)$. \square

Let X be a scheme and $Z \subset X \times \mathbb{P}^1$ a closed subvariety of dimension d with Z dominant over \mathbb{P}^1. Hence the projection $f : Z \to \mathbb{P}^1$ is flat of relative dimension $d - 1$. For every rational point $a \in \mathbb{P}^1$, the projection $p : X \times \mathbb{P}^1 \to X$ isomorphically maps the subscheme $f^{-1}(a)$ to a closed subscheme of X which we denote by $Z(a)$. In follows from Lemma 56.3 that
\[p_*(\text{div}(f)) = [Z(0)] - [Z(\infty)]. \]
In particular, the classes of $[Z(0)]$ and $[Z(\infty)]$ coincide in $\text{CH}(X)$.

\[(56.4) \]
Denote by $Z(X; \mathbb{P}^1)$ the subgroup of $Z(X \times \mathbb{P}^1)$ generated by the classes of closed subvarieties of $X \times \mathbb{P}^1$ that are dominant over \mathbb{P}^1. For any cycle $\beta \in Z(X; \mathbb{P}^1)$ and any rational point $a \in \mathbb{P}^1$, the cycle $\beta(a) \in Z(X)$ is well defined.

If $\alpha = \sum n_Z[Z] \in Z(X)$, we write $\alpha \times [\mathbb{P}^1]$ for the cycle $\sum n_Z[Z \times \mathbb{P}^1] \in Z(X; \mathbb{P}^1)$. Clearly, $(\alpha \times [\mathbb{P}^1])(a) = \alpha$.

Proposition 56.5. Let α and α' be two cycles on a scheme X. Then the classes of α and α' are equal in $\text{CH}(X)$ if and only if there is a cycle $\beta \in Z(X; \mathbb{P}^1)$ such that $\alpha = \beta(0)$ and $\alpha' = \beta(\infty)$.

Proof. It was shown in (56.4) that the classes of the cycles $\beta(0)$ and $\beta(\infty)$ are equal. Conversely, suppose that the classes of α and α' are equal in $\text{CH}(X)$. By definition of the Chow group, there are closed subvarieties $Z_i \subset X$ and nonconstant rational functions g_i on Z_i such that

$$\alpha - \alpha' = \sum \text{div}(g_i).$$

Let V_i be closure of the graph of g_i in $Z_i \times \mathbb{P}^1 \subset X \times \mathbb{P}^1$ and let $f_i : V_i \to \mathbb{P}^1$ be the induced morphism. Since g_i is nonconstant, the morphism f_i is dominant and $[V_i] \in Z(X; \mathbb{P}^1)$.

The projection $p : X \times \mathbb{P}^1 \to X$ maps V_i birationally onto Z_i, hence by Proposition [45.7],

$$\text{div}(g_i) = \text{div}(p_*(f_i)) = p_* \text{div}(f_i) = [V_i(0)] - [V_i(\infty)].$$

Let $\beta' = \sum [V_i] \in Z(X; \mathbb{P}^1)$. We have

$$\alpha - \alpha' = \beta'(0) - \beta'(\infty).$$

Consider the cycle

$$\gamma = \alpha - \beta'(0) = \alpha' - \beta'(\infty)$$

and set $\beta'' = \gamma \times [\mathbb{P}^1]$ and $\beta = \beta' + \beta''$. Then $\beta(0) = \beta'(0) + \beta''(0) = \beta'(0) + \gamma = \alpha$ and similarly $\beta(\infty) = \alpha'$. \qed

An equivalent definition of the Chow group $\text{CH}(X)$ is then given as the factor group of the subgroup of cycles β of $Z(X)$ modulo the subgroup of cycles of the form $\beta(0) - \beta(\infty)$ for all $\beta \in Z(X; \mathbb{P}^1)$.

56.B. Functorial properties of the Chow groups. We now specialize the functorial properties of the previous chapter to the Chow groups.

A proper morphism $f : X \to Y$ gives rise to the push-forward homomorphism

$$f_* : \text{CH}_p(X) \to \text{CH}_p(Y).$$

Example 56.6. Let X be a complete scheme over F. The push-forward homomorphism $\deg : \text{CH}(X) \to \text{CH}($Spec $F) = \mathbb{Z}$ induced by the structure morphism $X \to $Spec F is called the degree homomorphism. For any $x \in X$, we have

$$\deg([x]) = \begin{cases} \deg(x) = [F(x) : F] & \text{if } x \text{ is a closed point;} \\ 0 & \text{otherwise.} \end{cases}$$

A flat morphism $g : Y \to X$ of relative dimension d defines the pull-back homomorphism

$$g^* : \text{CH}_p(X) \to \text{CH}_{p+d}(Y).$$
Proposition 56.7. Let \(g : Y \to X \) be a flat morphism of schemes over \(F \) of relative dimension \(d \) and \(W \subset X \) a closed subscheme of pure dimension \(k \). Then \(g^*([W]) = [g^{-1}(W)] \) in \(Z_{d+k}(Y) \).

Proof. Consider the fiber product diagram of natural morphisms

\[
\begin{array}{ccc}
g^{-1}(W) & \xrightarrow{f} & W & \xrightarrow{p} & \text{Spec } F \\
j & & \downarrow i & & \\
Y & \xrightarrow{g} & X.
\end{array}
\]

By Proposition [48.19]

\[g^*([W]) = g^* \circ i_* \circ p^*(1) = j_* \circ f^* \circ p^*(1) = j_* \circ (p \circ f)^*(1) = [g^{-1}(W)]. \]

Let \(X \) be a scheme and \(Z \subset X \) a closed subscheme. Set \(U = X \setminus Z \) and consider the closed embedding \(i : Z \to X \) and the open immersion \(j : U \to X \). It follows from (51.D) that the localization sequence

\[\text{CH}_p(Z) \xrightarrow{i_*} \text{CH}_p(X) \xrightarrow{j^*} \text{CH}_p(U) \to 0 \]

is exact.

Let \(X \) be a variety of dimension \(n \) and \(f : Y \to X \) a dominant morphism. Let \(x \) denote the generic point of \(X \) and \(Y_x \) the generic fiber of \(f \). By the continuity property (cf. Proposition 51.7), the pull-back homomorphism \(\text{CH}_p(Y) \to \text{CH}_{p-n}(Y_x) \) is the colimit of surjective restriction homomorphisms \(\text{CH}_p(Y) \to \text{CH}_p(f^{-1}(U)) \) over all nonempty open subschemes \(U \) of \(X \) and therefore is surjective.

Example 56.8. For every variety \(X \) of dimension \(n \) and scheme \(Y \) over \(F \), the pull-back homomorphism \(\text{CH}_p(X \times Y) \to \text{CH}_{p-n}(Y_{F(X)}) \) is surjective.

Let \(X \) and \(Y \) be two schemes. It follows from (51.C) that there is a product map of the Chow groups

\[\text{CH}_p(X) \otimes \text{CH}_q(Y) \to \text{CH}_{p+q}(X \times Y). \]

Proposition 56.9. Let \(Z \subset X \) and \(W \subset Y \) be two closed equidimensional subschemes of dimensions \(d \) and \(e \) respectively. Then

\[[Z \times W] = [Z] \times [W] \quad \text{in} \quad Z_{d+e}(X \times Y). \]

Proof. Let \(p : Z \to \text{Spec } F \) and \(q : W \to \text{Spec } F \) be the structure morphisms and \(i : Z \to X \) and \(j : W \to Y \) the closed embeddings. By Example [48.11] and Propositions [49.4, 49.5],

\[[Z \times W] = (i \times j)_* \circ (p \times q)^*(1) = (i_* \circ p^*(1)) \times (j_* \circ q^*(1)) = [Z] \times [W]. \]

Theorem 56.10 (Homotopy Invariance, cf. Theorem 51.11). Let \(g : Y \to X \) be a flat morphism of schemes over \(F \) of relative dimension \(d \). Suppose that for every \(x \in X \), the fiber \(Y_x \) is isomorphic to the affine space \(\mathbb{A}^d_{F(x)} \). Then the pull-back homomorphism

\[g^* : \text{CH}_p(X) \to \text{CH}_{p+d}(Y) \]

is an isomorphism for every \(p \).
Theorem 56.11 (Projective Bundle Theorem, cf. Theorem 52.10). Let $E \to X$ be a vector bundle of rank r and e the Euler class of the canonical or tautological line bundle over $\mathbb{P}(E)$. Then the homomorphism

$$\prod_{i=1}^{r} e^{r-i} \circ q^* : \prod_{i=1}^{r} \text{CH}_{s-i+1}(X) \to \text{CH}_s(\mathbb{P}(E))$$

is an isomorphism, i.e., every $\alpha \in \text{CH}_s(\mathbb{P}(E))$ can be written in the form

$$\alpha = \sum_{i=1}^{r} e^{r-i}(q^* \alpha_i)$$

for uniquely determined elements $\alpha_i \in \text{CH}_{s-i+1}(X)$.

Example 56.12. Let $X = \mathbb{P}(V) = \mathbb{P}^d_F$, where V is a vector space of dimension $d + 1$ over F. For every $p = 0, \ldots, d$, let $l_p \in \text{CH}_p(\mathbb{P}(V))$ be the class of the subscheme $\mathbb{P}(V_p)$ of X, where V_p is a subspace of V of dimension $p + 1$. By Corollary 52.7,

$$\text{CH}_p(\mathbb{P}^d_F) = \begin{cases} Z \cdot l_p & \text{if } 0 \leq p \leq d \\ 0 & \text{otherwise.} \end{cases}$$

Let $f : Y \to X$ be a regular closed embedding of codimension r. As usual we write N_f for the normal bundle of f. The Gysin homomorphism

$$f^\star : \text{CH}_s(X) \to \text{CH}_{s-r}(Y)$$

is defined by the formula $f^\star = (p^*)^{-1} \circ \sigma_f$, where $p : N_f \to Y$ is the canonical morphism and σ_f is the deformation homomorphism.

Corollary 56.13. Under the conditions of Proposition 51.6, we have $f^\star([Z]) = (p^*)^{-1} h_s([C_g])$.

Let $Z \subset X$ be a closed subscheme of pure dimension k and set $W = f^{-1}(Z)$. The cone C_g of the restriction $g : W \to Z$ of f is of pure dimension k.

Lemma 56.14. Let C' be an irreducible component of C_g. Then C' is an integral cone over a closed subvariety $W' \subset W$ with $\dim W' \geq k - r$.

Proof. Let N' be the restriction of the normal bundle N_f on W'. Since C' is a closed subvariety of N' of dimension k (cf. Example 103.3), we have

$$k = \dim C' \leq \dim N' = \dim W' + r. \quad \square$$

Corollary 56.15. Let $V \subset W$ be an irreducible component. Then there is an irreducible component of C_g that is a cone over V. In particular, $\dim V \geq k - r$.

Proof. Let $v \in V$ be the generic point. Since the canonical morphism $q : C_g \to W$ is surjective (that is split by the zero section), there is an irreducible component $C' \subset C_g$ such that $v \in \text{Im} q$. Clearly, $\text{Im} q = V$, i.e., C' is a cone over V. \quad \square

We say that the scheme Z has proper inverse image with respect to f if every irreducible component of $W = f^{-1}(Z)$ has dimension $k - r$.
Proposition 56.16. Let \(f : Y \rightarrow X \) be a regular closed embedding of schemes over \(F \) of codimension \(r \) and \(Z \subset X \) a closed equidimensional subscheme having proper inverse image with respect to \(f \). Let \(V_1, V_2, \ldots, V_s \) be all the irreducible components of \(W = f^{-1}(Z) \), so \([W] = \sum n_i [V_i] \) for some \(n_i > 0 \). Then

\[
f^\ast([Z]) = \sum_{i=1}^{s} m_i [V_i],
\]

for some integers \(m_i \) with \(1 \leq m_i \leq n_i \).

Proof. If \(g : W \rightarrow Z \) is the restriction of \(f \), let \(C_i \) be the restriction of the cone \(C_g \) on \(V_i \) and let \(N_i \) be the restriction to \(V_i \) of the normal cone \(N_f \). Since \(N_i \) is a vector bundle of rank \(r \) over the variety \(V_i \) of dimension \(k - r \), the variety \(N_i \) is of dimension \(k \). Moreover, the \(N_i \) are all of the irreducible components of the restriction \(N \) of \(N_f \) to \(W \) and \([W] = \sum n_i [N_i] \).

The cone \(C_g \) is a closed subscheme of \(N \) of pure dimension \(k \). Hence \(C_i \) is a closed subscheme of \(N_i \) of pure dimension \(k \). Since \(N_i \) is a variety of dimension \(k \), the closed embedding of \(C_i \) into \(N_i \) is an isomorphism. In particular, the \(C_i \) are all of the irreducible components of \(C_g \), so \([C_g] = \sum m_i [C_i] \) with \(m_i = l(O_{C_g,x_i}) \) and where \(x_i \in C_g \) is the generic point of \(C_i \). In view of Example 48.12 we have

\[
h_\ast([C_i]) = [N_i] = p^\ast([V_i])
\]

and by Corollary 56.13,

\[
f^\ast([Z]) = (p^\ast)^{-1} h_\ast([C_g]) = (p^\ast)^{-1} \sum m_i h_\ast([C_i]) = \sum m_i [V_i].
\]

Finally, the closed embedding \(h : C_g \rightarrow N \) induces a surjective ring homomorphism \(O_{N,y_i} \rightarrow O_{C_g,x_i} \), where \(y_i \in N \) is the generic point of \(N_i \). Therefore,

\[
1 \leq m_i = l(O_{C_g,x_i}) \leq l(O_{N,y_i}) = n_i. \tag*{\square}
\]

Corollary 56.17. Suppose the conditions of Proposition 56.16 hold and in addition the scheme \(W \) is reduced. Then \(f^\ast([Z]) = \sum [V_i] \), i.e., all the \(m_i = 1 \).

Proof. Indeed, all \(n_i = 1 \), hence all \(m_i = 1 \). \(\square \)

If \(X \) is smooth, we write \(\text{CH}^p(X) \) for the group \(A^p(X, K_p) \) and call it the Chow group of codimension \(p \) classes of cycles on \(X \). We apply results from 55 to this group. The graded group \(\text{CH}^\ast(X) \) has the structure of a commutative associative ring with the identity \(1_X \).

A morphism \(f : Y \rightarrow X \) of smooth schemes induces the pull-back ring homomorphism \(f^\ast : \text{CH}^\ast(X) \rightarrow \text{CH}^\ast(Y) \).

Let \(Y \) and \(Z \) be closed subvarieties of a smooth scheme \(X \) of codimensions \(p \) and \(q \) respectively. We say that \(Y \) and \(Z \) intersect properly if every component of \(Y \cap Z \) has codimension \(p + q \).

Applying Proposition 56.16 to the regular diagonal embedding \(X \rightarrow X \times X \) and the subscheme \(Y \times Z \), we have the following:

Proposition 56.18. Let \(Y \) and \(Z \) be two closed subvarieties of a smooth scheme \(X \) that intersect properly. Let \(V_1, V_2, \ldots, V_s \) be all irreducible components of \(W = Y \cap Z \) and
\[W = \sum n_i[V_i] \text{ for some } n_i > 0. \]
Then
\[[Y] \cdot [Z] = \sum_{i=1}^{s} m_i[V_i], \]
for some integers \(m_i \) with \(1 \leq m_i \leq n_i \).

Corollary 56.19. Suppose the conditions of Proposition 56.18 hold and in addition the scheme \(W \) is reduced. Then \([Y] \cdot [Z] = \sum [V_i], \) i.e., all the \(m_i = 1 \).

Example 56.20. Let \(h \in \text{CH}^1(\mathbb{P}^d) \) be the class of a hyperplane of the projective space \(\mathbb{P}^d \). Then \(h \cdot l_p = l_{p-1} \) for all \(p = 1, 2, \ldots, d \) (cf. Example 56.12). Indeed, \(h = [\mathbb{P}(U)] \) and \(l_p = [\mathbb{P}(V_p)] \) where \(U \) and \(V_p \) are subspaces of dimensions \(n \) and \(p+1 \) respectively. We can choose these subspaces so that the subspace \(V_{p-1} = U \cap V_p \) has dimension \(p \). Then \(\mathbb{P}(U) \cap \mathbb{P}(V_p) = \mathbb{P}(V_{p-1}) \) and we have equality by Corollary 56.19. It follows that \(\text{CH}^p(\mathbb{P}^d) = \mathbb{Z} \cdot h^p \) for \(p = 0, 1, \ldots, d \). In particular, the ring \(\text{CH}^*(\mathbb{P}^d) \) is generated by \(h \) with the one relation \(h^{d+1} = 0 \).

56.C. Cartier divisors and Euler class. Let \(D \) be a Cartier divisor on a variety \(X \) of dimension \(d \) and let \(L(D) \) be the associated line bundle over \(X \). Denote by \(\tilde{D} \) the associated divisor in \(\mathbb{Z}_{d-1}(X) \). Recall that if \(D \) is a principal Cartier divisor given by a nonzero rational function \(f \) on \(X \) that \(\tilde{D} = \text{div}(f) \).

Lemma 56.21. In the notation above, \(e(L(D))([X]) = [\tilde{D}] \in \text{CH}_{d-1}(X) \).

Proof. Let \(p : L(D) \to X \) and \(s : X \to L(D) \) be the canonical morphism and the zero section respectively. Let \(X = \cup U_i \) be an open covering and \(f_i \) rational functions on \(U_i \) giving the Cartier divisor \(D \). Let \(\mathcal{L}(D) \) be the locally free sheaf of sections of \(L(D) \). The group of sections \(\mathcal{L}(D)(U_i) \) consists of all rational functions \(f \) on \(X \) such that \(f \cdot f_i \) is regular on \(U_i \). Thus we can view \(f_i \) as a section of the dual bundle \(L(D)^\vee \) over \(U_i \). The line bundle \(L(D) \) is the spectrum of the symmetric algebra
\[\mathcal{O}_X \oplus \mathcal{L}(D)^\vee \cdot t \oplus \mathcal{L}(D)^{\otimes 2} \cdot t^2 \oplus \ldots \]
of the sheaf \(\mathcal{L}(D)^\vee \). The rational functions \((f_i \cdot t)/f_i \) on \(p^{-1}(U_i) \) agree on the intersections so give a well defined rational function on \(L(D) \). We denote this function by \(t \).

We claim that \(\text{div}(t) = s_*(|[X]|) - p^*([\tilde{D}]) \). The statement is of a local nature, so we may assume that \(X \) is affine, say \(X = \text{Spec} A \) and \(D \) is a principal Cartier divisor given by a rational function \(f \) on \(X \). We have \(L(D) = \text{Spec} A[ft] \) and by Proposition 48.22
\[\text{div}(t) = \text{div}(ft) - \text{div}(p^* f) = s_*(|[X]|) - p^*(\text{div}(f)) = s_*(|[X]|) - p^*([\tilde{D}]) \]
proving the claim. By the claim, the classes \(s_*(|[X]|) \) and \(p^*([\tilde{D}]) \) are equal in \(\text{CH}_d(X) \). Hence, \(e(L(D))([X]) = (p^*)^{-1} \circ s_*(|[X]|) = [\tilde{D}] \). \(\square \)

Example 56.22. Let \(C = \text{Spec} S^* \) be an integral cone (cf. Appendix 103.A). Consider the cone \(C \oplus \mathbb{1} = \text{Spec} S^*[t] \). The family of functions \(t/s \) on the principal open subscheme \(D(s) \) of the projective bundle \(\mathbb{P}(C \oplus \mathbb{1}) \) gives rise to a Cartier divisor \(D \) on \(\mathbb{P}(C \oplus \mathbb{1}) \) with \(L(D) \) the canonical line bundle. The associated divisor \(\tilde{D} \) coincides with \(\mathbb{P}(C) \). It follows from Lemma 56.21 that \(e(L(D))([\mathbb{P}(C \oplus \mathbb{1})]) = [\mathbb{P}(C)] \).
Proposition 56.23. Let L and L' be line bundles over a scheme X. Then $e(L \otimes L') = e(L) + e(L')$ on $\text{CH}(X)$.

Proof. It suffices to prove that both sides of the equality coincide on the class $[Z]$ of a closed subvariety Z in X. Denote by $i : Z \to X$ the closed embedding. Choose Cartier divisors D and D' on Z so that $L|_Z \simeq L(D)$ and $L'|_Z \simeq L(D')$. Then $L|_Z \otimes L'|_Z \simeq L(D + D')$. By Proposition 52.3(1),

$$e(L \otimes L')(\{Z\}) = i_* \circ e(L|_Z \otimes L'|_Z)(\{Z\})$$

$$= i_* \circ e(L(D + D'))(\{Z\})$$

$$= i_*[\overline{D + D'}]$$

$$= i_*[\overline{D}] + i_*[\overline{D'}]$$

$$= i_* \circ e(L(D)) + i_* \circ e(L(D'))$$

$$= e(L)(\{Z\}) + e(L')(\{Z\}). \square$$

Corollary 56.24. For any line bundle L over X, we have $e(L^\vee) = -e(L)$.

57. Segre and Chern classes

In this section, we define Segre classes and consider their relations with Chern classes. The Segre class for a vector bundle is the inverse of the Chern class. The advantage of Segre classes is that they can be defined for arbitrary cones (not just for vector bundles like Chern classes).

57.A. Segre classes. Let $C = \text{Spec}(S^*)$ be a cone over X. Let $q : \mathbb{P}(C \oplus 1) \to X$ be the natural morphism and L the canonical line bundle over $\mathbb{P}(C \oplus 1)$. Denote by $e(L)^*$ the total Euler class $\sum_{k \geq 0} e(L)^k$ viewed as an operation in $\text{CH}(\mathbb{P}(C \oplus 1))$.

We define the Segre homomorphism

$$sg^C : \text{CH}(\mathbb{P}(C \oplus 1)) \to \text{CH}(X)$$

by

$$sg^C = q_* \circ e(L)^*.$$

The class $\text{Sg}(C) := sg^C([\mathbb{P}(C \oplus 1)])$ in $\text{CH}(X)$ is known as the total Segre class of C.

Proposition 57.1. If C is a cone over X then $\text{Sg}(C \oplus 1) = \text{Sg}(C)$.

Proof. If $[C] = \sum m_i[C_i]$, where C_i are the irreducible components of C then

$$[\mathbb{P}(C \oplus 1^k)] = \sum m_i[\mathbb{P}(C_i \oplus 1^k)]$$

for $k \geq 1$. Therefore, we may assume that C is a variety. Let L and L' be canonical line bundles over $\mathbb{P}(C \oplus 1^2)$ and $\mathbb{P}(C \oplus 1)$ respectively. We have $L' = i^*L$, where $i : \mathbb{P}(C \oplus 1) \to \mathbb{P}(C \oplus 1^2)$ is the closed embedding. By Example 56.22, we have $e(L)([\mathbb{P}(C \oplus 1^2)]) = [\mathbb{P}(C \oplus 1)]$. Let $q : \mathbb{P}(C \oplus 1^2) \to X$ be the canonical morphism. It follows from Proposition
\[\text{Sg}(C) = q_\ast \circ e(L)^\ast([\mathbb{P}(C) \oplus 1])] \]
\[= q_\ast \circ e(L)^\ast([i_\ast[\mathbb{P}(C) \oplus 1])] \]
\[= q_\ast i_\ast \circ e(j^\ast L)^\ast([\mathbb{P}(C) \oplus 1])] \]
\[= (q \circ i)_\ast \circ e(L')^\ast([\mathbb{P}(C) \oplus 1])] \]
\[= \text{Sg}(C). \quad \Box \]

Proposition 57.2. Let \(C \) be a cone over a scheme \(X \) over \(F \) and \(i : Z \to X \) a closed embedding. Let \(D \) be a closed subcone of the restriction of \(C \) on \(Z \). Then the diagram

\[
\begin{array}{ccc}
\text{CH}(\mathbb{P}(D \oplus 1)) & \xrightarrow{\text{sg}^D} & \text{CH}(Z) \\
\downarrow j_\ast & & \downarrow i_\ast \\
\text{CH}(\mathbb{P}(C \oplus 1)) & \xrightarrow{\text{sg}^C} & \text{CH}(X)
\end{array}
\]

is commutative, where \(j : \mathbb{P}(D \oplus 1) \to \mathbb{P}(C \oplus 1) \) is the closed embedding. In particular, \(i_\ast(\text{Sg}(D)) = \text{sg}^C(\mathbb{P}(D \oplus 1)) \).

Proof. The canonical line bundle \(L_D \) over \(\mathbb{P}(D \oplus 1) \) is the pull-back \(j_\ast(L_C) \). It follows from the projection formula (cf. Proposition 52.3(1)) that

\[
\text{sg}^C \circ j_\ast = (q_C)_\ast \circ e(L_C)^\ast \circ j_\ast
\]
\[
= (q_C)_\ast \circ j_\ast \circ e(j^\ast L_C)^\ast
\]
\[
= i_\ast \circ (q_D)_\ast \circ e(L_D)^\ast
\]
\[
= i_\ast \circ \text{sg}^D.
\]

If \(C = E \) is a vector bundle over \(X \), the projection \(q \) is a flat morphism of relative dimension \(r = \text{rank} \ E \), and we can define the total Segre operation \(s(E) \) on \(\text{CH}(X) \):

\[
s(E) : \text{CH}(X) \to \text{CH}(X), \quad s(E) = \text{sg}^E \circ q^\ast = q_\ast \circ e(L)^\ast \circ q^\ast.
\]

In particular, \(\text{Sg}(E) = s(E)([X]) \).

For every \(k \in \mathbb{Z} \) denote the degree \(k \) component of the operation \(s(E) \) by \(s_k(E) \), so it is the operation

\[
s_k(E) : \text{CH}_n(X) \to \text{CH}_{n-k}(X) \quad \text{given by}
\]

\[
(57.3) \quad s_k(E) = q_\ast \circ e(L)^{k+r} \circ q^\ast.
\]

Proposition 57.4. Let \(f : Y \to X \) be a morphism of schemes over \(F \) and \(E \) a vector bundle over \(X \). Set \(E' = f^*E \). Then

1. If \(f \) is proper then \(s(E) \circ f_\ast = f_\ast \circ s(E') \).
2. If \(f \) is flat then \(f^* \circ s(E) = s(E') \circ f^* \).
Proof. Consider the fiber product diagram

\[
\begin{array}{ccc}
P(E') & \xrightarrow{h} & P(E) \\
\downarrow q' & & \downarrow q \\
Y & \xrightarrow{f} & X
\end{array}
\]

with flat morphisms \(q\) and \(q'\) of constant relative dimension \(r - 1\) where \(r = \text{rank } E\). Denote by \(e\) and \(e'\) the Euler classes of the canonical line bundle \(L\) over \(P(E)\) and \(L'\) over \(P(E')\) respectively. Note that \(L' = h^*L\).

By Propositions 48.19 and 52.3, we have

\[
s(E) \circ f_* = q_* \circ (L)^* \circ q^* \circ f_*
\]

\[
= q_* \circ (L)^* \circ h_* \circ q'^*
\]

\[
= q_* \circ h_* \circ e(L')^* \circ q'^*
\]

\[
= f_* \circ q'_* \circ e(L')^* \circ q'^*
\]

\[
= f_* \circ s(E'),
\]

and

\[
f^* \circ s(E) = f^* \circ q_* \circ (L)^* \circ q^*
\]

\[
= q'_* \circ h^* \circ e(L)^* \circ q^*
\]

\[
= q'_* \circ e(L')^* \circ h^* \circ q^*
\]

\[
= q'_* \circ e(L')^* \circ q^* \circ f^*
\]

\[
= s(E') \circ f^*.
\]

Proposition 57.5. Let \(E\) be a vector bundle over a scheme \(X\) over \(F\). Then

\[
s_i(E) = \begin{cases}
0 & \text{if } i < 0 \\
\text{id} & \text{if } i = 0.
\end{cases}
\]

Proof. Let \(\alpha \in \text{CH}(X)\). We need to prove that \(s_i(E)(\alpha) = 0\) if \(i < 0\) and \(s_0(E)(\alpha) = \alpha\). We may assume that \(\alpha = [Z]\), where \(Z \subset X\) is a closed subvariety. Let \(i : Z \to X\) be the closed embedding. By Proposition 57.4(1), we have

\[
s(E)(\alpha) = s(E) \circ i_*([Z]) = i_* \circ s(E')([Z]),
\]

where \(E' = i^*(E)\). Hence it is sufficient to prove the statement for the vector bundle \(E'\) over \(Z\) and the cycle \([Z]\). Therefore, we may assume that \(X\) is a variety of dimension \(d\) and \(\alpha = [X]\) in \(\text{CH}_d(X)\). Since \(s_i(E)(\alpha) \in \text{CH}_{d-i}(X)\), by dimension count, \(s_i(E)(\alpha) = 0\) if \(i < 0\).

To prove the second identity, by Proposition 57.4(2), we may replace \(X\) by an open subscheme. Therefore, we can assume that \(E\) is a trivial vector bundle, i.e., \(P(E) = X \times \)
\(\mathbb{P}^{r-1}\). Applying Example 52.8 and Proposition 52.3(2) to the projection \(X \times \mathbb{P}^{r-1} \to \mathbb{P}^{r-1}\), we have
\[
s_0(E)([X]) = q_* \circ e(L)^{r-1} \circ q^*([X]) = q_* \circ e(L)^{r-1}(X \times \mathbb{P}^{r-1}) = q_*([X] \times \mathbb{P}^0) = [X]. \tag{57.5}
\]

Let \(E \to X\) be a vector bundle of rank \(r\). The restriction of Chern classes defined in 53.9 on Chow groups provides operations
\[
c_i(E) : \text{CH}_s(X) \to \text{CH}_{s-i}(X), \quad \alpha \mapsto \alpha_i = c_i(E)(\alpha)
\]

Example 57.6. In view of Examples 52.8 and 56.20, the class \(e(L)\) of the canonical line bundle \(L\) over \(\mathbb{P}^d\) acts on \(\text{CH}(\mathbb{P}^d) = \mathbb{Z}[h]/(h^{d+1})\) by multiplication by the class \(h\) of a hyperplane in \(\mathbb{P}^d\).

By Example 103.20, the class of the tangent bundle of the projective space \(\mathbb{P}^d\) in \(K_0(\mathbb{P}^d)\) is equal to \((d+1)[L] - 1\), hence \(c(T_{\mathbb{P}^d})\) is multiplication by \((1+h)^{d+1}\).

Example 57.7. For a vector bundle \(E\), we have \(c_i(E^\vee) = (-1)^i c_i(E)\). Indeed, by the Splitting Principle 52.13 we may assume that \(E\) has a filtration by subbundles with factors line bundles \(L_1, L_2, \ldots, L_r\). The dual bundle \(E^\vee\) then has filtration by subbundles with factors line bundles \(L_1^\vee, L_2^\vee, \ldots, L_r^\vee\). As \(e(L_k^\vee) = -e(L_k)\) by Corollary 56.6, it follows from Proposition 53.6 that
\[
c_i(E^\vee) = \sigma_i(e(L_1^\vee), \ldots, e(L_r^\vee)) = (-1)^i \sigma_i(e(L_1), \ldots, e(L_r)) = (-1)^i c_i(E)
\]
where \(\sigma_i\) is the \(i\)-th elementary symmetric function.

Let \(e\) and \(\tilde{e}\) be the Euler classes of the tautological and the canonical line bundles over \(\mathbb{P}(E)\) respectively. By Corollary 56.24, we have \(\tilde{e} = -e\). Therefore, the formula (53.1) can be rewritten as
\[
\sum_{i=0}^{r} \tilde{e}^{r-i} \circ q^* \circ c_i(E) = 0, \tag{57.8}
\]
where \(q : \mathbb{P}(E) \to X\) is the canonical morphism.

Proposition 57.9. Let \(E\) be a vector bundle over \(X\). Then \(s(E) = c(E)^{-1}\).

Proof. In view of (57.3), applying \(q_* \circ \tilde{e}^{k-1}\) to the equality (57.8) for the vector bundle \(E \oplus 1\) of rank \(r + 1\), we get for every \(k \geq 1\):
\[
0 = \sum_{i \geq 0} q_* \circ \tilde{e}^{r+k-i} \circ q^* \circ c_i(E \oplus 1) = \sum_{i \geq 0} s_{k-i}(E) \circ c_i(E \oplus 1).
\]
By Corollary 53.9, we have \(c_i(E \oplus 1) = c_i(E)\). As \(s_0(E) = 1\) and \(s_i(E) = 0\) if \(i < 0\) by Proposition 57.5, we have \(s(E) \circ c(E) = 1\). \(\square\)

Proposition 57.10. Let \(E \to X\) be a vector bundle and \(E' \subset E\) a subbundle of corank \(r\). Then
\[
[\mathbb{P}(E')] = \sum_{i=0}^{r} \tilde{e}^{r-i} \circ q^* \circ c_i(E/E')(X) \tag{57.11}
\]
in \(\text{CH}(\mathbb{P}(E))\).
Proof. By (57.8) applied to the factor bundle E/E',

$$
\sum_{i=0}^{r} e^{r-i} \circ q'^* \circ c_i(E/E') = 0,
$$

where $q' : \mathbb{P}(E/E') \to X$ is the canonical morphism and e' is the Euler class of the canonical line bundle over $\mathbb{P}(E/E')$. Applying the pull-back homomorphism with respect to the canonical morphism $\mathbb{P}(E) \setminus \mathbb{P}(E') \to \mathbb{P}(E/E')$, we see that the restriction of the right hand side of the formula in (57.11) to $\mathbb{P}(E) \setminus \mathbb{P}(E')$ is trivial. By the localization property [51.D], the right hand side in (57.11) is equal to $k[\mathbb{P}(E')]$ for some $k \in \mathbb{Z}$.

To determine k, we can replace X by an open subscheme of X and assume that E and E' are trivial vector bundles of rank n and $n-r$ respectively. The right hand side in (57.11) is then equal to

$$
\tilde{e}^r \circ q^*([X]) = \tilde{e}^r([\mathbb{P}^{n-1} \times X]) = [\mathbb{P}^{n-r-1} \times X] = [\mathbb{P}(E')],
$$

therefore, $k = 1$. □

Proposition 57.12. Let E and E' be vector bundles over schemes X and X' respectively. Then

$$
c(E \times E') (\alpha \times \alpha') = c(E)(\alpha) \times c(E')(\alpha')
$$

for any $\alpha \in CH(X)$ and $\alpha' \in CH(X')$.

Proof. Let p and p' be the projections of $X \times X'$ to X and X' respectively. We claim that for any $\beta \in CH(X)$ and $\beta' \in CH(X')$, we have

(57.13) $$
c(p^*E)(\beta \times \beta') = c(E)(\beta) \times \beta',
$$

(57.14) $$
c(p'^*E')(\beta \times \alpha') = \beta \times c(E')(\beta').
$$

To prove the claim, by Proposition 53.5, we may assume that $\beta = [X]$ and $\beta' = [X']$. Then (57.13) and (57.14) follow from Proposition 53.5(2).

Since $E \times E' = p^*E \oplus p'^*E'$, by the Whitney Sum Formula 53.7 and by (57.13), (57.14), we have

$$
c(E \times E')(\alpha \times \alpha') = c(p^*E \oplus p'^*E')(\alpha \times \alpha')
\quad = c(p^*E) \circ c(p'^*E')(\alpha \times \alpha')
\quad = c(p^*E)(\alpha \times c(E')(\alpha'))
\quad = c(E)(\alpha) \times c(E')(\alpha').
$$

□

Proposition 57.15. Let E be a vector bundle over a smooth scheme X. Then

$$
c(E)(\alpha) = c(E)([X]) \cdot \alpha
$$

for every $\alpha \in CH(X)$.
Proof. Consider the vector bundle $E' = E \times X$ over $X \times X$. Let $d : X \to X \times X$ be the diagonal embedding. We have $E = d^* E'$. By Propositions 57.12 and 54.9,

$$c(E)(\alpha) = c(d^* E')(d^*([X] \times \alpha))$$

$$= d^* c(E \times X)([X] \times \alpha)$$

$$= d^* c(E([X]) \times \alpha)$$

$$= c(E) \cdot \alpha. \quad \Box$$

Proposition 57.15 shows that for a vector bundle E over a smooth scheme X, the Chern class operation $c(E)$ is the multiplication by the class $\beta = c(E)([X])$. We shall sometimes write $c(E) = \beta$ to mean that $c(E)$ is multiplication by β.

Let $f : Y \to X$ be a morphism of schemes, i.e., X is a scheme over X. Assume that X is a smooth variety. We shall see that $CH(Y)$ has a natural structure of a module over the ring $CH(X)$. Indeed, as we saw in 54.B, the morphism

$$i = (1_Y, f) : Y \to Y \times X$$

is a regular closed embedding of codimension $\dim X$. For every $\alpha \in CH(Y)$ and $\beta \in CH(X)$ we set

$$\alpha \cdot \beta = i^*(\alpha \times \beta). \quad (57.16)$$

Proposition 57.17. Let X be a smooth variety and Y a scheme over X. Then $CH(Y)$ is a module over $CH(X)$ under the product defined in (57.16). Let $g : Y \to Y'$ be a proper (resp. flat) morphism of schemes over X. Then the homomorphism g_* (resp. g^*) is $CH(X)$-linear.

Proof. The composition of i and the projection $p : Y \times X \to Y$ is the identity on Y. It follows from Lemma 54.7 that $\alpha \cdot [X] = i^*(\alpha \times [X]) = i^* \circ p^*(\alpha) = 1_Y^* (\alpha) = \alpha$, i.e., the identity $[X]$ of $CH(X)$ acts on $CH(Y)$ trivially.

Consider the fiber product diagram

$$\begin{array}{ccc}
Y & \xrightarrow{i} & Y \times X \\
\downarrow i & & \downarrow h \\
Y \times X & \xrightarrow{k} & Y \times X \times X,
\end{array}$$

where $k = 1_Y \times d_X$ and $h = i \times 1_X$. It follows from Corollary 54.3 that for any $\alpha \in CH(Y)$ and $\beta, \gamma \in CH(X)$, we have

$$\alpha \cdot (\beta \cdot \gamma) = i^* (\alpha \times (\beta \cdot \gamma)) = i^* k^* (\alpha \cdot \beta \cdot \gamma) = i^* h^* (\alpha \cdot \beta \cdot \gamma) = i^* ((\alpha \cdot \beta) \times \gamma) = (\alpha \cdot \beta) \cdot \gamma.$$
Suppose first that the morphism g is proper. By Corollary 54.4
\[g_* (\alpha \cdot \beta) = g_* \circ i^\# (\alpha \times \beta) = i^\# (g \times 1_X)_*(\alpha \times \beta) = i^\# \circ (g_* (\alpha) \times \beta) = g_* (\alpha) \cdot \beta \]
for all $\alpha \in \text{CH}(Y)$ and $\beta \in \text{CH}(X)$.

If g is proper, it follows from Proposition 54.5 that
\[g^*(\alpha' \cdot \beta) = g^* \circ i^\# (\alpha' \times \beta) = i^\# \circ (g^*(\alpha') \times \beta) = g^*(\alpha') \cdot \beta \]
for all $\alpha' \in \text{CH}(Y')$ and $\beta \in \text{CH}(X)$. □

Proposition 57.18. Let $f : Y \to X$ be a morphism of schemes with X smooth and let $g : Y \to Y'$ be a flat morphism. Suppose that for every point $y' \in Y'$, the pull-back homomorphism $\text{CH}(X) \to \text{CH}(Y')$ induced by the natural morphism of the fiber Y_y to X is surjective. Then the homomorphism
\[h : \text{CH}(Y') \otimes \text{CH}(X) \to \text{CH}(Y), \quad \alpha \otimes \beta \mapsto g^*(\alpha \cdot \beta) \]
is surjective.

Proof. The proof is similar to the one for Proposition 51.8. Obviously we may assume that Y' is reduced.

Step 1. Y' is a variety:
We proceed by induction on $n = \dim Y'$. The case $n = 0$ is obvious. In general, let $U' \subset Y'$ be a nonempty open subset and let $Z' = Y' \setminus U'$ have the structure of a reduced scheme. Set $U = g^{-1}(U')$ and $Z = g^{-1}(Z')$. We have closed embeddings $i : Z \to Y$, $i' : Z' \to Y'$ and open immersions $j : U \to Y$, $j' : U' \to Y'$. By induction, the homomorphism h_Z in the diagram
\[
\begin{array}{ccc}
\text{CH}(Z') \otimes \text{CH}(X) & \xrightarrow{\cdot i^\#} & \text{CH}(Y') \otimes \text{CH}(X) \\
\downarrow{h_Z} & & \downarrow{h_Y} \\
\text{CH}(Z) & \xrightarrow{i^*} & \text{CH}(Y) \\
\end{array}
\]
is surjective. The diagram is commutative by Proposition 57.17.

Let $y' \in Y'$ be the generic point. By Proposition 51.7, the colimit of the homomorphisms
\[(h_U)^* : \text{CH}(U') \otimes \text{CH}(X) \to \text{CH}(U)
\]
over all nonempty open subschemes U' of Y' is isomorphic to the pull-back homomorphism $\text{CH}(X) \to \text{CH}(Y_y)$ which is surjective by assumption. Taking the colimits of all terms of the diagram, we conclude by the Five Lemma that h_Y is surjective.

Step 2. Y' is an arbitrary scheme:
We induct on the number m of irreducible components of Y'. The case $m = 1$ is Step 1. Let Z' be a (reduced) irreducible component of Y' and let $U' = Y' \setminus Z'$. Consider the commutative diagram as in Step 1. By Step 1, the map h_Z is surjective. The map h_U is also surjective by the induction hypothesis. By the Five Lemma, h_Y is surjective. □

Proposition 57.19. Let C and C' be cones over schemes X and X' respectively. Then
\[\text{Sg}(C \times C') = \text{Sg}(C) \times \text{Sg}(C') \in \text{CH}(X \times X'). \]
57. **SEGRE AND CHERN CLASSES**

PROOF. Set $\widetilde{C} = C \oplus 1$ and $\widetilde{C}' = C' \oplus 1$. Let L and L' be the tautological line bundles over $\mathbb{P}(\widetilde{C})$ and $\mathbb{P}(\widetilde{C}')$ respectively (cf. Appendix [103.D]). We view $L \times L'$ as a vector bundle over $\mathbb{P}(\widetilde{C}) \times \mathbb{P}(\widetilde{C}')$. The canonical morphism $L \times L' \to \widetilde{C} \times \widetilde{C}'$ induces a morphism

$$f : \mathbb{P}(L \times L') \to \mathbb{P}(\widetilde{C} \times \widetilde{C}').$$

If D is a cone we write D^o for the complement of the zero section in D. By [103.C] we have $L^o = \widetilde{C}^o$ and $L'^o = \widetilde{C}'^o$. The open subsets $\widetilde{C}^o \times \widetilde{C}'^o$ in $\widetilde{C} \times \widetilde{C}'$ and $L^o \times L'^o$ in $L \times L'$ are dense. Hence f maps any irreducible component of $\mathbb{P}(L \times L')$ birationally onto an irreducible component of $\mathbb{P}(\widetilde{C} \times \widetilde{C}')$. In particular,

$$f_*[\mathbb{P}(L \times L')] = [\mathbb{P}(\widetilde{C} \times \widetilde{C}')] = [\mathbb{P}(L^o \times L'^o)].$$

Let \tilde{L} be the canonical line bundle over $\mathbb{P}(\widetilde{C} \times \widetilde{C}')$. Then $\tilde{f}^*\tilde{L}$ is the canonical line bundle over $\mathbb{P}(L \times L')$. Let $q : \mathbb{P}(\widetilde{C} \times \widetilde{C}') \to X \times X'$ be the natural morphism. By Proposition [57.1] and the Projection Formula [55.9], we have

$$\text{Sg}(C \times C') = \text{Sg}((C \times C') \oplus 1)$$

$$= q_* \circ (\tilde{L})^*[\mathbb{P}(\widetilde{C} \times \widetilde{C}')]$$

$$= q_* \circ (\tilde{L})^*f_*[\mathbb{P}(L \times L')]$$

$$= q_* \circ f_* \circ (f^*\tilde{L})^*[\mathbb{P}(L \times L')].$$

The normal bundle N of the closed embedding $\mathbb{P}(\widetilde{C}) \times \mathbb{P}(\widetilde{C}') \to L \times L'$, given by the zero section, coincides with $L \times L'$. By definition of the Segre class and the Segre operation, we have

$$p_* \circ (f^*\tilde{L})^*[\mathbb{P}(L \times L')] = \text{Sg}(N) = s(N)[\mathbb{P}(\widetilde{C}) \times \mathbb{P}(\widetilde{C}')]$$

where $p : \mathbb{P}(L \times L') \to \mathbb{P}(\widetilde{C}) \times \mathbb{P}(\widetilde{C}')$ is the natural morphism. By Propositions [57.12] and [57.9],

$$s(N)[\mathbb{P}(\widetilde{C}) \times \mathbb{P}(\widetilde{C}')] = s(L)[\mathbb{P}(\widetilde{C})] \times s(L')[\mathbb{P}(\widetilde{C}')] = \text{Sg}(C) \times \text{Sg}(C').$$

Let $g : \mathbb{P}(\widetilde{C}) \to X$ and $g' : \mathbb{P}(\widetilde{C}') \to X'$ be the natural morphisms and set $h = g \times g'$. By Proposition [49.4],

$$h_* \circ s(L)[\mathbb{P}(\widetilde{C})] \times s(L')[\mathbb{P}(\widetilde{C}')] = (g_* \circ s(L)[\mathbb{P}(\widetilde{C})]) \times (g'_* \circ s(L')[\mathbb{P}(\widetilde{C}')]) = \text{Sg}(C) \times \text{Sg}(C').$$

To finish the proof it is sufficient to notice that $q \circ f = h \circ p$ and therefore $q_* \circ f_* = h_* \circ p_*$. ∎

EXERCISE 57.20. (Strong Splitting Principle) Let E be a vector bundle over X. Prove that there is a flat morphism $f : Y \to X$ such that the pull-back homomorphism $f^* : \text{CH}_* (X) \to \text{CH}_* (Y)$ is injective and $f^* E$ is a direct sum of line bundles.

EXERCISE 57.21. Let E be a vector bundle of rank r. Prove that $e(E) = c_r(E)$.

NOTES:

Most of the properties of Chow groups are special cases of the properties of K-(co)homology considered in Chapter ???. We follow the book [17] in the definition of Segre classes.
CHAPTER XI

Steenrod operations

In this chapter we develop Steenrod operations on Chow groups modulo 2. There are two reasons why we do not consider the operations modulo an arbitrary prime integer. Firstly, this case is sufficient for our applications as the number 2 is the only "critical" prime for projective quadrics. Secondly, our approach does not immediately generalize to the case of an arbitrary prime integer.

Unfortunately we need to assume that the characteristic of the base field is different from 2 in this chapter as we do not know how to define Steenrod operations in characteristic two.

In this chapter, the word scheme means quasi-projective scheme over a field F of characteristic not 2. We write $\text{Ch}(X)$ for $\text{CH}(X)/2\text{CH}(X)$.

Let X be a scheme. Consider the homomorphism $Z(X) \to \text{Ch}(X)$ taking the class $[Z]$ of a closed subvariety $Z \subset X$ to $j_\ast \text{Sg}(T_Z)$ modulo 2, where Sg is the total Segre class (cf. §57.A), T_Z is the tangent cone over Z (Example 103.5) and $j : Z \to X$ is the closed embedding. We will prove that this map factors through rational equivalence yielding the Steenrod operation modulo 2 of X (of homological type)

$$\text{Sq}^X : \text{Ch}(X) \to \text{Ch}(X)$$

Thus we shall have

$$\text{Sq}^X([Z]) = j_\ast \text{Sg}(T_Z)$$

modulo 2. We shall see that the operations Sq^X commute with the push-forward homomorphisms, so they can be viewed as functors from the category of schemes to the category of abelian groups.

For a smooth scheme X, we can then define the Steenrod operations modulo 2 of X (of cohomological type) by the formula

(57.22) $$\text{Sq}_X = c(T_X) \circ \text{Sq}^X.$$

We shall show that the operations Sq_X commute with the pull-back homomorphisms, so they can be viewed as contravariant functors from the category of smooth schemes to the category of abelian groups. Formula (57.22) can be viewed as a Riemann-Roch type relation between two operations.

In this chapter, we shall also prove the standard properties of the Steenrod operations.

58. Squaring a cycle

Let F be a filed of characteristic not 2. Consider a cyclic group $G = \{1, \sigma\}$ of order 2. For a scheme X over F, the group G acts on $X^2 \times \mathbb{A}^1 = X \times X \times \mathbb{A}^1$ by
\[\sigma(x, x', t) = (x', x, -t). \] We have \((X^2 \times \mathbb{A}^1)^G = X \times \{0\}. \) Set
\[(58.1) \quad U_X = (X^2 \times \mathbb{A}^1) \setminus (X \times \{0\}). \]

The group \(G\) acts naturally on \(U_X\).

Let \(\alpha \in Z(X)\) be a cycle. The cycle \(\alpha^2 \times \mathbb{A}^1 := \alpha \times \alpha \times \mathbb{A}^1\) in \(Z(X^2 \times \mathbb{A}^1)\) is invariant under the \(G\)-action and so is the restriction of the cycle \(\alpha^2 \times \mathbb{A}^1\) on \(U_X\). Since the morphism \(p : U_X \to U_X/G\) is a \(G\)-torsor (cf. Example 104.8), it follows from Proposition 104.10 that the pull-back homomorphism \(p^*\) identifies \(Z(U_X/G)\) with \(Z(U_X)^G\). Let \(\alpha_2^G \in Z(U_X/G)\) be the cycle satisfying \(p^*(\alpha_2^G) = (\alpha^2 \times \mathbb{A}^1)|_{U_X}\).

We then have a map
\[Z(X) \to Z(U_X/G), \quad \alpha \mapsto \alpha_2^G. \]

Lemma 58.2. If \(\alpha\) and \(\alpha'\) are rationally equivalent cycles in \(Z(X)\) then \(\alpha_2^G\) and \(\alpha'_2^G\) are rationally equivalent cycles in \(Z(U_X/G)\).

Proof. As in 156.A let \(Z(X; \mathbb{P}^1)\) denote the subgroup of \(Z(X \times \mathbb{P}^1)\) generated by the classes of closed subvarieties in \(X \times \mathbb{P}^1\) dominant over \(\mathbb{P}^1\). Let \(W \subset X \times \mathbb{P}^1\) and \(W' \subset X' \times \mathbb{P}^1\) be two closed subvarieties dominant over \(\mathbb{P}^1\). The projections \(W \to \mathbb{P}^1\) and \(W' \to \mathbb{P}^1\) are flat and hence so is the fiber product \(W \times_{\mathbb{P}^1} W' \to \mathbb{P}^1\). Therefore, every irreducible component of \(W \times_{\mathbb{P}^1} W'\) is dominant over \(\mathbb{P}^1\), i.e., the cycle \([W \times_{\mathbb{P}^1} W']\) belongs to \(Z(X \times X'; \mathbb{P}^1)\). By linearity, the construction extends to an external product over \(\mathbb{P}^1\):
\[Z(X; \mathbb{P}^1) \times Z(X'; \mathbb{P}^1) \to Z(X \times X'; \mathbb{P}^1), \quad (\beta, \beta') \mapsto \beta \times_{\mathbb{P}^1} \beta'. \]

By Proposition 156.9,
\[(58.3) \quad [(W \times_{\mathbb{P}^1} W')(a)] = [W(a) \times W'(a)] = [W(a)] \times [W'(a)] \]
for any rational point \(a\) of \(\mathbb{P}^1\). If \(X' = X\) and \(\beta' = \beta\), write \(\tilde{\beta}_2\) for \(\beta \times_{\mathbb{P}^1} \beta\).

By Proposition 156.5, there is a cycle \(\tilde{\beta} \in Z(X; \mathbb{P}^1)\) such that \(\alpha = \beta(0)\) and \(\alpha' = \beta(\infty)\). Consider the cycle \(\tilde{\beta}_2 \times [\mathbb{A}^1] \in Z(X^2 \times \mathbb{A}^1; \mathbb{P}^1)\).

Let \(G\) act on \(X^2 \times \mathbb{A}^1 \times \mathbb{P}^1\) by \(\sigma(x, x', t, s) = (x', x, -t, s)\). The cycle \(\tilde{\beta}_2 \times [\mathbb{A}^1]\) is \(G\)-invariant. Since \(U_X \times \mathbb{P}^1\) is a \(G\)-torsor over \((U_X/G) \times \mathbb{P}^1\), the restriction of the cycle \(\tilde{\beta}_2 \times [\mathbb{A}^1]\) on \(U_X \times \mathbb{P}^1\) gives rise to a well defined cycle
\[\tilde{\beta}_2^G \in Z(U_X/G; \mathbb{P}^1) \]
satisfying
\[(58.4) \quad q^*(\tilde{\beta}_2^G) = (\tilde{\beta}_2 \times [\mathbb{A}^1])|_{U_X \times \mathbb{P}^1}, \]
where \(q : U_X \times \mathbb{P}^1 \to (U_X/G) \times \mathbb{P}^1\) is the canonical morphism.

Let \(Z \subset (U_X/G) \times \mathbb{P}^1\) be a closed subvariety dominant over \(\mathbb{P}^1\). We have \(p^{-1}(Z(a)) = q^{-1}(Z)(a)\) for any rational point \(a\) of \(\mathbb{P}^1\), where \(p : U_X \to U_X/G\) is the canonical morphism. It follows from Proposition 156.7 that
\[(58.5) \quad p^*(\gamma(a)) = (q^*\gamma)(a) \]
for every cycle \(\gamma \in Z(U_X/G; \mathbb{P}^1)\).
Let \(\beta = \sum n_i[W_i] \). Then applying (58.5) to \(\gamma = \tilde{\beta}^2_G \), we see by (56.9) and (58.4) that
\[
p^*(\tilde{\beta}^2_G(a)) = (q^*\tilde{\beta}^2_G)(a) = (\tilde{\beta}^2 \times [\mathbb{A}^1])|_{U_X \times \mathbb{P}^1}(a)
\]
\[
= \sum n_in_j[W_i \times \mathbb{P}^1 W_j \times \mathbb{A}^1]|_{U_X \times \mathbb{P}^1}(a)
\]
\[
= \sum n_in_j[W_i(a) \times W_j(a) \times \mathbb{A}^1]|_{U_X}
\]
\[
= p^*(\beta(a)^2_G)
\]
in \(Z(U_X) \). It follows that \(\tilde{\beta}^2_G(a) = \beta(a)^2_G \) in \(Z(U_X/G) \) since \(p^* \) is injective on cycles. In particular, \(\tilde{\beta}^2_G(0) = \beta(0)^2_G = \alpha^2_G \) and \(\tilde{\beta}^2_G(\infty) = \beta(\infty)^2_G = \alpha^2_G \), i.e., the cycles \(\alpha^2_G \) and \(\alpha^2_G \) are rationally equivalent by Proposition 56.5. □

By Lemma 58.2, we have a well defined map (but not a homomorphism!)
\[
(58.6) \quad v_X : \text{CH}(X) \to \text{CH}(U_X/G), \quad [\alpha] \mapsto [\alpha^2_G].
\]

It follows from Proposition 103.7 that the normal cone of \(X \times \{0\} \) in \(X^2 \times \mathbb{A}^1 \) is \(T_X \oplus \mathbb{A}^1 \) where \(T_X \) is the tangent cone of \(X \). Consider the blow up \(B_X \) of \(X^2 \times \mathbb{A}^1 \) along \(X \times \{0\} \). The exceptional divisor is the projective cone \(\mathbb{P}(T_X \oplus \mathbb{A}^1) \). The open complement \(B_X \setminus \mathbb{P}(T_X \oplus \mathbb{A}^1) \) is naturally isomorphic to \(U_X \) (cf. Example 104.5).

The group \(G \) acts naturally on \(B_X \). By Proposition 104.4 and Example 104.5, the composition
\[
i : \mathbb{P}(T_X \oplus \mathbb{A}^1) \hookrightarrow B_X \to B_X/G
\]
is a locally principal divisor with normal line bundle \(L \otimes^2 \) where \(L \) is the canonical line bundle over \(\mathbb{P}(T_X \oplus \mathbb{A}^1) \).

We define a map
\[
u_X : \text{Ch}(U_X/G) \to \text{Ch}(\mathbb{P}(T_X \oplus \mathbb{A}^1))
\]
as follows. Let \(\delta \in \text{Ch}(U_X/G) \). By the localization property 51.D, there is \(\beta \in \text{Ch}(B_X/G) \) such that \(\beta|(U_X/G) = \delta \). We set
\[
u_X(\delta) = i^*(\beta).
\]
We claim that the result is independent of the choice of \(\beta \). Indeed, if \(\beta' \in \text{Ch}(B_X/G) \) is another element with \(\beta'|{(U_X/G)} = \delta \) then by the localization, \(\beta' = \beta + i_*(\gamma) \) for some \(\gamma \in \text{Ch}(T_X \oplus \mathbb{A}^1) \). Then
\[
i^*(\beta') = i^*(\beta) + (i^* \circ i_*)(\gamma) = i^*(\beta)
\]
since by Proposition 54.10, we have \((i^* \circ i_*)(\gamma) = c(L \otimes^2)(\gamma) = 2c(L)(\gamma) = 0 \) modulo 2.

Let \(q : B_X \to B_X/G \) be the projection.

Lemma 58.7. The composition \(i^* \circ q_* : \text{Ch}(B_X) \to \text{Ch}(\mathbb{P}(T_X \oplus \mathbb{A}^1)) \) is zero.

Proof. The scheme \(Y := q^{-1}(\mathbb{P}(T_X \oplus \mathbb{A}^1)) \) is a locally principal closed subscheme of \(B_X \). The sheaf of ideals in \(O_{B_X} \) defining \(Y \) is the square of the sheaf of ideals of \(\mathbb{P}(T_X \oplus \mathbb{A}^1) \) as a subscheme of \(B_X \). Let \(j : Y \to B_X \) be the closed embedding and \(p : Y \to \mathbb{P}(T_X \oplus \mathbb{A}^1) \) the natural morphism. By Corollary 54.4, we have \(i^* \circ q_* = p_* \circ j^* \). It follows from Proposition 54.11 that \(j^* \) is trivial modulo 2. □
XI. Steenrod Operations

Proposition 58.8. For every scheme X, the map u_X is a homomorphism.

Proof. Let $p : U_X \to U_X/G$ be the projection. For any two cycles $\alpha = \sum n_i [Z_i]$ and $\alpha' = \sum n_i' [Z_i]$ on X, we have

$$p^*([\alpha + \alpha']) - p^*([\alpha G] + [\alpha' G]) = (1 + \sigma^*)(\gamma),$$

where

$$\gamma = \sum_{i<j} n_i n_j [Z_i \times Z_j \times \mathbb{A}^1]u_X \in Z(U_X).$$

Since $p^* \circ p_* = 1 + \sigma^*$ (cf.

§104.B), and p^* is injective on cycles, we have

$$(\alpha + \alpha')^2 - \alpha^2 - \alpha'^2 = p_*(\delta).$$

Let $\beta, \beta', \beta'' \in \text{Ch}(B_X/G)$ and $\delta \in \text{Ch}(U_X)$ be cycles restricting to α, α', $\alpha + \alpha'$ and γ respectively satisfying

$$\beta'' - \beta - \beta' = q_*(\delta).$$

By Lemma 58.7,

$$u_X(\alpha + \alpha') - u_X(\alpha) - u_X(\alpha') = i^*(\beta'') - i^*(\beta) - i^*(\beta') = (i^* \circ q_*)(\delta) = 0.$$ \hfill \square

Let X be a scheme. We define the Steenrod operations of homological type as the compositions

$$\text{Sq}^X : \text{Ch}(X) \xrightarrow{\nu_X} \text{Ch}(U_X/G) \xrightarrow{u_X} \text{Ch}(\mathbb{P}(T_X \oplus 1)) \xrightarrow{sg_{TX}} \text{Ch}(X),$$

where sg_{TX} is the Segre homomorphism defined in §57.A. For every integer k we write

$$\text{Sq}^X_k : \text{Ch}_*(X) \to \text{Ch}_{*-k}(X),$$

for the component of Sq^X decreasing dimension by k.

Proposition 58.9. Let Z be a closed subvariety of a scheme X. Then $\text{Sq}^X([Z]) = j_* \text{Sg}(T_Z)$, where $j : Z \to X$ is the closed embedding and Sg is the Segre class.

Proof. Let $\alpha = [Z] \in \text{Ch}(X)$. We have $\nu_X(\alpha) = \alpha^2_G = [U_Z/G]$ and set $\beta = [B_Z/G] \in \text{CH}(B_Z/G)$. By Proposition 54.6 $i^*_Z(\beta) = [\mathbb{P}(T_Z \oplus 1)]$, where $i_Z : \mathbb{P}(T_Z \oplus 1) \to B_Z/G$ is the closed embedding.

Consider the diagram

$$
\begin{array}{ccc}
\text{Ch}(B_Z/G) & \xrightarrow{i^*_Z} & \text{Ch}(\mathbb{P}(T_Z \oplus 1)) \\
\downarrow & & \downarrow \\
\text{Ch}(B_X/G) & \xrightarrow{j^*_X} & \text{Ch}(\mathbb{P}(T_X \oplus 1)) \\
\end{array}
$$

$$
\begin{array}{ccc}
\text{Ch}(B_Z/G) & \xrightarrow{sg_{TZ}} & \text{Ch}(Z) \\
\downarrow & & \downarrow \\
\text{Ch}(B_X/G) & \xrightarrow{sg_{TX}} & \text{Ch}(X) \\
\end{array}
$$
with vertical maps the push-forward homomorphisms. The diagram is commutative by Corollary 54.4 and Proposition 57.2. The commutativity yields

\[
\text{Sq}^X([Z]) = (\text{sg}^{T_X} \circ \iota_X^*)(k_*(\beta)) \\
= (j_* \circ \text{sg}^{T_Z} \circ \iota_Z^*)(\beta) \\
= (j_* \circ \text{sg}^{T_Z})([\mathbb{P}(T_Z \oplus 1)]) \\
= j_*
\]

\[\square\]

59. PROPERTIES OF THE STEENROD OPERATIONS

In this section, we prove the standard properties of Steenrod operations of homological type.

59.A. Formula for a smooth cycle. Let \(Z \) be a smooth closed subvariety of a scheme \(X \). By Proposition 57.9, the total Segre class \(Sg(T_Z) \) coincides with \(s(T_Z)([Z]) = c(T_Z)^{-1}([Z]) = c(-T_Z)([Z]) \), where \(c \) is the total Chern class. Hence by Proposition 58.9,

\[
(59.1) \quad \text{Sq}^X([Z]) = j_* \circ c(-T_Z)([Z]),
\]

where \(j : Z \to X \) is the closed embedding.

59.B. External products.

THEOREM 59.2. Let \(X \) and \(Y \) be two schemes over a field \(F \) of characteristic not two. Then \(\text{Sq}^{X \times Y}(\alpha \times \beta) = \text{Sq}^X(\alpha) \times \text{Sq}^Y(\beta) \) for any \(\alpha \in \text{Ch}(X) \) and \(\beta \in \text{Ch}(Y) \). Equivalently,

\[
\text{Sq}_{n}^{X \times Y}(\alpha \times \beta) = \sum_{k+m=n} \text{Sq}_{k}^{X}(\alpha) \times \text{Sq}_{m}^{Y}(\beta)
\]

for all \(n \).

PROOF. We may assume that \(\alpha = [V] \) and \(\beta = [W] \) where \(V \) and \(W \) are closed subvarieties of \(X \) and \(Y \) respectively. Let \(i : V \to X \) and \(j : W \to Y \) be the closed
embeddings. By Propositions 49.4, 57.19 and Corollary 103.8,

\[\text{Sq}^{X \times Y}(\alpha \times \beta) = (i \times j)_* \circ \text{Sg}(T_{V \times W}) = (i_* \times j_*) \circ \text{Sg}(T_V \times T_W) = (i_* \times j_*) \circ (\text{Sg}(T_V) \times \text{Sg}(T_W)) = i_* \circ \text{Sg}(T_V) \times j_* \circ \text{Sg}(T_W) = \text{Sg}^X(\alpha) \times \text{Sg}^Y(\beta). \]

\[\square \]

59.C. Functoriality of \text{Sq}^X.

Lemma 59.3. Let \(i : Y \rightarrow X \) be a closed embedding. Then \(i_* \circ \text{Sq}^Y = \text{Sq}^X \circ i_* \).

Proof. Let \(Z \subset Y \) be a closed subscheme and let \(j : Z \rightarrow Y \) be the closed embedding. By Proposition 58.9, we have

\[i_* \circ \text{Sq}^Y([Z]) = i_* \circ j_* \circ \text{Sg}(T_Z) = (ij)_* \circ \text{Sg}(T_Z) = \text{Sg}^X(i_*[Z]). \]

\[\square \]

Lemma 59.4. Let \(p : \mathbb{P}^r \times X \rightarrow X \) be the projection. Then \(p_* \circ \text{Sq}^{\mathbb{P}^r \times X} = \text{ Sq}^X \circ p_* \).

Proof. The group \(\text{CH}(\mathbb{P}^r \times X) \) is generated by cycles \(\alpha = \mathbb{P}^k \times Z \) for all closed subvarieties \(Z \subset X \) and \(k \leq r \) by Proposition 52.6. It follows from Lemma 59.3 that we may assume \(Z = X \) and \(k = r \). The statement is obvious if \(r = 0 \), so that we may assume that \(r > 0 \). Since \(p_*(\alpha) = 0 \), we need to prove that \(p_* \text{Sq}^{\mathbb{P}^r \times X}(\alpha) = 0 \).

By Theorem 59.2, we have

\[\text{Sq}^{\mathbb{P}^r \times X}(\alpha) = \text{Sq}^{\mathbb{P}^r}(\mathbb{P}^r) \times \text{Sq}^X([X]). \]

It follows from Example 57.6 and (59.1) that

\[\text{Sq}^{\mathbb{P}^r}(\mathbb{P}^r) = c(T_{\mathbb{P}^r})^{-1}(\mathbb{P}^r) = (1 + h)^{-r-1}, \]

where \(h = c_1(L) \) is the class of a hyperplane in \(\mathbb{P}^r \). By Proposition 49.4,

\[p_* \text{Sq}^{\mathbb{P}^r \times X}(\alpha) = \text{deg}(1 + h)^{-r-1} \cdot \text{Sq}^X([X]). \]

We have

\[\text{deg}(1 + h)^{-r-1} = \binom{-r-1}{r} = (-1)^r \binom{2r}{r} \]

and the latter binomial coefficient is even if \(r > 0 \).

\[\square \]

Theorem 59.5. Let \(f : Y \rightarrow X \) be a projective morphism. Then the diagram

\[
\begin{array}{ccc}
\text{Ch}(Y) & \xrightarrow{\text{Sq}^X} & \text{Ch}(Y) \\
\downarrow f_* & & \downarrow f_* \\
\text{Ch}(X) & \xrightarrow{\text{Sq}^X} & \text{Ch}(X)
\end{array}
\]

is commutative.

Proof. The projective morphism \(f \) factors as the composition of a closed embedding \(Y \rightarrow \mathbb{P}^r \times X \) and the projection \(\mathbb{P}^r \times X \rightarrow X \), so the statement follows from Lemmas 59.3 and 59.4. \[\square \]
Theorem 59.6. \(Sq_k^X = 0 \) if \(k < 0 \) and \(Sq_0^X \) is the identity.

Proof. Suppose first that \(X \) is a variety of dimension \(d \). By dimension count, the class \(Sq_k^X([X]) = Sq_{d-k}(T_X) \) is trivial if \(k < 0 \). To compute \(Sq_0^X([X]) \), we can extend the base field to a perfect one and replace \(X \) by a smooth open subscheme. Then by (59.1),
\[
Sq_0^X([X]) = c_0(-T_X)([X]) = [X],
\]
i.e., \(Sq_0^X \) is the identity on \(Chd(X) \).

In general, let \(Z \subset X \) be a closed subvariety and let \(j : Z \to X \) be the closed embedding. Then by Lemma 59.3 and the first part of the proof, the class \(Sq_k^Z([Z]) = j^* Sq_k^X([Z]) \) is trivial for \(k < 0 \) and is equal to \([Z] \in Ch(X)\) if \(k = 0 \).

60. Steenrod operations on smooth schemes

In this section, we define Steenrod operations of cohomological type and prove their standard properties.

Lemma 60.1. Let \(f : Y \to X \) be a regular closed embedding of schemes of codimension \(r \) and \(g : U_Y/G \to U_X/G \) the closed embedding induced by \(f \). Then \(g \) is a regular closed embedding of codimension \(2r \) and the following diagram
\[
\begin{array}{ccc}
CH(X) & \xrightarrow{v_X} & CH(U_X/G) \\
\downarrow f^* & & \downarrow g^* \\
CH(Y) & \xrightarrow{v_Y} & CH(U_Y/G)
\end{array}
\]
is commutative.

Proof. The closed embedding \(U_Y \to U_X \) is regular of codimension \(2r \) and the morphism \(U_X \to U_X/G \) is faithfully flat. Hence \(g \) is also a regular closed embedding by Proposition 103.11 below. Let \(p : N \to Y \) be the normal bundle of \(f \). The Gysin homomorphism \(f^* \) is the composition of the deformation homomorphism \(\sigma_f : CH(X) \to CH(N) \) and the inverse to the pullback isomorphism \(p_Y^* : CH(Y) \to CH(N) \) (cf. 54.A).

The normal bundle \(N_h \) of the closed embedding \(h : U_Y \to U_X \) is the restriction of the vector bundle \(N^2 \times \mathbb{A}^1 \) on \(U_Y \).

Consider the diagram
\[
\begin{array}{ccc}
Z(X) & \xrightarrow{Z(X^2 \times \mathbb{A}^1)^G} & Z(U_X)^G \\
\downarrow \sigma_f & & \downarrow \sigma_g \\
Z(N) & \xrightarrow{Z(N^2 \times \mathbb{A}^1)^G} & Z(N_h)^G \\
Z(Y) & \xrightarrow{Z(Y^2 \times \mathbb{A}^1)^G} & Z(U_Y)^G
\end{array}
\]
where the first homomorphism in every row takes a cycle \(\alpha \) to \(\alpha^2 \times [\mathbb{A}^1] \) and the other unmarked maps are pull-back homomorphisms with respect to flat morphisms.

The deformation homomorphism is defined by \(\sigma_f(\sum n_i[Z_i]) = [C_{k_i}] \), where \(k_i : Y \cap Z_i \to Z_i \) is the restriction of \(f \) by Proposition 51.6 so the commutativity of the upper left
square follows from the equality of cycles \([C_{k_i} \times C_{k_j}] = [C_{k_i} \times C_{k_j}]\) (cf. Proposition 103.7). The two other top squares are commutative by Proposition 50.5. The commutativity of the left bottom square follows from Propositions 56.7 and 56.9. The two other squares are commutative by Proposition 48.17.

The normal bundle \(N_h\) is an open subscheme of \(U_N\) and of \(N^2 \times \mathbb{A}^1\). Let \(j : N_h \to U_N\) and \(l : N_h/G \to U_N/G\) be the open embedding. The following diagram of the pull-back homomorphisms

\[
\begin{array}{c}
\begin{array}{c}
Z(N) \longrightarrow Z(N^2 \times \mathbb{A}^1)^G \longrightarrow Z(U_N)^G \longrightarrow Z(U_N/G) \\
| & | & | \\
Z(N) \longrightarrow Z(N^2 \times \mathbb{A}^1)^G \longrightarrow Z(N_h)^G \longrightarrow Z(N_h/G)
\end{array}
\end{array}
\]

is commutative by Proposition 48.17. It follows from Lemma 58.2 that the composition in the top row factors through the rational equivalence, hence so does the composition in the bottom row and then in the middle row of the diagram (60.2). Therefore the diagram (60.2) yields a commutative diagram

\[
\begin{array}{c}
\begin{array}{c}
\text{CH}(X) \longrightarrow \text{CH}(U_X/G) \\
\sigma_f \downarrow \quad \quad \sigma_g \downarrow \\
\text{CH}(N) \longrightarrow \text{CH}(U_N/G) \longrightarrow \text{CH}(N_h/G) \\
p_f \downarrow \quad \quad \sim \downarrow \\
\text{CH}(Y) \longrightarrow \text{CH}(U_Y/G)
\end{array}
\end{array}
\]

The lemma follows from the commutativity of this diagram. \(\square\)

Let \(f : Y \to X\) be a closed embedding of smooth schemes with the normal bundle \(N \to Y\). Consider the diagram

\[
\begin{array}{c}
\begin{array}{c}
\mathbb{P}(T_Y \oplus 1) \longrightarrow \mathbb{P}(T_X \oplus 1) \\
p \downarrow \quad \quad q \downarrow \\
Y \longrightarrow X.
\end{array}
\end{array}
\]

Lemma 60.3. We have \(c(N) \circ f^* \circ \text{sg}^{TX} = \text{sg}^{TY} \circ j^*\).

Proof. By the Projective Bundle Theorem, the group \(\text{CH} \mathbb{P}(T_X \oplus 1)\) is generated by the elements \(\beta = e(L_X)^k(q^* (\alpha))\) for some \(k \geq 0\) and \(\alpha \in \text{CH}(X)\). We have

\[
e(L_X)^*(\beta) = e(L_X)^*(q^* \alpha).
\]

Since \(j^* L_X = L_Y\) and \(j^* \circ q^* = p^* \circ f^*\), we have \(j^* \beta = e(L_Y)^k(p^* (f^* \alpha))\) by Proposition 52.3(2) and therefore

\[
e(L_Y)^*(j^* \beta) = e(L_Y)^* \circ p^*(f^* \alpha).
\]
By Proposition 103.16,
\[c(N) \circ s(f^*T_X) = c(N) \circ c(f^*T_X)^{-1} = c(T_Y)^{-1} = s(T_Y). \]
It follows from (60.4), (60.5), Propositions 53.7 and 57.4(2) that
\[
c(N) \circ f^* \circ Sq^X(\beta) =\]
\[
c(N) \circ f^* \circ q^* \circ e(L_X)^*(\beta)
=\]
\[
c(N) \circ f^* \circ q^* \circ e(L_X)^*(q^*\alpha)
=\]
\[
c(N) \circ f^* \circ s(T_X)(\alpha)
=\]
\[
c(N) \circ s(f^*T_X)(f^*\alpha)
=\]
\[
s(T_Y)(f^*\alpha)
=\]
\[
p^* \circ e(L_Y)^* \circ p^*(f^*\alpha)
=\]
\[
p^* \circ e(L_Y)^*(j^*\beta)
=\]
\[
sg_T^Y(j^*\beta).
\]

Proposition 60.6. Let \(f : Y \to X \) be a closed embedding of smooth schemes with the normal bundle \(N \). Then
\[c(N) \circ f^* \circ Sq^X = Sq^Y \circ f^*. \]

Proof. By Example 104.5, the schemes \(B_Y/G \) and \(B_X/G \) are smooth. Let
\[j : \mathbb{P}(T_Y \oplus 1) \to \mathbb{P}(T_X \oplus 1) \quad \text{and} \quad h : B_Y/G \to B_X/G \]
be the closed embeddings induced by \(f \). Let \(\alpha \in \text{Ch}(X) \). Choose \(\beta \in \text{Ch}(B_X/G) \) satisfying
\(\beta|_{(U_X/G)} = \alpha^2_G \). It follows from Lemma 60.1 that
\[
(h^*(\beta))|_{(U_Y/G)} = (f^*(\alpha))^2_G.
\]
By Proposition 54.18 and Lemma 60.3
\[
c(N) \circ f^* \circ Sq^X(\alpha) = c(N) \circ f^* \circ Sq^X \circ i_X^*(\beta)
=\]
\[
sg_T^Y \circ j^* \circ i_X^*(\beta)
=\]
\[
sg_T^Y \circ i_Y^* \circ h^*(\beta)
=\]
\[
Sq^Y \circ f^*(\alpha).
\]

Let \(X \) be a smooth scheme. We define the **Steenrod operations of cohomological type** by the formula

\[Sq^X = c(T_X) \circ Sq^X. \]

We write \(Sq^X_k \) for \(k \)-th homogeneous part of \(Sq^X \). Thus \(Sq^X_k \) is an operation

\[Sq^X_k : \text{Ch}^*(X) \to \text{Ch}^{*+k}(X). \]

Proposition 60.7 (Wu Formula). Let \(Z \) be a smooth closed subscheme of a smooth scheme \(X \). Then
\[Sq^X(Z) = j_* \circ c(N)([Z]), \]
where \(N \) is the normal bundle of the closed embedding \(j : Z \to X \).
XI. STEENROD OPERATIONS

Proof. By Proposition 53.5 and (59.1),
\[Sq_X([Z]) = c(T_X) \circ Sq^X([Z]) = c(T_X) \circ j_* \circ c(-T_Z)([Z]) = j_* \circ c(i^*T_X) \circ c(-T_Z)([Z]) = j_* \circ c(N)([Z]) \]
since \(c(T_Z) \circ c(N) = c(j^*T_X) \). □

Theorem 60.8. Let \(f : Y \to X \) be a morphism of smooth schemes. Then the diagram
\[
\begin{array}{ccc}
\text{Ch}(X) & \xrightarrow{Sq_X} & \text{Ch}(X) \\
\downarrow f^* & & \downarrow f^* \\
\text{Ch}(Y) & \xrightarrow{Sq_Y} & \text{Ch}(Y)
\end{array}
\]
is commutative.

Proof. Suppose first that \(f \) is a closed embedding with normal bundle \(N \). It follows from Propositions 53.5(2) and 60.6 that
\[
f^* \circ Sq_X = f^* \circ c(T_X) \circ Sq^X = c(f^*T_X) \circ f^* \circ Sq^Y = c(T_Y) \circ c(N) \circ f^* \circ Sq^X = c(T_Y) \circ Sq^Y \circ f^* = Sq_Y \circ f^*.
\]

Secondly, consider the case of the projection \(f : Y \times X \to X \). Let \(Z \subset X \) be a closed subvariety. By (59.1), Propositions 57.12, 56.9, Corollary 103.8 and Theorem 59.2 we have \(f^*[Z] = [Y \times Z] = [Y] \times [Z] \) and
\[
Sq_{Y \times X}(f^*[Z]) = c(T_{Y \times X}) \circ Sq^{Y \times X}([Y \times Z]) = c(T_Y) \circ c(T_X)(Sq^Y([Y]) \times Sq^X([Z])) = c(T_Y) \circ Sq^Y([Y]) \times c(T_X) \circ Sq^X([Z]) = [Y] \times Sq_X([Z]) = f^* Sq_X([Z]).
\]

In the general case, write \(f = g \circ h \) where \(h = (\text{id}_X, f) : Y \to Y \times X \) is the closed embedding and \(g : Y \times X \to X \) is the projection. Then by the above,
\[
f^* \circ Sq_X = h^* \circ g^* \circ Sq_X = h^* \circ Sq_{Y \times X} \circ g^* = Sq_Y \circ h^* \circ g^* = Sq_Y \circ f^*. \]

Proposition 60.9. Let \(f : Y \to X \) be a smooth projective morphism of smooth schemes. Then
\[
Sq_X \circ f_* = f_* \circ c(-T_f) \circ Sq_Y,
\]
where T_f is the relative tangent bundle of f.

Proof. It follows from the exactness of the sequence
\[0 \to T_f \to T_Y \to f^*(T_X) \to 0 \]
that $c(T_Y) = c(T_f) \circ c(f^*(T_X))$. By Proposition \ref{prop:53.5}(1) and Theorem \ref{thm:59.5}.

\[\text{Sq}_X \circ f_* = c(T_X) \circ \text{Sq}^Y \circ f_* \]
\[= c(T_X) \circ f_* \circ \text{Sq}^Y \]
\[= c(T_X) \circ f_* \circ c(-T_Y) \circ \text{Sq}_Y \]
\[= f_* \circ c(f^*T_X) \circ c(-T_Y) \circ \text{Sq}_Y \]
\[= f_* \circ c(-T_f) \circ \text{Sq}_Y. \]
\[\square \]

Let X be a smooth variety of dimension d and let $Z \subset X$ be a closed subvariety. Consider the closed embedding $j : \mathbb{P}(T_Z \oplus 1) \to \mathbb{P}(T_X \oplus 1)$. By the Projective Bundle Theorem \ref{thm:52.10}, applied to the vector bundle $T_X \oplus 1$ over X of rank $d+1$, there are unique elements $\alpha_0, \alpha_1, \ldots, \alpha_d \in \text{Ch}(X)$ such that
\[j_*[\mathbb{P}(T_Z \oplus 1)] = \sum_{k=0}^d e(L)^k(q^*(\alpha_k)), \]
in $\text{Ch}(\mathbb{P}(T_X \oplus 1))$, where L is the canonical line bundle over $\mathbb{P}(T_X \oplus 1)$ and $q : \mathbb{P}(T_X \oplus 1) \to X$ is the natural morphism. We set $\alpha := \alpha_0 + \alpha_1 + \cdots + \alpha_d \in \text{Ch}(X)$.

Lemma 60.10. $\text{Sq}^X([Z]) = s(T_X)(\alpha)$.

Proof. Let $p : \mathbb{P}(T_Z \oplus 1) \to Z$ be the projection and $i : Z \to X$ the closed embedding, so that $i \circ p = q \circ j$. The canonical line bundle L' over $\mathbb{P}(T_Z \oplus 1)$ coincides with $j^*(L)$ and by Proposition \ref{prop:52.3},
\[\text{Sq}_X^X([Z]) = i_* \text{Sg}(T_Z) \]
\[= i_* \circ p_* \circ e(L')^*([\mathbb{P}(T_Z \oplus 1)]) \]
\[= q_* \circ j_* \circ e(j^*L)^*([\mathbb{P}(T_Z \oplus 1)]) \]
\[= q_* \circ e(L)^* \circ j_*([\mathbb{P}(T_Z \oplus 1)]) \]
\[= q_* \circ e(L)^* \circ \sum_{k=0}^d e(L)^k(q^*(\alpha_k)) \]
\[= q_* \circ e(L)^* \circ (q^*(\alpha)) \]
\[= s(T_X)(\alpha). \]
\[\square \]

Corollary 60.11. $\text{Sq}_X([Z]) = \alpha$ in $\text{Ch}(X)$.

Proof. By Lemma \ref{lem:60.10} and Proposition \ref{prop:57.9},
\[\text{Sq}_X([Z]) = c(T_X)(\text{Sq}^X([Z])) = c(T_X)s(T_X)(\alpha) = \alpha. \]
\[\square \]
THEOREM 60.12. Let X be a smooth scheme. Then for any $\beta \in \text{Ch}^k(X)$,

\[
\text{Sq}^r_X(\beta) = \begin{cases}
\beta & \text{if } r = 0, \\
\beta^2 & \text{if } r = k, \\
0 & \text{if } r < 0 \text{ or } r > k.
\end{cases}
\]

PROOF. By definition and Theorem 59.6, we have $\text{Sq}^k_X = 0$ if $k < 0$ and Sq^0_X is the identity operation.

We may assume that X is a variety and $\beta = [Z]$ where $Z \subset X$ is a closed subvariety of codimension k. Since $\alpha_i \in \text{Ch}^{2k-i}(X)$, we have $\text{Sq}^r_X(\beta) = \alpha_{k-r}$ by Corollary 60.11. Therefore, $\text{Sq}^r_X(\beta) = 0$ if $r > k$.

Since $\text{Sq}^k_X(\beta) = \alpha_0$, it remains to prove that $\beta^2 = \alpha_0$. Consider the diagonal embedding $d : X \to X^2$ and the closed embedding $h : T_Z \to T_X$. By the definition of the product in $\text{Ch}(X)$ and Proposition 51.6,

\[
p^*(\beta^2) = [T_Z] = p^* \circ d^*([Z^2]) = \sigma_d([Z^2]) = h_*[T_Z] \in \text{Ch}(T_X),
\]

where $p : T_X \to X$ is the canonical morphism. Let $j : T_X \to \mathbb{P}(T_X \oplus 1)$ be the open embedding. Since the pullback $j^*(L)$ of the canonical line bundle L over $\mathbb{P}(T_X \oplus 1)$ is a trivial line bundle over T_X, we have

\[
j^* \circ e(L)^s(q^*(\alpha)) = e(j^*L)^i(j^* \circ q^*(\alpha)) = \begin{cases}
p^*(\alpha) & \text{if } s = 0, \\
0 & \text{if } s > 0
\end{cases}
\]

for every $\alpha \in \text{Ch}(X)$. Hence

\[
p^*(\beta^2) = [T_Z] = j^*((\mathbb{P}(T_Z \oplus 1))) = p^*(\alpha_0),
\]

therefore, $\beta^2 = \alpha_0$ since p^* is an isomorphism.

\[\square\]

THEOREM 60.13. Let X and Y be two smooth schemes. Then $\text{Sq}_{X \times Y} = \text{Sq}_X \times \text{Sq}_Y$.

PROOF. By Corollary 103.8, we have $T_{X \times Y} = T_X \times T_Y$. It follows from Theorem 59.2 and Proposition 57.12 that

\[
\text{Sq}_{X \times Y} = c(T_{X \times Y}) \circ \text{Sq}_{X \times Y} \\
= (c(T_X) \circ \text{Sq}_X) \times (c(T_Y) \circ \text{Sq}_Y) \\
= \text{Sq}_X \times \text{Sq}_Y. \quad \square
\]

COROLLARY 60.14 (Cartan Formula). Let X be a smooth scheme. Then $\text{Sq}_X(\alpha \cdot \beta) = \text{Sq}_X(\alpha) \cdot \text{Sq}_X(\beta)$ for all $\alpha, \beta \in \text{Ch}^*(X)$. Equivalently,

\[
\text{Sq}_X^n(\alpha \cdot \beta) = \sum_{k+m=n} \text{Sq}_X^k(\alpha) \cdot \text{Sq}_X^m(\beta)
\]

for all n.

\[\square\]
Proof. Let \(i : X \to X \times X \) be the diagonal embedding. Then by Theorems 60.8 and 60.13

\[
\text{Sq}_X (\alpha \cdot \beta) = \text{Sq}_X (i^*(\alpha \times \beta)) \\
= i^* \text{Sq}_{X \times Y} (\alpha \times \beta) \\
= i^*(\text{Sq}_X (\alpha) \times \text{Sq}_X (\beta)) \\
= \text{Sq}_X (\alpha) \cdot \text{Sq}_X (\beta). \tag*{\square}
\]

Example 60.15. Let \(X = \mathbb{P}^d \) be the projective space and let \(h \in \text{Ch}^1(X) \) be the class of a hyperplane. By Theorem 60.12, we have \(\text{Sq}_X (h) = h + h^2 = h(1 + h) \). It follows from Corollary 60.14 that

\[
\text{Sq}_X (h^i) = h^i (1 + h)^i, \quad \text{Sq}_X^r (h^i) = \binom{i}{r} h^{i+r}.
\]

By Example 103.20, the class of the tangent bundle \(T_X \) is equal to \((d + 1)[L] - 1\), where \(L \) is the canonical line bundle over \(X \). Hence \(c(T_X) = c(L)^{d+1} = (1 + h)^{d+1} \) and

\[
\text{Sq}_X^r (h^i) = c(T_X)^{-1} \circ \text{Sq}_X (h^i) = h^i (1 + h)^{i-d-1}.
\]

NOTES:

Steenrod operations for motivic cohomology modulo a prime integer \(p \) of a scheme \(X \) were originally constructed by Voevodsky in [62]. The reduced power operations (but not the Bockstein operation) restrict to the Chow groups of \(X \). An “elementary” construction of the reduced power operations modulo \(p \) on Chow groups (requiring equivariant Chow groups) was given by Brosnan in [8]. The approach to the construction of the Steenrod operations on Chow groups modulo 2 given in this chapter is new.
CHAPTER XII

Category of Chow motives

Many (co)homology theories defined on the category Sm(\mathcal{F}) of smooth complete varieties, such as Chow groups and more generally the K-(co)homology groups take values in the category of abelian group. But the category Sm(\mathcal{F}) itself has no structure of an additive category as we cannot add morphisms of varieties. In this chapter, for an arbitrary commutative ring Λ, we construct the additive categories of correspondences CR(\mathcal{F}, Λ), CR$_*(\mathcal{F}, \Lambda)$ and motives CM(\mathcal{F}, Λ), CM$_*(\mathcal{F}, \Lambda)$ together with functors

$$
\begin{array}{ccc}
\text{Sm}(& \rightarrow & \text{CR} & \rightarrow & \text{CM} \\
\downarrow & & \downarrow & & \downarrow \\
\text{CR}_*(& \rightarrow & \text{CM}_*)
\end{array}
$$

so that the theories with values in the category of abelian groups mentioned above factor through them. All of the new categories have the additional structure of additive category. This makes them easier to work with than with the category Sm(\mathcal{F}). Applications of these categories can be found in §?? later in the book.

Some classical theorems have motivic analogs. For example, the Projective Bundle Theorem [52,10] has such an analog (cf. Theorem [62,8]). The motive of a projective bundle splits into direct sum of certain motives already in the category of correspondences CR(\mathcal{F}, Λ), so that the classical Projective Bundle Theorem is obtained by applying an appropriate functor to the decomposition in CR(\mathcal{F}, Λ).

61. Correspondences

A correspondence between two schemes X and Y is an element of CH($X \times Y$). The graph of a morphism between X and Y is an example of a correspondence. In this section we study functorial properties of correspondences.

For a scheme Y over F, we have two canonical morphisms: the projection $p_Y : Y \to \text{Spec} F$ and the diagonal closed embedding $d_Y : Y \to Y \times Y$. If Y is complete, the map p_Y is proper and if Y is smooth, the closed embedding d_Y is regular.

Let X, Y and Z be schemes over F. Assume that Y is proper and smooth. We consider the morphisms

$$\begin{align*}
X & \to Y \\
\bigwedge & := 1_X \times p_Y \times 1_Z : X \times Y \times Z \to X \times Z
\end{align*}$$

and

$$\begin{align*}
Y & \to Z \\
\bigwedge & := 1_X \times d_Y \times 1_Z : X \times Y \times Z \to X \times Y \times Y \times Z.
\end{align*}$$

If $X = \text{Spec} F$, we will simply write p_Y and d_Y.

We define a bilinear pairing of K-homology groups (cf. §[51])

$$A_*(Y \times Z, K_*) \times A_*(X \times Y, K_*) \to A_*(X \times Z, K_*)$$
by

\[(\beta, \alpha) \mapsto \beta \circ \alpha = (Y^Z_Y)_* \circ (\tilde{d}^Z_Y)* (\alpha \times \beta). \tag{61.1}\]

For an element \(\alpha \in A_*(X \times Y, K_*)\) we write \(\alpha^t\) for its image in \(A_*(Y \times Z, K_*)\) under the exchange isomorphism \(X \times Y \simeq Y \times X\). The element \(\alpha^t\) is called the transpose of \(\alpha\).

By the definition of the pairing,

\[(\beta \circ \alpha)^t = \alpha^t \circ \beta^t.\]

Proposition 61.2. The pairing (61.1) is associative. More precisely, for any four schemes \(X, Y, Z, T\) over \(F\) with \(Y\) and \(Z\) complete and smooth and any \(\alpha \in A_*(X \times Y, K_*)\), \(\beta \in A_*(Y \times Z, K_*)\), and \(\gamma \in A_*(Z \times T, K_*\), we have

\[(\gamma \circ \beta) \circ \alpha = (Y^T_Y)_* \circ (\tilde{d}^T_Y)* (\alpha \times \beta \times \gamma) = \gamma \circ (\beta \circ \alpha).\]

Proof. We prove the first equality. It follows from Corollary 54.4 that

\[(X^T_Y)_* \circ (X \times Y \times T)_* \circ (X \times Y \times T) = (X^T_Y)_* \circ (X \times Y \times T).\]

By Propositions 49.4, 49.5 and 54.1 we have

\[
\begin{align*}
(\gamma \circ \beta) \circ \alpha &= (X^T_Y)_* \circ (\tilde{d}^T_Y)* (\alpha \times (Y^T_Y)_* (\tilde{d}^T_Y)* (\beta \times \gamma)) \\
&= (X^T_Y)_* \circ (\tilde{d}^T_Y)* (\alpha \times (Y^T_Y)_* (\tilde{d}^T_Y)* (\alpha \times \beta \times \gamma)) \\
&= (X^T_Y)_* \circ (\tilde{d}^T_Y)* (\alpha \times (Y^T_Y)_* (\tilde{d}^T_Y)* (\alpha \times \beta \times \gamma)) \\
&= (X^T_Y)_* \circ (\tilde{d}^T_Y)* (\alpha \times \beta \times \gamma). \\
\end{align*}
\]

Let \(f : X \to Y\) be a morphism of schemes. The isomorphic image of \(X\) under the closed embedding \((1_X, f) : X \to X \times Y\) is called the graph of \(f\) and is denoted by \(\Gamma_f\). Thus, \(\Gamma_f\) is a closed subscheme of \(X \times Y\) isomorphic to \(X\) under the projection \(X \times Y \to X\). The class \([\Gamma_f]\) belongs to \(\text{CH}(X \times Y)\).

Proposition 61.3. Let \(X, Y, Z\) be schemes over \(F\) with \(Y\) smooth and complete.

1. For every morphism \(g : Y \to Z\) and \(\alpha \in A_*(X \times Y, K_*)\),

\([\Gamma_g] \circ \alpha = (1_X \times g)_*(\alpha).\]

2. For every morphism \(f : X \to Y\) and \(\beta \in A_*(Y \times Z, K_*)\),

\(\beta \circ [\Gamma_f] = (f \times 1_Z)^*(\beta).\]

Proof. (1). Consider the commutative diagram

\[
\begin{array}{cccc}
X \times Y & \xleftarrow{x \times y^Y_Y} & X \times Y \times Y & \xrightarrow{\tilde{d}^Y_Y} & X \times Y \\
\downarrow r & & \downarrow t & & \downarrow \\
X \times Y \times Y \times Z & \xleftarrow{x \tilde{d}^Z_y} & X \times Y \times Z & \xrightarrow{y \tilde{d}^Z_y} & X \times Z
\end{array}
\]

where \(r = 1_X \times (1_Y, g)\) and \(t = 1_X \times (1_Y, g)\).
The composition $\times^Y p_Y \circ \times^Y$ is the identity of $X \times Y$ and $\times^Y \circ t = 1_X \times g$. It follows from Corollary 54.4 that $(\times^Y)^* \circ r_* = t_* \circ (\times^Y)^*$. We have

$$[g] \circ \alpha = (\times^Y)^* \circ ([g] \times [\Gamma_g])$$

$$= (\times^Y)^* \circ ([\Gamma_g] \times [\Gamma_g])$$

$$= ([\Gamma_g] \circ \alpha) \circ ([\times^Y]^* \circ r_* \circ (\times^Y)^* \circ ([\Gamma_g] \times [\Gamma_g])$$

$$= ([\Gamma_g] \circ \alpha) \circ (\times^Y)^* \circ r_* \circ ([\times^Y]^* \circ r_* \circ (\times^Y)^* \circ ([\Gamma_g] \times [\Gamma_g])$$

$$= (1_X \times g)_* \circ (\times^Y)^* \circ r_* \circ (\times^Y)^* \circ ([\Gamma_g] \times [\Gamma_g])$$

$$= (1_X \times g)_*(\alpha) \circ (\times^Y)^* \circ r_* \circ (\times^Y)^* \circ ([\Gamma_g] \times [\Gamma_g])$$

$$= (1_X \times g)_*(\alpha).$$

(2). Consider the commutative diagram

$$\begin{array}{ccc}
Y \times Z & \xleftarrow{p_X^Z} & X \times Y \times Z & \xleftarrow{v} & X \times Z \\
\downarrow{u} & & \downarrow{v} & & \\
X \times Y \times Z & \xleftarrow{\times^Z} & X \times Y \times Z & \xleftarrow{\times^Z} & X \times Z
\end{array}$$

where $u = (1_X, f) \times 1_{Y \times Z}$ and $v = (1_X, f) \times 1_Z$.

The composition $\times^Z \circ v$ is the identity of $X \times Z$ and $p_X^Y \circ v = f \times 1_Z$. It follows from Corollary 54.4 that $(\times^Z)^* \circ u_* = u \circ v^*$. We have

$$\beta \circ [f] = (\times^Z)^* \circ ([\times^Z]^* \circ [f]) \times \beta$$

$$= (f \times 1_Z)^* \beta. \quad \square$$

Corollary 61.4. Let X and Y be schemes over F and $\alpha \in A_*(X \times Y, K_*)$. If Y is smooth and complete, then $\alpha \circ [\Gamma_1 Y] = \alpha$. If X is smooth and complete then $[\Gamma_1 X] \circ \alpha = \alpha$.

Corollary 61.5. Let $f : X \to Y$ and $g : Y \to Z$ be two morphisms. If Y is smooth and complete then $[\Gamma_g] \circ [f] = [\Gamma_g \circ f]$.

Proof. By Proposition 61.3(1),

$$[g] \circ [f] = (1_X \times g)_*([f])$$

$$= (1_X \times g)_*(1_X, f)_*([X])$$

$$= (1_X, g \circ f)_*([X])$$

$$= [\Gamma_g \circ f]. \quad \square$$

Let X, Y and Z be arbitrary schemes and $\alpha \in A_*(X \times Y, K_*)$. If X is smooth and complete, we have a well defined homomorphism

$$\alpha_* : A_*(Z \times X, K_*) \to A_*(Z \times Y, K_*)$$

$$\beta \mapsto \alpha \circ \beta.$$

If $\alpha = [\Gamma_1 Y]$ with $f : X \to Y$ a morphism, it follows from Proposition 61.3(1) that $\alpha_* = (1_Z \times f)_*$.

If \(Z = \text{Spec } F \), we get a homomorphism \(\alpha_* : A_*(X, K_s) \to A_*(Y, K_s) \). In the following case, we have simpler formula for \(\alpha_* \).

Proposition 61.6. Let \(\alpha = [T] \) with \(T \subset X \times Y \) a closed subscheme. Then \(\alpha_* = q_* \circ p^*, \) where \(p : T \to X \) and \(q : T \to Y \) are the projections.

Proof. Let \(r : X \times Y \to Y \) be the projection, \(i : T \to X \times Y \) the closed embedding, and \(f : T \to X \times T \) the graph of the projection \(p \). Consider the commutative diagram

\[
\begin{array}{ccc}
X \times T & \xrightarrow{f} & T & \xrightarrow{q} & Y \\
1_X \times i \downarrow & & i \downarrow & & \downarrow \\
X \times X \times Y & \xleftarrow{d_X} & X \times Y & \xrightarrow{r} & Y.
\end{array}
\]

It follows from Corollary 54.4 that \(i_* \circ f^* = (d_X)^* \circ (1_X \times i)_* \). Therefore for every \(\beta \in A_*(X, K_s) \), we have

\[
\alpha_*(\beta) = r_* \circ (d_X)^* (\beta \times \alpha) \\
\quad = r_* \circ (d_X)^* (1_X \times i)_* (\beta \times [T]) \\
\quad = r_* \circ i_* \circ f^* (\beta \times [T]) \\
\quad = q_* \circ f^* (\beta \times [T]) \\
\quad = q_* \circ p^* (\beta). \quad \square
\]

If \(Y \) is smooth and complete, we have a well defined homomorphism

\[
\alpha^* : A_*(Y \times Z, K_s) \to A_*(X \times Z, K_s), \quad \beta \mapsto \beta \circ \alpha.
\]

If \(\alpha = [\Gamma_f] \) for a flat morphism \(f : X \to Y \), it follows from Proposition 61.3(2) that \(\alpha^* = (f \times 1_Z)^* \).

Let \(X, Y \) and \(Z \) be arbitrary schemes, \(\alpha \in A_*(X \times Y, K_s) \), and \(g : Y \to Z \) be a proper morphism. We define the composition of \(g \) and \(\alpha \) by

\[
g \circ \alpha := (1_X \times g)_* (\alpha) \in A_*(X \times Z, K_s).
\]

If \(g \circ \alpha = [\Gamma_h] \) for some morphism \(h : X \to Z \), abusing notation, we write \(g \circ \alpha = h \). If \(Y \) is smooth and complete, we have \(g \circ \alpha = [\Gamma_g] \circ \alpha \) by Proposition 61.3(1).

Similarly, if \(\beta \in A_*(Y \times Z, K_s) \) and \(f : X \to Y \) is a flat morphism, we define the composition of \(\beta \) and \(f \) by

\[
\beta \circ f := (f \times 1_Z)^* (\beta) \in A_*(X \times Z, K_s).
\]

If \(Y \) is smooth and complete, we have \(\beta \circ f = \beta \circ [\Gamma_f] \) by Proposition 61.3(2).

The following statement is an analogue of Proposition 61.2 with less assumptions on the schemes.

Proposition 61.7. Let \(X, Y, Z \) and \(T \) be arbitrary schemes.

1. Let \(\alpha \in A_*(X \times Y, K_s) \), \(\gamma \in A_*(T \times X, K_s) \), and \(g : Y \to Z \) be a proper morphism.
 If \(X \) is smooth and complete then \((g \circ \alpha) \circ \gamma = g \circ (\alpha \circ \gamma) \), i.e., \((g \circ \alpha)_* = g_* \circ \alpha_* \).

2. Let \(\beta \in A_*(Y \times Z, K_s) \), \(\delta \in A_*(Z \times T, K_s) \), and \(f : X \to Y \) be a flat morphism.
 If \(Z \) is smooth and complete then \(\delta \circ (\beta \circ f) = (\delta \circ \beta) \circ f \), i.e., \((\beta \circ f)^* = f^* \circ \beta^* \).
62. Categories of correspondences

Let Λ be a commutative ring. For a scheme Z, we write $\text{CH}(Z; \Lambda)$ for the Λ-module $\text{CH}(Z) \otimes \Lambda$.

Let X and Y be smooth complete schemes over F. Let X_1, X_2, \ldots, X_n be irreducible components of X of dimension d_1, d_2, \ldots, d_n respectively. For every $i \in \mathbb{Z}$, we set

\[\text{Corr}_i(X, Y; \Lambda) = \prod_{k=1}^{n} \text{CH}_{i+d_k}(X_k \times Y; \Lambda). \]

An element $\alpha \in \text{Corr}_i(X, Y)$ is called a correspondence between X and Y of degree i with coefficients in Λ. We write $\alpha : X \rightsquigarrow Y$.

Let Z be another smooth complete scheme. By Proposition 61.2, the bilinear pairing $(\beta, \alpha) \mapsto \beta \circ \alpha$ on Chow groups yields an associative pairing (composition)

\[\text{Corr}_i(Y, Z; \Lambda) \times \text{Corr}_j(X, Y; \Lambda) \to \text{Corr}_{i+j}(X, Z; \Lambda). \]

The following proposition gives an alternative formula for this composition that involves only projection morphisms.

Proposition 62.2. $\beta \circ \alpha = (p_Y^Z)_*((X \times p_Z)^*(\alpha) \cdot (p_X^{Y \times Z})^*(\beta))$.

PROOF. Let \(f : X \times Y \times Z \to X \times Y \times Z \times X \times Y \times Z \) defined by \(f(x, y, z) = (x, y, z, x', y', z) \). We have \(f \circ d_{Y} = d_{X \times Y \times Z} \), therefore
\[
\beta \circ \alpha = (y_{Y})^{*} \circ (y_{Y}^{*})^{*}((\alpha \times \beta)
= (y_{Y}^{*}) \circ (d_{X \times Y \times Z})^{*}((x \times y_{Z})^{*}(\alpha \times (p_{X}Y_{Z})^{*}(\beta)))
= (y_{Y}^{*})((x \times y_{Z})^{*}(\alpha) \cdot (p_{X}Y_{Z})^{*}(\beta)).
\]

Let \(\Lambda \) be a commutative ring. We define the category \(\text{CR}_{\Lambda}(F, \Lambda) \) of correspondences with coefficients in \(\Lambda \) over \(F \) as follows: Objects of \(\text{CR}_{\Lambda}(F, \Lambda) \) are smooth complete schemes over \(F \). A morphism between \(X \) and \(Y \) is an element of the graded group
\[
\bigoplus_{k \in \mathbb{Z}} \text{Corr}_{k}(X, Y; \Lambda).
\]
Composition of morphisms is given by \((62.4)\). The identity morphism of \(X \) in \(\text{CR}_{\Lambda}(F, \Lambda) \) is \(\Gamma_{\text{id}} \otimes 1 \), where \(\Gamma_{\text{id}} \) is the class of the graph of the identity morphism \(1_{X} \) (cf. Corollary \(61.4 \)). The direct sum in \(\text{CR}_{\Lambda}(F, \Lambda) \) is given by the disjoint union of schemes. As the composition law in \(\text{CR}_{\Lambda}(F, \Lambda) \) is bilinear and associative by Proposition \(61.2 \), the category \(\text{CR}_{\Lambda}(F, \Lambda) \) is additive. Abusing notation, we write \(\Lambda \) for the object \(\text{Spec} F \).

An object of \(\text{CR}_{\Lambda}(F, \Lambda) \) is called a Chow-motive or simply a motive. If \(X \) is a smooth complete scheme we write \(M(X) \) for it as an object in \(\text{CR}_{\Lambda}(F, \Lambda) \).

We define another category \(C(F, \Lambda) \) as follows. Objects of \(C(F, \Lambda) \) are pairs \((X, i)\), where \(X \) is a smooth complete scheme over \(F \) and \(i \in \mathbb{Z} \). A morphism between \((X, i)\) and \((Y, j)\) is an element of \(\text{Corr}_{i-j}(X, Y; \Lambda) \). The composition of morphisms is given by \((62.1)\). The morphisms between two objects form an abelian group and the composition is bilinear and associative by Proposition \(61.2 \) therefore, \(C(F, \Lambda) \) is a preadditive category.

There is an additive functor \(C(F, \Lambda) \to \text{CR}_{\Lambda}(F, \Lambda) \) taking an object \((X, i)\) to \(X \) and that is the natural inclusion on morphisms.

Let \(\mathcal{A} \) be a preadditive category. The additive completion of \(\mathcal{A} \) is the category \(\tilde{\mathcal{A}} \) with objects finite sequences of objects \(A_{1}, \ldots, A_{n} \) of \(\mathcal{A} \) written in the form \(\prod_{i=1}^{n} A_{i} \). A morphism between \(\prod_{i=1}^{n} A_{i} \) and \(\prod_{j=1}^{m} B_{j} \) is given by an \(n \times m \)-matrix of morphisms \(A_{i} \to B_{j} \). The composition of morphisms is given by the matrix multiplication. The category \(\tilde{\mathcal{A}} \) has finite products and coproducts and therefore is an additive category. The category \(\mathcal{A} \) is a full subcategory of \(\tilde{\mathcal{A}} \).

Denote by \(\text{CR}(F, \Lambda) \) the additive completion of \(C(F, \Lambda) \) and call it the category of graded correspondences with coefficients in \(\Lambda \) over \(F \). An object of \(\text{CR}(F, \Lambda) \) is also called a Chow-motive or simply a motive. We will write \(M(X)(i) \) for \((X, i)\) and simply \(M(X) \) for \((X, 0)\). The functor \(C(F, \Lambda) \to \text{CR}_{\Lambda}(F, \Lambda) \) extends naturally to an additive functor
\[
(62.3) \quad \text{CR}(F, \Lambda) \to \text{CR}_{\Lambda}(F, \Lambda).
\]

taking \(M(X)(i) \) to \(M(X) \). The motives \(\Lambda(i) \) in \(\text{CR}(F, \Lambda) \) and \(\Lambda \) in \(\text{CR}_{\Lambda}(F, \Lambda) \) are called the Tate motives.

The functor \((62.3)\) is faithful but not full. Nevertheless it has the following nice property.
Let there is a functor Corr. For every smooth complete scheme B.

The conditions are equivalent:

1. α is an isomorphism.
2. For every smooth complete scheme Y, the homomorphism
 \[(1_Y \otimes \alpha)_* : \text{CH}^*(M(Y) \otimes N; \Lambda) \rightarrow \text{CH}^*(M(Y) \otimes P; \Lambda) \]
 is an isomorphism.
3. For every smooth complete scheme X, the homomorphism
 \[(1_Y \otimes \alpha)^* : \text{CH}^*(M(Y) \otimes P; \Lambda) \rightarrow \text{CH}^*(M(Y) \otimes N; \Lambda) \]
 is an isomorphism.

A ring homomorphism $\Lambda \rightarrow \Lambda'$ gives rise to natural functors $\text{Corr}^*(F, \Lambda) \rightarrow \text{Corr}^*(F, \Lambda')$ and $\text{Corr}(F, \Lambda) \rightarrow \text{Corr}(F, \Lambda')$ that are identical on objects. We simply write Corr.

Proof. Let f be a morphism between the objects $\prod_{i=1}^n X_i(a_i)$ and $\prod_{j=1}^m Y_j(b_j)$. Thus f is given by an $n \times m$ matrix $A = (f_{ij})$ with $f_{ij} \in \text{Corr}_{a_i - b_j}(X_j, Y_i) \otimes \Lambda$. Let $B = (g_{kl})$ be the matrix of the inverse of f in $\text{Corr}^*(F, \Lambda)$, so that $g_{kl} \in \text{Corr}^*(Y_k, X_l)$. Let \bar{g}_{kl} be the homogeneous component of g_{kl} of degree $b_k - a_l$ and $\bar{B} = (\bar{g}_{kl})$. As $AB = \bar{BA}$ and $\bar{BA} = BA$ are the identity matrices we have $\bar{B} = B = A^{-1}$. Therefore, B is the matrix of the inverse of f in $\text{Corr}(F, \Lambda)$.

It follows from Corollary 62.5 that there is a functor
\[
\text{Sm}(F) \rightarrow \text{Corr}(F, \Lambda)
\]
taking a smooth complete scheme X to $M(X)$ and a morphism $f : X \rightarrow Y$ to $[\Gamma_f] \otimes 1$ in $\text{Corr}_0(X, Y; \Lambda) = \text{Mor}_{\text{Corr}(F, \Lambda)}(M(X), M(Y))$, where Γ_f is the graph of f.

Let X and Y be smooth complete schemes and $i, j \in \mathbb{Z}$. We have
\[
\text{Hom}_{\text{Corr}(F)}(M(X)(i), M(Y)(j)) = \text{Corr}_{i-j}(X, Y; \Lambda).
\]
In particular,
\[\text{Hom}_{\text{Corr}(F, \Lambda)}(\Lambda(i), M(X)) = \text{CH}(X; \Lambda),\]
(62.5)
\[\text{Hom}_{\text{Corr}(F, \Lambda)}(M(X), \Lambda(i)) = \text{CH}^i(X; \Lambda),\]
(62.6)

The category $\text{Corr}(F, \Lambda)$ has a structure of a tensor category given by
\[M(X)(i) \otimes M(Y)(j) = M(X \times Y)(i + j).\]
In particular,
\[M(X)(i) \otimes \Lambda(j) = M(X)(i + j).
\]

The following statement is a variant of the Yoneda lemma.

Lemma 62.7. Let $\alpha : N \rightarrow P$ be a morphism in $\text{Corr}(F, \Lambda)$. Then the following conditions are equivalent:

1. α is an isomorphism.
2. For every smooth complete scheme Y, the homomorphism
 \[(1_Y \otimes \alpha)_* : \text{CH}^*(M(Y) \otimes N; \Lambda) \rightarrow \text{CH}^*(M(Y) \otimes P; \Lambda) \]
 is an isomorphism.
3. For every smooth complete scheme X, the homomorphism
 \[(1_Y \otimes \alpha)^* : \text{CH}^*(M(Y) \otimes P; \Lambda) \rightarrow \text{CH}^*(M(Y) \otimes N; \Lambda) \]
 is an isomorphism.
XII. CATEGORY OF CHOW MOTIVES

Proof. Clearly (1) ⇒ (2) and (1) ⇒ (3). We prove that (2) implies (1) (the proof of the implication (3) ⇒ (1) is similar). It follows from (63.1) that the natural homomorphism

\[\text{Hom}_{\text{CR}(F,\Lambda)}(M, N) \to \text{Hom}_{\text{CR}(F,\Lambda)}(M, P) \]

is an isomorphism if \(M = M(Y)(i) \) for any smooth complete variety \(Y \). By additivity, it is isomorphism for all motives \(M \). The statement follows now from the Yoneda lemma. □

The following statement is the motivic version of the Projective Bundle Theorem.

Theorem 62.8. Let \(E \to X \) be a vector bundle of rank \(r \) over a smooth complete scheme \(X \). Then the motives \(M(\mathbb{P}(E)) \) and \(\bigsqcup_{i=0}^{r-1} M(X)(i) \) are naturally isomorphic in \(\text{CR}(F,\Lambda) \).

Proof. Let \(Y \) be a smooth complete scheme over \(F \). Applying the Projective Bundle Theorem 52.10 to the vector bundle \(E \times Y \to X \times Y \), we see that the Chow groups of \(\bigsqcup_{i=0}^{r-1} M(X)(i) \) and \(M(\mathbb{P}(E) \times Y) \) are isomorphic. Moreover, in view of Remark 52.11, this isomorphism is natural in \(Y \) with respect to morphisms in the category \(\text{CR}(F,\Lambda) \). In other words, the functors on \(\text{CR}(F,\Lambda) \) represented by the objects \(\bigsqcup_{i=0}^{r-1} M(X)(i) \) and \(M(\mathbb{P}(E)) \) are isomorphic. By the Yoneda lemma, the objects are isomorphic in \(\text{CR}(F,\Lambda) \). □

Corollary 62.9. In the category \(\text{CR}_*(F,\Lambda) \) the motive \(M(\mathbb{P}(E)) \) is isomorphic to the direct sum \(M(X)^r \) of \(r \) copies of \(M(X) \).

63. Category of Chow motives

Let \(\mathcal{A} \) be an additive category. An idempotent \(e : A \to A \) in \(\mathcal{A} \) is called split, if there is an isomorphism \(f : A \to B \oplus C \) such that \(e \) coincides with the composition \(A \xrightarrow{f} B \oplus C \xrightarrow{p} B \xrightarrow{1} B \oplus C \xrightarrow{f^{-1}} A \), where \(p \) and \(i \) are canonical morphisms.

The idempotent completion of an additive category \(\mathcal{A} \) is the category \(\overline{\mathcal{A}} \) defined as follows: Objects of \(\overline{\mathcal{A}} \) are the pairs \((A, e) \), where \(A \) is an object of \(\mathcal{A} \) and \(e : A \to A \) is an idempotent. The group of morphisms between \((A, e) \) and \((B, f) \) is \(f \circ \text{Hom}_\mathcal{A}(A, B) \circ e \). Every idempotent in \(\overline{\mathcal{A}} \) is split.

The assignment \(A \mapsto (A, 1_A) \) defines a full and faithful functor from \(\mathcal{A} \) to \(\overline{\mathcal{A}} \). We identify \(\mathcal{A} \) with a full subcategory of \(\overline{\mathcal{A}} \).

Let \(\Lambda \) be a commutative ring. The idempotent completion of the category \(\text{CR}(F,\Lambda) \) is called the category of graded Chow-motives with coefficients in \(\Lambda \) and is denoted by \(\text{CM}(F,\Lambda) \). By definition, every object of \(\text{CM}(F) \) is a direct summand of a finite direct sum of motives of the form \(M(X)(i) \), where \(X \) is a smooth complete scheme over \(F \). We write \(\text{CM}(F) \) for \(\text{CM}(F,\mathbb{Z}) \).

Similarly, the idempotent completion \(\text{CM}_*(F,\Lambda) \) of \(\text{CR}_*(F,\Lambda) \) is called the category of Chow-motives with coefficients in \(\Lambda \). Note that Proposition 62.4 holds for the natural functor \(\text{CM}(F,\Lambda) \to \text{CM}_*(F,\Lambda) \).

We have the functors

\[\text{Sm}(F) \to \text{CR}(F,\Lambda) \to \text{CM}(F,\Lambda) \].
The second functor is full and faithful, i.e., we can view CR(F, Λ) as a full subcategory of CM(F, Λ) which we do. Note that CM(F, Λ) inherits the structure of a tensor category.

An object of CM(F, Λ) is also called a motive. We will keep the same notation M(X)(i), Λ(i) etc. for the corresponding motives in CM(F, Λ). The motives Λ(i) and Λ are called the Tate motives.

We use formulas (62.5) and (62.6) in order to define Chow groups with coefficients in Λ for an arbitrary motive M:

\[CH_i(M; Λ) := \text{Hom}_{CM(F,Λ)}(Λ(i), M), \quad CH^i(M; Λ) := \text{Hom}_{CM(F,Λ)}(M, Λ(i)) \]

The functor from CM(F, Λ) to the category of Λ-modules, taking a motive M to CH_i(M; Λ) respectively the cofunctor M ↦ CH^i(M; Λ) is then represented (respectively co-represented) by Λ(i).

Let Y be a smooth variety of dimension d. By the definition of a morphism in CM(F), the equality

\[\text{Hom}_{CM(F,Λ)}(M(Y)(i), N) = CH_{d+i}(M(Y) \otimes N; Λ) \]

holds for every N of the form M(X)(j), where X is a smooth complete scheme; and, therefore, by additivity it holds for all motives N. Similarly,

\[\text{Hom}_{CM(F,Λ)}(N, M(Y)(i)) = CH^{d+i}(N \otimes M(Y); Λ) \]

Let M and N be objects in CM(F). The tensor product of two morphisms M → Λ(i) and N → Λ(j) defines a pairing

\[CH^*(M; Λ) \otimes CH^*(N; Λ) \rightarrow CH^*(M \otimes N; Λ) \]

Note that this is an isomorphism if M (or N) is a Tate motive.

We say that an object M of CR(F, Λ) is split if M is isomorphic to a (finite) coproduct of Tate motives. The additivity property of the pairing yields

Proposition 63.3. Let M be a split motive. Then the homomorphism (63.2) is an isomorphism.

64. Duality

There is the additive duality functor * : CM(F, Λ)\text{op} → CM(F, Λ) uniquely determined by the rule M(X)(i)* = M(X)(−d−i) for a smooth complete variety X, where d = \text{dim} X, and α* = αt for a correspondence α. In particular, Λ(i)* = Λ(−i). The composition * o * is the identity functor.

It follows from the definition of the duality functor that

\[\text{Hom}(M^*, N^*) = \text{Hom}(N, M) \]

for every two motives M and N. In particular, setting N = Λ(i), we get

\[CH^i(M^*; Λ) = CH_{−i}(M; Λ) \]

The equality (63.1) reads as follows:

\[\text{Hom}(M'(Y)(i), N) = CH_0(M'(Y)(i)* \otimes N; Λ) \]

for every smooth complete variety Y. Set

\[\text{Hom}(M, N) = M^* \otimes N \]
for every two motives \(M \) and \(N \). By additivity, the equality (64.1) yields
\[
\text{Hom}(M, N) = \text{CH}_0(\text{Hom}(M, N); \Lambda).
\]
Since the duality functor commutes with the tensor product, the definition of \(\text{Hom} \) satisfies the associativity law
\[
\text{Hom}(M \otimes N, P) = \text{Hom}(M, \text{Hom}(N, P))
\]
for all motives \(M, N \) and \(P \). Applying \(\text{CH}_0 \) we get
\[
\text{Hom}(M \otimes N, P) = \text{Hom}(M, \text{Hom}(N, P)).
\]

65. Motives of cellular schemes

Recall that a morphism \(p : U \to Y \) over \(F \) is an affine bundle of rank \(d \) if \(f \) is flat and the fiber of \(p \) over any point \(y \in Y \) is isomorphism to the affine space \(\mathbb{A}^d_{F(y)} \).

A scheme \(X \) over \(F \) is called (relatively) cellular if there is given a filtration by closed subschemes
\[
(65.1) \quad \emptyset = X_0 \subset X_1 \subset \cdots \subset X_n = X
\]
together with affine bundles \(p_i : U_i = X_i \setminus X_{i-1} \to Y_i \) of rank \(d_i \), where \(Y_i \) is a smooth complete scheme, for all \(i = 1, \ldots, n \).

The graph \(\Gamma_{p_i} \) of the morphism \(p_i \) is a subscheme of \(U_i \times Y_i \). Let \(\alpha_i \) in \(\text{CH}(X_i \times Y_i) \) be the class of the closure of \(\Gamma_{p_i} \) in \(X_i \times Y_i \). We view \(\alpha_i \) as a correspondence \(X_i \to Y_i \) of degree 0.

Let \(f_i : X_i \to X \) be the closed embedding. The correspondence \(\beta_i = f_i \circ \alpha_i \) \(\in \text{CH}(Y_i \times X) \) between \(Y_i \) and \(X \) is of degree \(d_i \).

Theorem 65.2. Let \(X \) be a cellular scheme with filtration (65.1). Then for every scheme \(Z \) over \(F \), the homomorphism
\[
\sum_i (\beta_i) : \prod_{1}^{n} \text{CH}_i(Z \times Y_i) \to \text{CH}_{i+d_i}(Z \times X)
\]
is an isomorphism.

Proof. Denote by \(g_i : U_i \to X_i \) the open embedding. By the definition of \(\alpha_i \), we have \(\alpha_i \circ g_i = p_i \). It follows from Proposition 61.7(2) that for every scheme \(Z \), the composition
\[
A(Y_i \times Z, K_*) \xrightarrow{\alpha_i^*} A(X_i \times Z, K_*) \xrightarrow{g_i^*} A(U_i \times Z, K_*)
\]
coincides with the pull-back homomorphism \((p_i \times 1_Z)^* \). By Theorem 51.11, \((p_i \times 1_Z)^* \) is an isomorphism. Hence \(g_i^* \) is a split surjection. Therefore, in the localization exact sequence (§51.D)
\[
A_{k+1}(X_i \times Z, K_{-k}) \xrightarrow{g_i^*} A_{k+1}(U_i \times Z, K_{-k}) \xrightarrow{\delta} \text{CH}_k(X_{i-1} \times Z) \to \text{CH}_k(X_i \times Z) \xrightarrow{g_i^*} \text{CH}_k(U_i \times Z) \to 0
\]
the connecting homomorphism \(\delta \) is trivial. Thus we have the short exact sequence
\[
0 \to \text{CH}(X_{i-1} \times Z) \to \text{CH}(X_i \times Z) \xrightarrow{g_i^*} \text{CH}(Y_i \times Z) \to 0
\]
where $s_i = (p_i \times 1_Z)^* \circ g_i^*$ and s_i is split by $\alpha_i^* : \text{CH}(Y_i \times Z) \to \text{CH}(X_i \times Z)$. In particular, $\text{CH}(X_i \times Z)$ is isomorphic to $\text{CH}(X_{i-1} \times Z) \oplus \text{CH}(Y_i \times Z)$. Iterating we see that $\text{CH}(X \times Z)$ is isomorphic to the coproduct of $\text{CH}(Y_i \times Z)$ over all $i = 1, \ldots, n$. The inclusion of $\text{CH}(Y_i \times Z)$ into $\text{CH}(X \times Z)$ coincides with the composition

$$\text{CH}(Y_i \times Z) \overset{\alpha_i^*}{\longrightarrow} \text{CH}(X_i \times Z) \overset{(f_i)_*}{\longrightarrow} \text{CH}(X \times Z).$$

By Proposition 61.7(1), we have $(\beta_i)_* = (f_i)_* \circ (\alpha_i^*)_*$. Under the identification of $\text{CH}(Y_i \times Z)$ with $\text{CH}(Z \times Y_i)$, we have $(\alpha_i^*)_* = \alpha_i^*$, hence $(\beta_i)_* = (f_i)_* \circ \alpha_i^*$. It follows that the homomorphism

$$\sum (\beta_i)_* : \prod_{i=1}^n \text{CH}_*(Z \times Y_i) \to \text{CH}_{*+d_i}(Z \times X)$$

is an isomorphism. □

Lemma 62.7 yields

Corollary 65.3. Let X be a smooth complete cellular scheme with filtration (65.1). Then the morphism

$$\prod_{i=1}^n M(Y_i)(d_i) \to M(X)$$

in the category of correspondences $\text{CR}(F)$, defined by the sequence of correspondences β_i, is an isomorphism.

Example 65.4. Let $X = \mathbb{P}^n$. Consider the filtration given by $X_i = \mathbb{P}^i$, $i = 0, 1, \ldots, n$. We have $U_i = \mathbb{A}^i$. Set $Y_i = \text{Spec } F$. By Corollary 65.3,

$$M(\mathbb{P}^n) = \mathbb{Z} \oplus \mathbb{Z}(1) \oplus \cdots \oplus \mathbb{Z}(n).$$

Example 65.5. Let (V, φ) be a non-degenerate quadratic form and let X be the associated quadric of dimension d. Consider the following filtration on $X \times X$: X_1 is the image of the diagonal embedding of X into $X \times X$, X_2 consists of all pairs of orthogonal isotropic lines (L_1, L_2), and $X_3 = X \times X$. We also set $Y_1 = X$ (with the identity projection of X_1 on Y_1), $Y_3 = X$, and Y_2 is the flag variety Fl of pairs (L, P), where L and P are a totally isotropic line and plane respectively satisfying $L \subset P$.

We claim that the morphism $p_2 : U_2 \to Y_2$ taking a pair (L_1, L_2) to $(L_1, L_1 + L_2)$ is an affine bundle. To do this we use the criterion of Lemma 51.10. Let R be a local commutative F-algebra. An R-point of Y_2 is a pair (L_R, P_R), where $P \subset V$ is a totally isotropic plane and $L \subset P$ is a line. Let $\{e, f\}$ be a basis of P such that $L = Fe$. Then the morphism $\mathbb{A}_R^d \to \text{Spec } R \times X_2$ U_2 taking a to the point $(L_R, R(ae + f))$ of the fiber is an isomorphism. It follows from Lemma 51.10 that p_2 is an affine bundle.

We claim that the first projection $p_3 : U_3 \to Y_3$ is an affine bundle of rank d. We again apply the criterion of Lemma 51.10. Let R be a local commutative F-algebra. An R-point of Y_3 over R is L_R, where $L \subset V$ is an isotropic line. Choose a basis of V so that φ is given by a polynomial $t_0 \psi_1 + \psi(T''')$, where ψ is a quadratic form in the variables $T'' = (t_2, \ldots, t_{d+1})$, and the orthogonal complement L^\perp is given by $t_0 = 0$. Then the fiber $\text{Spec } R \times X_3$ U_3 is given by the equation $\frac{t_1}{t_0} + \psi(T''') = 0$ and therefore is isomorphic to \mathbb{A}_R^d. It follows by Lemma 51.10 that p_3 is an affine bundle.
By Corollary 65.3, we conclude
\[M(X \times X) \simeq M(X) \oplus M(F^1)(1) \oplus M(X)(d). \]

Example 65.6. Assume that the quadric \(X \) in Example 65.3 is isotropic. The cellular structure on \(X^2 \) is a structure “over \(X \)” in the sense that \(X^2 \) itself as well as the bases \(Y_i \) of the cells have morphisms to \(X \) with the affine bundles of the cellular structure morphisms over \(X \). Making the base change of the cellular structure with respect to an \(F \)-point \(\text{Spec} \, F \to X \) of the isotropic quadric \(X \) corresponding to an isotropic line \(L \), we get a cellular structure on \(X \) given by the filtration \(X'_1 \subset X'_2 \subset X'_3 = X \), where \(X'_1 = \{ L \} \) and \(X'_2 \) consists of all isotropic lines orthogonal to \(L \). We have \(Y'_1 = \text{Spec} \, F \), \(Y'_2 \) is the quadric given by the quadratic form on \(L^*/L \) induced by \(\varphi \), and \(Y'_3 = \text{Spec} \, F \). The quadric \(Y'_2 \) is isomorphic to a projective quadric \(Y \) of dimension \(d - 2 \), given by a quadratic form Witt-equivalent to \(\varphi \). By Corollary 65.3,
\[M(X) \simeq \mathbb{Z} \oplus M(Y)(1) \oplus \mathbb{Z}(d). \]

66. Nilpotence Theorem

Let \(\Lambda \) be a commutative ring. Let \(Y \) be a smooth complete scheme over \(F \). For every scheme \(X \) and elements \(\alpha \in \text{CH}(Y \times Y; \Lambda) \) and \(\beta \in \text{CH}(X \times Y; \Lambda) \), the compositions \(\alpha^k = \alpha \circ \cdots \circ \alpha \) in \(\text{CH}(Y \times Y; \Lambda) \) and \(\alpha^k \circ \beta \) in \(\text{CH}(X \times Y; \Lambda) \) are defined.

Theorem 66.1. Let \(Y \) be a smooth complete scheme and \(X \) a scheme of dimension \(d \) over \(F \). Let \(\alpha \in \text{CH}(Y \times Y; \Lambda) \) be an element satisfying \(\alpha \circ \text{CH}(Y_{F(x)}; \Lambda) = 0 \) for every \(x \in X \). Then
\[\alpha^{d+1} \circ \text{CH}(X \times Y; \Lambda) = 0. \]

Proof. Consider the filtration
\[0 = C_{-1} \subset C_0 \subset \cdots \subset C_d = \text{CH}(X \times Y; \Lambda), \]
where \(C_i \) is the \(\Lambda \)-submodule of \(\text{CH}(X \times Y; \Lambda) \) generated by the images of the push-forward homomorphisms
\[\text{CH}(W \times Y; \Lambda) \to \text{CH}(X \times Y; \Lambda), \]
for all closed subvarieties \(W \subset X \) of dimension at most \(k \). It suffices to prove that \(\alpha \circ C_k \subset C_{k-1} \) for all \(k = 0, 1, \ldots, d \).

Let \(W \) be a closed subvarieties of \(X \) of dimension \(k \). Denote by \(i : W \to X \) the closed embedding and by \(w \) the generic point of \(W \). Pick any element \(\beta \in \text{CH}(W \times Y; \Lambda) \). We shall prove that \(\alpha \circ (i_! \beta) \in C_{k-1} \). Let \(\beta_w \) be the pull-back of \(\beta \) under the canonical morphism \(Y_{F(w)} \to W \times Y \). By assumption, \(\alpha \circ \beta_w = 0 \). By the continuity property (cf. Proposition 51.7), there is a nonempty open subscheme \(U \) (a neighborhood of \(w \)) in \(W \) such that \(\alpha \circ (\beta|_{U \times Y}) = 0 \). It follows by Proposition 61.7(2) that
\[(\alpha \circ \beta)|_{U \times Y} = \alpha \circ (\beta|_{U \times Y}) = 0. \]

The complement \(V \) of \(U \) in \(W \) is a closed subscheme of \(W \) of dimension less than \(k \). It follows from the exactness of the localization sequence (51.1)
\[\text{CH}(V \times Y; \Lambda) \to \text{CH}(W \times Y; \Lambda) \to \text{CH}(U \times Y; \Lambda) \to 0 \]
that $\alpha \circ \beta$ belongs to the image of the first map in the sequence. Therefore, the push-forward of the element $\alpha \circ \beta$ in $\text{CH}(X \times Y; \Lambda)$ lies in the image of the push-forward homomorphism

$$\text{CH}(V \times Y; \Lambda) \to \text{CH}(X \times Y; \Lambda).$$

Hence $\alpha \circ (i_\ast \beta) = \alpha \circ (\beta \circ i^t) = (\alpha \circ \beta) \circ i^t = (i \times 1_Y)_\ast (\alpha \circ \beta) \in C_{k-1}$. □

NOTES:

The notion of a Chow motive is due to Grothendieck. Motives of cellular schemes (cf. §65) were considered in [31]. The Nilpotence Theorem [66.1] was originally proven by Rost using cycle modules technique.
Part

Quadratic forms and algebraic cycles
Cycles on powers of quadrics

Throughout this chapter, F is a field (of an arbitrary characteristic). Throughout this chapter with exception of Section 70, X is a smooth projective quadric over F of even dimension $D = 2d \geq 0$ or of odd dimension $D = 2d + 1 \geq 1$ given by a non-degenerate quadratic form φ (of dimension $D + 2$). For any integer $r \geq 1$, we write X^r for the direct product $X \times \cdots \times X$ (over F) of r copies of X.

67. Split quadrics

In this section the quadric X will be split, i.e., the Witt index $i_0(X)$ has the maximal value $d + 1$.

Let V be the underlying vector space of φ. Let us fix a maximal totally isotropic subspace $W \subset V$. We write $\mathbb{P}(V)$ for the projective space of V; this is the projective space in which the quadric X lies as a hypersurface. Note that the subspace $\mathbb{P}(W)$ of $\mathbb{P}(V)$ is contained in X.

Proposition 67.1. Let $h \in \text{CH}^1(X)$ be the pull-back of the hyperplane class in $\text{CH}^1(\mathbb{P}(V))$. For any integer $i = 0, 1, \ldots, d$, let $l_i \in \text{CH}_i(X)$ be the class of an i-dimensional subspace of $\mathbb{P}(W)$. Then the total Chow group $\text{CH}(X)$ is free with basis $\{h^i, l_i | 0 \leq i \leq d\}$. Moreover, the following multiplication rule holds in the ring $\text{CH}(X)$: $h \cdot l_i = l_{i-1}$ for any $i = 1, \ldots, d$.

Proof. Let W^\perp be the orthogonal complement of W in V (clearly, $W^\perp = W$ if D is even; otherwise, W^\perp contains W as a hyperplane). The quotient map $V \to V/W^\perp$ induces a morphism $X \setminus \mathbb{P}(W) \to \mathbb{P}(V/W^\perp)$, which is an affine bundle of rank $D - d$. Therefore, by Theorem 65.2

$$\text{CH}_i(X) \simeq \text{CH}_i(\mathbb{P}(W)) \oplus \text{CH}_{i-D+d}(\mathbb{P}(V/W^\perp))$$

for any i, where the injection $\text{CH}_*(\mathbb{P}(W)) \hookrightarrow \text{CH}_*(X)$ is the push-forward with respect to the embedding $\mathbb{P}(W) \hookrightarrow X$.

To better understand the second summand in the decomposition of $\text{CH}(X)$, we note that the reduced intersection of $\mathbb{P}(W^\perp)$ with X in $\mathbb{P}(V)$ is $\mathbb{P}(W)$, and that the affine bundle $X \setminus \mathbb{P}(W) \to \mathbb{P}(V/W^\perp)$ above is the composite of the closed embedding $X \setminus \mathbb{P}(W) \hookrightarrow \mathbb{P}(V) \setminus \mathbb{P}(W^\perp)$ with the evident vector bundle $\mathbb{P}(V) \setminus \mathbb{P}(W^\perp) \to \mathbb{P}(V/W^\perp)$. It follows that for any $i \leq d$ the image of $\text{CH}^i(\mathbb{P}(V/W^\perp))$ in $\text{CH}^i(X)$ coincides with the image of the pull-back $\text{CH}^i(\mathbb{P}(V)) \to \text{CH}^i(X)$ (which is generated by h^i).

To check the multiplication formula, we consider the closed embeddings $f : \mathbb{P}(W) \hookrightarrow X$ and $g : X \hookrightarrow \mathbb{P}(V)$. Write L_i for the class in $\text{CH}(\mathbb{P}(W))$ of an i-dimensional linear subspace of $\mathbb{P}(W)$, and H for the hyperplane class in $\text{CH}(\mathbb{P}(V))$. Since $h = g^*(H)$ and $l_i = f_*(L_i),$
we have by the projection formula (Proposition 55.9) and functoriality of the pull-back (Proposition 54.17),

\[h \cdot l_i = g^*(H) \cdot f_*(L_i) = f_*((f \circ g)^*(H) \cdot L_i) . \]

By Corollary 56.17 (together with Propositions 103.16 and 54.18), we see that \((f \circ g)^*(H)\) is the hyperplane class in \(\text{CH}(\mathbb{P}(W))\) hence \((f \circ g)^*(H) \cdot L_i = L_{i-1}\) by Example 56.20. □

Proposition 67.2. For each \(i\) with \(0 \leq i < D/2\), the \(i\)-dimensional subspaces of \(\mathbb{P}(V)\) lying inside of \(X\) have the same class in \(\text{CH}_i(\mathbb{P}(V))\). If \(D\) is even there are precisely two different classes of \(d\)-dimensional subspaces, and the sum of these two classes is equal to \(h^d\).

Proof. By Proposition 67.1, the push-forward homomorphism \(\text{CH}_i(X) \to \text{CH}_i(\mathbb{P}(V))\) is injective (even bijective) if \(0 \leq i < D/2\). Since the \(i\)-dimensional linear subspaces of \(\mathbb{P}(V)\) have the same class in \(\text{CH}(\mathbb{P}(V))\), the first statement of Proposition 67.2 follows.

Assume that \(D\) is even. Then \(\{h^d, l_d\}\) is a basis for the group \(\text{CH}_d(X)\), where \(l_d\) is the class of the special linear subspace \(\mathbb{P}(W) \subset X\). Let \(l'_d \in \text{CH}_d(X)\) be the class of an arbitrary \(d\)-dimensional linear subspace of \(X\). Since \(l_d\) and \(l'_d\) have the same image under the push-forward homomorphism \(\text{CH}_d(X) \to \text{CH}_d(\mathbb{P}(V))\) whose kernel is generated by \(h^d - 2l_d\), one has \(l'_d = l_d + n(h^d - 2l_d)\) for some \(n \in \mathbb{Z}\). Since there exists a linear automorphism of \(X\) moving \(l_d\) to \(l'_d\), and \(h^d\) is of course invariant with respect to any linear automorphism, \(h^d\) and \(l'_d\) also form basis for \(\text{CH}_d(X)\); consequently, the determinant of the matrix

\[
\begin{pmatrix}
1 & n \\
0 & 1 - 2n
\end{pmatrix}
\]

is \(\pm 1\), i.e., \(n\) is 0 or 1 and \(l'_d\) is \(l_d\) or \(h^d - l_d\). So there are at most two different rational equivalence classes of \(d\)-dimensional linear subspaces of \(X\) and the sum of two different classes (if they exist) is equal to \(h^d\).

Now let \(U\) be a \(d\)-codimensional subspace of \(V\) containing \(W\) (as a hyperplane). The orthogonal complement \(U^\perp\) has codimension 1 in \(W^\perp = W\), therefore \(\text{codim}_U U^\perp = 2\). The induced 2-dimensional quadratic form on \(U/U^\perp\) is a hyperbolic plane. The corresponding quadric consists of two points \(W/U^\perp\) and \(W'/U^\perp\) for a uniquely determined maximal totally isotropic subspace \(W' \subset V\). Moreover, the intersection \(X \cap \mathbb{P}(U)\) is reduced and its irreducible components are \(\mathbb{P}(W)\) and \(\mathbb{P}(W')\). Therefore, \(h^d = [X \cap \mathbb{P}(U)] = [\mathbb{P}(W)] + [\mathbb{P}(W')]\) and it follows that \([\mathbb{P}(W)] \neq [\mathbb{P}(W')]\). □

Exercise 67.3. Determine a complete multiplication table for \(\text{CH}(X)\) by showing that

1. if \(D\) is odd then \(h^{d+1} = 2l_d\);
2. if \(D\) is even and not divisible by 4 then \(l^2_d = 0\);
3. if \(D\) is divisible by 4, then \(l^2_d = l_0\).

Exercise 67.4. Assume that \(D\) is even and let \(l_d, l'_d \in \text{Ch}(X)\) be two different \(d\)-dimensional subspaces. Let \(f\) be the automorphism of \(\text{Ch}(X)\) induced by a reflection. Show that \(f(l_d) = l'_d\).
68. Isomorphisms of quadrics

Let \(\varphi \) and \(\psi \) be two quadratic forms. A similitude between \(\varphi \) and \(\psi \) (with multiplier \(a \in F^* \)) is an isomorphism \(f : V_\varphi \to V_\psi \) such that \(\varphi(v) = a\psi(f(v)) \) for all \(v \in V_\varphi \). A similitude between \(\varphi \) and \(\psi \) induces an isomorphism of projective spaces \(\mathbb{P}(V_\varphi) \cong \mathbb{P}(V_\psi) \) and projective quadrics \(X_\varphi \cong X_\psi \).

Let \(i : X_\varphi \to \mathbb{P}(V_\varphi) \) be the embedding. We consider the locally free sheaves
\[
O_{X_\varphi}(s) := i^*(O_{\mathbb{P}(V_\varphi)}(s))
\]
over \(X_\varphi \) for every \(s \in \mathbb{Z} \).

Lemma 68.1. Let \(\varphi \) be a nonzero quadratic form of dimension at least 2. Then \(H^0(X_\varphi, O_{X_\varphi}(-1)) = 0 \) and \(H^0(X_\varphi, O_{X_\varphi}(1)) \) is canonically isomorphic to \(V_\varphi^* \).

Proof. We have \(H^0(\mathbb{P}(V_\varphi), O_{\mathbb{P}(V_\varphi)}(-1)) = 0 \) and \(H^0(\mathbb{P}(V_\varphi), O_{\mathbb{P}(V_\varphi)}(1)) \simeq V_\varphi^* \) and \(H^1(\mathbb{P}(V_\varphi), O_{\mathbb{P}(V_\varphi)}(s)) = 0 \) for any \(s \) (see [20, Ch. III, Th. 5.1]). The statements follow from exactness of the cohomology sequence for the short exact sequence
\[
0 \to O_{\mathbb{P}(V_\varphi)}(s - 2) \xrightarrow{i_*} O_{\mathbb{P}(V_\varphi)}(s) \to i_*O_{X_\varphi}(s) \to 0.
\]

Lemma 68.2. Let \(\alpha : X_\varphi \cong X_\psi \) be an isomorphism of smooth projective quadrics. Then \(\alpha^*(O_{X_\varphi}(1)) \simeq O_{X_\psi}(1) \).

Proof. In the case \(\dim \varphi = 2 \) the sheaves \(O_{X_\varphi}(1) \) and \(O_{X_\psi}(1) \) are free and the statement is obvious.

We may assume that \(\dim \varphi > 2 \). As the Picard group of smooth projective varieties injects under field extensions we also may assume that both forms are split. We identify the groups \(\text{Pic}(X_\varphi) \) and \(\text{CH}^1(X_\varphi) \). The class of the sheaf \(O_{X_\varphi}(1) \) corresponds to the class \(h \in \text{CH}^1(X_\varphi) \) of a hyperplane section. It is sufficient to show that \(\alpha^*(h) = \pm h \) since the class \(-h \) cannot occur as the sheaf \(O_{X_\varphi}(-1) \) has nontrivial global sections by Lemma 68.1.

If \(\dim \varphi > 4 \), then by Proposition 67.1, the group \(\text{CH}^1(X_\varphi) \) if infinite cyclic generated by \(h \). Thus \(\alpha^*(h) = \pm h \).

If \(\dim \varphi = 3 \), then \(h \) is twice the generator \(l_0 \) of the infinite cyclic group \(\text{CH}^1(X_\varphi) \) and the result follows in a similar fashion.
Finally, if \(\dim \varphi = 4 \), then the group \(\text{CH}^1(X_\varphi) \) is a free abelian group with two generators \(l_1 \) and \(l'_1 \) such that \(l_1 + l'_1 = h \) (cf. the proof of Proposition 67.2). Using the fact that the pull-back map \(\alpha : \text{CH}^*(X_\varphi) \to \text{CH}^*(X_\psi) \) is a ring homomorphism, one concludes that \(\alpha^*(l_1 + l'_1) = \pm(l_1 + l'_1) \).

Theorem 68.3. Every isomorphism between smooth projective quadrics \(X_\varphi \) and \(X_\psi \) is induced by a similitude between \(\varphi \) and \(\psi \).

Proof. Let \(\alpha : X_\varphi \sim X_\psi \) be an isomorphism. By Lemma 68.2, \(\alpha^*(O_{X_\psi}(1)) \simeq O_{X_\psi}(1) \). Lemma 68.1 therefore gives an isomorphism of vector spaces

\[
V^*_\psi = H^0(X_\psi, O_{X_\psi}(1)) \sim H^0(X_\varphi, O_{X_\varphi}(1)) = V^*_\varphi.
\]

Thus \(\alpha \) is given by the induced graded ring isomorphism \(S^*(V^*_\psi) \to S^*(V^*_\varphi) \) which must take the ideal \((\psi) \) to \((\varphi) \), i.e., it takes \(\psi \) to a multiple of \(\varphi \). In other words, the linear isomorphism \(f : V_\varphi \to V_\psi \) dual to (68.4) is a similitude between \(\varphi \) and \(\psi \) inducing \(\alpha \).

Corollary 68.5. Let \(\varphi \) and \(\psi \) be non-degenerate quadratic forms of the same dimension. Then the quadrics \(X_\varphi \) and \(X_\psi \) are isomorphic if and only if \(\varphi \) and \(\psi \) are similar.

For a quadratic form \(\varphi \) all similitudes \(V_\varphi \to V_\varphi \) form the group of similitudes \(\text{GO}(\varphi) \). For every \(a \in F^\times \), the endomorphism of \(V_\varphi \) given by the product with \(a \) is a similitude. Therefore \(F^\times \) identifies with a subgroup of \(\text{GO}(\varphi) \). The factor group \(\text{PGO}(\varphi) := \text{GO}(\varphi)/F^\times \) is called the group of projective similitudes. Every projective similitude induces an automorphism of the quadric \(X_\varphi \), so we have a group homomorphism \(\text{PGO}(\varphi) \to \text{Aut}(X_\varphi) \).

Corollary 68.6. Let \(\varphi \) be a non-degenerate quadratic form. Then the map \(\text{PGO}(\varphi) \to \text{Aut}(X_\varphi) \) is an isomorphism.

69. Isotropic quadrics

The motive of an isotropic quadric is computed in terms of a quadric of smaller dimension in Example 65.6 as follows:

Proposition 69.1. Assume that \(X \) is isotropic. Let \(Y \) be a projective quadric, given by a \(D \)-dimensional quadratic form Witt equivalent to \(\varphi \) (if \(D \geq 2 \) then \(\dim Y = D - 2 \), otherwise \(Y = \emptyset \)). Then \(M(X) \simeq \mathbb{Z} \oplus M(Y)(1) \oplus \mathbb{Z}(D) \). In particular,

\[
\text{CH}_*(X) \simeq \text{CH}_*(\mathbb{Z}) \oplus \text{CH}_{*-1}(Y) \oplus \text{CH}_{*-D}(\mathbb{Z}) \, .
\]

The motivic decomposition of Proposition 69.1 was originally observed by M. Rost.

Corollary 69.2. For any isotropic smooth projective quadric \(X \) of dimension > 0, the degree homomorphism \(\text{deg} : \text{CH}_0(X) \to \mathbb{Z} \) is an isomorphism.

Proof. Clearly, \(\text{deg} \) is surjective. To show injectivity of \(\text{deg} \), it suffices to show that \(\text{CH}_0(X) \simeq \mathbb{Z} \). This follows by Proposition 69.1 which, in particular, says that \(\text{CH}_0(X) \simeq \text{CH}_0(\mathbb{Z}) \simeq \mathbb{Z} \).

\(\square \)
70. Chow group of dimension 0 cycles on quadrics

Recall that for every \(p = 0, 1, \ldots, n \), the group \(\text{CH}^p(\mathbb{P}^n_F) \) is infinite cyclic generated by the class \(h^p \) where \(h \in \text{CH}^1(\mathbb{P}^n_F) \) is the class of a hyperplane in \(\mathbb{P}^n_F \) (Example 56.20). Thus for every \(p = 0, 1, \ldots, n \) and \(\alpha \in \text{CH}^p(\mathbb{P}^n_F) \), we have \(\alpha = mh^p \) for a uniquely determined integer \(m \). We call \(m \) the degree of \(\alpha \) and write \(m = \deg(\alpha) \). We have \(\deg(\alpha \beta) = \deg(\alpha) \deg(\beta) \) for all homogeneous cycles \(\alpha \in \text{CH}^p(\mathbb{P}^n_F) \) and \(\beta \in \text{CH}^q(\mathbb{P}^n_F) \) satisfying \(p, q \geq 0 \) and \(p + q \leq n \).

If \(Z \) is a closed subvariety of \(\mathbb{P}^n_F \), we define the degree of \(Z \) as \(\deg[Z] \).

Lemma 70.1. Let \(x \in \mathbb{P}^n_F \) be a closed point of degree \(d > 1 \) such that the field extension \(F(x)/F \) is simple (generated by one element). Then there is a morphism \(f : \mathbb{P}^1 \rightarrow \mathbb{P}^n \) with image \(C \) a curve satisfying \(x \in C \) and \(\deg(C) < d \).

Proof. Let \(u \) be a generator of the field extension \(F(x)/F \). We can write the homogeneous coordinates \(s_i \) of \(x \) in the form \(s_i = f_i(u) \), \(i = 0, 1, \ldots, n \), where \(f_i \) are polynomials over \(F \) of degree less than \(d \). Let \(k \) be the largest degree of the \(f_i \) and set \(F_i(T_0, T_1) = T_i^k f_i(T_0/T_1) \). The polynomials \(F_i \) are all homogeneous of degree \(k < d \). We may assume that all the \(F_i \) are relatively prime (by dividing out the gcd of the \(F_i \)). Consider the morphism \(f : \mathbb{P}^1_F \rightarrow \mathbb{P}^n_F \) given by the polynomials \(F_i \) and let \(C \) be the image of \(f \). Note that \(C \) contains \(x \) and \(C(F) \neq \emptyset \). In particular, the map \(f \) is not constant. Therefore \(C \) is a closed curve in \(\mathbb{P}^n_F \). We have \(f_*(1_{\mathbb{P}^1}) = r[C] \) for some \(r \geq 1 \).

Choose an index \(i \) such that \(F_i \) is a nonzero polynomial and consider the hyperplane \(H \) in \(\mathbb{P}^n_F \) given by \(s_i = 0 \). The subscheme \(f^{-1}(H) \subset \mathbb{P}^1_F \) is given by \(F_i(T_0, T_1) = 0 \), so \(f^{-1}(H) \) is a 0-dimensional subscheme of degree \(k = \deg F_i \). Hence \(H \) has proper inverse image with respect to \(f \). By Proposition 56.16, we have \(f^*(h) = mp \), where \(p \) is the class of a point in \(\mathbb{P}^1_F \) and \(1 \leq m \leq k < d \). It follows from Proposition 55.9 that

\[
\deg(C) = \frac{m}{r} \leq m < d.
\]

Theorem 70.2. Let \(X \) be an anisotropic (not necessarily smooth) quadric over \(F \) and let \(x_0 \in X \) be a closed point of degree 2. Then for every closed point \(x \in X \), we have \([x] = a[x_0] \in \text{CH}_0(X) \) for some \(a \in \mathbb{Z} \).

Proof. We proceed by induction on \(d = \deg x \). Suppose first that there are no intermediate fields between \(F \) and \(F(x) \). In particular, the field extension \(F(x)/F \) is simple. The quadric \(X \) is a hypersurface in the projective space \(\mathbb{P}^n_F \) for some \(n \). By Lemma 70.1 there is an integral closed curve \(C \subset \mathbb{P}^n_F \) of degree less that \(d \) such that \(C(F) \neq \emptyset \) and \(x \in C \).

Since \(X \) is anisotropic and \(C(F) \neq \emptyset \), \(C \) is not contained in \(X \). Therefore, \(C \) and \(X \) intersect properly. Since \(x \in C \cap X \), by Proposition 56.18,

\[
[C] \cdot [X] = [x] + \alpha \in \text{CH}_0(\mathbb{P}^n_F),
\]

where \(\alpha \) is non-negative zero-dimensional cycle on \(\mathbb{P}^n_F \). We have

\[
\deg \alpha = \deg C \cdot \deg X - \deg x = 2 \deg C - d < d.
\]
For every anisotropic quadric \((Springer's \; Theorem) \)

\[
\text{CH}(\bar{\text{colimit}} \; \text{of \; the \; groups} \; \text{CH}(\bar{\text{or}}) \; \text{and} \; \text{CH}(\bar{\text{or}})) \; \text{is} \; \text{a \; field \; extension} \; \text{of} \; \text{E}\]

\[\text{CH}(\bar{\text{or}}) \; \text{containing} \; \text{is} \; \text{a \; field \; extension} \; \text{of} \; \text{E}\]

It follows that \(\text{CH}(\bar{\text{or}})\) \text{is} \; \text{an} \; \text{isomorphism}; \text{therefore} \; \text{for} \; \text{any} \; \text{field} \; \text{extension} \; \text{CH}(\bar{\text{or}})\]

\[\text{denote} \; \text{the \; natural \; morphism} \; \text{CH}(\bar{\text{or}})\]

\[\text{Case 1.} \; X_L \; \text{is} \; \text{isotropic:} \; \text{Let} \; y \; \in \; X_L \; \text{be} \; \text{a \; rational \; point.} \; \text{Since} \; \text{CH}_0(X_L) \; \text{is} \; \text{a \; cyclic} \; \text{group \; generated \; by} \; [y] \; \text{(cf. \; Corollary} \; 69.2), \; \text{we have} \; [x'] = b[y] \in \text{CH}_0(X_L) \; \text{for some} \; b \in \mathbb{Z}. \; \text{Hence} \; [x] = f_*(x') = bf_*([y]). \; \text{Since} \; \text{deg} \; f_*([y]) = [L : F] < d, \; \text{by \; the \; induction} \; \text{hypothesis,} \; f_*([y]) = c[x_0] \; \text{for some} \; c \in \mathbb{Z}. \; \text{Hence} \; [x] = f_*([y]) = bc[x_0].\]

\[\text{Case 2.} \; X_L \; \text{is} \; \text{anisotropic:} \; \text{Applying \; the \; induction \; hypothesis \; to \; the \; quadric} \; X_L \; \text{and} \; \text{the \; point} \; x' \; \text{of} \; \text{degree} \; [E : L] < d, \; \text{we have} \; [x'] = b[(x_0)_L)] \; \text{for some} \; b \in \mathbb{Z}. \; \text{Hence} \]

\[[x] = f_*([x']) = bc[x_0], \; \square\]

\[\text{We \; therefore \; obtain \; another \; proof \; of} \; \text{Springer's \; Theorem} \; 18.5\]

Corollary 70.3. (Springer’s Theorem) *If X is an anisotropic quadric, the image of the degree homomorphism deg : CH_0(X) → \mathbb{Z} is equal to 2\mathbb{Z}, i.e., the degree of a finite field extension L/F with X_L isotropic, is even.*

The following important statement was proven in [30, Prop. 2.6] and by R. Swan in [58].

Corollary 70.4. *For every anisotropic quadric X, the degree homomorphism deg : CH_0(X) → \mathbb{Z} is injective.*

71. Reduced Chow group

We no longer assume that the quadric X is split. We write CH(\bar{X}^r) for CH(X_E^r), where E is a field extension of F such that the quadric X_E is split. Note that for any field L containing E, the change of field homomorphism CH(X_E^r) → CH(X_L^r) of Example 48.13 is an isomorphism; therefore for any field extension E'/F with split X_E', the groups CH(X_E^r) and CH(X_E') are canonically isomorphic, hence CH(\bar{X}^r) can be defined invariantly as the colimit of the groups CH(X_E^r), where L runs over all field extensions of F.

The *reduced Chow group* \(\overline{\text{CH}}(X^r)\) is defined as the image of the change of field homomorphism \(\text{CH}(X^r) \rightarrow \overline{\text{CH}}(X^r)\).

We say that an element of \(\text{CH}(X^r)\) is *rational* if it lies in the subgroup \(\overline{\text{CH}}(X^r) \subset \text{CH}(X^r)\). More generally, for a field extension L/F, the elements of the subgroup \(\overline{\text{CH}}(X_L^r) \subset \text{CH}(X_L^r)\) are called *L-rational*.
Replacing the integral Chow group by the Chow group modulo 2 in the above definitions, we get the *modulo 2 reduced Chow group* \(\overline{\text{Ch}}(X^r) \subset \text{Ch}(X^r) \) and the corresponding notion of \((L')\)-rational cycles modulo 2.

Abusing notation, we shall often call elements of a Chow group cycles. The basis described in Proposition 67.5 will be called a *basis for CH*(\(X^r\)) and its elements *basis elements* or *basic cycles*. Similarly, this basis modulo 2 will be called a *basis for Ch*(\(X^r\)) and its elements *basis elements* or *basic cycles*. We use the same notation for the basis elements of \(\text{CH}(\bar{X})\) and for their reductions modulo 2. The *decomposition* of an element \(\alpha \in \text{Ch}(\bar{X}^r)\) will always mean its representation as a sum of basic cycles. We say that a basis cycle \(\beta\) is *contained* in the decomposition of \(\alpha\) (or simply “is contained in \(\alpha\)”), if \(\beta\) is a summand of the decomposition. More generally, for two cycles \(\alpha', \alpha \in \text{Ch}(\bar{X}^r)\), we say that \(\alpha'\) is *contained in \(\alpha\)* or that \(\alpha'\) is a *subcycle of \(\alpha\)* (notation: \(\alpha' \subset \alpha\)), if every basis element contained in \(\alpha'\) is also contained in \(\alpha\).

A basis element of \(\text{Ch}(\bar{X}^r)\) is called *non-essential*, if it is an external product of (internal) powers of \(h\) (including \(h^0 = 1 = [\bar{X}]\)); the other basis elements are called *essential*. An element of \(\text{Ch}(\bar{X}^r)\) that is a sum of non-essential basis elements, is called *non-essential* as well. Note that all non-essential elements are rational since \(h\) is rational. An element of \(\text{Ch}(\bar{X}^r)\) that is a sum of essential basis elements, is called *essential* as well. (The zero cycle is the only element which is essential and non-essential simultaneously). The group \(\text{Ch}(\bar{X}^r)\) is a direct sum of the subgroup of non-essential elements and the subgroup of essential elements. We call the essential component of an element \(\alpha \in \text{Ch}(\bar{X}^r)\) the *essence* of \(\alpha\). Clearly, the essence of a rational element is rational.

The group \(\overline{\text{Ch}}(X)\) is easy to compute. First of all, by Springer’s theorem (Corollary 70.3), one has

Lemma 71.1. If the quadric \(X\) is anisotropic (that is, \(X(F) = \emptyset\)), then the element \(l_0 \in \text{Ch}(\bar{X})\) is not rational.

Corollary 71.2. If \(X\) is anisotropic, the group \(\overline{\text{Ch}}(X)\) is generated by the non-essential basis elements.

Proof. If the decomposition of an element \(\alpha \in \overline{\text{Ch}}(X)\) contains an essential basis element \(l_i\) for some \(i \neq D/2\), then \(l_i \in \overline{\text{Ch}}(X)\) because \(l_i\) is the \(i\)-dimensional homogeneous component of \(\alpha\) (and \(\overline{\text{Ch}}(X)\) is a graded subring of \(\text{Ch}(\bar{X})\)). If the decomposition of an element \(\alpha \in \overline{\text{Ch}}(X)\) contains the essential basis element \(l_i\) for \(i = D/2\) then \(D/2 = d\), and the \(d\)-dimensional homogeneous component of \(\alpha\) is either \(l_d\) or \(l_d + h^d\) so we still have \(l_i \in \overline{\text{Ch}}(X)\). It follows that \(l_0 = l_i \cdot h^i \in \overline{\text{Ch}}(X)\), contradicting Lemma 71.1. \(\square\)

Let \(V\) be the underlying vector space of \(\varphi\) and \(W \subset V\) a totally isotropic subspace of dimension \(a \leq d\). Let \(Y\) be the projective quadric of the quadratic form \(\psi: W^\perp/W \to F\) induced by \(\varphi\). Then \(\psi\) is non-degenerate, Witt-equivalent to \(\varphi\), \(\dim \psi = \dim \varphi - 2a\), and \(\dim Y = \dim X - 2a\). Let \(Z \subset Y \times X\) be the closed scheme of the pairs \((y, x)\) satisfying the condition \(\varphi^{-1}(y) \ni x\), where \(\varphi\) is the projection \(W^\perp \to W^\perp/W\). Note that the composition \(Z \hookrightarrow Y \times X^{pr} Y\) is an \(a\)-dimensional projective bundle; in particular, \(Z\) is equidimensional (and \(Z\) is a variety if \(Y\) is) of dimension \(\dim Z = \dim Y + a = \dim X - a\). Its class \(\alpha = [Z] \in \text{CH}(Y \times X)\) is called the *incidence correspondence*.

We first note that the inverse image $pr_X^{-1}(\mathbb{P}(W))$ of the closed subvariety $\mathbb{P}(W) \subset X$ under the projection $pr_X: Y \times X \to \hat{X}$ is contained in Z with complement a dense open subscheme of Z mapping under pr_X isomorphically onto $((\mathbb{P}(W^\perp)) \cap X) \setminus \mathbb{P}(W)$.

We let $h^i = 0 = l_i$ for any negative integer i.

Lemma 71.3. For any $i = 0, \ldots, d-a$, the homomorphism $\alpha_*: \text{CH}(\hat{Y}) \to \text{CH}(\hat{X})$ takes h^i to h^{i+a} and l_i to l_{i+a}. For any $i = 0, \ldots, d$, the homomorphism $\alpha^*: \text{Ch}(\hat{X}) \to \text{Ch}(\hat{Y})$ takes h^i to h^{i-a} and l_i to l_{i-a}. (In the case of even D, the two formulae involving l_d are true for an appropriate choice of orientations of X and of Y.)

Proof. For an arbitrary $i \in [0, d-a]$, let $L \subset W^\perp/W$ be a totally isotropic linear subspace of dimension $i + 1$. Then $l_i = [\mathbb{P}(L)] \in \text{CH}(Y)$. Since the dense open subscheme $(pr_Y^{-1}(\mathbb{P}(L)) \cap Z) \setminus pr_X^{-1}(\mathbb{P}(W))$ of the intersection $pr_Y^{-1}(\mathbb{P}(L)) \cap Z$ maps under pr_X isomorphically onto $\mathbb{P}(p^{-1}(L)) \setminus \mathbb{P}(W)$, we have (using Proposition 56.18): $\alpha_*(l_i) = [\mathbb{P}(p^{-1}(L))] = l_{i+a} \in \text{CH}(X)$. Similarly, for any linear subspace $H \subset W^\perp/W$ of codimension i, the element $h^i \in \text{CH}(Y)$ is the class of the intersection $\text{P}(\hat{H}) \cap \hat{X}$, mapped under α_* to the class of $[\mathbb{P}(p^{-1}(H)) \cap X]$ which equals h^{i+a}.

To prove the statements on α^* for an arbitrary $i \in [a, d]$, let us take an $(i+1)$-dimensional totally isotropic subspace $L \subset V$ such that $\dim(L \cap W^\perp) = \dim L - a$ and $L \cap W = 0$ (the second condition is, in fact, a consequence of the first one). Then $l_i = [\mathbb{P}(L)] \in \text{CH}(X)$ and the intersection $pr_X^{-1}(\mathbb{P}(L)) \cap Z$ is mapped under pr_Y isomorphically onto $\mathbb{P}(((L \cap W^\perp) + W)/W)$; consequently, $\alpha^*(l_i) = l_{i-a}$. Similarly, if $H \subset V$ is a linear subspace of codimension i such that $\dim(H \cap W^\perp) = \dim H - a$ and $H \cap W = 0$, then $h^i = [\mathbb{P}(H) \cap X] \in \text{CH}(X)$ and the intersection $pr_Y^{-1}(\mathbb{P}(H) \cap X) \cap Z$ is mapped under pr_Y isomorphically onto $\mathbb{P}(((H \cap W^\perp) + W)/W) \cap Y$; consequently, $\alpha^*(h^i) = h^{i-a}$. □

Corollary 71.4. Assume that X is isotropic but not split and set $a = i_0(X)$. Let X_0 be the projective quadric given by an anisotropic quadratic form Witt-equivalent to φ (so that $\dim X_0 = D - 2a$). Then the group $\text{Ch}_{D-a}(X \times X_0)$ contains a correspondence pr such that the induced homomorphism $pr_*: \text{Ch}(\hat{X}) \to \text{Ch}(\hat{X_0})$ takes h^i to h^{i+a} and l_i to l_{i-a} for $i = 0, \ldots, d$. In addition, the group $\text{Ch}_{D-a}(X_0 \times X)$ contains a correspondence in such that the induced homomorphism $in_*: \text{Ch}(\hat{X_0}) \to \text{Ch}(\hat{X})$ takes h^i to h^{i+a} and l_i to l_{i+a} for $i = 0, \ldots, d-a$.

Remark 71.5. Note that the homomorphisms in_* and pr_* of Corollary 71.4 map rational cycles to rational cycles. Since the composite $pr_* \circ in_*$ is an identity, it follows that $pr_*(\text{Ch}(X)) = \overline{\text{Ch}(X)}$. More generally, for any $r \geq 1$ the homomorphisms

$$in^*_r: \text{Ch}(\hat{X_0}) \to \text{Ch}(\hat{X^r}) \quad \text{and} \quad pr^*_r: \text{Ch}(\hat{X^r}) \to \text{Ch}(\hat{X_0})$$

induced by the r-th tensor powers $in^r \in \text{Ch}(X_0 \times X^r)$ and $pr^r \in \text{Ch}(X^r \times X^r_0)$ of the correspondences in and pr, map rational cycles to rational cycles and satisfy the relations $pr^r \circ in^*_r = \text{id}$ and $pr^*_r(\text{Ch}(X^r)) = \overline{\text{Ch}(X^r_0)}$.

We get now the following extension of Lemma 71.1.

Corollary 71.6. Let X be an arbitrary quadric and i any integer. Then $l_i \in \overline{\text{Ch}(X)}$ if and only if $i_0(X) > i$.

304 XIII. CYCLES ON POWERS OF QUADRICS
The “if” part of the statement is trivial. We prove the “only if” part by induction on \(i \). The case \(i = 0 \) is Lemma 71.1.

We assume that \(i > 0 \) and \(l_i \in \overline{\text{Ch}}(X) \). Since \(l_i \cdot h = l_{i-1} \), the element \(l_{i-1} \) is also rational. Therefore \(i_0(X) \geq i \) by the induction hypothesis. If \(i_0(X) = i \) the image of \(l_i \in \overline{\text{Ch}}(X) \) under the map \(pr_* : \text{Ch}(\overline{X}) \to \text{Ch}(\overline{X}_0) \) of Corollary 71.4 equals \(l_0 \) and is rational. Therefore, by Lemma 71.1, the quadric \(X_0 \) is isotropic, a contradiction. \(\square \)

The following observation is crucial:

Theorem 71.7. The absolute and relative higher Witt indices of a non-degenerate quadratic form \(\varphi \) are determined by the group

\[
\overline{\text{Ch}}(X^*) = \bigoplus_{r \geq 1} \overline{\text{Ch}}(X^r).
\]

Proof. We first note that the group \(\overline{\text{Ch}}(X) \) determines \(i_0(\varphi) \) by Corollary 71.6.

By Corollary 71.4 and Remark 71.5 the group \(\overline{\text{Ch}}(X_0^r) \) is recovered as the image of the group \(\overline{\text{Ch}}(X^*) \) under the homomorphism \(\text{Ch}(\overline{X}^*) \to \text{Ch}(\overline{X}_0^r) \) induced by the tensor powers of the correspondence \(pr \).

Let \(F_1 \) be the first field in the generic splitting tower of \(\varphi \). The pull-back homomorphism \(g_1^* : \text{Ch}(X_0^r) \to \text{Ch}((X_0)^{r-1}) \) with respect to the morphism of schemes \(g_1 : (X_0)^{r-1} \to X_0^{r-1} \) given by the generic point of the first factor of \(X_0^r \), is surjective (cf. Example 56.8). It induces an epimorphism \(\overline{\text{Ch}}(X_0^r) \to \overline{\text{Ch}}((X_0)^{r-1}) \), which is the restriction of the epimorphism \(\text{Ch}(\overline{X}_0^r) \to \text{Ch}(\overline{X}_0^{r-1}) \) mapping each basis element of the form \(h^0 \times \beta, \beta \in \text{Ch}(\overline{X}_0^{r-1}) \), to \(\beta \) and killing all other basis elements. Therefore the group \(\overline{\text{Ch}}(X_0^r) \) determines the group \(\overline{\text{Ch}}((X_0)^{r_1}) \), and we finish by induction on the height \(h \) of \(\varphi \). \(\square \)

Remark 71.8. The proof of Theorem 71.7 shows that the statement of Theorem 71.7 can be made more precise in the following way. If for some \(q = 0, \ldots, h \) the absolute Witt indices \(j_0, \ldots, j_{q-1} \) are already known, then one determines \(j_q \) by the formula

\[
j_q = \max\{ j \mid \text{the product } h^{j_0} \times h^{j_1} \times \cdots \times h^{j_{q-1}} \times l_{j-1} \text{ is contained in a rational cycle} \}.
\]

72. Cycles on \(X^2 \)

In this section we study the groups \(\overline{\text{Ch}}_i(X^2) \) for \(i \geq D \). After Lemma 72.2 we shall assume that \(X \) is anisotropic.

Most results of this section are simplified versions of original results on integral motives of quadrics due to A. Vishik, [59].

Lemma 72.1. The sum

\[
\Delta = \sum_{i=0}^{d} (h^i \times l_i + l_i \times h^i) \in \text{Ch}(X^2)
\]

is always rational.

Proof. Either the composition with correspondence \(\Delta \) or the composition with the correspondence \(\Delta + h^d \times h^d \) (depending on whether \(l_d \) is zero or not) induces the identity endomorphism of \(\text{Ch}(X^2) \). Therefore this correspondence is the class of the diagonal which is rational. \(\square \)
LEMMA 72.2. If for some $i = 1, \ldots, d$ at least one of the basis elements $l_d \times l_i$ and $l_i \times l_d$ of the group $\text{Ch}(X^2)$ appears in the decomposition of a rational cycle, then X is hyperbolic.

PROOF. Let α be a cycle in $\overline{\text{Ch}}_{i+d}(X^2)$ containing $l_i \times l_d$ or $l_d \times l_i$. Possibly replacing α by its transpose, we may assume that $l_i \times l_d \in \alpha$. The cycle $\alpha_s(h^i)$ is rational and equals l_d or $h^d + l_d$ as $\beta_s(h^i) = l_d$ if $\beta = (l_i \times l_d)$, $\beta_s(h^i) = h^d$ if $\beta = l_i \times h^d$, and $\beta_s(h^i) = 0$ for every other basic cycle $\beta \in \text{Ch}_{i+d}(X^2)$. Therefore the cycle l_d is rational, showing that X is hyperbolic by Corollary 71.6.

We assume now that X is anisotropic throughout the rest of this section.

Let $\alpha_1, \alpha_2 \in \overline{\text{Ch}}_*(X^2)$. The intersection $\alpha_1 \cap \alpha_2$ denotes the sum of the basic cycles contained simultaneously in α_1 and in α_2.

LEMMA 72.3. If $\alpha_1, \alpha_2 \in \bigoplus_{i \geq 0} \overline{\text{Ch}}_{D+i}(X^2)$ then the cycle $\alpha_1 \cap \alpha_2$ is rational.

PROOF. Clearly, we may assume that α_1 and α_2 are homogeneous of the same dimension $D + i$ and do not contain any non-essential basis element. The intersection then is the essence of the composite of rational correspondences $\alpha_2 \circ (\alpha_1 \cdot (h^0 \times h^i))$ taking Lemma 72.2 into account.

DEFINITION 72.4. We write $\overline{\text{Che}}(X^2)$ for the group of essential rational elements in $\bigoplus_{i \geq D} \text{Ch}_i(X^2)$.

DEFINITION 72.5. A non-zero element of $\overline{\text{Che}}(X^2)$ is called minimal, if it does not contain any proper rational subcycle.

Note that a minimal cycle is always homogeneous.

PROPOSITION 72.6. Let X be a smooth anisotropic quadric. Then the minimal cycles form a basis of the group $\overline{\text{Che}}(X^2)$. Two different minimal cycles intersect trivially. The sum of the minimal cycles of dimension D is equal to the sum $\sum_{i=0}^{d} h^i \times l_i + l_i \times h^i$ or all D-dimensional essential basis elements (excluding $l_d \times l_d$ in the case of even D).

PROOF. The last statement follows from the previous ones together with Lemma 72.1. The first two statements of Proposition 72.6 follow from Lemma 72.3.

DEFINITION 72.7. Let α be an element of $\text{Ch}_{D+r}(X^2)$ for some $r \geq 0$. For every i with $0 \leq i \leq r$, the products $\alpha \cdot (h^0 \times h^i)$, $\alpha \cdot (h^1 \times h^{i-1})$, \ldots, $\alpha \cdot (h^i \times h^0)$ will be called the $(i$-th order) derivatives of α.

Note that all the derivatives of a rational cycle are also rational.

LEMMA 72.8. (1) Any derivative of any essential basis element $\beta \in \overline{\text{Che}}_{D+r}(X^2)$ is an essential basis element.

(2) For any $r \geq 0$, any non-negative i_1, j_1, i_2, j_2 with $i_1 + j_1 \leq r$, $i_2 + j_2 \leq r$, and any non-zero essential cycle $\beta \in \overline{\text{Che}}_{D+r}(X^2)$, the two derivatives $\beta \cdot (h^{i_1} \times h^{j_1})$ and $\beta \cdot (h^{i_2} \times h^{j_2})$ of β coincide only if $i_1 = i_2$ and $j_1 = j_2$.

(3) For any $r \geq 0$, any non-negative i, j with $i + j \leq r$, and any non-zero essential cycles $\beta_1, \beta_2 \in \overline{\text{Che}}_{D+r}(X^2)$, the derivatives $\beta_1 \cdot (h^i \times h^j)$ and $\beta_2 \cdot (h^i \times h^j)$ of β_1 and β_2 coincide only if $\beta_1 = \beta_2$.

□
PROOF. (1): If β is an essential basis element of $\overline{C}he_{D+r}(\bar{X}^2)$ for some $r > 0$, then up to transposition, $\beta = h^i \times l_{i+r}$ with $i \in [0, d-r]$. An arbitrary derivative of β is equal to $\beta \cdot (h^{j_1} \times h^{j_2}) = h^{i+j_1} \times l_{i+r-j_2}$ for some $j_1, j_2 \geq 0$ such that $j_1 + j_2 \leq r$. It follows that the integers $i + j_1$ and $i + r - j_2$ are in the interval $[0, d]$; therefore $h^{i+j_1} \times l_{i+r-j_2}$ is an essential basis element.

Statement (2) and (3) are left to the reader. \qed

Remark 72.9. For the sake of visualization, it is convenient to think of the essential basic cycles in $\bigoplus_{i \geq D} Ch_i(\bar{X}^2)$ (with $l_{D/2} \times l_{D/2}$ excluded by Lemma 72.2) as of points of two “pyramids”. For example, if $D = 8$ or $D = 9$, we write

If we count the rows of the pyramids from the bottom starting with 0, the top row has number d, and for every $r = 0, \ldots, d$, the rth row of the left pyramid represents the essential basis elements $h^i \times l_{r+i}$, $i = 0, 1, \ldots, d-r$ of $Ch_{D+r}(\bar{X}^2)$, while the rth row of the right pyramid represents the essential basis elements $l_{r+i} \times h^i$, $i = d-r, d-r-1, \ldots, 0$ (so that the basis elements of each row are ordered by the codimension of the first factor).

For any $\alpha \in Ch(\bar{X}^2)$, we fill in the pyramids by putting a mark in the points representing basis elements contained in the decomposition of α; the pictures thus obtained is the diagram of α. If α is homogeneous, the marked points (if any) lie in the same row. It is now easy to interpret the derivatives of α if α is homogeneous of dimension $\geq D$: the diagram of an i-th order derivative is a parallel transfer of the marked points of the diagram of α moving them i rows lower. In particular, the diagram of every derivative of such an α has the same number of marked points as the diagram of α (cf. Lemma 72.8). The diagrams of the two different derivatives of the same order are shifts (to the right or to the left) of each other.

Example 72.10. Let $D = 8$ or $D = 9$. Let $\alpha \in Ch_{D+1}(\bar{X}^2)$ be the essential cycle given by the diagram

Then α has precisely two first order derivatives; their diagrams are as follows:

Lemma 72.11. Let $\alpha \in \overline{Che}(X^2)$. Then the following conditions are equivalent:
(1) α is minimal.
(2) all derivatives of α are minimal.
(3) at least one derivative of α is minimal.

Proof. Derivatives of a proper subcycle of α are proper subcycles of the derivatives of α; therefore, (3) \Rightarrow (1).

In order to show that (1) \Rightarrow (2), it suffices to show that the two first order derivatives $\alpha \cdot (h^0 \times h^1)$ and $\alpha \cdot (h^1 \times h^0)$ of a minimal cycle α are minimal. If not, possibly replacing α by its transposition, we reduce to the case where the derivative $\alpha \cdot (h^0 \times h^1)$ of a minimal α is not minimal. It follows that the cycle $\alpha \cdot (h^0 \times h^i)$, where $i = \dim \alpha - D$, is also not minimal. Let α' be its proper subcycle. Taking the essence of the composite $\alpha \circ \alpha'$, we get a proper subcycle of α, a contradiction.

Corollary 72.12. The derivatives of a minimal cycle are disjoint.

Proof. The derivatives of a minimal cycle are minimal by Lemma 72.11 and pairwise different by Lemma 72.8. As two different minimal cycles are disjoint by Lemma 72.3, the result follows.

Let $F_0 = F, F_1, \ldots, F_h$ be the generic splitting tower of φ (cf. \S25), where $h = h(\varphi)$ is the height of φ, and set $\varphi_i = (\varphi_{F_i})_{an}$ for $i \geq 0$. Write X_i for the projective quadric over F_i given by φ_i. Let $i_k = i_k(\varphi)$ be the relative and $j_k = j_k(\varphi)$ the absolute higher Witt indices of φ $(k = 0, \ldots, h)$. We also write $i_k(X)$ for i_k and $j_k(X)$ for j_k and call these numbers the relative and the absolute Witt indices of X respectively.

Lemma 72.13. If two integers i, j in the interval $[0, d]$ satisfy $i < j_q \leq j$ for some $q \in [1, h)$ then no element in $\overline{Ch}(X^2)$ contain either $h^i \times l_j$ or $l_j \times h^i$.

Proof. Let i, j be integers of the interval $[0, d]$ such that $h^i \times l_j$ or $l_j \times h^i$ appears in the decomposition of some $\alpha \in \overline{Ch}(X^2)$. Possibly replacing α by its transpose, we may assume that $h^i \times l_j \in \alpha$. Replacing α by its homogeneous component containing $h^i \times l_j$, we reduce to the case that α is homogeneous.

Suppose q be an integer in $[1, h)$ such that $i < j_q$. It suffices to show that $j < j_q$ as well.

Let L be a field extension of F such that $i_0(X_L) = j_q$ (e.g., $L = F_q$). The cycles α and l_i are L-rational. Therefore, so is the cycle $\alpha_*(l_i) = l_j$. It follows by Corollary 71.6 that $j < j_q$.

Remark 72.14. In order to “see” the statement of Lemma 72.13, it is helpful to mark by a $*$ only the essential basis elements which are not “forbidden” by this lemma in the pyramids of basic cycles drawn in Remark 72.9 and mark by a \circ the remaining points of the pyramids. We will get isosceles triangles based on the lower row of the pyramids. For example, if X is a 34-dimensional quadric with the higher Witt indices 4, 2, 4, 8, the picture looks as follows:
Definition 72.15. The triangles of Remark 72.14 will be called shell triangles. The shell triangles in the left pyramid are numbered from the left starting by 1. The shell triangles in the right pyramid are numbered from the right starting by 1 as well (so that the symmetric triangles have the same number; for any $q \in [1, h]$, the bases of the q-th triangles have (each) i_q points). The rows of the shell triangles are numbered from below starting by 0. The points of rows of the shell triangles (of the left ones as well as of the right ones) are numbered from the left starting by 1.

Lemma 72.16. For every rational cycle $\alpha \in \bigoplus_{i \geq D} \overline{\mathrm{Ch}}_i(X^2)$, the number of essential basic cycles contained in α is even (i.e., the number of the marked points in the diagram of α is even).

Proof. We may assume that α is homogeneous, say, $\alpha \in \overline{\mathrm{Ch}}_{D+k}(X^2)$, $k \geq 0$. We also may assume that $k \leq d$, as in dimension $> D + d$ there are no essential basic cycles. Let n be the number of essential basic cycles contained in α. The pull-back $\delta^*(\alpha)$ of α with respect to the diagonal $\delta : X \to X^2$ produces $n \cdot l_k \in \overline{\mathrm{Ch}}(X)$. By Corollary 71.2, it follows that n is even.

Lemma 72.17. Let $\alpha \in \overline{\mathrm{Ch}}(X^2)$ be a cycle containing the top of a qth shell triangle for some $q \in [1, h]$. Then α also contains the top of the other qth shell triangle.

Proof. We may assume that α contains the top of, say, the left qth shell triangle. Replacing F by the field F_{q-1} of the generic splitting tower of F, X by X_{q-1}, and α by $pr^2_{q}(\alpha)$, where $pr \in \mathrm{Ch}(X_{F_{q-1}} \times X_{q-1})$ is the correspondence of Corollary 71.4, we may assume that $q = 1$.

Replacing α by its homogeneous component containing the top of the left 1st shell triangle $\beta = h^0 \times l_{1-1}$, we may assume that α is homogeneous.

Suppose that the transpose of β is not contained in α. By Lemma 72.13, the element α does not contain any essential basic cycles having h^i with $0 < i < i_1$ as a factor. Since $\alpha \neq \beta$ by Lemma 72.16, we have $h > 1$. Moreover, the number of the essential basis elements contained in α and the number of the essential basis elements contained in $pr^2_{q}(\alpha) \in \overline{\mathrm{Ch}}(X^2_{1})$ differ by 1. In particular, these two numbers have different parity. However, the number of the essential basis elements contained in α is even by Lemma 72.16. By the same lemma, the number of the essential basis elements contained in $pr^2_{q}(\alpha)$ is even too.

Definition 72.18. A minimal cycle $\alpha \in \overline{\mathrm{Che}}(X^2)$ is called primordial, if it is not a positive order derivative of another rational cycle.
Lemma 72.19. Let $\alpha \in \overline{\text{Ch}}(X^2)$ be a minimal cycle containing the top of a qth shell triangle for some $q \in [1, 6]$. Then α is symmetric and primordial.

Proof. The cycle $\alpha \cap t(\alpha)$, where $t(\alpha)$ is the transpose of α and intersection of cycles is defined in Lemma 72.3, is symmetric, rational by Lemma 72.3, contained in α, and, by Lemma 72.17, still contains the tops $h^{q-1} \times l_{q-1}$ and $l_{q-1} \times h^{q-1}$ of both qth shell triangles. Therefore, it coincides with α by the minimality of α.

It is easy to “see” that α is primordial looking at the picture of Remark 72.14. Nevertheless, let us prove it. If there exists a rational cycle $\beta \neq \alpha$ such that α is a derivative of β, then there exists a rational cycle β' such that α is an order one derivative of β', i.e., $\alpha = \beta' \cdot (h^0 \times h^1)$ or $\alpha = \beta' \cdot (h^1 \times h^0)$. In the first case β' would contain the basic cycle $h^{q-1} \times l_q$, while in the second case β' would contain $h^{q-1} \times l_{q-1}$. However, none of these two cases is possible by Lemma 72.13.

It is easy to see that a cycle α satisfying the hypothesis of Lemma 72.19 with $q = 1$ exists:

Lemma 72.20. There exists a cycle in $\overline{\text{Ch}}_{1}^{D+i_{1}-1}(X^2)$ containing the top $h^0 \times l_{i-1}$ of the 1st left shell triangle.

Proof. If $D = 0$, this follows by Lemma 72.11. So assume $D > 0$. Consider the pull-back homomorphism $\overline{\text{Ch}}(X^2) \to \overline{\text{Ch}}(X_{F(X)})$ with respect to the morphism $X_{F(X)} \to X^2$ produced by the generic point of the first factor of X^2. By Example 56.8, this is an epimorphism. It is also a restriction of the homomorphism $\text{Ch}(X^2) \to \text{Ch}(X)$ mapping each basis element of the type $h^0 \times l_i$ to l_i and vanishing on all other basis elements. Therefore an arbitrary preimage of $l_{i-1} \in \overline{\text{Ch}}(X_{F(X)})$ under the surjection $\overline{\text{Ch}}(X^2) \to \overline{\text{Ch}}(X_{F(X)})$ contains $h^0 \times l_{i-1}$.

Lemma 72.21. Let $\rho \in \overline{\text{Ch}}_{D}(X^2)$, $q \in [1, 6]$, and $i \in [1, i_q]$. Then the element $h^{q-1+i-1} \times l_{q-1+i-1}$ is contained in ρ if and only if the element $l_{q-i} \times h^{q-i}$ is contained in ρ.

Proof. Clearly, it suffices to prove Lemma 72.21 for $q = 1$. By Lemma 72.20, the basis element $h^0 \times l_{i-1}$ is contained in a rational cycle. Let α be the minimal cycle containing $h^0 \times l_{i-1}$. By Lemma 72.17, the cycle α also contains $l_{i-1} \times h^0$. Therefore, the derivative $\alpha \cdot (h^{i-1} \times h^{l-1})$ contains both $h^{i-1} \times l_{i-1}$ and $l_{i-1} \times h^{i-1}$. Since the derivative of a minimal cycle is minimal by Lemma 72.11, the statement under proof follows by Lemma 72.3.

In the language of diagrams, the statement of Lemma 72.21 means that the ith point of the base of the qth left shell triangle in the diagram of ρ is marked if and only if the ith point of the base of the qth right shell triangle is marked.

Definition 72.22. The symmetric shell triangles (that is, both qth shell triangles for some q) are called dual. Two points are called dual, if one of them is in a left shell triangle, while the other one in the same row of the dual right shell triangle and has the same number as the first point.

Corollary 72.23. In the diagram of an element of $\overline{\text{Ch}}(X^2)$, any two dual points are simultaneously marked or not marked.
PROOF. Let \(k \) be the number of the row containing two given dual points. The case of \(k = 0 \) is treated in Lemma [72.21] (while Lemma [72.17] treats the case of “locally maximal” \(k \)). The case of an arbitrary \(k \) is reduced to the case of \(k = 0 \) by taking a \(k \)-th order derivative of \(\alpha \).

REMARK 72.24. By Corollary [72.23], it follows that the diagram of a cycle in \(\overline{\text{Ch}}(X^2) \) is determined by one (left or right) half of itself. From now on, let us refer as shell triangles to the left shell triangles. Note also that the transposition of a cycle acts symmetrically about the vertical axis on each shell triangle.

The following proposition generalizes Lemma [72.20].

Proposition 72.25. Let \(f : \overline{\text{Ch}}(X^2) \to [1, 6] \) be the map that assigns to each \(\gamma \in \overline{\text{Ch}}(X^2) \) the integer \(q \in [1, 6] \) such that the diagram of \(\gamma \) has a point in the \(q \)-th shell triangle and has no points in the shell triangles with numbers \(< q \). For any \(q \in f(\overline{\text{Ch}}(X^2)) \), there exists an element \(\alpha \in \overline{\text{Ch}}(X^2) \) such that \(f(\alpha) = q \) and \(\alpha \) contains the top of the \(q \)-th shell triangle.

Proof. We use an induction on \(q \). If \(q = 1 \), the condition of Proposition [72.25] is automatically satisfied by Lemma [72.1] and the result follows by Lemma [72.20]. So we assume that \(q > 1 \).

Let \(\gamma \) be an element of \(\overline{\text{Ch}}(X^2) \) with \(f(\gamma) = q \). Replacing \(\gamma \) by its appropriate homogeneous component, we may assume that \(\gamma \) is homogeneous. Replacing this homogeneous \(\gamma \) by any one of its maximal order derivative, we may further assume that \(\gamma \in \overline{\text{Ch}}_D(X^2) \).

Let \(i \) be the smallest integer such that \(\gamma \ni h^{i_0-1+i} \times l_{q-i-1} \). We first prove that the group \(\overline{\text{Ch}}(X^2) \) contains a cycle \(\gamma' \) satisfying \(f(\gamma') = q \) and containing \(h^{i_0-1+i} \times l_{q-i-1} \). This is the point on the right side of the \(q \)-th shell triangle such that the line connecting it with \(h^{i_0-1+i} \times l_{q-i-1} \) is parallel to the left side of the shell triangle. If \(i = 0 \) then we can take \(\alpha = \gamma' \) and finish the proof.)

Let

\[
pr^2_* : \overline{\text{Ch}}(X^2_{F(X)}) \to \overline{\text{Ch}}(X^2_1) \quad \text{and} \quad in^2_* : \overline{\text{Ch}}(X^2_1) \to \overline{\text{Ch}}(X^2_{F(X)})
\]

be the homomorphisms of Remark [71.3]. Applying the induction hypothesis to the quadric \(X_1 \) with the cycle \(pr^2_*(\gamma) \in \overline{\text{Ch}}(X^2_1) \), we get a homogeneous cycle in \(\overline{\text{Ch}}_{D+i_0-1}(X^2_{F(X)}) \) containing \(h^{i_0-1} \times l_{q-i-1} \). Multiplying it by \(h^i \times h^0 \), we get a homogeneous cycle in \(\overline{\text{Ch}}(X^2_{F(X)}) \) containing \(h^{i_0-1+i} \times l_{q-i-1} \). Note that the quadric \(X_{F(X)} \) is not hyperbolic (since \(i \geq q > 1 \)) and therefore, by Lemma [72.2], the basis element \(l_d \times l_d \) is not contained in this cycle. Therefore the group \(\overline{\text{Ch}}(X^3) \) contains a homogeneous cycle \(\mu \) containing \(h^0 \times h^{i_0-1+i} \times l_{q-i-1} \) (and not containing \(h^0 \times l_d \times l_d \)). View \(\mu \) as a correspondence of the middle factor of \(X^3 \) into the product of two outer factors. Composing it with \(\gamma \), and taking the pull-back with respect to the partial diagonal map \(\delta : X^2 \to X^3 \), \((x_1, x_2) \mapsto (x_1, x_1, x_2) \), we get the required cycle \(\gamma' \) (accurately speaking, \(\gamma' = \delta^*(t_{12}(\mu) \circ \gamma) \), where \(t_{12} \) is the automorphism of \(\overline{\text{Ch}}(X^3) \) given by the transposition of the first two factors of \(X^3 \).

The highest order derivative \(\gamma' \cdot (h^{i_0-1+i} \times h^0) \) of \(\gamma' \) contains \(h^{i_0-1} \times l_{q-i-1} \), the last point of the base of the \(q \)-th shell triangle. Therefore the transpose \(t(\gamma') \) contains the first point \(h^{i_0-1} \times l_{q-1} \) of the base of the \(q \)-th shell triangle by Remark [72.24]. Replacing \(\gamma \) by \(t(\gamma') \), we are in the case that \(i = 0 \) (see the third paragraph of the proof), finishing the proof. \(\square \)
ILLUSTRATION 72.26. The following picture shows the displacements of the special marked point of the \(q \)th shell triangle in the proof of Proposition [72.25]

We start with a cycle \(\gamma \in \overline{\text{Ch}}(X^2) \) with \(f(\gamma) = q \), it contains a point somewhere in the \(q \)th shell triangle, say, the point in Position 1. Then we modify \(\gamma \) in such a way that \(f(\gamma) \) is always \(q \), and look what happens with the point. Replacing \(\gamma \) by a maximal order derivative, we move the special point to the base of the shell triangle; for example, we can move it to Position 2. The heart of the proof is the movement from Position 2 to Position 3 (here we make use of the induction hypothesis). Again taking an appropriate derivative we come to Position 4. Transposing the cycle, we come to Position 5. Finally, repeating the procedure used in the passage 2 \(\to \) 3, we move from Position 5 to Position 6, arriving to the top.

ILLUSTRATION 72.27. Let us make a comment and an illustration to the homomorphism

\[
\overline{\text{Ch}}(X^2) \hookrightarrow \overline{\text{Ch}}(X^2_{\overline{F}(X)}) \xrightarrow{pr^2_*} \overline{\text{Ch}}(X^2)
\]

used in the proof of Proposition [72.25]. For \(\alpha \in \overline{\text{Ch}}(X^2) \), the diagram of \(pr^2_*(\alpha) \) is obtained from the diagram of \(\alpha \) by erasing of the first shell triangle. An example is shown on the picture:

Summarizing, we have the following structure result on \(\overline{\text{Ch}}(X^2) \):

THEOREM 72.28. Let \(X \) be a smooth anisotropic quadric. The set of the primordial cycles \(\Pi \subset \overline{\text{Ch}}(X^2) \) has the following properties.

1. All derivatives of all cycles of \(\Pi \) are minimal and pairwise disjoint and the set of these form a basis of \(\overline{\text{Ch}}(X^2) \). In particular, the sum of all maximal order derivatives of the elements of \(\Pi \) is equal to the cycle

\[
\Delta = \sum_{i=0}^d (h^i \times l_i + l_i \times h^i) \in \text{Ch}(\overline{X}^2).
\]
(2) Every cycle in \(\Pi \) is symmetric and has no points outside of the shell triangles.

(3) The map \(f \) as in Proposition 72.25 is injective on \(\Pi \), every cycle \(\pi \in \Pi \) contains the top of the \(f(\pi) \)-th shell triangle and has no points in any shell triangle with number in \(f(\Pi) \setminus \{ f(\pi) \} \).

(4) \(f(\text{Ch}(X^2)) = f(\Pi) \ni 1 \).

Definition 72.29. Let \(f \) be as in Proposition 72.25. If \(f(\alpha) = q \) for an element \(\alpha \in \text{Ch}(X^2) \), we say that \(\alpha \) starts in the \(q \)-th shell triangle. More specifically, if \(f(\pi) = q \) for a primordial cycle \(\pi \), we say that \(\pi \) is \(q \)-primordial.

The following statement is an additional property of 1-primordial cycles:

Proposition 72.30. Let \(\pi \in \overline{\text{Ch}}(X^2) \) be a 1-primordial cycle. Suppose \(\pi \) contains \(h^i \times l_{i+1} \) with some positive \(i \leq d \). The smallest integer \(i \) with this property coincides with the Witt index of \(\varphi \) over some field extension of \(F \), i.e., \(i = i_{q-1} \) for some \(q \in [2, h] \).

Proof. The cycle \(\pi \) contains \(h^0 \times l_{i-1} \) (this is the top of the first shell triangle) and by Lemma 72.13 contains none of cycles \(h^1 \times l_{i-1}, \ldots, h^{h-1} \times l_{2h-2} \). It follows that if \(i \in [1, d] \) is the smallest integer satisfying \(h^i \times l_{i+1} \in \pi \) then \(i \geq i_1 = i_1 \). Let \(q \in [2, h] \) be the largest integer with \(j_{q-1} \leq i \). We show \(j_{q-1} = i \). Suppose to the contrary that \(j_{q-1} < i \).

Let \(X_1 \) be the quadric over \(F(X) \) given by the anisotropic part of \(\varphi_{F(X)} \). Let

\[
pr_2^2 : \overline{\text{Ch}}(X^2_{F(X)}) \to \overline{\text{Ch}}(X^1)
\]

be the homomorphism of Remark 71.5. Then the element \(pr_2^2(\pi) \) starts in shell triangle number \(q-1 \) of \(X_1 \). Therefore, by Proposition 72.25 the quadric \(X_1 \) possesses a \((q-1)\)-primordial cycle \(\tau \).

Let

\[
in^2_\tau : \overline{\text{Ch}}(X^1) \to \overline{\text{Ch}}(X^2_{F(X)})
\]

be the homomorphism of Remark 71.5. Then the cycle \(\beta = in^2_\tau(\tau) \) in \(\overline{\text{Ch}}(X^2_{F(X)}) \) contains \(h^{\nu-1} \times l_{q-1} \) and does not contain any \(h^j \times l_j \) with \(j < j_{q-1} \).

Let \(\eta \in \overline{\text{Ch}}(X^3) \) be a preimage of \(\beta \) under the surjective pull-back epimorphism

\[
g^* : \overline{\text{Ch}}(X^3) \to \overline{\text{Ch}}(X^2_{F(X)})
\]

where the morphism \(g : X^3_{F(X)} \to X^3 \) is induced by the generic point of the first factor of \(X^3 \). The cycle \(\eta \) contains \(h^0 \times h^{\nu-1} \times l_{q-1} \) and does not contain any \(h^0 \times h^j \times l_j \) with \(j < j_{q-1} \).

We consider \(\eta \) as a correspondence \(X \rightsquigarrow X^2 \). Define \(\mu \) as the composition \(\mu = \eta \circ \alpha \) with \(\alpha = \pi \cdot (h^0 \times h^{h-1}) \). The cycle \(\alpha \) contains \(h^0 \times l_0 \) and does not contain any \(h^j \times l_j \) with \(j \in [1, i] \). In particular, since \(j_{q-1} < i \), it does not contain any \(h^j \times l_j \) with \(j \in [1, j_{q-1}] \). Consequently, the cycle \(\mu \) contains the basis element

\[
h^0 \times h^{\nu-1} \times l_{q-1} = (h^0 \times h^{\nu-1} \times l_{q-1}) \circ (h^0 \times l_0)
\]

and does not contain any \(h^j \times h^j \times l_j \) with \(j \in [1, j_{q-1}] \).

Let

\[
\delta^* : \overline{\text{Ch}}(X^3) \to \overline{\text{Ch}}(X^2)
\]
be the pull-back homomorphism with respect to the partial diagonal morphism
\[\delta: X^2 \to X^3, \quad (x_1 \times x_2) \mapsto (x_1 \times x_1 \times x_2). \]
The cycle \(\delta^*(\mu) \in \overline{\text{Ch}}(X^2) \), contains the basis element
\[h^{i+q-1} \times l_{i-1} = \delta^*(h^i \times h^{i+q-1} \times l_{i-1}) \]
and does not contain any \(h^j \times l_l \) with \(j < i_{q-1} \). It follows that an appropriate derivative
of the cycle \(\delta^*(\mu) \) contains \(h^i \times l_{i+i_{i-1}} \in \pi \) and does not contain \(h^0 \times l_{i-1} \in \pi \). This
contradicts the minimality of \(\pi \).

Remark 72.31. In the language of diagrams Proposition 72.30 asserts that the point
\(h^i \times l_{i+i_{i-1}} \) lies on the left side of the \(q \)th shell triangle.

Definition 72.32. We say that the integer \(q \in [2, h] \) occurring in Proposition 72.30
is **produced** by the 1-primordial cycle \(\pi \).
CHAPTER XIV

Izhboldin dimension

Let X be an anisotropic smooth projective quadric over a field F (of arbitrary characteristic). Izhboldin dimension $\dim_{\text{Izh}} X$ of X is defined as

$$\dim_{\text{Izh}} X := \dim X - i_1(X) + 1,$$

where $i_1(X)$ is the first Witt index of X.

Let Y be a complete (possibly singular) algebraic variety over F with all of its closed points of even degree and such that Y has a closed point of odd degree over $F(X)$. The main theorem of this chapter is Theorem 75.1 below. It states that $\dim_{\text{Izh}} X \leq \dim Y$ and if $\dim_{\text{Izh}} X = \dim Y$ the quadric X is isotropic over $F(Y)$.

Application of Theorem 75.1 is the positive solution of the conjecture of Izhboldin that states: if an anisotropic quadric Y becomes isotropic over $F(X)$, then $\dim_{\text{Izh}} X \leq \dim_{\text{Izh}} Y$, with the equality if and only if X is isotropic over $F(Y)$.

The results of this chapter in characteristic $\neq 2$ case were obtained in [32].

73. The first Witt index of subforms

For reader’s convenience we list some easy properties of the first Witt index:

Lemma 73.1. Let φ be an anisotropic non-degenerate quadratic form over F such that $i_1(\varphi)$ is defined (that is, $\dim \varphi \geq 2$).

1. The first Witt index $i_1(\varphi)$ coincides with the minimal Witt index of φ_E, when E runs over all field extension of F such that the form φ_E is isotropic.
2. For a non-degenerate subform ψ of φ of codimension r and every field extension E/F, one has $i_0(\psi_E) \geq i_0(\varphi_E) - r$ and therefore $i_1(\psi) \geq i_1(\varphi) - r$ (if $i_1(\psi)$ is defined).

Proof. The first statement is proven in Corollary 25.3. For the second statement, note that the intersection of a maximal isotropic subspace U (of dimension $i_0(\varphi_E)$) of the form φ_E with the space of the subform ψ_E is of codimension at most r in U. □

The following two statements are due to A. Vishik (at least in characteristic $\neq 2$ case), [59, Cor. 4.9].

Proposition 73.2. Let φ be an anisotropic non-degenerate quadratic form over F with $\dim \varphi \geq 2$. Let ψ be a non-degenerate subform of φ. If $\text{codim}_\varphi \psi \geq i_1(\varphi)$ then the form $\psi_{F(\varphi)}$ is anisotropic.

Proof. Let $n = \text{codim}_\varphi \psi$ and assume that $n \geq i_1(\varphi)$. If the form $\psi_{F(\varphi)}$ is isotropic then there exists a rational morphism $X \dashrightarrow Y$, where X and Y are the projective quadrics of φ and ψ respectively. We use the notation as in §71. Let $\alpha \in \text{Ch}(X^2)$
be the class of the closure of the graph of the composition $X \rightarrow Y \hookrightarrow X$. Since the push-forward of α with respect to the first projection $X^2 \rightarrow X$ is non-zero, we have $h^0 \times l_0 \in \alpha$. On the other hand, since α is in the image of the push-forward homomorphism $\text{Ch}(\bar{X} \times Y) \rightarrow \text{Ch}(\bar{X}^2)$ that maps any external product $\beta \times \gamma$ to $\beta \times \text{in}_*(\gamma)$, where the push-forward $\text{in}_*: \text{Ch}(Y) \rightarrow \text{Ch}(X)$ maps h^i to h^{i+n}, and $n \geq i_1(\varphi)$, one has $l_{i_1(\varphi)-1} \times h^{i_1(\varphi)-1} \notin \alpha$, contradicting Lemma [72.21] (cf. also Corollary [72.23]).

Corollary 73.3. Let φ be an anisotropic non-degenerate quadratic form and φ' a non-degenerate subform of φ of codimension n with $\dim \varphi' \geq 2$. If $n < i_1(\varphi)$ then $i_1(\varphi') = i_1(\varphi) - n$.

Proof. Let $i_1 = i_1(\varphi)$. By Lemma [73.3], we know $i_1(\varphi') \geq i_1 - n$. Let ψ be a non-degenerate subform of φ' of dimension $\dim \varphi - i_1$. If $i_1(\varphi') > i_1 - n$ then the form $\psi_{F(\varphi)}$ is isotropic by Lemma [73.3] contradicting Proposition [73.2].

Lemma 73.4. Let φ be an anisotropic non-degenerate quadratic F-form with $\dim \varphi \geq 3$ and $i_1(\varphi) = 1$. Let $F(t)/F$ be a purely transcendental field extension of degree 1. Then there exists a non-degenerate subform ψ of $\varphi_{F(t)}$ of codimension one satisfying $i_1(\psi) = 1$.

Proof. First consider the case of $\text{char}(F) \neq 2$. We can write $\varphi \simeq \varphi' \perp \langle a, b \rangle$ for some $a, b \in F^\times$ and some quadratic form φ'. Set

$$\psi = \varphi_{F(t)} \perp \langle a + bt^2 \rangle.$$

This is clearly a subform of $\varphi_{F(t)}$ of codimension 1. Moreover, the fields $F(t)(\psi)$ and $F(\varphi)$ are isomorphic over F. In particular,

$$i_1(\psi) = i_0(\psi_{F(t)(\psi)}) \leq i_0(\varphi_{F(t)(\psi)}) = i_0(\varphi_{F(\varphi)}) = i_1(\varphi) = 1$$

and therefore $i_1(\psi) = 1$.

Now let F be of arbitrary characteristic. If $\dim \varphi$ is even then $\varphi \simeq \varphi' \perp [a, b]$ for some $a, b \in F$ and some even-dimensional non-degenerate quadratic form φ'. In this case set

$$\psi = \varphi'_{F(t)} \perp \langle a + bt^2 \rangle.$$

If $\dim \varphi$ is odd then $\varphi \simeq \varphi' \perp [a, b] \perp \langle c \rangle$ for some $c \in F^\times$, some $a, b \in F$, and some even-dimensional non-degenerate quadratic form φ'. In this case set

$$\psi = \varphi'_{F(t)} \perp [a, b + ct^2].$$

In either case, ψ is a non-degenerate subform of $\varphi_{F(t)}$ of codimension 1 such that the fields $F(t)(\psi)$ and $F(\varphi)$ are F-isomorphic. Therefore the argument above shows that $i_1(\psi) = 1$. \qed

74. Correspondences

Let X and Y be schemes over a field F (of finite type). Suppose that X is equidimensional and let $d = \dim X$. Recall that a **correspondence** $\alpha : X \leadsto Y$ from X to Y is an element $\alpha \in \text{CH}_d(X \times Y)$ (cf. [60]). A correspondence is called **prime** if it is represented by a prime cycle. Every correspondence is a linear combination of prime correspondences with integer coefficients.
Let \(\alpha : X \rightsquigarrow Y \) be a correspondence. Assume that \(X \) is a variety and \(Y \) is complete. The projection morphism \(p : X \times Y \to X \) is proper hence the push-forward homomorphism

\[
p_* : \text{CH}_d(X \times Y) \to \text{CH}_d(X) = \mathbb{Z} \cdot [X]
\]

is defined (cf. Proposition \([48.7]\)). The number \(\text{mult}(\alpha) \in \mathbb{Z} \) satisfying \(p_*(\alpha) = \text{mult}(\alpha) \cdot [X] \) is called the \textit{multiplicity} of \(\alpha \). Clearly, \(\text{mult}(\alpha + \beta) = \text{mult}(\alpha) + \text{mult}(\beta) \) for any two correspondences \(\alpha, \beta : X \rightsquigarrow Y \).

A correspondence \(\alpha : \text{Spec} F \to Y \) is represented by a 0-cycle \(z \) on \(Y \). Clearly

\[
\text{mult}(\alpha) = \text{deg}(z),
\]

where \(\text{deg} : \text{CH}_0(Y) \to \mathbb{Z} \) is the degree homomorphism defined in Example \([56.6]\). More generally, we have the following statement.

Lemma 74.1. The composition

\[
\text{CH}_d(X \times Y) \to \text{CH}_0(Y_{F(X)}) \xrightarrow{\text{deg}} \mathbb{Z},
\]

where the first map is the pull-back homomorphism with respect to the natural flat morphism \(Y_{F(X)} \to X \times Y \), takes a correspondence \(\alpha \) to \(\text{mult}(\alpha) \).

Proof. The statement follows by Proposition \([48.19]\) applied to the fiber product diagram

\[
\begin{array}{ccc}
Y_{F(X)} & \longrightarrow & X \times Y \\
\downarrow & & \downarrow \\
\text{Spec} F(X) & \longrightarrow & X
\end{array}
\]

\[\square\]

Lemma 74.2. Let \(Y \) be a complete scheme and \(\tilde{F}/F \) a purely transcendental field extension. Then

\[
\text{deg CH}_0(Y) = \text{deg CH}_0(Y_{\tilde{F}}).
\]

Proof. It suffices to assume that \(\tilde{F} \) is the function field of the affine line \(\mathbb{A}^1 \). The statement follows from the fact that the change of field homomorphism \(\text{CH}_*(Y) \to \text{CH}_*(Y_{F(\mathbb{A}^1)}) \) is surjective as it is the composition of surjections (by Theorem \([56.10]\) and Example \([56.8]\))

\[
\text{CH}_*(Y) \to \text{CH}_{*+1}(Y \times \mathbb{A}^1) \quad \text{and} \quad \text{CH}_{*+1}(Y \times \mathbb{A}^1) \to \text{CH}_*(Y_{F(\mathbb{A}^1)})
\]

(In fact, each of these two surjections is an isomorphism.) \[\square\]

Corollary 74.3. Let \(Y \) be a complete variety, \(X \) a projective quadric, and \(X' \subset X \) an arbitrary closed subvariety of \(X \). Then

\[
\text{deg CH}_0(Y_{F(X)}) \subset \text{deg CH}_0(Y_{F(X')}).
\]

Proof. Since \(F(X) \) is a subfield of \(F(X \times X') \), we have

\[
\text{deg CH}_0(Y_{F(X)}) \subset \text{deg CH}_0(Y_{F(X \times X')}).
\]

As the field extension \(F(X \times X')/F(X') \) is purely transcendental (since the quadric \(X_{F(X')} \) is isotropic), we have

\[
\text{deg CH}_0(Y_{F(X \times X')}) = \text{deg CH}_0(Y_{F(X')})
\]

by Lemma \([74.2]\). \[\square\]
Let X and Y be varieties over F with $\dim X = d$. Let $Z \subset X \times Y$ be a prime d-dimensional cycle of multiplicity $r > 0$. The generic point of Z defines a degree r closed point of the generic fiber $Y_{F(X)}$ of the projection $X \times Y \to X$ and vice versa. Hence there is a natural bijection of the following two sets for every $r > 0$:

1) prime d-dimensional cycles on $X \times Y$ of multiplicity r.
2) closed points of $Y_{F(X)}$ of degree r.

A rational morphism $X \dashrightarrow Y$ defines a multiplicity 1 prime correspondence $X \rightsquigarrow Y$ by taking the closure of its graph. Conversely, a multiplicity 1 prime cycle $Z \subset X \times Y$ is birational to X and therefore the projection to Y defines a rational map $X \dashrightarrow Z \to Y$. Hence there are natural bijections between the sets of:

0) rational morphisms $X \dashrightarrow Y$.
1) prime d-dimensional cycles on $X \times Y$ of multiplicity 1.
2) rational points of $Y_{F(X)}$.

A prime correspondence $X \rightsquigarrow Y$ of multiplicity r can be viewed as a “generically r-valued map” between X and Y.

Let $\alpha : X \rightsquigarrow Y$ be a correspondence between varieties of dimension d. We write $\alpha^t : Y \rightsquigarrow X$ for the transpose of α (cf. §61).

Theorem 74.4. Let X be an anisotropic smooth projective quadric with $i_1(X) = 1$. Let $\delta : X \rightsquigarrow X$ be a correspondence. Then $\mult(\delta) \equiv \mult(\delta^t) \pmod{2}$.

Proof. The coefficient of $h^0 \times l_0$ in the decomposition of the class of δ in the modulo 2 reduced Chow group $\overline{\text{CH}}(X^2)$ is $\mult(\delta) \pmod{2}$ (take into account Lemma 72.2 in the case of $\dim X = 0$). Therefore the theorem is a particular case of Corollary 72.23 (it is also a particular case of Lemma 72.21 and also of Lemma 72.17).

We give another proof of Theorem 74.4. By Example 65.5 we have

$$\text{CH}_d(X^2) \simeq \text{CH}_d(X) \oplus \text{CH}_{d-1}(\text{Fl}) \oplus \text{CH}_0(X),$$

where Fl is the flag variety of pairs (L, P), where L and P are totally isotropic line and plane respectively satisfying $L \subset P$. It suffices to check the formula of Theorem 74.4 for δ lying in the image of any of these three summands.

Since the embedding $\text{CH}_d(X) \hookrightarrow \text{CH}_d(X^2)$ is given by the push-forward with respect to the diagonal map, its image is generated by the diagonal class for which the congruence clearly holds.

Since X is anisotropic, every element of $\text{CH}_0(X)$ becomes divisible by 2 over an extension of F by Theorem 70.2 and Proposition 67.1. As multiplicity is not changed under a field extension homomorphism, we have $\mult(\delta) \equiv 0 \equiv \mult(\delta^t) \pmod{2}$ for any δ in the image of $\text{CH}_0(X)$.

Since the embedding $\text{CH}_{d-1}(\text{Fl}) \hookrightarrow \text{CH}_d(X^2)$ is produced by a correspondence $\text{Fl} \rightsquigarrow X^2$ of degree one, the image of $\text{CH}_{d-1}(\text{Fl})$ is contained in the image of the push-forward $\text{CH}_d(\text{Fl} \times X^2) \to \text{CH}_d(X^2)$ with respect to the projection. Let $\delta \in \text{CH}_d(X^2)$. By Lemma 74.1 the multiplicity of δ and of δ^t is the degree of the image of δ under the pull-back homomorphism $\text{CH}_d(X^2) \to \text{CH}_0(\text{X}_{F(X)})$, given by the generic point of the appropriately chosen factor of X^2. As $i_1(X) = 1$, the degree of any closed point on $(\text{Fl} \times X)_{F(X)}$ is even.
by Corollary 70.3. Consequently \(\text{mult}(\delta) \equiv 0 \equiv \text{mult}(\delta') \) (mod 2) for any \(\delta \) in the image of \(\text{CH}_{d-1}(F^l) \).

\textbf{Corollary 74.5.} Let \(X \) be as in Theorem 74.4. Then any rational endomorphism \(f: X \to X \) is dominant. In particular, the only point \(x \in X \) admitting an F-embedding \(F(x) \hookrightarrow F(X) \) is the generic point of \(X \).

\textbf{Proof.} Let \(\delta: X \to X \) be the class of the closure of the graph of \(f \). Then \(\text{mult}(\delta) = 1 \). Therefore, the integer \(\text{mult}(\delta') \) is odd by Theorem 74.4. In particular, \(\text{mult}(\delta') \not\equiv 0 \), i.e., \(f \) is dominant.

\textbf{75. The main theorem}

The main theorem of the chapter is

\textbf{Theorem 75.1.} Let \(X \) be an anisotropic smooth projective \(F \)-quadric and \(Y \) a complete variety over \(F \) such that every closed point of \(Y \) is of even degree. If there is a closed point in \(Y_{F(X)} \) of odd degree then

1. \(\dim_{\text{Izh}} X \leq \dim Y \).
2. If \(\dim_{\text{Izh}} X = \dim Y \) then \(X \) is isotropic over \(F(Y) \).

\textbf{Proof.} A closed point of \(Y \) over \(F(X) \) of odd degree gives rise to a prime correspondence \(\alpha: X \to Y \) of odd multiplicity. By Springer’s theorem (Corollary 70.3), to prove statement (2) it suffices to find a closed point of \(X_{F(Y)} \) of odd degree, equivalently, to find a correspondence \(Y \to X \) of odd multiplicity.

First assume that \(i_1(X) = 1 \), so \(\dim_{\text{Izh}} X = \dim X \). In this special case, we simultaneously prove both statements of Theorem 75.1 by induction on \(n = \dim X + \dim Y \).

If \(n = 0 \), i.e., \(X \) and \(Y \) are both of dimension zero then \(X = \text{Spec} K \) and \(Y = \text{Spec} L \) for some field extensions \(K \) and \(L \) of \(F \) with \([K : F] = 2\) and \([L : F] \) even. Taking the push-forward to \(\text{Spec} F \) of the correspondence \(\alpha \), we have

\[[K : F] \cdot \text{mult}(\alpha) = [L : F] \cdot \text{mult}(\alpha'). \]

Since \(\text{mult}(\alpha) \) is odd, the correspondence \(\alpha': Y \to X \) is of odd multiplicity.

So we may assume that \(n > 0 \). Let \(d \) be the dimension of \(X \). We first prove (2), so we have \(\dim Y = d > 0 \). It suffices to show that \(\text{mult}(\alpha') \) is odd. Assume that the multiplicity of \(\alpha' \) is even. Let \(x \in X \) be a closed point of degree 2. Since the multiplicity of the correspondence \([Y \times x]: Y \to X\) is 2 and the multiplicity of \([x \times Y]: X \to Y\) is zero, modifying \(\alpha \) by adding an appropriate multiple of \([x \times Y]\) we can assume that \(\text{mult}(\alpha) \) is odd and \(\text{mult}(\alpha') = 0 \).

The degree of the pull-back of \(\alpha' \) on \(X_{F(Y)} \) is now zero by Lemma 74.1. By Corollary 70.4 the degree homomorphism

\[\deg: \text{CH}_d(X_{F(Y)}) \to \mathbb{Z} \]

is injective. Therefore, by Proposition 51.7 there is a nonempty open subset \(U \subset Y \) such that the restriction of \(\alpha \) on \(X \times U \) is trivial. Write \(Y' \) for the reduced scheme \(Y \setminus U \), and let \(i: X \times Y' \to X \times Y \) and \(j: X \times U \to X \times Y \) denote the closed and open embeddings respectively. The sequence

\[\text{CH}_d(X \times Y') \overset{i_*}{\to} \text{CH}_d(X \times Y) \overset{j^*}{\to} \text{CH}_d(X \times U) \]
is exact (cf. §51.1D). Hence there exists an \(\alpha' \in \text{CH}_d(X \times Y') \) such that \(i_\ast(\alpha') = \alpha \). We can view \(\alpha' \) as a correspondence \(X \rightsquigarrow Y' \). Clearly, \(\text{mult}(\alpha') = \text{mult}(\alpha) \), hence \(\text{mult}(\alpha') \) is odd. Since \(\alpha' \) is a linear combination of prime correspondences, there exists a prime correspondence \(\beta : X \rightsquigarrow Y' \) of odd multiplicity. The class \(\beta \) is represented by a prime cycle, hence we may assume that \(Y' \) is irreducible. Since \(\dim Y' < \dim Y = \dim X = \dim_{\text{Izh}} X \), we contradict statement (1) for the varieties \(X \) and \(Y' \) that holds by the induction hypothesis.

We now prove (1) when \(i_1(X) = 1 \). Assume that \(\dim Y < \dim X \). Let \(Z \subset X \times Y \) be a prime cycle representing \(\alpha \). Since \(\text{mult}(\alpha) \) is odd, the projection \(Z \to X \) is surjective and the field extension \(F(X) \leftrightarrow F(Z) \) is of odd degree. The restriction of the projection \(X \times Y \to Y \) defines a proper morphism \(Z \to Y \). Replacing \(Y \) by the image of this morphism, we may assume that \(Z \to Y \) is a surjection.

In view of Lemma 73.4, extending the scalars to a purely transcendental extension of \(F \), we can find a smooth subquadric \(X' \) of \(X \) of the same dimension as \(Y \) having \(i_1(X') = 1 \). By Lemma 74.2, all closed points on \(Y \) are of even degree. Since purely transcendental extensions do not change Witt indices by Lemma 7.16, we still have \(i_1(X) = 1 \).

By Corollary 74.3, there exists a correspondence \(X' \rightsquigarrow Y \) of odd multiplicity. Since \(\dim X' < \dim X \), by the induction hypothesis, statement (2) holds for \(X' \) and \(Y \), that is, \(X' \) has a point over \(Y \), i.e., there exists a rational morphism \(Y \dashrightarrow X' \). Composing this morphism with the embedding of \(X' \) into \(X \), we get a rational morphism \(f : Y \dashrightarrow X \).

Consider the rational morphism

\[
h := \text{id}_X \times f : X \times Y \dashrightarrow X \times X.
\]

As the projection of \(Z \) to \(Y \) is surjective, \(Z \) intersects the domain of definition of \(h \). Let \(Z' \) be the closure of the image of \(Z \) under \(h \). The composition of \(Z \dashrightarrow Z' \) with the first projection to \(X \) yields a tower of field extensions \(F(X) \subset F(Z') \subset F(Z) \). As \([F(Z) : F(X)] \) is odd, so is \([F(Z') : F(X)] \), i.e., the correspondence \(\beta : X \rightsquigarrow X \) given by \(Z' \) is of odd multiplicity. The image of the second projection \(Z' \to X \) is contained in \(X' \) and hence \(\text{mult}(\beta') = 0 \). This contradicts Theorem 74.4 and establishes Theorem 75.1 in the case \(i_1(X) = 1 \).

We now consider the general case. Let \(X' \) be a smooth subquadric of \(X \) with \(\dim X' = \dim_{\text{Izh}} X \). Then \(i_1(X') = 1 \) by Corollary 73.3, i.e., \(\dim_{\text{Izh}} X' = \dim_{\text{Izh}} X \). By Corollary 74.3, the scheme \(Y_{F(X')} \) has a closed point of odd degree since \(Y_{F(X)} \) does. As \(i_1(X') = 1 \), we have shown in the first part of the proof that the statements (1) and (2) hold for \(X' \) and \(Y \). In particular, \(\dim_{\text{Izh}} X = \dim_{\text{Izh}} X' \leq \dim Y \) by (1) for \(X' \) and \(Y \) proving (1) for \(X \) and \(Y \). If \(\dim X' = \dim Y \), it follows from (2) applied for \(X' \) and \(Y \) that \(X' \) is isotropic over \(F(Y) \). Hence \(X \) is isotropic over \(F(Y) \) proving (2) for \(X \) and \(Y \).

A consequence of Theorem 75.1 is that an anisotropic smooth quadric \(X \) cannot be compressed to a variety \(Y \) of dimension smaller than \(\dim_{\text{Izh}} X \) with all closed points of even degree:

Corollary 75.2. Let \(X \) be an anisotropic smooth projective \(F \)-quadric and \(Y \) a complete \(F \)-variety with all closed points of even degree. If \(\dim_{\text{Izh}} X > \dim Y \) then there are no rational morphisms \(X \dashrightarrow Y \).
Remark 75.3. Let X and Y be as in part (2) of Theorem 75.1. Suppose in addition that \(\dim X = \dim_{\text{iwh}} X \), i.e., \(i_1(X) = 1 \). Let \(\alpha : X \rightrightarrows Y \) be a correspondence of odd multiplicity. The proof of Theorem 75.1 shows \(\text{mult}(\alpha^t) \) is also odd.

Apply Theorem 75.1 to the special (but may be the most interesting) case where the variety Y is also a projective quadric, we solve the conjectures of O. Izhboldin:

Theorem 75.4. Let X and Y be anisotropic smooth projective quadrics over F. Suppose that Y is isotropic over $F(X)$. Then

1. \(\dim_{\text{iwh}} X \leq \dim_{\text{iwh}} Y \).
2. We have an equality \(\dim_{\text{iwh}} X = \dim_{\text{iwh}} Y \) if and only if X is isotropic over $F(Y)$.

Proof. Choose a subquadric $Y' \subset Y$ with \(\dim Y' = \dim_{\text{iwh}} Y \). Since Y' becomes isotropic over $F(Y)$ and Y becomes isotropic over $F(X)$, the quadric Y' becomes isotropic over $F(X)$. By Theorem 75.1 we have \(\dim_{\text{iwh}} X \leq \dim Y' \). Moreover, in the case of equality, X becomes isotropic over $F(Y')$ and hence over $F(Y)$. Conversely, if X is isotropic over $F(Y)$, interchanging the roles of X and Y, the argument above also yields \(\dim_{\text{iwh}} Y \leq \dim_{\text{iwh}} X \), hence equality holds.

We have the following upper bound for the Witt index of Y over $F(X)$.

Corollary 75.5. Let X and Y be anisotropic smooth projective quadrics over F. Suppose that Y is isotropic over $F(X)$. Then

\[
\text{i}_0(Y_{F(X)}) - i_1(Y) \leq \dim_{\text{iwh}} Y - \dim_{\text{iwh}} X.
\]

Proof. If \(\dim_{\text{iwh}} X = 0 \), the statement is trivial. Otherwise, let Y' be a smooth subquadric of Y of dimension \(\dim_{\text{iwh}} X - 1 \). Since \(\dim_{\text{iwh}} Y' \leq \dim Y' < \dim_{\text{iwh}} X \), the quadric Y' remains anisotropic over $F(X)$ by Theorem 75.1(1). Therefore, \(\text{i}_0(Y_{F(X)}) \leq \text{codim}_Y Y' = \dim Y - \dim_{\text{iwh}} X + 1 \) by Lemma 75.1, hence the inequality.

We have also the following more precise version of Theorem 75.1.

Corollary 75.6. Let X be an anisotropic smooth projective F-quadric and Y a complete variety over F such that every closed point of Y is of even degree. If there is a closed point in $Y_{F(X)}$ of odd degree then there exists a closed subvariety $Y' \subset Y$ such that

1. \(\dim Y' = \dim_{\text{iwh}} X \).
2. \(Y'_{F(X)} \) possesses a closed point of odd degree.
3. $X_{F(Y')}$ is isotropic.

Proof. Let $X' \subset X$ be a smooth subquadric with \(\dim X' = \dim_{\text{iwh}} X \). Then \(\dim_{\text{iwh}} X' = \dim X' \) by Corollary 73.3. An odd degree closed point on $Y_{F(X)}$ determines a correspondence $X \rightrightarrows Y$ of odd multiplicity which in turn gives a correspondence $X' \rightrightarrows Y'$ of odd multiplicity. We may assume that the latter correspondence is prime and take a prime cycle $Z \subset X' \times Y$ representing it. Let Y' be the image of the proper morphism $Z \rightarrow Y$. Clearly, \(\dim Y' \leq \dim Z = \dim X' = \dim_{\text{iwh}} X \). On the other hand, Z gives a correspondence $X' \rightrightarrows Y'$ of odd multiplicity. Therefore \(\dim Y' \geq \dim X' \) by Theorem 75.1 and condition (i) of Corollary 75.6 is satisfied. Moreover, $Y'_{F(Y')}$ has a closed point of odd degree. Since the field $F(X \times X')$ is a purely transcendental extension over $F(X)$,
Lemma [74.2] shows that there is a closed point on $Y'_{F(X)}$ of odd degree, i.e., condition (ii) of Corollary [75.6] is satisfied. Finally, the quadric $X'_{F(Y)}$ is isotropic by Theorem [75.4]. Therefore $X_{F(Y)}$ is isotropic.

76. Addendum: The Pythagoras Number

Given a field F, its **pythagoras number** is defined to be

$$p(F) := \min\{n \mid D(n\langle 1 \rangle) = D(\langle 1 \rangle)\}$$

or infinity if no such integer exists. If $\text{char } F = 2$ then $p(F) = 1$ and if $\text{char } F \neq 2$ then $p(F) = 1$ if and only if F is pythagorean. Let F be a field that is not formally real. Then quadratic form $(s(F) + 1)\langle 1 \rangle$ is isotropic. In particular, $p(F) = s(F)$ or $s(F) + 1$ and each value is possible. So this invariant is only interesting when the field is formally real.

For a given formally real field determining its pythagoras number is not easy. If $p(F) = 3$ then each value is possible. So this invariant is only interesting when the field is formally real. For a given formally real field determining its pythagoras number is not easy. If F is an extension of a real field of transcendence degree n then $p(F) \leq 2^n$ by Corollary [35.13]. In particular, if $n = 1$ and F is not pythagorean then $p(F) = 2$. It is known that $p(\mathbb{R}(t_1, t_2)) = 4$ (cf. [9]), but in general, the value of $p(\mathbb{R}(t_1, \ldots, t_n))$ is not known. In this section, given any non-negative integer n, we construct a formally real field having pythagoras number n.

Lemma 76.1. Let F be a formally real field and φ a quadratic form over F. If $P \in \mathcal{X}(F)$ then P extends to an ordering on $F(\varphi)$ if and only if φ is indefinite at P, i.e., $|\text{sgn}_P(\varphi)| < \dim \varphi$.

Proof. Suppose that φ is indefinite at P. Let F_P be the real closure of F with respect to P. Let $K = F_P(\varphi)$. As φ_{F_P} is isotropic, K/F_P is purely transcendental. Therefore the unique ordering on F_P extends to K. The restriction of this extension to $F(\varphi)$ extends P. The converse is clear.

The following proposition is a consequence of the lemma and Theorem [75.4].

Proposition 76.2. Let F be formally real and $x, y \in D(\langle 1 \rangle)$. Let $\varphi \asymp m(1) \perp \langle -x \rangle$ and $\psi \asymp n(1) \perp \langle -y \rangle$ with $n > m \geq 0$. Then $F(\psi)$ is formally real. If, in addition, φ is anisotropic then so is $\varphi_{F(\psi)}$.

Proof. As ψ is indefinite at every ordering, every ordering of F extends to $F(\psi)$. In particular, $F(\psi)$ is formally real. Suppose that φ is anisotropic. Since over each real closure of F both φ and ψ have Witt index 1, the first Witt index of φ and ψ must also be one. As $\dim \varphi > \dim \psi$, the form $\varphi_{F(\psi)}$ is anisotropic by Theorem [75.4].

Construction 76.3. Let F_0 be a formally real field. Let $F_1 = F_0(t_1, \ldots, t_{n-1})$ and $x = 1 + t_1^2 + \cdots + t_{n-1}^2 \in D(\langle 1 \rangle_{F_1})$. By Corollary [17.13] the element x is a sum of n squares in F_1 but no fewer. In particular, $\varphi \asymp (n - 1)(1) \perp \langle -x \rangle$ is anisotropic over F_1. For $i \geq 1$, inductively define F_{i+1} as follows:

Let

$$\mathfrak{A}_i := \{n(1) \perp \langle -y \rangle \mid y \in D(\langle 1 \rangle_{F_i})\}.$$

For any finite subset $S \subset \mathfrak{A}_i$, let X_S be the product of quadrics X_φ for all $\varphi \in S$. If $S \subset T$ are two subsets of \mathfrak{A}_i, we have the dominant projection $X_T \to X_S$ and therefore
the inclusion of function fields $F(X_S) \to F(X_T)$. Set $F_{i+1} = \text{colim} F_S$ over all finite subsets $S \subset \mathfrak{A}_i$. By construction, all quadratic forms $\varphi \in \mathfrak{A}_i$ are isotropic over the field extension F_i of F. Let $F = \bigcup F_i$. Then F has the following properties.

(1) F is formally real.
(2) $n\langle 1 \rangle \perp \langle -y \rangle$ is isotropic for all $0 \neq y \in \sum(F^\times)^2$.

Consequently, $D(\infty \langle 1 \rangle_F) \subset D(n\langle 1 \rangle_F)$, so the pythagoras number $p(F) \leq n$. As $\varphi \simeq (n-1) \langle 1 \rangle \perp \langle -x \rangle$ remains anisotropic over F, we have $p(F) \geq n$. So we have shown

Theorem 76.4. For every $n \geq 1$ there exists a formally real field F with $p(F) = n$.
CHAPTER XV

Application of Steenrod operations

Since Steenrod operations are not available in characteristic 2, throughout this chapter, the characteristic of the base field is assumed to be different from 2.

We write $v_2(n)$ for the 2-adic exponent of an integer n.

We shall use the notation of Chapter XIII. In particular, X is a smooth D-dimensional projective quadric over a field F given by a (non-degenerate) quadratic form φ, and $d = \lfloor D/2 \rfloor$.

77. Computation of Steenrod operations

Recall that $h \in \text{Ch}^1(X)$ is the class of a hyperplane section.

Lemma 77.1. The modulo 2 total Chern class $c(T_X) : \text{Ch}(X) \to \text{Ch}(X)$ of the tangent vector bundle T_X of the quadric X is multiplication by $(1 + h)^{D+2}$.

Proof. By Proposition 57.14, it suffices to show that $c(T_X)([X]) = (1 + h)^{D+2}$. Let $i : X \hookrightarrow \mathbb{P}$ be the closed embedding of X into the $(D+1)$-dimensional projective space $\mathbb{P} = \mathbb{P}(V)$, where V is the underlying vector space of φ. We write $H \in \text{Ch}^1(\mathbb{P})$ for the class of a hyperplane, so $h = i^*(H)$. Since X is a hypersurface in \mathbb{P} of degree 2, the normal bundle N of the embedding i is isomorphic to $i^*(L^{\otimes 2})$, where L is the canonical line bundle over \mathbb{P}. By Propositions 103.16 and 53.7, we have $c(T_X) \circ c(i^*L) = c(i^*T_\mathbb{P})$. By Example 60.15, we know that $c(T_\mathbb{P})$ is the multiplication by $(1 + H)^{D+2}$ and by Propositions 53.3 and 56.23, $c(L^{\otimes 2}) = \text{id}$ modulo 2. It follows that

$$c(T_X)([X]) = (c(i^*T_\mathbb{P}) \circ c(i^*L^{\otimes 2})^{-1})(i^*([\mathbb{P}])) =$$

$$= (i^* \circ c(T_\mathbb{P}) \circ c(L^{\otimes 2})^{-1})([\mathbb{P}]) = i^*(1 + H)^{D+2} = (1 + h)^{D+2}$$

by Proposition 54.21.

Corollary 77.2. Suppose that $i_0(X) > n$ for some $n \geq 0$. Let $W \subset V$ be a totally isotropic $(n+1)$-dimensional subspace of V and \mathbb{P} be the n-dimensional projective space $\mathbb{P}(W)$. Let $i : \mathbb{P} \hookrightarrow X$ be the closed embedding. Then the modulo 2 total Chern class $c(N) : \text{Ch}(\mathbb{P}) \to \text{Ch}(\mathbb{P})$ of the normal bundle N of the imbedding i is multiplication by $(1 + H)^{D+1-n}$, where $H \in \text{Ch}^1(\mathbb{P})$ is the class of a hyperplane.

Proof. By Propositions 103.16 and 53.7, we have $c(N) = c(T_\mathbb{P})^{-1} \circ c(i^*T_X)$, by Proposition 54.21 and Lemma 77.1 we have

$$c(i^*T_X)[\mathbb{P}] = c(i^*T_X)(i^*[X]) = (i^* \circ c(T_X))[X] = i^*(1 + h)^{D+2} = (1 + H)^{D+2},$$

and by Example 60.15, $c(T_\mathbb{P}) = (1 + H)^{n+1}$.

325
Corollary 77.3. Under the hypothesis of Corollary [77.2], we have
\[\text{Sq}_X([P]) = [P] \cdot (1 + h)^{D+1-n}. \]

Proof. By the Wu Formula [60.7], we have \(\text{Sq}_X([P]) = i_*(c(N)[P]) \). Using Corollary [77.2] we get
\[i_*(c(N)[P]) = i_*((1 + H)^{D+1-n} \cdot [P]) = i_*(i^*(1 + h)^{D+1-n} \cdot [P]) = (1 + h)^{D+1-n} \cdot i_*[P] \]
by the Projection Formula 55.9. \(\square \)

We also have (cf. Example 60.15):

Lemma 77.4. For any \(i \geq 0 \), one has \(\text{Sq}_X(h^i) = h^i \cdot (1 + h)^i \).

Corollary 77.5. Assume that the quadric \(X \) is split. The ring endomorphism \(\text{Sq}_X : \text{Ch}(X) \to \text{Ch}(X) \) acts on the basis \(\{h^i, l_i\}_{i \in [0, d]} \) of \(\text{Ch}(X) \) by the formulae
\[\text{Sq}_X(h^i) = h^i \cdot (1 + h)^i \quad \text{and} \quad \text{Sq}_X(l_i) = l_i \cdot (1 + h)^{D+1-i}. \]
In particular, for any \(j \geq 0 \)
\[\text{Sq}_X^j(h^i) = \binom{i}{j} h^{i+j} \quad \text{and} \quad \text{Sq}_X^j(l_i) = \binom{D+1-i}{j} l_{i-j}. \]

Binomial coefficients modulo 2 are computed as follows (we leave proof to the reader). Let \(\mathbb{N} \) be the set of non-negative integers, \(2^\mathbb{N} \) the set of all subsets of \(\mathbb{N} \), and let \(\pi : \mathbb{N} \to 2^\mathbb{N} \) be the bijection given by base 2 expansions. For any \(n \in \mathbb{N} \), the set \(\pi(n) \) consists of all those \(m \in \mathbb{N} \) such that the base \(2 \) expansion of \(n \) has 1 on the \(m \)th position. For two arbitrary non-negative integers \(i \) and \(n \), write \(i \subset n \) if \(\pi(i) \subset \pi(n) \).

Lemma 77.6. For any \(i, n \in \mathbb{N} \), the binomial coefficient \(\binom{n}{i} \) is odd if and only if \(i \subset n \).

78. Values of the first Witt index

The main result of this section is Theorem [78.9] (conjectured by D. Hoffmann and originally proved in [33]); its main ingredient is given by Proposition [78.4]. We begin with some observations.

Remark 78.1. By Theorem [60.8],
\[\begin{array}{c}
\text{Ch}(X^*) \xrightarrow{\text{Sq}_X^*} \text{Ch}(X^*) \\
\downarrow \quad \downarrow
\end{array} \]
\[\begin{array}{c}
\text{Ch}(\bar{X}^*) \xrightarrow{\text{Sq}_{\bar{X}^*}} \text{Ch}(\bar{X}^*)
\end{array} \]
is commutative, hence we get an endomorphism \(\overline{\text{Ch}}(X^*) \to \overline{\text{Ch}}(X^*) \) that we shall also call a Steenrod operation and denote it by \(\text{Sq}_{\bar{X}^*} \), even though it is a restriction of \(\text{Sq}_X^* \), and not of \(\text{Sq}_{X^*} \).

Remark 78.2. Let \(l_n \times h^m \in \text{Ch}(\bar{X}^2) \) be an essential basis element with \(n \geq m \). Since \(\text{Sq}(l_n \times h^m) = \text{Sq}(l_n) \times \text{Sq}(h^m) \) by Theorem [60.13], we see by Corollary [77.3] that the value of \(\text{Sq}(l_n \times h^m) \) is a linear combination of the elements \(l_i \times h^j \) with \(i \leq n \) and \(j \geq m \). If
m = 0, one can say more: \(\text{Sq}(l_n \times h^0) \) is a linear combination of the elements \(l_i \times h^0 \) with \(i \leq n \).

Of course, we have similar facts for the essential basis elements of type \(h^m \times l_n \).

Representing essential basis elements of type \(l_n \times h^m \) with \(n \geq m \) as points of the right pyramid of Remark 72.9, we may interpret the above statements graphically as follows: the diagram of the value of the Steenrod operation on a point \(l_n \times h^m \) is contained in the isosceles triangle based on the lower row of the pyramid whose top is the point \(l_n \times h^m \) (an example of this is the picture on the left below). If \(l_n \times h^m \) is on the right side of the pyramid, then the diagram of the value of the Steenrod operation is contained in the part of the right side of the pyramid, which is below the point (an example of this is the picture on the right below).

The next statement follows immediately from Remark 78.2.

Lemma 78.3. Assume that \(X \) is anisotropic. Let \(\pi \in \text{Ch}_{D+i_1-1}(X^2) \) be the 1-primordial cycle. For any \(j \geq 1 \), the element \(S_j^{X^2}(\pi) \) has no points in the first shell triangle.

Proof. By the definition of \(\pi \), the only point the cycle \(\pi \) has in the first (left as well as right) shell triangle is the top of the triangle. By Remark 78.2, the only point in the first left shell triangle, which may be contained in \(S_j^{X^2}(\pi) \), is the point on the left side of the triangle; in the same time, the only point in the first right shell triangle, which may be contained in \(S_j^{X^2}(\pi) \), is the point on the right side of the triangle. Since these two points are not dual (points of the left side of the first left shell triangle are dual to points on the left side of the first right shell triangle), the statement under proof follows by Corollary 72.23. \(\square \)

We shall obtain further information in Lemma 82.1 below.

Proposition 78.4. For any anisotropic quadratic form \(\varphi \) of \(\text{dim} \varphi \geq 2 \)

\[
i_1(\varphi) \leq \exp_2 v_2(\text{dim} \varphi - i_1(\varphi))
\]

Proof. Let \(r = v_2(\text{dim} \varphi - i_1(\varphi)) \). Apply the Steenrod operation \(\text{Sq}^{2r}_{X^2}: \overline{\text{Ch}}(X^2) \to \overline{\text{Ch}}(X^2) \) to the 1-primordial cycle \(\pi \). Since

\[
\text{Sq}^{2r}_{X^2}(h^0 \times l_{i_1-1}) = h^0 \times \text{Sq}^{2r}_{X^2}(l_{i_1-1}) = \left(\frac{\text{dim} \varphi - i_1}{2r} \right) \cdot (h^0 \times l_{i_1-1-2r})
\]

by Theorem 60.13 and Corollary 77.5, and the binomial coefficient is odd by Lemma 77.6 we have \(h^0 \times l_{i_1-1-2r} \in \text{Sq}^{2r}_{X^2}(\alpha) \). It follows by Lemma 78.3 that \(2r \not\in (0, i_1) \), i.e., that \(2r \geq i_1 \).

Remark 78.5. Let \(a \) be a positive integer written in base 2. A suffix of \(a \) is an integer written in base 2 that is obtained from \(a \) by deleting several (at least one) consecutive
digits starting from the left one. For example, all suffixes of 1011010 are 11010, 1010, 10 and 0.

Let \(i < n \) be two non-negative integers. Then the following are equivalent.

1. \(i \leq \exp_2 v_2(n - i) \).
2. There exists an \(r \geq 0 \) satisfying \(2^r < n \), \(i \equiv n \pmod{2^r} \), and \(i \in [1, 2^r] \).
3. \(i - 1 \) is the remainder upon division of \(n - 1 \) by an appropriate 2-power.
4. The 2-adic expansion of \(i - 1 \) is a suffix of the 2-adic expansion of \(n - 1 \).
5. The 2-adic expansion of \(i \) is a suffix of the 2-adic expansion of \(n \) or \(i \) is a 2-power divisor of \(n \).

In particular, the integers \(i = i_1(\varphi) \) and \(n = \dim \varphi \) in Proposition 78.4 satisfy these conditions.

Corollary 78.6. All higher Witt indices of an odd-dimensional quadratic form are odd. The higher Witt indices of an even-dimensional quadratic form are either even or one.

Example 78.7. Assume that \(\varphi \) is anisotropic and let \(s \geq 0 \) be the biggest integer such that \(\dim \varphi > 2^s \). Then it follows by Proposition 78.4 that \(i_1(\varphi) \leq \dim \varphi - 2^s \) (use, say, Condition (4) of Remark 78.5). In particular, if \(\dim \varphi = 2^s + 1 \), then \(i_1(\varphi) = 1 \).

The first statement of the following corollary is the Separation Theorem 26.5 (over a field of characteristic not two); the second statement is originally proved by O. Izhboldin (by a different method) in [29, Th. 02] (a characteristic two version is given by D. Hoffmann and A. Laghrbi in [24, Th. 1.3]).

Corollary 78.8. Let \(\varphi \) and \(\psi \) be two anisotropic quadratic forms over \(F \).

1. If \(\dim \varphi \leq 2^s \) for some \(s \geq 0 \) then the form \(\psi_{F(\varphi)} \) is anisotropic.
2. Suppose that \(\dim \varphi = 2^s + 1 \). If \(\dim \psi \) is isotropic then the form \(\varphi_{F(\psi)} \) is also isotropic.

Proof. Let \(X \) and \(Y \) be the quadrics of \(\varphi \) and of \(\psi \) respectively. Then \(\dim_{Izh} X \geq 2^s - 1 \) by Example 78.7. If \(\dim \varphi \leq 2^s \) then \(\dim Y \leq 2^s - 2 \). Therefore,

\[
\dim_{Izh} Y \leq \dim Y < 2^s - 1 \leq \dim_{Izh} X
\]

and \(Y_{F(X)} \) is anisotropic by Theorem 75.4(1).

Suppose that \(\dim \psi = 2^s + 1 \). Then \(\dim_{Izh} Y = 2^s - 1 \leq \dim_{Izh} X \). If \(Y_{F(X)} \) is isotropic then \(\dim_{Izh} Y = \dim_{Izh} X \) by Theorem 75.4(1) and therefore \(X_{F(Y)} \) is isotropic by Theorem 75.4(2). \(\square \)

We show next that all values of the first Witt index not forbidden by Proposition 78.4 are possible and get the main result of this section:

Theorem 78.9. Two non-negative integers \(i \) and \(n \) satisfy \(i \leq \exp_2 v_2(n - i) \) if and only if there exists an anisotropic quadratic form \(\varphi \) over a field of characteristic not two with \(\dim \varphi = n \) and \(i_1(\varphi) = i \).
Let the definition of the cohomological Steenrod operation Sq_i be as in condition (2) of Remark 78.5. Write $n = i = 2^r \cdot m$ for some integer m.

Let k be any field of characteristic not two and consider the field $K = k(t_1, \ldots, t_r)$ of rational functions in r variables. By Corollary 19.6, the Pfister form $\pi = \langle t_1, \ldots, t_r \rangle$ over K is anisotropic. Let $F = K(s_1, \ldots, s_m)$, where s_1, \ldots, s_m are variables. By Lemma 19.5, the quadratic F form $\psi = \pi_F \otimes (s_1, \ldots, s_m)$ is anisotropic.

We claim that $i_1(\psi) = 2^r$. Indeed, by Proposition 6.22, we have $i_1(\psi) \geq 2^r$. On the other hand, the field $E = F(\sqrt{-s_1})$ is purely transcendental over $K(s_2, \ldots, s_m)$ and therefore $i_0(\psi_E) = 2^r$. Consequently, $i_1(\psi) = 2^r$.

Let φ be an arbitrary subform of ψ of codimension $2^r - i$. As $\dim \psi = 2^r \cdot (m + 1) = n + (2^r - i)$, the dimension of φ is equal to n. Since $2^r - i < 2^r = i_1(\psi)$, we have $i_1(\varphi) = i$ by Corollary 73.3. □

79. Rost correspondences

Recall that by abuse of notation we also denote the image of the element $h \in \operatorname{CH}^1(X)$ in the groups $\operatorname{CH}^1(\bar{X})$, $\operatorname{Ch}^1(X)$, and $\operatorname{Ch}^1(\bar{X})$ by the same symbol h. In the following lemma, h stands for the element of $\operatorname{Ch}(X)$.

Lemma 79.1. Let n be the integer satisfying
\[2^n - 1 \leq D \leq 2^{n+1} - 2.\]
Set $s = D - 2^n + 1$ and $r = 2^{n+1} - 2 - D$ (observe that $r + s = 2^n - 1$). If $\alpha \in \operatorname{Ch}_{r+s}(X)$ then
\[\operatorname{Sq}_{r+s}^X(h) = h^r \cdot \alpha^2 \in \operatorname{Ch}_0(X).\]

Proof. By the definition of the cohomological Steenrod operation Sq_X (cf. 57.22), we have $\operatorname{Sq}_X = c(T_X) \circ \operatorname{Sq}^X$, where Sq^X is the homological Steenrod operation. Therefore, $\operatorname{Sq}^X = c(-T_X) \circ \operatorname{Sq}_X$. In particular,
\[\operatorname{Sq}_{r+s}^X(\alpha) = \sum_{i=0}^{r+s} c_i(-T_X) \circ \operatorname{Sq}_X^{r+s-i}(\alpha)\]
in $\operatorname{Ch}_0(X)$. By Lemma 77.1, we have $c_i(-T_X) = (-D^{-2})_i \cdot h^i$. As $(-D^{-2})_i = \pm (-D+i+1)_i$, it follows from Lemma 77.6 that the latter binomial coefficient is even for any $i \in [r+1, r+s]$ and is odd for $i = r$. Since $\operatorname{Sq}_X^{r+s-i}(\alpha)$ is equal to 0 for $i \in [0, r-1]$ and is equal to α^2 for $i = r$ by Theorem 60.12, the required relation is established. □

Theorem 79.2. Let n be the integer satisfying
\[2^n - 1 \leq D \leq 2^{n+1} - 2.\]
Set $s = D - 2^n + 1$ and $r = 2^{n+1} - 2 - D$. Let X and Y be two anisotropic projective quadrics of dimension D over a field of characteristic not two. Let $\bar{\rho} \in \overline{\operatorname{Ch}}_{r+s}(X \times Y)$. Then $(pr_X)_*(\bar{\rho}) = 0$ if and only if $(pr_Y)_*(\bar{\rho}) = 0$, where $pr_X : X \times Y \to X$ and $pr_Y : X \times Y \to Y$ are the projections.

Proof. Let $\bar{\rho}$ be an element of the non-reduced Chow group $\overline{\operatorname{Ch}}_{r+s}(X \times Y)$. Write $\bar{\rho}$ for the image of ρ in $\overline{\operatorname{Ch}}_{r+s}(X \times Y)$. The group $\overline{\operatorname{Ch}}_{r+s}(X)$ is generated by $h^s = h^s_X$ (if $s = d$ this is true as X is anisotropic and hence not split). Therefore we have $(pr_X)_* (\bar{\rho}) = a_X h^s_X$ for
some $a_X \in \mathbb{Z}/2\mathbb{Z}$. Similarly, $(pr_Y)_*(\rho) = a_Y h^r_Y$ for some $a_Y \in \mathbb{Z}/2\mathbb{Z}$. To prove Theorem [79.2] we must show $a_X = a_Y$.

Consider the following diagram:

\begin{align*}
\begin{array}{ccc}
\text{Ch}_{r+s}(X \times Y) & \xrightarrow{(pr_X)_*} & \text{Ch}_{r+s}(X) \\
& & \downarrow \text{Sq}^Y_{r+s} \\
\text{Ch}_0(X) & \xleftarrow{(pr_X)_*} & \text{Ch}_0(Y) \\
& \downarrow \frac{1}{2} \deg_X & \downarrow \frac{1}{2} \deg_Y \\
\mathbb{Z}/2\mathbb{Z} & & \mathbb{Z}/2\mathbb{Z}
\end{array}
\end{align*}

(79.3)

where $\frac{1}{2} \deg_X : \text{Ch}_0(X) \to 2\mathbb{Z}/4\mathbb{Z} = \mathbb{Z}/2\mathbb{Z}$ is the homomorphism that maps the class $[x] \in \text{Ch}_0(X)$ of a closed point $x \in X$ to $\frac{1}{2}[F(x) : F]$ (mod 2) in $\mathbb{Z}/2\mathbb{Z}$ (this is the place where we require the assumption that X and Y are anisotropic). We show that the diagram (79.3) is commutative. The bottom diamond is commutative by the functorial property of the push-forward homomorphism (cf. Proposition [48.7] and Example [56.6]). The left and the right parallelograms are commutative by Theorem [59.5]. Therefore

$$(\frac{1}{2} \deg_X) \circ \text{Sq}^X_{r+s} \circ (pr_X)_*(\rho) = (\frac{1}{2} \deg_Y) \circ \text{Sq}^Y_{r+s} \circ (pr_Y)_*(\rho).$$

Applying Lemma [79.1] to the element $\alpha = (pr_X)_*(\rho)$, we have

$$(\frac{1}{2} \deg_X) \circ \text{Sq}^X_{r+s} \circ (pr_X)_*(\rho) = (\frac{1}{2} \deg_X)(h^r_X \cdot \alpha^2) = a_X.$$

Similarly $(\frac{1}{2} \deg_Y) \circ \text{Sq}^Y_{r+s} \circ (pr_Y)_*(\rho) = a_Y$, proving the theorem. \hfill \square

Theorem 79.4. Use Theorem [79.2] to prove the following generalization of Corollary [78.8] (2). Let X and Y be two anisotropic projective quadrics satisfying $\dim X = \dim Y = D$. Let s be as in Theorem [79.2]. If there exists a rational morphism $X \dashrightarrow Y$, then there exists a rational morphism $G_s(Y) \dashrightarrow G_s(X)$ where $G_i(X)$ for an integer i is the scheme (variety, if $i \neq D/2$) of i-dimensional linear subspaces lying on X. (We shall study the scheme $G_d(X)$ in Chapter [XVI].)

Remark 79.5. One can generalize Theorem [79.2] as follows. We replace Y by an arbitrary projective variety of an arbitrary dimension (and, in fact, Y need not be smooth nor of dimension $D = \dim X$). Suppose that every closed point of Y has even degree. Let $\rho \in \text{Ch}_{r+s}(X \times Y)$ satisfy $(pr_X)_*(\rho) \neq 0 \in \overline{\text{Ch}}(X)$. Then $(pr_Y)_*(\rho) \neq 0 \in \overline{\text{Ch}}(Y)$ (note that this is in $\overline{\text{Ch}}(Y)$ not $\text{Ch}(Y)$). To prove this generalization, we use the commutative diagram (79.3). As before we have $\deg_X \circ \text{Sq}^X_{r+s} \circ (pr_X)_*(\rho) \neq 0$ provided that $pr_X(\rho) \neq 0$. Therefore, $\deg_Y \circ \text{Sq}^Y_{r+s} \circ (pr_Y)_*(\rho) \neq 0$. In particular, $(pr_Y)_*(\rho) \neq 0$.

Exercise 79.6. Show that one cannot replace the conclusion \((pr_Y)_*(\rho) \neq 0 \in \text{Ch}(Y)\) by \((pr_Y)_*(\rho) \neq 0 \in \text{Ch}(Y)\) in Remark 79.5 (Hint: Let \(Y\) be an anisotropic quadric with \(X\) a subquadric of \(Y\) satisfying \(2 \dim X < \dim Y\), and \(\rho \in \text{Ch}(X \times Y)\) the class of the diagonal of \(X\).

Taking \(Y = X\) in Theorem 79.2, we have

Corollary 79.7. Let \(X\) be an anisotropic quadric of dimension \(D\) and \(s\) as in Theorem 79.2. If a rational cycle in \(\text{Ch}(X^2)\) contains \(h^s \times l_0\) then it also contains \(l_0 \times h^s\).

Corollary 79.8. Assume that \(X\) is an anisotropic quadric of dimension \(D\) and for some integer \(i \in [0, d]\) the cycle \(h^0 \times l_i + l_i \times h^0 \in \text{Ch}(X^2)\) is rational. Then the integer \(\dim X - i + 1\) is a power of 2.

Proof. If the cycle \(h^0 \times l_i + l_i \times h^0\) is rational, then, multiplying by \(h^s \times h^i\), we see that the cycle \(h^s \times l_0 + l_i - s \times h^i\) is also rational. By Corollary 79.7, it follows that \(i = s\). Therefore, \(\dim X - i + 1 = 2^n\) with \(n\) as in Theorem 79.2.

Remark 79.9. By Lemma 72.13 and Corollary 72.23, the integer \(i\) in Corollary 79.8 is necessarily equal to \(i_1(X) - 1\).

Recalling Definition 72.32, we have

Corollary 79.10. If the integer \(\dim \varphi - i_1(\varphi)\) is not a 2-power then the 1-primordial cycle on \(X^2\) produces an integer.

Proof. If the 1-primordial cycle \(\pi\) does not produce any integer then \(\pi = h^0 \times l_{i-1} + l_{i-1} \times h^0\). Therefore, by Corollary 79.8 the integer \(D - (i_1(\varphi) - 1) + 1 = \dim \varphi - i_1(\varphi)\) is a 2-power.

Definition 79.11. The element \(h^0 \times l_0 + l_0 \times h^0 \in \text{Ch}(X^2)\) is called the Rost correspondence of the quadric \(X\).

Of course, the Rost correspondence of isotropic \(X\) is rational. A special case of Corollary 79.8 is given by:

Corollary 79.12. If \(X\) is anisotropic and the Rost correspondence of \(X\) is rational then \(D + 1\) is a power of 2.

By multiplying by \(h^1 \times h^0\), we see that rationality of the Rost correspondence implies rationality of the element \(h^1 \times l_0\). In fact, rationality of \(h^1 \times l_0\) alone implies that \(D + 1\) is a power of 2:

Corollary 79.13. If \(X\) is anisotropic and the element \(h^1 \times l_0 \in \text{Ch}(X^2)\) is rational then \(D + 1\) is a power of 2.

Proof. If \(h^1 \times l_0\) is rational, then for any \(i \geq 1\), the element \(h^i \times l_0\) is also rational. Let \(s\) be as in Theorem 79.2. By Corollary 79.7 it follows that \(s = 0\), i.e., \(D = 2^n - 1\).

Let \(A\) be a point of a shell triangle of a quadric. We write \(A^2\) for the dual point in the sense of Definition 72.22. The following statement is originally proved (in characteristic 0) by A. Vishik.
Let Y be another anisotropic projective quadric of dimension D over some field. Basis elements of $\text{Ch}(Y^2)$ are in natural 1-1 correspondence with basis elements of $\text{Ch}(X^2)$. Assume that $i_1(Y) = s + 1$ with s as in Corollary 79.7. Let A be a point of a first shell triangle of Y and let A^2 be its dual point. Then in the diagram of any element of $\overline{\text{Ch}}(X^2)$ the point corresponding to A is marked if and only if the point corresponding to A^2 is marked.

Proof. We may assume that A lies in the left first shell triangle of Y. Let $h^i \times l_j$ (with $0 \leq i \leq j \leq s$) be the basis element represented by A. Then the basis element represented by A^2 is $l_{s-i} \times h^{s-j}$. Let $\alpha \in \overline{\text{Ch}}(X^2)$ and assume that α contains $h^i \times l_j$. Then the rational cycle $(h^{s-i} \times h^j) \cdot \alpha$ contains $h^s \times l_0$. Therefore, by Corollary 79.7 this rational cycle also contains $l_0 \times h^s$. It follows that α contains $l_{s-i} \times h^{s-j}$. □

Remark 79.15. The equality $i_1(Y) = s + 1$ holds if Y is excellent. By Theorem 78.9 this value of the first Witt index is maximal for all D-dimensional anisotropic quadrics.

80. On 2-adic order of higher Witt indices, I

The main result of this section is Theorem 80.3 on a relationship between higher Witt indices and the integer produced by a 1-primordial cycle. This is used to establish a relationship between higher Witt indices of an anisotropic quadratic form (cf. Corollary 80.20).

Let φ be a non-degenerate (possibly isotropic) quadratic form of dimension D over a field F of characteristic not two and $X = X_\varphi$. Let $h = h(\varphi)$ be the height of φ (or X) and

$$F = F_0 \subset F_1 \subset \cdots \subset F_h$$

the generic splitting tower (cf. Section 25). For $q \in [0, h]$, let $i_q = i_q(\varphi)$, $j_q = j_q(\varphi)$, $\varphi_q = (\varphi_{F_q})_{an}$ and $X_q = X_{\varphi_q}$.

We shall use the following simple observation in the proof of Theorem 80.3.

Proposition 80.1. Let α be a homogeneous element of $\text{Ch}(X^2)$ with $\text{codim} \alpha > d$. Assume X is not split, i.e., $h > 0$ and that for some $q \in [0, h - 1]$ the cycle α is F_q-rational and does not contain any $h^i \times l_7$ or $l_7 \times h^i$ with $i < j_q$. Then $\delta_X^+(\alpha) = 0 \in \text{Ch}(\overline{X})$, where $\delta_X : X \to X^2$ is the diagonal morphism of X.

Proof. We may assume that $\dim \alpha = D+i$ with $i \geq 0$ (because otherwise $\dim \delta_X^+(\alpha) < 0$). As X is not hyperbolic, $l_d \times l_d \notin \alpha$ by Lemma 72.2. Therefore, $\delta_X^-(\alpha) = nl_i$, where n is the number of essential basis elements contained in α. Since α does not contain any $h^i \times l_7$ or $l_7 \times h^i$ with $i < j_q$, the number of essential basis elements contained in α coincides with the number of essential basis elements contained in $\text{pr}_2^*(\alpha)$, where

$$\text{pr}_2^* : \overline{\text{Ch}}(X_{F_q}^2) \to \overline{\text{Ch}}(X_q^2)$$

is the homomorphism of Remark 71.5. The latter number is even by Lemma 72.16. □

We have defined minimal and primordial elements in $\overline{\text{Ch}}(X^2)$ for an anisotropic quadric X (cf. Definitions 72.5 and 72.18). We extend these definitions to the case of an arbitrary quadric.
DEFINITION 80.2. Let X be an arbitrary (smooth) quadric given by a quadratic form φ (not necessarily anisotropic) and let X_0 be the quadric given by the anisotropic part of φ. The images of minimal (resp. primordial) elements via the embedding $in_0^2 : \text{Ch}(X_0^2) \to \text{Ch}(X^2)$ of Remark 71.5 are called minimal (resp. primordial) elements of $\text{Ch}(X^2)$.

THEOREM 80.3. Let X be an anisotropic quadric of even dimension over a field of characteristic not two. Let $\pi \in \text{Ch}(X^2)$ be the 1-primordial cycle. Suppose that π produces an integer $q \in [2, h]$ and that $v_2(i_2 + \cdots + i_{q-1}) \geq v_2(i_1) + 2$. Then $v_2(i_q) \leq v_2(i_1) + 1$.

PROOF. We fix the following notation:

$$a = i_1,$$

$$b = i_2 + \cdots + i_{q-1} = j_{q-1} - a,$$

$$c = i_q.$$

Set $n = v_2(i_1)$. So $v_2(b) \geq n + 2$.

Consider the cycle $\alpha = \pi \cdot (h^0 \times h^{a-1})$. By Lemma 72.11 the cycle α is minimal since π is and contains the basis elements $h^0 \times l_0$ and $h^{a+b} \times l_{a+b}$.

Suppose the result is false, i.e., $v_2(c) \geq n + 2$. Proposition 80.4 below contradicts the minimality of α, hence proves Theorem 80.3. To state Proposition 80.4 we need the following morphisms:

$$g_1 : X^2_{\mathbb{F}(X)} \to X^3$$

the morphism given by the generic point of the first factor of X^3;

$$t_{12} : \text{Ch}(X^3) \to \text{Ch}(X^3)$$

the automorphism given by the transposition of the first two factors of X^3;

$$\delta_{X^2} : X^2 \to X^4, \quad (x_1, x_2) \mapsto (x_1, x_2, x_1, x_2)$$

the diagonal morphism of X^2. We also use the pairing

$$\circ : \text{Ch}(\tilde{X}^r) \times \text{Ch}(\tilde{X}^s) \to \text{Ch}(\tilde{X}^{r+s-2})$$

(for various $r, s \geq 1$) given by composition of correspondences, where the elements of $\text{Ch}(\tilde{X}^s)$ are considered as correspondences $X^{s-1} \sim \tilde{X}$ and the elements of $\text{Ch}(\tilde{X}^r)$ are considered as correspondences $X \sim \tilde{X}^{r-1}$.

Note that applying Proposition 72.23 to the quadric X_1 with cycle $pr^*_1(\pi) \in \text{Ch}(X_1^2)$, there exists a homogeneous essential symmetric cycle $\beta \in \text{Ch}(X_{\mathbb{F}(X)}^2)$ containing the basis element $h^{a+b} \times l_{a+b+c-1}$ and none of the basis elements having h^i with $i < a+b$ as a factor.

PROPOSITION 80.4. Let $\eta \in \text{Ch}(X^3)$ be a preimage of β under the pull-back epimorphism g_1^*. Let μ be the essence of the composition $\eta \circ \alpha$. Then the cycle

$$(h^0 \times h^{c-a-1}) \cdot \delta_{X^2} \left(t_{12}(\mu) \circ \left(\text{Sq}_{X^3}(\mu) \cdot (h^0 \times h^0 \times h^0^{c-a-1}) \right) \right) \in \text{Ch}(X^2)$$

contains $h^{a+b} \times l_{a+b}$ and does not contain $h^0 \times l_0$.
Recall that because $Ch(\gamma)$, decomposed according to Lemma 80.9, we have $a = 2^n$. In addition, $\dim \varphi \equiv 2a \pmod{2^{n+2}}$ so

$$\text{Sq}_X^{2a}(l_{a+b+c-1}) = 0$$

by Corollary 77.5 and Lemma 77.6.

The cycle β is homogeneous, essential, symmetric, and does not contain any basis element having h^i with $i < a + b$ as a factor. Consequently, we have $\beta = \beta_0 + \beta_1$, where

$$\beta_0 = \text{Sym}(h^{a+b} \times l_{a+b+c-1}),$$

$$\beta_1 = \text{Sym} \left(\sum_{i \in I} l_{i+a+b+c-1} \right)$$

with some set of positive integers I, where $\text{Sym}(\rho) = \rho + \rho'$ for a cycle ρ on \bar{X}^2 is the symmetrization operation. Furthermore, since α does not contain any of the $h^i \times l_i$ with $i \in (0, a + b)$, we have

$$\mu = h^0 \times \beta + h^{a+b} \times \gamma + \nu$$

for some essential cycle $\gamma \in Ch_{D+a+b+c-1} \bar{(X}^2)$ and some cycle $\nu \in Ch(\bar{X}^3)$ such that the first factor of every basis element included in ν is of codimension $> a + b$. We can decompose $\gamma = \gamma_0 + \gamma_1$ with

$$\gamma_0 = x \cdot (h^0 \times l_{a+b+c-1}) + y \cdot (l_{a+b+c-1} \times h^0),$$

$$\gamma_1 = \sum_{j \in J} h^j \times l_{j+a+b+c-1} + \sum_{j \in J'} l_{j+a+b+c-1} \times h^j$$

for some modulo 2 integers $x, y \in \mathbb{Z}/2\mathbb{Z}$ and some sets of integers $J, J' \subset (0, +\infty)$.

We need the following

Lemma 80.11. We have $x = y = 1$, $I \subset [a, +\infty)$, and $J, J' \subset [a+b+c, +\infty)$.

Proof. To determine y, consider the cycle $\delta^*(\mu) \cdot (h^0 \times h^{c-1}) \in \overline{\text{Ch}}(X^2)$ where $\delta : X^2 \to X^3$ is the morphism $(x_1, x_2) \mapsto (x_1, x_2, x_1)$. This rational cycle does not contain $h^0 \times l_0$, while the coefficient of $h^{a+b} \times l_{a+b}$ equals $1 + y$. Consequently, $y = 1$ by the minimality of α.

Similarly, using the morphism $X^2 \to X^3$, $(x_1, x_2) \mapsto (x_1, x_1, x_2)$ instead of δ, one checks that $x = 1$ (although the value of x is not important for our future purposes).

To show that $I \subset [a, +\infty)$, assume to the contrary that $0 < i < c$ for some $i \in I$. Then $l_{i+a+b} \in \overline{\text{Ch}}(X_{F_q})$ for this i and therefore the cycle

$$l_{i+a+b+c-1} = (pr_3)_* \left((l_0 \times l_{i+a+b} \times h^0) \cdot \mu \right)$$

(where $pr_3 : X^3 \to X$ is the projection onto the third factor) is F_q-rational. This contradicts Corollary 71.6 because $i + a + b + c - 1 \geq a + b + c = j_q(X) = i_0(X_{F_q})$.

To prove the statement for J, assume to the contrary that there exists a $j \in J$ with $0 < j < a + b + c$. Then $l_j \in \overline{\text{Ch}}(X_{F_q})$ hence
\[
l_{j+a+b+c-1} = (pr_3)_*(l_{a+b} \times l_j \times h^0) \cdot \mu \in \overline{\text{Ch}}(X_{F_q}),
\]
a contradiction. The statement for J' is proved similarly.

Lemma 80.12. The cycle β is F_1-rational. The cycles γ and γ_1 are F_q-rational.

Proof. Since $F_1 = F(X)$, the cycle β is F_1-rational by definition.

Let $pr_{23} : X^3 \to X^2$, $(x_1, x_2, x_3) \mapsto (x_2, x_3)$ be the projection onto the product of the second and the third factors of X^3. The cycle l_{a+b} is F_q-rational, therefore $\gamma = (pr_{23})_*((l_{a+b} \times h^0 \times h^0) \cdot \mu)$ is also F_q-rational. The cycle γ_0 is F_q-rational as $l_{a+b+c-1}$ is F_q-rational. It follows that γ_1 is F_q-rational as well.

Define
\[
\xi(\chi) := \delta_X^* \left(t_{12}^*(\chi) \circ (S_{qX}^{2a}(\chi) \cdot (h^0 \times h^0 \times h^{c-a-1})) \right) \quad \text{for any } \chi \in \text{Ch}(X^3).
\]
We must prove that the cycle $\xi(\mu) \cdot (h^0 \times h^{c-a-1}) \in \overline{\text{Ch}}(X^2)$ contains $h^{a+b} \times l_{a+b}$ and does not contain $h^0 \times l_{a+b}$, i.e., we have to show that $h^{a+b} \times l_{b+c-1} \in \xi(\mu)$ and $h^0 \times l_{c-a-1} \notin \xi(\mu)$.

If $h^0 \times l_{c-a-1} \in \xi(\mu)$, then, passing from F to $F_1 = F(X)$, we have
\[
l_{c-a-1} = (pr_2)_*((l_0 \times h^0) \cdot \xi(\mu)) \in \overline{\text{Ch}}(X_{F(X)}),
\]
where $pr_2 : X^2 \to X$ is the projection onto the second factor of X^2, contradicting Corollary 71.6 as $c - a - 1 \geq a = i_1(X) = i_0(X_{F(X)})$.

It remains to show that $h^{a+b} \times l_{b+c-1} \in \xi(\mu)$. For any $\chi \in \text{Ch}(X^2)$, write $\text{coeff}(\chi) \in \mathbb{Z}/2\mathbb{Z}$ for the coefficient of $h^{a+b} \times l_{b+c-1}$ in χ. Since $\text{coeff}(\nu) = 0$, it follows from (80.8) that
\[
\text{coeff} \left(\xi(\mu) \right) = \text{coeff} \left(\xi(h^0 \times \beta + h^{a+b} \times \gamma) \right).
\]
We claim that
\[
(80.13) \quad \text{coeff} \left(\xi(h^0 \times \beta) \right) = 0 = \text{coeff} \left(\xi(h^{a+b} \times \gamma) \right).
\]
Indeed, since $S_{qX}^{2a}(h^0 \times \beta) = h^0 \times S_{qX}^{2a}(\beta)$ by Theorem 60.13 we have
\[
\xi(h^0 \times \beta) = h^0 \times \delta_X \left(\beta \circ \left(S_{qX}^{2a}(\beta) \cdot (h^0 \times h^{c-a-1}) \right) \right)
\]
where $\delta_X : X \to X^2$ is the diagonal morphism of X. Hence $\text{coeff} \left(\xi(h^0 \times \beta) \right) = 0$.

Since $S_{qX}^{2a}(h^{a+b} \times \gamma)$ is $h^{a+b} \times S_{qX}^{2a}(\gamma)$ plus terms having h^j with $j > a + b$ as the first factor by Remark 78.2, we have
\[
\text{coeff} \left(\xi(h^{a+b} \times \gamma) \right) = \text{coeff} \left(h^{2a+2b} \times \delta_X^* \left(\gamma \circ \left(S_{qX}^{2a}(\gamma) \cdot (h^0 \times h^{c-a-1}) \right) \right) \right) = 0.
\]
This proves the claim.

It follows by claim (80.13) that
\[
(80.14) \quad \text{coeff} \left(\xi(\mu) \right) = \text{coeff} \left(\xi(h^0 \times \beta + h^{a+b} \times \gamma) - \xi(h^0 \times \beta) - \xi(h^{a+b} \times \gamma) \right).
\]
We start by showing that in view of Lemma 80.12 and Lemma 77.6 using Lemma δ(80.19) 2
δ(80.16)
Consequently, to prove Proposition 80.4 it remains to prove
Lemma 80.15.
\[\delta_X(\gamma \circ (\text{Sq}^{2\alpha}(\beta) \cdot (h^0 \times h^{c-a-1})) + \beta \circ (\text{Sq}^{2\alpha}(\gamma) \cdot (h^0 \times h^{c-a-1}))) = l_{b+c-1}. \]

PROOF. We start by showing that
\[\delta_X^*(\beta \circ (\text{Sq}^{2\alpha}(\gamma) \cdot (h^0 \times h^{c-a-1}))) = 0. \]
Note that \(\text{Sq}^{2\alpha} \) vanishes on \(h^0 \times l_{a+b+c-1} \) by relation (80.9). Therefore \(\text{Sq}^{2\alpha}(\gamma) = \text{Sq}^{2\alpha}(\gamma_1) \) by (80.9). By Lemma 80.11 we may assume that \(\dim X \geq 4(a + b + c) - 2 \) (we shall need this assumption in order to apply Proposition 80.1), otherwise \(\gamma_1 = 0 \).

Looking at the exponent of the first factor of the basis elements contained in \(\text{Sq}^{2\alpha}(\gamma_1) \) and using Lemma 80.11, we see that none of the basis elements \(h^j \times l_{j+b+c-1} \) and \(l_{j+b+c-1} \times h^j \) with \(j < a + b + c \) is present in \(\beta \circ (\text{Sq}^{2\alpha}(\gamma) \cdot (h^0 \times h^{c-a-1})). \) As \(\gamma_1 \) is \(F_r \)-rational by Lemma 80.12, equation (80.16) holds by Proposition 80.1.

We compute \(\text{Sq}^{2\alpha}(\beta_0) \) where \(\beta_0 \) is as in (80.6). By Corollary 77.5 and Lemma 77.6, we have \(\text{Sq}^0(h^{a+b}) = h^{a+b}, \text{Sq}^a(h^{a+b}) = h^{2a+b}, \) and \(\text{Sq}^j(h^{a+b}) = 0 \) for all others \(j \leq 2a. \) Moreover, we have shown in (80.5) that \(\text{Sq}^{2\alpha}(l_{a+b+c-1}) = 0. \) Therefore, \(\text{Sq}^{2\alpha}(\beta_0) = \text{Sym}(h^{2a+b} \times l_{b+c-1}) \) by Theorem 60.13.

Using Lemma 80.11, we have
\[\gamma_0 \circ (\text{Sq}^{2\alpha}(\beta_0) \cdot (h^0 \times h^{c-a-1})) = l_{b+c-1} \times h^0 \]
and
\[\delta_X^*(\gamma_0 \circ (\text{Sq}^{2\alpha}(\beta_0) \cdot (h^0 \times h^{c-a-1})) = l_{b+c-1}. \]
The composition \(\gamma_0 \circ (\text{Sq}^{2\alpha}(\beta_1) \cdot (h^0 \times h^{c-a-1})) \) is trivial. Indeed, by Lemma 80.11, every basis element of the cycle \(\text{Sq}^{2\alpha}(\beta_1) \cdot (h^0 \times h^{c-a-1}) \) has (as the second factor) either \(l_j \) with \(j \geq 2a + b + c > 0 \) or \(h^j \) with \(j \geq b + 2c - 1 > a + b + c - 1, \) while the two basis elements of \(\gamma_0 \) have \(h^0 \) and \(l_{a+b+c-1} \) as the first factor. Consequently
\[\delta_X^*(\gamma_0 \circ (\text{Sq}^{2\alpha}(\beta_1) \cdot (h^0 \times h^{c-a-1})) = 0. \]
Looking at the exponent of the first factor of the basis elements contained in \(\gamma_1 \) and using Lemma 80.11, we see that none of the basis elements \(h^j \times l_{j+b+c-1} \) and \(l_{j+b+c-1} \times h^j \) with \(j < a + b + c \) is present in \(\gamma_1 \circ (\text{Sq}^{2\alpha}(\beta) \cdot (h^0 \times h^{c-a-1})) \). Therefore, the relation
\[\delta_X^*(\gamma_1 \circ (\text{Sq}^{2\alpha}(\beta) \cdot (h^0 \times h^{c-a-1})) = 0 \]
holds by Proposition 80.1 in view of Lemma 80.12.

Taking the sum of the relations in (80.16)–(80.19), we have established the proof of Lemma 80.15. \(\Box \)
This completes the proof of Proposition 80.4. □

Theorem 80.3 is proved. □

Corollary 80.20. Let \(\varphi \) be an anisotropic quadratic form over a field of characteristic not two. If \(h = h(\varphi) > 1 \), then

\[
 v_2(i_1) \geq \min \left(v_2(i_2), \ldots, v_2(i_h) \right) - 1 .
\]

Proof. For any odd-dimensional \(\varphi \), the statement is trivial, as all \(i_q \) are odd by Corollary 78.6. Assume that the inequality fails for an even-dimensional anisotropic \(\varphi \). Note that in this case the difference

\[
 \dim \varphi - i_1 = i_1 + 2(i_2 + \cdots + i_h)
\]

can not be a power of 2 because it is bigger than \(2^n \) and congruent to \(2^n \) modulo \(2^{n+3} \)

for \(n = v_2(i_1) \). Therefore, by Corollary 79.10 the 1-primordial cycle on \(X^2 \) does produce an integer. Therefore, the assumptions of Theorem 80.3 are satisfied, leading to a contradiction. □

Example 80.21. For an anisotropic quadratic form of dimension 6 and of trivial discriminant, we have \(h = 2, i_1 = 1, \) and \(i_2 = 2 \). Therefore, the lower bound on \(v_2(i_1) \) in Corollary 80.20 is exact.

81. Holes in \(I^n \)

Recall that \(F \) is a field of characteristic not two. For every integer \(n \geq 1 \), we set

\[
 \dim I^n(F) := \{ \dim \varphi \mid \varphi \in I^n F \text{ and anisotropic} \} .
\]

and

\[
 \dim I^n := \bigcup \dim I^n(F) ,
\]

where the union is taken over all fields \(F \) (of characteristic \(\neq 2 \)).

In this section, we determine the set \(\dim I^n \). Theorem 81.8 states that \(\dim I^n \) is the set of even non-negative integers without the following disjoint open intervals (which we call *holes in \(I^n \)*):

\[
 U_{n-i} = (2^{n+1} - 2^{i+1}, 2^{n+1} - 2^i) , \quad i = n, n-1, \ldots, 1 .
\]

The statement that \(U_0 \cap \dim I^n = \emptyset \) is already proved (cf. Theorem 23.8(1)). This is a classical result due to J. Arason and A. Pfister [3, Hauptsatz]. The statement on \(U_1 \cap \dim I^n \) for \(n = 3 \) was originally proved 1966 by A. Pfister [49, Satz 14], for \(n = 4 \) it was proved 1998 by D. Hoffmann [23, Main Theorem], and for arbitrary \(n \) it was proved 2000 by A. Vishik [59, Th. 6.4]. The statement that \(U_0 \cap \dim I^n = \emptyset \) for any \(n \) and \(i \) was conjectured by Vishik [59, Conj. 6.5]. A positive solution of the conjecture was announced by A. Vishik in 2002 but the proof is not available; a proof was given in [34].

Proposition 81.1. Let \(\varphi \) be a nonzero anisotropic form of even dimension with \(\deg \varphi = n \geq 1 \). If \(\dim \varphi < 2^{n+1} \) then \(\dim \varphi = 2^{n+1} - 2^{i+1} \) for some \(i \in [0, n-1] \).
PROOF. We use notation of §80. We prove the statement by induction on $\mathfrak{h} = \mathfrak{h}(\varphi)$. The case of $\mathfrak{h} = 1$ is trivial.

So assume that $\mathfrak{h} > 1$. As $\dim \varphi_1 < \dim \varphi < 2^{n+1}$ and $\deg \varphi_1 = \deg \varphi$, where φ_1 is the 1st anisotropic kernel of φ, the induction hypothesis implies
\[
\dim \varphi_1 = 2^{n+1} - 2^{i+1} \quad \text{with some } i \in [1, n-1].
\]
Therefore, $\dim \varphi = 2^{n+1} - 2^{i+1} + 2^i$. Since $\dim \varphi < 2^{n+1}$, we have $i_1 < 2^i$. In particular, $v_2(\dim \varphi - i_1) = v_2(i_1)$. As $i_1 \leq \exp v_2(\dim \varphi - i_1)$, by Proposition 78.4 it follows that i_1 is a 2-power, say $i_1 = 2^j$ for some $j \in [0, i-1]$.

By the induction hypothesis each of the integers $\dim \varphi_1, \ldots, \dim \varphi_\mathfrak{h}$ is divisible by 2^{i+1}. Therefore, $v_2(i_q) \geq i$ for all $q \in [2, \mathfrak{h}]$. It follows by Corollary 80.20 that $j \geq i - 1$. Consequently, $j = i - 1$, hence $\dim \varphi = 2^{n+1} - 2^i$.

Corollary 81.2. Let φ be an anisotropic quadratic form such that $\varphi \in I^n(F)$ for some $n \geq 1$. If $\dim \varphi < 2^{n+1}$, then $\dim \varphi = 2^{n+1} - 2^{i+1}$ for some $i \in [0, n]$.

Proof. We may assume that $\varphi \neq 0$. We have $\deg \varphi \geq n$ by Corollary 25.12. Since $2^{\deg \varphi} \leq \dim \varphi < 2^{n+1}$, we must have $\deg \varphi = n$. The result follows from Proposition 81.1.

Corollary 81.3. Let $\varphi \neq 0$ be an anisotropic quadratic form in $I^n(F)$ with $\dim \varphi < 2^{n+1}$. Then the higher Witt indices of φ are the successive 2-powers:
\[
i_1 = 2^i, \ i_2 = 2^{i+1}, \ldots, \ i_\mathfrak{h} = 2^{n-1},
\]
where $i = \log_2(2^{n+1} - \dim \varphi) - 1$ is an integer.

Proof. By Corollary 81.2, we have $\dim \varphi = 2^{n+1} - 2^{i+1}$ for i as in the statement of Corollary 81.3, and $\dim \varphi_1 = 2^{n+1} - 2^{i+1}$ for some $j > i$. It follows by Proposition 78.4 that $i_1 = 2^i$. We proceed by induction on $\dim \varphi$.

We now show that every even value of $\dim \varphi$ for $\varphi \in I^n(F)$ not forbidden by Corollary 81.2 is possible over some F. We start with some preliminary work.

Lemma 81.4. Let φ be a nonzero anisotropic quadratic form in $I^n(F)$ and $\dim \varphi < 2^{n+1}$ for some $n \geq 1$. Then the 1-primordial cycle is the only primordial cycle in $\overline{\CH(X^2)}$.

Proof. We induct on $\mathfrak{h} = \mathfrak{h}(\varphi)$. The case $\mathfrak{h} = 1$ is trivial, so we assume that $\mathfrak{h} > 1$.

Let $pr_X^2 : \overline{\CH(X^2)} \to \overline{\CH(X_i^2)}$ be the homomorphism of Remark 71.5. Since the integer $\dim \varphi - i_1$ lies inside the open interval $(2^n, 2^{n+1})$, it is not a 2-power. Hence by Corollary 79.10 we have $pr_X^2(\pi) \neq 0$, where $\pi \in \overline{\CH(X^2)}$ is the 1-primordial cycle. Therefore, by the induction hypothesis, the diagram of $pr_X^2(\pi)$ has points in every shell triangle. Thus, the diagram of π itself has points in every shell triangle. By Theorem 72.28, this means that π is the unique primordial cycle in $\overline{\CH(X^2)}$.

Corollary 81.5. Let φ be a nonzero anisotropic quadratic form in $I^n(F)$ and $\dim \varphi = 2^{n+1} - 2$ for some $n \geq 1$. Then for any $i > 0$, the group $\overline{\CH}_{D+i}(X^2)$ contains no essential element.

Proof. By Lemma 81.4, the 1-primordial cycle is the only primordial cycle in $\overline{\CH(X^2)}$. Since $i_1 = 1$ by Corollary 81.3 we have $\dim \pi = D$. To finish we apply Theorem 72.28.
Let we conclude. For any \(C = (\psi) \) that the whole form is anisotropic.

of dimension 2 over \(F \) the field of rational functions in variables \(\phi \) over \(F \) be the primordial cycle. We claim that \(\phi \) of \(b \) anisotropic pattern of \(\psi \) mean the set of the integers \(\dim (\psi) \) trivial. For \(\phi \leq 1 \). Indeed, the anisotropic part of \(\psi \) is anisotropic by the induction hypothesis, while the forms \(\phi \) and \(\psi \) are so by Corollary [19.6]. Applying repeatedly Lemma [19.5] we conclude that the whole form is anisotropic.

In the following proposition, by anisotropic pattern of a quadratic form \(\phi \) over \(F \) we mean the set of the integers \(\dim (\phi_k) \) for all field extensions \(K/F \). By Proposition [25.1] the anisotropic pattern of a form \(\phi \) coincides with the set \(\{ \dim \phi - 2n(\phi) \mid q \in [0, h(\phi)] \} \).

The following result is due to A. Vishik.

Proposition 81.7. Let take a field \(k \) (of char \(k \neq 2 \)) and integers \(n \geq 1 \) and \(m \geq 2 \). Let

\[
F = k(t_i, t_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}
\]

the field of rational functions in variables \(t_i \) and \(t_{ij} \). Then the anisotropic pattern of the quadratic form

\[
(\langle t_{11}, \ldots, t_{1n} \rangle \perp \ldots \perp t_m \cdot \langle t_{m1}, \ldots, t_{mn} \rangle)
\]

over \(F \) is the set

\[
\{ 2^{n+1} - 2^i \mid i \in [1, n+1] \} \cup (2\mathbb{Z} \cap [2^{n+1}, m \cdot 2^n])
\]

Proof. We first show that all the integers \(2^{n+1} - 2^i \) are in the anisotropic pattern of \(\phi \). Indeed, the anisotropic part of \(\phi \) over the field \(E \) obtained from \(F \) by adjoining the square roots of \(t_{31}, t_{41}, \ldots, t_{m1}, t_1 \) and of \(-t_2\), is isomorphic to the form

\[
(\langle t_{11}, \ldots, t_{1n} \rangle \perp \ldots \perp \langle t_{21}, \ldots, t_{2n} \rangle)
\]

of dimension \(2^{n+1} - 2 \). This form is anisotropic by Lemma [81.6]. The anisotropic pattern of this form is \(\{ 2^{n+1} - 2^i \mid i \in [1, n+1] \} \) by Corollary [81.3].

Now assume that there is an even integer in the interval \([2^{n+1}, m \cdot 2^n] \) not in the anisotropic pattern of \(\phi \). Among all such integers take the smallest one and call it \(a \). Let \(b = a - 2 \) and \(c \) the smallest integer greater than \(a \) and lying in the anisotropic pattern of \(\phi \). Let \(E \) be the field in the generic splitting tower of \(\phi \) such that \(\dim \psi = c \) where \(\psi = (\phi_E)_{an} \) and \(Y \) the projective quadric given by the quadratic form \(\psi \). Let \(\pi \in \text{Ch}(Y^2) \) be the 1-primordial cycle. We claim that

\[
\pi = h_0 \times l_{i-1} + l_{i-1} \times h_0
\]
where \(i_1 = i_1(Y) \). Indeed, since \(i_1 = (c - b)/2 > 1 \) and \(q(Y) = 1 \) for all \(q \) such that
\[\dim \psi_q \in [2^{n+1} - 2, b - 2], \]
the diagram of the cycle \(\pi \) does not have any point in the \(q \)th shell triangle for such \(q \). For the integer \(q \) satisfying \(\dim \psi_q = 2^{n+1} - 2 \), the cycle \(\varphi_{\psi_q}(\pi) \in \overline{CH}(Y^2_q) \) has dimension \(> \dim Y_q \) hence is 0 by Corollary 81.5. The relation \(\varphi_{\psi_q}(\pi) = 0 \) means that \(\pi \) has no point in any shell triangle with number \(> q \).

It follows that \(\pi = h^0 \times l_{i_1-1} + l_{i_1-1} \times h^0 \). By Corollary 79.8 the integer \(\dim Y - i_1 + 2 \) is a power of 2, say \(2^p \). Since
\[\dim Y - i_1 + 2 = (c - 2) - (c - b)/2 + 2 = (b + c)/2, \]
the integer \(2^p \) lies inside the open interval \((b, c)\). It follows that the integer \(2^p \) satisfies \(2^{n+1} \leq 2^p < m \cdot 2^n \) and is not in the splitting pattern of the quadratic form \(\varphi \). But every integer \(\leq m \cdot 2^n \) divisible by \(2^p \) is evidently in the anisotropic pattern of \(\varphi \). This contradiction establishes Proposition 81.7.

Summarizing, we have

Theorem 81.8. For any integer \(n \geq 1 \),
\[\dim I^n = \{2^{n+1} - 2^i \mid i \in [1, n + 1]\} \cup (2Z \cap [2^{n+1}, +\infty)). \]

Proof. The inclusion \(\subset \) is given by Corollary 81.2, while the inclusion \(\supset \) follows by Proposition 81.7.

Remark 81.9. The dimension \(2^{n+1} - 2^i \) can be realized directly by difference of two \((i - 1)\)-linked \(n \)-fold Pfister forms (cf. Corollary 24.3).

82. On 2-adic order of higher Witt indices, II

Throughout this section, \(X \) is an anisotropic quadric of dimension \(D \) over a field of characteristic not two. We write \(i_1, \ldots, i_h \) and \(j_1, \ldots, j_h \) for the relative and absolute higher Witt indices of \(X \) respectively, where \(h \) is the height of \(X \) (cf. Section 80).

The main result of this section is Theorem 82.3. It is used to establish further relations between higher Witt indices in Corollary 82.4.

First we establish some further special properties of the 1-primordial cycle in addition to Proposition 72.30 and Theorem 80.3.

Lemma 82.1. Let \(\pi \in \overline{CH}(X^2) \) be the 1-primordial cycle. Then \(Sq^j_{X^2}(\pi) = 0 \) for all \(j \in (0, i_1) \).

Proof. Let \(Sq = Sq_{X^2} \). Assume that \(Sq^j(\pi) \neq 0 \) for some \(j \in (0, i_1) \). By Remark 78.2 one sees that \(Sq^j(\pi) \) has a non-trivial intersection with an appropriate \(j \)th order derivative of \(\pi \). As the derivative of \(\pi \) is minimal by Lemma 72.11, the cycle \(Sq^j(\pi) \) contains this derivative. It follows that \(Sq^j(\pi) \) has a point in the first left shell triangle, contradicting Lemma 78.3.

Proposition 82.2. Let \(i \) be an integer such that \(h^i \times l_{i_1} \) is contained in the 1-primordial cycle. Then \(i \) is divisible by \(2^{n+1} \) for any \(n \geq 0 \) satisfying \(i_1 > 2^n \).
Proof. Assume that the statement is false. Let i be the minimal integer not divisible by 2^{n+1} and such that $h^i \times l_i$ is contained in the 1-primordial cycle $\pi \in \Ch(X^2)$.

Note that π contains only essential basis elements and is symmetric. As $\dim \pi = D + i_1 - 1$, we have $h^i \times l_{i+i_1-1} \in \pi$.

For any non-negative integer k divisible by 2^{n+1}, the binomial coefficient $\binom{k}{i}$ with a non-negative integer l is odd only if l is divisible by 2^{n+1} by Lemma 77.6. Therefore, $Sq_X^j(h^k) = h^k(1 + h)^k$ is a sum of powers of h with exponents divisible by 2^{n+1}. It follows that the value $Sq_X^j(\pi)$ contains the element $Sq_X^0 \times Sq_X^j(l_{i+i_1-1}) = h^i \times Sq_X^j(l_{i+i_1-1})$ for any integer j. Since $Sq_X^j(\pi) = 0$ for $j \in (0, i_1)$ by Lemma 82.1, we have

$$Sq_X^i(l_{i+i_1-1}) = 0 \quad \text{for} \quad j \in (0, i_1).$$

Now look at the specific value $Sq_X^{2v_2(i)}(l_{i+i_1-1})$. Since i is not divisible by 2^{n+1} and $i_1 > 2^n$, the degree $2^{v_2(i)}$ of the Steenrod operation lies in the interval $(0, i_1)$. By Corollary 77.5, the value $Sq_X^{2v_2(i)}(l_{i+i_1-1})$ is equal to $l_{i+i_1-1} \times 2^{v_2(i)}$ multiplied by the binomial coefficient

$$\binom{D - i - i_1 + 2}{2^{v_2(i)}}.$$

The integer $D - i_1 + 2 = \dim \varphi - i_1$ is divisible by 2^{n+1} by Proposition 78.4 as $i_1 > 2^n$. Therefore the binomial coefficient is odd by Lemma 77.6. This is a contradiction establishing the result.

Theorem 82.3. Let X be an anisotropic quadric over a field of characteristic not two. Suppose that the 1-primordial cycle $\pi \in \Ch(X^2)$ produces the integer q. Then $v_2(i_q) \geq v_2(i_1)$.

Proof. Let $n = v_2(i_1)$. Then the integer 2^n divides $\dim \varphi - i_1$ by Proposition 78.4. Therefore 2^n divides $\dim \varphi$ as well.

We have $h^{v_{q-1}} \times l_{q-1+i_1-1} \in \pi$ by definition of q. Consequently, by Proposition 82.2, the integer i_{q-1} is divisible by 2^n. It follows that 2^n divides $\dim \varphi_{q-1} = \dim \varphi - 2i_{q-1}$, where φ_{q-1} is the $(q-1)$th anisotropic kernel of φ. If $m < n$ for $m = v_2(i_q)$, then applying Proposition 78.4, we have $i_1 = i_1(\varphi_{q-1})$ is equal to 2^m and, in particular, smaller than i_1. Therefore the 1-primordial cycle π has no points in the qth shell triangle. But the point $h^{v_{q-1}} \times l_{q-1+i_1-1} \in \pi$ is in the qth shell triangle. This contradiction establishes the theorem.

Corollary 82.4. We have $v_2(i_1) \leq \max \{v_2(i_2), \ldots, v_2(i_h)\}$ if the integer $\dim \varphi - i_1 = i_1 + 2(i_2 + \cdots + i_h)$ is not a power of 2.

Proof. If the integer $\dim \varphi - i_1$ is not a 2-power, then the 1-primordial cycle does produce an integer by Corollary 79.10. The result follows by Theorem 82.3.

83. Minimal height

Every non-negative integer n is uniquely representable in the form of an alternating sum of 2-powers:

$$n = 2^{p_0} - 2^{p_1} + 2^{p_2} - \cdots + (-1)^{r-1} 2^{p_{r-1}} + (-1)^r 2^{p_r}.$$
for some integers \(p_0, p_1, \ldots, p_r \) satisfying \(p_0 > p_1 > \cdots > p_{r-1} > p_r + 1 > 0 \). We shall write \(P(n) \) for the set \(\{p_0, p_1, \ldots, p_r\} \). Note that \(p_r \) coincides with the 2-adic order \(v_2(n) \) of \(n \). For \(n = 0 \) our representation is the empty sum so \(P(0) = \emptyset \).

Define the height \(h(n) \) of the integer \(n \) as the number of positive elements in \(P(n) \). So \(h(n) \) is the number \(|P(n)| \), the cardinality of the set \(P(n) \) if \(n \) even, while \(h(n) = |P(n)| - 1 \) if \(n \) is odd.

In this section we prove the following theorem conjectured by U. Rehmann and(originally proved in [25]):

Theorem 83.1. Let \(\varphi \) be an anisotropic quadratic form over a field of characteristic not two. Then

\[
h(\varphi) \geq h(\dim \varphi) .
\]

Remark 83.2. Let \(n \geq 0 \) and \(\varphi \) anisotropic excellent quadratic form of dimension \(n \). It follows from Proposition 28.5 that \(h(\varphi) = h(n) \). Therefore, the bound in Theorem 83.1 is sharp.

We shall see (cf. Corollary 83.5) that Theorem 83.1 in odd dimensions is a consequence of Proposition 78.4. In even dimensions we shall also need Theorem 80.3 and Theorem 82.3.

Suppose \(\varphi \) is anisotropic. Let \(\varphi_i \) be the \(i \)th anisotropic kernel form of \(\varphi \), and \(n_i = \dim \varphi_i, \ 0 \leq i \leq h(\varphi) \).

Lemma 83.3. For any \(i \in [1, h] \), the difference \(d(i) := h(n_{i-1}) - h(n_i) \) satisfies the following:

1. If the dimension of \(\varphi \) is odd then \(|d(i)| = 1 \).
2. If the dimension of \(\varphi \) is even then \(|d(i)| \leq 2 \). Moreover,
 1. If \(d(i) = 2 \) then \(P(n_i) \supset P(n_{i-1}) \) and \(v_2(n_i) \geq v_2(n_{i-1}) + 2 \).
 2. If \(d(i) = 1 \), the set difference \(P(n_i) \setminus P(n_{i-1}) \) is either empty or consists of a single element \(p \), in which case both integers \(p - 1 \) and \(p + 1 \) lie in \(P(n_{i-1}) \).
 3. If \(d(i) = 0 \), the set difference \(P(n_i) \setminus P(n_{i-1}) \) consists of one element \(p \) and either \(p - 1 \) or \(p + 1 \) lies in \(P(n_{i-1}) \).
 4. If \(d(i) = -1 \), the set difference \(P(n_i) \setminus P(n_{i-1}) \) consists either of two elements \(p - 1 \) and \(p + 1 \) for some \(p \in P(n_{i-1}) \) or the set difference consists of one element.
 5. If \(d(i) = -2 \), the set difference \(P(n_i) \setminus P(n_{i-1}) \) consists of two elements, i.e., \(P(n_i) \supset P(n_{i-1}) \). Moreover, in this case one of these two elements is equal to \(p + 1 \) for some \(p \in P(n_{i-1}) \).

Proof. Write \(p_0, p_1, \ldots, p_r \) for the elements of \(P(n_{i-1}) \) in descending order. We have \(n_i = n_{i-1} - 2i \). We also know by Proposition 78.4 that there exists a non-negative integer \(m \) such that \(2^m < n_{i-1}, i \equiv n_{i-1} \mod 2^m \), and \(1 \leq i \leq 2^m \). The condition \(2^m < n_{i-1} \) implies \(m < p_0 \). Let \(p_s \) be the element with maximal even \(s \) satisfying \(m < p_s \).

If \(m = p_s - 1 \) then \(i = 2^{p_s - 1} - 2^{p_{s+1}} + 2^{p_{s+2}} - \cdots \) and, therefore,

\[
n_i = 2^{p_0} - 2^{p_1} + \cdots - 2^{p_{s-1}} + 2^{p_{s+1}} - 2^{p_{s+2}} + \cdots + (-1)^r 2^{p_r} .
\]

If \(s = r \) and \(p_{r-1} + 1 = p_{r-2} \) then \(P(n_i) \) equals \(P(n_{i-1}) \) without \(p_{r-2} \) and \(p_r \). Otherwise, \(P(n_i) \) equals \(P(n_{i-1}) \) without \(p_s \).
We assume that \(m < p_s - 1 \).

If \(s = r \) then \(i_s = 2^m \) and \(n_s = n_{s-1} - 2^{m+1} \). If \(m = p_s - 2 \) we have \(P(n_i) \) obtained from \(P(n_{i-1}) \) by replacing \(p_s \) with \(p_s - 1 \). If \(m < p_s - 2 \) we have \(P(n_i) \) equals \(P(n_{i-1}) \) with \(m + 1 \) added.

So we may assume in addition that \(s < r \).

If \(p_s - 1 > m > p_{s+1} \) then \(i_i = 2^m - 2^{p_{s+1}} + 2^{p_{s+2}} - \ldots \) and, therefore,

\[
n_i = 2^{p_0} - 2^{p_1} + \ldots - 2^{p_{s-1}} + 2^{p_s} - 2^{m+1} + 2^{p_{s+1}} - 2^{p_{s+2}} + \ldots + (-1)^{r-1}2^{p_r}.
\]

This is the correct representation of \(n_i \) and, therefore, \(P(n_i) \) equals \(P(n_{i-1}) \) with \(m + 1 \) added.

It remains to consider the case with \(m \leq p_{s+1} \) while \(s < r \). In this case, first assume that \(s = r - 1 \). Then \(i_i = 2^m \) and \(n_i = n_{i-1} - 2^{m+1} \).

If \(m < p_r - 2 \) then \(P(n_i) \) equals \(P(n_{i-1}) \) with \(p_r + 1 \) and \(m + 1 \) added.

If \(m = p_r - 2 \) then \(P(n_i) \) equals \(P(n_{i-1}) \) with \(p_r \) removed and \(p_r + 1 \) and \(p_r - 1 \) added.

If \(m = p_r - 1 \), one has two possibilities. If \(p_{r-1} > p_r + 2 \), then \(P(n_i) \) equals \(P(n_{i-1}) \) with \(p_r \) removed and \(p_r + 1 \) added. If \(p_{r-1} = p_r + 2 \), then \(P(n_i) \) equals \(P(n_{i-1}) \) with \(p_r \) and \(p_{r-1} \) removed while \(p_r + 1 \) added.

Finally, if \(m = p_r \) then either \(p_{r-1} = p_r + 2 \) and \(P(n_i) \) equals \(P(n_{i-1}) \) without \(p_{r-1} \), or \(P(n_i) \) equals \(P(n_{i-1}) \) with \(p_r + 2 \) added.

We finish the proof considering the case with \(m \leq p_{s+1} \) and \(s < r - 1 \). We have:

\[
i_i = 2^{p_{s+2}} - 2^{p_{s+3}} + \cdots + (-1)^{r}2^{p_r} \quad \text{and}
\]

\[
n_i = 2^{p_0} - 2^{p_1} + \cdots + 2^{p_s} - 2^{p_{s+1}+1} + 2^{p_{s+1}} - 2^{p_{s+2}} + \cdots + (-1)^{r+1}2^{p_r}.
\]

So, if \(p_s > p_{s+1} + 1 \) then \(P(n_i) \) equals \(P(n_{i-1}) \) with \(p_{s+1} + 1 \) added; otherwise \(P(n_i) \) is \(P(n_{i-1}) \) with \(p_s \) removed.

Corollary 83.4. Let \(\varphi \) be an anisotropic odd-dimensional quadratic form and \(i \in [1, \ h] \). Then

\[
h(n_{i-1}) - h(n_i) \leq 1.
\]

Corollary 83.5. Let \(\varphi \) be an anisotropic quadratic form of odd dimension \(n \). Then \(h(\varphi) \geq h(n) \).

Proof. As \(\dim \varphi \) is odd, \(n_h = 1 \). Then \(h(n_h) = 0 \) and by Corollary 83.4, we have \(h(n_{i-1}) - h(n_i) \leq 1 \) for every \(i \in [1, \ h] \). Therefore, \(h(n_0) \leq h \). Since \(\varphi \) is anisotropic, \(n = n_0 \), and the result follows. \(\Box \)

Remark 83.6. By Lemma 83.3, for any quadratic form \(\varphi \) of odd dimension \(n \), we have \(h(n_i) = h(n_{i-1}) \pm 1 \). Therefore \(h(\varphi) \equiv h(n) \pmod{2} \).

Proposition 83.7. Let \(\varphi \) be an anisotropic quadratic form of even dimension \(n \). Suppose that \(v_2(n_i) \geq v_2(n_{i-1}) + 2 \) for some \(i \in [1, \ h] \). Then the open interval \((i, \ h)\) contains an integer \(i' \) such that \(|v_2(n_{i'}) - v_2(n_{i-1})| \leq 1 \).

Proof. It suffices to consider the case \(i = 1 \). Note that \(h \geq 2 \). Set \(p = v_2(n_0) \). By the assumption, we have \(v_2(n_1) \geq p + 2 \). Therefore \(v_2(i_1) = p - 1 \). Clearly, the integer \(n_0 - i_1 = i_1 + n_1 \) is not a power of 2. Therefore, by Corollary 79.10, the 1–primordial cycle of \(\mathcal{H}(X^2) \) produces an integer \(j \in [2, \ h] \). We shall show that either \(v_2(n_{j-1}) \) or \(v_2(n_j) \)
lies in \([p - 1, \, p + 1]\) for this \(j\). We then take \(i' = j - 1\) in the first case and \(i' = j\) in the second case. Note that \(i' \neq 1\) and \(i' \neq h\) as \(v_2(n_1) \geq p + 2\), while \(v_2(n_h) = \infty\).

By Theorem 82.3, we have \(v_2(n_j) \geq p - 1\). Consequently, \(v_2(n_{j-1}) \geq p - 1\) by Proposition 78.4 as well. Since \(n_1 = 2(i_2 + \cdots + i_{j-1} + j_{j-1})\), it follows that \(v_2(i_2 + \cdots + i_{j-1} + 1) \geq p - 1\). If \(v_2(i_2 + \cdots + i_{j-1}) < p + 1\), then \(v_2(n_{j-1}) = v_2(i_2 + \cdots + i_{j-1} + 1) + 1 \in [p - 1, \, p + 1]\). So, we may assume that \(v_2(i_2 + \cdots + i_{j-1}) \geq p + 1\) and apply Theorem 80.3 stating that \(v_2(i_j) \leq p\). We have \(v_2(i_j) \in \{p - 1, \, p\}\). If \(v_2(n_{j-1}) > v_2(i_j) + 1\) then \(v_2(n_j) = v_2(i_j) + 1 \in \{p, \, p + 1\}\). If \(v_2(n_{j-1}) = v_2(i_j) + 1\) then \(v_2(n_{j-1}) \in \{p, \, p + 1\}\). Finally, If \(v_2(n_{j-1}) < v_2(i_j) + 1\) then \(v_2(n_{j-1}) = v_2(i_j)\) hence \(v_2(n_{j-1}) \in \{p - 1, \, p\}\).

Corollary 83.8. Let \(\varphi\) be an anisotropic quadratic form of even dimension \(n\). Suppose that \(v_2(n_i) \geq v_2(n_{i-1}) + 2\) for some \(i \in [1, \, h]\). Set \(p = v_2(n_{i-1})\). Then there exists \(i' \in (i, \, h)\) such that the set \(P(n_{i'})\) contains an element \(p'\) with \(|p' - p| \leq 1\).

Proof. Let \(i'\) be the integer in the conclusion of Proposition 83.7. Then \(p' = v_2(n_{i'})\) works. \(\square\)

We now prove Theorem 83.1.

Proof of Theorem 83.1. By Corollary 83.5, we need only to prove Theorem 83.1 for even-dimensional forms. So, let \(\{n_0 > n_1 > \cdots > n_h\}\) with \(n_i = \dim \varphi_i\) and \(h \geq 1\) be the anisotropic pattern of \(\varphi\) with \(n = n_0\) even.

Let \(H\) be the set \(\{1, 2, \ldots, h\}\). For any \(i \in H\), let \(d(i) := h(n_{i-1}) - h(n_i)\). Recall that \(d(i) \leq 2\) for any \(i \in H\) by Lemma 83.3. Let \(C\) be the subset of \(H\) consisting of all those \(i \in H\) such that \(d(i) = 2\). We shall construct a map \(f : C \to H\) satisfying \(d(j) \leq 1 - |f^{-1}(j)|\) for any \(j \in f(C)\). In particular, we shall have \(f(C) \subset H \setminus C\). Once such a map is constructed, we establish Theorem 83.1 as follows. The subsets \(f^{-1}(j) \cup \{j\} \subset H\), where \(j\) runs over \(H \setminus C\), are disjoint and cover \(H\). In addition, the average value of \(d\) on each such subset is \(\leq 1\), so the average value \((\sum_{i \in H} d(i))/h = h(n)/h\) of \(d\) on \(H\) is \(\leq 1\), i.e., \(h(n) \leq h\).

So it remains to define the map \(f\) with the desired properties. Let \(i \in C\). By Lemma 83.3, we have \(v_2(n_i) \geq v_2(n_{i-1}) + 2\). Therefore, by Corollary 83.8, there exists \(i' \in (i, \, h)\) such that the set \(P(n_{i'})\) contains an element \(p'\) satisfying \(|p' - p| \leq 1\) for \(p = v_2(n_{i-1})\). Taking the minimal \(i'\) with this property, set \(f(i) = i'\). We also define \(g(i)\) to be the minimal element of \(P(n_{f(i)})\) satisfying \(|g(i) - p| \leq 1\).

This defines the map \(f\). To finish, we must check that \(f\) has desired property.

First observe that by the definition of \(f\), for any \(i \in C\) and any \(j \in [i, \, f(i) - 1]\) the set \(P(n_j)\) does not contain any element \(p\) with \(|p - v_2(n_{i-1})| \leq 1\). It follows that if \(f(i_1) = f(i_2)\) for some \(i_1 \neq i_2\) then for \(p_1 = v_2(n_{i_1-1})\) with \(p_2 = v_2(n_{i_2-1})\) one has \(|p_2 - p_1| \geq 2\). Moreover, if \(g(i_1) = g(i_2)\) then, by definition of \(g\), \(|p_1 - p| \leq 1\) and \(|p_2 - p| \leq 1\) for \(p = g(i_1) = g(i_2)\). Therefore, we have

\[(83.9) \quad \text{if } f(i_1) = f(i_2) \text{ and } g(i_1) = g(i_2) \text{ for some } i_1 \neq i_2 \text{ then } |p_2 - p_1| = 2 \text{ for } p_1 = v_2(n_{i_1-1}) \text{ and } p_2 = v_2(n_{i_2-1}).\]

Let \(j \in f(C)\). By the definition of \(f\), the set difference \(P(n_j) \setminus P(n_{j-1})\) is non-empty. Then \(d(j) \neq 2\) Lemma 83.3(II+2). Moreover, the above set difference contains an element
Therefore, we may assume that \(p - 1, p + 1 \) \(\not\subset \) \(P(n_j-1) \). Then \(\delta(j) \neq 1 \) by Lemma \(\text{[83.3]} \) (I+1). Therefore, \(\delta(j) \leq 0 \) by Lemma \(\text{[83.3]} \).

Now let \(j \) be an element of \(f(C) \) with \(|f^{-1}(j)| \geq 2 \). Let \(i_1 < i_2 \) be two different elements of \(f^{-1}(j) \). Note that \(i_1 < i_2 < j \). Moreover, if \(p_1 = v_2(n_{i_1-1}) \) and \(p_2 = v_2(n_{i_2-1}) \) then by the definition of \(f(i_1) \), we have \(|p_2 - p_1| > 1 \). We shall show that \(\delta(j) \leq -1 \). We already know \(\delta(j) \leq 0 \). If \(\delta(j) = 0 \), then by Lemma \(\text{[83.3]} \) (II-0), the set difference \(P(n_j) \setminus P(n_{j-1}) \) consists of one element \(p' \) and either \(p' - 1 \) or \(p' + 1 \) lies in \(P(n_{j-1}) \). Since the difference \(P(n_j) \setminus P(n_{j-1}) \) consists of one element \(p' \), we have \(p' = g(i_1) = g(i_2) \). It follows that \(\{p_1, p_2\} = \{p' - 1, p' + 1\} \). Consequently, the set \(P(n_{j-1}) \) contains neither \(p' - 1 \) nor \(p' + 1 \), a contradiction. Thus we have proved that \(\delta(j) \leq -1 \) if \(|f^{-1}(j)| \geq 2 \).

Now let \(j \) be an element of \(f(C) \) with \(|f^{-1}(j)| \geq 3 \). Let \(i_1, i_2, i_3 \) be three different elements of \(f^{-1}(j) \). The equalities \(g(i_1) = g(i_2) = g(i_3) \) do not take place simultaneously, as otherwise, by \(\text{[83.9]} \), we would have \(|p_2 - p_1| = 2 \), \(|p_3 - p_2| = 2 \), and \(|p_1 - p_3| = 2 \), a contradiction. However, the set difference \(P(n_j) \setminus P(n_{j-1}) \) can have at most two elements. Therefore, we may assume that \(g(i_1) = g(i_2) \) and that \(g(i_3) \) is different from \(g(i_1) = g(i_2) \). Set \(p' = g(i_1) = g(i_2) \). We shall show that \(\delta(j) = -2 \). We already know \(\delta(j) \leq -1 \). If \(\delta(j) = -1 \) then by Lemma \(\text{[83.3]} \) (II-1), the set difference \(P(n_j) \setminus P(n_{j-1}) \) consists of \(\tilde{p} - 1 \) and \(\tilde{p} + 1 \) for some \(\tilde{p} \in P(n_{j-1}) \). However, \(p' \) is neither \(\tilde{p} - 1 \) nor \(\tilde{p} + 1 \), a contradiction.

We finish the proof by showing that \(|f^{-1}(j)| \) is never \(\geq 4 \). Indeed, if \(|f^{-1}(j)| \geq 4 \), then the set difference \(P(n_j) \setminus P(n_{j-1}) \) contains two elements \(p' \) and \(p'' \) with none of \(p' \pm 1 \) or \(p'' \pm 1 \) lying in \(P(n_{j-1}) \), contradicting Lemma \(\text{[83.3]} \). \(\square \)
CHAPTER XVI
Variety of maximal totally isotropic subspaces

The projective quadric was the only variety associated with a quadratic form which we have considered so far in the book. In this chapter we introduce another variety of maximal isotropic subspaces.

84. The variety Gr(ϕ)

Let ϕ be a non-degenerate quadratic form on V over F. In this chapter we study the scheme Gr(ϕ) of maximal totally isotropic subspaces of V. We view Gr(ϕ) as a closed subscheme of the Grassmannian variety of V. Let n be the integer part of (dim ϕ − 1)/2, so that dim ϕ = 2n + 1 or 2n + 2. We also set r = dim ϕ − n − 1.

Example 84.1. If dim ϕ = 1, we have Gr(ϕ) = Spec F. If dim ϕ = 2 or 3 then Gr(ϕ) coincides with the quadric of ϕ, that is Gr(ϕ) = Spec C0(ϕ) if dim ϕ = 2 and Gr(ϕ) is the conic curve associated to the quaternion algebra C0(ϕ) if dim ϕ = 3.

The orthogonal group O(V, ϕ) acts transitively on Gr(ϕ). Let O+(V, ϕ) be the (connected) special orthogonal group (cf. [38, §23]). If dim ϕ is odd, O+(V, ϕ) acts transitively on Gr(ϕ) and therefore, Gr(ϕ) is a smooth projective variety over F.

Suppose that dim ϕ = 2n + 2 is even. Then the group O(V, ϕ) has two connected components, one of which is O+(V, ϕ), and the factor group O(V, ϕ)/O+(V, ϕ) is identified with the Galois group over F of the center Z of the even Clifford algebra C0(V, ϕ). Recall that Z is an étale quadratic F-algebra, called the discriminant of ϕ (cf. [13]).

A point of Gr(ϕ) over a commutative ring R is a totally isotropic direct summand P of rank n + 1 of the R-module VR = V ⊗F R. Since p^2 = 0 in the Clifford algebra C(V, ϕ)_R for every p ∈ P, the inclusion of P into VR gives rise to an injective R-module homomorphism h : ∧^{n+1} P → C(V, ϕ)_R. Let W be the image of h. Since ZW = W, left multiplication by elements of the center Z of C0(V, ϕ) defines an F-algebra homomorphism Z → End_R(W) = R. Therefore we have a morphism Gr(ϕ) → Spec Z, so Gr(ϕ) is a scheme over Z.

If the discriminant of ϕ is trivial, i.e., Z = F × F, the scheme Gr(ϕ) has two smooth (irreducible) connected components Gr1 and Gr2 permuted by O(V, ϕ)/O+(V, ϕ). More precisely, they are isomorphic under any reflection of V. If Z/F is a field extension, the discriminant of ϕ_Z is trivial and therefore Gr(ϕ) is isomorphic to a connected component of Gr(ϕ_Z).

The varieties of even and odd dimensional forms are related by the following statement.

Proposition 84.2. Let ϕ be a non-degenerate quadratic form on V over F of dimension 2n + 2 and trivial discriminant, and ϕ' a non-degenerate subform of ϕ on a
subspace $V' \subset V$ of codimension 1. Let Gr_1 be a connected component of $\text{Gr}(\varphi)$. Then the assignment $U \mapsto U \cap V'$ gives rise to an isomorphism $\text{Gr}_1 \sim \text{Gr}(\varphi')$.

Proof. Since both of the varieties Gr_1 and $\text{Gr}(\varphi')$ are smooth, it suffices to show that the assignment induces bijection on points over any field extension L/F. Moreover, we may assume that $L = F$. Let $U' \subset V'$ be a totally isotropic subspace of dimension n. Then the orthogonal complement U'^\perp of U' in V is $n + 2$-dimensional and the induced quadratic form on $H = U'^\perp/U_1$ has trivial discriminant (i.e., H is a hyperbolic plane). The space H has exactly two isotropic lines permuted by a reflection. Therefore the pre-images of these lines in V are two totally isotropic subspaces of dimension $n + 1$ living in different components of $\text{Gr}(\varphi)$. Thus exactly one of them represents a point of Gr_1 over F. □

Let φ' be a non-degenerate subform of codimension 1 of a non-degenerate quadratic form φ of even dimension. Let Z be the discriminant of φ. By Proposition 84.2, we have $\text{Gr}(\varphi')_Z$ is isomorphic to a connected component Gr_1 of $\text{Gr}(\varphi_Z)$ and therefore, $\text{Gr}(\varphi) \simeq \text{Gr}_1 \simeq \text{Gr}(\varphi')_Z$.

Example 84.3. If $\dim \varphi = 4$, $\text{Gr}(\varphi)$ is the conic curve (over Z) associated to the quaternion algebra $C_0(\varphi)$.

Exercise 84.4. Show that if $3 \leq \dim \varphi \leq 6$ then $\text{Gr}(\varphi)$ is isomorphic to the Severi-Brauer variety associated to the even Clifford algebra $C_0(\varphi)$.

85. Chow ring of $\text{Gr}(\varphi)$ in the split case

Let φ be a non-degenerate quadratic form on V of dimension $2n + 1$ or $2n + 2$ and $r = \dim \varphi - n - 1$. Let $G = \text{Gr}(\varphi)$. Let E denote the tautological vector bundle over G of rank r. It is the restriction of the tautological bundle over the Grassmannian variety of V. The variety E is the closed subvariety of trivial bundle $V\mathbb{1} := V \times G$ consisting of pairs (u, U) such that $u \in U$. The projective bundle $\mathbb{P}(E)$ is a closed subvariety of $X \times G$, where X is the (smooth) projective quadric of φ.

Let E^\perp be the kernel of the natural morphism $V\mathbb{1} \to E^\vee$ given by the polar bilinear form b_φ. If $\dim \varphi = 2n + 2$, we have $U^\perp = U$ for any totally isotropic subspace $U \subset V$ of dimension $n + 1$, hence $E^\perp = E$.

Suppose that $\dim \varphi = 2n + 1$. For any totally isotropic subspace $U \subset V$ of dimension n, the orthogonal complement U^\perp contains U as a subspace of codimension 1. Therefore, E^\perp is a vector bundle over G of rank $n + 1$ containing E. The fiber of E^\perp over U is the orthogonal complement U^\perp.

Suppose that φ is isotropic. Choose an isotropic line $L \subset V$. Set $\tilde{V} = L^\perp/L$. Let $\tilde{\varphi}$ be the quadratic form on \tilde{V} induced by φ and \tilde{X} the projective quadric of $\tilde{\varphi}$. Recall that the incidence correspondence $\alpha : \tilde{X} \sim X$ is given by the schemes of pairs $(A/L, B)$ such that $B \subset A$.

A totally isotropic subspace of \tilde{V} of dimension $r - 1$ is of the form U/L, where U is a totally isotropic subspace of V of dimension n containing L. Therefore, we can view the variety $\tilde{G} := \text{Gr}(\tilde{\varphi})$ of maximal totally isotropic subspaces of \tilde{V} as a closed subvariety of \tilde{G}. Denote by $i : \tilde{G} \to G$ the closed embedding.
Let U be a totally isotropic subspace of V of dimension r that does not contain L. Then $\dim(U \cap L^\perp) = r - 1$ and $((U \cap L^\perp) + L)/L$ is a totally isotropic subspace of \tilde{V} of dimension $r - 1$. We have a morphism $f : \Gr \setminus \Gr \to \Gr$ that takes U to $((U \cap L^\perp) + L)/L$.

We claim that f is an affine bundle. We use the criterion of Lemma 51.10. Let R be a local commutative F-algebra. An F-morphism $\Spec R \to \Gr$, or equivalently, an R-point of \Gr is given by the submodule $\tilde{U}_R = \tilde{U} \otimes_F R$ of V_R, where \tilde{U} is an r-dimensional totally isotropic subspace of V containing L.

For any R-point U_R of $\Gr \setminus \Gr$ with U an r-dimensional totally isotropic subspace of V not containing L satisfying $f(U_R) = \tilde{U}_R/L_R$, we have $U \cap \tilde{U} = U \cap L^\perp$. Hence $U + \tilde{U}$ is a subspace of V of dimension $r + 1$. The assignment $U_R \mapsto (U_R + \tilde{U}_R)/\tilde{U}_R$ gives rise to an isomorphism between the fiber $\Spec \tilde{R} \times \Gr(\Gr)$ of f over U_R/L_R and $\Spec \tilde{R} \times (\mathbb{P}(V/\tilde{U}) \setminus \mathbb{P}(L^\perp/\tilde{U})) \simeq \mathbb{A}^n_R$. By Lemma 51.10, f is an affine bundle. Note that $\dim \Gr = \dim \Gr + n$, so $\dim \Gr = \frac{n(n+1)}{2}$.

We have shown that \Gr is a cellular variety with the short filtration $\Gr \subset \Gr$ and by Corollary 65.3

\[(85.1) \quad M(\Gr) = M(\Gr) \oplus M(\Gr)(n).\]

The morphism $M(\Gr) \to M(\Gr)$ is induced by the embedding $i : \Gr \to \Gr$ and $M(\Gr)(n) \to M(\Gr)$ is given by the transpose of the closure of the graph of f, the class of which we denote by $\beta \in \CH(\Gr \times \Gr)$.

For the rest of this section, we will suppose that φ is split. It follows by induction from (85.1) and Example 84.1 that $\CH(\Gr)$ is a free abelian group of rank 2^{n+1}. We shall determine multiplicative structure of $\CH(\Gr)$.

Since the motive of X (and also \Gr) is split, we have $\CH(X \times \Gr) = \CH(X) \otimes \CH(\Gr)$ by Proposition 63.3. In other words, $\CH(X \times \Gr)$ is a free module over $\CH(\Gr)$ with basis

\[
\begin{align*}
\{h^k \times [\Gr], \ l_k \times [\Gr] & \quad | \quad k \in [0, n - 1]\} \quad \text{if} \quad \dim \varphi = 2n + 1, \\
\{h^k \times [\Gr], \ l_k \times [\Gr], \ l_n, \ l'_n & \quad | \quad k \in [0, n - 1]\} \quad \text{if} \quad \dim \varphi = 2n + 2.
\end{align*}
\]

Note that in the even dimensional case we assume that X is oriented.

In both cases, $\mathbb{P}(E)$ is a closed subvariety of $X \times \Gr$ of codimension n. Therefore, in the odd dimensional case there are unique elements $e_k \in \CH^k(\Gr), \ k \in [0, n]$ satisfying

\[(85.2) \quad [\mathbb{P}(E)] = l_{n-1} \times e_0 + \sum_{k=1}^{n} h^{n-k} \times e_k\]

in $\CH(X \times \Gr)$. Pulling this back with respect to the canonical morphism $X_{F(\Gr)} \to X \times \Gr$, we see that $e_0 = 1$.

In the even dimensional case, there are unique elements $e_k \in \CH^k(\Gr), \ k \in [0, n]$ and $e'_k \in \CH^0(\Gr)$ satisfying

\[(85.3) \quad [\mathbb{P}(E)] = l_n \times e_0 + l'_n \times e'_0 + \sum_{k=1}^{n} h^{n-k} \times e_k\]
in \(\text{CH}(X \times \text{Gr}) \). Choose a totally isotropic subspace \(U \subset V \) of dimension \(n + 1 \) so that \([\mathbb{P}(U)] = l_n\) in \(\text{CH}(X) \) and let \(U' \) be a reflection of \(U \). It follows from Exercise 67.4 that \([\mathbb{P}(U')] = l'_n\). Let \(g \) denote the generic point of \(\text{Gr} \) whose closure contains \([U]\). Let \(g' \) be another generic point of \(\text{Gr} \) whose closure contains \([U']\). Note that \(\text{CH}^0(\text{Gr}) = \mathbb{Z}[g] \oplus \mathbb{Z}[g'] \).

Pulling back equation (85.3) with respect to the two morphisms \(X \to X \times \text{Gr} \) given by the points \([U]\) and \([U']\) respectively, we see that \(e_0 = [g] \) and \(e'_0 = [g'] \). In particular, \(e_0 \) and \(e'_0 \) are orthogonal idempotents of \(\text{CH}^0(\text{Gr}) \) hence \(e_0 + e'_0 = 1 \).

It follows that for every totally isotropic subspace \(W \subset V \) of dimension \(n + 1 \) with \([W]\) in the closure of \(g \) (resp. \(g' \)), we have \([W] = l_n \) (respectively \([W] = l'_n \)). In particular, to give an orientation of \(X \) is to choose one of the two connected components of \(\text{Gr} \).

The multiplication rule in \(\text{CH}(X) \) implies that in both cases

\[
e_k = p_\ast ((l_{n-k} \times 1) \cdot [\mathbb{P}(E)])
\]

for \(k \in [1, n] \), where \(p : X \times \text{Gr} \to \text{Gr} \) is the projection.

We view the cycle \(\gamma = [\mathbb{P}(E)] \) in \(\text{CH}(X \times \text{Gr}) \) as the incidence correspondence \(X \rightsquigarrow \text{Gr} \). It follows from Proposition 62.2 that the induced homomorphism \(\gamma_\ast : \text{CH}(X) \to \text{CH}(\text{Gr}) \)

takes \(l_{n-k} \) to \(e_k \).

Let \(s : \mathbb{P}(E) \to \text{Gr} \) and \(t : \mathbb{P}(E) \to X \) be the two projections. Proposition 61.6 provides the following simple formula for \(e_k \):

\[
(85.4) \quad e_k = s_\ast \circ t^\ast(l_{n-k}).
\]

Lemma 85.5. We have \(e_n = [\widetilde{\text{Gr}}] \) in \(\text{CH}^n(\text{Gr}) \).

Proof. The element \(t^\ast(l_0) \) coincides with the cycle of the intersection \(([L] \times \widetilde{\text{Gr}}) \cap \mathbb{P}(E) \). It follows from (85.4) that \([\widetilde{\text{Gr}}] = s_\ast \circ t^\ast(l_0) = e_n \). \(\square \)

We write \(\tilde{h} \) and \(\tilde{l}_i \) for the standard generators of \(\text{CH}(\tilde{X}) \). By Lemma 71.3, we can orient \(\tilde{X} \) (in the case \(\dim \varphi \) is even) so that \(\alpha_\ast(\tilde{l}_{k-1}) = \tilde{l}_k \) and \(\alpha^\ast(\tilde{l}_k) = \tilde{l}_{k-1} \) for all \(k \).

Denote by \(\tilde{e}_k \in \text{CH}^k(\text{Gr}) \) the elements given by (85.2) or (85.3) for \(\text{Gr} \). Similarly, we have the incidence correspondence \(\tilde{\gamma} : \tilde{X} \rightsquigarrow \text{Gr} \) with \(\tilde{\gamma}_\ast(\tilde{l}_{n-1-k}) = \tilde{e}_k \).

Lemma 85.6. The diagram of correspondences

\[
\begin{array}{c}
\tilde{X} \xrightarrow{\alpha} X \xrightarrow{\alpha^t} \tilde{X} \\
\gamma \downarrow \quad \quad \quad \quad \quad \quad \gamma \downarrow \\
\text{Gr} \xrightarrow{\beta} \text{Gr} \xrightarrow{\gamma^t} \text{Gr}
\end{array}
\]

is commutative.

Proof. By Corollary 56.19, all calculations can be done on the level of cycles representing the correspondences. By definition of the composition of correspondences, the compositions \(\gamma \circ \alpha \) and \(\beta \circ \tilde{\gamma} \) coincide with the cycle of the subscheme of \(\tilde{X} \times \text{Gr} \) consisting of all pairs \((A/L, U) \) with \(\dim(L + U) \leq n + 1 \). Similarly, the compositions \(\tilde{\gamma} \circ \alpha^t \) and \(\gamma^t \circ \gamma \) coincide with the cycle of the subscheme of \(X \times \text{Gr} \) consisting of all pairs \((B, \tilde{U}/L) \) with \(B \subset \tilde{U} \). \(\square \)
Corollary 85.7. We have $\beta_*(e_k) = e_k$ and $i^*(e_k) = \tilde{e}_k$ for all $k \in [0, n - 1]$.

Proof. The equalities $\beta_*(e_0) = e_0$ and $i^*(e_0) = \tilde{e}_0$ follows from the fact that X and \tilde{X} have compatible orientations. If $k \geq 1$, we have

$$\beta_*(e_k) = \beta_* \circ \gamma_*(l'_n - 1 - k) = \gamma_* \circ \alpha_*(l'_n - 1 - k) = \gamma_*(l_n - k) = e_k,$$

$$i^*(e_k) = i^*_s(e_k) = i^*_s \circ \gamma_*(l_n - k) = \gamma_* \circ \alpha^*_s(l_n - k) = \gamma^*_s(l_n - k) = \gamma(l_n - k) = \tilde{e}_k. \quad \square$$

For a subset I of $[0, n]$ let e_I be the product of e_k for all $k \in I$. Similarly we define \tilde{e}_J for any subset $J \subset [0, n - 1]$.

Corollary 85.8. We have $i_*(\tilde{e}_J) = e_J \cdot e_n = e_{J \cup \{n\}}$ for every $J \subset [0, n - 1]$.

Proof. By Corollary 85.7, we have $i^*(\tilde{e}_J) = \tilde{e}_J$. It follows from Lemma 85.5 and the Projection Formula (Proposition 55.9) that

$$i_*(\tilde{e}_J) = i_*(i^*(\tilde{e}_J) \cdot 1) = e_J \cdot i_*(1) = e_J \cdot e_n = e_{J \cup \{n\}}. \quad \square$$

Corollary 85.9. The monomial $e_{[0, n]} = e_0 e_1 \ldots e_n$ is the class of a rational point in $\text{CH}_0(\text{Gr})$.

Proof. The statement follows from the formula $e_{[0, n]} = i_*(\tilde{e}_{[0, n - 1]})$ and by induction on n. \hfill \square

Let $j : \text{Gr} \setminus \tilde{\text{Gr}} \to \text{Gr}$ be the open embedding. Recall $f : \text{Gr} \setminus \tilde{\text{Gr}} \to \tilde{\text{Gr}}$ given by $U \mapsto ((U \cap L^+) + L)/L$.

Lemma 85.10. We have $f^*(\tilde{e}_J) = j^*(e_J)$ for any $J \subset [0, n - 1]$.

Proof. It is sufficient to prove that $f^*(\tilde{e}_k) = j^*(e_k)$ for all $k \in [0, n - 1]$. By the construction of β (cf. 85.5), we have $\beta^t \circ j = f$. It follows from Corollary 85.7 that $f^*(\tilde{e}_k) = j^* \circ (\beta^t)^*(\tilde{e}_k) = j^* \circ \beta_*(\tilde{e}_k) = j^*(e_k). \quad \square$

Theorem 85.11. Let φ be a non-degenerate quadratic form on V over F of dimension $2n + 1$ or $2n + 2$ and Gr the variety of maximal totally isotropic subspaces of V. Then the monomials e_I for all 2^n subsets $I \subset [1, n]$ form a basis of $\text{CH}(\text{Gr})$ over $\text{CH}^0(\text{Gr})$.

Proof. We proceed by induction on n. The localization property gives the exact sequence (cf. the proof of Theorem 65.2)

$$0 \to \text{CH}(\tilde{\text{Gr}}) \xrightarrow{i^*} \text{CH}(\text{Gr}) \xrightarrow{j^*} \text{CH}(\text{Gr} \setminus \tilde{\text{Gr}}) \to 0.$$

By the induction hypothesis and Corollary 85.8, the monomials e_I for all I containing n form a basis of the image of i_*. Since $f^* : \text{CH}(\text{Gr}) \to \text{CH}(\text{Gr} \setminus \tilde{\text{Gr}})$ is an isomorphism by Theorem 51.11, again by the induction hypothesis and Lemma 85.10, all the elements $j^*(e_I)$ with $n \notin I$ form basis of $\text{CH}(\text{Gr} \setminus \tilde{\text{Gr}})$. The statement follows. \hfill \square

We now can compute the Chern classes of the tautological vector bundle E over Gr.

Proposition 85.12. We have $c_k(V1/E) = c_k(E^\vee) = 2e_k$ and $c_k(E) = (-1)^k 2e_k$ for all $k \in [1, n]$.

The equalities (85.12) implies that, in general, when

$$\phi \in \text{Pic}(\text{Gr}) = \text{CH}(\text{Gr})$$

is not necessarily split, the classes $2e_k$, $k \geq 1$, that are a priori defined over a splitting field of ϕ, are in fact defined over F.

In order to determine the multiplicative structure of $\text{CH}(\text{Gr})$ we present the set of defining relations between the e_k. For convenience we set $e_k = 0$ if $k > n$.

Since $c(\mathbb{P}(1)/E) \cdot c(E) = c(\mathbb{P}(1)) = 1$ and $\text{CH}(\text{Gr})$ is torsion free, it follows from Proposition 85.12 that

$$c_k^2(\mathbb{P}(1)/E) = 2e_k$$

for all $k \geq 1$.

Proposition 85.15. The equalities (85.14) form the set of defining relations between the generators e_k of the ring $\text{CH}(\text{Gr})$ over $\text{CH}^0(\text{Gr})$.

Proof. Let A be the factor ring of the polynomial ring $\mathbb{Z}[z_1, z_2, \ldots, z_n]$ modulo the ideal generated by polynomials giving the relations (85.14). We claim that the ring homomorphism $A \to \text{CH}(\text{Gr})$ taking z_k to e_k is an isomorphism.

A monomial $z_1^{r_1}z_2^{r_2} \cdots z_n^{r_n}$ with $r_i \geq 0$ is said to be *basic* if $r_k = 0$ or 1 for every k. By Theorem 85.11, it is sufficient to prove that the ring A is generated by classes of basic monomials.

We define the *weight* $w(m)$ of a monomial $m = z_1^{r_1}z_2^{r_2} \cdots z_n^{r_n}$ by the formula

$$w(m) = \sum_{k=1}^n k^2 \cdot r_k$$

and the weight of a polynomial $f(z_1, \ldots, z_n)$ over \mathbb{Z} as the minimum of weights of its non-zero monomials. Clearly, $w(m \cdot m') = w(m) + w(m')$. For example, in the formula
(85.14), we have $w(z_k^2) = 2k^2$, $w(z_{k+i}z_{k+i}) = 2k^2 + 2i^2$, and $w(z_{2k}) = 4k^2$. Thus, z_k^2 is the monomial of the lowest weight in the formula (85.14).

Let f be a polynomial representing an element of the ring A. Applying the formula (85.14) to the square of a variable z_k in a non-basic monomials of f of the lowest weight we increase the weight but not the degree of f. Since the weight of a polynomial of degree d is at most n^2d, we will eventually get a polynomial having only basic monomials. \[\square\]

The relations (85.14) look particularly simple modulo 2: $e_k^2 \equiv e_k$ for all $k \geq 1$.

Proposition 85.16. Let φ be a split non-degenerate quadratic form on V over F of dimension $2n + 2$ and φ' a non-degenerate subform of φ on a subspace $V' \subset V$ of codimension 1. Let f denote the morphism $\text{Gr}(\varphi) \to \text{Gr}(\varphi')$ taking U to $U \cap V'$, and e'_k, $k \geq 1$, denote the standard generators of $\text{CH} \text{Gr}(\varphi')$. Then $f^*(e'_k) = e_k$ for all $k \in [1, n]$.

Proof. Denote by $E \to \text{Gr}(\varphi)$ and $E' \to \text{Gr}(\varphi')$ the tautological vector bundles of ranks $n + 1$ and n respectively. The line bundle

$$E/f^*(E') = E/(V' \cap E) \simeq (E + V')/V' = V/E$$

is trivial. In particular, $c(E) = c(f^*E') = f^*c(E')$. It follows from Proposition 85.12 that

$$2f^*(e'_k) = (-1)^k f^*(c_k(E')) = (-1)^k f^*(c_k(f^*E')) = (-1)^k c_k(E) = 2e_k.$$

The result follows since $\text{CH} \text{Gr}(\varphi)$ is torsion free. \[\square\]

86. Chow ring of $\text{Gr}(\varphi)$ in the general case

Let φ be an arbitrary non-degenerate quadratic form of dimension $2n + 1$ over an arbitrary field F. Let Y be a smooth proper scheme over F and let $h : Y \to \text{Gr} = \text{Gr}(\varphi)$ be a morphism. We set $E' = h^*(E)$, where E is the tautological vector bundle over Gr, and view $\mathbb{P}(E')$ as a closed subscheme of $X \times Y$.

Proposition 86.1. The $\text{CH}(Y)$-module $\text{CH}(X \times Y)$ is free with basis h^k, $h^k \cdot [\mathbb{P}(E')]$ where $k \in [1, n - 1]$.

Proof. We write $V \mathbb{P}$ for the trivial vector bundle $V \times Y$ over Y. We claim that the restriction $f : T = (X \times Y) \setminus \mathbb{P}(E') \to \mathbb{P}(V \mathbb{P}/E'^\perp)$ of the natural morphism $f : \mathbb{P}(V) \setminus \mathbb{P}(E'^\perp) \to \mathbb{P}(V \mathbb{P}/E'^\perp)$ is an affine bundle. We use the criterion of Lemma 51.10.

Let R be a local commutative F-algebra. An F-morphism $\text{Spec } R \to \mathbb{P}(V \mathbb{P}/E'^\perp)$, or equivalently, an R-point of $\mathbb{P}(V \mathbb{P}/E'^\perp)$ determines a pair (U_R, W_R) where U is a totally isotropic subspace of V of dimension n and W is a subspace of V of dimension $n + 2$ containing U^\perp. Since $\dim W^\perp = n - 1$, one can choose a basis of W so that the restriction of the quadratic form φ on W is equal to $xy + az^2$ for some $a \in F^\times$ and U is given by $x = z = 0$ in W. Therefore the fiber $\text{Spec } R \times_{\mathbb{P}(V \mathbb{P}/E'^\perp)} T$ is given by the equation $y/x = a(z/x)^2$ over R and hence is isomorphic to an affine space. By Lemma 51.10, f is an affine bundle.

Thus $X \times Y$ is equipped with the structure of a cellular scheme. In particular, we have a (split) exact sequence

$$0 \to \text{CH}(\mathbb{P}(E')) \xrightarrow{i_R} \text{CH}(X \times Y) \to \text{CH}(T) \to 0$$
and the isomorphism
\[f^* : \text{CH}(\mathbb{P}(V/E')) \cong \text{CH}(T). \]
The restriction of the canonical line bundle over \(\mathbb{P}(V) \) to \(X \times Y \) and \(\text{CH}(\mathbb{P}(E')) \) are also canonical bundles. It follows from the Projective Bundle Theorem 52.10 and the Projection Formula 55.9 that the image of \(i_* \) is a free \(\text{CH}(Y) \)-module with basis \(h^k \cdot [\mathbb{P}(E')], k \in [0, n-1] \).

The geometric description of the canonical line bundle given in 103.C shows that the pull-back with respect to \(f \) of the canonical line bundle is the restriction to \(T \) of the canonical bundle on \(X \times Y \). Again, it follows from the Projective Bundle Theorem that \(\text{CH}(T) \) is a free \(\text{CH}(Y) \)-module with basis the restrictions of \(h^k \), \(k \in [0, n-1] \), on \(T \). The statement readily follows. \(\square \)

Remark 86.2. The proof of Proposition 86.1 gives the motivic decomposition
\[M(X \times Y) = M(\mathbb{P}(E')) \oplus M(\mathbb{P}(V/E'))(n). \]

As in the case of quadrics, we write \(\text{CH}(\overline{\text{Gr}}) \) for the colimit of \(\text{CH}(\text{Gr}_L) \) over all field extensions \(L/F \) and \(\overline{\text{CH}}(\text{Gr}) \) for the image of \(\text{CH}(\text{Gr}) \) in \(\overline{\text{CH}}(\text{Gr}) \). We say that a cycle \(\alpha \) in \(\overline{\text{CH}}(\text{Gr}) \) is rational if it belongs to \(\overline{\text{CH}}(\text{Gr}) \). We use similar notations and definitions for the cycles on \(\text{Gr}^2 \), classes of cycles modulo 2 etc.

Corollary 86.3. The elements \((e_k \times 1) + (1 \times e_k) \) in \(\overline{\text{CH}}(\text{Gr}^2) \) are rational for all \(k \in [1, n] \).

Proof. Let \(E_1 \) and \(E_2 \) be the two pull backs of \(E \) on \(\text{Gr}^2 \). Pulling the formula 85.2 back to \(\overline{X} \times \text{Gr}^2 \), we get in \(\overline{\text{CH}}(\overline{X} \times \text{Gr}^2) \)
\[[\mathbb{P}(E_1)] = l_{n-1} \times 1 \times 1 + \sum_{k=1}^{n} h^{n-k} \times e_k \times 1, \]
\[[\mathbb{P}(E_2)] = l_{n-1} \times 1 \times 1 + \sum_{k=1}^{n} h^{n-k} \times 1 \times e_k. \]
Therefore the cycle
\[[\mathbb{P}(E_1)] - [\mathbb{P}(E_2)] = \sum_{k=1}^{n} h^{n-k} \times (e_k \times 1 - 1 \times e_k) \]
is rational. Applying Proposition 86.1 to the variety \(\text{Gr}^2 \) we have the cycles \((e_k \times 1) - (1 \times e_k) \) are also rational. Note that by Proposition 85.12 the cycles \(2e_k \) are rational. \(\square \)

Now consider the Chow group \(\text{Ch}(\text{Gr}) \) modulo 2. We still write \(e_k \) for the class of the generator in \(\text{Ch}^k(\text{Gr}) \).

For every subset \(I \subset [1, n] \) the rational correspondence
\[x_I = \prod_{k \in I} [(e_k \times 1) + (1 \times e_k)] \in \overline{\text{Ch}}(\text{Gr})^2 \]
defines endomorphisms \((x_I)_* \) of \(\overline{\text{Ch}}(\text{Gr}) \) taking \(\overline{\text{Ch}}(\text{Gr}) \) into \(\overline{\text{Ch}}(\text{Gr}) \).
87. The invariant $J(\varphi)$

Let φ be a non-degenerate quadratic form of dimension $2n+1$ or $2n+2$ and set $\text{Gr} = \text{Gr}(\varphi)$. We define a new discrete invariant $J(\varphi)$ as follows:

$$J(\varphi) = \{ k \in [0, n] \text{ such that } e_k \notin \overline{\text{Ch}}(\text{Gr}) \}.$$

Recall that $e_0 = 1$ if $\dim \varphi = 2n+1$ hence $J(\varphi) \subset [1, n]$ in this case. When $\dim \varphi = 2n+2$, we have $0 \in J(\varphi)$ if and only if the discriminant of φ is not trivial.
If \(\dim \varphi = 2n + 2 \) and \(\varphi' \) is a non-degenerate subform of \(\varphi \) of codimension 1, then
\[
J(\varphi) = \begin{cases}
J(\varphi') & \text{if } \text{disc } \varphi \text{ is trivial} \\
\{0\} \cup J(\varphi') & \text{otherwise.}
\end{cases}
\]

For a subset \(I \subset [0, n] \) let \(||I|| \) denote the sum of all \(k \in I \).

Proposition 87.1. The smallest dimension \(i \) such that \(\CH_i(Gr) \neq 0 \) is equal to \(||J(\varphi)|| \).

Proof. By Theorem 86.7, the product of all \(e_k \) satisfying \(k \notin J(\varphi) \) is a nontrivial element of \(\CH(Gr) \) of the smallest dimension which is equal to \(||J(\varphi)|| \). \(\square \)

Proposition 87.2. A non-degenerate quadratic form \(\varphi \) is split if and only if \(J(\varphi) = \emptyset \).

Proof. The “only if” part follows from the definition. Suppose the set \(J(\varphi) \) is empty. Since all the \(e_k \) are rational, the class of a rational point \(Gr \) belongs to \(\CH(Gr) \) by Corollary 85.9. It follows that \(Gr \) has a closed point of odd degree, i.e., \(\varphi \) is split over an odd degree finite field extension. By Springer’s theorem (Corollary 18.5), the form \(\varphi \) is split. \(\square \)

Lemma 87.3. Let \(\varphi = \tilde{\varphi} \perp \mathbb{H} \). Then \(J(\varphi) = J(\tilde{\varphi}) \).

Proof. Suppose that \(\dim \varphi = 2n + 1 \). Note first that the cycle \(e_n = [Gr(\tilde{\varphi})] \) is rational so that \(n \notin J(\varphi) \). Let \(k \leq n - 1 \). It follows from the decomposition (85.1) that \(\CH^k(Gr) \cong \CH^k Gr(\tilde{\varphi}) \) and \(e_k \) corresponds to \(\tilde{e}_k \) by Lemma 85.10. Hence \(e_k \in J(\varphi) \) if and only if \(\tilde{e}_k \in J(\tilde{\varphi}) \). The case of the even dimension is similar. \(\square \)

Corollary 87.4. Let \(\varphi \) and \(\varphi' \) be Witt-equivalent quadratic forms. Then \(J(\varphi) = J(\varphi') \).

Lemma 87.5. Let \(X \) be a variety, \(Y \) a scheme and \(n \) an integer such that the natural homomorphism \(\CH_i(X) \to \CH_i(X_{F(y)}) \) is surjective for every point \(y \in Y \) and \(i \geq \dim X - n \). Then \(\CH_j(Y) \to \CH_j(Y_{F(X)}) \) is surjective for every \(j \geq \dim Y - n \).

Proof. Using a localization argument similar to that used the proof Proposition 81.8, one checks that the top homomorphism in the commutative diagram
\[
\begin{array}{ccc}
\CH(X) \otimes \CH(Y) & \longrightarrow & \CH(X \times Y) \\
\downarrow & & \downarrow \\
\CH(Y) & \longrightarrow & \CH(Y_{F(X)})
\end{array}
\]
is surjective in dimensions \(\geq \dim X + \dim Y - n \) by induction on \(\dim Y \). Since the right vertical homomorphism is surjective, so is the bottom homomorphism in dimensions \(\geq \dim Y - n \). \(\square \)

Let \(\varphi \) be a quadratic form of dimension \(2n + 1 \) or \(2n + 2 \).

Corollary 87.6. The canonical homomorphism \(\CH^i(Gr) \to \CH^i(Gr_{F(X)}) \) is surjective for all \(i \leq n - 1 \).

Proof. Note that \(X \) is split over \(F(y) \) for every \(y \in Gr \). Hence \(\CH^k(X_{F(y)}) \) is generated by \(h^k \) for all \(k \leq n - 1 \). \(\square \)
Corollary 87.7. \(J(\varphi) \cap [0, n - 1] \subset J(\varphi_{F(x)}) \subset J(\varphi) \).

The following proposition relates the set \(J(\varphi) \) and the absolute Witt indices of \(\varphi \). It follows from Corollaries 87.4 and 87.7.

Proposition 87.8. Let \(\varphi \) be a non-degenerate quadratic form of dimension \(2n + 1 \) or \(2n + 2 \). Then
\[
J(\varphi) \subset \{ n - j_0(\varphi), n - j_1(\varphi), \ldots, n - j_{h(\varphi) - 1}(\varphi) \}.
\]
In particular, \(|J(\varphi)| \leq h(\varphi) \).

Remark 87.9. One can impose further restrictions on \(J(\varphi) \). Choose a non-degenerate form \(\psi \) such that one of the forms \(\varphi \) and \(\psi \) is a subform of the other of codimension 1 and dimension of the largest form is even. Then the sets \(J(\varphi) \) and \(J(\psi) \) differ by at most one element 0. Therefore, the inclusion in Proposition 87.8 applied to the form \(\psi \) gives
\[
J(\varphi) \subset \{ 0, n - j_0(\psi), n - j_1(\psi), \ldots, n - j_{h(\psi) - 1}(\psi) \}.
\]

Example 87.10. Suppose that \(\varphi \) is an anisotropic \(m \)-fold Pfister form, \(m \geq 1 \). Then \(J(\varphi) = \{ 2^{m-1} - 1 \} \). Indeed, \(h(\varphi) = 1 \) hence \(J(\varphi) \subset \{ 2^{m-1} - 1 \} \) by Proposition 87.8. But \(J(\varphi) \) is not empty by Proposition 87.2.

We write \(n_{Gr} \) for the gcd of \(\deg(g) \) taken over all closed points \(g \in Gr \). The ideal \(n_{Gr} \cdot \mathbb{Z} \) is the image of the degree homomorphism \(CH(Gr) \to \mathbb{Z} \). Since \(\varphi \) splits over a field extension of \(F \) of degree a power of 2, the number \(n_{Gr} \) is a 2-power.

Proposition 87.11. Let \(\varphi \) be a non-degenerate quadratic form of odd dimension. Then
\[
2^{J(\varphi)} \cdot \mathbb{Z} \subset n_{Gr} \cdot \mathbb{Z} \subset \text{ind}(C_0(\varphi)) \cdot \mathbb{Z}.
\]

Proof. For every \(k \notin J(\varphi) \), let \(f_k \) be a cycle in \(\overline{CH}^k(Gr) \) satisfying \(f_k \equiv e_k \) modulo \(2 \cdot CH^k(Gr) \). By Remark 85.13, we have \(2e_k \in \overline{CH}^k(Gr) \) for all \(k \). Let \(\alpha \) be the product of all \(f_k \) such that \(k \notin J(\varphi) \) and \(2e_k \) with \(k \in J(\varphi) \). Clearly, \(\alpha \) is a cycle in \(\overline{CH}(Gr) \) of degree \(2^{J(\varphi)}m \), where \(m \) is an odd integer. The first inclusion now follows from the fact that \(n_{Gr} \) is a 2-power.

Let \(L \) be the residue field \(F(g) \) of a closed point \(g \in Gr \). Since \(\varphi \) splits over \(L \), so does the even Clifford algebra \(C_0(\varphi) \). It follows that \(\text{ind} C_0(\varphi) \) divides \([L : F] = \deg g \) for all \(g \) and therefore divides \(n_{Gr} \).

Propositions 87.8 and 87.11 yield

Corollary 87.12. Let \(\varphi \) be a non-degenerate quadratic form of dimension \(2n + 1 \). Consider the statements:

1. \(C_0(\varphi) \) is a division algebra.
2. \(n_{Gr} = 2^n \).
3. \(J(\varphi) = [1, n] \).
4. \(j_k = k \) for all \(k = 0, 1, \ldots, n \).

Then \(1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \).

The following statement is a refinement of the implication \(1 \Rightarrow 3 \).
Corollary 87.13. Let φ be a non-degenerate quadratic form of odd dimension and $\text{ind} C_0(\varphi) = 2^k$. Then $[1, k] \subset J(\varphi)$.

Proof. We proceed by induction on $\dim \varphi = 2n + 1$. If $k = n$, i.e., $C_0(\varphi)$ is a division algebra, the statement follows from Corollary 87.12. We may assume that $k < n$. Let φ' be a form over $F(\varphi)$ Witt-equivalent to $\varphi_{F(\varphi)}$. The even Clifford algebra $C_0(\varphi')$ is Brauer-equivalent to $C_0(\varphi_{F(\varphi)})$. Since $C_0(\varphi)$ is not a division algebra, it follows from Corollary 30.11 that $\text{ind}(C_0(\varphi')) = \text{ind}(C_0(\varphi)) = 2^k$. By the induction hypothesis, $[1, k] \subset J(\varphi')$. By Corollaries 87.4 and 87.7, we have $J(\varphi') = J(\varphi_{F(\varphi)}) \subset J(\varphi)$. \qed

Exercise 87.14. Let φ be a quadratic form of odd dimension.

1) Prove that $1 \in J(\varphi)$ if and only if the even Clifford algebra $C_0(\varphi)$ is not split.

2) Prove that $2 \in J(\varphi)$ if and only if $\text{ind} C_0(\varphi) > 2$.

88. Steenrod operations on $\text{Ch}(\text{Gr}(\varphi))$

Let φ be a non-degenerate quadratic form on V over F of dimension $2n + 1$ or $2n + 2$, X the projective quadric of φ, Gr the variety of maximal totally isotropic subspaces of V, and E the tautological vector bundle over Gr. Let $s : \mathbb{P}(E) \to \text{Gr}$ and $t : \mathbb{P}(E) \to X$ be the projections. There is an exact sequence of vector bundles over $\mathbb{P}(E)$

$$0 \to \mathbb{I} \to L_c^\oplus \to T_t \to 0,$$

where L_c is the canonical line bundle over $\mathbb{P}(E)$ and T_t is the relative tangent bundle of t (cf. Example 103.20). Note that L_c is the pull-back with respect to t of the canonical line bundle over X, hence $c(L_c) = 1 + t^*(h)$, where $h \in \text{CH}^1(X)$ is the class of a hyperplane section of X. It follows that $c(T_t) = (1 + t^*(h))^n$.

Theorem 88.1. Let $\text{char } F \neq 2$ and $\text{Gr} = \text{Gr}(\varphi)$ with φ a non-degenerate quadratic form of dimension $2n + 1$ or $2n + 2$. Then

$$\text{Sq}^j_{\text{Gras}}(e_k) = \binom{k}{i} e_{k+i}$$

for all i and $k \in [1, n]$.
89. Canonical dimension

Let F be a field and let C be a class of field extensions of F. A field $E \in C$ is called generic if for any $L \in C$ there is an F-place $E \rightarrow L$.

Example 89.1. Let X be a scheme over F and C the class of field extensions L of F with $X(L) \neq \emptyset$. If X is a smooth variety, it follows from §102 that the field $F(X)$ is generic in C.

The canonical dimension $\text{cdim}(C)$ of the class C is the minimum of the tr. $\deg_F E$ over all generic fields $E \in C$. If X is a scheme over F, we write $\text{cdim}(X)$ for $\text{cdim}(C)$, where C is the class of fields as defined in Example 89.1. If X is smooth then $\text{cdim}(X) \leq \dim X$.

Let p be a prime integer and C a class of field extensions of F. A field $E \in C$ is called p-generic if for any $L \in C$ there is an F-place $E \rightarrow L'$, where L' is a finite extension of L of degree prime to p. The canonical p-dimension $\text{cdim}_p(C)$ of C and $\text{cdim}_p(X)$ of a scheme X over F are defined similarly. Clearly, $\text{cdim}_p(C) \leq \text{cdim}(C)$ and $\text{cdim}_p(X) \leq \text{cdim}(X)$.

The following theorem answers an old question of M. Knebusch (asked in [37, §4]):

Theorem 89.2. For an arbitrary anisotropic projective quadric X,

$$\text{cdim}_2(X) = \text{cdim}(X) = \dim_{\text{Ish}} X.$$

Proof. Let Y be a subquadric of X of dimension $\dim Y = \dim_{\text{Ish}} X$. Note that $i_1(Y) = 1$ by Corollary 73.3. Clearly, the function field $F(Y)$ is an isotropy field of X. Moreover, if L is an isotropy field of X, then by Lemma 73.1 we have $Y(L) \neq \emptyset$. Since the variety Y is smooth, there is an F-place $F(Y) \rightarrow L$ (cf. §102). Therefore $F(Y)$ is a generic isotropy field of X.

Suppose that E is an arbitrary 2-generic isotropy field of X. We show that $\text{tr.} \deg_F E \geq \dim Y$ which will finish the proof.
Since E and $F(Y)$ are both generic isotropy fields of the same X, we have F-places $\pi : F(Y) \hookrightarrow E$ and $\varepsilon : E \twoheadrightarrow E'$, where E' is an odd degree field extension of $F(Y)$. Let y and y' be the centers of π and $\varepsilon \circ \pi$ respectively. Clearly, y' is a specialization of y and therefore,

$$\dim y' \leq \dim y \leq \text{tr. deg}_F E.$$

The morphism $\text{Spec } E' \to Y$ induced by $\varepsilon \circ \pi$ gives rise to a prime correspondence $\delta : Y \twoheadrightarrow Y$ with odd $\text{mult}(\delta)$ so that $p_2(\delta) = [y']$, where $p_2 : Y \times Y \to Y$ is the second projection. By Theorem 74.4, $\text{mult}(\delta')$ is odd, hence y' is the generic point of Y and $\dim y' = \dim Y$.

In the rest of the section, we determine the canonical 2-dimension of the class C of all splitting fields of a non-degenerate quadratic form φ. Note that $\text{cdim}(C) = \text{cdim}(\text{Gr})$ and $\text{cdim}_2(C) = \text{cdim}_2(\text{Gr})$, where $\text{Gr} = \text{Gr}(\varphi)$, since $L \in C$ if and only if $\text{Gr}(L) \neq \emptyset$. We have

$$\text{cdim}_2(\text{Gr}) \leq \text{cdim}(\text{Gr}) \leq \dim \text{Gr}.$$

Theorem 89.3. Let φ be a non-degenerate quadratic form over F. Then $\text{cdim}_2(\text{Gr}(\varphi)) = ||J(\varphi)||$.

Proof. Let E be a 2-generic splitting field such that $\text{tr. deg}_F E = \text{cdim} \text{Gr}$. Since E is a splitting field, there is a morphism $\text{Spec } E \to \text{Gr}$ over F. Let Y be the closure of the image of this morphism. We view $F(Y)$ as a subfield of E. Clearly, $\text{tr. deg}_F E \geq \dim Y$.

Since E is 2-generic, there is a field extension $L/F(\text{Gr})$ of odd degree and an F-place $E \to L$. Restricting this place to the subfield $F(Y)$ we get a morphism $f : \text{Spec } L \to Y$ since Y is complete. Let $g : \text{Spec } L \to \text{Gr}$ be the morphism induced by the field extension $L/F(\text{Gr})$. Then the closure Z of the image of the diagonal morphism $(f, g) : \text{Spec } L \to Y \times \text{Gr}$ is of odd degree $[L : F(\text{Gr})]$ when projecting to Gr. Therefore, the image of $[Z]$ under the composition

$$\text{Ch}(Y \times \text{Gr}) \xrightarrow{(i \times 1_{\text{Gras}})*} \text{Ch}(\text{Gr} \times \text{Gr}) \xrightarrow{q_*} \text{Ch}(\text{Gr}),$$

where $i : Y \to \text{Gr}$ is the closed embedding and q is the second projection, is equal to $[\text{Gr}]$. In particular, $(i \times 1_{\text{Gras}})_*([Z]) \neq 0$, hence $(i \times 1_{\text{Gras}})_* \neq 0$.

We claim that the push-forward homomorphism $i_* : \text{Ch}(Y) \to \text{Ch}(\text{Gr})$ is also non-trivial. Let L be the residue field of a point of Y. Consider the induced morphism $j : \text{Spec } L \to \text{Gr}$, the pull-back of the element x_1 in $\text{Ch}(\text{Gr}^2)$ with respect to the morphism $j \times 1_{\text{Gras}} : \text{Gr} \to \text{Gr}^2$ is equal to $e_I \in \overline{\text{Ch}(\text{Gr})} = \text{Ch}(\text{Gr}_L)$. Since the elements e_I generate $\text{Ch}(\text{Gr})$ by Theorem 85.11, the pull-back homomorphism $\text{Ch}(\text{Gr}^2) \to \text{Ch}(\text{Gr}_L)$ is surjective. Applying Proposition 57.18 to the projection $p : Y \times \text{Gr} \to Y$ and the embedding $i \times 1_{\text{Gras}} : Y \times \text{Gr} \to \text{Gr}^2$, the product

$$h_Y : \text{Ch}(Y) \otimes \text{Ch}(\text{Gr}) \to \text{Ch}(Y \times \text{Gr}), \quad \alpha \otimes \beta \mapsto p^*(\alpha) \cdot \beta$$

is surjective.
By Proposition \[57.17\], the diagram

\[
\begin{array}{ccc}
\text{Ch}(Y) \otimes \text{Ch}(\text{Gr}^2) & \xrightarrow{h_Y} & \text{Ch}(Y \times \text{Gr}) \\
\downarrow_{i_* \otimes 1} & & \downarrow_{(i \times 1_{\text{Gras}})_*} \\
\text{Ch}(\text{Gr}) \otimes \text{Ch}(\text{Gr}^2) & \xrightarrow{h_{\text{Gras}}} & \text{Ch}(\text{Gr} \times \text{Gr})
\end{array}
\]

is commutative. As \((i \times 1_{\text{Gras}})_*\) is nontrivial, we conclude that \(i_*\) is nontrivial. This proves the claim.

By Proposition \[87.1\] we have \(\dim Y \geq ||J(\varphi)||\), hence

\[
\text{cdim}_2(\text{Gr}) = \text{tr. deg}_F E \geq \dim Y \geq ||J(\varphi)||.
\]

It follows from Proposition \[87.1\] that there is a closed subvariety \(Y \subset \text{Gr}\) of dimension \(||J(\varphi)||\) such that \([Y] \neq 0\) in \(\text{Ch}(\text{Gr}) = \text{Ch}(\text{Gr}_{F(\text{Gr})})\). By Lemma \[86.6\] there is \(\beta \in \text{Ch}(\text{Gr}_{F(\text{Gr})})\) such that \([Y] \cdot \beta \neq 0\) in \(\text{Ch}(\text{Gr}_{F(\text{Gr})})\). It follows from Proposition \[55.11\] that the product \([Y] \cdot \beta\) belongs to the image of the push-forward homomorphism \(\text{Ch}(Y_{F(\text{Gr})}) \rightarrow \text{Ch}(\text{Gr}_{F(\text{Gr})})\), therefore \(\text{Ch}_0(Y_{F(\text{Gr})}) \neq 0\). In other words, there is a closed point \(y \in Y_{F(\text{Gr})}\) of odd degree. Let \(Z\) be the closure of the image of \(y\) under the canonical morphism \(Y_{F(\text{Gr})} \rightarrow Y \times \text{Gr}\). Note that that the projection \(Z \rightarrow \text{Gr}\) is of odd degree \(\deg(y)\), hence \(F(Z)\) is an extension of \(F(\text{Gr})\) of odd degree. Let \(Y'\) denote the image of another projection \(Z \rightarrow Y\), so that \(F(Y')\) is isomorphic to a subfield of \(F(Z)\).

We claim that \(F(Y')\) is a 2-generic splitting field of \(\text{Gr}\). Indeed, since \(Y'\) is a subvariety of \(\text{Gr}\), the field \(F(Y')\) is a splitting field of \(\text{Gr}\). Let \(L\) be another splitting field of \(\text{Gr}\). A geometric \(F\)-place \(F(\text{Gr}) \rightarrow L\) can be extended to an \(F\)-place \(F(Z) \rightarrow L'\) where \(L'\) is an extension of \(L\) of odd degree (cf. \[102\]). Restricting to \(F(Y')\), we get an \(F\)-place \(F(Y') \rightarrow L'\). This proves the claim. Therefore we have

\[
\text{cdim}_2(\text{Gr}) \leq \dim Y' \leq \dim Y = ||J(\varphi)||.
\]

Theorem \[89.3\] and Corollary \[87.12\] yield

Corollary 89.4. Let \(\varphi\) be a non-degenerate quadratic form of dimension \(2n + 1\) such that \(J(\varphi) = [1, n]\) (e.g., if \(C_0(\varphi)\) is a division algebra or if \(n_{\text{Gras}} = 2^n\)). Then

\[
\text{cdim}_2(\text{Gr}) = \text{cdim}(\text{Gr}) = \dim \text{Gr} = \frac{n(n + 1)}{2}.
\]

Example 89.5. Let \(\varphi\) be an anisotropic \(m\)-fold Pfister form with \(m \geq 1\). Since the class of splitting fields of \(\varphi\) coincides with the class of isotropy fields, we have \(\text{cdim}(\text{Gr}) = \dim_{\text{th}}(X) = 2^{m-1} - 1\). By Theorem \[89.3\] and Example \[87.10\], we have \(\text{cdim}_2(\text{Gr}) = ||J(\varphi)|| = 2^{m-1} - 1\).

We compute the canonical dimensions \(\text{cdim}(\text{Gr})\), \(\text{cdim}_2(\text{Gr})\) and determine the set \(J(\varphi)\) for an excellent quadratic form \(\varphi\). Write the dimension of \(\varphi\) in the form

\[(89.6) \quad \dim \varphi = 2^{p_0} - 2^{p_1} + 2^{p_2} - \cdots + (-1)^{r-1}2^{p_{r-1}} + (-1)^r2^{p_r}\]

with some integers \(p_0, p_1, \ldots, p_r\) satisfying \(p_0 > p_1 > \cdots > p_{r-1} > p_r + 1 > 0\). Note that the height \(h\) of \(\varphi\) equals \(r + 1\) for even \(\dim \varphi\), while \(h = r\) if \(\dim \varphi\) is odd.
Let ψ be the leading p^h-fold Pfister of φ (defined over F). Since φ and ψ have the same classes of splitting fields, we have $\text{cdim} \, \text{Gr}(\varphi) = \text{cdim} \, \text{Gr}(\psi)$ and $\text{cdim}_2 \, \text{Gr}(\varphi) = \text{cdim}_2 \, \text{Gr}(\psi)$. By Example 89.5,

$$\text{(89.7)} \quad \text{cdim} \, \text{Gr}(\varphi) = \text{cdim}_2 \, \text{Gr}(\varphi) = 2^{p^h-1} - 1.$$

Proposition 89.8. Let φ be an anisotropic excellent form of height h. Then $J(\varphi) = \{2^{p^h-1} - 1\}$, where the integer p^h is determined in (89.6).

Proof. Note that $j_{h-1} = (\dim \varphi - \dim \psi)/2$, hence by Proposition 87.8, every element of $J(\varphi)$ is at least $2^{p^h-1} - 1$. By Theorem 89.3, we have $\text{cdim}_2 \, \text{Gr}(\varphi) = ||J(\varphi)||$. It follows from (89.7) that $J(\varphi) = \{2^{p^h-1} - 1\}$. □
CHAPTER XVII

Motives of quadrics

90. Comparison of some discrete invariants of quadratic forms

In this section, \(F \) is an arbitrary field, \(n \) a positive integer, \(V \) a vector space over \(F \) of dimension \(2n \) or \(2n+1 \), \(\varphi: V \to F \) a non-degenerate quadratic form, \(X \) the projective quadric of \(\varphi \). For any positive integer \(i \), we write \(G_i \) for the scheme of \(i \)-dimensional totally isotropic subspaces of \(V \); in particular, \(G_1 = X \) and \(G_i = \emptyset \) for \(i > n \).

We write \(\text{Ch}(Y) \) for the Chow group modulo 2 of an \(F \)-scheme \(Y \); \(\text{Ch}(\overline{Y}) \) is the colimit of \(\text{Ch}(Y_L) \) over all field extensions \(L/F \), \(\text{Ch}(\overline{Y}) \) is the reduced Chow group, that is, the image of the homomorphism \(\text{Ch}(Y) \to \text{Ch}(\overline{Y}) \).

We write \(\overline{\text{Ch}}(G_*) \) for the direct sum \(\bigoplus_{i \geq 1} \overline{\text{Ch}}(G_i) \). We recall that \(\overline{\text{Ch}}(X^*) \) stands for \(\bigoplus_{i \geq 1} \overline{\text{Ch}}(X^i) \), where \(X^i \) is the direct product of \(i \) copies of \(X \). We consider \(\overline{\text{Ch}}(G_*) \) and \(\overline{\text{Ch}}(X^*) \) as invariants of the quadratic form \(\varphi \). Note that the values of their components \(\overline{\text{Ch}}(G_i) \) and \(\overline{\text{Ch}}(X^i) \) are subsets of the finite sets \(\text{Ch}(G_i) \) and \(\text{Ch}(X^i) \) depending only on \(\dim \varphi \).

These invariants are not independent, some relation between them is described in the following theorem:

Theorem 90.1. The following three invariants of quadratic forms of a fixed dimension are equivalent (in the sense that for any two quadratic forms \(\varphi \) and \(\varphi' \) with \(\dim \varphi = \dim \varphi' \), if one of the invariants takes the same value on \(\varphi \) and \(\varphi' \), then any other of them also takes the same value on \(\varphi \) and \(\varphi' \)):

(i) \(\overline{\text{Ch}}(X^*) \);
(ii) \(\overline{\text{Ch}}(X^n) \);
(iii) \(\overline{\text{Ch}}(G_*) \).

Remark 90.2. Although the equivalence of the above invariants means that any of them can be expressed in terms of any other, it does not seem to be possible to get some handleable formulas relating (iii) with (ii) or (i).

For the proof of Theorem 90.1, we need some preparation. For \(i \geq 1 \), let us write \(\text{Fl}_i \) for the scheme of flags \(V_1 \subset \cdots \subset V_i \) of totally isotropic subspaces \(V_1, \ldots, V_i \) of \(V \), where \(\dim V_j = j \); in particular, \(\text{Fl}_1 = X \) and \(\text{Fl}_i = \emptyset \) for \(i > n \). The following lemma generalizes Example 65.5:

Lemma 90.3. For any \(i \geq 1 \), the product \(\text{Fl}_i \times X \) has a canonical structure of a relative cellular scheme with the basis of cells given

0) by a projective bundle over \(\text{Fl}_i \);
1) by the scheme \(\text{Fl}_{i+1} \),

363
2) and by the scheme F_l_i.

Proof. The cellular filtration

$$Y_0 \subset Y_1 \subset Y_2 = Y$$
on the scheme $Y = F_l_i \times X$ is constructed as follows: Y_1 is the subscheme of pairs

$$(V_1 \subset \cdots \subset V_i, W)$$

such that the subspace $W + V_i$ is totally isotropic; Y_0 is the subscheme of the pairs such that $W \subset V_i$. The projection of the scheme Y_0 onto F_l_i is a (rank $i - 1$) projective bundle. Of course, if $i \geq n$, then $Y_0 = Y_1$ (and the base of the “cell” $Y_1 \setminus Y_0$ is the empty scheme F_l_i+1).

Corollary 90.4. The motive of the product $F_l_i \times X$ canonically decomposes in a direct sum, where each summand is some shift of the motive of the scheme F_l_i or of the scheme F_l_i+1. Moreover, a shift of the motive of F_l_i is really present (provided that $i \leq n$) and a shift of the motive of F_l_i+1 is also really present (provided that $i + 1 \leq n$).

Proof. By Corollary 65.3 and Lemma 90.3, the motive of $F_l_i \times X$ decomposes in the direct sum of three summands which are some shifts of the motives of Y_0, F_l_i+1, and F_l_i, where Y_0 is a projective bundle over F_l_i. In its turn, by Theorem 62.8, the motive of Y_0 is a direct sum of shifts of the motive of F_l_i.

Corollary 90.5. For any $r \geq 1$, the motive of X^r canonically decomposes in a direct sum, where each summand is a shift of the motive of some F_l_i with $i \in [1, r]$. Moreover, for any $i \in [1, r]$ a shift of the motive of F_l_i is really present (provided that $i \leq n$).

Proof. We use an induction on r. Since $X^1 = X = F_l_1$, the base $r = 1$ of the induction requires no work. If the statement is proved for some $r \geq 1$, then the statement on X^{r+1} follows by Corollary 90.4.

Lemma 90.6. For any $i \geq 1$, the motive of F_l_i canonically decomposes in a direct sum, where each summand is a shift of the motive of the scheme G_i.

Proof. Let us write Φ_j, where $j \in [1, i]$, for the scheme of flags $V_1 \subset \cdots \subset V_{i-j} \subset V_i$ of totally isotropic subspaces V_k of V satisfying $\dim V_k = k$ for any k; in particular, $\Phi_1 = F_l_i$ and $\Phi_i = G_i$. The projections

$$F_l_i = \Phi_1 \rightarrow \Phi_2 \rightarrow \cdots \rightarrow \Phi_i = G_i$$

are projective bundles. Therefore, the statement under proof follows by Theorem 62.8.

Combining Corollary 90.5 with Lemma 90.6, we get

Corollary 90.7. For any $r \geq 1$, the motive of X^r canonically decomposes in a direct sum, where each summand is a shift of the motive of some G_i with $i \in [1, r]$. Moreover, for any $i \in [1, r]$ a shift of the motive of G_i is really present (provided that $i \leq n$).

Proof of Theorem 90.1. The equivalences $(i) \Leftrightarrow (iii)$ and $(ii) \Leftrightarrow (iii)$ are given by Corollary 90.7.
Remark 90.8. One may say that the invariants $\overline{Ch}(X^n)$ is a “compact forms” of the invariant $\overline{Ch}(X^*)$ and also that the invariant $\overline{Ch}(G_*)$ is a “compact form” of $\overline{Ch}(X^n)$). However some properties of these invariants are formulated and proved easier on the level of $\overline{Ch}(X^*)$: among such properties (used above many times) we have stability of $\overline{Ch}(X^n) \subset \overline{Ch}(\overline{X}^*)$ under partial operations on $\overline{Ch}(X^*)$ given by permutations of factors of any X^r as well as pull-backs and push-forwards with respect to partial projections and partial diagonals between X^r and X^{r+1}; also it is easier to describe a basis of $\overline{Ch}(\overline{X}^*)$ and compute multiplication and Steenrod operations (giving further restrictions on $\overline{Ch}(X^*)$) it terms of the basis, than do the similar job for $\overline{Ch}(\overline{G}_*)$.

91. Nilpotence Theorem for quadrics

In this section, we write Ch for the Chow group with coefficient in an arbitrary (commutative, unital) ring Λ. We are working in the categories $\text{CR}_*(F, \Lambda)$ and $\text{CR}(F, \Lambda)$, introduced in Chapter XII.

Let us consider a class of smooth complete schemes over field extensions of F which is closed under taking finite disjoint unions (of schemes over the same field), connected components, and scalar extensions. We say that this class is tractable, if for any its variety X with a rational point and of positive dimension, there is a scheme X' in this class such that $\dim X' < \dim X$ and $M(X') \simeq M(X)$ in $\text{CR}_*(F, \Lambda)$. A scheme is called tractable, if it is member of a tractable class.

The main example of a tractable scheme we have in mind is any smooth projective quadric over F, the tractable class being the class of (all finite disjoint unions) of all smooth projective quadrics over field extensions of F (cf. Example 65.6). A smooth projective scheme is called split, if its motive in $\text{CR}_*(F, \Lambda)$ is isomorphic to the finite direct sum of several copies of the motive Λ. Any tractable scheme X splits over an extension of the base field; moreover, the number of copies of Λ in the corresponding decomposition is an invariant of X which we call the rank of X and denote as $\text{rk } X$. The number of components of any tractable scheme does not exceed its rank.

Exercise 91.1. Let X/F be a smooth complete variety such that for any field extension E/F satisfying $X(E) \neq \emptyset$ the scheme X_E is split (for instance, the variety of maximal totally isotropic subspace of a non-degenerate odd-dimensional quadratic form considered in chapter XVI is like this). Show that X is tractable.

Exercise 91.2. Show that the product of two tractable schemes is tractable.

Remark 91.3. As shown in [11], the class of all projective homogenous (under an action of an algebraic group) varieties is tractable.

The following theorem was initially proved by M. Rost in the case of quadrics. The more general case of a projective homogeneous variety was done in [11].

Theorem 91.4 (Nilpotence Theorem for tractable schemes). Let X be a tractable scheme over F, $M(X)$ its motive in $\text{CR}_*(F, \Lambda)$ or in $\text{CR}(F, \Lambda)$, and let $\alpha \in \text{End } M(X)$ be a correspondence. If $\alpha_E \in \text{End } M(X_E)$ vanishes for some field extension E/F, then α is nilpotent.
PROOF. It suffices to consider the case of the category $\text{CR}_s(F, \Lambda)$. Let us fix a tractable class of schemes containing X. We are going to construct a map

$$N : [0, +\infty) \times [1, \text{rk} X] \to [1, +\infty)$$

(where $[a, b]$ stands for the set of integers of the closed interval) such that for any scheme Y with $\text{rk} Y \leq \text{rk} X$ of the tractable class, one has $\alpha^{N(i,j)} = 0$ for any correspondence $\alpha \in \text{Ch}(Y^2)$ vanishing over a scalar field extension, provided that $\text{dim} Y \leq i$ and the number of i-dimensional connected components of Y is at most j.

If $\text{dim} Y = 0$, then any extension of scalars induces an injection of $\text{Ch}(Y^2)$. We set $N(0, i) = 1$ for any $i \geq 1$.

Now we order the set $[0, +\infty) \times [1, \text{rk} X]$ lexicographically, take a pair (i, j) with $i \geq 1$, and assume that N is already defined on all pairs smaller than the pair taken.

Let Y be an arbitrary scheme of the class such that $\text{dim} Y = i$ and the number of the i-dimensional components of Y is j (to simplify the notation we assume that the field of definition of Y is F). Let us choose an i-dimensional component Y_1 of Y and let Y_0 be the union of the remaining components of Y. We take an arbitrary correspondence $\alpha \in \text{Ch}(Y^2)$ vanishing over a scalar extension and replace it by $\alpha^{N(i', j')}$, where (i', j') is the pair preceding the pair (i, j). Then for any point $y \in Y_1$, we have $\alpha_{F(y)} = 0$, because the motive of the scheme $Y_{F(y)}$ is isomorphic to the motive of another scheme with $j - 1$ i-dimensional components. Applying Theorem 66.1, we see that

$$\alpha^{i+1} \circ \text{Ch}(Y_1 \times Y) = 0.$$

In particular, the composite of the inclusion morphism $M(Y_1) \to M(Y)$ with α^{i+1} is trivial. Let us replace α by α^{i+1}. Viewing α as a 2×2 matrix according to the decomposition $M(Y) \simeq M(Y_0) \oplus M(Y_1)$, we see that its entries corresponding to $\text{Hom}(M(Y_1), M(Y_0))$ and to $\text{End} M(Y_1)$ are 0. Moreover, the entry corresponding to $\text{End} M(Y_0)$ is nilpotent with $N(i', j')$ as a nilpotence exponent, because the number of the i-dimensional components of Y_0 is at most $j - 1$. Replacing α by $\alpha^{N(i', j')}$ once again, we come to the situation where α has only one possibly nonzero entry, namely, the (non-diagonal) entry corresponding to $\text{Hom}(M(Y_0), M(Y_1))$. Therefore $\alpha^2 = 0$ and we set $N(i, j) = 2(i + 1)N(i', j')^2$. As we have shown, $\alpha^{N(i,j)} = 0$ for any correspondence $\alpha \in \text{Ch}(Y^2)$ vanishing over a scalar field extension, if $\text{dim} Y = i$ and the number of i-dimensional connected components of Y is j (where Y is a scheme with $\text{rk} Y \leq \text{rk} X$ belonging to the tractable class). Since $N(i, j) \geq N(i', j')$, one also has $\alpha^{N(i,j)} = 0$ if $\text{dim} Y \leq i$ and the number of i-dimensional connected components of Y is smaller than j.

\begin{corollary}
Let X be a tractable scheme over F, let E/F be a field extension, and let $q \in \text{End} M(X_E)$ be a projector (that is, an idempotent) lying in the image of the restriction $\text{End} M(X) \to \text{End} M(X_E)$ (where the motivic category is $\text{CR}_s(F, \Lambda)$ or $\text{CR}(F, \Lambda)$). Then there exists a projector $p \in \text{End} M(X)$ satisfying $p_E = q$.
\end{corollary}

\textbf{Proof.} Choose a correspondence $p' \in \text{End} M(X)$ such that $p'_E = q$. Let A (resp. B) be the (commutative) subring of $\text{End} M(X)$ (resp. $\text{End}(M(X_E))$) generated by p' (resp. q). By Theorem 91.4, the kernel of the ring epimorphism $A \to B$ consists of nilpotent elements. It follows that the map $\text{Spec} B \to \text{Spec} A$ is a homeomorphism and, in particular, induces a bijection of the sets of the connected components of these
topological spaces. Therefore the homomorphism \(A \to B \) induces a bijection of the sets of the idempotents of these rings (cf. [6] cor. 1 to prop. 15 of §4.3 of ch. II) and we can find a required \(p \) inside of \(A \).

Exercise 91.6. Show that one can take as \(p \) some power of \(p' \) (hint: prove and use the fact that the kernel of \(End X \to End X_E \) is annihilated by some positive integer).

Corollary 91.7. Let \(X \) and \(Y \) be tractable schemes, let \(p \in End M(X) \) and \(q \in End M(Y) \) be projectors (where the motivic category is \(CR_*(F, \Lambda) \) or \(CR(F, \Lambda) \)), and let \(f \) be a morphism \((X, p) \to (Y, q) \) in the category \(CM. \) Assume that \(f_E \) is an isomorphism for some field extension \(E/F. \) Then \(f \) is an isomorphism.

Proof. By Proposition 62.4, it suffices to give a proof for the category \(CR_*(F, \Lambda). \)

Suppose first that \(Y = X \) and \(q = p. \) We may assume that the scheme \(X_E \) is split and fix an isomorphism of the motive \((X, p) \) with the direct sum of \(n \) copies of \(\Lambda \) for some \(n. \) Then \(\text{Aut}(X_E, p_E) = GL_n(\Lambda). \) Let \(P(t) \in \Lambda[t] \) be the characteristic polynomial of the matrix \(f_E, \) so that \(P(f_E) = 0. \) For \(Q(t) \in \Lambda[t] \) such that \(P(t) = P(0) + tQ(t), \) the endomorphism

\[f_E \circ Q(f_E) = Q(f_E) \circ f_E = P(f_E) - P(0) = -P(0) = \pm \det f_E \]

is the multiplication by an invertible element \(\epsilon = \pm \det f_E \) of the coefficient ring \(\Lambda. \)

By Theorem 91.4, the endomorphisms \(\alpha, \beta \in End(X, p) \) such that \(f \circ Q(f) = \epsilon + \alpha \) and \(Q(f) \circ f = \epsilon + \beta \) are nilpotent. Thus the composites \(f \circ Q(f) \) and \(Q(f) \circ f \) are automorphisms, hence so is \(f. \)

In the general case, let us consider the transpose \(f^t : (Y, q) \to (X, p) \) of \(f. \) Since \(f_E \) is an isomorphism, \(f_E^t \) is also an isomorphism and it follows by the previously considered case that the composites \(f \circ f^t \) and \(f^t \circ f \) are automorphisms. Thus \(f \) is an isomorphism. \(\square \)

Corollary 91.8. Let \(X \) be a tractable scheme and let \(p, p' \in End M(X) \) be projectors such that \(p_E = p'_E \) for some field \(E \supset F. \) Then the motives \((X, p) \) and \((X, p') \) are canonically isomorphic.

Proof. The morphism \(p' \circ p : (X, p) \to (X, p') \) is an isomorphism because it becomes isomorphism over \(E. \)

\(\square \)

92. Criterion of isomorphism

In this section, \(\Lambda = \mathbb{Z}/2\mathbb{Z}. \)

Theorem 92.1. Let \(X \) and \(Y \) be smooth projective quadrics over \(F. \) The motives of \(X \) and \(Y \) in the category \(CR(F, \mathbb{Z}/2\mathbb{Z}) \) are isomorphic if and only if \(\dim X = \dim Y \) and \(i_0(X_L) = i_0(Y_L) \) for any field extension \(L/F. \)

Proof. The “only if” part of the statement is easy: the motive \(M(X) \) of \(X \) in \(CR(F, \mathbb{Z}/2\mathbb{Z}) \) determines the graded group \(\text{Ch}_*(X) \) which in its turn determines \(\dim X \) and \(i_0(X) \) (Corollary 71.6). Let us prove the “if” part.

So, we assume that \(\dim X = \dim Y \) and \(i_0(X_L) = i_0(Y_L) \) for any field extension \(L/F. \) As in the beginning of this Part, we write \(D \) for \(\dim X \) and we set \(d = [D/2]. \)
Of course, the case of split X and Y is trivial. Nevertheless let us note that an isomorphism $M(X) \to M(Y)$ in the split case is given by the cycle $c_{XY} + \deg(l_i^2)(h^d \times h^d)$, where (cf. Lemma 72.1) $c_{XY} = \sum_{i=0}^{d} (h^i \times l_i + l_i \times h^i) \in \text{Ch}(X \times Y)$. By Corollary 91.7, it follows that in the non-split case, the motives of X and Y are isomorphic if the cycle $c_{XY} \in \text{Ch}(X \times Y)$ is rational.

To prove Theorem 92.1 in the general case, we show that the cycle c_{XY} is rational by induction on D.

If X (and therefore Y) is isotropic, then the cycle $c_{X_0 Y_0}$ is rational by induction hypothesis, where X_0 and Y_0 are the anisotropic parts of X and Y. It follows that the cycle c_{XY} is also rational in the isotropic case. In the remaining part of the proof we are assuming that X and Y are anisotropic.

Let us introduce some special notation and terminology. We write N for the set of the symbols $\{h^i \times l_i, l_i \times h_i\}$ in $[0, d]$. For any subset $I \subset N$, we write $c_{XY}(I)$ for the sum of the basis elements of $\text{Ch}^D(\bar{X} \times \bar{Y})$ corresponding to the symbols of I. Similarly, we define the cycles $c_{XY}(I) \in \text{Ch}^D(\bar{Y} \times \bar{X})$, $c_{XX}(I) \in \text{Ch}^D(\bar{X}^2)$, and $c_{YY}(I) \in \text{Ch}^D(\bar{Y}^2)$.

A subset $I \subset N$ is said to be admissible, if the cycles $c_{XY}(I)$ and $c_{XX}(I)$ are rational. A subset $I \subset N$ is said to be weakly admissible, if $c_{XX}(I)$ and $c_{YY}(I)$ are rational. Since the set N is weakly admissible, the complement $N \setminus I$ of any weakly admissible set I is weakly admissible as well.

A subset $I \subset N$ is said to be symmetric, if it is stable under transposition: $I^t = I$. For any $I \subset N$, the set $I \cup I^t$ is the smallest symmetric set containing I; we call it the symmetrization of I.

Proposition 92.2.

1. Any admissible set is weakly admissible.
2. The symmetrization of an admissible set is admissible.
3. A union of admissible sets is admissible.

Proof.

(1): This follows from the formulas (which hold up to addition of $h^d \times h^d$) $c_{XX}(I) = c_{YY}(I) \circ c_{XX}(I)$ and $c_{YY}(I) = c_{XY}(I) \circ c_{YY}(I)$.

(3): Let I and J be admissible sets. The cycle $c_{XY}(I \cup J)$ is rational because $c_{XY}(I \cup J) = c_{XY}(I) + c_{XY}(J) + c_{XY}(I \cap J)$ and (up to addition of $h^d \times h^d$) $c_{XY}(I \cap J) = c_{XY}(J) \circ c_{XX}(I)$. Rationality of $c_{XY}(I \cup J)$ is proved analogously.

(2): The transpose I^t of an admissible set $I \subset N$ is admissible. Therefore, by (3), the union $I \cup I^t$ is admissible.

Here comes the key observation:

Proposition 92.3. Let I be a weakly admissible set I and let $h^r \times l_r \in I$ be its element with the smallest r. Then $h^r \times l_r$ is contained in an admissible set.

Before proving Proposition 92.3, let us assume it in order to finish the proof of Theorem 92.1 by showing that the set N is admissible.
Note that \(\emptyset \) is a symmetric admissible set. Let \(I_0 \) be a symmetric admissible set. It suffices to show that if \(I_0 \neq N \) then \(I_0 \) is contained in a strictly bigger symmetric admissible set \(I_1 \).

By Proposition \(92.2(1) \), the set \(I_0 \) is weakly admissible. Therefore the set \(I \overset{\text{def}}{=} N \setminus I_0 \) is weakly admissible as well. Since the set \(I \) is non-empty and symmetric, \(I \ni h^i \times l_i \) for some \(i \). Let us take the smallest \(r \) such that \(h^r \times l_r \in I \). Proposition \(92.3 \) provides us with an admissible set \(J \) containing \(r \). By Proposition \(92.2(3) \), the union \(I_0 \cup J \) is an admissible set; we take as \(I_1 \) its symmetrization. The set \(I_1 \) is admissible by Proposition \(92.2(2) \), symmetric, and contains \(I_0 \) properly because \(I_1 \setminus I_0 \ni r \).

Proof of Proposition \(92.3 \) Multiplying the generic point morphism

\[
X \leftarrow \text{Spec } F(X)
\]

by \(X \times Y \) (on the left), we get a flat morphism

\[
X \times Y \times X \leftarrow (X \times Y)_{F(X)}.
\]

It induces a homomorphism

\[
f : \text{Ch}^D(\bar{X} \times \bar{Y} \times \bar{X}) \longrightarrow \text{Ch}^D(\bar{X} \times \bar{Y})
\]

mapping each basis element of the shape \(\beta_1 \times \beta_2 \times h^0 \) to \(\beta_1 \times \beta_2 \), and vanishing on the remaining basis elements. Note that this homomorphism maps the subgroup of rational (that is, \(F \)-rational) cycles onto the subgroup of \(F(X) \)-rational cycles (Example \(56.8 \)).

Since the quadrics \(X_{F(X)} \) and \(Y_{F(X)} \) are isotropic, the cycle \(c_{XY}(N) \) is \(F(X) \)-rational. Therefore, the set \(f^{-1}(c_{XY}(N)) \) contains a rational cycle. Any cycle of this set has the form

\[
\left(1\right) \quad c_{XY}(N) \times h^0 + \sum \alpha \times \beta \times \gamma,
\]

where the sum is taken over some homogeneous \(\alpha, \beta, \gamma \) with positive \(\text{codim } \gamma \). In what follows we assume that \(\left(1\right) \) is a rational cycle.

Let \(I \) and \(r \) be as in the statement of Proposition under proof. Considering the cycle \(\left(1\right) \) as a correspondence from \(\bar{X} \) to \(\bar{Y} \times \bar{X} \), we may take the composition \(\left(1\right) \circ c_{XX}(I) \). The result is a rational cycle on \(\bar{X} \times \bar{Y} \times \bar{X} \) which (up to addition of \(h^d \times h^d \)) is equal to

\[
\left(1\right) \quad c_{XY}(I) \times h^0 + \sum \alpha \times \beta \times \gamma,
\]

where the sum is taken over some (other) homogeneous \(\alpha, \beta, \gamma \) such that \(\text{codim } \gamma > 0 \) and \(\text{codim } \alpha \geq r \). Let us take the pull-back of the cycle \(\left(1\right) \) with respect to the morphism \(\bar{X} \times \bar{Y} \rightarrow \bar{X} \times \bar{Y} \times \bar{X}, (x, y) \mapsto (x, y, x) \), induced by the diagonal of \(\bar{X} \). The result is a rational cycle on \(\bar{X} \times \bar{Y} \) which is equal to

\[
\left(1 \uparrow \right) \quad c_{XY}(I) + \sum (\alpha \cdot \gamma) \times \beta,
\]

where \(\text{codim}(\alpha \cdot \gamma) > r \). It follows that \(\left(1 \uparrow \right) = c_{XY}(J') \) with some set \(J' \ni r \).

By the symmetry (repeating the procedure with \(X \) and \(Y \) interchanged), we may find a set \(J'' \ni r \) such that the cycle \(c_{YX}(J'') \) is rational. Then the set \(J' \overset{\text{def}}{=} J' \cap J'' \) contains \(r \) and is admissible because of the fact that \(c_{XY}(J) \) coincides (up to addition of \(h^d \times h^d \)) with the composition \(c_{XY}(J') \circ c_{YX}(J'') \circ c_{XY}(J') \) (and of the similar fact for \(c_{YX}(J) \)).

Theorem \(92.1 \) is proved.
Remark 92.4. By Theorem 72.3, isomorphism of motives of odd-dimensional quadrics gives rise to isomorphism of the varieties. The question whether for a given even \(n \) the condition

\[
\varphi = \psi = 0 \quad \text{and} \quad i_0(\varphi_L) = i_0(\psi_L)
\]

implies that \(\varphi \) and \(\psi \) are similar, is answered by positive in characteristic \(\neq 2 \) for all \(n \leq 6 \) in [28], by negative for all \(n \geq 8 \) but 12 in [29], and is open for \(n = 12 \).

93. Indecomposable summands

In this section, we keep \(\Lambda = \mathbb{Z}/2\mathbb{Z} \) and work in the category \(\text{CM}(F, \mathbb{Z}/2\mathbb{Z}) \) of graded motives. Let \(X \) be a smooth anisotropic projective quadric of dimension \(D \). We write \(P \) for the set of projectors in \(\text{Ch}_D(X^2) = \text{End} M(X) \). We will provide some information about the objects \((X, p) \) (where \(p \in P \)) of the category \(\text{CM}(F, \mathbb{Z}/2\mathbb{Z}) \). For \(p \) as above (or, more generally, for any element \(p \in \text{Ch}_D(X^2) \)), \(\bar{p} \) stands for the essence (as defined in Section 71) of the image of \(p \) in the reduced Chow group \(\overline{\text{Ch}}(X^2) \). We write \([(X, p)] \) for the isomorphism class of the motive \((X, p) \).

Theorem 93.1. (1) For any \(p, p' \in P \), one has \([(X, p)] = [(X, p')] \) if and only if \(\bar{p} = \bar{p}' \). Moreover, the image of the map

\[
\{[(X, p)]\}_{p \in P} \to \overline{\text{Ch}}_D(X^2), \quad [(X, p)] \mapsto \bar{p}
\]

is the group \(\overline{\text{Ch}}_D(X^2) \) (cf. Definition 72.4) of all \(D \)-dimensional essential cycles.

(2) For any \(p, p_1, p_2 \in P \), one has \((X, p) \simeq (X, p_1) \oplus (X, p_2) \) if and only if \(\bar{p} \) is a disjoint union of \(\bar{p}_1 \) and \(\bar{p}_2 \) (meaning that \(\bar{p}_1 \) and \(\bar{p}_2 \) have no intersection in the sense of Lemma 72.3 and \(\bar{p} = \bar{p}_1 + \bar{p}_2 \)). In particular, the motive \((X, p) \) is indecomposable if and only if the cycle \(\bar{p} \) is minimal (cf. Definition 72.5).

(3) For any \(p, p' \in P \), the motives \((X, p) \) and \((X, p') \) are isomorphic to twists of each other if and only if \(\bar{p} \) and \(\bar{p}' \) are derivatives (cf. Definition 72.7) of the same rational cycle. More precisely, for any given \(\alpha \in \overline{\text{Ch}}_D(X^2) \),

\[
\{[(X, p)]\}_{p \in P} \to \overline{\text{Ch}}_{D+1}(X^2), \quad [(X, p)] \mapsto \bar{p}
\]

is the group \(\overline{\text{Ch}}_D(X^2) \) (cf. Definition 72.4) of all \(D \)-dimensional essential cycles.

Proof. Let us fix a field extension \(E/F \) such that the quadric \(X_E \) is split. The following statements on projectors in \(\text{End} M(X_E) \) are easily checked: an element \(\alpha \in \text{Ch}_D(X^2_E) \) is a projector if and only if it is a linear combination of the elements \(h_i \times l_i \) and \(l'_i \times h'_i \), \(i \in [0, d] \), where \(l'_i = l_i \) for \(i < d \), \(l'_d = l_d \) if \(D \) is divisible by 4, and \(l'_a = h^d + l_d \) otherwise (cf. Exercise 67.3); moreover, the condition \((X_E, \alpha) \simeq (X_E, \alpha') \) for two projectors \(\alpha \) and \(\alpha' \) means that \(\alpha = \alpha' \) up to the terms with \(h^d \times l_d \) and \(l'_a \times h^d \), where these terms, if they do not coincide, are equal to \(h^d \times l_a \) for one of \(\alpha \) and \(\alpha' \) and to \(l'_a \times h^d \) for the other.

(1) By Corollary 91.7, \([(X, p)] = [(X, p')] \) if and only if \([(X, p)_E] = [(X, p')_E] \). Since the cycles \(p_E \) and \(p'_E \) are rational, it follows that \([(X, p)_E] = [(X, p')_E] \) if and only if \(p_E = p'_E \) (note that by Exercise 91.8, we therefore get a canonical isomorphism of \((X, p) \) and \((X, p') \) once we have an isomorphism). Finally, \(p_E = p'_E \) if and only if \(\bar{p} = \bar{p}' \).

(2) We have \((X, p) \simeq (X, p_1) \oplus (X, p_2) \) if and only if \((X, p)_E \simeq (X, p_1)_E \oplus (X, p_2)_E \) if and only if \(p_E \) is a disjoint union of \(p_1 \) and \(p_2 \).
(3). A correspondence $\alpha \in \text{Ch}_{D+i}(X^2)$ determines an isomorphism $(X, p)_E \rightarrow (X, p')(i)_E$ if and only if $\bar{p} = (h^0 \times h^i) \cdot \bar{\alpha}$ and $\bar{p}' = (h^i \times h^0) \cdot \bar{\alpha}$. \hfill \square

COROLLARY 93.2. The motive of any anisotropic smooth projective quadric X decomposes in a direct sum of indecomposable summands. Moreover, such a decomposition is unique, and the number of summands coincides with the number of the minimal cycles in $\text{Ch}_D(X^2)$, where $D = \dim X$.

EXERCISE 93.3 (Rost motives). Let π be an anisotropic n-fold Pfister form. Show that the decomposition into the sum of indecomposable summands of the motive of the projective quadric of π looks as $\bigoplus_{i=0}^{2n-1-1} R_\pi(i)$ for some motive R_π uniquely determined by π. The motive R_π is called the Rost motive associated to π. Show that $(R_\pi)_E \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}(2^{n-1} - 1)$ for any splitting field $E \supset F$ of π. Show that the motive of the quadric given by any 1-codimensional subform of π decomposes as $\bigoplus_{i=0}^{2n-1-2} R_\pi(i)$. Let φ be a $(2^{n-1} + 1)$-dimensional non-degenerate subform of π. Find a smooth projective quadric X such that the motive of the quadric of φ decomposes as $M(X)(1) \oplus R_\pi$. Finally, reprove all this for motives with integral coefficients.

Theorems 92.1 and 93.1 are also valid for the motives with integral coefficients and are originally proved in this stronger form by A. Vishik in [59].
Appendices
94. Formally Real Fields

In this section, we review the Artin-Schreier theory of formally real fields. These results and their proofs, may be found in the books by Lam [40] and Scharlau [54].

Let F be a field, $P \subset F$ a subset. We say that P is a preorder of F if P satisfies all of the following:

\[P + P \subset P, \quad P \cdot P \subset P, \quad -1 \notin P, \quad \text{and} \quad \sum F^2 \subset P. \]

A preorder P of F is called an ordering if in addition $F = P \cup -P$.

A field F is called formally real if $D(\infty \langle 1 \rangle) := \{ x \in F \mid x \text{ is a sum of squares in } F \}$ is a preorder of F, equivalently if -1 is not a sum of squares in F, i.e., the polynomial $t_1^2 + \cdots + t_n^2$ has no nontrivial zero over F for any (positive) integer n. Clearly, if F is formally real then the characteristic of F must be zero. (If char $F \neq 2$ then F is not formally real if and only if $F = D(\infty \langle 1 \rangle)$.) Using Zorn’s Lemma, it is easy to check that a preorder is an ordering if and only if it is maximal with respect to set inclusion in the set of preorderings of F. In particular, a field F is formally real if and only if the space of orderings on F, $\mathcal{X}(F) := \{ P \mid P \text{ is an ordering of } F \}$ is not empty.

Every $P \in \mathcal{X}(F)$ (if any) contains the preorder $D(\infty \langle 1 \rangle)$. Let $P \in \mathcal{X}(F)$ and $0 \neq x \in F$. If $x \in P$ then x (respectively, $-x$) is called positive (respectively, negative) with respect to P and we write $x >_P 0$ (respectively, $x <_P 0$). Elements that are positive (respectively negative) with respect to all orderings of F (if any) are called totally positive (respectively, totally negative). In fact we have

Proposition 94.1. (Cf. [40], Theorem VIII.1.12 or [54], Corollary 3.1.7.) **Suppose that F is formally real. Then $D(\infty \langle 1 \rangle) = \bigcap_{P \in \mathcal{X}(F)} P$, i.e., a nonzero element of F is totally positive if and only if it is a sum of squares.**

It follows that a formally real field has precisely one ordering if and only if $D(\infty \langle 1 \rangle)$ is an ordering in F, e.g., \mathbb{Q} or \mathbb{R}. The field of real numbers even has \mathbb{R}^2 as an ordering. A formally real field F having F^2 as an ordering is called euclidean. For such a field every element is either a square or the negative of a square. For example, the field of real constructible numbers is euclidean.
A formally real field is called real closed if it has no proper algebraic extension that is formally real. If F is such a field then it must be euclidean. Let K/F be an algebraic field extension with K real closed. Then $K^2 \cap F$ is an ordering on F.

More generally, let K/F be a field extension with K formally real. Let $Q \in \mathfrak{X}(K)$. The pair (K, Q) is called an ordered field. If $P \in \mathfrak{X}(F)$ satisfies $P = Q \cap F$ then $(K, Q)/(F, P)$ is called an extension of ordered fields and Q is called an extension of P. If, in addition, K/F is algebraic and there exist no extension $(L, R)/(K, Q)$ with L/K non-trivial algebraic, we call (K, Q) a real closure of (F, P).

Proposition 94.2. (Cf. [54], Theorem 3.1.14.) If (K, Q) is a real closure of (F, P) then K is real closed and $Q = K^2$.

The key to proving this is

Theorem 94.3. (Cf. [54], Theorem 3.1.9.) Let (F, P) be an ordered field.

1. Let $d \in F$ and $K = F(\sqrt{d})$. Then there exists an extension of P to K if and only if $d \in P$.
2. If K/F is finite of odd degree then there exists an extension of P to K.

The main theorem of Artin-Schreier Theory is

Theorem 94.4. (Cf. [40], Theorem VIII.2.8 or [54], Theorems 3.1.13, 3.2.8.) Every ordered field (F, P) has a real closure $(\overline{F}, \overline{F}^2)$ and this real closure is unique up to an F-isomorphism and this isomorphism is order-preserving.

Because of the last results, if we fix an algebraic closure \overline{F} of a formally real field F and $P \in \mathfrak{X}(F)$ then there exists a unique real closure $(\overline{F}, \overline{F}^2)$ of (F, P) with $\overline{F} \subset \overline{F}$. We denote \overline{F} by F_P.

95. The Space of Orderings

We view the space of orderings $\mathfrak{X}(F)$ on a field F as a subset of the space of functions $\{\pm 1\}^{F^\times}$ by the embedding

$$\mathfrak{X}(F) \to \{\pm 1\}^{F^\times} \text{ via } P \mapsto (\text{sign}_P : x \mapsto \text{sign}_P x)$$

(the sign of x in F rel P). Giving $\{\pm 1\}$ the discrete topology, we have $\{\pm 1\}^{F^\times}$ is Hausdorff and by Tychonoff’s Theorem compact. The collection of clopen (i.e., open and closed) sets given by

$$(95.1)\quad H_\varepsilon(a) := \{g \in \{\pm 1\}^{F^\times} \mid g(a) = -\varepsilon\}$$

for $a \in F^\times$ and $\varepsilon \in \{\pm 1\}$ forms a subbase for the topology of $\{\pm 1\}^{F^\times}$, hence $\{\pm 1\}^{F^\times}$ is also totally disconnected. Consequently, $\{\pm 1\}^{F^\times}$ is a boolean space (i.e., a compact totally disconnected Hausdorff space). Let $\mathfrak{X}(F)$ have the induced topology arising from the embedding $f : \mathfrak{X}(F) \to \{\pm 1\}^{F^\times}$.

Theorem 95.2. $\mathfrak{X}(F)$ is a boolean space.
96. C_n-fields

Proof. It suffices to show that $\mathcal{X}(F)$ is closed in $\{\pm 1\}^{F^\times}$. Let $s \in \{\pm 1\}^{F^\times} \setminus f(\mathcal{X}(F))$. First suppose that s is the constant function ε. Then the clopen set $H_\varepsilon(\varepsilon)$ is disjoint from $f(\mathcal{X}(F))$ and contains s, so separates s from $f(\mathcal{X}(F))$. So assume that s is not a constant function hence is surjective. Since $s^{-1}(1)$ is not an ordering on F, there exist $a, b \in F^\times$ such that $s(a) = 1 = s(b)$ (i.e., a, b are “positive”) but either $s(a + b) = -1$ or $s(ab) = -1$. Let $c = ab$ if $s(ab) = -1$ otherwise let $c = a + b$. As there cannot be an ordering in which a and b are positive but c negative, $H_1(-a) \cap H_1(-b) \cap H_{-1}(-c)$ is disjoint from $f(\mathcal{X}(F))$ and contains s, so separates s from $f(\mathcal{X}(F))$. \hfill \square

Identifying $\mathcal{X}(F)$ with its image in $\{\pm 1\}^{F^\times}$, we see that the collection of sets

$$H(a) = H_F(a) := H_1(a) \subset \mathcal{X}(F), \quad a \in F^\times,$$

forms a subbasis of clopen sets for the topology of $\mathcal{X}(F)$ called the Harrison subbasis. So $H(a)$ is the set of orderings on which a is negative. It follows that the collection of sets

$$H(a_1, \ldots, a_n) = H_F(a_1, \ldots, a_n) := \bigcap_{i=1}^n H(a_i), \quad a_1, \ldots, a_n \in F^\times$$

forms a basis for the topology of $\mathcal{X}(F)$.

We call a homogeneous polynomial of (total) degree d a d-form. A field F is called a C_n-field if every d-form over F in at least $d^n + 1$ variables has a non-trivial zero over F.

For example, a field is algebraically closed if and only if it is a C_0-field. Every finite field is a C_1-field by the Chevalley-Warning Theorem (cf. [55], I.2, Theorem 3).

An n-form in n-variables over F is called a normic form if it has no non-trivial zero. For example, let E/F be a finite field extension of degree n. Let $\{x_1, \ldots, x_n\}$ be an F-basis for E. Then the form $N_{E/F}(t_1x_1 + \cdots + t_nx_n)$ in the variables t_1, \ldots, t_n is of degree n and has no nontrivial zero, hence is normic (the reason for the name).

Lemma 96.1. Let F be a non algebraically closed field. Then there exist normic forms of arbitrarily large degree.

Proof. There exists a normic form φ of degree n for some $n > 1$. Having defined a normic form φ_s of degree n^s, let

$$\varphi_{s+1} := \varphi(\varphi_s|\varphi_s| \cdots |\varphi_s).$$

This notation means that new variables are to be used after each occurrence of $|$. The form φ_{s+1} of degree n^{s+1} has no non-trivial zero. \hfill \square

Theorem 96.2. Let F be a C_n-field and let f_1, \ldots, f_r be d-forms in N common variables. If $N > rd^n$ then the forms have a common non-trivial zero in F.

Proof. Suppose first that $n = 0$ (i.e., F is algebraically closed) or $d = 1$. As $N > r$, it follows from the general form of Krull’s Principal Ideal Theorem (cf. [12], Theorem 10.2) the forms have a common non-trivial zero over F.

\hfill \square
So we may assume that \(n > 0 \) and \(d > 1 \). By Lemma 96.1, there exists a normic form \(\varphi \) of degree at least \(r \). We define a sequence of forms \(\varphi_i, i \geq 1 \), of degree \(d_i \) in \(N_i \) variables as follows. Let \(\varphi_1 = \varphi \). Assuming that \(\varphi_i \) is defined let
\[
\varphi_{i+1} = \varphi(f_1, \ldots, f_r \mid f_1, \ldots, f_r \mid \ldots \mid f_1, \ldots, f_r \mid 0, \ldots, 0),
\]
where zeros occur in \(< r \) places. The forms \(f_i \) between two consecutive signs \(| \) have the same sets of variables.

If \(x \in \mathbb{R} \) let \([x]\) denote the largest integer \(\leq x \). We have
\[
(96.3) \quad d_{i+1} = dd_i \quad \text{and} \quad N_{i+1} = N \left(\frac{N_i}{r} \right).
\]
Note that since \(N > rd^n \geq 2r \) we have \(N_i \to \infty \) as \(i \to \infty \).

Set
\[
(96.4) \quad \alpha_i = \frac{r}{N_i} \left(\frac{N_i}{r} \right).
\]
We have \(\alpha_i \to 1 \) as \(i \to \infty \). It follows from (96.3) and (96.4) that
\[
\frac{N_{i+1}}{d_{i+1}^n} = \frac{N_i}{d_i^n} \cdot \frac{\alpha_i N}{rd^n}.
\]
Since \(N > rd^n \) and \(\alpha_i \to 1 \), there is \(\beta > 1 \) and an integer \(s \) such that \(\frac{\alpha_i N}{rd^n} > \beta \) if \(i \geq s \). Therefore we have
\[
\frac{N_{i+1}}{d_{i+1}^n} > \frac{N_i}{d_i^n} \cdot \beta
\]
if \(i \geq s \). It follows that \(N_k > d_k^n \) for some \(i \). As \(F \) is a \(C_n \)-field, the form \(\varphi_k \) has a nontrivial zero. Choose the smallest \(k \) with this property. By definition of \(\varphi_k \), a nontrivial zero of \(\varphi_k \) gives rise to a nontrivial common zero of the forms \(f_1, \ldots, f_r \). \(\Box \)

Corollary 96.5. Let \(F \) be a \(C_n \)-field and \(K/F \) an algebraic field extension. Then \(K \) is a \(C_{n+1} \)-field.

Proof. Let \(f \) be a \(d \)-form over \(K \) in \(N \) variables with \(N > d^n \). The coefficients of \(f \) belong to a finite field extension of \(F \), so we may assume that \(K/F \) is a finite extension. Let \(\{x_1, \ldots, x_r\} \) be an \(F \)-basis for \(K \). Choose variables \(t_{ij}, i = 1, \ldots, N, j = 1, \ldots r \) over \(F \) and set
\[
t_i = t_{i1}x_1 + \cdots + t_{ir}x_r
\]
for every \(i \). Then
\[
f(t_1, \ldots, t_N) = f_1(t_{ij})x_1 + \cdots f_r(t_{ij})x_r
\]
for some \(d \)-forms \(f_j \) in \(rN \) variables. Since \(rN > rd^n \), it follows from Theorem 96.2 that the forms \(f_j \) have a nontrivial common zero over \(F \) which produces a nontrivial zero of \(f \) over \(K \). \(\Box \)

Corollary 96.6. Let \(F \) be a \(C_n \)-field. Then \(F(t) \) is a \(C_{n+1} \)-field.
Proof. Let f be a d-form in N variables over $F(t)$ with $N > d^{n+1}$. Clearing denominators of the coefficients of f we may assume that all the coefficients are polynomials in t. Choose variables t_{ij}, $i = 1, \ldots, N$, $j = 0, \ldots, m$ for some m and set
\[t_i = t_{i0} + t_{i1}t + \cdots + t_{im}t^m \]
for every i. Then
\[f(t_1, \ldots, t_N) = f_0(t_{ij})t^0 + \cdots + f_{dm+r}(t_{ij})t^{dm+r} \]
for some d-forms f_j in $N(m+1)$ variables over F and $r = \deg_r(f)$. Since $N > d^{n+1}$, one can choose m such that $N(m+1) > (dm+r+1)d^n$. By Theorem 96.2, the forms f_j have a nontrivial common zero over F which produces a nontrivial zero of f over $F(t)$.

Corollaries 96.5 and 96.6 yield

Theorem 96.7. Let F be a C_n-field and K/F a field extension of transcendence degree m. Then K is a C_{n+m}-field.

As algebraically closed field are C_0-fields, the theorem shows that a field of transcendence degree n over an algebraically closed field is a C_n-field. In particular, we have the classical Tsen Theorem:

Theorem 96.8. If F is algebraically closed and K/F is a field extension of transcendence degree 1 then the Brauer group $\text{Br} \ K$ is trivial.

Proof. Let A be a central division algebra over K of degree $d > 1$. The reduced norm form Nrd of D is a form of degree d in d^2 variables. By Theorem 96.7, K is a C_1-field, hence Nrd has a nontrivial zero, a contradiction.

97. Algebras

For more details see [38] and [21].

97.A. Semisimple, separable and étale algebras. Let F be a field. A finite dimensional (associative, unital) F-algebra A is called simple if A has no nontrivial (two-sided) ideals. By Wedderburn’s theorem, every simple F-algebra is isomorphic to $M_n(D)$ for some n and a division F-algebra D uniquely determined by A up to isomorphism.

An F-algebra A is called semisimple if A is isomorphic to a (finite) product of simple algebras.

An F-algebra A is called separable if the K-algebra $A_K := A \otimes_F K$ is semisimple for every field extension K/F. This is equivalent to A is a finite product of the matrix algebras $M_n(D)$, where D is a division F-algebra with center a finite separable field extension of F. Separable algebras satisfy the following descent condition:

Fact 97.1. If A is an F-algebra and E/F is a field extension then A is separable if and only if A_E is separable as an E-algebra.

Let A be a finite dimensional commutative F-algebra. If A is separable, it is called étale. Consequently, A is étale if and only if A is a finite product of finite separable field extensions of F. An étale F-algebra A is called split if A is isomorphic to a product of several copies of F.
97.B. Quadratic algebras. Let A be a commutative (associative, unital) F-algebra. The determinant (respectively, the trace) of the linear endomorphism of A given by left multiplication by an element $a \in A$ is called the norm $N_A(a)$ (respectively, the trace $\text{Tr}_A(a)$). We have $\text{Tr}(a + a') = \text{Tr}(a) + \text{Tr}(a')$ and $N(aa') = N(a)N(a')$ for all $a, a' \in A$. Every $a \in A$ satisfies the characteristic polynomial equation
\[a^n - \text{Tr}(a)a^{n-1} + \cdots + (-1)^n N(a) = 0 \]
where $n = \dim A$.

A quadratic algebra over F is an F-algebra of dimension 2. A quadratic algebra is necessarily commutative. Every element $a \in A$ satisfies the quadratic equation
\[a^2 - \text{Tr}(a)a + N(a) = 0. \]
For every $a \in A$, set $\bar{a} := \text{Tr}(a) - a$. We have $\bar{a}a' = \bar{a}a'$ for all $a, a' \in A$. Indeed, since $\dim A = 2$, it suffices to check the equality when $a \in F$ and $a' \in F$ (this is obvious) and $a' = a$ (it follows from the quadratic equation). Thus the map $a \mapsto \bar{a}$ is an algebra automorphism of A of exponent 2. We have
\[\text{Tr}(a) = a + \bar{a} \quad \text{and} \quad N(a) = a\bar{a}. \]
We call Tr the trace form of A and N the quadratic norm form of A.

A quadratic F-algebra A is étale if A is either a quadratic separable field extension of F or A is split, i.e., is isomorphic to $F \times F$.

Let A and B be two quadratic étale F-algebras. The subalgebra $A \star B$ of the tensor product $A \otimes_F B$ consisting of all elements stable under the automorphism of $A \otimes_F B$ defined by $x \otimes y \mapsto \bar{x} \otimes \bar{y}$ is also a quadratic étale F-algebra. The operation \star on quadratic étale F-algebras yields a (multiplicative) group structure on the set $\text{Ét}_2(F)$ of isomorphisms classes $[A]$ of quadratic étale F-algebras A. Thus $[A] \cdot [B] = [A \star B]$. Note that $\text{Ét}_2(F)$ is an abelian group of exponent 2.

Example 97.3. If $\text{char} F \neq 2$, every quadratic étale F-algebra is isomorphic to
\[F_a := F[j]/(j^2 - a) \]
for some $a \in F^\times$. For every $u = x + yj$, we have
\[\bar{u} = x - yj, \quad \text{Tr}(u) = 2x, \quad \text{and} \quad N(u) = x^2 - ay^2. \]
The assignment $a \mapsto [F_a]$ gives rise to an isomorphism $F^\times/F^\times \cong \text{Ét}_2(F)$.

Example 97.4. If $\text{char} F = 2$, every quadratic étale F-algebra is isomorphic to
\[F_a := F[j]/(j^2 + j + a) \]
for some $a \in F$. For every $u = x + yj$, we have
\[\bar{u} = x + y + yj, \quad \text{Tr}(u) = y, \quad \text{and} \quad N(u) = x^2 + xy + ay^2. \]
The assignment $a \mapsto [F_a]$ induces an isomorphism $F / \text{Im} \varphi \cong \text{Ét}_2(F)$, where $\varphi : F \to F$ is defined by $\varphi(x) = x^2 + x$.
97.C. Brauer group. An \(F \)-algebra \(A \) is called central if \(F1 \) coincides with the center of \(A \). A central simple \(F \)-algebra \(A \) is called split if \(A \cong M_n(F) \) for some \(n \).

Two central simple \(F \)-algebras \(A \) and \(B \) are called Brauer equivalent if \(M_n(A) \cong M_m(B) \) for some \(n \) and \(m \). For example, all split \(F \)-algebras are Brauer equivalent.

The set \(\text{Br}(F) \) of all Brauer equivalence classes of central simple \(F \)-algebras is a torsion abelian group with respect to the tensor product operation \(A \otimes_F B \), called the Brauer group of \(F \). The identity element of \(\text{Br}(F) \) is the class of split \(F \)-algebras.

The class of a central simple \(F \)-algebra \(A \) will be denoted by \([A]\) and the product of \([A]\) and \([B]\) in the Brauer group, represented by the tensor product \(A \otimes_F B \), will be denoted by \([A] \cdot [B]\).

The inverse class of \(A \) in \(\text{Br}(F) \) is given by the class of the opposite algebra \(A^{op} \). The order of \([A]\) in \(\text{Br}(F) \) is called the exponent of \(A \) and will be denoted by \(\exp(A) \). In particular, \(\exp(A) \) divides 2 if and only if \(A^{op} \cong A \), i.e., \(A \) has an anti-automorphism.

For an integer \(m \), we write \(\text{Br}_m(F) \) for the subgroup of all classes \([A] \in \text{Br}(F)\) such that \([A]^m = 1\).

Let \(A \) be a central simple algebra over \(F \) and \(L/F \) a field extension. Then \(A_L := A \otimes_F L \) is a central simple algebra over \(L \). (In particular, every central simple \(F \)-algebra is separable.) The correspondence \([A] \mapsto [A_L]\) gives rise to a group homomorphism \(r_{L/F} : \text{Br}(F) \to \text{Br}(L) \). We set \(\text{Br}(L/F) := \ker r_{L/F} \). The class \(A \) is said to be split over \(L \) (and \(L/F \) is called a splitting field extension of \(A \)) if the algebra \(A_L \) is split, equivalently \([A] \in \text{Br}(L/F)\).

A central simple \(F \)-algebra \(A \) is isomorphic to \(M_k(D) \) for a central division \(F \)-algebra \(D \), unique up to isomorphism. The integers \(\sqrt{\dim D} \) and \(\sqrt{\dim A} \) are called the index and the degree of \(A \) respectively and denoted by \(\text{ind}(A) \) and \(\text{deg}(A) \).

Fact 97.5. Let \(A \) be a central simple algebra over \(F \) and \(L/F \) a finite field extension. Then

\[
\text{ind}(A_L) | \text{ind}(A) | \text{ind}(A_L) \cdot [L:F].
\]

Corollary 97.6. Let \(A \) be a central simple algebra over \(F \) and \(L/F \) a finite field extension. Then

1. If \(L \) is a splitting field of \(A \) then \(\text{ind}(A) \) divides \([L:F]\).
2. If \([L:F]\) is relatively prime to \(\text{ind}(A) \) then \(\text{ind}(A_L) = \text{ind}(A) \).

Fact 97.7. Let \(A \) be a central division algebra over \(F \).

1. A subfield \(K \subset A \) is maximal if and only if \([K:F] = \text{ind}(A) \). In this case \(K \) is a splitting field of \(A \).
2. Every splitting field of \(A \) of degree \(\text{ind}(A) \) over \(F \) can be embedded into \(A \) over \(F \) as a maximal subfield.

97.D. Severi-Brauer varieties. Let \(A \) be a central simple \(F \)-algebra of degree \(n \). Let \(r \) be an integer dividing \(n \). The (generalized) Severi-Brauer variety \(\text{SB}_r(A) \) of \(A \) is the variety of right ideals of dimension \(rn \) in \(A \) [38, 1.16]. We simply write \(\text{SB}(A) \) for \(\text{SB}_1(A) \).

If \(A \) is split, i.e., \(A = \text{End}(V) \) for a vector space \(V \) of dimension \(n \), every right ideal \(I \) in \(A \) of dimension \(rn \) has the form \(I = \text{Hom}(V,U) \) for a uniquely determined
Let $U \subset V$ be a subspace of dimension r. Thus the correspondence $I \mapsto U$ yields an isomorphism $\text{SB}_r(A) \cong \text{Gr}_r(V)$, where $\text{Gr}_r(V)$ is the Grassmannian variety of r-dimensional subspaces in V. In particular, $\text{SB}(A) \cong \mathbb{P}(V)$.

Proposition 97.8. [38 Prop. 1.17] Let A be a central simple F-algebra, r an integer dividing $\text{deg}(A)$. Then the Severi-Brauer variety $X = \text{SB}_r(A)$ has a rational point over an extension L/F if and only if $\text{ind}(A_L)$ divides r. In particular, $\text{SB}(A)$ has a rational point over L if and only if A is split over L.

Let V_1 and V_2 be vector spaces over F of finite dimension. The Segre closed embedding is the morphism

$$\mathbb{P}(V_1) \times \mathbb{P}(V_2) \to \mathbb{P}(V_1 \otimes_F V_2)$$

taking a pair of lines U_1 and U_2 in V_1 and V_2 respectively to the line $U_1 \otimes_F U_2$ in $V_1 \otimes_F V_2$.

Example 97.9. The Segre embedding identifies $\mathbb{P}_F^1 \times \mathbb{P}_F^1$ with a projective quadric in \mathbb{P}_F^3.

The Segre embedding can be generalized as follows. Let A_1 and A_2 be two central simple algebras over F. Then the correspondence $(I_1, I_2) \mapsto I_1 \otimes I_2$ yields a closed embedding

$$\text{SB}(A_1) \times \text{SB}(A_2) \to \text{SB}(A_1 \otimes_F A_2).$$

97.E. Quaternion algebras. Let L/F be a Galois quadratic field extension with Galois group $\{e, g\}$ and $b \in F^\times$. The F-algebra $Q := L \oplus Lj$, where the symbol j satisfies $j^2 = b$ and $jl = g(l)j$ for all $l \in L$. The algebra Q is central simple of dimension 4 and is called a quaternion algebra. We have Q is either split, i.e., isomorphic to the matrix algebra $M_2(F)$ or a division algebra. The algebra Q carries a canonical involution $- : Q \to Q$ satisfying $\bar{j} = -j$ and $\bar{l} = g(l)$ for all $l \in L$.

Using the canonical involution, we define the linear reduced trace map

$$\text{Trd} : Q \to F$$

defined by $\text{Trd}(q) = q + \bar{q}$,

and quadratic reduced norm map

$$\text{Nrd} : Q \to F$$

defined by $\text{Nrd}(q) = q \cdot \bar{q}$.

An element $q \in Q$ is called a pure quaternion if $\text{Trd}(x) = 0$, or equivalently, $\bar{q} = -q$. Denote by Q' the 3-dimensional subspace of all pure quaternions. We have $\text{Nrd}(q) = -q^2$ for any $q \in Q'$.

Proposition 97.10. Every central division algebra of dimension 4 is isomorphic to a quaternion algebra.

Proof. Let $L \subset Q$ be a separable quadratic subfield. By the Skolem-Noether Theorem, the only nontrivial automorphism g of L over F extends to an inner automorphism of Q, i.e., there is $j \in Q^\times$ such that $jlj^{-1} = g(l)$ for all $l \in L$. Clearly, $Q = L \oplus Lj$ and j^2 commutes with j and L. Hence j^2 belongs to the center of Q, i.e., $j^2 \in F^\times$. Therefore, Q is isomorphic to a quaternion algebra. □
Example 97.11. If \(\text{char } F \neq 2 \), a separable quadratic subfield \(L \) of a quaternion algebra \(Q \) is of the form \(L = F(i) \) with \(i^2 = a \in F^\times \). Hence \(Q \) has a basis \(\{1, i, j, k = ij\} \) with multiplication table

\[
i^2 = a, \quad j^2 = b, \quad ji + ij = 0,
\]

for some \(b \in F^\times \). We shall denote the algebra generated by \(i \) and \(j \) with these relations by \(\left(\frac{a, b}{F} \right) \).

The space of pure quaternions has \(\{i, j, k\} \) as a basis. For every \(q = x + yi + zj + wk \) with \(x, y, z, w \in F \), we have

\[
\bar{q} = x - yi - zj - wk, \quad \text{Trd}(q) = 2x, \quad \text{and} \quad \text{Nrd}(q) = x^2 - ay^2 - bz^2 + abw^2.
\]

Example 97.12. If \(\text{char } F = 2 \), a separable quadratic subfield \(L \) of a quaternion algebra \(Q \) is of the form \(L = F(s) \) with \(s^2 + s + c = 0 \) for some \(c \in F \). Set \(i = sj \). We have \(s^2 = a := bc \). Hence \(Q \) has a basis \(\{1, i, j, k = ij\} \) with the multiplication table

\[
i^2 = a, \quad j^2 = b, \quad ji + ij = 0.
\]

We shall denote this algebra by \(\left(\frac{a, b}{F} \right) \). Note that this algebra is quaternion (in fact split) when \(b = 0 \).

The space of pure quaternions has \(\{1, i, j\} \) as a basis. For every \(q = x + yi + zj + wk \) with \(x, y, z, w \in F \), we have

\[
\bar{q} = (x+w)+yi+zj+wk, \quad \text{Trd}(q) = w, \quad \text{and} \quad \text{Nrd}(q) = x^2+ay^2+bz^2+abw^2+xw+yz.
\]

The classes of quaternion \(F \)-algebras satisfy the following relations in \(\text{Br}(F) \):

Fact 97.13. (Cf. []) Suppose that \(\text{char } F \neq 2 \). Then

1. \(\left(\frac{a'a', b}{F} \right) = \left(\frac{a, b}{F} \right) \cdot \left(\frac{a', b}{F} \right) \) and \(\left(\frac{a, bb'}{F} \right) = \left(\frac{a, b}{F} \right) \cdot \left(\frac{a, b'}{F} \right) \).
2. \(\left(\frac{a, b}{F} \right) = \left(\frac{b, a}{F} \right) \).
3. \(\left(\frac{a, b}{F} \right)^2 = 1. \)
4. \(\left(\frac{a, b}{F} \right) = 1 \) if and only if \(a \) is a norm of the quadratic étale extension \(F_b/F \).

Fact 97.14. (Cf. []) Suppose that \(\text{char } F = 2 \). Then

1. \(\left[\frac{a + a', b}{F} \right] = \left[\frac{a, b}{F} \right] \cdot \left[\frac{a', b}{F} \right] \) and \(\left[\frac{a, b + b'}{F} \right] = \left[\frac{a, b}{F} \right] \cdot \left[\frac{a, b'}{F} \right] \).
2. \(\left[\frac{ab, c}{F} \right] \cdot \left[\frac{bc, a}{F} \right] \cdot \left[\frac{ca, b}{F} \right] = 1. \)
(3) \[\begin{bmatrix} a, b \\ F \end{bmatrix} = \begin{bmatrix} b, a \\ F \end{bmatrix}. \]

(4) \[\begin{bmatrix} a, b \\ F \end{bmatrix}^2 = 1. \]

(5) \[\begin{bmatrix} a, b \\ F \end{bmatrix} = 1 \text{ if and only if } a \text{ is a norm of the quadratic étale extension } F_{ab}/F. \]

We shall need the following properties of quaternion algebras.

Lemma 97.15. (Chain Lemma) Let \(\begin{bmatrix} a, b \\ F \end{bmatrix} \) and \(\begin{bmatrix} c, d \\ F \end{bmatrix} \) be isomorphic quaternion algebras over a field \(F \) of characteristic not 2. Then there is an \(e \in F^\times \) satisfying \(\begin{bmatrix} a, b \\ F \end{bmatrix} \cong \begin{bmatrix} a, e \\ F \end{bmatrix} \cong \begin{bmatrix} c, e \\ F \end{bmatrix} \cong \begin{bmatrix} c, d \\ F \end{bmatrix} \).

Proof. Note that if \(x \) and \(y \) are pure quaternions in a quaternion algebra \(Q \) that are orthogonal with respect to the reduced trace bilinear form, i.e., \(\text{Trd}(xy) = 0 \) then \(Q \cong \begin{bmatrix} x^2, y^2 \\ F \end{bmatrix} \). Let \(Q = \begin{bmatrix} a, b \\ F \end{bmatrix} \). By assumption, there are pure quaternions \(x, y \) satisfying \(x^2 = a \) and \(y^2 = c \). Choose a pure quaternion \(z \) orthogonal to \(x \) and \(y \). Setting \(e = z^2 \), we have \(Q \cong \begin{bmatrix} a, e \\ F \end{bmatrix} \cong \begin{bmatrix} c, e \\ F \end{bmatrix} \). □

Lemma 97.16. Let \(Q \) be a quaternion algebra over a field \(F \) of characteristic 2. Suppose that \(Q \) is split by a purely inseparable field extension \(K/F \) such that \(K^2 \subset F \). Then \(Q \cong \begin{bmatrix} a, b \\ F \end{bmatrix} \) with \(a \in K^2 \).

Proof. First suppose that \(K = F(\sqrt{a}) \) is a quadratic extension of \(F \). By Fact 97.7, we know that \(K \) can be embedded into \(Q \). Therefore there exists an \(i \in Q \setminus F \) such that \(i^2 = a \in K^2 \). Note that \(i \) is a pure quaternion in \(Q' \setminus F \). The bilinear form defined by \((x, y) \mapsto xy + yx \) is non-degenerate on \(Q' \) over \(F \), hence there is a \(j \in Q' \) such that \(ij + ji = 1 \). Hence, \(Q \cong \begin{bmatrix} a, b \\ F \end{bmatrix} \) where \(b = j^2 \).

In the general case, write \(Q = \begin{bmatrix} c, d \\ F \end{bmatrix} \). By Property (5), we have \(c = x^2 + xy + cdy^2 \) for some \(x, y \in K \). Since \(x^2 \) and \(y^2 \) belong to \(F \), we have \(xy \in F \). Hence the extension \(E = F(x, y) \) splits \(Q \) and \([E : F] \leq 2 \). The statement follows now from the first part of the proof. □

Let \(\sigma \) be an automorphism of a ring \(R \). Denote by \(R[t, \sigma] \) the ring of \(\sigma \)-twisted polynomials in the variable \(t \) with multiplication defined by \(tr = \sigma(r)t \) for all \(r \in R \). For example, if \(\sigma \) is the identity then \(R[t, \sigma] \) is the ordinary polynomial ring \(R[t] \) over \(R \). Observe that if \(R \) has no zero divisors then neither does \(R[t, \sigma] \).
Example 97.17. Let A be a central division algebra over a field F. Consider an automorphism σ of the polynomial ring $A[x]$ defined by $\sigma(a) = a$ for all $a \in A$ and
\[
\sigma(x) = \begin{cases}
-x & \text{if } \text{char } F \neq 2 \\
x + 1 & \text{if } \text{char } F = 2.
\end{cases}
\]
Let B be the quotient ring of $A[x][t, \sigma]$. The ring B is a division algebra over its center E where
\[
E = \begin{cases}
F(x^2, t^2) & \text{if } \text{char } F \neq 2 \\
F(x^2 + x, t^2) & \text{if } \text{char } F = 2.
\end{cases}
\]
Moreover, $B = A \otimes_F Q$, where Q is a quaternion algebra over E satisfying
\[
Q = \begin{cases}
\left(\frac{x^2, t^2}{E} \right) & \text{if } \text{char } F \neq 2 \\
\left[\left(\frac{x^2 + x}{t^2}, t^2 \right) \right] & \text{if } \text{char } F = 2.
\end{cases}
\]

Iterating the construction in Example 97.17 yields the following

Proposition 97.18. For any field F and integer $n \geq 1$, there is a field extension L/F and a central division L-algebra that is a tensor product of n quaternion algebras.

We now study interactions between two quaternion algebras.

Theorem 97.19. Let Q_1 and Q_2 be division quaternion algebras over F. Then the following conditions are equivalent:

1. The tensor product $Q_1 \otimes_F Q_2$ is not a division algebra.
2. Q_1 and Q_2 have isomorphic separable quadratic subfields.
3. Q_1 and Q_2 have isomorphic quadratic subfields.

Proof. (1) \Rightarrow (2): Write X_1, X_2 and X for Severi-Brauer varieties of Q_1, Q_2 and $A := Q_1 \otimes_F Q_2$ respectively. The morphism $X_1 \times X_2 \to X$ taking a pair of ideals I_1 and I_2 to the ideal $I_1 \otimes I_2$ identifies $X_1 \times X_2$ with a twisted form of a 2-dimensional quadric in X (cf. 97.17).

Let Y be the generalized Severi-Brauer variety of rank 8 ideals in A. A rational point of Y, i.e., a right ideal $J \subset A$ of dimension 8, defines the closed curve C_J in X comprising of all ideals of rank 4 contained in J. In the split case, Y is the Grassmannian variety of planes and C_J is the projective line (the projective space of the plane corresponding to J) intersecting generically the quadric $X_1 \times X_2$ in two points. Thus there is a nonempty open subset $U \subset Y$ with the following property: for any rational point $J \in U$, we have $C_J \cap (X_1 \times X_2) = \{x\}$, where x is a point of degree 2 with residue field L a separable quadratic field extension of F. By assumption, there is a right ideal $I \subset A$ of dimension 8, i.e., $Y(F) \neq \emptyset$. The algebraic group G of invertible elements of A acts transitively on Y, i.e., the morphism $G \to Y$ taking an a to the ideal aI is surjective. As rational point of G are dense in G, we have rational points of Y are dense in Y. Hence U possesses a rational point J.

As $X_1(L) \times X_2(L) = (X_1 \times X_2)(L) \neq \emptyset$, it follows that the field L split both Q_1 and Q_2 and therefore L is isomorphic to quadratic subfields in Q_1 and Q_2.

(2) \Rightarrow (3) is trivial.
(3) \implies (1): Let \(L/F \) be a common quadratic subfield of both \(Q_1 \) and \(Q_2 \). It follows that \(Q_1 \) and \(Q_2 \) and hence \(A \) are split by \(L \). It follows from Corollary [97.6] that \(\text{ind}(A) \leq 2 \), i.e., \(A \) is not a division algebra. \(\square \)

Example 97.20. Let \(L/F \) be a separable quadratic field extension and \(Q = L \oplus Lj \) a quaternion \(F \)-algebra with \(j^2 = b \in F^\times \) (cf. [97.2]). For any \(q = l + l'j \in Q \), we have \(\text{Nrd}_Q(q) = N_L(l) - bN_L(l') \). Therefore, \(\text{Nrd}_Q \cong \langle \langle b \rangle \rangle \otimes N_L \).

98. Galois cohomology

For more details see ???.

98.A. Galois modules and Galois cohomology groups. Let \(\Gamma \) be a profinite group and let \(M \) be a (left) discrete \(\Gamma \)-module. For any \(n \in \mathbb{Z} \), let \(H^n(\Gamma, M) \) denote the \(n \)-th cohomology group of \(\Gamma \) with coefficients in \(M \). In particular, \(H^n(\Gamma, M) = 0 \) if \(n < 0 \) and \(H^0(\Gamma, M) = M^\Gamma := \{ m \in M \mid \gamma m = m \text{ for all } \gamma \in \Gamma \} \), the subgroup of \(\Gamma \)-invariant elements of \(M \).

An exact sequence \(0 \to M' \to M \to M'' \to 0 \) gives rise to an infinite long exact sequence of cohomology groups

\[
0 \to H^0(\Gamma, M') \to H^0(\Gamma, M) \to H^0(\Gamma, M'') \to H^1(\Gamma, M') \to H^1(\Gamma, M) \to \ldots
\]

Let \(F \) be a field. Denote by \(\Gamma_F \) the absolute Galois group of \(F \), i.e., the Galois group of a separable closure \(F_{\text{sep}} \) of the field \(F \). A discrete \(\Gamma_F \)-module is called a Galois module over \(F \). For a Galois module \(M \) over \(F \), we write \(H^n(F, M) \) for the cohomology group \(H^n(\Gamma_F, M) \).

Example 98.1. (1) Every abelian group \(A \) can be viewed as a Galois module over \(F \) with trivial action. We have \(H^0(F, A) = A \) and \(H^1(F, A) = \text{Hom}_c(\Gamma_F, A) \), the group of continuous homomorphisms (where \(A \) is viewed with discrete topology). In particular, \(H^1(F, A) \) is trivial if \(A \) is torsion-free, e.g., \(H^1(F, \mathbb{Z}) = 0 \).

The group \(H^1(F, \mathbb{Q}/\mathbb{Z}) = \text{Hom}_c(\Gamma_F, \mathbb{Q}/\mathbb{Z}) \) is called the character group of \(\Gamma_F \) and will be denoted by \(\text{char}(\Gamma_F) \).

The cohomology group \(H^n(F, M) \) is torsion for every Galois module \(M \) and any \(n \geq 1 \). Since the group \(\mathbb{Q} \) is uniquely divisible, we have \(H^n(F, \mathbb{Q}) = 0 \) for all \(n \geq 1 \). The cohomology exact sequence of the short exact sequence of Galois modules with trivial action

\[
0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0
\]
then gives an isomorphism \(H^n(F, \mathbb{Q}/\mathbb{Z}) \cong H^{n+1}(F, \mathbb{Z}) \) for any \(n \geq 1 \). In particular, \(H^2(F, \mathbb{Z}) \cong \text{char}(\Gamma_F) \).

Let \(m \) be a natural integer. The cohomology exact sequence of the short exact sequence

\[
0 \to \mathbb{Z} \xrightarrow{m} \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \to 0
\]
gives an isomorphism of \(H^1(F, \mathbb{Z}/m\mathbb{Z}) \) with the subgroup \(\text{char}_m(\Gamma_F) \) of characters of exponent \(m \).
(2) The cohomology groups $H^n(F, F_{\text{sep}})$ with coefficients in the additive group F_{sep} are trivial if $n > 0$. If $\text{char } F = p > 0$, the cohomology exact sequence for the short exact sequence

$$0 \rightarrow \mathbb{Z}/p\mathbb{Z} \rightarrow F_{\text{sep}} \xrightarrow{\phi} F_{\text{sep}} \rightarrow 0,$$

where ϕ is the Artin-Schreier map defined by $\phi(x) = x^p - x$, yields canonical isomorphisms

$$H^n(F, \mathbb{Z}/p\mathbb{Z}) \cong \begin{cases} \mathbb{Z}/p\mathbb{Z} & \text{if } n = 0 \\ F/\phi(F) & \text{if } n = 1 \\ 0 & \text{otherwise.} \end{cases}$$

In fact, $H^n(F, M) = 0$ for all $n \geq 2$ and every Galois module M over F of characteristic p satisfying $pM = 0$.

(3) We have the following canonical isomorphisms for the cohomology groups with coefficients in the multiplicative group F_{sep}^\times:

$$H^n(F, F_{\text{sep}}^\times) \cong \begin{cases} F^\times & \text{if } n = 0 \\ 1 & \text{if } n = 1 \text{ (Hilbert Theorem 90)} \\ \text{Br}(F) & \text{if } n = 2 \end{cases}.$$

(4) The group $\mu_m = \mu_m(F_{\text{sep}})$ of m-th roots of unity in F_{sep} is a Galois submodule of F_{sep}^\times. We have the following exact sequence of Galois modules:

$$1 \rightarrow \mu_m \rightarrow F_{\text{sep}}^\times \rightarrow F_{\text{sep}}^\times / F_{\text{sep}}^\times m \rightarrow F_{\text{sep}} / F_{\text{sep}}^\times m \rightarrow 1,$$

where the middle homomorphism takes x to x^m.

If m is not divisible by $\text{char } F$, we have $F_{\text{sep}}^\times / F_{\text{sep}}^\times m = 1$. Therefore, the cohomology exact sequence (98.2) yields isomorphisms

$$H^n(F, \mu_m) \cong \begin{cases} \mu_m(F) & \text{if } n = 0 \\ F^\times / F_{\text{sep}}^\times m & \text{if } n = 1 \\ \text{Br}_m(F) & \text{if } n = 2 \end{cases}.$$

We shall write $(a)_m$ or simply (a) for the element of $H^1(F, \mu_m)$ corresponding to a coset $aF_{\text{sep}}^\times m$ in F_{sep}^\times.

If $p = \text{char } F > 0$, we have $\mu_p(F_{\text{sep}}) = 1$ and the cohomology exact sequence (98.2) gives an isomorphism

$$H^1(F, F_{\text{sep}}^\times / F_{\text{sep}}^\times p) \cong \text{Br}_p(F).$$

Example 98.3. Let $\xi \in \text{char}_2(\Gamma_F)$ be a nontrivial character. Then $\ker(\xi)$ is a subgroup of Γ_F of index 2. By Galois theory, it corresponds to a Galois quadratic field extension F_ξ / F. The correspondence $\xi \mapsto F_\xi$ gives rise to an isomorphism $\text{char}_2(\Gamma_F) \cong \tilde{\text{Et}}_2(F)$.

98.B. Cup-products. Let M, N, and P be Galois modules over F. There is a pairing

$$H^m(F, M) \otimes H^n(F, N) \rightarrow H^{m+n}(F, M \otimes_F N), \quad \alpha \otimes \beta \mapsto \alpha \cup \beta$$

called the cup-product. When $n = 0$ the cup-product coincides with the natural homomorphism $M^\Gamma_F \otimes N^\Gamma_F \rightarrow (M \otimes_F N)^\Gamma_F$.

FACT 98.4. [10] Ch. IV, §7] Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of Galois modules over F. Suppose that for a Galois module N the sequence

$$0 \to M' \otimes \mathbb{Z} N \to M \otimes \mathbb{Z} N \to M'' \otimes \mathbb{Z} N \to 0$$

is exact. Then the diagram

$$\begin{array}{ccc}
H^n(F, M'') \otimes H^m(F, N) & \xrightarrow{\cup} & H^{n+m}(F, M'' \otimes \mathbb{Z} N) \\
\partial & \downarrow & \partial \\
H^{n+1}(F, M') \otimes H^m(F, N) & \xrightarrow{\cup} & H^{n+m+1}(F, M' \otimes \mathbb{Z} N)
\end{array}$$

is commutative.

Example 98.5. The cup-product

$$H^0(F, F^\times_{\text{sep}}) \otimes H^2(F, \mathbb{Z}) \to H^2(F, F^\times_{\text{sep}})$$

yields a pairing

$$F^\times \otimes \text{Ét}(F) \to \text{Br}_2(F).$$

If $\text{char } F \neq 2$, we have $a \cup [F_b] = \begin{pmatrix} a, b \\ F \end{pmatrix}$ for all $a, b \in F^\times$. In the case that $\text{char } F = 2$, we have $a \cup [F_{ab}] = \begin{pmatrix} a, b \\ F \end{pmatrix}$ for all $a \in F^\times$ and $b \in F$.

Suppose $\text{char } F \neq 2$. We have $\mu_2 \simeq \mathbb{Z}/2\mathbb{Z}$. The cup-product

$$H^1(F, \mathbb{Z}/2\mathbb{Z}) \otimes H^1(F, \mathbb{Z}/2\mathbb{Z}) \to H^2(F, \mathbb{Z}/2\mathbb{Z})$$

gives rise to a pairing

$$F^\times / F^\times \otimes F^\times / F^\times \to \text{Br}_2(F).$$

We have $(a) \cup (b) = \begin{pmatrix} a, b \\ F \end{pmatrix}$ for all $a, b \in F^\times$. In particular, $(a) \cup (1 - a) = 0$ for every $a \neq 0, 1$ by Fact 97.13(4).

98.C. Restriction and corestriction homomorphisms. Let M be a Galois module over F and K/F an arbitrary field extension. Separable closures of F and K can be chosen so that $F_{\text{sep}} \subset K_{\text{sep}}$. The restriction then yields a continuous group homomorphism $\Gamma_K \to \Gamma_F$. In particular, M has the structure of a discrete Γ_K-module and we have the restriction map

$$r_{K/F} : H^n(F, M) \to H^n(K, M).$$

If K/F is a finite separable field extension then Γ_K is an open subgroup of finite index in Γ_F. For every $n \geq 0$ there is natural corestriction homomorphism

$$c_{K/F} : H^n(K, M) \to H^n(F, M).$$

In the case $n = 0$, the map $c_{K/F} : M^{\Gamma_K} \to M^{\Gamma_F}$ is given by $x \to \sum \gamma(x)$ where the sum is over a left transversal of Γ_K in Γ_F. The composition $c_{K/F} \circ r_{K/F}$ is multiplication by $[K : F]$.

Let K/F be an arbitrary finite field extension and M a Galois module over F. Let E/F be the maximal separable sub-extension in K/F. As the restriction map $\Gamma_K \to \Gamma_E$
is an isomorphism, we have a canonical isomorphism $s: H^n(K, M) \sim H^n(E, M)$. We define the corestriction homomorphism $c_{K/F}: H^n(K, M) \to H^n(F, M)$ as $[K : E]$ times the composition $c_{E/F} \circ s$.

Example 98.6. The norm homomorphism $c_{K/F}: H^1(K, \mu_m) \to H^1(F, \mu_m)$ takes a class $(x)_m$ to $(N_{K/F}(x))_m$.

Example 98.7. The restriction map in Galois cohomology agrees with the restriction map for Brauer groups defined in Section 97.C. The corestriction in Galois cohomology yields a map $c_{K/F}: Br(K) \to Br(F)$ for a finite field extension K/F. Since the composition $c_{K/F} \circ r_{K/F}$ is the multiplication by $m = [K : F]$ we have $Br(K/F) \subset Br_m(K/F)$.

Let K/F be a finite separable field extension and M a Galois module over K. We view Γ_K as a subgroup of Γ_F. Denote by $\text{Ind}_{K/F}(M)$ the group $\text{Map}_{\Gamma_K}(\Gamma_F, M)$ of Γ_K-equivariant maps $\Gamma_F \to M$, i.e., maps $f: \Gamma_F \to M$ satisfying $f(\rho\delta) = \rho f(\delta)$ for all $\rho \in \Gamma_K$ and $\delta \in \Gamma_F$. The group $\text{Ind}_{K/F}(M)$ has a structure of Galois module over F defined by $(\gamma f)(\delta) = f(\delta\gamma)$ for all $f \in \text{Ind}_{K/F}(M)$ and $\gamma, \delta \in \Gamma_F$. Consider the Γ_K-module homomorphisms

$$M \xrightarrow{u} \text{Ind}_{K/F}(M) \xrightarrow{v} M$$

defined by $v(f) = f(1)$ and $u(m)(\gamma) = \begin{cases} m & \text{if } \gamma \in \Gamma_K \\ 0 & \text{otherwise.} \end{cases}$

Fact 98.8. Let M be a Galois module over F and K/F a finite separable field extension. Then the compositions

$$H^n(F, \text{Ind}_{K/F}(M)) \xrightarrow{r_{K/F}} H^n(K, \text{Ind}_{K/F}(M)) \xrightarrow{H^n(K,v)} H^n(K, M),$$

$$H^n(K, M) \xrightarrow{H^n(K,a)} H^n(K, \text{Ind}_{K/F}(M)) \xrightarrow{c_{K/F}} H^n(F, \text{Ind}_{K/F}(M))$$

are isomorphisms inverse to each other.

Suppose, in addition, that M is a Galois module over F. Consider the Γ_F-module homomorphisms

$$M \xrightarrow{u} \text{Ind}_{K/F}(M) \xrightarrow{t} M$$

defined by $w(m)(\gamma) = \gamma m$ and $t(f) = \sum_\gamma f(\gamma^{-1})$, where the sum is taken over a left transversal of Γ_K in Γ_F.

Corollary 98.9.

1. The composition

$$H^n(F, M) \xrightarrow{H^n(F,w)} H^n(F, \text{Ind}_{K/F}(M)) \xrightarrow{c_{K/F}} H^n(K, M)$$

coincides with $r_{K/F}$.

2. The composition

$$H^n(K, M) \xrightarrow{c_{K/F}} H^n(F, \text{Ind}_{K/F}(M)) \xrightarrow{H^n(F,t)} H^n(K, M)$$

coincides with $c_{K/F}$.
98.D. Residue homomorphism. Let \(m \) be an integer. A Galois module \(M \) over \(F \) is said to be \(m \)-periodic if \(mM = 0 \). If \(m \) is not divisible by \(\text{char} F \), we write \(M(-1) \) for the Galois module \(\text{Hom}(\mu_m, M) \) with the action of \(\Gamma_F \) given by \((\gamma f)(\xi) = \gamma f(\gamma^{-1}\xi) \) for every \(f \in M(-1) \) (the construction is independent of the choice of \(m \)). For example, \(\mu_m(-1) = \mathbb{Z}/m\mathbb{Z} \).

Let \(L \) be a field with a discrete valuation \(v \) and residue field \(F \). Suppose that the inertia group of an extension of \(v \) to \(L_{\text{sep}} \) acts trivially on \(M \). Then \(M \) has a natural structure of a Galois module over \(F \).

Fact 98.10. \([18, \S 7]\) Let \(L \) be a field with a discrete valuation \(v \) and residue field \(F \). Let \(M \) be an \(m \)-periodic Galois module \(L \) with \(m \) not divisible by \(\text{char} F \) such that the inertia group of an extension of \(v \) to \(L_{\text{sep}} \) acts trivially on \(M \). Then there exist residue homomorphisms

\[
\partial_v : H^{n+1}(L, M) \to H^n(F, M(-1))
\]

satisfying

1. If \(M = \mu_m \) and \(n = 0 \) then \(\partial_v((x)_m) = v(x) + m\mathbb{Z} \) for every \(x \in L^\times \).
2. For every \(x \in L^\times \) with \(v(x) = 0 \), we have \(\partial_v(\alpha \cup (x)_m) = \partial_v(\alpha) \cup (\bar{x})_m \), where \(\alpha \in H^{n+1}(L, M) \) and \(\bar{x} \in F^\times \) is the residue of \(x \).

Let \(X \) be a variety (integral scheme) over \(F \) and \(x \in X \) a regular point of codimension 1. The local ring \(O_{X,x} \) is a discrete valuation ring with quotient field \(F(X) \) and residue field \(F(x) \). For any \(m \)-periodic Galois module \(M \) over \(F \) let

\[
\partial_x : H^{n+1}(F(X), M) \to H^n(F(x), M(-1))
\]

denote the residue homomorphism \(\partial_v \) of the associated discrete valuation \(v \) on \(F(X) \).

Fact 98.11. \([18, \text{Th. 9.2}]\) For every field \(F \), the sequence

\[
0 \to H^{n+1}(F, M) \xrightarrow{r} H^{n+1}(F(t), M) \xrightarrow{(\partial_v)} \prod_{x \in F^1} H^n(F(x), M(-1)) \xrightarrow{c} H^n(F, M(-1)) \to 0,
\]

where \(c \) is the direct sum of the corestriction homomorphisms \(c_{F(x)/F} \), is exact.

98.E. A long exact sequence. Let \(K = F(\sqrt{a}) \) be a quadratic field extension of a field \(F \) of characteristic not 2. Let \(M \) be a 2-periodic Galois module over \(F \).

We have the exact sequence of Galois modules over \(F \)

\[
0 \to M \xrightarrow{w} \text{Ind}_{K/F}(M) \xrightarrow{\iota} M \to 0.
\]

By Corollary 98.9, the induced exact sequence of Galois cohomology groups reads as follows

\[
\ldots \xrightarrow{\partial} H^n(F, M) \xrightarrow{r_{K/F}} H^n(K, M) \xrightarrow{c_{K/F}} H^n(F, M) \xrightarrow{\partial} H^{n+1}(F, M) \to \ldots.
\]

We now compute the connecting homomorphisms \(\partial \). If \(n = 0 \) and \(M = \mathbb{Z}/2\mathbb{Z} \), we have the exact sequence

\[
\mathbb{Z}/2\mathbb{Z} \xrightarrow{0} \mathbb{Z}/2\mathbb{Z} \xrightarrow{\partial} F^\times/F^{\times 2} \to K^\times/K^{\times 2}.
\]

The kernel of the last homomorphism is the cyclic group \(\{1, (a)\} \). It follows that \(\partial(1 + 2\mathbb{Z}) = (a) \). By Fact 98.4, the homomorphisms \(\partial : H^n(F, M) \to H^{n+1}(F, M) \) coincides with the cup-product by \((a)\).
We have proven

Theorem 98.13. Let \(K = F(\sqrt{a}) \) be a quadratic field extension of a field \(F \) of characteristic not 2 and \(M \) a 2-periodic Galois module over \(F \). Then the following sequence

\[
\ldots \to H^n(F, M) \xrightarrow{r_{K/F}} H^n(K, M) \xrightarrow{c_{K/F}} H^n(F, M) \xrightarrow{\cup(a)} H^{n+1}(F, M) \xrightarrow{r_{K/F}} \ldots
\]

is exact.

99. Milnor K-theory of fields

A more detailed exposition on the Milnor \(K \)-theory of field is available in [16].

99.A. Definition. Let \(F \) be a field. Let \(T \) denote the tensor ring of the multiplicative group \(F^\times \). That is a graded ring with \(T_n \) the \(n \)-th tensor power of \(F^\times \) over \(\mathbb{Z} \). For instance, \(T_0 = \mathbb{Z}, T_1 = F^\times, T_2 = F^\times \otimes_F F^\times \) etc. The graded Milnor ring \(K_*(F) \) of \(F \) is the factor ring of \(T \) by the ideal generated by tensors of the form \(a \otimes b \) with \(a + b = 1 \).

The class of a tensor \(a_1 \otimes a_2 \ldots \otimes a_n \) in \(K_*(F) \) is denoted by \(\{a_1, a_2, \ldots, a_n\}_F \) or simply by \(\{a_1, a_2, \ldots, a_n\} \) and is called a symbol. We have \(K_0(F) = 0 \) if \(n < 0 \), \(K_0(F) = \mathbb{Z} \), \(K_1(F) = F^\times \). For \(n \geq 2 \), \(K_n(F) \) is generated (as an abelian group) by the symbols \(\{a_1, a_2, \ldots, a_n\} \) with \(a_i \in F^\times \) that are subject to the following defining relations:

(M1) **(multilinearity)**

\[
\{a_1, \ldots, a_ia'_1, \ldots, a_n\} = \{a_1, \ldots, a_i, \ldots, a_n\} + \{a_1, \ldots, a'_i, \ldots, a_n\};
\]

(M2) **(Steinberg Relation)** \(\{a_1, a_2, \ldots, a_n\} = 0 \) if \(a_i + a_{i+1} = 1 \) for some \(i = 1, \ldots, n - 1 \).

Note that the operation in the group \(K_n(F) \) is written additively. In particular, \(\{ab\} = \{a\} + \{b\} \) in \(K_1(F) \) where \(a, b \in F^\times \).

The product in the ring \(K_*(F) \) is given by the rule

\[
\{a_1, a_2, \ldots, a_n\} \cdot \{b_1, b_2, \ldots, b_m\} = \{a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_m\}.
\]

Proposition 99.1.

1. For a permutation \(\sigma \in S_n \), we have

\[
\{a_{\sigma(1)}, a_{\sigma(2)}, \ldots, a_{\sigma(n)}\} = \text{sgn}(\sigma)\{a_1, a_2, \ldots, a_n\}
\]

2. \(\{a_1, a_2, \ldots, a_n\} = 0 \) if \(a_i + a_j = 0 \) or 1 for some \(i \neq j \).

A field homomorphism \(F \to L \) induces the restriction graded ring homomorphism \(r_{L/F} : K_*(F) \to K_*(L) \) taking a symbol \(\{a_1, a_2, \ldots, a_n\}_F \) to \(\{a_1, a_2, \ldots, a_n\}_L \). In particular, \(K_*(L) \) has a natural structure of a left and right graded \(K_*(F) \)-module. The image \(r_{L/F}(\alpha) \) of an element \(\alpha \in K_1(F) \) is also denoted by \(\alpha_L \).

If \(E/L \) is another field extension, then \(r_{E/F} = r_{E/L} \circ r_{L/F} \). Thus, \(K_* \) is a functor from the category of fields to the category of graded rings.

Proposition 99.2. Let \(L/F \) be a quadratic field extension. Then

\[
K_n(L) = r_{L/F}(K_{n-1}(F)) \cdot K_1(L)
\]

for every \(n \geq 1 \), i.e., \(K_*(L) \) is generated by \(K_1(L) \) as left \(K_*(F) \)-module.
It is sufficient to treat the case \(n = 2 \). Let \(x, y \in L \setminus F \). If \(x = cy \) for some \(c \in F^\times \) then \(\{x, y\} = \{-c, y\} \in r_{L/F}(K_1(F)) \cdot K_1(L) \). Otherwise, as \(a, b \) and \(1 \) are linearly dependent over \(F \), there are \(a, b \in F^\times \) such that \(ax + by = 1 \). We have
\[
0 = \{ax, by\} = \{x, y\} + \{x, b\} + \{a, by\},
\]
hence \(\{x, y\} = \{b\}_L \cdot \{x\} - \{a\}_L \cdot \{by\} \in r_{L/F}(K_1(F)) \cdot K_1(L). \)
\[\square\]

We write \(k_s(F) \) for the graded ring \(K_s(F)/2K_s(F) \). Abusing notation, if \(\{a_1, \ldots, a_n\} \) is a symbol in \(K_n(F) \), we shall also write it for its coset \(\{a_1, \ldots, a_n\} + 2K_n(F) \).

We need some relations among symbols in \(k_2(F) \).

Lemma 99.3. We have the following equations in \(k_2(F) \):

1. \(\{a, x^2 - ay^2\} = 0 \) for all \(a \in F^\times \), \(x, y \in F \) satisfying \(x^2 - ay^2 \neq 0 \).
2. \(\{a, b\} = \{a + b, ab(a + b)\} \) for all \(a, b \in F^\times \) satisfying \(a + b \neq 0 \).

Proof. (1) By the Steinberg relation, we have
\[
0 = \{a(yx^{-1})^2, 1 - a(yx^{-1})^2\} = \{a, x^2 - ay^2\}.
\]
(2) Since \(a(a + b) + b(a + b) \) is a square, by (1) we have
\[
0 = \{a(a + b), ab(a + b)\} = \{a, b\} + \{a + b, ab(a + b)\}. \quad \square
\]

99.B. Residue homomorphism. Let \(L \) be a field with a discrete valuation \(v \) and residue field \(F \). The homomorphism \(L^\times \to \mathbb{Z} \) given by the valuation, can be viewed as a homomorphism \(K_1(L) \to K_0(F) \). More generally, for every \(n \geq 0 \), there is the residue homomorphism
\[
\partial_v : K_{n+1}(L) \to K_n(F)
\]
uniquely determined by the following condition:

If \(a_0, a_1, \ldots, a_n \in L^\times \) satisfying \(v(a_i) = 0 \) for all \(i = 1, 2, \ldots, n \) then
\[
\partial_v(\{a_0, a_1, \ldots, a_n\}) = v(a_0) \cdot \{\bar{a}_1, \ldots, \bar{a}_n\},
\]
where \(\bar{a} \in F \) denotes the residue of \(a \).

Proposition 99.4.

1. If \(\alpha \in K_s(L) \) and \(a \in L^\times \) satisfies \(v(a) = 0 \) then
\[
\partial_v(\alpha \cdot \{a\}) = \partial_v(\alpha) \cdot \{\bar{a}\} \quad \text{and} \quad \partial_v(\{a\} \cdot \alpha) = -\{\bar{a}\} \cdot \partial_v(\alpha).
\]
2. Let \(K/L \) be a field extension and let \(\nu \) be a discrete valuation of \(K \) extending \(v \) with residue field \(E \). Let \(e \) denote the ramification index. Then for every \(\alpha \in K_s(L) \),
\[
\partial_\nu(r_{K/L}(\alpha)) = e \cdot r_{E/F}(\partial_v(\alpha)).
\]
99.C. Milnor’s theorem. Let X be a variety (integral scheme) over F and $x \in X$ a regular point of codimension 1. The local ring $O_{X,x}$ is a discrete valuation ring with quotient field $F(X)$ and residue field $F(x)$. Denote by
\[\partial_x : K_{n+1}(F(X)) \to K_n(F(x)) \]
the residue homomorphism of the associated discrete valuation on $F(X)$.

The following description of the K-groups of the function field $F(t) = F(\mathbb{A}_F^1)$ of the affine line is known as Milnor’s theorem.

Fact 99.5. (Milnor’s Theorem) For every field F, the sequence
\[0 \to K_{n+1}(F) \xrightarrow{\tau_{F(t)/F}} K_{n+1}(F(t)) \xrightarrow{(\partial_x)} \prod_{x \in \mathbb{A}^1} K_n(F(x)) \to 0 \]
is split exact.

99.D. Specialization. Let L be a field and v a discrete valuation on L with residue field F. If $\pi \in L^\times$ is a prime element, i.e., $v(\pi) = 1$, we define the specialization homomorphism
\[s_\pi : K_*(L) \to K_*(F) \]
by the formula $s_\pi(u) = \partial(-\pi \cdot u)$. We have
\[s_\pi\{a_1, a_2, \ldots, a_n\} = \{\bar{b}_1, \bar{b}_2, \ldots, \bar{b}_n\}, \]
where $b_i = a_i/\pi^{v(a_i)}$.

Example 99.6. Consider the discrete valuation v of the field of rational functions $F(t)$ given by the irreducible polynomial t. For every $u \in K_*(F)$, we have $s_\pi(u_{F(t)}) = u$. In particular, the homomorphism $K_*(F) \to K_*(F(t))$ is split injective as stated in Fact 99.5.

99.E. Corestriction homomorphism. Let L/F be a finite field extension. The standard norm homomorphism $L^\times \to F^\times$ can be viewed as a homomorphism $K_1(L) \to K_1(F)$. In fact, there exists the corestriction homomorphism
\[c_{L/F} : K_n(L) \to K_n(F) \]
for every $n \geq 0$ defined as follows.

Suppose first that the field extension L/F is simple, i.e., L is generated by one element over F. We identify L with the residue field $F(y)$ of a closed point $y \in \mathbb{A}_F^1$. Let $\alpha \in K_n(L) = K_n(F(y))$. By Milnor’s theorem 99.5, there is $\beta \in K_{n+1}(F(\mathbb{A}_F^1))$ satisfying
\[\partial_x(\beta) = \begin{cases} \alpha & \text{if } x = y \\ 0 & \text{otherwise}. \end{cases} \]
Let v be the discrete valuation of the field $F(\mathbb{P}_F^1) = F(\mathbb{A}_F^1)$ associated with the infinite point of the projective line \mathbb{P}_F^1. We set $c_{L/F}(\alpha) = \partial_v(\beta)$.

In the general case, we choose a sequence of simple field extensions
\[F = F_0 \subset F_1 \subset \cdots \subset F_n = L \]
and set
\[c_{L/F} = c_{F_1/F_0} \circ c_{F_2/F_1} \circ \cdots \circ c_{F_n/F_{n-1}}. \]
It turns out that the norm map $c_{L/F}$ is well defined, i.e., it does not depend on the choice of the sequence of simple field extensions and the identifications with residue fields of closed points of the affine line.

The following theorem is the direct consequence of the definition of the norm map and Milnor’s Theorem [99.5].

Theorem 99.7. For every field F, the sequence

$$0 \to K_{n+1}(F) \xrightarrow{r_{F(t)/F}} K_{n+1}(F(t)) \xrightarrow{(\partial_x)} \prod_{x \in \mathbb{P}^1_{F}} K_{n}(F(x)) \xrightarrow{c} K_{n}(F) \to 0$$

is exact where c is the direct sum of the corestriction homomorphisms $c_{F(x)/F}$.

Fact 99.8.

1. **(Transitivity)** Let L/F and E/L be finite field extensions. Then $c_{E/F} = c_{L/F} \circ c_{E/L}$.

2. The norm map $c_{L/F} : K_0(L) \to K_0(F)$ is multiplication by $[L : F]$ on \mathbb{Z}. The norm map $c_{L/F} : K_1(L) \to K_1(F)$ is the classical norm $L^\times \to F^\times$.

3. **(Projection Formula)** Let L/F be a finite field extension. Then for every $\alpha \in K_*(F)$ and $\beta \in K_*(L)$ we have

$$c_{L/F}(r_{L/F}(\alpha) \cdot \beta) = \alpha \cdot c_{L/F}(\beta),$$

i.e., if we view $K_*(L)$ as a $K_*(F)$-module via $r_{L/F}$ then $c_{L/F}$ is a homomorphism of $K_*(F)$-modules. In particular, the composition $c_{L/F} \circ r_{L/F}$ is multiplication by $[L : F]$.

4. Let L/F be a finite field extension and v a discrete valuation on F. Let v_1, v_2, \ldots, v_s be all the extensions of v to L. Then the following diagram is commutative:

$$K_{n+1}(L) \xrightarrow{(\partial_v)} \prod_{i=1}^{s} K_{n}(L(v_i)) \xrightarrow{c_{L/F}} \sum_{c_{L(v_i)/F(v)}} K_{n}(L(v_i)) \xrightarrow{c_{L/F}} K_{n}(F(v)) \xrightarrow{\partial_v} K_{n}(F(v)).$$

5. Let L/F be a finite and E/F an arbitrary field extension. Let P_1, P_2, \ldots, P_k be the all prime (maximal) ideals of the ring $R = L \otimes_F E$. For every $i = 1, \ldots, k$, let R_i denote the residue field R/P_i and l_i the length of the localization ring R_i. Then the following diagram is commutative:

$$K_{n}(L) \xrightarrow{(r_{P_i/L})} \prod_{i=1}^{k} K_{n}(R_i) \xrightarrow{c_{L/F}} \sum_{c_{R_i/F/E}} K_{n}(R_i) \xrightarrow{\partial_v} K_{n}(F) \xrightarrow{r_{E/F}} K_{n}(E).$$

We now turn to fields of positive characteristic.

Fact 99.9. [26, Th. A] Let F be a field of characteristic $p > 0$. Then the p-torsion part of $K_*(F)$ is trivial.
FACT 99.10. [26 Cor. 6.5] Let F be a field of characteristic $p > 0$. Then the natural homomorphism

$$K_n(F)/pK_n(F) \to H^0(F, K_n(F_{\text{sep}})/pK_n(F_{\text{sep}}))$$

is an isomorphism.

Now consider the case of purely inseparable quadratic extensions.

Lemma 99.11. Let L/F be a purely inseparable quadratic field extension. Then the composition $r_{L/F} \circ c_{L/F}$ on $K_n(L)$ is the multiplication by 2.

Proof. The statement is obvious if $n = 1$. The general case follows from Proposition 99.2 and Fact 99.8(3).

Proposition 99.12. Let L/F be a purely inseparable quadratic field extension. Then the sequence

$$k_n(F) \xrightarrow{r_{L/F}} k_n(L) \xrightarrow{c_{L/F}} k_n(F) \xrightarrow{r_{L/F}} k_n(L)$$

is exact.

Proof. Let $\alpha \in K_n(F)$ satisfy $\alpha K = 2\beta$ for some $\beta \in K_n(L)$. By Proposition 99.8,

$$2\alpha = c_{L/F}(\alpha) = c_{L/F}(2\beta) = 2c_{L/F}(\beta),$$

hence $\alpha = c_{L/F}(\beta)$ in view of Fact 99.9.

Let $\beta \in K_n(L)$ satisfy $c_{L/F}(\beta) = 2\alpha$ for some $\alpha \in K_n(F)$. It follows from Lemma 99.11 that

$$2\beta = c_{L/F}(\beta)L = 2\alpha_L,$$

hence $\beta = \alpha_L$ again by Fact 99.9. □

100. The cohomology groups $H^{n,i}(F, \mathbb{Z}/m\mathbb{Z})$

Let F be a field. For all $n, m, i \in \mathbb{Z}$ with $m > 0$, we define the group $H^{n,i}(F, \mathbb{Z}/m\mathbb{Z})$ as follows: If m is not divisible by char F we set

$$H^{n,i}(F, \mathbb{Z}/m\mathbb{Z}) = H^n(F, \mu_m^{\otimes i}),$$

where $\mu_m^{\otimes i}$ is the i-th tensor power of μ_m if $i \geq 0$ and $\mu_m^{\otimes i} = \text{Hom}(\mu_m^{\otimes -i}, \mathbb{Z}/m\mathbb{Z})$ if $i < 0$.

If char $F = p > 0$ and m is power of p, we set

$$H^{n,i}(F, \mathbb{Z}/m\mathbb{Z}) = \begin{cases} K_i(F)/mK_i(F) & \text{if } n = i \\ H^1\left(F, K_i(F_{\text{sep}})/mK_i(F_{\text{sep}})\right) & \text{if } n = i + 1 \\ 0 & \text{otherwise.} \end{cases}$$

In the general case, write $m = m_1m_2$, where m_1 is not divisible by char F and m_2 is a power of char F if char $F > 0$, and set

$$H^{n,i}(F, \mathbb{Z}/m\mathbb{Z}) = H^{n,i}(F, \mathbb{Z}/m_1\mathbb{Z}) \oplus H^{n,i}(F, \mathbb{Z}/m_2\mathbb{Z}).$$

Note that if char F does not divide m and $\mu_m \subset F^\times$, we have a natural isomorphism

$$H^{n,i}(F, \mathbb{Z}/m\mathbb{Z}) \cong H^{n,0}(F, \mathbb{Z}/m\mathbb{Z}) \otimes \mu_m^{\otimes i}.$$

In particular, the groups $H^{n,i}(F, \mathbb{Z}/m\mathbb{Z})$ and $H^{n,0}(F, \mathbb{Z}/m\mathbb{Z})$ are (non-canonically) isomorphic.
Example 100.1. For an arbitrary field \(F \), we have canonical isomorphisms

1. \(H^{0,0}(F, \mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/m\mathbb{Z} \),
2. \(H^{1,1}(F, \mathbb{Z}/m\mathbb{Z}) \cong F^\times / F^{\times m} \),
3. \(H^{1,0}(F, \mathbb{Z}/m\mathbb{Z}) \cong \text{Hom}_c(\Gamma_F, \mathbb{Z}/m\mathbb{Z}), \) \(H^{1,0}(F, \mathbb{Z}/2\mathbb{Z}) \cong \hat{\text{Et}}_2(F) \),
4. \(H^{2,1}(F, \mathbb{Z}/m\mathbb{Z}) \cong \text{Br}_m(F) \).

If \(L/F \) is a field extension, there is the \text{restriction homomorphism}
\[r_{L/F} : H^{n,i}(F, \mathbb{Z}/m\mathbb{Z}) \to H^{n,i}(L, \mathbb{Z}/m\mathbb{Z}). \]

If \(L \) is a finite over \(F \) we define the \text{corestriction homomorphism}
\[c_{L/F} : H^{n,i}(L, \mathbb{Z}/m\mathbb{Z}) \to H^{n,i}(F, \mathbb{Z}/m\mathbb{Z}) \]
as follows: It is sufficient to consider the following two cases.

(i) If \(L/F \) is separable then \(c_{L/F} \) is the corestriction homomorphism in Galois cohomology.

(ii) If \(L/F \) is purely inseparable then \(\Gamma_l = \Gamma_L, [L_{\text{sep}} : F_{\text{sep}}] = [L : F] \) and \(c_{L/F} \) is induced by the corestriction homomorphism \(K_l(L_{\text{sep}}) \to K_l(F_{\text{sep}}) \).

Example 100.2. Let \(L/F \) be a finite field extension. By Example 98.6, the map
\[c_{L/F} : L^\times / L^{\times m} = H^{1,1}(L, \mathbb{Z}/m\mathbb{Z}) \to H^{1,1}(F, \mathbb{Z}/m\mathbb{Z}) = F^\times / F^{\times m} \]
is induced by the norm map \(N_{L/F} : L^\times \to F^\times \). If \(\text{char} \ F = p > 0 \), it follows from Example 98.1(2) that the map
\[c_{L/F} : L/\wp(L) = H^{1,0}(L, \mathbb{Z}/p\mathbb{Z}) \to H^{1,0}(F, \mathbb{Z}/p\mathbb{Z}) = F/\wp(F) \]
is induced by the trace map \(\text{Tr}_{L/F} : L \to F \).

Let \(l, m \in \mathbb{Z} \). If \(\text{char} \ F \) does not divide \(l \) and \(m \), we have a natural exact sequence of Galois modules
\[1 \to \mu_{l_i}^{\otimes i} \to \mu_{l_m}^{\otimes i} \to \mu_{m_i}^{\otimes i} \to 1 \]
for every \(i \). If \(l \) and \(m \) are powers of \(\text{char} \ F > 0 \) then by Fact 99.9, the sequence of Galois modules
\[0 \to K_n(F_{\text{sep}})/lK_n(F_{\text{sep}}) \to K_n(F_{\text{sep}})/lmK_n(F_{\text{sep}}) \to K_n(F_{\text{sep}})/mK_n(F_{\text{sep}}) \to 0 \]
is exact. Taking the long exact sequences of Galois cohomology groups yields the following proposition.

Proposition 100.3. For any \(l, m, n, i \in \mathbb{Z} \) with \(l, m > 0 \), there is a natural long exact sequence
\[\cdots \to H^{n,i}(F, \mathbb{Z}/l\mathbb{Z}) \to H^{n,i}(F, \mathbb{Z}/lm\mathbb{Z}) \to H^{n,i}(F, \mathbb{Z}/m\mathbb{Z}) \to H^{n+1,i}(F, \mathbb{Z}/l\mathbb{Z}) \to \cdots \]

The cup-product in Galois cohomology and the product in the Milnor ring induce a structure of the graded ring on the graded abelian group
\[H^{*,*}(F, \mathbb{Z}/m\mathbb{Z}) = \prod_{i, j \in \mathbb{Z}} H^{i,j}(F, \mathbb{Z}/m\mathbb{Z}) \]
for every \(m \in \mathbb{Z} \). The product in this ring will be denoted by \(\cup \).
100. THE COHOMOLOGY GROUPS $H^{n,i}(F,\mathbb{Z}/m\mathbb{Z})$ 397

100.A. Norm residue homomorphism. Let symbol $(a)_m$ denote the element in $H^{1,1}(F,\mathbb{Z}/m)$ corresponding to $a \in F^\times$ under the isomorphism in Example 100.1(2).

Lemma 100.4. (Steinberg Relation) Let $a, b \in F^\times$ satisfy $a+b = 1$. Then $(a)_m \cup (b)_m = 0$ in $H^{2,2}(F,\mathbb{Z}/m)$.

Proof. We may assume that char F does not divide m. Let $K = F[t]/(t^m-a)$ and $\alpha \in K$ be the class of t. We have $a = \alpha^m$ and $N_{K/F}(1-\alpha) = b$. It follows from the Projection Formula and Example 98.6 that

$$(a)_m \cup (b)_m = c_{K/F}(r_{K/F}(a)_m \cup (1-\alpha)_m) = 0$$

since $r_{K/F}(a)_m = m(\alpha)_m = 0$ in $H^{1,1}(K,\mathbb{Z}/m\mathbb{Z})$. \square

It follows from Lemma 100.4 that for every $n, m \in \mathbb{Z}$ there is a unique norm residue homomorphism

$$(100.5)\quad h^{n,m}_F : K_n(F)/mK_n(F) \to H^{n,n}(F,\mathbb{Z}/m\mathbb{Z})$$

taking the class of a symbol $\{a_1, a_2, \ldots, a_n\}$ to the cup-product $(a_1)_m \cup (a_2)_m \cup \cdots \cup (a_n)_m$.

The norm residue homomorphism allows us to view $H^{*,*}(F,\mathbb{Z}/m\mathbb{Z})$ as a module over the Milnor ring $K_*(F)$.

By Example 98.1, the map $h^{n,m}_F$ is an isomorphism for $n = 0$ and 1. Bloch and Kato conjectured that $h^{n,m}_F$ is always an isomorphism.

For every $l, m \in \mathbb{Z}$, we have a commutative diagram

$$
\begin{array}{c}
K_n(F)/lmK_n(F) \\ h^{n,lm}_F \downarrow \\
H^{n,n}(F,\mathbb{Z}/lm\mathbb{Z})
\end{array} \longrightarrow
\begin{array}{c}
K_n(F)/mK_n(F) \\ h^{n,m}_F \downarrow \\
H^{n,n}(F,\mathbb{Z}/m\mathbb{Z})
\end{array}
$$

with top map the natural surjective homomorphism.

The following important theorem was proven in [61].

Fact 100.6. If m is a power of 2 then the norm residue homomorphism $h^{n,m}_F$ is an isomorphism.

Proposition 100.3 and commutativity of the diagram above yield

Corollary 100.7. Let l and m be powers of 2. Then the natural homomorphism $H^{n,n}(F,\mathbb{Z}/lm\mathbb{Z}) \to H^{n,n}(F,\mathbb{Z}/m\mathbb{Z})$ is surjective and the sequence

$$0 \to H^{n+1,n}(F,\mathbb{Z}/l\mathbb{Z}) \to H^{n+1,n}(F,\mathbb{Z}/lm\mathbb{Z}) \to H^{n+1,n}(F,\mathbb{Z}/m\mathbb{Z})$$

is exact for any n.

Now consider the case $m = 2$. We shall write h^n_F for $h^{n,2}_F$ and $H^n(F)$ for $H^{n,n}(F,\mathbb{Z}/2\mathbb{Z})$.

The norm residue homomorphisms commute with field extension homomorphisms. They also commute with residue and corestriction homomorphisms as the following two propositions show.
Proposition 100.8. Let L be a field with a discrete valuation v and residue field F of characteristic different from 2. Then the diagram

$$
egin{array}{ccc}
k_{n+1}(L) & \downarrow & k_n(F) \\
h_L^{n+1} & \downarrow^{h_F^n} & \\
H^{n+1}(L) & \downarrow & H^n(F)
\end{array}
$$

is commutative.

Proof. Fact 98.10(1) shows that the diagram is commutative when $n = 0$. The general case follows from Fact 98.10(2) as the group $k_{n+1}(L)$ is generated by symbols $\{a_0, a_1, \ldots, a_n\}$ with $v(a_1) = \cdots = v(a_n) = 0$.

Proposition 100.9. Let L/F be a finite field extension. Then the diagram

$$
egin{array}{ccc}
k_n(L) & \xrightarrow{c_{L/F}} & k_n(F) \\
h_F^n & \downarrow & h_F^n \\
H^n(L) & \xrightarrow{c_{L/F}} & H^n(F)
\end{array}
$$

is commutative.

Proof. We may assume that L/F is a simple field extension. The statement follows from the definition of the norm map for the Milnor K-groups, Fact 98.11, and Proposition 100.8.

Proposition 100.10. Let F be a field of characteristic different from 2 and $L = F(\sqrt{a})/F$ a quadratic extension with $a \in F^\times$. Then the following infinite sequence

$$
\ldots \rightarrow k_{n-1}(F) \xrightarrow{\{a\}} k_n(F) \xrightarrow{r_{L/F}} k_n(L) \xrightarrow{c_{L/F}} k_n(F) \xrightarrow{\{a\}} k_{n+1}(F) \rightarrow \ldots
$$

is exact.

Proof. It follows from Proposition 100.9 that the diagram

$$
egin{array}{ccc}
k_{n-1}(F) & \xrightarrow{\{a\}} & k_n(F) \\
h_F^{n-1} & \downarrow & h_F^n \\
H^{n-1}(F) & \xrightarrow{\{a\}} & H^n(F)
\end{array}
$$

is commutative. By Fact 100.6, the vertical homomorphisms are isomorphisms. By Theorem 98.13, the bottom sequence is exact. The result follows.

Now consider the case char $F = 2$. The product in the Milnor ring and the cup-product in Galois cohomology yield a pairing

$$
K_s(F) \otimes H^s(F) \rightarrow H^s(F)
$$

making $H^s(F)$ a module over $K_s(F)$.
Example 100.11. By Example 98.5, we have \(\{a\} \cdot [F_{ab}] = \left[\frac{a, b}{F} \right] \) in \(\text{Br}_2(F) \) for all \(a \in F^\times \) and \(b \in F \).

Proposition 100.12. Let \(F \) be a field of characteristic 2 and \(L/F \) a separable quadratic field extension. Then the following sequence

\[
0 \to k_n(F) \xrightarrow{r_{L/F}} k_n(L) \xrightarrow{c_{L/F}} k_n(F) \xrightarrow{[L:F]} H^{n+1}(F) \xrightarrow{r_{L/F}} H^{n+1}(L) \xrightarrow{c_{L/F}} H^{n+1}(F) \to 0
\]

is exact where the middle map is multiplication by the class of \(L \) in \(H^1(F) \).

Proof. We shall show that the sequence in question coincides with the exact sequence in Theorem 98.13 for the quadratic field extension \(L/F \) and the Galois module \(k_n(F_{\text{sep}}) \) over \(F \). Indeed, by Fact 99.10 we have \(H^0(E, k_n(E_{\text{sep}})) \simeq k_n(E) \) and \(H^1(E, k_n(E_{\text{sep}})) \simeq H^{n+1}(E) \) by definition for every field \(E \). Note that \(H^2(F, k_n(F_{\text{sep}})) = 0 \) by Example 98.1(3). The connecting homomorphism in the sequence in Theorem 98.13 is multiplication by the class of \(L \) in \(H^1(F) \).

Now let \(F \) be a field of characteristic different from 2. The connecting homomorphism

\[b_n : H^n(F) \to H^{n+1}(F) \]

with respect to the short exact sequence

\[
0 \to \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0
\]

is called the Bockstein map.

Proposition 100.14. The Bockstein map is trivial if \(n \) is even and coincides with multiplication by \((-1)\) if \(n \) is odd.

Proof. If \(n \) is even or \(-1 \in F^{\times 2} \) then \(\mu_4^{\otimes n} \simeq \mathbb{Z}/4\mathbb{Z} \) and the statement follows from Corollary 100.7.

Suppose that \(n \) is odd and \(-1 \notin F^{\times 2} \). In this case \(\mu_4^{\otimes n} \simeq \mu_4 \). Consider the field \(K = F(\sqrt{-1}) \). By Theorem 98.13, the connecting homomorphism \(H^n(F) \to H^{n+1}(F) \) with respect to the exact sequence (98.12) is the cup-product with \((-1)\). The classes of the sequences (100.13) and (98.12) differ in \(\text{Ext}_1^1(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \) by the class of the sequence

\[0 \to \mathbb{Z}/2\mathbb{Z} \to \mu_4^{\otimes n} \to \mathbb{Z}/2\mathbb{Z} \to 0. \]

By Corollary 100.7, the connecting homomorphism \(H^n(F) \to H^{n+1}(F) \) with respect to this exact sequence is trivial. It follows that \(b_n \) is the cup-product with \((-1)\).

100.B. Cohomological dimension and \(p \)-special fields. Let \(p \) be a prime integer. A field \(F \) is called \(p \)-special if the degree of every finite field extension of \(F \) is a power of \(p \).

The following property of \(p \)-special fields is very useful.

Proposition 100.15. Let \(F \) be a \(p \)-special field and \(L/F \) a finite field extension. Then there is a tower of field extensions

\[F = F_0 \subset F_1 \subset \cdots \subset F_{n-1} \subset F_n = L \]

satisfying \([F_{i+1} : F_i] = p\) for all \(i = 0, 1, \ldots, n - 1 \).
Proof. The result is clear if L/F is purely inseparable. So we may assume that L/F is a separable extension. Let E/F be a normal closure of L/F. Set $G = \text{Gal}(E/F)$ and $H = \text{Gal}(E/L)$. As G is a p-group, there is a sequence of subgroups

$$G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = H$$

with the property $[H_i : H_{i+1}] = p$ for all $i = 0, 1, \ldots, n-1$. Then the fields $F_i = L^{H_i}$ satisfy the required properties. \hfill \Box

Proposition 100.16. For every prime integer p and field F, there is a field extension L/F satisfying

1. L is p-special.
2. The degree of every finite sub-extension K/F of L/F is not divisible by p.

Proof. If $\text{char } F = q > 0$ and different from p, we set $F' := \cup F^{q \cdot n}$, otherwise $F' := F$. Let Γ be the Galois group of F'_{sep}/F' and $\Delta \subset \Gamma$ a Sylow p-subgroup. The field of Δ-invariant elements $L = (F'_{\text{sep}})^\Delta$ satisfies the required conditions. \hfill \Box

We call the field L in Proposition 100.16 a p-special closure of F.

Example 100.17. (1) $\text{cd}_p(F) = 0$ if and only if F has no separable finite field extensions of degree a power of p.
(2) $\text{cd}_p(F) \leq 1$ if and only if $\text{Br}_p(L) = 0$ for all finite field extensions L/F.
(3) If F is p-special, then $\text{cd}_p(F) < n$ if and only if $H^{n,n-1}(F, \mathbb{Z}/p\mathbb{Z}) = 0$.

101. Length and Herbrand index

101.A. Length. Let A be a commutative ring and M an A-module of finite length. The length of M is denoted by $l_A(M)$. The ring A is artinian if the A-module $M = A$ is of finite length. We write $l(A)$ for $l_A(A)$.

Lemma 101.1. Let C be a flat B-algebra where B and C are commutative local artinian rings. Then for every finitely generated B-module M, we have

$$l_C(M \otimes_B C) = l(C/mC) \cdot l_B(M),$$

where m is the maximal ideal of B.

Proof. Since C is flat over B, both sides of the equality are additive in M. Thus, we may assume that M is a simple B-module, i.e., $M = B/m$. We have $M \otimes_B C \simeq C/mC$ and the equality follows. \hfill \Box

Setting $M = B$ we obtain

Corollary 101.2. In the conditions of Lemma 101.1, one has $l(C) = l(C/mC) \cdot l(B)$.

Lemma 101.3. Let B be a commutative A-algebra and M a B-module of finite length over A. Then

$$l_A(M) = \sum l_{B_Q}(M_Q) \cdot l_A(B/Q),$$

where the sum is taken over all maximal ideals $Q \subset B$.

101. B. Herbrand index. Let M be a module over a commutative ring A and $a \in A$. Suppose that the modules M/aM and $aM := \ker(M \xrightarrow{a} M)$ have finite length. The integer

$$h(a, M) = l_A(M/aM) - l_A(aM)$$

is called the Herbrand index of M relative to a.

We collect simple properties of the Herbrand index in the following lemma.

Lemma 101.4. (1) Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of A-modules. Then $h(a, M) = h(a, M') + h(a, M'')$.

(2) If M has finite length then $h(a, M) = 0$.

Lemma 101.5. Let S be a one-dimensional Noetherian local ring and P_1, \ldots, P_m all the minimal prime ideals of S. Let M be a finitely generated S-module and $s \in S$ not belonging to any of P_i. Then

$$h(s, M) = \sum_{i=1}^m l_{SP_i}(MP_i) \cdot l(S/(P_i + sS)).$$

Proof. Since $s \notin P_i$, the coset of s in S/P_i is not a zero divisor. Hence

$$l_S(S/(P_i + sS)) = h(s, S/P_i).$$

Both sides of the equality are additive in M. Since M has a filtration with factors S/P, where P is a prime ideal of S, we may assume that $M = S/P$. If P is maximal then $MP_i = 0$ and $h(s, M) = 0$ since M is simple. If $P = P_i$ for some i then $l_{SP_i}(M) = 1$ if $i = j$ and zero otherwise. The equality holds in this case too. \qed

102. Places

Let K be a field. A valuation ring R of K is a subring $R \subset K$ such that for any $x \in K \setminus R$, we have $x^{-1} \in R$. A valuation ring is local. A trivial example of a valuation ring is the field K itself.

Given two fields K and L, a place $\pi : K \to L$ is a local ring homomorphism $f : R \to L$ of a valuation ring $R \subset K$. We say that the place π is defined on R. An embedding of fields is a trivial example of a place defined everywhere. A place $K \to L$ is called surjective if f is surjective.

If K and L are extensions of a field F, we say that a place $K \to L$ is an F-place if π defined and identical on F.

Let $K \to L$ and $L \to E$ be two places, given by ring homomorphisms $f : R \to L$ and $g : S \to E$ respectively, where $R \subset K$ and $S \subset L$ are valuation ring. Then the ring $T = f^{-1}(S)$ is a valuation ring of K and the composition $T \xrightarrow{f|_T} S \xrightarrow{g} E$ defines the composition place $K \to E$. In particular, any place $L \to E$ can be restricted to any subfield $K \subset L$.

A composition of two F-places is an F-place. Every place is a composition of a surjective place and a field embedding.
A place $K \to L$ is said to be geometric, if it is a composition of (finitely many) places each with discrete valuation rings. An embedding of fields is also viewed as a geometric place.

Let Y be a complete variety over F and let $\pi : F(Y) \to L$ be an F-place. The valuation ring R of the place dominates a unique point $y \in Y$, i.e., $O_{Y,y} \subset R$ and the maximal ideal of $O_{Y,y}$ is contained in the maximal ideal M of R. The induced homomorphism of fields $F(y) \to R/M \to L$ over F gives rise to an L-point of Y, i.e., to a morphism $f : \text{Spec } L \to Y$ with image $\{y\}$. We say that y is the center of π and f is induced by π.

Let X be a regular variety over F and let $f : \text{Spec } L \to X$ be a morphism over F. Choose a regular system of parameters a_1, a_2, \ldots, a_n in the local ring $R = O_{X,x}$, where $\{x\}$ is the image of f. Let M_i be the ideal of R generated by a_1, \ldots, a_i and set $R_i = R/M_i$, $P_i = M_{i+1}/M_i$. Denote by F_i the quotient field of R_i, in particular, $F_0 = F(X)$ and $F_n = F(x)$. The localization ring $(R_i)_{P_i}$ is a discrete valuation ring with quotient field F_i and residue field F_{i+1}, therefore it determines a place $F_i \to F_{i+1}$. The composition of places $F(X) = F_0 \to F_1 \to \ldots \to F_n = F(x) \to L$

is a geometric place constructed (non-canonically) out of the point f.

Lemma 102.1. Let K be an arbitrary field, K'/K an odd degree field extension, and L/K an arbitrary field extension. Then there exists a field L', containing K' and L, such that the extension L'/L is of odd degree.

Proof. We may assume that K'/K is a simple extension, i.e., K' is generated over K by one element. Let $f(t) \in F[t]$ be its minimal polynomial. Since the degree of f is odd, there exists an irreducible divisor $g \in L[t]$ of f over L with odd $\deg(g)$. We set $L' = L[t]/(g)$. \[\square\]

Lemma 102.2. Let K be a field extension of F of finite transcendence degree over F, $K \to L$ a geometric F-place and K' a finite field extension of K of odd degree. Then there exists an odd degree field extension L'/L such that the place $K \to L$ extends to a place $K' \to L'$.

Proof. By Lemma 102.1, it suffices to consider the case of a surjective place $K \to L$ given by a discrete valuation ring R. It is also suffices to consider only two cases: (1) K'/K is purely inseparable and (2) K'/K is separable.

In the first case, the degree $[K' : K]$ is a power of an odd prime p. Let R' be arbitrary valuation ring of K' lying over R, i.e., such that $R' \cap K = R$ and with the embedding $R \to R'$ local (such an R' exists in the case of an arbitrary field extension K'/K by [65], Ch. VI Th. 5’). We have a surjective place $K' \to L'$, where L' is the residue field of R'. We claim that L' is purely inseparable over L (and therefore $[L' : L]$, being a power of p, is odd). Indeed if $l \in L'$, choose a preimage $k \in R'$ of l. Then $k^{p^n} \in K$ for some n hence $l^{p^n} \in L$, i.e., L'/L is a purely inseparable extension.

In the second case, consider all the valuation rings R_1, \ldots, R_s of K' lying over R (the number of such valuation rings is finite by [65], Ch. VI, Th. 12, Cor. 4). The residue field of each R_i is a finite extension of L. Moreover, $\sum_{i=1}^s e_in_i = [K' : K]$ by [65], Ch. VI, Th. 20 and p. 63], where n_i is the degree over L of the residue field of R_i, and e_i is the...
ramification index of \(R_i \) over \(R \) (cf. [65, Def. on pp. 52–53]). It follows that at least one of the \(n_i \) is odd.

\[\square\]

103. Cones and vector bundles

The word “scheme” in the next two sections means a separated scheme of finite type over a field.

103.A. Definition of a cone. Let \(X \) be a scheme over a field \(F \) and let \(S^\bullet = S^0 \oplus S^1 \oplus S^2 \oplus \ldots \) be a sheaf of graded \(O_X \)-algebras. We assume that

1. the natural morphism \(O_X \to S^0 \) is an isomorphism;
2. the \(O_X \)-module \(S^1 \) is coherent;
3. the sheaf of algebras \(S^\bullet \) is generated by \(S^1 \).

The cone of \(S^\bullet \) is the scheme \(C = \text{Spec}(S^\bullet) \) over \(X \) and \(\mathbb{P}(C) = \text{Proj}(S^\bullet) \) is called the projective cone of \(S^\bullet \). Recall that \(\text{Proj}(S^\bullet) \) has a covering by the principal open subschemes \(D(s) = \text{Spec} S(s) \) over all \(s \in S^1 \), where \(S(s) \) is the subring of degree 0 elements in the localization \(S_s \).

We have natural morphisms \(C \to X \) and \(\mathbb{P}(C) \to X \). The canonical homomorphism \(S^\bullet \to S^0 \) of \(O_X \)-algebras induces the zero section \(X \to C \).

If \(C \) and \(C' \) are cones over \(X \), then \(C \times_X C' \) has a natural structure of a cone over \(X \). We denote it by \(C \oplus C' \).

Example 103.1. A coherent \(O_X \)-module \(P \) defines the cone \(C(P) = \text{Spec} S^\bullet(P) \) over \(X \), where \(S^\bullet \) stands for the symmetric algebra. If the sheaf \(P \) is locally free, the cone \(E := C(P) \) is called the vector bundle over \(X \) with the sheaf of section \(P^\vee = \text{Hom}_{O_X}(P, O_X) \). The projective cone \(\mathbb{P}(E) \) is called the projective bundle of \(E \). The assignment \(P \mapsto C(P^\vee) \) gives rise to an equivalence between the category of locally free coherent \(O_X \)-modules and the category of vector bundles over \(X \). In particular, such operations over the locally free \(O_X \)-modules as the tensor product, symmetric power, dual sheaf etc., and the notion of an exact sequence translate to the category of vector bundles. We write \(K_0(X) \) for the Grothendieck group of the category of vector bundles over \(X \). The group \(K_0(X) \) is the abelian group given by generators the isomorphism classes \([E] \) of vector bundles \(E \) over \(X \) and relations \([E] = [E'] + [E''] \) for every exact sequence \(0 \to E' \to E \to E'' \to 0 \) of vector bundles over \(X \).

Example 103.2. The trivial line bundle \(X \times \mathbb{A}^1 \to X \) will be denoted by \(\mathbb{1} \).

Example 103.3. Let \(f : Y \to X \) be a closed embedding and \(I \subset O_X \) the sheaf of ideals of the image of \(f \) in \(X \). The cone

\[C_f = \text{Spec}(O_X/I \oplus I/I^2 \oplus I^2/I^3 \oplus \ldots) \]

over \(Y \) is called the normal cone of \(Y \) in \(X \). If \(X \) is a scheme of pure dimension \(d \) then \(C_f \) is also a scheme of pure dimension \(d \) [17, B.6.6].

Example 103.4. If \(f : X \to C \) is the zero section of a cone \(C \) then \(C_f = C \).

Example 103.5. The cone \(T_X := C_f \) of the diagonal embedding \(f : X \to X \times X \) is called the tangent cone of \(X \). If \(X \) is a scheme of pure dimension \(d \) then the tangent cone \(T_X \) is a scheme of pure dimension \(2d \) (cf. Example 103.3).
Let U and V be vector spaces over a field F and let
\[U = U_0 \supset U_1 \supset U_2 \supset \ldots \quad \text{and} \quad V = V_0 \supset V_1 \supset V_2 \supset \ldots \]
be two filtrations by subspaces. Consider the filtration on $U \otimes V$ defined by
\[(U \otimes V)_k = \sum_{i+j=k} U_i \otimes V_j. \]
The following lemma can be proven by a suitable choice of bases of U and V.

Lemma 103.6. The canonical linear map
\[\prod_{i+j=k} (U_i/U_{i+1}) \otimes (V_j/V_{j+1}) \to (U \otimes V)_k/(U \otimes V)_{k+1} \]
is an isomorphism for every $k \geq 0$.

Proposition 103.7. Let $f : Y \to X$ and $g : S \to T$ be closed embeddings. Then there is a canonical isomorphism $C_f \times C_g \simeq C_{f \times g}$.

Proof. We may assume that $X = \text{Spec} A$, $Y = \text{Spec}(A/I)$ and $T = \text{Spec} B$, $S = \text{Spec}(B/J)$, where $I \subset A$ and $J \subset B$ are ideals. Then $X \times T = \text{Spec}(A \otimes B)$ and $Y \times S = \text{Spec}(A \otimes B)/K$, where $K = I \otimes B + A \otimes J$.

Consider the vector spaces $U_i = I^i$ and $V_j = J^j$. We have $(U \otimes V)_k = K^k$. By Lemma 103.6,
\[C_f \times C_g = \text{Spec} \left(\prod_{i \geq 0} I^i/I^{i+1} \otimes \prod_{j \geq 0} J^j/J^{j+1} \right) \simeq \text{Spec} \left(\prod_{k \geq 0} K^k/K^{k+1} \right) = C_{f \times g}. \]

Corollary 103.8. If X and Y are two schemes then $T_{X \times Y} = T_X \times T_Y$.

103.B. Regular closed embeddings. Let A be a commutative ring. A sequence $a = (a_1, a_2, \ldots, a_d)$ of elements of A is called regular if the coset of a_i is not a zero divisor in the factor ring $A/(a_1 A + \cdots + a_{i-1} A)$ for all $i = 1, 2, \ldots, d$. We write $l(a) = d$.

Let Y be a scheme and $d : Y \to Z$ a locally constant function. A closed embedding $f : Y \to X$ is called regular of codimension d is for every point $y \in Y$ there is an affine neighborhood $U \subset X$ of $f(y)$ such that the ideal of $f(Y) \cap U$ in $F[U]$ is generated by a regular sequence of length $d(y)$.

Let $f : Y \to X$ be a closed embedding and I the sheaf of ideals of Y in O_X. The embedding of I/I^2 into $\prod_{k \geq 0} I^k/I^{k+1}$ induces an O_Y-algebra homomorphism $S^* (I/I^2) \to \prod_{k \geq 0} I^k/I^{k+1}$ and therefore a morphism of cones $\varphi_f : C_f \to C(I/I^2)$ over Y.

Proposition 103.9 ([19], Cor. 16.9.4, Cor. 16.9.11]). A closed embedding $f : Y \to X$ is regular of codimension d if and only if the O_Y-module I/I^2 is locally free of rank d and the natural morphism $\varphi_f : C_f \to C(I/I^2)$ is an isomorphism.

Corollary 103.10. Let $f : Y \to X$ be a regular closed embedding of codimension d and I the sheaf of ideals of Y in O_X. Then the normal cone C_f is a vector bundle over Y of rank d with the sheaf of sections naturally isomorphic to $(I/I^2)^\vee$.

We shall write N_f for the normal cone C_f of a regular closed embedding f and call N_f the normal bundle of f.
Proposition 103.11. Let \(f : Y \to X \) be a closed embedding and \(g : X' \to X \) a faithfully flat morphism. Then \(f \) is a regular closed embedding if and only if the closed embedding \(f' : Y' = Y \times_X X' \to X' \) is regular.

Proof. Let \(I \) be the sheaf of ideals of \(Y \) in \(O_X \). Then \(I' = g^*(I) \) is the sheaf of ideals of \(Y' \) in \(O_{X'} \). Moreover

\[
g^*(I^k/I^{k+1}) = I'^k/I'^{k+1}, \quad C_f \times_Y Y' = C_{f'}, \quad (I/I^2) \times_Y Y' = (I'/I'^2)
\]

and \(\varphi \times_Y 1_{Y'} = \varphi_{f'} \). By faithfully flat descent, \(I/I^2 \) is locally free and \(\varphi_f \) is an isomorphism if and only if \(I'/I'^2 \) is locally free and \(\varphi_{f'} \) is an isomorphism. The statement follows by Proposition 103.9.

Proposition 103.12 ([19, Cor. 17.12.3]). Let \(g : X \to Y \) be a smooth morphism of relative dimension \(d \) and \(f : Y \to X \) a section of \(g \), i.e., \(g \circ f = 1_Y \). Then \(f \) is a regular closed embedding of codimension \(d \) and \(N_f = f^*T_g \), where \(T_g := \ker(T_X \to g^*T_Y) \) is the relative tangent bundle of \(g \) over \(X \).

Corollary 103.13. Let \(X \) be a smooth scheme. Then the diagonal embedding \(X \to X \times X \) is regular. In particular, the tangent cone \(T_X \) is a vector bundle over \(X \).

Proof. The diagonal embedding is a section of any of the two projections \(X \times X \to X \).

If \(X \) is a smooth scheme, the vector bundle \(T_X \) is called the tangent bundle over \(X \).

Corollary 103.14. Let \(f : X \to Y \) be a morphism where \(Y \) is a smooth scheme of pure dimension \(d \). Then the morphism \(h = (1_X, f) : X \to X \times Y \) is a regular closed embedding of codimension \(d \) with \(N_h = f^*T_Y \).

Proof. Applying Proposition 103.12 to the smooth projection \(p : X \times Y \to X \) of relative dimension \(d \), we have the closed embedding \(h \) is regular of codimension \(d \). The tangent bundle \(T_p \) is equal to \(q^*T_Y \), where \(q : X \times Y \to Y \) is the other projection. Since \(q \circ h = f \), we have

\[
N_h = h^*T_p = h^* \circ q^*T_Y = f^*T_Y.
\]

Proposition 103.15 ([19 Prop. 19.1.5]). Let \(g : Z \to Y \) and \(f : Y \to X \) be regular closed embeddings of codimension \(s \) and \(r \) respectively. Then \(f \circ g \) is a regular closed embedding of codimension \(r + s \) and the natural sequence of normal bundles over \(Z \)

\[
0 \to N_g \to N_{f \circ g} \to g^*N_f \to 0
\]

is exact.

Proposition 103.16 ([19 Th. 17.12.1, Prop. 17.13.2]). A closed embedding \(f : Y \to X \) of smooth schemes is regular and the natural sequence of vector bundles over \(Y \)

\[
0 \to T_Y \to f^*T_X \to N_f \to 0
\]

is exact.
103.C. Canonical line bundle. Let $C = \text{Spec}(S^\bullet)$ be a cone over X. The cone $\text{Spec}(S^\bullet[t]) = C \times \mathbb{A}^1$ coincides with $C \oplus 1$. Let $I \subset S^\bullet[t]$ be the ideal generated by S^1. The closed subscheme of $\mathbb{P}(C \oplus 1)$ defined by I is isomorphic to $\text{Proj}(S^0[t]) = \text{Spec} S^0 = X$. Thus we get a canonical closed embedding (canonical section) of C into $\mathbb{P}(C \oplus 1)$.

Let $L_c = \mathbb{P}(C \oplus 1) \setminus X$. The inclusion of S^\bullet_c into $S^\bullet[t]_{(s)}$ for every $s \in S^1$ induces a morphism $L_c \to \mathbb{P}(C)$.

Proposition 103.17. The morphism $L_c \to \mathbb{P}(C)$ has a canonical structure of a line bundle.

Proof. We have $S^\bullet[t]_{(s)} = S^\bullet(s)_{[s]}$, hence the preimage of $D(s)$ is isomorphic to $D(s) \times \mathbb{A}^1$. For any other element $s' \in S^1$ we have $\frac{t}{s'} = \frac{s'}{s''}$, i.e., the change of coordinate function is linear.

The line bundle $L_c \to \mathbb{P}(C)$ is called the **canonical line bundle over** $\mathbb{P}(C)$.

A section of L_c over the open set $D(s)$ is given by an S^\bullet_s-algebra homomorphism $S^\bullet_s \to S^\bullet_c$ that is uniquely determined by the image a_s of $\frac{t}{s}$. The element $sa_s \in S_s$ of degree 1 agrees with $s'a_s$ on the intersection $D(s) \cap D(s')$. Therefore the sheaf of sections of L_c coincides with $S^\bullet(1) = O(1)$.

The scheme $\mathbb{P}(C)$ can be viewed as a locally principal divisor of $\mathbb{P}(C \oplus 1)$ given by t. The open complement $\mathbb{P}(C \oplus 1) \setminus \mathbb{P}(C)$ is canonically isomorphic to C. The image of the canonical section $X \to \mathbb{P}(C \oplus 1)$ belongs to C (and in fact is equal to the image of the zero section of C), hence it does not intersect $\mathbb{P}(C)$. Moreover, $\mathbb{P}(C \oplus 1) \setminus (\mathbb{P}(C) \cup X)$ is canonically isomorphic to $C \setminus X$.

If C is a cone over X, we write C° for $C \setminus X$ where X is viewed as a closed subscheme of C via the zero section. We have shown that C° is canonically isomorphic to L_c°. Note that C is a cone over X and L_c is a cone (in fact, a line bundle) over $\mathbb{P}(C)$.

For every $s \in S^1$, the localization S_s is the Laurent polynomial ring $S(s)[s, s^{-1}]$ over $S(s)$. Hence the inclusion of $S(s)$ into S_s induces a flat morphism $C^\circ \to \mathbb{P}(C)$ of relative dimension 1.

103.D. Tautological line bundle. Let $C = \text{Spec}(S^\bullet)$ be a cone over X. Consider the tensor product $T^\bullet = S^\bullet \otimes_{S^0} S^\bullet$ as a graded ring with respect to the second factor. We have

$$\text{Proj}(T^\bullet) = C \times_X \mathbb{P}(C).$$

Let J be the ideal of T^\bullet generated by $x \otimes y - y \otimes x$ for all $x, y \in S^1$ and set

$$L_t = \text{Proj}(T^\bullet/J).$$

Thus L_t is a closed subscheme of $C \times_X \mathbb{P}(C)$ and we have natural projections $L_t \to C$ and $L_t \to \mathbb{P}(C)$.

Proposition 103.18. The morphism $L_t \to \mathbb{P}(C)$ has a canonical structure of a line bundle.

Proof. Let $s \in S^1$. The preimage of $D(s)$ in L_t coincides with $\text{Spec}(T^\bullet_{(1 \otimes s)}/J_{(1 \otimes s)})$, where $J_{(1 \otimes s)} = J_{(1 \otimes s)} \cap T^\bullet_{(1 \otimes s)}$. The homomorphism $T^\bullet \to S^\bullet_s [t]$, where t is a variable, defined
by \(x \otimes y \mapsto \frac{x}{s} \cdot t^n \) for any \(x \in S^n \) and \(y \in S^* \), gives rise to an isomorphism between \(T_{(1 \otimes s)}/J_{(1 \otimes s)} \) and \(S^*_n[t] \). Hence the preimage of \(D(s) \) is isomorphic to \(D(s) \times \mathbb{A}^1 \). \(\square \)

Example 103.19. If \(L \) is a line bundle over \(X \), then \(\mathbb{P}(L) = X \) and \(L_t = L \times_X \mathbb{P}(L) = L \).

Similar to the case of the canonical line bundle, a section of \(L_t \) over the open set \(D(s) \) is given by an element \(a_s \in S^*_n \) and the element \(a_s/s \in S^*_n \) of degree \(-1\) agrees with \(a_{s'}/s' \) on the intersection \(D(s) \cap D(s') \). Therefore the sheaf of section of \(L_t \) coincides with \(S^*(-1) = \mathcal{O}(-1) \). In particular, the tautological line bundle is dual to the canonical line bundle, \(L_t = L_c^\vee \).

The ideal \(I = S^{>0} \) in \(S^* \) defines the image of the zero section of \(C \). The graded ring \(T^*/J \) is isomorphic to \(S^* \oplus I \oplus I^2 \oplus \cdots \). Therefore the canonical morphism \(L_t \to C \) is the blow up of \(C \) along the image of the zero section of \(C \). The exceptional divisor in \(L_t \) is the image of the zero section of \(L_t \). Hence the induced morphism \(L_t^o \to C^o \) is an isomorphism.

Example 103.20. Let \(F[\varepsilon] \) be the \(F \)-algebra of dual number over \(F \). The tangent space \(T_{F(V),L} \) of the point of the projective space \(\mathbb{P}(V) \) given by a line \(L \subset V \) coincides with the fiber over \(L \) of the map \(\mathbb{P}(V)(F[\varepsilon]) \to \mathbb{P}(V)(F) \) induced by the ring homomorphism \(F[\varepsilon] \to F, \varepsilon \mapsto 0 \). For example, the \(F[\varepsilon] \)-submodule \(L \oplus L \varepsilon \) of \(V[\varepsilon] := V \otimes F[\varepsilon] \) represents the zero vector of the tangent space \(T_{F(V),L} \).

For a linear map \(h : L \to V \) let \(W_h \) be the \(F[\varepsilon] \)-submodule of \(V[\varepsilon] \) generated by the elements \(v + h(v)\varepsilon, v \in L \). Since \(W_h/\varepsilon W_h \simeq L \), we can view \(W_h \) as a point of \(T_{F(V),L} \). The map \(\text{Hom}_F(L,V) \to T_{F(V),L} \) given by \(h \mapsto W_h \) yields an exact sequence of vector spaces

\[
0 \to \text{Hom}_F(L,L) \to \text{Hom}_F(L,V) \to T_{F(V),L} \to 0.
\]

In other words,

\[
T_{F(V),L} = \text{Hom}_F(L,V/L).
\]

Since the fiber of the tautological line bundle \(L_t \) over the point given by \(L \) coincides with \(L \), we get an exact sequence of vector bundles over \(\mathbb{P}(V) \):

\[
0 \to \text{Hom}(L_t,L_t) \to \text{Hom}(L_t,1 \otimes_F V) \to T_{F(V)} \to 0.
\]

The first term of the sequence is isomorphic to \(1 \) and the second term to \(L_c \otimes_F V \simeq (L_c)^{\otimes n} \), where \(n = \text{dim } V \). It follows that

\[
[T_{F(V)}] = n[L_c] - 1 \in K_0(\mathbb{P}(V)).
\]

More generally, if \(E \to X \) is a vector bundle then there is an exact sequence of vector bundles over \(\mathbb{P}(E) \):

\[
0 \to 1 \to L_c \otimes q^* E \to T_q \to 0,
\]

where \(q : \mathbb{P}(E) \to X \) is the natural morphism and \(T_q \) is the relative tangent bundle of \(q \).
103.E. Deformation to the normal cone. Let \(f : Y \to X \) be a closed embedding of schemes. First suppose that \(X \) is an affine scheme, \(X = \text{Spec}(A) \), and \(Y \) is given by an ideal \(I \subset A \). Set \(Y = \text{Spec}(A/I) \). Consider the subring

\[
\widetilde{A} = \prod_{n \in \mathbb{Z}} I^{-n}t^n
\]

of the Laurent polynomial ring \(A[t, t^{-1}] \), where the negative powers of the ideal \(I \) are understood as equal to \(A \). The scheme \(D_f = \text{Spec}(\widetilde{A}) \) is called the deformation scheme of the closed embedding \(f \). In the general case, in order to define \(D_f \), we cover \(X \) by open affine subschemes and glue together the deformation schemes of the restrictions of \(f \) to the open sets of the covering.

The inclusion of \(A[t] \) into \(\widetilde{A} \) induces a morphism \(g : D_f \to \mathbb{A}^1 \times X \). Denote by \(C_f \) the inverse image \(g^{-1}(\{0\} \times X) \). In the affine case,

\[
C_f = \text{Spec}(A/I \oplus I/I^2 \cdot t^{-1} \oplus I^2/I^3 \cdot t^{-2} \oplus \ldots).
\]

Thus, \(C_f \) is the normal cone of \(f \) (cf. Example 103.3). If \(f \) is a regular closed embedding of codimension \(d \) then \(C_f \) is a vector bundle over \(Y \) of rank \(d \). We write \(N_f \) for \(C_f \) in this case.

The open complement \(D_f \setminus C_f \) is the inverse image \(g^{-1}(\mathfrak{g}_m \times X) \). In the affine case, it is the spectrum of the ring \(\widetilde{A}[t^{-1}] = A[t, t^{-1}] \). Hence the inverse image is canonically isomorphic to \(\mathfrak{g}_m \times X \) via \(g \), i.e.,

\[
D_f \setminus C_f \simeq \mathfrak{g}_m \times X.
\]

In the affine case, the natural ring homomorphism \(A[t] \to (A/I)[t] \) extends canonically to a ring homomorphism \(\widetilde{A} \to (A/I)[t] \). Hence the morphism \(f \times \text{id} : \mathbb{A}^1 \times Y \to \mathbb{A}^1 \times X \) factors through the canonical morphism \(h : \mathbb{A}^1 \times Y \to D_f \) over \(\mathbb{A}^1 \). The fiber of \(h \) over \(t \neq 0 \) is naturally isomorphic to the morphism \(f \). The fiber of \(h \) over \(t = 0 \) is isomorphic to the zero section \(Y \to C_f \) of the normal cone \(C_f \) of \(f \). Thus we can view \(h \) as a family of closed embeddings parameterized by \(\mathbb{A}^1 \) deforming the closed embedding \(f \) into the zero section \(Y \to C_f \) as the parameter \(t \) “approaches 0”. We have the following diagram of open and closed embeddings:

\[
\begin{array}{ccc}
Y & \longrightarrow & \mathbb{A}^1 \times Y \\
\downarrow & & \downarrow \\
C_f & \longrightarrow & D_f \\
\downarrow & & \downarrow \\
Y & \longrightarrow & \mathbb{A}^1 \times X
\end{array}
\]

Thus, \(D_f \setminus C_f \simeq \mathfrak{g}_m \times X \).

Note that the normal cone \(C_f \) is the principal divisor in \(D_f \) of the function \(t \).
Consider a fiber product diagram

\[
\begin{array}{ccc}
Y' & \xrightarrow{f'} & X' \\
g \downarrow & & \downarrow h \\
Y & \xrightarrow{f} & X
\end{array}
\]

where \(f\) and \(f'\) are closed embedding. It induces the fiber product diagram of open and closed embeddings

\[
\begin{array}{ccc}
C_{f'} & \longrightarrow & D_{f'} \\
\quad \downarrow k & & \downarrow \text{id} \times h \\
C_f & \longrightarrow & D_f
\end{array}
\]

\[
\begin{array}{ccc}
\quad \downarrow l & & \downarrow \text{id} \times h \\
\quad \downarrow m & & \downarrow \text{id} \times h \\
\quad \downarrow \text{id} \times h & & \downarrow \text{id} \times h
\end{array}
\]

\[
\begin{array}{ccc}
C_{f'} & \longrightarrow & C_{f'} \\
\quad \downarrow k & & \downarrow \text{id} \times h \\
C_f & \longrightarrow & C_f
\end{array}
\]

\[
\begin{array}{ccc}
\quad \downarrow l & & \downarrow \text{id} \times h \\
\quad \downarrow m & & \downarrow \text{id} \times h \\
\quad \downarrow \text{id} \times h & & \downarrow \text{id} \times h
\end{array}
\]

Proposition 103.23. In the notation of (103.21), there are natural closed embeddings \(D_{f'} \rightarrow D_f \times X\) and \(C_{f'} \rightarrow C_f \times X\). These embeddings are isomorphisms if \(h\) is flat.

Proof. We may assume that all schemes are affine and \(h\) is given by a ring homomorphism \(A \rightarrow A'\). The scheme \(Y\) is defined by an ideal \(I \subset A\) and \(Y'\) is given by \(I' = IA' \subset A'\). The natural homomorphism \(A^n \otimes_A A' \rightarrow (I')^n\) is surjective, hence \(A \otimes_A A' \rightarrow A'\) is surjective. Consequently, \(D_{f'} \rightarrow D_f \times X\) and \(C_{f'} \rightarrow C_f \times X\) are closed embeddings. If \(A'\) is flat over \(A\), the homomorphism \(A^n \otimes_A A' \rightarrow (I')^n\) is an isomorphism. \(\square\)

103.F. Double deformation space. Let \(A\) be a commutative ring.

Lemma 103.24. Let \(I\) be the ideal of \(A\) generated by a regular sequence \(a = (a_1, a_2, \ldots, a_d)\) and \(a \in A\) satisfy \(a + I\) is not a zero divisor in \(A/I\). If \(ax \in I^m\) for some \(x \in A\) and \(m\) then \(x \in I^m\).

Proof. By Proposition 103.9, multiplication by \(a + I\) on \(A^n/I^{n+1}\) is injective for any \(n\). The statement of the corollary follows by induction on \(m\). \(\square\)

Let \(a = (a_1, a_2, \ldots, a_d)\) and \(b = (b_1, b_2, \ldots, b_e)\) be two sequences of elements of \(A\). We write \(a \subset b\) if \(d \leq e\) and \(a_i = b_i\) for all \(i = 1, 2, \ldots, d\). Clearly, if \(a \subset b\) and \(b\) is regular so is \(a\).

Let \(I \subset J\) be ideals of \(A\). We define the ideals \(I^nJ^m\) for \(n < 0\) and/or \(m < 0\) by

\[
I^nJ^m = \begin{cases}
J^{n+m} & \text{if } n < 0 \\
I^n & \text{if } m < 0.
\end{cases}
\]

Proposition 103.25. Let \(a \subset b\) be two regular sequences in a ring \(A\) and \(I \subset J\) the ideals of \(A\) generated by \(a\) and \(b\) respectively. Then

\[
I^nJ^m \cap I^{n+1} = I^{n+1}J^{m-1}
\]

\[
I^nJ^m \cap J^{n+m+1} = I^nJ^{m+1}
\]

for all \(n\) and \(m\).
PROOF. We prove the first equality. The proof of the second one is similar.

We proceed by induction on \(m \). The case \(m \leq 1 \) is clear. Suppose \(m \geq 2 \). As the inclusion “⊃” is easy, we need to prove that
\[
I^n J^m \cap I^{n+1} \subset I^{n+1} J^m - 1.
\]
Let \(\mathfrak{a} \) be a sequence such that \(\mathfrak{a} \subset \mathfrak{d} \subset \mathfrak{b} \) and let \(L \) be the ideal generated by \(\mathfrak{d} \), so \(I \subset L \subset J \). By descending induction on the length \(l(\mathfrak{d}) \) of the sequence \(\mathfrak{d} \), we prove that
\[
I^n J^m \cap I^{n+1} \subset L^{n+1} J^m - 1.
\]
When \(l(\mathfrak{d}) = l(\mathfrak{a}) \), i.e., \(\mathfrak{d} = \mathfrak{a} \) and \(L = I \), we get the desired inclusion.

The case \(l(\mathfrak{d}) = l(\mathfrak{b}) \), i.e., \(\mathfrak{d} = \mathfrak{b} \) and \(L = J \) is obvious. Let \(\mathfrak{c} \) be the sequence satisfying \(\mathfrak{a} \subset \mathfrak{c} \subset \mathfrak{d} \) and \(l(\mathfrak{c}) = l(\mathfrak{d}) - 1 \). Let \(K \) be the ideal generated by \(\mathfrak{c} \). We have \(L = K + aA \) where \(a \) is the last element of the sequence \(\mathfrak{d} \). Assuming \((103.26)\), we shall prove that
\[
I^n J^m \cap I^{n+1} \subset K^{n+1} J^m - 1.
\]

Let \(x \in I^n J^m \cap I^{n+1} \). By assumption,
\[
x \in L^{n+1} J^{m-1} = \sum_{k=0}^{n+1} a^{n+1-k} K^k J^{m-1},
\]
hence
\[
x = \sum_{k=0}^{n+1} a^{n+1-k} x_k
\]
for some \(x_k \in K^k J^{m-1} \). For any \(s = 0, 1, \ldots, n + 1 \), set
\[
y_s = \sum_{k=0}^s a^{s-k} x_k.
\]
We claim that \(y_s \in K^s J^{m-1} \) for \(s = 0, 1, \ldots, n + 1 \). We prove the claim by induction on \(s \). The case \(s = 0 \) is obvious since \(y_0 = x_0 \in J^{m-1} \). Suppose \(y_s \in K^s J^{m-1} \) for some \(s < n + 1 \). We have
\[
x = a^{n+1-s} y_s + \sum_{k=s+1}^{n+1} a^{n+1-k} x_k,
\]
where \(x_k \in K^k J^{m-1} \subset K^{s+1} \) if \(k \geq s + 1 \) and \(x \in I^{n+1} \subset K^{s+1} \). Hence \(a^{n+1-s} y_s \in K^{s+1} \) and therefore \(y_s \in K^{s+1} \) by Lemma [103.24]. Thus \(y_s \in K^s J^{m-1} \cap K^{s+1} \). By the first induction hypothesis, the latter ideal is equal to \(K^{s+1} J^{m-2} \) and \(y_s \in K^{s+1} J^{m-2} \). Since \(x_{s+1} \in K^{s+1} J^{m-1} \), we have \(y_{s+1} = a y_s + x_{s+1} \in K^{s+1} J^{m-1} \). This proves the claim. By the claim, \(x = y_{n+1} \in K^{n+1} J^{m-1} \). \(\square \)

Let \(Z \xrightarrow{g} Y \xleftarrow{f} X \) be regular closed embeddings. We have closed embeddings
\[
i : (N_f)|_Z \to N_f \quad \text{and} \quad j : N_g \to N_{fg}.
\]
We shall construct the double deformation scheme \(D = D(f, g) \) and a morphism \(D \to \mathbb{A}^2 \) satisfying all of the following:
\[
\begin{align*}
(1) \quad D|_{\mathbb{A}^1 \times \mathbb{C}_m} &= D_f \times \mathbb{C}_m. \\
(2) \quad D|_{\mathbb{C}_m \times \mathbb{A}^1} &= \mathbb{C}_m \times D_{fg}.
\end{align*}
\]
103. CONES AND VECTOR BUNDLES

(3) \(D|_{\mathbb{A}^1 \times \{0\}} = D_j \).

(4) \(D|_{\{0\} \times \mathbb{A}^1} = D_i \).

(5) \(D|_{\{0\} \times \{0\}} = N_i \simeq N_j \).

As in the case of an ordinary deformation space, it suffices to consider the affine case: \(X = \text{Spec} \ A, \ Y = \text{Spec}(A/I), \) and \(Z = \text{Spec}(A/J), \) where \(I \subset J \) are the ideals of \(A \) generated by regular sequences. Consider the subring

\[\hat{A} = \prod_{n,m \in \mathbb{Z}} I^n J^{m-n} \cdot t^{-n} s^{-m} \]

of the Laurent polynomial ring \(A[t, s, t^{-1}, s^{-1}] \) and set \(D = \text{Spec} \ \hat{A}. \) Since \(\hat{A} \) contains the polynomial ring \(A[t, s], \) there are natural morphisms \(D \to X \times \mathbb{A}^2 \to \mathbb{A}^2. \)

We have

\[\hat{A}[s^{-1}] = \prod_{n,m \in \mathbb{Z}} I^n \cdot t^{-n} s^{-m} = (\prod_{n,m \in \mathbb{Z}} I^n \cdot t^{-n})[s, s^{-1}], \]

\[\hat{A}[t^{-1}] = \prod_{n,m \in \mathbb{Z}} J^m \cdot t^{-n} s^{-m} = (\prod_{n,m \in \mathbb{Z}} J^m \cdot s^{-m})[t, t^{-1}]. \]

This proves (1) and (2).

To prove (3) consider the rings

\[\hat{A}/s\hat{A} = \prod_{n,m \in \mathbb{Z}} [I^n J^{m-n}/I^n J^{m-n+1}] \cdot t^{-n}, \]

\[R = \prod_{m \in \mathbb{Z}} [J^m/J^{m+1}] \cdot s^{-m}, \]

\[S = \prod_{m \in \mathbb{Z}} [(J^m + I)/(J^{m+1} + I)] \cdot s^{-m}. \]

We have \(\text{Spec} \ R = N_{fg} \) and \(\text{Spec} \ S = N_g. \) The natural surjection \(R \to S \) corresponds to the embedding \(j : N_g \to N_{fg}. \)

Let \(\tilde{I} = \ker(R \to S). \) By Proposition 103.25, \(J^m \cap I = I J^{m-1}, \) hence

\[\tilde{I} = \prod_{m \in \mathbb{Z}} [IJ^{m-1} + J^{m+1}/J^{m+1}] \cdot s^{-m} \]

and

\[\tilde{I}^n = \prod_{m \in \mathbb{Z}} [I^n J^{m-n} + J^{m+1}/J^{m+1}] \cdot s^{-m}. \]

Therefore, \(D_j \) is the spectrum of

\[\prod_{m \in \mathbb{Z}} [I^n J^{m-n} + J^{m+1}/J^{m+1}] \cdot t^{-n} s^{-m}. \]

It follows from Proposition 103.25 that this ring coincides with \(\hat{A}/s\hat{A}, \) hence (3).

To prove (4) consider the ring

\[\hat{A}/t\hat{A} = \prod_{n,m \in \mathbb{Z}} [I^n J^{m-n}/I^{n+1} J^{m-n-1}] \cdot s^{-m}. \]
The normal bundle N_f is the spectrum of the ring

$$T = \prod_{n \in \mathbb{Z}} [I^n/I^{n+1}] \cdot u^{-m}.$$

Let \mathcal{J} be the ideal of T of the closed subscheme $(N_f)|_Z$. We have

$$\mathcal{J}^n = \prod_{n \in \mathbb{Z}} [I^n J^n + I^{n+1}/I^{n+1}] \cdot u^{-m}.$$

The deformation scheme D_i is the spectrum of the ring

$$U = \prod_{n,m \in \mathbb{Z}} [I^n J^m + I^{n+1}/I^{n+1}] \cdot u^{-n} s^{-m}.$$

We define the surjective ring homomorphism $\varphi : \hat{A}/t\hat{A} \to U$ taking

$$(x + I^{n+1} J^{m-n-1}) \cdot t^{-n} s^{-m} \quad \text{to} \quad (x + I^{n+1}) \cdot u^{-n} s^{-m+n}.$$

By Proposition 103.25, the map φ is also injective. Hence φ gives the identification (4). Property (5) follows from (3) and (4).

104. Group actions on algebraic schemes

In this section we assume that F is a field of characteristic not 2 and all schemes are quasi-projective. We denote by $G = \{1, \sigma\}$ a cyclic group of order 2.

104.A. G-schemes. Suppose that the group G acts on a commutative F-algebra R by algebra automorphisms. Then G acts on the scheme $Y = \text{Spec } R$ over F. Set

$$R_0 = \{ r \in R \mid \sigma(r) = r \}, \quad R_1 = \{ r \in R \mid \sigma(r) = -r \}.$$

Then R_0 is a subalgebra of R and $R = R_0 \oplus R_1$.

Consider the ideal $I = (R_0)^2$ of R_0. Denote by Y^G the scheme $\text{Spec}(R_0/I)$. The natural closed embedding $i : Y^G \to Y$ satisfies the following universal property: if Z is an affine scheme with trivial G-action then every G-equivariant morphism $Z \to Y$ factors uniquely through i. The ideal of Y^G in Y coincides with $R R_1 = I \oplus R_1$.

A G-scheme is a scheme Y together with a G-action on Y. As Y is a quasi-projective scheme over F, every pair of points of Y belong to an open affine subscheme. It follows that there is an open G-invariant affine covering of such an Y. Therefore, in most of the constructions and proofs, we may restrict to the class of affine G-schemes.

Example 104.1. For any scheme X, the group G acts on $X \times X$ by permutation of the factors. Then $(X \times X)^G$ coincides with the image of the diagonal closed embedding $X \to X \times X$. Indeed, let $X = \text{Spec } A$. We have $A \otimes A = R_0 \oplus R_1$. The ideal J of the diagonal in $X \times X$ is the kernel of the product map $A \otimes A \to A$. Clearly $R_1 \subset J$ and J is generated by elements of the form $a \otimes 1 - 1 \otimes a$, $a \in A$ hence by R_1. Therefore, $J = (A \otimes A) R_1$.

Let $Y = \text{Spec } R$ where $R = R_0 \oplus R_1$. Let Y/G denote the scheme $\text{Spec } R_0$. The natural morphism $f : Y \to Y/G$ satisfies the following universal property: if Z is an affine scheme with trivial G-action then every G-equivariant morphism $Y \to Z$ factors uniquely through f.

Example 104.2. Let $C = \text{Spec}(S^\bullet)$ be a cone over $Y = \text{Spec} S^0$. Let R_0 (respectively, R_1) be the coproduct of all S^i with i even (respectively, odd). The decomposition $S^\bullet = R_0 \oplus R_1$ gives rise to a G-action on C. The closed subcone $C^G = \text{Spec} S^0$ is the image of the zero section of the cone C. We have $C/G = \text{Spec} R_0$. In particular, if C is a line bundle over Y, i.e., S^1 is an invertible sheaf, and $S^i = (S^1)^\otimes i$, then $C/G = C^\otimes 2$.

Example 104.3. Let $R = A[t]/(t^2 - a)$ where A is a commutative ring and $a \in A$. The group G acts on R by $\sigma(x + sy) = x - sy$ where s is the class of t in R. We have $R_0 = A$ and $R_1 = sA = sR_0$. Let $M \in \text{Spec}(R)^G$ be a maximal ideal of R and let $M_0 \in \text{Spec}(R)/G = \text{Spec}(R_0)$ be the image of M. We have $M = M_0 + sR_0$ hence $M^2 = (M_0 + aR_0) \oplus sM_0$ and $M/M^2 \cong M_0/(M_0^2 + aR_0) \oplus sR_0/sM_0$.

Computing dimensions over the residue field $R/M = R_0/M_0$ we have $\dim M_0/(M_0^2 + aR_0) \geq 1 + \dim M_0/M_0^2$ and $\dim sR_0/sM_0 = 1$. Therefore,

$$\dim M/M^2 \geq \dim M_0/M_0^2.$$

In particular, if M is a regular point in $\text{Spec}(R)$ then M_0 is regular in $\text{Spec}(R)/G$.

Proposition 104.4. Let Y be a G-scheme and $U = Y \setminus Y^G$. Then the composition $Y^G \rightarrow Y \rightarrow Y/G$ is a closed embedding with the complement U/G. If $I \subset O_{Y/G}$ is the sheaf of ideals of Y^G in Y/G, then $q^*(I) = J^2$, where $J \subset O_Y$ is the sheaf of ideals of Y^G in Y.

Proof. We may assume that $Y = \text{Spec}(R_0 \oplus R_1)$. Then $Y^G = \text{Spec}(R_0/I)$ where $I = (R_1)^2$, and $Y/G = \text{Spec} R_0$. The morphism $Y^G \rightarrow Y/G$ is given by the surjective ring homomorphism $R_0 \rightarrow R_0/I$ and therefore is a closed embedding. The open complement of Y^G in Y/G is covered by the principal open subschemes $D_{Y/G}(s) = \text{Spec}(R_0)_s$ for all $s \in I$. Note that $D_Y(s) = \text{Spec}((R_0)_s \oplus (R_1)_s)$, hence $D_{Y/G}(s) = D_Y(s)/G$. It is sufficient to show that U is covered by $D_Y(s)$ for all $s \in I$. Let $P \subset R_0 \oplus R_1$ be a prime ideal that does not contain $I \oplus R_1$. We claim that I is not contained in P. Suppose that $I \subset P$. Since $(R_1)^2 = I \subset P$, we deduce that $R_1 \subset P$ and therefore $I \oplus R_1 \subset P$, a contradiction proving the claim. Hence there is $s \in I$ such that $s \notin P$, i.e., $P \subsetneq D_Y(s)$.

Finally, we have $J = I \oplus R_1$ and

$$f^*(I) = IR = I \oplus IR_1 = (I \oplus R_1)^2 = J^2.$$

Example 104.5. Let X be a scheme. Write B_X for the blow up of $X^2 \times \mathbb{A}^1 = X \times X \times \mathbb{A}^1$ along $X \times \{0\}$. Since the normal cone of $X \times \{0\}$ in $X^2 \times \mathbb{A}^1$ is $T_X \oplus 1$ (cf. Proposition 103.7), the projective cone $\mathbb{P}(T_X \oplus 1)$ is the exceptional divisor in B_X (cf. [17] B.6.6).

Let G act on $X^2 \times \mathbb{A}^1 = X \times X \times \mathbb{A}^1$ by $\sigma(x, x^\prime, t) = (x^\prime, x, -t)$. We have $(X^2 \times \mathbb{A}^1)^G = X \times \{0\}$. Set $U_X = (X^2 \times \mathbb{A}^1) \setminus (X \times \{0\})$. The group G acts naturally on U_X and on B_X so that $(B_X)^G = \mathbb{P}(T_X \oplus 1)$ and $B_X \setminus \mathbb{P}(T_X \oplus 1)$ is canonically isomorphic to U_X.

Considering properties of the closed embedding of $\mathbb{P}(T_X \oplus 1)$ into B_X/G we may assume that $X = \text{Spec}(A)$. The scheme B_X is covered by U_X and principal open sets $D_{B_X}(s) = \text{Spec} C(s)$ where $C = (A \otimes A)[t]$ and $s = a \otimes a^\prime - a^\prime \otimes a$ for some $a, a^\prime \in A$. The ideal in $C(s)$ of the intersection of $\mathbb{P}(T_X \oplus 1)$ and $D_{B_X}(s)$ is generated by s. The
scheme B_X/G is covered by U_X/G and principal open sets $D_{B_X/G}(s) = \text{Spec}(C_{(x)}^G)$. The ideal in $C(s) = C_{(x)}^{G}$ of the intersection of $\mathbb{P}(T_X \oplus 1)$ and $D_{B_X/G}(s)$ is generated by s^2. In particular, $\mathbb{P}(T_X \oplus 1)$ is a locally principal divisor in D_X/G.

We have $C(s) = C_{(x)}^G \oplus sC_{(x)}^G$. It follows that the natural morphism $D_X \to D_X/G$ is finite and flat.

If X is smooth then so is D_X/G by Example 104.3.

Exercise 104.6. Prove that $(X \times Y)^G = X^G \times Y^G$ for every two G-schemes X and Y.

104.B. G-torsors. Let Y be a G-scheme. If Y is affine then $Y = \text{Spec}(R_0 \oplus R_1)$.

Proposition 104.7. If Y is an affine G-scheme, the following conditions are equivalent:

1. The scheme Y^G is empty.
2. $(R_1)^2 = R_0$.
3. The product homomorphism $R_1 \otimes R_0 \to R_0$ is an isomorphism.

Proof. We obviously have (1) \iff (2) and (3) \Rightarrow (2). It remains to prove (2) \Rightarrow (3). Property (2) implies that the product map is surjective. Let $\sum x_i \otimes y_i$ be an element of the kernel of the product map, i.e., $\sum x_i y_i = 0$. Choose a_j and b_j in R_1 such that $\sum a_j b_j = 1$. We have $b_j x_i \in R_0$ and therefore,

$$\sum x_i \otimes y_i = \sum a_j b_j x_i \otimes y_i = \sum a_j \otimes b_j x_i y_i = 0,$$

i.e., the product map is injective. \square

Let Y be a G-scheme. The natural morphism $f : Y \to Y/G$ is called a G-torsor if there is an open covering $Y/G = \cup U_i$ such that $f^{-1}(U_i)$ satisfies the properties (1) – (3) of Proposition 104.7 for all i. If $Y \to Y/G$ is a G-torsor and Y is affine, then R_1 is an invertible R_0-module and therefore, R_1 is locally free of rank 1 over R_0. It follows that in general, $Y \to Y/G$ is a flat morphism.

Example 104.8. Let Y be a G-scheme and $U = Y \setminus Y^G$. Since $U^G = \emptyset$, the morphism $U \to U/G$ is a G-torsor.

Example 104.9. Suppose $Y \to Y/G$ is a G-torsor, Y is affine, and R_0 is a local ring. Then R_1 is a free R_0-module of rank 1, i.e., $R_1 = a R_0$, where a is an invertible element of R. Let $c = a^2 \in R_0^*$. The ring R is isomorphic to the quadratic R_0-algebra $R_0[t]/(t^2 - c)$.

Let $Y \to Y/G$ be a G-torsor, Y affine, and $R_0 \to S_0$ a ring homomorphism. Set $S = R \otimes R_0 S_0$. Then clearly $(S_1)^2 = S_0$, therefore, the natural morphism $\text{Spec } S \to \text{Spec } S_0$ is a G-torsor. In particular, for every point $z \in Y/G$, the fiber Y_z is a G-torsor over $\text{Spec } F(z)$.

Let $p : Y \to Y/G$ be a G-torsor. For every point $z \in Y/G$, the fiber $Y_z \to \text{Spec } F(z)$ is a G-torsor. By Example 104.9 we have $Y_z = \text{Spec } K$, where K is a quadratic algebra over F.

Suppose that $\text{char } F \neq 2$. Then either K is a field (and the fiber Y_z has only one point y) or $K = F \times F$ (and the fiber has two points y_1 and y_2). In any case, every point in
Y_z is unramified (cf. 48.D). It follows that for the pull-back homomorphism (cf. 48.D) $p^* : Z(Y) \to Z(Y)$, we have

$$p^*([z]) = \begin{cases} [y] & \text{if } K \text{ is a field} \\ [y_1] + [y_2] & \text{otherwise.} \end{cases}$$

Similarly, for a point y in the fiber Y_y, we have:

$$p_*([y]) = \begin{cases} 2[z] & \text{if } K \text{ is a field} \\ [z] & \text{otherwise.} \end{cases}$$

In particular, $p_* \circ p^*$ is multiplication by 2.

Let σ be the automorphism of $Z(Y)$ given by the generator of $G(F)$. We have $\sigma(y) = y$ if K is a field and $\sigma(y_1) = y_2$ otherwise. In particular, $p^* \circ p_* = 1 + \sigma^*$. The cycles $[y]$ and $[y_1] + [y_2]$ generate the group $Z(Y)^G$ of G-invariant cycles. We have proved

Proposition 104.10. Let $\text{char } F \neq 2$ and $p : Y \to Y/G$ a G-torsor. Then the pull-back homomorphism

$$p^* : Z(Y/G) \to Z(Y)^G$$

is an isomorphism.
Bibliography

Index

A_n, see also Property A_n

- G-scheme, 412
- I^n
 - and torsion-freeness, 175
 - exact sequences and quadratic extensions, 170
- $I^n(F)$, 17
 - and $J_n(F)$, 172
- fundamental ideal $I(F)$, 16
 - generators of, 17
 - if $I^n(F(\sqrt{-1})) = 0$, 150
 - maps
 - \tilde{e}_0, 17
 - \tilde{e}_1, 17
 - \tilde{e}_1 is an isomorphism, 18
 - \tilde{e}_2 is an isomorphism, 21
 - e_0, 17
 - e_1, 17
 - Fact: \tilde{e}_n is an isomorphism, 61
 - presentation of, 178
 - Presentation of $I^2(F)$, 19
 - torsion in, 174
 - torsion-freeness going down, 181
- $I^n_q(F)$
 - maps
 - \tilde{e}_2 is an isomorphism in characteristic two, 61
- $I^n_q(F)$
 - maps
 - \tilde{e}_1 is an isomorphism, 55
 - e_n, 60
 - e_n well-defined on Pfister forms, 60
- $J_n(F)$, 97
 - and $I^n(F)$, 172
- K-cohomology groups, 247
- K-homology groups, 229
- \bar{u}-invariant, 153
 - and finite extensions, 155, 157
 - and quadratic extensions, 156
- \bar{u}_r-invariant, 154

μ-torsor, 414

φ_q the qth anisotropic kernel of φ, 96

φ_q the qth anisotropic kernel of φ, 96

p-special closure, 400

u-invariant, 153
 - and finite extensions, 162
 - and quadratic extensions, 159, 161

u'-invariant, 158

$\text{Cie}(X^2)$, 306

dim$_{12h}$, 915

mult, 317

absolute Galois group, 386

additive completion, 286

affine bundle, 233

algebra

- quaternion, 382
- semisimple, 379
- separable, 379
- split, 379
- anisotropic kernel form, 96
- Arf invariant, 55
- associativity law, 290

bilinear form, 3

- group of similarity factors, 7
- alternating, 3
- anisotropic, 9
- anisotropic part, 11
- determinant, 4
- diagonal, 7
- dimension, 3
- isotropic, 9
- Lagrangian, 9
- metabolic, 9
- non-degenerate, 3, 71
- radical, 5
- round, 7
- signature of, 115
- skew-symmetric, 3
- subform, 4
- support of, 126
symmetric, 3
tensor product, 11
totally isotropic subspace, 9
universal, 8
Witt index, 11
Bilinear Similarity Norm Principle, 79
Bilinear Similarity Theorem, 79
Bilinear Substitution Principle, 64
Bilinear Value Norm Principle, 70
Bilinear Value Theorem, 69
Bockstein map, 399
boolean space, 376
boundary map, 220
canonical line bundle, 406
Cassels-Pfister Theorem, 63
category
of Chow-motives, 288
of correspondences, 286
of graded Chow-motives, 288
of graded correspondences, 286
chain equivalence
bilinear forms, 14
change of field homomorphism, 213
Chern class, 238
Chow group of codimension p, 256
Chow group of dimension p cycles, 251
Chow-motive, 286
Classification Theorem, 142
Clifford Algebra, 49
Clifford algebra
even, 50
clopen set, 376
cocycle relation, 19
cohomological p-dimension, 400
cohomology group, 386
cone, 403
normal, 403
projective, 403
tangent, 403
connecting homomorphism, 230
corestriction homomorphism, 393, 396
correspondence, 281, 285, 316
multiplicity of, 317
prime, 316
cup-product, 387
cycle
q-primordial, 313
basic, 303
derivative of, 306
essence of, 303
essential, 303
integer produced by 1-primordial, 314
minimal, 333
primordial, 309, 333
rational, 302
subcycle of, 303
cycle module, 250
cycle of a subscheme, 213
deformation homomorphism, 225, 231
deformation scheme, 408
degree homomorphism, 253
degree of an algebra, 381
derivative of a cycle, 306
diagonalizable bilinear form, 7
dimension map, 16
divisor, 209
double deformation scheme, 410
duality functor, 289
Euler class, 233
excess vector bundle, 232
exchange isomorphism, 282
external product, 222
field
p-special, 399
admissible extension of, 117
euclidean, 115, 375
finite stable range, 173
formally real, 66, 375
function field of a quadric, 86
Laurent series field, 116
leading field of a quadratic form, 97
linked, 164
ordered, 376
existence and uniqueness of a real closure, 376
extension of, 376
pythagorean, 115
pythagorean closure of, 117
quadratic closure of, 117
quadratically closed, 113
real closed, 376
real closed with respect to an ordering, 376
stable range of, 173
field extension
excellent, 106
Frobenius Reciprocity, 75
Galois module, 386
generic splitting tower, 96
graded Milnor ring, 391
graph of a morphism, 282
Grothendieck-Witt group
 presentation of, 16
 group of p-dimensional cycles, 251
 Gysin homomorphism, 241, 255

Harrison subbasis, 377
Hasse number, 164
 linked fields, 166
 Hasse Principle
 strong, 164
 weak, 164
 Hasse-Witt invariant, 24
Hauptsatz, 28, 92
Herbrand index, 401
homomorphism: first residue, 73
homomorphism: second residue, 73
hyperbolic λ-bilinear form, 4
hyperbolic bilinear form, 4
hyperbolic form, 32
hyperbolic pair, 4
hyperbolic plane, 32
 bilinear, 4
hyperplane reflection, 32

idempotent completion of an additive category, 288
index of an algebra, 381
intersecting properly subvarieties, 256
isometry
 bilinear form, 4
 quadratic form, 32
Izhboldin dimension, 315

level of a field, 25
Local-Global Principle, 120
localization exact sequence, 230
localization sequence, 254
locally hyperbolic, 153
locally isotropic, 164

matrices
 congruent, 4
matrix
 alternating, 4
module
 m-periodic, 390
monomial
 degree
 in lexicographic order, 67
motive, 286, 289

negative with respect to an ordering, 375
norm residue homomorphism, 397
 normal bundle, 404
 Normality Theorem, 127
order homomorphism, 252
order in a ring, 109
ordering, 375
orientation, 299
orthogonal basis, 6
orthogonal complement, 5
orthogonal subspace, 5
orthogonal sum
 external, 6
 internal, 5
orthogonal vectors, 5

Pfister form
 bilinear, 17
 r-linked, 29
 chain p-equivalent, 26
 divides, 28
 general, 28
 linkage, 29
 linkage number, 29
 linked, 29
 pure subform of, 26
 simply p-equivalent, 26
divisor of, 94
quadratic, 45
r-linked, 95
chain p-equivalent, 57
characterization of, 90, 102
 general, 45
 linkage of, 95
 linked, 95
 neighbor, 93
 pure subform, 59
 simply p-equivalent, 57
Pfister neighbor, 93
 associated general Pfister form, 93
place, 401
 center of, 402
 composition, 401
 geometric, 402
 induced by, 402
 surjective, 401
polar identity, 31
polynomial
 σ-twisted, 384
 marked, 217
 leading coefficient of, 67
 leading term of, 67
positive with respect to an ordering, 375
preordering, 375
prime cycle, 251
projective bundle, 403
proper inverse image, 255
Property A_n, 140
go ing down, 143
go ing up a quadratic extension, 141
Property H_n, 165
pull-back homomorphism, 213, 230, 245, 253
push-forward homomorphism, 210, 230, 253
pythagoras number, 322
quadratic form, 31
nth cohomological invariant of, 60
absolute higher Witt index, 96
anisotopic, 33
anisotropic part, 41
annihilators of, 47
associated, 32
Clifford invariant, 56
cohomological invariant of, 60
complementary form, 34
de fined over a field, 104
degree of, 97
determinant, 55
diagonalizable, 37
dimension, 31
discriminant, 54
e xcellent, 105
group of similarity factors, 44
height of, 96
irreducible, 86
isotropic, 33
leading form of, 97
non-degenerate, 35
polar form, 31
polar form of, 71
regular, 34
regular part, 34
relative higher Witt indices, 97
round, 44
splits off, 35
splitting pattern of, 96
tensor product, 43
totally isotropic subspace, 33
totally singular, 34
universal, 44
quadratic forms
classification of binary quadratic forms, 52
non-degenerate
characterizations, 35, 51
totally singular
characterization of, 48, 49
quadratic radical, 34
Quadratic Similarity Norm Principle, 78
Quadratic Similarity Theorem, 78
Quadratic Substitution Principle, 64
Quadratic Value Norm Principle, 70
Quadratic Value Theorem, 68
quadratic Witt group, 43
Principle ideals generated by Pfister forms, 175
quadratically closed field, 9
quadric
oriented, 299
projective, 85
split, 297
quadric form
subform, 33
quasi-Pfister form, 49
radical
bilinear, 5
ramification index, 213
reduced Chow group, 302
relative u-invariant, 159
relative dimension, 212
Representation Theorem, 65
represented values, 7, 44
residue homomorphism, 208, 392
restriction graded ring homomorphism, 391
restriction homomorphism, 213, 396
restriction map
bilinear forms, 13
quadratic forms, 43
ring
artinian, 400
excellent, 207
Rost correspondence, 331
scheme, 207, 251, 267
relatively cellular, 290
Segre closed embedding, 382
Segre homomorphism, 258
Separation Theorem, 101
sequence
regular, 404
regular of codimension d, 404
shell triangle, 309, 311
signature, 115
total, 125
cokernel of, 126
signature map, 115, 120
total, 126
signed discriminant, 55
similar
 bilinear forms, 4
 quadratic, 33
simply chain equivalence
 simply
 bilinear forms, 14
space of orderings, 375
specialization, 208
specialization homomorphism, 393
specialization homomorphisms, 250
split idempotent, 288
split object, 289
splitting field extension, 381
Springer’s Theorem, 69
stable range, 173
stable ranges see also field
 stable range of 173
Steenrod operations
 of cohomological type, 267
 of homological type, 267
Subform Theorem, 86
Sylvester’s Law of Inertia, 115
symbol, 391
symmetrization, 334
symplectic basis, 6
tangent bundle, 405
Tate motive, 286, 289
tensor category, 287
total Chern class, 238
total Euler class, 258
total Segre class, 258
total Segre operation, 259
total Stiefel-Whitney class, 22
total Stiefel-Whitney map, 22
 ith, 23
totally indefinite, 164
totally negative, 375
totally positive, 375
totally positive elements, 375
 tractable class, 365
 transfer
 of bilinear forms, 74
 of quadratic forms, 74
 transfer maps
 of Witt rings and groups, 76
 transpose of a correspondence, 282
variety, 207, 208, 251
vector
 anisotropic, 9, 33
 isotropic, 9, 33
polynomial
 degree of, 67
 leading term of, 67
 leading vector of, 67
 primitive, 71
vector bundle, 403
Whitney formula, 23
Witt classes, 12
Witt equivalent, 41
Witt group
 presentation of, 16
 quadratic, see also quadratic Witt group
Witt index, 41
 of a quadric, 85
Witt relations, 15
Witt ring, 12
 graded, 21
 annihilator ideals in, 29
 annihilators in, 174
 exact sequence for quadratic field extensions, 130, 131, 137, 139
 exact sequence on the affine line, 81
 exact sequence on the projective line, 83
 fundamental ideal, 16
 isomorphism of, 122
 Principle ideals generated by Pfister forms, 175
 reduced, 129
 Spectrum of, 120
 structure of in the formally real case, 121
 structure of over non formally real fields, 114
Witt theorems
 Bilinear Witt Cancellation Theorem, 11
 characteristic not two, 8
 characteristic two counterexample, 8
 Bilinear Witt Chain Equivalence Theorem, 14
 Bilinear Witt Decomposition Theorem, 19
 Quadratic Cancellation Theorem, 40
 Quadratic Witt Decomposition Theorem, 40
Witt theorems: (Quadratic) Witt Extension Theorem, 39
Witt-Grothendieck ring, 12
zero section, 403