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1. Introduction

In this section, we introduce some of the notations and definitions that we shall use
throughout this book. We shall do it by investigating a few mathematical statements.
Consider the following:

Statements 1.1.

(1) The integer 243112609 − 1, which has 12 978 189 digits, is a prime.
(2) There exist infinitely many (rational) primes.
(3) Let

π(x) := the number of positive primes ≤ x.

Then

lim
x→∞

π(x)

x/ log x
= 1.

(4)
√

2 /∈ Q, where Q is the set of rational numbers.
(5) The real number π is not “algebraic” over Q.
(6) There exist infinitely many real numbers (even “many more” than the number

of elements in Q) not algebraic over Q.

To look at these statements, we need some definitions.
Let a, b ∈ Z, where Z is the set of integers. We say that a divides b (in Z) if

there exists an integer n such that b = an, i.e., if a 6= 0, then
b

a
∈ Z.

We write
a | b (in Z).

For example, 3 | 12 as 12 = 4 · 3 but 56 | 12 in Z, where 6 | means does not divide.
An integer p is called a prime if p 6= 0,±1 and

n | p in Z implies that n ∈ {1,−1, p,−p}, i.e., n = ±1,±p.
For example, 2, 3, 5, 7, 11, . . . are prime. [The prime 2 is actually the “oddest prime of
all”!] We shall need to know below that every integer n > 1 is divisible by some prime.
(For the full statement see Theorem 1.3 below which we shall prove in Theorem 4.16.)

A complex number x is called irrational if x is not a rational number, i.e., x ∈ C\Q :=
{z ∈ C | z /∈ Q}, where C is the set of complex numbers. A complex number x is called
algebraic (over Q) if there exists a nonzero polynomial f(t) = ant

n+an−1t
n−1+· · ·+a1t+a0

with a0, . . . , an ∈ Q (some n) not all zero satisfying f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+
a0 = 0. We shall write f for f(t) where t always represents a variable and f(x) means
plug x into f . We let

Q[t] := the set of polynomials with rational coefficients.

So x is algebraic over Q if there exists 0 6= f ∈ Q[t] such that f(x) = 0. A complex
number x that is not algebraic (over Q) is called transcendental (over Q), so x ∈ C is
transcendental if there exists no nonzero polynomial f ∈ Q[t] satisfying f(x) = 0.

With the above definitions, we can look at our statements to see which ones are
interesting, deep, etc.
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We start with Statement 1 above. An integer 243112609 − 1 with 12 978 189 digits
was shown to be prime by a UCLA team using a primality test of Lucas on Mersenne
numbers. This was the first known prime to have at least ten million digits. It is, on
the face of it, not very interesting. After all, it is analogous to saying 97 is a prime.
However, it is interesting historically. We call an integer Mn := 2n − 1, n a positive
integer, a Mersenne number and a Mersenne prime if it is a prime. In 1644, Mersenne
conjectured that for n ≤ 257, the Mersenne number Mn is prime if and only if n =
2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257. [If Mn is a prime, then n must be a prime as 2ab − 1
factors if a, b > 1.] It was shown in the 1880’s that M61 is a prime. In 1903 Frank
Cole showed that M67 = 193707721 · 761838257287. [He silently multiplied out these two
numbers on a blackboard at a meeting of the American Mathematical Society.] There
were three more errors to Mersenne’s conjecture: M89 and M107 are prime and M257 is
composite, i.e., not 0,±1, or a prime. The correct solution of Mersenne’s conjecture is
that Mn is a Mersenne prime if and only if n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127 was
completed in 1947.

Mersenne was interested in these numbers because of their connection to a study in
antiquity. An integer n > 1 is called perfect if

n =
∑
d|n

0<d<n

d or 2n =
∑
d|n

0<d≤n

d,

e.g., 6 = 1 + 2 + 3. The first equation says that n is the sum of its aliquot divisors. A
theorem in elementary number theory says:

Theorem 1.2. (Euclid/Euler) An even number N is perfect if and only if N = 1
2
p(p+ 1)

with p a Mersenne prime (so N = 2n−1(2n − 1) with p = 2n − 1).

It is still an open problem whether there exist infinitely many even perfect numbers
(or equivalently, infinitely many Mersenne primes). It is also an open problem whether
there exist any odd perfect numbers.

Statement 2 is very interesting and is due to Euclid. It may be the first deep mathe-
matical fact that one learns. The proof is quite simple. If the result is false, let p1, . . . , pn
be a complete list of (positive) primes and set N = p1 · · · pn + 1. We use (cf. Exercise
1.13(1)) that says:

If x | y and x | z in Z, then for all a, b ∈ Z, we have x | ay + bz,

i.e., if an integer divides two integers, then it divides any Z-linear combination of those
two numbers. From this, we conclude that if pi | N then pi | N − p1 · · · pn, so pi | 1, which
is impossible. But as mentioned above, every integer greater than one is divisible by a
prime. This means that there exists a prime dividing N different from any of p1, . . . , pn,
a contradiction.

Statement 3 is a deep theorem called the Prime Number Theorem or PNT. It quantifies
Statement 2. It was first conjectured by Gauss and proven independently in 1896 by de la
Vallée Poussin and Hadamard using complex analysis and fundamental work of Riemann.
One shows that the zeta function, ζ(s) =

∑∞
n=1 1/ns, where s is a complex variable, has

no root on the line Re(s) = 1, i.e., ζ(1+
√
−1t) is never zero, and that this is equivalent to
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the PNT. [The most famous problem in mathematics is the Riemann Hypothesis, which
says the analytic continuation of the zeta function for Re(s) > 0 has all its roots on the
line Re(s) = 1/2.] An “elementary” proof in number theory means that it does not use
complex analysis. An elementary proof may be very difficult. An elementary proof of PNT
was discovered in 1949 by Selberg and Erdös. It is much harder than the non-elementary
proof.

Statement 4 is not very interesting, although the Pythagoreans knew it but were afraid
to leak the knowledge, fearing catastrophe if it got out. It did. They were apparently
right. To prove this, we need not only positive integers n > 1 factor as a product of
primes but that the product is essentially unique. More specifically, we need:

Theorem 1.3. (The Fundamental Theorem of Arithmetic) Every integer n > 1 is a
product of positive primes unique up to order, i.e., there exist unique primes 1 < p1 <
· · · < pr and unique integers e1, . . . , er > 0 such that

(*) n = pe11 · · · perr .

We call (*) the standard representation or standard factorization of n. We show Statement
4 assuming that this theorem is true. [Euclid knew its proof and we shall prove it in
Theorem 4.16.]

If
√

2 is rational, then
√

2 = m
n

for some integers m,n with n 6= 0. This means that we
have an equation of integers 2n2 = m2. But the prime two occurs on the left hand side to
an odd power and on the right hand side to an even power, contradicting the uniqueness
part of the Fundamental Theorem of Arithmetic. Thus

√
2 is irrational, i.e., a complex

number that is not rational.

Statement 5 was proven by Lindemann in 1882. This is historically interesting as it
solves the famous Greek construction problem, “squaring the circle”, which asks whether
one can construct a circle with the same area as a given square using only a straight-
edge and compass (according to specific rules). Its proof is not easy. One must reduce
this geometric problem to an algebraic one in field theory, which is then proven using
analysis. A proof is given in Section 73. It is easier to show that the real number e is
transcendental. (Cf. Section 71.) The first real number shown to be transcendental was
the number

∑∞
n=1

1
10n!

shown to be transcendental by Liouville [cf. Section 70]. [That it is
transcendental is essentially due to the fact that this series converges much too rapidly.]
An even deeper result, solved independently by Gelfond and Schneider [which we shall
prove in Section 74], is

Theorem 1.4. (Hilbert’s Seventh Problem) Let α and β be algebraic over Q with α 6= 0, 1

and β irrational. Then αβ is transcendental. In particular
√

2
√

2
is transcendental.

This theorem also proves that eπ is transcendental, since eπ = (e
√
−1π)−

√
−1 = (−1)−

√
−1.

It is unknown whether πe is transcendental.
Lindemann actually proved that if α is algebraic and nonzero, then eα is not algebraic.

Since Euler showed that −1 = e
√
−1π, it follows that

√
−1π is not algebraic; and from this

it follows that π is transcendental, using the fact that the product of algebraic numbers
is algebraic, which we prove in Theorem 48.20.
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Statement 6 is not as interesting as Statement 5 for the word “transcendental” is a
misnomer. However, the proof of this by Cantor changed mathematics and caused much
philosophical distress. Indeed, Cantor showed that there were “many more” reals than
rationals. What does this mean?

Let A and B be two sets. [What is a set?] We say that A and B have the same
cardinality and write |A| = |B| if there exists a one-to-one and onto function, i.e., a
bijection, f : A → B. We call such an f a bijective function. Recall that a function or
map f : A→ B is one-to-one or injective if

f(a1) = f(a2) =⇒ a1 = a2

(where =⇒ means implies). Let f(A) := {f(a) | a ∈ A} denote the image of A. Then f
is one-to-one is if and only if

f−1 : f(A)→ A given by f(a) 7→ a

is a function. We say f is onto or surjective if B = f(A). [We also write a function as

A
f−−→ B.]

Review 1.5. You should review the definitions of functions, inverses, etc. that we assume
you have learned.

Examples 1.6.

1. {1, 2, . . . , 26} and {a, b, . . . , z} have the same cardinality.

2. Z and 2Z := {2n | n ∈ Z} have the same cardinality, as f : Z→ 2Z given by n 7→ 2n
is a bijection.

3. Let Z+ denote the set of positive integers and N = Z+ ∪ {0} the set of non-negative
integers. Then Z, N, and Z+ all have the same cardinality. Indeed, the maps

f : Z→ N by n 7→

{
2n− 1 if n > 0

−2n if n ≤ 0

and g : N→ Z+ by n 7→ n+ 1 are both bijections.

If A is a set, we call the symbol |A| the cardinality of A and interpret it to mean
the “number of elements” in A. For example, if A is finite, i.e., the set A has finitely
many elements [we write |A| <∞], then |A| is the number of elements in A, e.g., we have
|{1, . . . , 26}| = 26. If A is not finite, we of course say that A is infinite. If a set A satisfies
|A| = |Z|, i.e., there exists a bijection f : Z → A (equivalently, there exists a bijection
g : A → Z), we say A is countable. (Some authors call such a set countably infinite or
denumerable.)

The following facts can be shown [and we leave their proofs as exercises]:

Fact 1.7.

1. A subset of a countable set is either finite or countable.
2. Q is countable.
3. Let C be the set of complex numbers. Then {α ∈ C | α algebraic }, the set of complex

algebraic numbers, is countable.

Theorem 1.8. (Cantor) The set R of real numbers is not countable.
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Proof. Suppose that R is countable. As R and the closed interval [0, 1] have the same
cardinality by Exercise 1.13(11), the interval [0, 1] must also be countable. As Z+ ⊂ Z is
not finite, it is also countable by the first fact (or by Example 1.6(3)). Therefore, there
exists a bijection f : Z+ → [0, 1], i.e., the closed interval [0, 1] is covered by a sequence.
Write each f(n) in (base ten) decimal form, say

f(1) = .a11a12a13 · · · a1n · · ·
f(2) = .a21a22a23 · · · a2n · · ·

...

f(n) = .an1an2an3 · · · ann · · ·
... .

For each n choose bn ∈ {1, . . . , 8} with bn 6= ann. [We omit 0 and 9 to prevent round off
problems.] Let b = b1b2 · · · bn · · · . Then b and f(n) differ in the nth digit as bn 6= ann.
Moreover, as bn 6= 0, 9, the numbers b and f(n) cannot be the same real number. Thus
b 6= f(n) for all n ∈ Z+, so f is not onto, a contradiction. (We have really used the fact
that R is complete, i.e., that b is a real number.) �

Warning 1.9. Sets can be tricky – again we ask what is a set?

Indeed, consider the statement:

Statement 1.10. There is a universe, i.e., a set that contains all other sets.

Now you should consider the following:

Contemplate 1.11. (Russell’s Paradox) Let

A := {B is a set | B /∈ B}.

Is A ∈ A? Is A 6∈ A?

What can you conclude?

Remark 1.12. Throughout these notes we shall assume the Axiom of Choice which can
be found in Appendix A(A.8) and equivalent formulations of it. In particular, this allows
us to define when two sets have the same cardinality in a useful way, called the Schroeder-
Bernstein Theorem which says two sets A and B have the same cardinality if and only
if there exist injective maps f : A → B and g : B → A (The proof can be found in
Appendix A.13.)

Exercises 1.13.

1. Show if a nonzero integer a divides integers b and c, it divides bx+ cy for any integers
x and y.

2. Show if an − 1 is a prime with n > 1, then a = 2 and n is a prime. [The converse is
false as 23 |M11.]

3. If 2n + 1 is a prime, what can you say about n? Prove your assertion.
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4. Let f(t) be a polynomial with integer coefficients. Show that the set of integers
{f(n) | 0 < n ∈ Z} contains infinitely many distinct prime divisors. (You may assume
that nonzero polynomials with coefficients in Z have finitely many roots.)

5. Let a, b, n ∈ Z with n > 1 and b 6= 0. Determine when n
a
b is a rational number. Prove

your determination. (You can use the Fundamental Theorem of Arithmetic.)

6. Assume that the real number
√
π is transcendental. Show that π is transcendental.

7. Let f : A→ B be a map of sets. Prove that f is injective if and only if given any set
C and any two set maps gi : C → A, i = 1, 2, with compositions f ◦ g1 = f ◦ g2, then
g1 = g2.

8. Let f : A→ B be a map of sets. Prove that f is surjective if and only if given any set
C and any two set maps hi : B → C, i = 1, 2, with compositions h1 ◦ f = h2 ◦ f , then
h1 = h2.

9. Show a subset of a countable set is either countable or finite.

10. If the sets A and B are countable, show that the cartesian product

A×B := {(a, b) | a ∈ A, b ∈ B}
is also countable. Using induction (to be discussed), show if

A1, . . . , An are countable so is A1 × · · · × An.
[Hint: Show Z×Z (or Z+×Z+ where Z+ := {n ∈ Z | n > 0}) is countable by drawing
a big (= infinite) matrix. In a similar way one proves Fact 1.7(2). In fact, the cartesian
product of countable sets is countable, which is needed to prove Fact 1.7(3). Can you
prove this?]

11. The closed interval [0, 1] and the set of all real numbers R have the same cardinality.

12. Any two (finite) line segments (so each has more than one point) have the same cardi-
nality. [Hint: Draw the two line segments parallel to each other.]



CHAPTER I

The Integers

In this chapter, we investigate the basic properties of the set of integers. In particular,
we show that every integer can be factored into a product of primes, unique up to order.
To do so we introduce concepts that shall be generalized. We assume that the reader
has seen proofs by induction. We begin the chapter with an equivalent form of induction
called the Well-Ordering Principle and use it to establish facts about division of integers.
In particular, we prove the division algorithm. Of great historical importance is the notion
of prime and the property discovered by Euclid that characterizes a prime that became a
cornerstone of modern algebra.

2. Well-Ordering and Induction

We denote the empty set by ∅. In this section, we are interested in induction which
you should have seen and turns out to be equivalent to the following:

The Well-Ordering Principle 2.1. Let ∅ 6= S ⊂ Z+. Then S contains a least (also
called a minimal) element, i.e.,

There exists an a ∈ S such that if x ∈ S, then a ≤ x.

This is an axiom that we accept as being true. You can visualize it by drawing the
positive real line and ticking off the integers. You move to the right until you get to the
first element in S.

One can modify the Well-Ordering Principle to the seemingly more general:

The Modified Well-Ordering Principle 2.2. Let ∅ 6= T ⊂ Z. Suppose that there
exists an N ∈ Z such that N ≤ x for all x ∈ T , i.e., T is bounded from below. Then T
contains a least element.

Proof. Let f : Z→ Z be the map defined by x 7→ x+ |N |+ 1 where here |N | means
the absolute value of N . Then f is a bijection. [What is f−1?] Hence the restriction of f to
the subset T , which we denote by f |T : T → Z, is also injective. As f(T ) = f |T (T ) ⊂ Z+,
there exists a least element f(a) ∈ f(T ), a ∈ T , by the Well-Ordering Principle. Then a
is the least element of T as f preserves ≤. (You should check this.) �

Remark 2.3. In an analogous way, if ∅ 6= T ⊂ Z is bounded from above, i.e., there exists
an integer N satisfying s ≤ N for all s ∈ T , then T contains a largest (also called a
maximal) element, i.e., an element a ∈ T such that x ≤ a for all x in T .

We have the following simple applications of well-ordering.

Application 2.4. There exists no integer N satisfying 0 < N < 1 (or strictly between
any integers n and n+ 1).

9
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Proof. Let S = {n ∈ Z | 0 < n < 1}. If ∅ 6= S then there exists a least element
N ∈ S by well-ordering, so 0 < N < 1 which implies that 0 < N2 < N < 1 – can you
prove this? – and N2 ∈ Z contradicting the minimality of N . �

Application 2.5. Let P (n) be a statement that is true or false depending on n ∈ Z+.
If P (n) is not true for some n then by the Well-Ordering Principle, there exists a least
element n ∈ Z+ such that P (n) is false. We call P (n) a minimal counterexample.

Application 2.6. Suppose that S ⊂ Z+ and 1 ∈ S. If S satisfies the condition that
whenever n ∈ S also n+ 1 ∈ S, then S = Z+.

Proof. Let
T = Z+ \ S = {n ∈ Z+ | n 6∈ S},

i.e., Z+ = T ∪ S, the union of T and S, and ∅ = T ∩ S, the intersection of T and S. (We
say that Z+ is the disjoint union of S and T , and we write Z+ = S ∨ T .)

Suppose that T 6= ∅. Then by well-ordering there exists a least positive element n ∈ T .
In particular, n− 1 6∈ T . As 1 6∈ T , n > 1, so we have n− 1 ∈ Z+. Hence by minimality,
n − 1 ∈ S. The hypothesis now implies that n ∈ S, a contradiction. Thus T = ∅ so
Z+ = S. �

The applications yield the following:

Application 2.7. (First Principle of Finite Induction) For each positive integer n, let
P (n) be a statement that is true or false. Suppose we know that

(1) (Base Case) P (1) is true.

(2) (Induction Step) If P (n) is true then P (n+ 1) is true.

Then P (n) is true for all positive integers n.

The hypothesis in the induction step is called the induction hypothesis.

Often the following equivalent variant of the First Principle of Finite Induction is more
useful. That it is equivalent is left as an exercise.

Application 2.8. (Second Principle of Finite Induction) For each positive integer n, let
P (n) be a statement that is true or false. Suppose that the assumption that P (m) is true
for all positive integers m < n implies that P (n) is true. Then P (n) is true for all positive
integers n.

Remark 2.9. If n = 1 then {m < 1 | m ∈ Z+} is empty, so you still must show that P (1)
is true if you wish to use the Second Principle of Finite Induction, as your proof would
fail for n = 1 otherwise. Remember that well-ordering needs a nonempty set.

Remark 2.10. Note that using the Modified Well-Ordering Principle, you can start
induction at any integer and prove things from that point on, e.g., you can start at 0.

We assume that you have seen induction proofs in the past, e.g., in your linear algebra
course. Induction proofs can be very complicated. We give such a complicated induction
proof. Note in the proof the formal steps versus the mathematical ones.

Example 2.11. The product of any n ≥ 1 consecutive positive integers is divisible by n!.
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Proof. Let m and n be two positive integers and set

(m)n := m(m+ 1) · · · (m+ n− 1),

the product of n consecutive integers starting from m.

Claim 2.12. We have n! | (m)n for all positive integers m and n.

Of course, the claim is exactly what we want to prove. Note that there are two integers
in the claim. We have

If m ∈ Z+ is arbitrary and n = 1 then (m)n = m and n! = 1! | m.

We assume

Induction Hypothesis I. The claim holds for fixed n = N − 1 and for all m.

This is the induction step on n, using N for clarity. As we know that this holds for
n = 1 and for all m, we must show that the result holds for N and all m, i.e., we must
show

(N − 1)! | (m)N−1 for all m =⇒ N ! | (m)N for all m.

Let m = 1. Then (1)N = N ! and N ! | (1)N . Note that this is the first step of an induction
on m. So we can assume

Induction Hypothesis II. The claim holds for fixed n = N and m = M . (Notationally
it is easier to use M rather than M − 1).

We must show that Induction Hypotheses I and II imply the result for n = N and
m = M + 1, i.e.,

if N ! | (M)N and (N − 1)! | (M + 1)N−1 then N ! | (M + 1)N .

Note that if we show this, then we have completed the induction step for the Induction
Hypothesis II hence the result would be true for n = N and for all m. This in turn
completes the induction step for Induction Hypothesis I and hence would prove the claim.

Note also, so far even though a lot has been written, everything has been completely
formal and no real work has been done except for the facts that 1 | m and n! | n!. We
finally must do the mathematics. This comes from the equation

(M + 1)N − (M)N

= (M + 1)(M + 2) · · · (M +N)−M(M + 1) · · · (M +N − 1)

= (M + 1) · · · (M +N − 1)[(M +N)−M ] (factoring)

= N(M + 1) · · · (M +N − 1) = N(M + 1)N−1.

By Induction Hypothesis I, we have

(N − 1)! | (M + 1)N−1 so N ! | N(M + 1)N−1,

and by Induction Hypothesis II, we have N ! | (M)N . This means that

N ! | N(M + 1)N−1 + (M)N , i.e., N ! | (M + 1)N

by Exercise 1.13(1), completing the induction step for Induction Hypothesis II, which
completes the induction step for Induction Hypothesis I as needed. �
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Corollary 2.13. Let n ∈ Z+. Then there exist infinitely many n consecutive composite
(i.e., non-prime and not 0 or ±1) positive integers.

Proof. Let m ∈ Z+ and N = (m)n+1 = m(m+ 1) · · · (m+n). Then by the example,
we have (n + 1)! | N . If follows that for any integer s satisfying 2 ≤ s ≤ n + 1, we have
s | N + s. As n+ 1 < N + s, the positive integers

(*) N + 2, N + 3, . . . , N + n+ 1

are all composite. �

Of course, the same proof works with m = 1, so we did not need the example to prove
this. However, (*) says there are arbitrarily large gaps between primes. On the other
hand, primes are not ‘sparse’, as Chebyshev proved Bertrand’s Hypothesis, which says

If n ∈ Z+ then there exists a prime p satisfying n ≤ p ≤ 2n.

Of course, 2n in the above can only be prime if n = 1. In fact, earlier Euler showed that

the infinite sum
∑

p a positive prime

1
p

diverges, so there are ‘many more’ primes than say squares (in

some sense).

Corollary 2.14. Let m and n be positive integers with n ≤ m. Define the binomial
coefficients (

m

n

)
:=

m!

(m− n)!n!
=
m(m− 1) · · · (m− n+ 1)

n!

and (
−m
n

)
:= (−1)n

m(m+ 1) · · · (m+ n− 1)

n!
.

Then
(
m
n

)
and

(−m
n

)
are integers.

Proof. We know that
(
m
n

)
= (m−n+1)n

n!
is an integer by the example. The second

statement follows from the identity(
−m
n

)
= (−1)n

(
m+ n− 1

n

)
.

�

Corollary 2.15. Let p > 1 be a prime. Then(
p

1

)
,

(
p

2

)
, . . . ,

(
p

p− 1

)
are all divisible by p, i.e., p |

(
p
n

)
for 1 ≤ n ≤ p− 1.

Proof. If 1 ≤ n ≤ p− 1, then the example says that

n! | p(p− 1) · · · (p− n+ 1) = (p− n+ 1)n

We also know that s and p have no common nontrivial factors if 1 < s < p. [Proof?] We
say that s and p are relatively prime. (Cf. 4.4.) We shall show this below (cf. Theorem
4.10) but assume for now the following:
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Theorem 2.16. (General Form of Euclid’s Lemma) Let a, b, c be nonzero integers with
a and b relatively prime integers. If a | bc then a | c.

Applying Euclid’s Lemma, we conclude that

n! | (p− 1) · · · (p− n+ 1) so pn! | p(p− 1) · · · (p− n+ 1)

for all n satisfying 1 ≤ n ≤ p− 1. (Why?) �

Exercises 2.17.

1. Prove that the number of subsets of a set with n elements is 2n.
2. When Gauss was ten years old he almost instantly recognized that 1 + 2 + · · · + n =

n(n+1)
2

. [Actually, what he did was a bit harder.] What is a formula for the sum of the
first n cubes? Prove your result.

3. The first nine Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34. What is the nth Fibonacci
number Fn? Show that Fn < 2n.

4. Note that Euclid’s proof of the infinitude of primes clearly shows that if pn is the nth
prime, then pn+1 ≤ pnn + 1. Be more careful and show that pn+1 ≤ 22n+1

? Using this,
show that π(x) ≥ log log(x), where π(x) is the number of primes less than x if x ≥ 2.
[This is a bad estimate.]

5. Prove that the Well-Ordering Principle, the First Principle of Finite Induction, and
the Second Principle of Finite Induction are all equivalent.

6. State and prove the binomial theorem. What algebraic properties do you need for your
proof to work?

7. Fill in the missing details in the proof of Corollary 2.15.

3. Addendum: The Greatest Integer Function

Our (double) induction showing that binomial coefficients are integers was complicated
to write, although the mathematics was simple. In this addendum, we shall give another
proof, mathematically more complicated, but of greater interest. We shall use some
results that we shall prove in the next section, in particular, the Division Algorithm 4.2
and the Fundamental Theorem of Arithmetic 4.16. This alternate proof uses the following
function:

Definition 3.1. The greatest integer function

[ ] : R→ Z is given by [x] := the greatest integer n satisfying n ≤ x,

i.e., if x ∈ R, using Application 2.4, we can write

x = n+ x0 with 0 ≤ x0 < 1, n ∈ Z then [x] = n.

This function satisfies:

Properties 3.2. Let m be a positive integer. Then the following are true:

(1) [x] ≤ x < [x] + 1.

(2) [x+m] = [x] +m.

(3) [ x
m

] = [ [x]
m

].
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(4) [x] + [y] ≤ [x+ y] ≤ [x] + [y] + 1.

(5) If n, a ∈ Z+, then [n
a
] is the number of integers among 1, . . . , n that are divisible

by a.

Proof. (1) and (2) are easy to see.

(3): Write x = n + x0 with 0 ≤ x0 < 1 and n ∈ Z. Using the Division Algorithm 4.2,
write n = qm+ r with q, r ∈ Z and 0 ≤ r < m. Then we have[ x

m

]
=
[n+ x0

m

]
=
[qm+ r + x0

m

]
=
[
q +

r + x0

m

]
= q+

[r + x0

m

]
.

As r ∈ Z and 0 ≤ r < m, we have 0 ≤ r ≤ m−1 (cf. Application 2.4); and as 0 ≤ x0 < 1,
we have r + x0 < m, so [ x

m

]
= q =

[
q +

r

m

]
=
[ n
m

]
=
[ [x]

m

]
.

(4): Write
x = n+ x0 with 0 ≤ x0 < 1 and n ∈ Z
y = q + y0 with 0 ≤ y0 < 1 and q ∈ Z.

Then 0 ≤ x0 + y0, so

[x+ y] = [n+ q + x0 + y0] = n+ q + [x0 + y0] = [x] + [y] + [x0 + y0] < [x] + [y] + 2

and the result follows easily.

(5): Let a, 2a, . . . , ja denote all the positive integers ≤ n and divisible by a. We must
show [n

a
] = j. Clearly, ja ≤ n < (j + 1)a. Therefore, j ≤ n

a
< j + 1. The result now

follows. �

Let n ∈ Z+ and p > 1 be a prime. By the Fundamental Theorem of Arithmetic 4.16,
we know that there exists a unique integer e ≥ 0 such that pe | n but pe+1 6 | n. We shall
write this as pe || n.

Theorem 3.3. Let n be a positive integer and p a positive prime. Suppose that pe || n!.
Then

e =
∞∑
i=1

[ n
pi
]
.

Proof. If pi > n, then [ n
pi

] = 0. So the sum is really a finite sum. We prove the

result by induction on n.

n = 1. There is nothing to prove.

We can, therefore, make the following:

Induction Hypothesis. Let e′ =
∑∞

i=1

[
n−1
pi

]
, then pe

′ || (n− 1)!.

Let pf || n. As n! = n(n − 1)!, by the induction hypothesis, we have pe = pe
′
pf =

pe
′+f || n!, hence e = f + e′ or f = e− e′. So it suffices to prove that

f =
∞∑
i=1

[ n
pi
]
−
∞∑
i=1

[n− 1

pi
]
.
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Claim 3.4.
[ n
pi
]
−
[n− 1

pi
]

=

{
1 if pi | n
0 if pi 6 | n.

Suppose that pi | n, then n = piu with u ∈ Z. As 0 < 1
pi
< 1, we have[ n

pi
]

= u and
[n− 1

pi
]

=
[
u− 1

pi
]

= u− 1

as needed.

Suppose that pi 6 | n. The result is immediate if pi > n, so suppose not. Then we can
write n = piu + r with u and r integers with r satisfying 1 ≤ r < pi using the Division
Algorithm 4.2. Hence

n

pi
= u+

r

pi
, so

[ n
pi
]

= u

and
n− 1

pi
=
piu+ r − 1

pi
= u+

r − 1

pi
for 0 ≤ r − 1 < pi,

so we also have
[n− 1

pi
]

= u as needed. This proves the claim. But the claim means

that
∞∑
i=1

[ n
pi
]
−
∞∑
i=1

[n− 1

pi
]

=
∑
pi|n

1 = f. �

Example 3.5. Using the properties of [ ], we compute e such that 7e || 1000!.[1000

7

]
= 142[1000

72

]
=
[[1000

7

]
7

]
= [

142

7
] = 20[1000

73

]
=
[[1000

72

]
7

]
= [

20

7
] = 2[1000

74

]
=
[[1000

73

]
7

]
= [

2

7
] = 0,

so e = 142 + 20 + 2 = 164, i.e., 7164 || 1000!.
We can generalize our result about binomial coefficients to show that multinomial

coefficients are integers.

Corollary 3.6. Suppose that a1, . . . , ar are non-negative integers satisfying a1 + · · ·+ ar = n.

Then the multinomial coefficient
n!

a1! · · · ar!
is an integer.

Proof. By the Fundamental Theorem of Arithmetic 4.16 and the theorem, it suffices
to prove that for each prime p, we have

∞∑
i=1

[ n
pi
]
≥

∞∑
i=1

[a1

pi
]

+ · · ·+
∞∑
i=1

[ar
pi
]
.
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Applying Property 3.2(4) shows that[a1

pi
]

+ · · ·+
[ar
pi
]
≤
[a1 + · · ·+ ar

pi
]

=
[ n
pi
]

for all i. Summing over i yields the result. �

That the product of n consecutive positive integers is divisible by n! and that binomial

coefficients are integers is now easy to see as
(m)n
n!

=

(
m+ n− 1

n

)
for all m ∈ Z+ and(

a

b

)
=

a!

b!(a− b)!
for all a, b ∈ Z+ with b ≤ a.

Chebyshev cleverly used the binomial coefficient

(
2n

n

)
=

(2n)!

n!n!
. For each positive

prime p ≤ 2n, let rp ∈ Z satisfy
prp ≤ 2n < prp+1

and pe ||
(

2n
n

)
. Then

e =
∞∑
i=1

[2n
pi
]
− 2

∞∑
i=1

[ n
pi
]
.

We have [2n
pi
]

=
[ n
pi

+
n

pi
]
≤
[ n
pi
]

+
[ n
pi
]

+ 1

by Property 3.2(4), so e ≤
∑rp

i=1 1 = rp. This is used to prove

(3.7)

(
2n

n

)
=

(2n)!

n!n!
divides

∏
p≤2n
p prime

prp

and if further n < p ≤ 2n, then p | (2n)! but p 6 | (n!)2. Therefore, we see

(3.8) nπ(2n)−π(n) ≤
∏

n<p≤2n
p prime

p ≤
(

2n

n

)
≤

∏
p≤2n
p prime

prp ≤ (2n)π(2n).

Using this Chebyshev showed that there were positive real numbers c1 and c2 satisfying

c1
x

log x
≤ π(x) ≤ c2

x

log x

(cf. The Prime Number Theorem). He also showed if n ≥ 3 and 2n/3 < p < n, with p a
prime, then p 6 |

(
2n
n

)
and used this to prove Bertrand’s Hypothesis that there always exists

a prime p such that n ≤ p ≤ 2n. For a full proof see Appendix B. Besides Theorem 3.3,
one only needs the main results in the next section §4.

Exercises 3.9.

1. Let a and b be positive integers. Show that
(ab)!

a!(b!)a
is an integer.

2. Verify equations (3.7) and (3.8).
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3. Let 0 < x < 1. Let a1 > 0 be the smallest positive integer satisfying x1 = x− a−1
1 ≥ 0,

a2 > 0 be the smallest positive integer satisfying x2 = x1 − a−1
2 ≥ 0, etc. Show that

x =
∑∞

i=1
1
ai

=
∑n

i=1
1
ai

some n if and only if x is a rational number. [This says that

every rational between 0 and 1 is an sum of Egyptian numbers.] (You can use the
Fundamental Theorem of Arithmetic 4.16.)

4. Division and the Greatest Common Divisor

We turn to further applications of well-ordering. We shall need the following:

Properties 4.1. For integers r, n, and m the following division properties hold:

(1) If r | m and r | n, then r | am+ bn for all integers a and b.
(2) If r | n, then r | mn.
(3) If If r | n and n 6= 0, then the absolute value |n| ≥ |r| ≥ r.
(4) If m | n and n | m, then n = ±m.
(5) If mn = 0, then m = 0 or n = 0.
(6) If mr = nr, then either m = n or r = 0.

Proof. Exercise, but do not use the Fundamental Theorem of Arithmetic. �

The most important elementary property about the integers is the next result, which
intertwines multiplication and addition of integers. In the sequel, we shall investigate
when it holds in more general situations. As it is one of our first proofs about integers,
we shall put in a lot of detail. Notice that one can often assume properties about integers
that we have not shown and perhaps are not clear. For example, in the proof below, we
assume the transitivity of >. Can this be proved or must it be axiomized?

Theorem 4.2. (Division Algorithm) Let m and n be integers with m positive. Then there
exist unique integers q and r satisfying:

(i) n = qm+ r.
(ii) 0 ≤ r < m

[Of course, (ii) is the crux.]

Proof. We have two things to show: existence and uniqueness. We first show

Uniqueness: Let (q, r) and (q′, r′) be two pairs of integers satisfying the conclusion. We
must show q = q′ and r = r′. We have

(*)
qm+ r = n = q′m+ r′

0 ≤ r, r′ < m

Without loss of generality, we may assume that r ≤ r′. By (*), we have

0 ≤ r′ − r = (q − q′)m.
If q − q′ = 0, i.e., q = q′, then r′ − r = 0 and r′ = r and we are done. So we may assume
that q − q′ 6= 0, i.e., q 6= q′. Then r′ − r = (q − q′)m 6= 0 by Property 4.1(5) as m 6= 0.
Therefore, we have

r′ − r > 0 and m | r′ − r.
Thus by Property 4.1(3), we have

m ≤ r′ − r < r′ < m,
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a contradiction. So q − q′ = 0 as needed.
[Note that we have used the important Property 4.1(5):

ab = 0 =⇒ a = 0 or b = 0,

which is equivalent to
ab = ac =⇒ a = 0 or b = c.]

Existence:

Case 1. n > 0:

Intuitively we know that the number n must lie in some half open interval [qm, (q+ 1)m),
i.e., there exists an integer q such that qm ≤ n < (q + 1)m. Let us show this rigorously.
Let

S = {s ∈ Z+ | sm > n} ⊂ Z+.

As m > 0, we have m ≥ 1. (Recall we have shown there is no integer properly between
0 and 1.) So (n + 1)m = mn + m ≥ n + m > n. [Can you show that mn > n?] Thus
n+ 1 ∈ S so S 6= ∅. By the Well-Ordering Principle, there exists a least integer q+ 1 ≥ 1
which means qm ≤ n < (q + 1)m. Let r = n− qm ≥ 0. We then have

0 ≤ r = n− qm < (q + 1)m− qm = m,

so these q, r work.

Case 2. n < 0:

By Case 1, there exist integers q1 and r1 satisfying

−n = |n| = q1m+ r1 and 0 ≤ r1 < m.

If r1 = 0, then q = −q1 and r = 0 work. If r1 > 0, then

n = −q1m− r1 = −q1m−m+m− r1

= (−q1 − 1)m+ (m− r1).

Since 0 ≤ m− r1 < m, we have q = −q1 − 1 and r = m− r1 work. �

Question 4.3. What if m < 0 in the above?

As mentioned above, later we shall be interested in generalizing the Division Algorithm
for integers. You already have used an analogue of it in the case of the division of
polynomials with real coefficients in the real numbers. Does this analogue hold if we only
allow integer coefficients?

We turn to another important property about the integers.

Definition 4.4. Let n and m be integers with at least one nonzero. An integer d is called
a greatest common divisor or gcd of m and n if d satisfies the following:

(i) d > 0.
(ii) d | m and d | n.

(iii) If e is an integer satisfying e | m and e | n then e | d.

If d = 1 is a gcd of n and m, we say that n and m are relatively prime.
[Note if a is nonzero, then that a is a gcd of a and 0 and 1 is a gcd of 1 and a.]

Theorem 4.5. Let n 6= 0 and m be integers. Then a gcd of m and n exists and is unique.
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Proof. Uniqueness: If both d and d′ satisfy (i), (ii), and (iii), then d | d′ and d′ | d.
Therefore, d = ±d′ by Property 4.1(4), hence d = |d| = |d′| = d′ by (i).

Existence: Let

S = {am+ bn | am+ bn > 0 with a, b ∈ Z}.

[This is the tricky part of this proof. Where did this come from?]
As n 6= 0, we have |n| ∈ S, so S 6= ∅. By the Well-Ordering Principle, there exists a

least element d = am+ bn in S for some integers a, b.

Claim. This d works, i.e., d satisfies (i), (ii), and (iii).

By choice, d satisfies (i). To show (ii), we use the Division Algorithm to produce integers
q and r satisfying n = qd+ r with 0 ≤ r < d. We show r = 0, i.e., d | n. As

n = dq + r = (am+ bn)q + r, we have 0 ≤ r = (1− bq)n+ (−aq)m.

This means that either r ∈ S or r = 0. Since r < d, the minimality of d implies that
r 6∈ S, so r = 0 and d | n. Similarly, d | m.

As for (iii), suppose that the integer e satisfies e | m and e | n. Then by Property 4.1
(1), we have e | am+ bn = d. �

Notation 4.6. If m and n are integers with at least one nonzero, we shall denote their
gcd by (m,n).

Note that the proof even gives the following

Bonus. Let m and n be integers, at least one nonzero, and d = (m,n). Then there exist
integers x and y satisfying

d = (m,n) = mx+ ny.

In particular, the Diophantine equation

(m,n) = mX + nY

(with X and Y variables) has a solution, where the word Diophantine means that we only
want integer solutions, e.g., the Diophantine equation X2 = 2 has no solution.

Warning 4.7. In general, the x and y in the Bonus are not unique, e.g.,

(2, 4) = 2 = 1 · 4− 1 · 2 = 0 · 4 + 1 · 2.
(2, 3) = 1 = 1 · 3− 1 · 2 =−1 · 3 + 2 · 2.

See Exercise 4.24(7) for the general solution to the Diophantine equation d = mX+nY .
Unfortunately, our proof does not show how to find any solution to the Diophantine

equation (m,n) = mX + nY . Euclid knew how to do so, and his proof constructs such a
solution.
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Theorem 4.8. (Euclidean Algorithm) Let a and b be positive integers with b 6 | a. [If b | a,
we have (a, b) = b.] Then there exists an integer k > 0 and equations

a = bq1 + r1 with 0 <r1 < b

b = r1q2 + r2 with 0 <r2 < r1

r1 = r2q3 + r3 with 0 <r3 < r2

...

rk−2 = rk−1qk + rk with 0 <rk < rk−1

rk−1 = rkqk+1

for some integers q1, . . . , qk+1 and r1, . . . , rk.

Proof. Exercise 4.24(4). �

Moreover, rk = (a, b) and the Diophantine equation (a, b) = aX + bY has a solution.
Finding the gcd of two integers is much easier and faster than factoring numbers. In-

deed, using the internet to make purchases or send confidential information is (relatively)
safe because of the difficulty in factoring large numbers.

Properties 4.9. Let a, b, and c be integers with a 6= 0 and d = (a, b).

(1) We have d = 1 if and only if 1 = ax+ by for some integers x, y.

(2) (
a

d
,
b

d
) = 1. [Note that

a

d
and

b

d
are integers.]

(3) If d = 1 and a | bc (in Z), then a | c.
(4) If a | bc (in Z), then

a

d
| c.

(5) If m > 0, then (ma,mb) = md.

We have seen Property 4.1(3) above. As it is so important, we write it one more time.

Theorem 4.10. (General Form of Euclid’s Lemma) Let a, b be relatively prime integers
with a nonzero. If a | bc with c an integer, then a | c.

A special case of this theorem is:

Theorem 4.11. (Euclid’s Lemma) Let a, b be integers and p be a prime satisfying p | ab.
Then p | a or p | b.

Of course this means

Consequence 4.12. If a prime p satisfies p | a1 · · · ar, with ai integers for i = 1, . . . , r,
then there exists an i such that p | ai.

Proof. (of the properties and Euclid’s Lemma.)

(1): We already know if d = 1 then 1 = ax + by for some x, y ∈ Z. Conversely, suppose
that 1 = ax + by for some x, y ∈ Z. As d | a and d | b, we have d | 1 by Property 4.1(1).
Since d > 0, we have d = 1.

(2): By the Bonus, there exist integers x and y satisfying d = ax+ by hence 1 = a
d
x+ b

d
y

so (2) follows by (1).
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(3): Whenever you can write 1 or 0 in a nontrivial way do so! It is a very useful technique.
So by (1), we have

1 = ax+ by for some x, y ∈ Z (Key Observation)(4.13)

and given such an equation, you can always multiply it, say by the integer c, to get

c = cax+ cby. (Key Trick)(4.14)

As a | a and a | cb, we conclude that a | c.
(4): The hypothesis means that bc = an for some integer n, so a

d
n = b

d
c. By (2), we know

that (a
d
, b
d
) = 1, hence a

d
| c by (3).

(5): We leave this is an exercise.

(proof of) Euclid’s Lemma. If p is a prime and p | ab but p 6 | a, then (p, a) = 1 as only
±1,±p divide p. Since p | ab, we conclude that p | b by (3). �

The converse of Euclid’s Lemma is also true, viz.,

Proposition 4.15. Let p be an integer with |p| > 1. Then p is a prime if and only if
whenever p | ab, with a and b integers, then p | a or p | b.

This proposition, which we leave as an exercise (cf. Exercise 4.24(8)) is a key to much
of (commutative) ring theory. It says that we have two ways to define the notion of a
prime element in the integers. For more general structures, called rings, we can look at
both of these conditions. Unfortunately, they need not be equivalent and it turns out
that the more useful condition is the condition p | ab then p | a or p | b. In fact, its
generalization has major repercussions not only in algebra but also in geometry. We shall
investigate some of these later on.

We had a further loose end to establish, viz., a proof of the Fundamental Theorem of
Arithmetic, which we turn to next. We first state it again.

Theorem 4.16. (The Fundamental Theorem of Arithmetic) Every integer n > 1 is a
product of positive primes unique up to order, i.e., there exist unique primes 1 < p1 <
· · · < pr and integers e1, . . . , er > 0 such that

(*) n = pe11 · · · perr .

[We call (*) the standard representation or standard factorization of n, and this represen-
tation is unique.]

Proof. Existence: Let

S = {n > 1 in Z | n is not a product of primes}.

We must show S = ∅. Suppose this is false. By the Well-Ordering Principle, there exists
a minimal element n ∈ S. Clearly, no prime lies in S, so n is not a prime. Hence there
exist integers n1, n2 satisfying n = n1n2 and 1 < ni < n, i = 1, 2 (as there exists an
integer 1 < n1 < n dividing n). By minimality, n1, n2 6∈ S, so each is a product of primes.
Hence so is n = n1n2, a contradiction.
[This is a wonderful argument, and we shall see it quite often.]
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Uniqueness: Suppose that

pe11 · · · perr = n = qf11 · · · qfss
with 1 < p1 < · · · < pr and 1 < q1 < · · · < qs primes and all the ei, fj positive integers.

We may assume that p1 ≤ q1. As p1 | n = qf11 · · · qfss , we must have p1 | qi for some i by
Euclid’s Lemma. But p1 ≤ qi are primes, so we must have i = 1 and p1 = q1. Thus, by
cancellation,

pe1−1
1 · · · perr = qf1−1

1 · · · qfss
and we are done by induction. What is the induction hypothesis and why are we done? �

The proof of the existence statement in the Fundamental Theorem of Arithmetic is
used repeatedly in mathematics and its consequence occurs much more frequently than
the uniqueness statement. If we are studying a class of objects in which there is a set
of basic objects (atoms), the basic question that arises is whether we can break up an
element in the class into a finite number of these atoms (in some way). In the Fundamental
Theorem of Arithmetic the atoms are the primes.

We next show how Euler reformulated the Fundamental Theorem of Arithmetic. This
led to the subject called Analytic Number Theory by showing how the zeta function
defined previously is related to primes.

Definition 4.17. An arithmetic function is a function f : Z+ → C. If f is a nonzero
arithmetic function, it is called multiplicative if f(mn) = f(m)f(n) if (m,n) = 1 and
completely multiplicative if, in addition, f(mn) = f(m)f(n) for all m,n ∈ Z+.

Note. If f is a multiplicative function, then f(1) = 1, since f(1)f(n) = f(n) is true for
some n with f(n) 6= 0.

As examples, we give a few of the useful arithmetic functions used in number theory.

Examples 4.18. Let p be an arbitrary positive prime and n > 1 an arbitrary integer with
standard factorization n = pe11 · · · perr . The following are arithmetic functions f : Z+ → C
defined as follows:

1. The von Mangoldt function: λ(1) = 0 and Λ(n) = log p if n = pe some e ≥ 1. It is not
multiplicative.

2. The Möbius µ-function: µ(1) = 1 and µ(n) = (−1)r. It is multiplicative, but not
completely multiplicative.

3. The Euler phi-function: ϕ(1) = 1 and ϕ(n) = |{d | 1 ≤ d < n with (d, n) = 1}|. It is
multiplicative but not completely multiplicative (as we shall see later).

4. The division functions: σi(1) = 1 and σi(n) =
∑
d|n

di. (Here and below the sum means

d is a positive integer dividing the positive integer n.) It is completely multiplicative.

5. The identity arithmetic function: I(1) = 1 and I(n) = [ 1
n
]. It is completely multiplica-

tive.

6. The Liouville function: λ(1) = 1 and λ(n) = (−1)e1+···+er . It is completely multiplica-
tive.
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We set up some notation (used before). If p is a positive prime, let
∑
p

,
∏
p

mean the

sum (or product) over all positive primes p. We can also condition the p. In the theorem,
below we will have absolutely convergent infinite sums and products. This will allow us
to reorder such sums and products. Therefore, it will be useful to have the following
notation with 1 < x in R:

Ax := {n | all prime factors of n are less than x} and

Bx := {n | there exists a p > x such that p 6 | n}.

By the Fundamental Theorem of Arithmetic 4.16, each element in Ax and Bx is uniquely
represented and Z+ = Ax ∪ Bx for all x > 0. Although the union is not a disjoint union,
Z+ = limx→∞Ax with every element uniquely a product of its prime factors. Using
theorems from calculus, we prove:

Theorem 4.19. (Euler) Let f : Z+ → C be a multiplicative function. Suppose one of the
following two conditions hold:

(i) The infinite sum
∞∑
n=1

|f(n)| converges, i.e.,
∞∑
n=1

f(n) converges absolutely.

(ii) The infinite product
∏
p

(1 + |f(p)|+ |f(p2)|+ · · · ) converges, i.e.,

∏
p

(1 + f(p) + f(p2) + f(p3) + · · · ) converges absolutely.

Then
∞∑
n=1

f(n) =
∏
p

(1 + f(p) + f(p2) + f(p3) + · · · ).

If, in addition, f is completely multiplicative, then

∞∑
n=1

f(n) =
∏
p

1

1− f(p)
.

The formulas in the conclusion of the theorem are called Euler Formulas.

Proof. Suppose that Condition (i) holds. Say
∑∞

n=1 |f(n)| converges to S and∑∞
n=1 f(n) converges to S. Let P (x) =

∏
p≤x(1 + f(p) + f(p2) + f(p3) + · · · ). As P (x)

is a finite product of absolutely convergent series, we can arrange terms and arrive at the
same value. In particular, in the notation set up as above, we have

|S − P (x)| ≤ |
∑
Bx

f(n)| ≤
∑
Bx

|f(n)| ≤
∑
n>x

|f(n)|.

As x → ∞, we have
∑

n≥x |f(n)| → 0. Consequently P (x) → S as x → ∞. Therefore,∏
p(1 + |f(p)||f(p2)|+ +|f(p3)|+ · · · ) converges to S.
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Suppose Condition (2) holds: Let P (x) =
∏

p≤x(1 + |f(p)|+ |f(p2)|+ |f(p3)|+ · · · ). Then

P (x) =
∑
Ax

|f(n)| ≥
∑
n≤x

|f(n)|.

Therefore,
∑∞

n=1 |f(n)| converges. So Condition (i) holds. This proves the first statement.

If f is completely multiplicative, then 1 + f(p) + f(p2) + f(p3) + · · · = 1 + f(p) + f(p)2) +
f(p3) + · · · is a geometric series. The second statement follows. �

Corollary 4.20. Let f be a multiplicative function satisfying the conditions in Theorem
4.19. Then

∞∑
n=1

f(n) =
∏
p

1

1− f(p)
.

Corollary 4.21. The sum
∑
p

1

p
diverges. In particular there exists infinitely many

primes.

Proof. Let f : Z+ → C be the function f(n) =
1

n
. If

∑
p

1

p
converges, then both∏

p

(1− 1

p
) and

∏
p

(1− 1

p
)−1 converge. Therefore,

∑
n

1

n
converges, a contradiction. �

Not only does this corollary say that there are infinitely many primes, but also lots of
them relative to the number of positive integers. For example, there exist infinitely many
square integers yet

∑∞
n=1

1
nr

converges for any e > 1 in R. However, the harmonic series,
i.e., with e = 1 of such a sum, leads by Theorem 4.19 to the relationship between positive
primes and integers that we want.

Corollary 4.22. The zeta function ζ(s) =
∑
i=1

1

ns
with s a complex variable converges

absolutely for all Re(s) > 1. In particular,

ζ(s) =
∏
p

(1− 1

ps
)−1.

To prove Theorem 4.19, we used the Fundamental Theorem of Arithmetic. We now
show the converse holds.

Theorem 4.23. The Fundamental theorem is equivalent to ζ(s) =
∑
i=1

1

ns
with s a complex

variable converges for all Re(s) > 1.

Proof. Let N be the arithmetic function defined by N(1) = 1 and for n > 1, N(n)
is the number of all ways of writing n as a product of primes up to order, e.g., N(p2) = 2,
since pp, p2 are all of them and if q is another prime, N(p2q) = 2, since pqp, qp2 are all of
them. Since ζ(s) converges absolutely for R(s) > 1,

ζ(s) =
∏
p

(1− 1

p
)−s =

∞∑
n=1

N(n)

ns
.
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It follows that N(n) = 1 if N(n) > 1, i.e., every positive integer is a product of primes in
precisely one way. �

Exercises 4.24.

1. Prove all the properties in Properties 4.1 without using the Fundamental Theorem of
Arithmetic.

2. Let F = R,C or Q [or any field, or even any ring, cf. Definition 8.3]. Let F [t] be the
set of polynomials with coefficients in F with the usual addition and multiplication.
[Which are?] State and prove the analogue of the Division Algorithm for integers. [Use
your knowledge of such division. Use the degree of a polynomial as a substitute for
statement (ii) in the Division Algorithm for integers. (One usually does not define the
degree of the zero polynomial, so if r is the remainder, write r = 0 or ... ).] What can
you do if you take polynomials with coefficients in Z?

3. Prove the following modification of the Division Algorithm: If m and n are two integers
with m nonzero, then there exist unique integers q and r satisfying

n = mq + r with − 1

2
|m| < r ≤ 1

2
|m|.

Moreover, if m > 0 is odd, then we can find unique integers q and r satisfying

n = mq + r with 0 ≤ |r| < m

2
.

[Note that in this case, m/2 is not an integer.]

4. Prove the Euclidean Algorithm 4.8, i.e., show that such a k exists and that the Dio-
phantine equation (m,n) = mX + nY has a solution using the Euclidean Algorithm.

5. In the Euclidean Algorithm show each nonzero remainder ri (i ≥ 2, where we view b as
r0) satisfies ri <

1
2
ri−2. Deduce that the number of steps in the algorithm is less than

2 log b

log 2
,

where b is the larger of the numbers a, b. Using the modified Division Algorithm, show
the number of steps there is at most log b

log 2
.

6. Solve the Diophantine equation

(39493, 19853) = 39493X + 19853Y.

7. Let m, n, and d be nonzero integers. Show that the Diophantine equation d = mX+nY
has a solution if and only if (m,n) | d. If this is the case and (x, y) is a solution in
integers, then the general solution is (x+ n

(m,n)
k, y − m

(m,n)
k) with k ∈ Z.

8. Let p be an integer. Then p is a prime if and only if whenever p | ab, with a and b
integers, then p | a or p | b.

9. Carefully write up the induction step and its proof for the uniqueness part of the
Fundamental Theorem of Arithmetic in two different ways, i.e., by inducting on two
different things.
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10. Let n and m be integers with at least one nonzero. An integer l is called a least common
multiple or lcm of m and n if l satisfies the following:

(i) l ≥ 0.
(ii) m | l and n | l.

(iii) If k is an integer satisfying m | k and n | k, then l | k.
Show that an lcm of m and n exists and is unique, denote it by [m,n]. In addition,

show that mn = [m,n](m,n).

11. Define σ : Z+ → Z+ by σ(n) =
∑

d|n d, the sum of the (positive) divisors of n. Show

(i) If m and n are relatively prime (positive) integers, then σ(mn) = σ(m)σ(n).
(ii) If p is a (positive) prime integer and n an integer, then σ(pn) = (pn+1−1)/(p−1).

12. In the notation of the previous result, a positive integer n is called a perfect number if
σ(n) = 2n. Prove Theorem 1.2.

13. Show for n ≥ 1 that log n =
∑

d|n Λ(d).

14. Show for n ≥ 1 that I(n) = [ 1
n
] =

∑
d|n µ(d).

15. Show for n ≥ 1 that ∑
d|n

λ(d) =

{
1 if n is a square

0 otherwise

and also show that λ−1(n) = |µ(n)| for all n ≤ 1.

16. Show by the following steps that we get an alternate proof that the infinite series
∞∑
n=1

1

pn
diverges where pr is the rth positive prime.

(i) We may assume that the result is false and
∑∞

n=k+1
1
pn
< 1

2
.

(ii) Let N = p1 · · · pk. Then pi 6 | 1 + nN for any prime i = 1, . . . , k and
m∑
n=1

1

1 + nN
≤

∞∑
i=1

( ∞∑
r=k+1

1

pr

)i ≤ ∞∑
i=1

(
1

2
)i.

(iii) This leads to a contradiction.

17. Show that
∏
p≤x

(1− 1

p
) <

1

log x
for all x ≥ 2.

18. Let A(x, r) denote the number of positive primes not exceeding x ∈ R and not divisible
by the first r primes 2, 3, 5, . . . , pr. Show all of the following:

(i) A(x, r) = [x]−
∑

1≤i≤r

[
x

pi
] +

∑
1≤i<j≤r

[
x

pipj
]− · · ·.

(ii) π(x) ≤ A(x, r) + r.

(iii) lim
x→∞

π(x)

x
= 0.

19. Prove that there exist arbitrarily large gaps in the sequence of positive primes.



CHAPTER II

Equivalence Relations

This chapter is the most important foundational chapter in Part One. It introduces
the notion of an equivalence relation and determines equivalent formulations of it. In
particular, an equivalence relation is shown to be the same as a surjective map. The
importance of equivalence relations is that they lead to ‘quotients’. This is probably the
hardest concept to understand in Part One and Part Two. It is used to coarsen problems
that may be more easily be solved, and hopefully leads to the solution of specific problems
in which we are interested. The basic difficulty is that it may easy to define an equivalence
relation on collection of sets, but it probably is not useful if it must reflect additional
properties (e.g., algebraic properties) of those maps, i.e., if the surjective map arising
from the equivalence relation (or defining it) does not reflect these additional properties.
For example, what information does a surjective linear transformation of vector spaces
give us?

5. Equivalence Relations

In this section, we study one of the basic concepts in mathematics, equivalence rela-
tions. You should have seen this concept. Recall the following:

Definition 5.1. Let A and B be two sets. A relation on A and B is a subset R ⊂ A×B.
It is customary to write aRb if (a, b) ∈ R, and we shall always do so. If A = B then we
call such a relation a relation on A.

Question 5.2. What kind of relation is a function f : A→ B?

Besides functions, we are mostly interested in equivalence relations, which we also
recall.

Definition 5.3. A relation R on A is called an equivalence relation on A if for all a, b, c
in A,

aRa. (Reflexivity)(1)

If aRb then bRa. (Symmetry)(2)

If aRb and bRc then aRc. (Transitivity)(3)

Remark 5.4. We often denote an equivalence relation by ∼ or ≈.

Question 5.5. Why do we need (1) in the definition, i.e., why don’t (2) and (3) imply
(1)?

27
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Whenever a new term is defined, you should try to find examples. It is usually difficult
to have an intuitive idea of an abstract concept without examples that you know. We
give a few examples of sets having equivalence relations on them.

Examples 5.6. The following are equivalence relations:

1. Any set A under = where if a, b ∈ A then a = b in A means that we have equality of
sets {a} = {b}.

2. Triangles in R2 under congruence (respectively, similarity).
[Question: Is the mirror image of a triangle congruent to the original triangle?]

3. The set Z× (Z \ {0}) under ∼ where

(a, b) ∼ (c, d) if ad = bc (in Z).

4. Z under ≡ mod 2 where

m ≡ n mod 2 if m− n is even, i.e., 2 | m− n.

Equivalently, if both m and n are odd or both are even in this example.

5. Let R be Q, R, C, or any field (or, in fact, any ring, e.g., Z, cf. Definition 8.3). Set

Mn(R) := {n× nmatrices with entries in R}.

Then ∼ is an equivalence relation on Mn(R), where

A ∼ B if there exists C ∈ Mn(R) invertible such that A = CBC−1.

We call this equivalence relation similarity of matrices. We call two matrices A and B
similar if A ∼ B. [Cf. Change of Basis Theorem in linear algebra.]

6. The Change of Basis Theorem in linear algebra, in fact, leads to the following equiva-
lence relation. Let R be any field (or ring). Define

Rm×n := {m× n matrices with entries in R}.

Then ≈ is an equivalence relation on Rm×n, where

A ≈ B if there exists invertible matrices

C ∈ Mm(R) and D ∈ Mn(R) satisfying A = CBD.

We say two matrices A and B in Rm×n are equivalent if A ≈ B.

7. Let R be a field (or ring). Then v is an equivalence relation on Mn(R), where

A v B if there exists C ∈ Mn(R) invertible such that A = CBCt,

where Ct is the transpose of C.

8. Define vu on Mn(C) by

A vu B if there exists C ∈ Mn(C) invertible such that A = CBC∗,

where C∗ is the adjoint of C. Then vu is an equivalence relation on Mn(C).
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Definition 5.7. Let ∼ be an equivalence relation on a set A. For each a in A, the set

[a] = [a]∼ := {b ∈ A | a ∼ b}
is called the equivalence class of a relative to ∼. We shall usually write

a for [a]

and call the following set of subsets of A,

A = A/ ∼:= {a | a ∈ A},
the set of equivalence classes of ∼ on A.

Warning 5.8. The equivalence class of a is a subset of A not (in general) an element of
A, i.e., a ⊂ A, not a ∈ A.

Let ∼ be an equivalence relation on A. Then we have a map

: A→ A given by a 7→ a.

This map is clearly surjective and is called the natural or canonical surjection. [It is the
“obvious” map as it depends on no choices.] Thus if α is an element in A, there exists an
element a in A such that α = a.

Examples 5.9. 1. Let ∼ on Z× (Z \ {0}) be given by

(a, b) ∼ (c, d) if ad = bc (in Z).

Then we have
(a, b) is just

a

b
in Q = Z× (Z \ {0})/ ∼ .

2. Consider Z under ≡ mod 2. Then we have

{all even integers} = 0 = ±0 = ±2 = ±4 = · · · = ±2n = · · · .

{all odd integers} = 1 = ±1 = ±3 = ±5 = · · · = ±(2n+ 1) = · · · .

We shall write Z = Z/ ≡ mod 2 as Z/2Z, so

Z/2Z = {0, 1}.

Recall the following:

Definition 5.10. Let Ai, i ∈ I, be sets. [We call I an indexing set.] The union of the
sets Ai is the set ⋃

i∈I

Ai := {x | there exists an i ∈ I such that x ∈ Ai}.

We shall usually denote this set by
⋃
I Ai. This union is a disjoint union if Ai ∩ Aj = ∅

for all i, j ∈ I with i 6= j. If this is the case, we denote it by
∨
I Ai. Of course, the

intersection of the sets Ai is the set⋂
i∈I

Ai := {x | x ∈ Ai for all i ∈ I},

and we denote by
⋂
I Ai.
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Proposition 5.11. Let ∼ be an equivalence relation on A. Then

A =
∨
A

a.

In particular, if a, b ∈ A, then

either a = b or a ∩ b = ∅,
hence

a = b if and only if a ∼ b.

Proof. As a ∼ a for all a ∈ A by Reflexivity and a ∈ a by definition, we have
A =

⋃
A a. By Symmetry, we have a ∼ b if a = b. If c ∈ a ∩ b, then c ∼ a and c ∼ b, so

a ∼ c by Symmetry hence a ∼ b by Transitivity, so a ∈ b, i.e., a ⊂ b. Similarly, we have
b ⊂ a, hence a = b. �

Definition 5.12. Let ∼ be an equivalence relation on A. An element x ∈ a is called a
representative of a. For example, a is a representative of a. So by Proposition 5.11, if x is
a representative of a, then x = a. A system of representatives for A relative to ∼ is a set

S = {precisely one element from each equivalence class},
so A =

∨
S x. For example, if ∼ is ≡ mod 2 then {−36, 15} is a system of representatives

of ≡ mod 2 and Z = −36 ∨ 15.

In later sections, this shall be very useful, so we give it the name of

Mantra 5.13. of Equivalence Relations. In the above setup, we have

A =
∨
S

x.

In particular, if |A| <∞, then

|A| =
∑
S

|x|.

This is only useful if we can compute the size of the equivalence class x.

Exercises 5.14.

1. A partition of a set A is a collection C of subsets of A such that A =
∨
C B. Let R be

an equivalence relation on A. Show that A partitions A. Conversely, let C partition A.
Define a relation ∼ on A by a ∼ b if a and b belong to the same set in C. Show ∼ is
an equivalence relation on A. So an equivalence relation and a partition of a set are
essentially the same.

2. Draw lines in R2 perpendicular to the X-axis through all integer points and the analo-
gous lines parallel to the Y -axis. Define a partition of the plane that arises. [Be careful
about the points on the lines.]
[Question. Can you do this in such a way that when viewed in R3 the corresponding
equivalence classes looks like a torus?]
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6. Modular Arithmetic

We introduce one of the most important equivalence relations in elementary arithmetic.
It generalizes ≡ mod 2.

Definition 6.1. Fix an integer m > 1 and let a, b ∈ Z. We say that a is congruent to b
modulo m and write a ≡ b mod m if m | a− b in Z. The set

a = [a]m := {x ∈ Z | x ≡ a mod m}
= {x ∈ Z | x = a+ km some k ∈ Z}

is a subset of Z called the residue class of a modulo m. We shall denote this set as above
or as a+mZ. For example,

mZ = 0 +mZ = {km | k ∈ Z},
all the multiples of m.

Question 6.2. In the above, what would happen if we let m = 1 or m = 0? What if we
let m < 0?

Let a and b be integers and m > 1 an integer. We have three ways of saying the same
thing. They are:

m | a− b or a ≡ b mod m or a = b.

One usually uses the one that is most convenient, although algebraically the last is the
most interesting.

Proposition 6.3. Let m > 1 in Z. Then ≡ mod m is an equivalence relation. In
particular,

Z = 0 ∨ 1 ∨ · · · ∨m− 1.

Write Z/mZ for Z/ ≡ mod m. Then

Z/mZ = {0, 1, · · · , m− 1} and |Z/mZ| = m.

Let a, b, c, d ∈ Z satisfy

a ≡ b mod m and c ≡ d mod m.

Then
a+ c ≡ b+ d mod m and a · c ≡ b · d mod m.

Equivalently,

if a = b and c = d, then a+ c = b+ d and a · c = b · d.
Define

+ : Z/mZ× Z/mZ→ Z/mZ by a+ b := a+ b

and
· : Z/mZ× Z/mZ→ Z/mZ by a · b := a · b.

Then + and · are well-defined.

[To be well-defined means that they are functions. In this case, this means that if a = a1

and b = b1, then a+ b = a1 + b1 and a · b = a1 · b1.]
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Moreover, (Z/mZ,+, ·) satisfies the axioms of a commutative ring, i.e., for all a, b, c ∈ Z,
we have

(1) (a+ b) + c = a+ (b+ c).
(2) 0 + a = a = a+ 0.
(3) a+ (−a) = 0 = (−a) + a.
(4) a+ b = b+ a.
(5) (a · b) · c = a · (b · c).
(6) 1 · a = a = a · 1.
(7) a · b = b · a.
(8) a · (b+ c) = a · b+ a · c.
(9) (b+ c) · a = b · a+ c · a.

Proof. Exercise. �

The element 0 is called the zero or the unity of Z/mZ under + and 1 is called the one
or the unity of Z/mZ under ·.

Notation 6.4. As is customary, we shall usually drop the multiplication symbol · in a · b
when convenient.

Remark 6.5. Let ∼ be an equivalence relation on A. If B is a set, to show that f : A→ B
is well-defined, i.e., f is a function, one must show that

a = a′ =⇒ f(a) = f(a′),

i.e., is independent of the representative for a.

The proposition then also says the canonical surjection

: Z→ Z/mZ given by x 7→ x (= [x]m)

satisfies

a+ b = a+ b and a · b = a · b
and

0 7→ 0 and 1 7→ 1.

Definition 6.6. A commutative ring is a set R together with two maps

+ : R×R→ R and · : R×R→ R,

write +(a, b) as a + b and ·(a, b) as a · b, called addition and multiplication, respectively,
satisfying for all a, b, c,∈ R the axioms (1) − (9) above hold with R replacing Z/mZ. In
(2), there exists an element 0 satisfying (2) and (3) and in (6) an element 1 satisfying (6).
In particular, R is not empty. If we do not necessarily assume that R satisfies (7), we call
R a ring.

Examples 6.7. 1. The sets Z,Q,R,C,Z/mZ are commutative rings.

2. If R is a ring, then so are Mn(R) and R[t] under the usual + and · of matrices and
polynomials, respectively.



6. MODULAR ARITHMETIC 33

We call a map f : R → S of rings a ring homomorphism if it preserves + and · and
takes unities to unities. For example,

: Z→ Z/mZ is a surjective ring homomorphism.

[A surjective ring homomorphism is also called an epimorphism.]

To investigate the interrelationship of congruences of different moduli is an appropriate
study. We turn to the important and useful case of congruences of pairwise relatively prime
moduli. We begin with the following lemma.

Lemma 6.8. Let m, n, and ai, 1 ≤ i ≤ r, be integers.

(1) If (ai,m) = 1 for i = 1, . . . , r, then (a1 · · · ar,m) = 1.
(2) If (ai, aj) = 1 for i 6= j and ai | n for i, j = 1, . . . , r, then a1 . . . ar | n.

Proof. (1): By induction, it suffices to do the case r = 2. (Why?) By Key Observa-
tion (4.13), we have equations

x1a1 + y1m = 1 = x2a2 + y2m,

for some x1, x2, y1, y2 ∈ Z, so

1 = (x1a1 + y1m)(x2a2 + y2m) = x1x2a1a2 + something ·m
and we are done.
[Note. We only used induction for the convenience of notation – do you see why?]

(2): The case r = 1 is immediate. By induction, we have a1 · · · ar−1 | n. By (1), we have
(a1 · · · ar−1, ar) = 1 (setting m = ar). By Key Observation (4.13), there exists an equation

a1 · · · ar−1x+ ary = 1 for some x, y ∈ Z.

By Key Trick (4.14), we have

a1 · · · ar−1nx+ arny = n.

As a1 · · · ar−1ar | a1 · · · ar−1nx and a1 · · · ar−1ar | nary, we conclude that a1 · · · ar | n, as
needed. �

Theorem 6.9. (Chinese Remainder Theorem) Let mi be integers with (mi,mj) = 1 for
1 ≤ i, j ≤ r and i 6= j. Set m = m1 · · ·mr and suppose that c1, . . . , cr are integers. Then
there exists an integer x satisfying all of the following:

(*)

x ≡ c1 modm1
...

x ≡ cr modmr.

Moreover, the integer x is unique modulo m, i.e., if an integer y also satisfies y ≡ ci
mod mi for 1 ≤ i ≤ r, then x ≡ y mod m.

Proof. Existence: Let ni = m
mi

= m1 · · · m̂i · · ·mr, where ̂ means omit. By Lemma

6.8(1), we have (mi, ni) = 1 for 1 ≤ i ≤ r, so by Key Observation (4.13), there exist
equations

1 = dimi + eini,
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for some integers di, ei, i = 1, . . . , r. Set bi = eini for i = 1, . . . , r. Then

1 = dimi + bi and mj | bi if i 6= j.

This means that

1 ≡ bi mod mi and 0 ≡ bi mod mj if i 6= j.

Consequently,

x0 := c1b1 + · · ·+ crbr ≡ cibi ≡ ci mod mi, with i = 1, . . . , r

and x0 works.

Uniqueness: Suppose that y0 also works. Then x0 ≡ y0 mod mi for 1 ≤ i ≤ r, i.e.,
mi | x0 − y0 for 1 ≤ i ≤ r. By Lemma 6.8 (2), we have x0 ≡ y0 mod m. �

We want to interpret what we did above in the language of “rings” and “ring ho-
momorphisms”. Let m > 1 in Z and (a,m) = 1. By Key Observation (4.13), there are
integers x and y satisfying 1 = ax+my. Applying the canonical surjection : Z→ Z/mZ
to this yields

1 = ax+my = a x+my = a x+ 0 y = a x (= x a),

i.e., a has a multiplicative inverse in Z/mZ. An element a that has a multiplicative inverse
is called a unit. Let

(Z/mZ)× := {a ∈ Z/mZ | a is a unit}.
So if a ∈ Z and (a,m) = 1, then a ∈ (Z/mZ)×.

Conversely, suppose a ∈ Z satisfies a ∈ (Z/mZ)×. Then there exists b ∈ Z satisfying
ab = 1. In particular, we have m | ab − 1, so ab − 1 = mk for some integer k, or
equivalently, ab−mk = 1. We therefore have

Conclusion 6.10. Let a and m > 1 be integers. Then

a ∈ (Z/mZ)× if and only if (a,m) = 1.

We can now interpret Lemma 6.8(1) and Properties 4.9(1) as follows: If x and y are
integers then

x, y ∈ (Z/mZ)× if and only if xy ∈ (Z/mZ)×.

In particular, the set of units (Z/mZ)× of Z/mZ is closed under multiplication (but
not addition), i.e., we can write

· : (Z/mZ)× × (Z/mZ)× → (Z/mZ)× taking (a, b)→ a · b.

We wish to generalize this.

Definition 6.11. Let R be a ring with 1 6= 0 and set

R× := {r ∈ R | there exists an a ∈ R such that ar = 1 = ra},

the units of the ring R. Note that this set is closed under multiplication.

Question 6.12. What are Z×, Q×, R×, C×, Mn(R)×, Mn(Z)×?
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We now interpret the Chinese Remainder Theorem in this new language. As before,
let mi, 1 ≤ i ≤ r, be integers with (mi,mj) = 1 if i 6= j, and m = m1 · · ·mr. Then mj | m
for all j. In particular, if m | a − b, then mj | a − b for all j, i.e., if a ≡ b mod m, then
a ≡ b mod mj for all j. This means that the map

Z/mZ→ Z/mjZ given by [a]m 7→ [a]mj

is well-defined (i.e., a function). For example, we have 7 ≡ 1 mod 6, so 7 ≡ 1 mod 3
and 7 ≡ 1 mod 2. This leads to a map

(6.13)
Z/mZ→ Z/m1Z× · · · × Z/mrZ

given by [a]m 7→ ([a]m1 , . . . , [a]mr).

Giving the right hand set component-wise operations turns it into a commutative ring
and we see immediately that this map is a ring homomorphism. (Note that the zero of
the right hand side is ([0]m1 , . . . , [0]mr) and the one is ([1]m1 , . . . , [1]mr)). The Chinese
Remainder Theorem says that this map is bijective. The inverse of this map is also
checked to be a ring homomorphism. So the Chinese Remainder Theorem says the map
above is a ring isomorphism, i.e., a bijective ring homomorphism whose inverse is also a
ring homomorphism. (We shall see that this last condition is unnecessary.) This means
that the rings

Z/mZ and Z/m1Z× · · · × Z/mrZ are isomorphic,

i.e., they look the same algebraically. For example, if m and n are relatively prime
integers greater than 1, then Z/mnZ and Z/mZ × Z/nZ are isomorphic. In particular,
if n = pe11 · · · pess is a standard factorization, then Z/nZ and Z/pe11 Z × · · · × Z/pess Z are
isomorphic. This last fact is useful as it reduces solving many equations modulo n to
congruences modulo the various prime power constituents in its standard factorization.

It is left as an exercise to show the isomorphism in (6.13) above induces a bijection
between

(Z/mZ)× and (Z/m1Z)× × · · · × (Z/mrZ)×.

It follows that Euler phi-function (also called the Euler totient function) ϕ : Z+ → Z+ by
ϕ(1) = 1 and ϕ(m) = |(Z/mZ)|×| for m > 1 defined before, is an arithmetic multiplicative
function, i.e., ϕ(mn) = ϕ(m)ϕ(n) whenever m and n are relatively prime positive integers.

Exercises 6.14.

1. (Fermat’s Little Theorem) Let p be a prime. Then for all integers a, we have

ap ≡ a mod p.

[You can use the Binomial Theorem if you state it carefully and then prove the Chil-
dren’s Binomial Theorem that says for all integers a and b, we have (a+ b)p ≡ ap + bp

mod p. We will have another proof of this later.]

2. Prove that there exist infinitely many primes p satisfying p ≡ 3 mod 4. [It is true that
there exist infinitely many primes p satisfying p ≡ 1 mod 4 but this is harder.]
[Hint: Look at the proof for the infinitude of primes.]

3. Prove Proposition 6.3.
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4. Find the smallest positive integer x satisfying the congruences

x ≡ 3 mod 11 x ≡ 2 mod 12 and x ≡ 3 mod 13.

5. What are the units of the rings Q, Z, R[t], Z[t], (Z/4Z)[t], and Mn(C)?

6. Show if m and n are relatively prime positive integers, then the map

(Z/mnZ)× → (Z/mZ)× × (Z/nZ)× given by [a]mn 7→ ([a]m, [a]n)

is a bijection. In particular, ϕ(mn) = ϕ(m)ϕ(n) whenever m and n are relatively prime
positive integers.

7. Let n and r be positive integers and p a positive prime. Show that ϕ(pe) = pe−1(p− 1)

and ϕ(n) = n
∏
p|n

p prime

(1− 1

p
).

7. Surjective maps

In the previous sections, we introduced equivalence relations, using them to construct
the integers mod m and the corresponding surjection from the integers to the integers
mod n. We want to expand the usefulness of equivalence relations. In mathematics, one
tries to reduce the study of functions that preserve a given structure into injective and
surjective maps that preserve that structure. The reason for studying injective maps is
that if one can embed, i.e., find an injection of an object into one with more structure, one
can often pull back information. The reason to study surjective maps is that usually the
target is simpler, e.g., Z/mZ is simpler than Z. If we are just studying sets, i.e., without
any additional structure, this reduction can always be accomplished. Equivalence relations
give the surjective maps.

Exercise 5.14(1) showed that equivalence relations are essentially the same as parti-
tioning. Let A be a set with an equivalence relation ∼ on it. Then the set of equivalence
classes, A := {a | a ∈ A}, partitions A, and the exercise says that partitions of A induce
equivalence relations on A. Let S be a system of representatives for A relative to ∼, so
A =

∨
S a. We then have the canonical surjection

: A→ A given by a 7→ a,

i.e., every equivalence relation leads to a surjective map. We want the converse. Let

f : A→ B be a surjective map.

We define an equivalence relation ∼ on A by

a ∼ a′ if f(a) = f(a′).

This is clearly an equivalence relation on A, as = is an equivalence relation on B. We
compute the equivalence class of a to be

a = {x ∈ A | x ∼ a} = {x ∈ A | f(x) = f(a)},
called the fiber of f at f(a), and let

f−1
(
f(a)

)
= {x ∈ A | f(x) = f(a)}.
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[In general, f−1 is not a function, but we use the general notation if f : A→ B is any
map and D ⊂ B, then f−1(D) := {x ∈ A | f(x) ∈ D}. If D = {b} (the preimage of D ),
then the fiber f−1(b) at b is f−1({b}).]

We now know, if ∼ is the equivalence relation defined by the surjective map f , then
we have

(*) a = a′ if and only if a ∼ a′ if and only if f(a) = f(a′).

But this means if we define

f : A→ B by a 7→ f(a),

then

f(a) = f(a),

so f is a well-defined injective map by (*). We say that f induces f . This induced map is
also surjective since f(A) = f(A), hence it is a bijection. So set theoretically we cannot
tell the sets f(A) and B apart. Moreover, we have a commutative diagram

A

��

f
// B

A
f

??

i.e., f = f ◦ . We call this the First Isomorphism Theorem of Sets. [In general, we say
a diagram commutes if following any composition of any maps (arrows) from the same
place to the same target gives equal maps.]

This is so useful that we summarize the above.

Summary 7.1. Let f : A→ B be a surjective map. Define an equivalence relation ∼ on
A by a ∼ a′ if f(a) = f(a′). Then

(1) ∼ is an equivalence relation.
(2) A = {f−1

(
f(a)

)
| a ∈ A}.

(3) : A→ A given by a is mapped to a is a surjective map.
(4) f : A→ B given by a maps to f(a) is a well-defined bijection.
(5) The diagram

A

��

f
// B

A
f

??
commutes.

We can push this a bit further. Let g : A → C be a map and set B = g(A). Let
f : A → B be given by f(a) = g(a) for all a ∈ A, i.e., we change the target. Then g is
the composition

A
f
// B

inc
// C,

with inc the inclusion map.
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Notation 7.2. In the future, we shall usually abuse notation and write the same letter
for a function and the function arising by changing its target (if it makes sense) when no
confusion can arise.

For clarity, we still write g for this f here. Let ∼ be the equivalence relation given by
a ∼ a′ if f(a) = f(a′). Then we have a commutative diagram

A

��

g
//

f

  

C

A
f

// B.
?�

inc

OO

If we set g = inc ◦ f , we get a commutative diagram

(7.3) A

��

g
// C

A
g

??

with a surjection and g an injection. This is the First Isomorphism Theorem (alternate
version), showing that every map factors as a composition injection ◦ surjection. Note
that the equivalence classes of ∼ are precisely the nonempty fibers of the map g.

If we give our sets additional structure, we would be interested in maps that preserve
this additional structure. In general, the map g may not preserve the additional structure,
and the set A may not have a compatible structure. We shall see in the sequel that in
certain cases we can achieve this.

The map g : A → C is also a composition of surjection ◦ injection. Indeed let
Γg : A → A × C be given by a 7→

(
a, g(a)

)
(called the graph of g) and πC : A × C → C

by (a, c) 7→ c, the projection of A×C onto C. Then g = π ◦Γg. This shows that to study
(set) maps, it suffices to study injections and surjections.
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CHAPTER III

Groups

In this chapter, we begin our study of abstract algebra. The basic object in this study
is a group, a set G with one (binary) operation ◦ subject to three axioms: associativity,
existence of a unity, and existence of inverses. An example that you know from linear
algebra is the set GLn(R) of all n × n matrices over the reals with nonzero determinant
which is called the n×n general linear group over R. Although groups are easy to define,
their structure is far from simple. A primary reason for this is that, in general, we do not
assume that x ◦ y = y ◦ x in G.

In algebra, as in other fields of mathematics, one studies sets with additional structure
by investigating maps between those sets that preserve the additional structure. In par-
ticular, one would like to know when two objects with additional structure are essentially
the same. Here the prototypes that you have encountered in linear algebra are linear
transformations between vector spaces and isomorphisms of vector spaces. One idea to
keep in mind is that in modern mathematics maps between objects are more important
than the objects themselves. In this chapter, we give many examples of groups and maps
between them and establish the basic theorems needed to investigate groups.

It is important that you learn the many examples given below (as well as others), as
you can only theorize what is true based on examples that you know – of course, your
guess may very well not be true. In this course, we shall mostly apply our theorems to
groups having finitely many elements because this allows us to use the power of equivalence
relations in an effective way – we can count. The general theory of arbitrary groups is
very difficult, but it is extremely important not only in algebra but in other fields of study
because of the general linear group (and its subgroups).

8. Definitions and Examples

A map · : G × G → G is called a binary operation. We shall always write a · b for
·(a, b).

Definition 8.1. Let G be a set with a binary operation · : G×G→ G. We call (G, ·) a
group if it satisfies the following axioms:

Associativity. (a · b) · c = a · (b · c) for all a, b, c ∈ G.

Unity. There exists an element e ∈ G such that for all a ∈ G, we have a · e = a = e · a.
The element e is called a unity or an identity.

Inverses. There exists a unity e in G; and, for any x ∈ G, there exists a y ∈ G satisfying
xy = e = yx.

If, in addition, G satisfies

Commutativity. a · b = b · a for all a, b in G,

41
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we call G an abelian group.

We usually write G for (G, ·) and ab for a · b if · is clear.
The most common algebraic property on a set with a binary operation is associativity,

although there are interesting algebraic objects that do not satisfy this property. However,
all the algebraic objects that we shall study will satisfy an analogue of associativity. If our
set G under its binary operation only satisfies Associativity and Unity, then it is called a
monoid.

Remarks 8.2. Let · : G×G→ G be a binary operation.

1. If G satisfies associativity and a1, . . . , an ∈ G, then a1 · · · an makes sense, i.e., is in-
dependent of parentheses. In particular, if n ∈ Z+ then an makes sense with a1 = a
and an = a(an−1) for n > 1. If G is a monoid, we let a0 = e. The nasty uninteresting
induction on the complexity of parentheses is left to the diligent reader.

2. If G satisfies Unity, then the unity e is unique. Indeed if e′ is another unity then
e = ee′ = e′.
[The unity of an abstract group will usually be written eG or e but for many specific
types of groups the unity will be written as 0 or 1.]

3. If G is a monoid, then a ∈ G has at most one inverse. If it has an inverse, then it is
denoted by a−1, in which case a is the inverse of a−1. Indeed if b and c are inverses of
a then

b = b · e = b · (a · c) = (b · a) · c = e · c = c.

[In fact, the proof shows if there exist b, c ∈ G satisfying ba = e = ac then b = c is the
inverse of a.]

4. If G is a monoid and a, b ∈ G have inverses then so does ab and (ab)−1 = b−1a−1. In
addition, if n ∈ Z+ then a−n = (a−1)n.

Question. Let a, b be elements in a monoid such that ab has an inverse. Is it true
that a and b have inverses?

5. If G is a group, then the cancellation laws hold, i.e., for all a, b, c ∈ G, we have

ab = ac =⇒ b = c and ba = ca =⇒ b = c.

In particular, if a = xy in G, then x = ay−1 and y = x−1a.

6. If G is a group under a binary operation notated by + : G × G → G, then G will
always be an abelian group. We then call G an additive group and write 0 (or 0G) for
eG and −a for a−1.

Definition 8.3. Using this new language, it is easy to define a ring more carefully. Let
R be a set with two binary operations · : R × R → R and + : R×R→ R. Then R is
a ring under addition + and multiplication · if (R,+) is an additive group, (R, ·) is a
monoid, and R satisfies the Distributive Laws

a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a,
for all a, b, c ∈ R. The distributive laws interrelate the two binary operations. The
multiplicative unity is written 1 (or 1R if there can be confusion). The ring is called a
commutative ring if (R, ·) is a commutative monoid. One checks that 1 = 0 in R if and
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only if R = {0}, the zero or trivial ring. If R is not the zero ring it is called a division
ring if (R \ {0}, ·) is a group. A commutative division ring is called a field.

It is worth mentioning again that when one has defined a new concept, one should
always try to find many examples. Theorems usually arise from knowledge of explicit
examples. We present many examples of groups.

Examples 8.4. 1. A trivial group is a group consisting of a single element, necessarily
the unity.

2. Z,Q,R,C,Z/mZ (m > 1), or any ring is an additive group under +.

3. R+, the set of positive real numbers, is an abelian group but Z+ is only an abelian (i.e.,
commutative) monoid under multiplication with unity e = 1, and not a group. Neither
are monoids under addition, although they still satisfy associativity.

4. If F is a field, e.g., if F = Q,R, or C, then by definition F× = F \ {0} is an abelian
group under multiplication, e.g., if F = Q,R, or C. More generally, if R is any ring
then its set of units R×, i.e., the set of elements having a multiplicative inverse, is a
group under ·, abelian if R is commutative, called the group of units of R. This leads
to many examples of groups.

5. Let V be a vector space over a field F . Then (V,+) is an additive group.

6. Let S be a nonempty set. Then

Σ(S) := {f : S → S | f is a bijection}
is a group under the composition of functions. The unity is the identity map on S which
we shall write as 1S. A bijection f : S → S is called a permutation. [If f ∈ Σ(S),
what is f−1?] We call Σ(S) the group of all permutations of S. It is also a transitive
group on S. That is, for all x, y ∈ S, there exists a permutation f ∈ Σ(S) satisfying
f(x) = y. We view the group Σ(S) acting on the set S via

Σ(S)× S → S by (f, s) 7→ f(s).

The theory of abstract groups arose by axiomatizing how such “concrete” groups act
on sets, often, as in this case, as functions acting on the set. If S = {1, . . . , n} then
Σ(S) is denoted Sn and called the symmetric group on n letters . Note that |Sn| = n!.

Question. Let S = {a, b, . . . , z}. Can you tell the difference between Σ(S) and S26

algebraically?

For the next examples, we need the definition of a subgroup of a group. A subset H of
a group G is called a subgroup of (G, ◦) if H = (H, ?) is a group under the restriction
map ? = ◦|H×HH ×H → H, i.e., H becomes a group under the restriction of the binary
operation on G to H, i.e., ·|H×H : H ×H → H makes sense (meaning that the image of
·|H×H lies in H), and has the same unity as G (although this last condition will be seen
to be unnecessary).

7. Let S be a nonempty set and x0 ∈ S. The set

Σ(S)x0 := {f ∈ Σ(S) | f(x0) = x0} ⊂ Σ(S)

is a group called the stabilizer of x0 in Σ(S). We say elements of Σ(S)x0 fix x0. We
shall see that groups often arise as functions acting on sets and a major problem is to
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find fixed points of these actions, e.g., in the above x0 is a fixed point of the action of
Σ(S)x0 on S. Note that (Sn)n looks algebraically like Sn−1.

Σ(S)x0 is also a subgroup of Σ(S).
We can generalize the stabilizer of x0 as follows: Let x0, . . . , xn be elements of S. Then

Σ(S)x0 ∩ · · · ∩ Σ(S)xn = {f ∈ Σ(S) | f(xi) = xi, for i = 1, . . . , n}

is a subgroup of Σ(S) (as is Σ(S)xi for all i) stabilizing (fixing) x0, . . . , xn.

8. Let G be a group, Hi with i ∈ I be subgroups of G. Then
⋂
I Hi is a subgroup of G.

In general,
⋃
I Hi is not a subgroup of G. [Can you find a condition when it is?]

9. Let G be a group and W ⊂ G a subset. Set

W = {H ⊂ G | H is a subgroup of G with W ⊂ H}.

As W ⊂ G, we have W 6= ∅. Let

〈W 〉 :=
⋂
W

H =
⋂

W⊂H⊂G
H subgroup of G

H.

This is the unique smallest subgroup of G containing W . [Can you show this?] We say
that W generates 〈W 〉 and that W is a set of generators for 〈W 〉. A set of generators is
not unique. If W = {a1, . . . , an} is finite, we also write 〈a1, . . . , an〉 for 〈{a1, . . . , an}〉.
We say G is finitely generated if there exists a finite set W such that G = 〈W 〉 and
cyclic if there exists an element a ∈ G such that G = 〈a〉. If this is the case then
G = {an | n ∈ Z} and is abelian. For example, (Z,+) and (Z/mZ,+), m > 1, are
cyclic with generators 1 and 1, respectively.

Question. What are the analogues of the above for vector spaces? The analogy will
not go too far, as the concept of linear independence almost always fails.

Warning. If G is a group that can be generated by two elements, G need not be
abelian. As an example consider a figure eight in the plane and take the group generated
by the two counterclockwise rotations of 360o, each one rotating around its respective
circle starting from the intersection point. [Can you see why this group is not abelian?]

10. Let

T := {z ∈ C | |z| = 1},
where |z| =

√
zz with z the complex conjugate of z. This is an abelian group under

multiplication, called the circle group. It is a subgroup of C×. If n ∈ Z+ then

µn := {z ∈ T | zn = 1} = 〈e2π
√
−1/n〉

is a cyclic subgroup of T called the group of nth roots of unity. Another subgroup of
T is

{z ∈ T | z ∈ µn for some n ∈ Z+} =
⋃
Z+

µn.

Note that a subgroup of an abelian group is abelian.
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11. The symmetries of a geometric object often form a group. We look at some special
cases. Consider an equilateral triangle in the plane with a side on the X-axis labeling
the ordered vertices A,B,C, with line segment AB the base. Let r be a counterclock-
wise rotation of 120o. The triangle looks the same but the vertices are now ordered
C,A,B, with base CA. Composing rotations shows r2 = r ◦ r takes the triangle to
B,C,A, and r3 back to A,B,C, i.e., we have the relation r3 is the identity. So 〈r〉 is a
cyclic group of three elements. [Should we be able to compare this group to µ3?] Now,
viewing the plane in R3, let f denote the flip along the line of the apex of the triangle
perpendicular to the base. It takes the ordered vertices A,B,C to B,A,C. Under com-
position, we have the relation f 2 is the identity which we write as 1 and 〈f〉 is a cyclic
group of two elements. [Should we be able to compare this group to µ2 and to (Z/2Z,+)
and to (Z×, ·)?] Composing f and r leads to the relations f−1 ◦ r ◦ f = r2 = r−1 and a
non-abelian group with six elements, viz.,

{1, r, r2, f, fr, rf}.

[Show this.] We say that r and f generate this group subject to the relations r3 = 1,
f 2 = 1, and f−1rf = r−1. Note that it follows that rf = fr2 and fr = r2f . It is
customary to write this as

〈r, f | r3 = 1, f 2 = 1, f−1rf = r−1〉,

i.e., in the form

〈generators | relations〉.
This group is called the symmetries of an equilateral triangle or the dihedral group of
order six and denoted by D3. [Compare D3 with S3.] More generally, consider a regular
n-gon, n ≥ 3, with r a counterclockwise rotation of 2π/n radians and f a flip along
the perpendicular at the bisection point of the base. Then under composition, we get
a non-abelian group with 2n elements. It is a group that is defined by two generators
r and f satisfying the three relations

rn = 1 f 2 = 1 f−1 ◦ r ◦ f = r−1.

It follows that f−1 ◦ r ◦ f = rn−1. It is called the symmetries of the regular n-gon or
the dihedral group of order 2n and denoted by Dn. As above, this is usually written

Dn := 〈r, f | rn = 1, f 2 = 1, f−1rf = r−1〉.

Note if n > 3 then Dn and Sn have a different number of elements.

12. Let Q = {1,−1, i,−i, j,−j, k,−k}, a set with eight elements. This becomes a non-
abelian group called the quaternion group if we invoke the relations (−1)2 = 1, k =
ij = −ji and i2 = j2 = −1.

13. Let F = Q,R,C, or any field. Then

GLn(F ) := {A ∈ Mn(F ) | detA 6= 0}

is a group under matrix multiplication called the general linear group of degree n. It
and its subgroups are probably the most important groups in mathematics. If n = 1
then GL1(F ) = F× but if n > 1, this group is not abelian. [Proof?]
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More generally, let R be any ring. Then the set of units
(
Mn(R)

)×
is a group under

multiplication of matrices. If R is commutative, it turns out that the determinant of a

matrix still makes sense and A ∈
(
Mn(R)

)×
if and only if det(A) ∈ R×, so we let

GLn(R) :=
(
Mn(R)

)×
also called the general linear group of degree n. If A ∈ Mn(R), we denote its ijth entry
by Aij. Then as usual, its transpose is At, where (At)ij = Aji and if R = C, its adjoint
or complex conjugate transpose is A∗ where (A∗)ij = Aji. If A is a diagonal matrix, we
also write A = diag(a1, . . . , an), e.g., the identity is the matrix I = In = diag(1, . . . , 1).

We define some of the interesting subgroups of the general linear group over a
commutative ring R [For the subgroups listed below having the restriction to matrices
of determinant 1, we also assume that 2 is a unit in the ring.] (the same definitions
hold for over an arbitrary ring except when the determinant is involved.)

SLn(R) = {A ∈ GLn(R) | detA = 1} special linear group

On(R) = {A ∈ GLn(R) | AtA = I} orthogonal group

SOn(R) = SLn(R) ∩On(R) special orthogonal group

Dn(R) = {A ∈ GLn(R) | A diagonal} diagonal group

Tn(R) = {A ∈ GLn(R) | Aij = 0 if i > j} upper triangular group

STn(R) = {A ∈ Tn(R) | Aii = 1 all i} strictly upper triangular group

Let J =

(
0 In
−In 0

)
in GL2n(R). Then

Sp2n(F ) = {A ∈ GLn(R) | AtJA = J} symplectic group

We also have the more specialized subgroups.

Let I3,1 = diag(1, 1, 1,−1) in GL4(R). Then

O3,1(R) = {A ∈ GL4(R) | AtI3,1A = I3,1} Lorenz Group

Un(C) = {A ∈ GLn(C) | A∗A = I} unitary group

SUn(C) = SLn(C) ∩ Un(C) special unitary group.

14. Let V be a vector space over a field F . Then

AutF (V ) := {T : V → V | T a linear (i.e., vector space) isomorphism}

is a group under composition called the automorphism group of V . An isomorphism
of a vector space to itself is called an automorphism. This generalizes greatly, and its
generalization probably is the most important type of group, e.g., cf. AutF (V ) and
GLn(F ) if V is an n-dimensional vector space.
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15. Let Gi, i ∈ I, be groups and G =�IGi the cartesian product of the sets Gi, i ∈ I. We
write elements in G by (gi)I = (g)ii∈I . [Technically,

�IGi := {f : I →
⋃
I

Gi | f(i) ∈ Gi for all i ∈ I},

and if I is infinite, �IGi is nonempty by the Axiom of Choice (Appendix A (A.8)).]
Then G is a group under componentwise operation, e.g., eG = (eGi)I . This group is
called the external direct product of the Gi’s. If all the Gi are abelian, so is �IGi.

For example, writing Z/2Z = {0, 1}, we have an abelian group

V := Z/2Z× Z/2Z = {(0, 0), (0, 1), (1, 0), (1, 1)}.

It satisfies:

(a, b) + (a, b) = (0, 0) if a, b ∈ Z/2Z

(1, 0) + (0, 1) = (1, 1)

(1, 1) + (0, 1) = (1, 0)

(1, 1) + (1, 0) = (0, 1)

etc.

This group is called the Klein Four (Vier) Group. Note that this is an abelian group
that is not cyclic. Also it is worth noting that V is a two-dimensional vector space over
the field Z/2Z.

16. Let m > 0. Then we know that (Z/mZ,+) is cyclic and
(
(Z/mZ)×, ·

)
is abelian but

the latter may not be cyclic. What is (Z/8Z)× or more generally (Z/2nZ)× if n > 2?
The answer is interesting, as it caused a well-known theorem in number theory called
Grünwald’s Theorem to be in fact false. The correction by Wang had to take the
answer to this question into account.

17. If a, b ∈ Z+ have d as their gcd, then the additive group 〈a, b〉 = 〈d〉.

Exercises 8.5.

1. Let a, b be elements in a monoid such that ab has an inverse. Is it true that a and b
have inverses? Prove this if true or give a counterexample if false.

2. If Hi, i ∈ I, are subgroups of a group G, show that
⋂
I Hi is a subgroup of G, but

⋃
I Hi

is not a subgroup in general (i.e., give a counterexample). Find a nontrivial condition
on the Hi such that

⋃
I Hi is a subgroup.

3. Show if G is a group in which (ab)2 = a2b2 for all a, b ∈ G, then G is abelian.

4. Determine all groups having at most six elements.

5. Show that the quaternion group is a group of eight elements.

6. Show that the dihedral group Dn has 2n elements.

7. Let G be a group and H a subgroup of G. Define the core of H in G by CoreG(H) :=⋂
G xHx

−1. Show CoreG(H) is the unique largest subgroup N of H satisfying xNx−1 =
N for all x in G.
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8. Let G be a group and H a subgroup of G. Define the normalizer of H in G by
NG(H) := {x ∈ G | xHx−1 = H}. Show that NG(H) is a subgroup of G containing H
and is the unique largest subgroup K of G containing H satisfying H = xHx−1 for all
x in K.

9. Show if G is a group in which (ab)n = anbn for all a, b ∈ G and n = i, i + 1, i + 2 for
some positive integer i, then G is abelian.

10. Let W ⊂ G. Show that 〈W 〉 is the unique smallest subgroup of G containing W .

11. If G is a group and W is a nonempty subset of G, a subset, show that

〈W 〉 = {g ∈ G | There exist w1, . . . , wr ∈ W ( some r) not necessarily

distinct such that g = we11 · · ·werr , e1, . . . , er ∈ Z},
i.e., W is an “alphabet” for the “words” (elements) in 〈W 〉. Unfortunately, spelling
may not be unique in G for any “alphabet”.

12. Let F be a field (or any nontrivial ring). Show that GLn(F ) is not abelian for any
n > 1.

13. Let p be a prime and F = Z/pZ. Show that F is a field.
[Hint: First show that F is a domain, i.e., a commutative ring satisfying: whenever
a, b ∈ F satisfy ab = 0 in F then a = 0 or b = 0. Then show that any domain with
finitely many elements is a field.]

14. Compute (Z/8Z)×. Find a different group isomorphic to it. Can you do the same for
(Z/2nZ)× if n = 4, 5? if n is any integer at least three?

15. Let F := {f | f : Z+ → C} and I in F be given by I(1) = 1 and I(n) = 0 for all n > 1.
Show that F is an abelian monoid and A := {f | f ∈ F with f(1) 6= 0} is an abelian
group with unity I under the Dirichlet product given by

(f ? g)(n) :=
∑
d|n

f(d)g(
n

d
).

9. First Properties

Recall that we defined a subgroup of a group as follows:

Definition 9.1. A subset H of a group G is called a subgroup of G if it becomes a group
under the restriction of the binary operation on G to H, i.e., ·|H×H : H ×H → H makes
sense (meaning that the image of ·|H×H lies in H), and has the same unity as G.

We begin this section with a criterion for a subset of a group to be a subgroup. This
can be compared to the analogous criterion for sets to be subspaces of a vector space.

Proposition 9.2. Let G be a group and H be a nonempty subset of G. Then H is a
subgroup of G if and only if the following two conditions hold:

(i) If a and b are elements of H, then ab is an element of H.
[We say that H is closed under ·, i.e., this means that the restriction

·|H×H : H ×H → H
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is defined. Note we have changed the target from G to H.]
(ii) If a ∈ H then a−1 ∈ H.

Moreover, these two conditions are equivalent to

(*) If a, b ∈ H then ab−1 ∈ H.

Proof. (⇒) follows from the definition of subgroup, since by definition, eG = eH .

(⇐): We first note that (i) and (ii) imply (*) for if a, b ∈ H, then a, b−1 ∈ H, hence
ab−1 ∈ H. Conversely, suppose that (*) holds. As a ∈ H implies a, a ∈ H, we have
eG = aa−1 ∈ H. By definition, eGa = a = aeG for all a ∈ H, so eG = eH . As eG, a ∈ H,
we have eGa

−1 = a−1 lies in H. We conclude that if a, b ∈ H, then a, b−1 ∈ H, hence
ab = a(b−1)−1 ∈ H. Finally, since associativity holds in G, it holds in the subset H. �

Note that property (*) implies that we do not need to assume in the definition of a
subgroup that it has the same unity as the group.

Corollary 9.3. Let G be a group and H ⊂ G a nonempty subset. If H is a finite set,
then H is a subgroup if and only if H is closed under ·.

Proof. We need only check:
(⇐): It suffices to show if a ∈ H then a−1 ∈ H. Our hypothesis implies that

S := {an | n ∈ Z+} ⊂ H

and is also a finite set. We need the following, whose proof we leave as an exercise:

Dirichlet’s Pigeonhole Principle: If N ≥ n+ 1 objects are placed in ≤ n boxes, then
at least one box contains at least two elements.

In our case, |S| < ∞, so there exist integers n > m ≥ 1 satisfying an = am. Therefore,
an−m = ana−m = eG = aan−m−1 in G. It follows that eG lies in H and an−m−1 = a−1 lies
in H if n−m− 1 > 0. �

Note that this proof shows that if G is a group with a ∈ G and 〈a〉 finite, then there
exists N ∈ Z+ such that aN = e and by well-ordering there exists a minimal such N .

If G is a group, we call |G| the order of G, so G is a finite group if it has finite order,
infinite otherwise. If a ∈ G, we call |〈a〉| the order of a and say a has finite order if |〈a〉|
is finite.

Examples 9.4. 1. (Z,+) = 〈1〉 is an infinite cyclic group.

2. If n ∈ Z+ then (Z/nZ,+) = 〈1〉 is a cyclic group of order n as is µn = 〈e2π
√
−1/n〉.

3. Z/2Z× Z/2Z is an abelian group of order four and not cyclic.

4. If n > 2 then Dn is a non-abelian group of order 2n.

5. The quaternion group is a non-abelian group of order 8. [Does it look the same alge-
braically as D4?]

6. If n > 2, then Sn is a non-abelian group of order n!.

7. (Z/nZ)× is an abelian group of order ϕ(n).

8. GLn(R), n > 1, is an infinite non-abelian group.
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We need to know how to determine when two groups are the same algebraically.
Let ϕ : G→ G ′ be a map of groups. We call ϕ a group homomorphism if

ϕ(a · b) = ϕ(a) · ϕ(b) for all a, b ∈ G
ϕ(eG) = eG ′ .

Note in the first equation · on the left hand side is in G and on the right hand side is
in G ′. We shall also see that we really do not need the second equation. We put it in
because “homomorphisms” of algebraic structures should preserve those structures, and
the unity is a special element of a group. That it is preserved given the first equation is
fortuitous but should not a priori be assumed.

If ϕ above is a (group) homomorphism and if, in addition, ϕ is:

(1) injective, we say ϕ is a (group) monomorphism or monic.

(2) surjective, we say ϕ is a (group) epimorphism or epic.

(3) bijective and ϕ−1 is a homomorphism, we say ϕ is a (group) isomorphism.

We let

kerϕ := {a ∈ G | ϕ(a) = eG ′}

called the kernel of ϕ and

imϕ := {ϕ(a) ∈ G′ | a ∈ G}
called the image of ϕ.

If G and G ′ are groups and there exists an isomorphism ϕ : G → G ′, which we also
write as ϕ : G

∼−→ G ′, we say that G and G ′ are isomorphic and write G ∼= G ′.

Remark 9.5. Let ϕ : G → G ′ be a group homomorphism. We leave it as an exer-
cise to show that ϕ is a monomorphism if and only if given any group homomorphisms
ψ1, ψ2 : H → G with compositions satisfying ϕ ◦ ψ1 = ϕ ◦ ψ2, then ψ1 = ψ2; and ϕ is
an epimorphism if and only if given any group homomorphisms θ1, θ2 : G′ → H with
compositions satisfying θ1 ◦ ϕ = θ2 ◦ ϕ, then θ1 = θ2. (Cf. Exercise 1.13(7) and (8).)

Remark 9.6. You should know that a bijective linear transformation of vector spaces
is an isomorphism, i.e., the inverse is automatically linear. The same is true for groups,
i.e., a bijective homomorphism of groups is an isomorphism. We shall see this is also
true in other algebraic cases. The proof is essentially the same as that for bijective linear
transformations.

A group homomorphism satisfies the following:

Properties 9.7. Let ϕ : G→ G ′ be a group homomorphism.

1. ϕ(eG) = eG ′ (i.e., this is not needed in the definition of a subgroup).
2. ϕ(a−1) = ϕ(a)−1 for all a ∈ G.
3. kerϕ ⊂ G and imϕ ⊂ G ′ are subgroups.
4. ϕ is monic if and only if kerϕ = {eG}.
5. ϕ is epic if and only if imϕ = G ′.
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Proof. (1): eG ′ϕ(eG) = ϕ(eG) = ϕ(eGeG) = ϕ(eG)ϕ(eG).
By Cancellation, eG ′ = ϕ(eG).

(2): eG ′ = ϕ(eG) = ϕ(aa−1) = ϕ(a)ϕ(a−1). Similarly, eG ′ = ϕ(a−1)ϕ(a).

(3), (5) are left as exercises.

(4): We have ϕ(a) = ϕ(b) if and only if

eG ′ = ϕ(a)ϕ(b)−1 = ϕ(a)ϕ(b−1) = ϕ(ab−1)

if and only if ab−1 ∈ kerϕ. So kerϕ = {eG} if and only if ϕ(a) = ϕ(b) implies a = b. �

Examples 9.8. 1. Let G and H be groups. Then the map ϕ : G→ H given by x 7→ eH
is a group homomorphism, called the trivial homomorphism.

2. Let H be a subgroup of G. Then the inclusion map of H in G is a group homomorphism.
This observation leads to a better way to define the notion of a subgroup, viz., let
H ⊂ G be a subset with both H and G groups. Then H is a subgroup of G if and only
if the inclusion map is a monomorphism.

3. Let F be a field. Then the map

det : GLn(F )→ F× given by A 7→ detA

is an epimorphism with ker det = SLn(F ). (The same is true if F is just a commutative
ring.)

4. Let n ∈ Z+. Then the map : Z → Z/nZ given by x 7→ x is an epimorphism of
additive groups with ker = nZ := {kn | k ∈ Z}.

5. Let n ∈ Z+. Then the map ϕ : Z/nZ → C× given by x 7→ e2π
√
−1x/n is a well-defined

(why?) map, and is a monomorphism with imϕ = µn.

6. Let G be an abelian group. Then the map ϕ : G → G given by x 7→ x−1 is a group
homomorphism. If G is not abelian, this map is never a group homomorphism.

Classifying objects up to isomorphism is usually impossible and difficult when possi-
ble. Indeed some of the most important theorems arise when this can be accomplished.
However, in a few cases it is quite elementary. For example, two finite sets are isomor-
phic (i.e., bijective) if and only if they have the same number of elements, and two finite
dimensional vector spaces over a field F are isomorphic if and only if they have the same
dimension. Another is the case for cyclic groups that we now show.

Theorem 9.9. (Classification of Cyclic Groups) Let G = 〈a〉 be a cyclic group and
θ : Z → G the map given by m 7→ am. Then θ is a group epimorphism. It is an
isomorphism if and only if G is infinite. If G is finite, then |G| = n if and only if
ker θ = nZ. If this is the case, then the map θ : Z/nZ→ G given by m 7→ am induced by
θ is a group isomorphism.

Proof. As θ(i + j) = ai+j = aiaj = θ(i)θ(j), the map is a group homomorphism. It
is clearly an epimorphism.

We must show that θ is an isomorphism if and only if |G| is infinite and if not then
ker θ 6= {e} to establish the first part of the theorem.
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We have θ is one-to-one if and only if ai 6= aj whenever i 6= j if and only if am 6= eG for all
m 6= 0 if and only if θ is an isomorphism (as it is onto). In particular, if θ is one-to-one,
then G is infinite.

So we may assume that there exists N ∈ Z+ with aN = eG, hence θ is not one-to-one.
We show that this means that G is finite. By the Well-Ordering Principle, there exists a
least n ∈ Z+ such that an = eG. We show

Claim 9.10. ai = aj if and only if i ≡ j mod n. In particular, am = eG if and only if
n | m.

Note that the claim implies that |G| = n < ∞ and ker θ = nZ. So suppose that the
integers i and j are not equal. We may assume that j > i. Set m = j − i ∈ Z+ and write
m = kn+ r with 0 ≤ r < n and k integers using the Division Algorithm. We know that

ai = aj if and only if am = aj−i = eG

if and only if ar = (an)kar = am = eG.

By the minimality of n, this can occur if and only if n | m if and only if m ≡ 0 mod n if
and only if i ≡ j mod n as required.

We know by the First Isomorphism of Sets 7.1 that θ induces a bijection θ. [Make sure
that you understand this.] It is clearly a homomorphism, so a group isomorphism. �

Subgroups of a cyclic group are classified by the following, whose proof we leave as an
exercise [that you should do]:

Theorem 9.11. (Cyclic Subgroup Theorem) Let G = 〈a〉 be a cyclic group, H ⊂ G a
subgroup. Then the following are true:

(1) H = {e} or = 〈am〉 with m ≥ 1 the least positive integer such that am ∈ H. If
|G| = n (<∞) then m | n. If G is infinite then |H| = 1 or H is infinite.

(2) If |G| = n and m | n then 〈am〉 is the unique subgroup of G of order n
|m| .

(3) If |G| = n and m6 | n then G has no subgroup of order m.
(4) If |G| = n, the number of subgroups of G is equal to the number of positive

divisors,
∑

d|n 1, of n (where in such a sum, we always assume d > 0).

(5) If |G| is a prime then {e} and G are the only subgroups of G.

Exercises 9.12.

1. Let p be a prime and F = Z/pZ. Then F is a field by Exercise 8.5 (13). Compute |G|
for G = GLn(F ), SLn(F ), Tn(F ), STn(F ), and Dn(F ).

2. Prove Dirichlet’s Pigeonhole Principle.

3. Prove Remark 9.5.

4. Prove Property 9.7(3) and Remark 9.6, i.e., a bijective group homomorphism is a group
isomorphism. In particular, if ϕ : G→ G ′ is a monomorphism then G is isomorphic to
ϕ(G).

5. Let Gi, i ∈ I, be groups. Show that �IGi satisfies the following property relative
to the group homomorphisms πj : �IGi → Gj defined by {gi}I 7→ gj for all j ∈ I:
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Given a group G and group homomorphisms φj : G→ Gj, there exists a unique group
homomorphism ψ : G→�IGi satisfying φj = πj ◦ ψ for all j ∈ I.

6. Prove that every group of order four is either isomorphic to Z/4Z or Z/2Z× Z/2Z.

7. Prove the Cyclic Subgroup Theorem (Theorem 9.11).

8. Let G be an abelian group. Suppose that the elements a, b of G are of relatively prime
orders m and n respectively. Show ab has order mn. Is this true if G is not abelian?
Prove or give a counterexample.

9. Find a group isomorphic to ST2(R) besides itself. Prove your answer.

10. Show that the quaternion group Q has a unique subgroup of order two, in particular,
it is not isomorphic to D4.

11. Let G be the subgroup of M2(C) generated by(
1 0
0 1

)
,

(√
−1 0
0 −

√
−1

)
,

(
0 1
−1 0

)
, and

(
0

√
−1√

−1 0

)
.

Show G is isomorphic to the quaternion group Q.

10. Cosets

We now define an equivalence on a group G that mimicks congruence modulo m for
integers. Although the similarity is precise, the reason for doing so is not so clear. Later
we shall see how this equivalence arises in a natural way.

Let H be a subgroup of G. Define ≡ mod H by

if a, b ∈ G then a ≡ b mod H if and only if b−1a ∈ H.
Then ≡ mod H is an equivalence relation. [Show this.] If a ∈ G, the equivalence class
a of a is called the left coset of a relative to H. Analogous to ≡ mod m for integers, we
shall usually write aH for a — remember the binary operation for Z is + — and shall
write G/H for G = G/ ≡ mod H. So we have the natural set surjection

: G→ G/H given by a 7→ a = aH.

Warning 10.1. In general, G/H is not a group, so the natural surjection above is not a
group homomorphism. [Can you give an example?]

Observation 10.2. Let H ⊂ G be a subgroup and H = eH (e = eG = eH) and a ∈ G.
Then

aH = H if and only if aH = H = eH if and only if a = e−1a ∈ H,
i.e., in our other notation

a = e if and only if e ∈ a if and only if a ∈ e.

We also have

aH = {b ∈ G | b ≡ a mod H} = {b ∈ G | a−1b ∈ H}
= {b ∈ G | a−1b = h some h ∈ H}
= {b ∈ G | b = ah some h ∈ H} = {ah | h ∈ H}.

(Cf. a+mZ for the equivalence ≡ mod m.)
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We now use the Mantra of Equivalence Relations 5.13. Let H be a subgroup of G and
H be a system of representatives for ≡ mod H. We call H a left transversal of H in G.
Then we have

Mantra 10.3. for Cosets. In the above setup, we have

G =
∨
H

aH.

In particular, if |G| <∞, then

|G| =
∑
H

|aH|.

As mentioned before, this is only useful if we can compute the size of the equivalence
class aH. We call |H| the index of H in G and denote it by [G : H]. The Mantra allows
us to establish our first important counting result:

Theorem 10.4. (Lagrange’s Theorem) Let G be a finite group and H a subgroup of G.
Then

|G| = [G : H]|H|. In particular, |H| | |G| and [G : H] | |G|.

Proof. We begin with the following:

Claim 10.5. If G is an arbitrary group (i.e., without assuming it is finite) and H a
subgroup, then |aH| = |H| for all a ∈ G.

Define the left translation map

λa : H → aH by h 7→ ah.

By our computation above, we know that λa is onto. But it is one-to-one also, as ah = ah′

in G with h, h′ ∈ G implies that h = h′ by cancellation. Thus λa is a bijection, establishing
the claim.

If H is a left transversal for H in G, the mantra together with the claim imply that

|G| =
∑
H

|aH| =
∑
H

|H| = |H||H|

as needed. �

Notation 10.6. If G is a group and H = {eG}, we shall write 1 for H unless G is additive
in which case we shall write 0 for H. The subgroup {eG} is called the trivial group in G.

With this notation, |G| = [G : 1], so if G is finite, Lagrange’s Theorem can be written

[G : 1] = [G : H][H : 1].

We, of course, have an analogous Lagrange’s Theorem for right cosets. [Definition?]
It follows by both Lagrange’s Theorems (i.e., for left and right cosets) that if G is a finite
group and H a subgroup then |G|/|H| is equal to the (left) index of H in G which is
equal to the right index of H in G, i.e., the number of right cosets of H in G is the same
as the number of left cosets of H in G. This means that [G : H] makes sense without
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prescribing right or left cosets. It does not mean, however, that if a ∈ G, then aH = Ha.
This is usually false. We shall find an important condition on H for this to be true for all
a in G.

Warning 10.7. In general, the converse to Lagrange’s Theorem is false, i.e., if G is a
finite group with m ∈ Z+ satisfying m | |G|, then there may not be a subgroup H in G
such that |H| = m, if m 6= 1 or |G|. Of course, if G is a finite cyclic group then the
converse does hold by the Cyclic Subgroup Theorem 9.11.

Lagrange’s Theorem has many immediate consequences.

Corollary 10.8. Let G be a finite group and a ∈ G. Then the order of a divides |G|.

Corollary 10.9. Let G be a group and K and H two finite subgroups of G of relatively
prime order. Then K ∩H = {eG}.

Proof. We leave this as an exercise. �

Corollary 10.10. Let G be a finite group of prime order p. Then G ∼= Z/pZ. In
particular, 1 and G are the only subgroups of G.

Notation 10.11. If A is a subset of B but A 6= B, we shall write A < B.

The corollary says if G is a finite group of prime order, then G contains no proper
subgroups, i.e., G contains no subgroup H satisfying 1 < H < G.

Corollary 10.12. Let G be a finite group and a ∈ G. Then a|G| = e.

Proof. If n is the order of 〈a〉, then |G| = nm for some m ∈ Z+ so e = (an)m =
a|G|. �

Corollary 10.13. (Euler’s Theorem) Let m,n be relatively prime integers with m > 1.
Then nϕ(m) ≡ 1 mod m, where ϕ is the Euler ϕ-function.

Proof. We have shown that the unit group (Z/mZ)× is given by

(Z/mZ)× = {a | a ∈ Z, (a,m) = 1}
and by definition, its cardinality is ϕ(m). �

Corollary 10.14. (Fermat’s Little Theorem) Let p be a positive prime integer. Then
np ≡ n mod p for all integers n. If p 6 | n, then np−1 ≡ 1 mod p.

Proof. As ϕ(p) = p− 1, this follows from Euler’s Theorem together with the obser-
vation that 0p = 0. �

We give a simple application of Euler’s Theorem that shows the usefulness of elemen-
tary number theory in coding theory. All messages to be encoded are assumed to have
been translated into (sequences of) integers. This application is called the RSA code that
allows encoding and decoding using a public key, i.e., an integer m publicly known, to-
gether with a secret key, a number not publicly known. It and its variants are a major way
of sending important data, e.g., credit card numbers, over the internet. To be effective,
the secret key is based on the fact that the public key cannot be factored (in a reasonable
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amount of time). To set up the code, one chooses the public key m to be an integer that
is the product of two large distinct primes p and q. We know that

ϕ(m) = ϕ(p)ϕ(q) = (p− 1)(q − 1)

= pq − (p+ q) + 1 = m− (p+ q) + 1.

So to know ϕ(m), we must know p and q, hence we must be able to factor m. A public
encoder e is chosen and fixed. This is an integer satisfying

(
e, ϕ(m)

)
= 1. Then d is

chosen
(
using the knowledge of m = pq, hence ϕ(m)

)
to be an integer satisfying de ≡ 1

mod ϕ(m), i.e., the inverse of e modulo ϕ(m). Write de = 1 + kϕ(m) with k ∈ Z. d is
the (non-public) decoder. Messages are written in numbers x < m. So RSA code works
as follows:

Encode : x 7→ xe mod m [e is publicly known]

Decode : y 7→ yd mod m [d is secret].

Claim 10.15. xed ≡ x mod m, i.e., for all positive integers x < m, we get x back.

If (x,m) = 1, then by Euler’s Theorem, we have

xed = x · xkϕ(m) ≡ x mod m

as needed, so we may assume that (x,m) 6= 1. As x satisfies 1 < x < m, either p | x or
q | x but not both. We may assume that p | x. Therefore, x = pn for some integer n and
(x, q) = 1. Since p | x,

xed ≡ 0 ≡ x mod p.

By Fermat’s Theorem,

xϕ(m) = (xq−1)p−1 ≡ 1p−1 ≡ 1 mod q.

Since p and q are relatively prime and both p and q divide xed−x, we have m = pq | xed−x,
so xed ≡ x mod m. This establishes the claim.

Some care must be taken in the choice of the large primes p and q. For example, if all
primes less than N are known and either p−1 or q−1 factors into products of such primes,
then m can be factored using what is called the Pollard (p−1)-Factoring Algorithm. Note
that the idea of the RSA code is also based on group theory. Other public codes have
been developed using group theory.

Exercises 10.16.
In the following exercises, let G be a group with H and K subgroups.

1. Show that ≡ mod H is an equivalence relation.

2. Let G be a group of order pn where p is a prime and n ≥ 1. Prove that there exists an
element of order p in G.

3. Classify all groups of order eight up to isomorphism.

4. Let G be a group and H ⊂ G a subgroup. Let H be a left transversal for H in G. Find
a right transversal for H in G using H.



11. HOMOMORPHISMS 57

5. Let HK := {hk | h ∈ H, k ∈ K}. Then (clearly) H/(H∩K) is a subset of G/(H∩K)
and HK/K is a subset of G/K. Show that f : H/(H ∩K)→ HK/K by h(H ∩K) 7→
hK is a well-defined bijection. In particular, if G is a finite group, then |HK||H∩K| =
|H||K|.

6. Suppose that G is a finite group. Show [G : H ∩K] ≤ [G : K][G : H] with equality if
[G : H] and [G : K] relatively prime.

7. (Poincaré) Suppose both H and K have finite index in G. Show that H ∩K has finite
index in G.

8. If K ⊂ H ⊂ G, show that [G : K] = [G : H][H : K] (even if any are infinite if read
correctly).

9. If K and H are finite subgroups of G of relatively prime degree, show that K ∩H =
{eG}.

10. Let a ∈ (Z/nZ)× have order m and b ∈ (Z/nZ)× have order n.
(i) Show that the order of ar is r/(m, r).

(ii) Show if (m,n) = 1, then the order of ab is mn.

11. Let p be an odd prime. Prove that (Z/pZ)× is a cyclic group of order p− 1. [You may
use the fact that the polynomial tn− 1 has at most n roots in (Z/pZ)[t] for any n > 0.]

12. Let m and n be positive integers that are not relatively prime. Show that Z/mZ×Z/nZ
is abelian but not cyclic.

13. Prove that a group of order 30 can have at most 7 subgroups of order 5.

14. (Wilson’s Theorem) Let p be a positive integer. Then p is a prime if and only if
(p− 1)! ≡ −1 mod p. (This is not a practical criterion.)

[Hint: If 1 ≤ j ≤ p− 1, when can j2 ≡ 1 mod p?]

11. Homomorphisms

We begin with a useful fact whose proof is left as an exercise:

Observation 11.1. If ϕ : G→ G ′ is a group homomorphism and H is a subgroup of G,
then ϕ(H) ⊂ G ′ is a subgroup.

If G is a group and x ∈ G, then the map

θx : G→ G given by g 7→ xgx−1

is called conjugation by x. If H ⊂ G is a subgroup, then we let

xHx−1 := θx|H(H) = θx(H) = {xhx−1 | h ∈ H}.

Lemma 11.2. Let G be a group and x ∈ G. Then θx : G → G is an isomorphism. In
particular, if H ⊂ G is a subgroup, so is θx(H) and H ∼= θx(H) = xHx−1. In particular,
|H| = |xHx−1|. Since θxθx−1 = 1G = θx−1θx,

Proof. The map θx is a bijection with inverse θx−1 . Let g, g′ ∈ G. Then the equation

(11.3) θx(gg
′) = xgg′x−1 = xgeg′x−1 = xgx−1xg′x−1 = θx(g)θx(g

′)

shows that θx is a homomorphism. �
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This idea of writing an identity in a clever way is a most useful device, which we shall
call Great Trick. You have undoubtedly used it quite often for the elements 1 and 0 in R.

By Observation 11.1, we know that θx(H) ⊂ G is a subgroup, so we can view θx : H →
θx(H). As it is a bijective homomorphism, it is an isomorphism.

A group isomorphism ϕ : G → G is called a group automorphism. So θx above is a
group automorphism for all x ∈ G. If G is an abelian group, then θx is the identity on G
for all x ∈ G. If G is not abelian, then there must exist elements x and y in G satisfying
xy 6= yx, so θx 6= 1G. In general, if H is a subgroup, xHx−1 6= H, i.e., the isomorphism
θx|H : H → xHx−1 (replacing the target with θx(H)) is not an automorphism. [Can
you come up with examples when θx|H is an automorphism?] Of course, if x ∈ H then
xHx−1 = θx(H) = H.

We say that a subgroup H of a group G is normal and write H/G if xHx−1 = θx(H) =
H for all x ∈ G.

Remarks 11.4. Let H be a subgroup of G.

1. H / G does not mean that θx|H = 1H : H → H for all x ∈ G (or even all x ∈ H). In
fact, it usually is not. For example, (see below)

H := 〈r〉 / D3 but frf−1 = r−1, so θf |H 6= 1H .

2. Let

Aut(G) := {σ : G→ G | σ is an automorphism}.
Then Aut(G) is a group under composition. [Check this.] In fact, Aut(G) is a subgroup
of Σ(G). A conjugation θx : G→ G, with x ∈ G, is also called an inner automorphism
of G. Set

Inn(G) := {θx | x ∈ G}.
Check that this is a subgroup of Aut(G), called the inner automorphism group of G.
Moreover, the following are equivalent:

(a) H / G.

(b) θ(H) = H for all θ ∈ Inn(G).

(c) θ|H ∈ Aut(H) for all θ ∈ Inn(G).

(d) The restriction map 1Aut(G)|Inn(G) : Inn(G) → Aut(H) is defined (i.e., the image
lies in Aut(H)).

3. H / G if and only if xH = Hx for all x ∈ G. (Why?)

4. If xHx−1 ⊂ H for all x ∈ G, then y−1Hy ⊂ H for all y ∈ G (let y = x−1), so
H ⊂ yHy−1 for all y ∈ G. Hence

H / G if and only if xHx−1 ⊂ H for all x ∈ G.

Examples 11.5. Let G be a group.

1. 1 / G and G / G. If G is a nontrivial group and these are the only normal subgroups
of G, then we say G is a simple group. We have seen that Z/pZ is a simple group for
all primes p. One of the great theorems in mathematics is the classification of all finite
simple groups. The proof is thousands of pages long.
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2. If G is abelian, every subgroup is normal. The converse is false, i.e, there exist non-
abelian groups in which every subgroup is normal.

3. Let

Z(G) := {x ∈ G | xg = gx for all g ∈ G}.
This set is called the center of G. It is a normal subgroup of G. In fact, any subgroup
of Z(G) is a normal subgroup of G. Moreover, G is abelian if and only if G = Z(G).

4. If F is a field (even a commutative ring), then SLn(F ) /GLn(F ).

5. Let θ : G→ G ′ be a group homomorphism. Then ker θ / G.
[In general, im θ is not a normal subgroup of G. [Can you give an example?]

6. If G is an abelian group, then ϕ : G → G given by x 7→ x−1 is an automorphism. It
is the identity map if and only if x2 = e for all x ∈ G, otherwise it is of order two. In
particular, if G is a finite abelian group of order at least three, then 2 | |Aut(G)|. [Can
you prove this?]

7. Inn(G) / Aut(G).

8. If H is a subgroup of G of index two then H / G. Indeed, if a ∈ G \ H then G =
H ∨ aH = H ∨Ha, so we must have aH = Ha, hence aHa−1 = H.

For the next example, we shall need matrix representations of linear transformations
of finite dimensional vector spaces. In Appendix C, we review this notation. (This
appendix does a more general case but is applicable here.) In particular, if T : V → W
is a linear transformation of vector spaces over a field F with bases B and C respectively,
then we let [T ]B,C denote the matrix representation of this linear transformation relative
to these bases. If V = V ′ and B = C, we write this as [T ]B.

9. If σ ∈ Sn, we can write σ as (
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
where the top row is the elements of the domain and the bottom row the corresponding
values. Let Sn := {e1, . . . , en} be the standard basis for V = Rn. For each σ, define a
linear transformation Tσ : V → V by Σiαiei 7→ Σiαieσ(i). Then Tσ is a vector space
isomorphism with inverse Tσ−1 . Define θ by

(11.6) θ : Sn → GLn(R) is given by σ 7→ [Tσ]Sn .

It is easy to see that θ is a group monomorphism. Each [Tσ]Sn is a permutation matrix,
i.e., a matrix having exactly one entry of 1 in each row and each column and 0s
elsewhere. So it is just a permutation of the rows (or columns) of the identity matrix.
Let Permn(R) be the set of permutation matrices. It is the image of θ, so a group.
Changing the target, we view θ : Sn → Permn(R), an isomorphism. If A ∈ Permn(R),
then detA = ±1, so we have a composition of maps

Sn
θ
// Permn(R)

det
// {±1}.

It is a homomorphism as both θ and det are. If n > 1 then the kernel of this map
is called the alternating group on n letters and denoted by An. Elements of An are



60 III. GROUPS

called even permutations and elements of Sn \An are called odd permutations. We have
An / Sn, and, in fact, [Sn : An] = 2 if n ≥ 2. We shall study this group in Section 24.

Remarks 11.7. 1. We have seen that a group of prime order is a simple group, i.e., a
group without any proper normal subgroups. These turn out to be the only abelian
simple groups. The group A5 is the non-abelian simple group of smallest order. This
was shown by Abel. In fact,

Theorem 11.8. (Abel’s Theorem) For every n ≥ 5, the group An is simple.

The group A2 is the trivial group and A3 is the cyclic group of order three so simple.
The group A4 is not simple.

Abel’s Theorem is important as it is the key to proving the Abel-Ruffini Theorem,
which states that there is no formula for the roots of a general fifth degree polynomial
with rational coefficients involving only the extraction of nth roots and + and ·. We
shall prove Abel’s Theorem in Theorem 24.13.

2. If K and H are subgroups of G satisfying K ⊂ H ⊂ G with K /H and H /G, it is not
necessarily true that K / G, i.e., being normal is not transitive.

3. If K and H are subgroups of G satisfying K ⊂ H ⊂ G with K /G, then it is true that
K / H.

4. There is a useful stronger property that a subgroup of a group can satisfy than being
normal. We say that a subgroup H of a group G is a characteristic subgroup of G if
for every σ ∈ Aut(G), we have σ|H lies in Aut(H). Equivalently, the restriction map
res : Aut(G) → Aut(H) given by θ 7→ θ|H is well-defined, i.e., the target is correct. If
H is a characteristic subgroup of G, we write H / /G. Clearly, unlike being normal,
being characteristic is transitive, i.e., if K / /H / /G, then K / /G.

Exercises 11.9.

1. Prove Observation 11.1.

2. Find all subgroups of S3 and determine which ones are normal.

3. Show that a subgroup H ⊂ G is normal if and only if gH = Hg for all g ∈ G. If H is
not normal is it still true that for each g ∈ G there is an a ∈ G such that gH = Ha?

4. Determine all subgroups of the quaternion group of order 8 and determine which ones
are normal.

5. Classify all groups of order eight up to isomorphism.

6. Let G be a group. Show
(i) The center Z(G) is a subgroup G.

(ii) Any subgroup of the center of G is a normal subgroup of G.
(iii) G is abelian if and only if it equals its center.

7. Determine the center of the dihedral group Dn and prove your assertion.

8. Give an example to show that being a normal subgroup is not transitive, i.e., a group
G with K / H / G, but K 6/G.

9. Let H be a subgroup of G. In Exercises 8.5(7) and (8), we defined the core of H in G
to be CoreG(H) :=

⋂
xHx−1 and the normalizer of H in G to be NG(H) : {x ∈ G |

xHx−1 = H}, respectively. Show
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(i) CoreG(H) is the unique largest normal subgroup of G contained in H.
(ii) NG(H) is the unique largest subgroup of G containing H as a normal subgroup.

10. Show Inn(G) / Aut(G).

11. Prove the assertions in Example 11.5(6).

12. Let G be a group (not necessarily finite) such that Aut(G) = 1. Prove that |G| ≤ 2.

13. Let G be a cyclic group. Determine Aut(G) and Inn(G) up to isomorphism as groups
that we know. Prove your result.
[Hint. Where do generators go?]

14. Let G and H be finite cyclic groups of order m and n, respectively. Show the following:
(i) If m and n are relatively prime, then Aut(G × H) ∼= Aut(G) × AutH and is

abelian.
(ii) If m and n are not relatively prime, then Aut(G × H) is never abelian. (Cf.

Exercise 11.9(15).)

15. Compute Aut
(
(Z/pZ)n

)
up to isomorphism and its order when p is a prime.

16. Let ϕ : G → Aut(H), write x 7→ ϕx, be a group homomorphism where G and H are
groups. Define HoϕG to be the cartesian product H×G with group structure induced
by the binary operation

(h, g) · (h ′, g ′) = (hϕg(h
′), gg ′)

for all g, g ′ ∈ G and h, h ′ ∈ H. Show that H oϕ G is a group, called the (exernal)
semidirect product of H and G, with H × 1 a normal subgroup. Note that the product
G×H is the case that ϕ is the trivial homomorphism.

17. Let σ ∈ Aut(Z/nZ) be the automorphism defined by x 7→ −x and ϕ : Z/2Z →
Aut(Z/nZ) be the group homomorphism defined by 1 7→ σ. Show that Z/nZoϕZ/2Z ∼=
Dn.

18. Let p > 1 be a prime and n > 1. Show that Z/pnZ is not isomorphic to a semidirect
product.

19. Find all subgroups of A4 and determine which ones are normal. In particular, show
that A4 is not simple.

20. Let G be a group in which every subgroup is normal. Is G an abelian group? Prove or
provide a counterexample.

21. A commutator in G is an element of the form xyx−1y−1 where x, y ∈ G. Let G′ be the
subgroup of G generated by all commutators, i.e., every element of G′ is the product of
commutators and the inverses of commutators. We call G′ the commutator or derived
subgroup of G. It is also denoted [G,G]. Show

(i) Every element of G′ is a product of commutators.
(ii) G′ / G.

(iii) G′ / /G.
22. Let K ⊂ H ⊂ G be subgroups of G. Show all of the following:

(i) If K / /H and H / G then K / G.
(ii) Z(G) / /G.

(iii) G′ / /G.
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(iv) Inductively define G(n) as follows: G(1) = G′. Having defined G(n) define G(n+1) :=
(G(n))′. Then G(n+1) / /G.

12. The First Isomorphism Theorem

Given an equivalence relation, we saw that we could always form a corresponding
set of equivalence classes. If G is a group and H is a subgroup, we can form the set of
equivalence classes G/H. Unfortunately, in general this does not have a group structure.
We also know that equivalence relations arise from surjective maps. We begin by looking
at the case when ϕ : G→ G ′ is a group epimorphism. This defines an equivalence relation
∼ on G by a ∼ a′ if ϕ(a) = ϕ(a′) and with our usual notation, we have

a = a′ if and only if a ∼ a′ if and only if ϕ(a) = ϕ(a′)

with

a = ϕ−1
(
ϕ(a)

)
= {x ∈ G | ϕ(x) = ϕ(a)}.

But now, we have the additional information that ϕ is a homomorphism, so ϕ(aa′) =
ϕ(a)ϕ(a′). This means that

ϕ(a) = ϕ(a′) if and only if

eG ′ = ϕ(a)−1ϕ(a′) = ϕ(a−1a′) and eG ′ = ϕ(a′)ϕ(a)−1 = ϕ(a′a−1)

if and only if both a−1a′ and a′a−1 lie in kerϕ.

Let K = kerϕ. So we have

a = a′ if and only if ϕ(a) = ϕ(a′) if and only if a−1a′, a′a−1 ∈ K.

We know that if a−1a′ ∈ K, then a′ = aK, so

a = ϕ−1
(
ϕ(a)

)
= {a′ | a′ = ak some k ∈ K} = aK,

the left coset of a in G relative to K. Hence G = G/K. Similarly,

a = ϕ−1
(
ϕ(a)

)
= {a′ | a′ = ka some k ∈ K} = Ka,

the right coset of a in G relative to K. So we now have

a = a′ if and only if ϕ(a) = ϕ(a′)

if and only if aK = a′K = a = Ka = Ka′.

In particular, we must have aK = Ka, or equivalently, K = aKa−1 for all a ∈ G as
a ∼ a, i.e., K / G. Of course, we knew this before, but it now indicates where cosets are
coming from, at least in a special case, and ties up various mathematical threads that we
are developing. Note that eG = ϕ−1

(
ϕ(eG)

)
= ϕ−1(eG ′) = kerϕ.

We now apply the First Isomorphism of Sets 7.1 to obtain a commutative diagram

(†) G

��

ϕ
// G ′

G
ϕ

>>
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where ϕ : G→ G ′ is a well-defined bijection given by a 7→ ϕ(a). We also know that

a = a′ if and only if a ∼ a′ if and only if ϕ(a) = ϕ(a′),

so the fact that ϕ is a homomorphism implies that

(*) ϕ(aa′) = ϕ(aa′) = ϕ(a)ϕ(a′) = ϕ(a)ϕ(a′).

We can use this and the fact that ϕ is a bijection to put a group structure on G. Define

· : G×G→ G by a · a′ := aa′.

It is well-defined, for if a = x and x′ = a′, then

ϕ(xx′) = ϕ(x) · ϕ(x′) = ϕ(a) · ϕ(a′) = ϕ(aa′)

by (*), so xx′ = aa′ as ϕ is a bijection. For all a ∈ G, we have eG · a = a = a · eG and

a · a−1 = eG = a−1 · a, so G is a group with identity kerϕ = eG and inverse of a given by
a−1 = a−1. Furthermore, (*) implies that

ϕ(a · a′) = ϕ(aa′) = ϕ(a) · ϕ(a′),

so ϕ is a bijective group homomorphism, hence an isomorphism. Our diagram (†) becomes

G

��

ϕ
// G ′

G/ kerϕ
ϕ

::

with G/ kerϕ a group, a group epimorphism and ϕ an isomorphism.

We can generalize this to any group homomorphism ψ : G→ G ′′, by letting G ′ = imψ
and ϕ the map ϕ : G → G ′ given by ϕ(a) = ψ(a). As the inclusion map inc : G ′ → G ′′

is a group homomorphism, we are in a similar situation as in Diagram 7.3, but with all
maps homomorphisms. We write this, after changing notation, as:

Theorem 12.1. (First Isomorphism Theorem) Let ϕ : G → G ′ be a group homomor-
phism. Then we have a commutative diagram of groups and group homomorphisms

G

��

ϕ
// G ′

G/ kerϕ
ϕ
// imϕ

inc

OO

with a group epimorphism, ϕ a group isomorphism between G/ kerϕ and imϕ and inc
a group monomorphism.

Example 12.2. Let G be a group. The map θ : G → Aut(G) given by x 7→ (θx : g 7→
xgx−1) is a group homomorphism. If θx = 1G, the identity map on G, then xgx−1 = g,
i.e., xg = gx, for all g ∈ G. Therefore, ker θ = Z(G), the center of G. By the First
Isomorphism Theorem, θ induces an isomorphism θ : G/Z(G)→ Inn(G).
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If ϕ : G → G′ is a group homomorphism, the First Isomorphism Theorem says that
G/H is a group with H = kerϕ. It remains to ask: If H is a subgroup of G, when is G/H
a group such that the canonical surjection : G → G/H a group epimorphism? This is
answered by the following:

Theorem 12.3. Let G be a group and H a normal subgroup of G. Then G/H is a group
under the binary operation · : G/H ×G/H → G/H given by (aH, bH) 7→ abH. If this is
the case then : G→ G/H is a group epimorphism with kernel H.

We call G/H the quotient or factor group of G by (the normal subgroup) H.

Proof. We first show that the map · is well-defined. Suppose that aH = a′H and
bH = b′H. We must show that abH = a′b′H. Equivalently, we must show that

if a′−1a, b′−1b ∈ H then x = (a′b′)−1ab ∈ H.

By using Great Trick and the definition of normality, we have

x = b′−1a′−1ab = b′−1a′−1a(b′b′−1)b = (b′−1a′−1ab′)(b′−1b)

lies in H as needed.
Let a, b, c ∈ G. Associativity holds because aH · (bH · cH) = aH · bcH = abcH =

abH · cH = (aH · bH) · cH. The unity is easily seen to be eG/H = H = eGH and
(aH)−1 = a−1H for all a in G. Thus G/H is a group. �

The theorem shows that normal subgroups are equivalent to the kernels of group
homomorphisms. Of course, it does not explain how cosets arise in a natural way if the
subgroup is not a normal subgroup. We will come back to this later.

We are now in a position where we can prove some important results. Especially
significant is the following:

Theorem 12.4. (General Cayley Theorem) Let H be an arbitrary subgroup of a group
G. Let S = G/H, the set of left cosets of H in G. For each x ∈ G, let λx : S → S be
defined by gH 7→ xgH. Then λx is a permutation and the map λ : G → Σ(S) given by
x 7→ λx is a group homomorphism satisfying the following two properties:

(1) kerλ ⊂ H.
(2) kerλ is the unique largest normal subgroup of G contained in H, i.e.,

If N / G and N ⊂ H then N ⊂ kerλ.

Proof. We first must show that the map λx : S → S, called left multiplication by x,
is a permutation. But this is clear since λx−1 is easily checked to be its inverse.

For all x, y ∈ G, we have λxy(gH) = xygH = λx(ygH) = λxλy(gH) for all g ∈ G, so
λ is a group homomorphism and kerλ / G. If x ∈ kerλ, then xgH = λx(gH) = gH for
all g ∈ G. In particular, xH = H so x ∈ H. Finally, suppose that N / G with N ⊂ H.
To show N ⊂ kerλ, we must show if x ∈ N ⊂ H, then λx is 1S, the identity map on S.
So let x ∈ N and g ∈ G. As g−1xg ∈ N , we have xg ∈ gN ⊂ gH. Therefore, xgH = gH,
i.e., λx(gH) = gH for all g ∈ G. Consequently, λx = 1S as required. �

In the above, the special case where H = 1 yields:
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Corollary 12.5. (Cayley’s Theorem) Let G be a group. Then the map

λ : G→ Σ(G) given by x 7→ (λx : g 7→ xg)

is a group monomorphism. In particular, if G is a finite group of order n then there exists
a monomorphism G→ Sn.

Remark 12.6. Since Sm is isomorphic to a subgroup of Sn if m ≤ n, Cayley’s Theorem
shows that Sn contains an isomorphic copy of every group of order at most n.

If S is a nonempty set, then a subgroup of Σ(S) is called a permuation group. Cayley’s
Theorem shows that every abstract group is isomorphic to a permutation group. The
above monomorphism is called the (left) regular representation of G. It shows that every
abstract group can be realized by a “concrete” group, e.g., a permutation group.

Corollary 12.7. Let H be a subgroup of a group G with H < G. If there exists no
normal subgroup N of G satisfying 1 < N ⊂ H then λ : G → Σ(G/H) defined by
x 7→ (λx : aH 7→ xaH) is a monomorphism.

Proof. kerλ is the maximal such normal subgroup. �

Corollary 12.8. (Useful Counting Result) Let G be a finite group, 1 < H a subgroup
of G satisfying |G|6 | [G : H]!. Then there exists a normal subgroup N of G satisfying
1 < N ⊂ H. In particular, G is not a simple group.

Proof. Exercise. �

We now give two applications of the Useful Counting Result. To do so we must assume
the following is true (we shall prove it later).

Theorem 12.9. (First Sylow Theorem) Let G be a finite group, p a prime such that
ps || |G| (i.e., ps | |G| but ps+1 6 | |G|). Then G contains a subgroup of order ps.

Examples 12.10. Let G be a group.

1. If |G| = 24 then G is not simple, as G contains a group of order 8 by the First Sylow
Theorem and |G|6 | 3!.

2. Let p < q be positive primes such that |G| = pq. Then G contains a normal group of
order q, so is not simple.

Another useful corollary of the General Cayley Theorem is the following, whose proof
we also leave as an exercise:

Corollary 12.11. Let G be a finite group. Suppose that p is the smallest positive prime
that divides the order of G. Suppose also that there exists a subgroup H of G of index p.
Then H / G.

Exercises 12.12.

1. Let T : V → W be a surjective linear transformation of vector spaces over F . Do an
analogous analysis before The First Isomorphism Theorem 12.1 for T : V → W and
state and prove the analogues of The First Isomorphism Theorem 12.1 and Theorem
12.3 for it.
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2. Let G be a finite group and n > 1 an integer such that (xy)n = xnyn for all x, y ∈ G.
Let

Gn := {z ∈ G | zn = e} and Gn := {xn |x ∈ G}.
Show that both Gn and Gn are normal subgroups of G and satisfy |Gn| = [G : Gn].

3. Let G be a group and H a subgroup of G. Show that
⋂
x∈G xHx

−1 is the largest normal
subgroup of G in H.

4. Let G be a finite group of order n, F a field (or even any ring with 1 6= 0). Show there
exists a monomorphism ϕ : G → GLn(F ), i.e., any finite group can be realized as a
subgroup of matrices called a linear group.

5. Prove the Useful Counting Result 12.8.

6. Prove Corollary 12.11.

7. Suppose that G is a group containing a subgroup of finite index greater than one. Show
that G contains a normal subgroup of finite index greater than one. In particular, show
that no infinite simple group can contain a proper subgroup of finite index.

8. Let H be a subgroup of G. Define the centralizer of H in G to be

ZG(H) := {x ∈ G | xh = hx for all h ∈ H}.

Show that it is a normal subgroup ofNG(H) and the map given by x 7→ (θx : g 7→ xgx−1)

induces θ̃ : NG(H)/ZG(H)→ Aut(H), a monomorphism defined by xZG(H)→ θx|H .

13. The Correspondence Principle

Recall if f : A→ B is a set map and D a subset of B, then the preimage of D in A is
the set f−1(D) := {a ∈ A | f(a) ∈ D}. We shall need the following, whose proof is left as
an exercise.

Properties 13.1. Let f : A→ B be a set map, C ⊂ A, and D ⊂ B subsets. Then:

1. C ⊂ f−1
(
f(C)

)
with equality if f is one-to-one.

2. f
(
f−1(D)

)
⊂ D with equality if f is onto.

We apply the First Isomorphism Theorem to establish the following important result:

Theorem 13.2. (Correspondence Principle) Let ϕ : G → G ′ be a group epimorphism.
Then

(1) If A is a subgroup of G (respectively, a normal subgroup), then ϕ(A) is a sub-
group of G ′ (respectively, a normal subgroup). In particular, group epimorphisms
preserve normality.

(2) If A is a subgroup of G containing kerϕ, then ϕ−1
(
ϕ(A)

)
= A.

(3) If B is a subgroup of G ′ (respectively, a normal subgroup), then ϕ−1(B) is a
subgroup of G (respectively, a normal subgroup) containing kerϕ and satisfies
B = ϕ

(
ϕ−1(B)

)
.

In particular, if
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Gkerϕ := {A | A ⊂ G a subgroup with kerϕ ⊂ A}
G ′ := {B | B ⊂ G ′ a subgroup},

then

Gkerϕ → G ′ given by A 7→ ϕ(A)

is a bijection of sets with inverse B 7→ ϕ−1(B) preserving inclusions and restricting to a
bijection on normal subgroups.

Proof. Let K = kerϕ.

(1): Let A ⊂ G be a subgroup. Then ϕ|A : A→ G′ is a group homomorphism (why?), so
ϕ(A) = imϕ|A ⊂ G ′ is a subgroup. Next suppose that A/G and y ∈ G ′. As ϕ is surjective,
y = ϕ(x) for some x ∈ G. Hence yϕ(A)y−1 = ϕ(x)ϕ(A)ϕ(x)−1 = ϕ(xAx−1) = ϕ(A).
Therefore, ϕ(A) / G ′.

(2): By the properties of preimages, A ⊂ ϕ−1
(
ϕ(A)

)
, so it suffices to show if K ⊂ A,

then ϕ−1
(
ϕ(A)

)
⊂ A. Suppose that x ∈ ϕ−1

(
ϕ(A)

)
. By definition, ϕ(x) = ϕ(a) for some

a ∈ A, hence eG ′ = ϕ(a)−1ϕ(x) = ϕ(a−1x). Thus a−1x ∈ K, and so x ∈ aK ⊂ A as
needed.

(3): Let B be a subgroup of G ′. If x, y ∈ ϕ−1(B), we have ϕ(xy−1) = ϕ(x)ϕ(y)−1 ∈ B,
so ϕ−1(B) is a subgroup of G. If k ∈ K then ϕ(k) = eG ′ ∈ B, so K ⊂ ϕ−1(B). As ϕ
is onto, B = ϕ

(
ϕ−1(B)

)
by the properties of preimages. Finally, suppose that B / G ′.

Let x ∈ A. Then ϕ
(
xϕ−1(B)x−1

)
= ϕ(x)ϕ

(
ϕ−1(B)

)
ϕ(x)−1 = ϕ(x)Bϕ(x)−1 = B. Hence

xϕ−1(B)x−1 ⊂ ϕ−1(B), so ϕ−1(B) / G. �

We leave the following alternate form of the Correspondence Principle as an exercise.
(Note we did not include the analogue of the last statement in the above.)

Theorem 13.3. (Correspondence Principle, Alternate Form) Let G be a group and K a
normal subgroup. Let : G→ G/K be the canonical epimorphism given by x 7→ xK and
L a subgroup of G/K. Then

(1) There exists a subgroup H of G containing K with L = H/K.
(2) Let H be as in (1). Then H / G if and only if L / G/K.
(3) Suppose that H1, H2 are two subgroups of G containing K. If H1/K = H2/K

then H1 = H2.
(4) If G is a finite group and H is as in (1), then [G : H] = [G/K : H/K] = [G/K :

L] and |H| = |K| · |L|.

Theorem 13.4. ( Third Isomorphism Theorem) Let G be a group with normal subgroups
K and H satisfying K ⊂ H. Then the map

ϕ : G/K → G/H defined by xK → xH

is a group epimorphism with kernel H/K and induces an isomorphism

ϕ : (G/K)/(H/K)→ G/H.
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Proof. As K and H are normal subgroups of G, we know that G/H and G/K are
groups. If xK = yK then y−1x ∈ K ⊂ H, hence xH = yH. Therefore, ϕ is well-defined
and clearly surjective. As ϕ(xKyK) = ϕ(xyK) = xyH = xHyH = ϕ(xK)ϕ(yK), the
map ϕ is a group homomorphism. If xK ∈ kerϕ then H = eG/H = ϕ(xK) = xH, so
x ∈ H, i.e., xK ∈ H/K. Conversely, if x ∈ H then ϕ(xK) = xH = H = eG/H , so
xK ∈ kerϕ. The result now follows by the First Isomorphism Theorem. �

Let G be a group and H1, H2 subgroups of G. Set

H1H2 : = {h1h2 | hi ∈ Hi, i = 1, 2}
= {h1H2 | h1 ∈ H1} = {H1h2 | h2 ∈ H2}.

By Exercise 10.16(5), we have a set bijection

(*) f : H1/(H1 ∩H2)→ H1H2/H2 given by h1/(H1 ∩H2) 7→ h1H2

for all h1 ∈ H1 where H1/(H1 ∩H2) is a subset of G/(H1 ∩H2) and H1H2/H2 is a subset
of G/H2. In particular, we have

(13.5) |H1H2| = |H1||H2|/|H1 ∩H2|
when H1 and H2 are finite subgroups of G, which will be useful in computation. We wish
to determine a condition when H1H2 is a group and the set bijection f in (*) is a group
isomorphism. This is the content of the next isomorphism theorem. It is very useful, but
harder to visualize.

Theorem 13.6. (Second Isomorphism Theorem) Let G be a group and H and N be
subgroups with N normal in G. Then

(1) H ∩N / H.
(2) HN = NH is a subgroup of G.
(3) N / HN .
(4) H/H ∩N ∼= HN/N .

We have the following picture

G

normal NH

normal

N

H

normal

N ∩H

,

where a group below another group connected by a line is a subgroup and the quotients
of the groups defined by the double lines are isomorphic.
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Proof. (1): We know that H ∩N is a subgroup of H and it is a normal subgroup in
H, since N is normal in G and H is normal in H.

(2): As aN = Na for all a ∈ G the sets HN and NH are equal, so we need only show
it is a group. Let h1, h2 ∈ H and n1, n2 ∈ N . We must show (h1n1)(h2n2)−1 lies in HN .
But, by Great Trick,

(h1n1)(h2n2)−1 = h1n1n2
−1h2

−1 = (h1n1n2
−1h1

−1)(h1h2
−1)

lies in NH = HN .

(3) is immediate.

(4): Define

ϕ : H → HN/N by x 7→ xN.

As ϕ(xy) = xyN = xNyN = ϕ(x)ϕ(y) for all x, y in N , the map is a homomorphism. We
show kerϕ = H ∩N . If x ∈ kerϕ ⊂ H, then N = eHN/N = ϕ(x) so x ∈ N . Conversely, if
x ∈ H ∩N , then N = xN = ϕ(x) and x ∈ kerϕ. By definition

HN/N = {hnN | h ∈ H, n ∈ N} = {hN | h ∈ H},

so ϕ is surjective with kernel H ∩ N . By the First Isomorphism Theorem ϕ induces an
isomorphism ϕ : H/H ∩N → HN/N . �

Exercises 13.7.

1. Prove the properties of preimages in 13.1.

2. Prove the alternate form of the Correspondence Principle 13.3.

3. Let G be a group and H and K normal subgroups of G. We say that G is the internal
direct product of H and K if G = HK and H ∩K = 1. Show that if G is the internal
direct product of H and K, then G ∼= H ×K. Why is H ×K not the internal direct
product of G? For which subgroups of H ×K is H ×K the internal direct product?

4. Let G be be a group with normal subgroups Ni, i = 1, . . . , r. Call G the the internal
direct product of the Ni if G = 〈

⋃r
i=1Ni〉 and if for each j, j = 1, . . . , r, Hj∩〈

⋃r
i=1
i 6=j

Ni〉 =

1. Show that G ∼= N1 × · · · ×Nr.

5. Let G be a group with normal subgroups Ni, i = 1, . . . , r such that G = N1 · · ·Nr.
Show that G is the internal direct product of the Ni, i = 1, . . . , r if and only if for
every x ∈ G there exist unique xi ∈ Ni such that x = x1 . . . xn.

6. Suppose that G is a group with normal subgroups Ni, i = 1, . . . , r such that |G| =
|N1| · · · |Nr| and the orders of the N1 are pairwise relatively prime. Show that G is the
(internal) direct product of the Ni, i = 1, . . . , r and if H is a subgroup of G, then H is
the (internal) direct product of the H ∩Ni, i = 1, . . . , r.

7. Let N be a normal subgroup of a group G = H ×K. Show that either N is abelian or
N intersects one of H or K nontrivially.

8. Let N and H be two normal subgroups of G such that G = HN . Show that there is
an isomorphism G/(H ∩N) ∼= G/H ×G/N .
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9. Let G be a finite group with normal subgroups H and K of relatively prime order.
Show that the group HK is cyclic if H and K are cyclic and abelian if H and K are
abelian.

10. Prove that the quaternion group is not an (external) semidirect product (cf. Exercise
11.9(16)) of of two groups neither of which is the identity group.

11. Let G be a group with subgroups H and N . We say that G is the (internal) semidirect
product of H and N , denoted by N oH, if

(i) N / G
(ii) G = NH

(iii) N ∩H = {1}.
Let G = N o H. Define ϕ : H → Aut(N) by ϕx(n) = xnx−1. Show ϕ is a group
homomorphism and ψ : N oH → N oϕH induced by h 7→ (eN , h) and h 7→ (n, eH) is
a group isomorphism, where N oϕ H is the (external) semidirect product of Exercise
11.9(16). [One often identifies these groups.]

12. Let G be a group. Recall the commutator G′ of G is the subgroup generated by the
commutators of elements of G, i.e., elements of the form [x, y] := xyx−1y−1 and the
inverses of commutators. (Cf. Exercise 11.9(21).) Show

(i) G/G′ is abelian. G/G′ is called the abelianization of G and denoted by Gab.
(ii) If N / G and G/N is abelian then G′ ⊂ N . In particular, the abelianization

Gab = G/G′ of G is the maximal abelian quotient of G.
(iii) If G′ ⊂ H ⊂ G then H / G.

13. Let G be a finite abelian group and p a (positive) prime dividing the order of G. Show
that there exists an element of order p in G.

14. In the previous exercise, prove the same result without assuming that G is abelian.

14. Finitely Generated Abelian Groups

In this section, we prove special cases of results that will be significantly generalized
in subsequent sections. We do so in order to expose some of the ideas that shall be used
later that apply in this much simpler situation.

Our first goal is to show that finite abelian groups are products of cyclic p-groups,
unique up to order. (Cf. The Fundamental Theorem of Arithmetic.)

Lemma 14.1. Let G be an abelian group and H1, H2 finite subgroups of relatively prime
order. Then H1H2 = H2H1 is a group and if further H1∩H2 = 1, then |H1H2| = |H1||H2|.
Moreover, if the groups H1 and H2 are both cyclic, then so is H1H2.

We leave the proof of this as an exercise. The next result is a special case of Cauchy’s
Theorem (cf. Theorem 21.22 below) when G is abelian.

Proposition 14.2. Let G be a finite abelian group and p > 0 a prime dividing the order
of G. Then there exists an element of G of order p.

Proof. We prove this by induction on |G|. We may assume that G 6= 1. As G has
no nontrivial subgroups if and only if G ∼= Z/pZ for some prime p, we may assume that
|G| is not a prime. In particular, G has a subgroup 1 < H < G. If p | |H|, we are done
by induction on |G|, so we may assume p 6 | |H|. Therefore, there exists a prime q 6= p
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such that q | |H|. By induction on |G|, there exists an element y in H of order q. As G
is abelian, G = G/〈y〉 is a group. Let : G → G be the canonical epimorphism. Since
|G| < |G| and p | |G| by Lagrange’s Theorem, there exists an element z in G such that z
has order p in G. It follows that zp lies in the kernel of : G→ G, so zp = yi for some i,
hence zq has order p in G. �

We now use the proposition above to prove Sylow’s First Theorem for the case when
a group is abelian. [Cf. Theorem 22.1 below.]

Theorem 14.3. Let G be a finite abelian group and p > 0 a prime dividing |G|, say
|G| = pnm with p and m relatively prime. Then

G(p) := {x ∈ G | xpr = e some integer r} / G and |G(p)| = pn.

Moreover, G(p) is the unique subgroup of G of order pn.

Remark 14.4. In the theorem, if G is finite and not abelian, there may be more than one
group of order pn. Indeed, we shall see there is only one if and only if there is a normal
subgroup of order pn.

Proof. The set G(p) is a subgroup of G (why?) and normal as G is abelian. As
every element in G(p) has order a power of p, it follows that |G(p)| = pr some r ≥ 1
(why?) and by Lagrange’s Theorem that r ≤ n. In particular, if x lies in G(p), then
xp

n
= e. We must show that r = n. Suppose to the contrary that we have r < n. Set

G = G/G(p) and let : G → G be the canonical epimorphism. By the Correspondence
Principle (Alternative Form), p | |G|, hence by the Proposition 14.2 and induction on |G|,
there exists an element x ∈ G \G(p) such that

xp = e, i.e., xp ∈ G(p).

As xp
n+1

= (xp)p
n

= e, we have x ∈ G(p), a contradiction. Thus |G(p)| = pn as desired.

If H is subgroup of G of order pn, then HG(p) is a subgroup of G whose order
is |H||G(p)|/|H ∩ G(p)| ≥ pn by the Second Isomorphism Theorem. It follows that
|H| = |H ∩G(p)| = |G(p)| = pn, hence H = H ∩G(p) = G(p). �

Corollary 14.5. Let G be a finite abelian group of order n = pm1
1 · · · pmrr with positive

primes p1 < · · · < pr and positive integers m1, . . . ,mr. Then G = G(p1) · · ·G(pr). More-
over, G ∼= G(p1)� · · ·�G(pr).

Proof. As G(p1) · · ·G(pr) is a group and we know that

|G(p1) · · ·G(pr)| = |G(p1)| · · · |G(pr)|
by Lemma 14.1, the first statement follows by the theorem. The map

G(p1)� · · ·�G(pr)→ G given by (x1, . . . , xr) 7→ x1 · · ·xr
is a group homomorphism as G(pi)G(pj) = G(pj)G(pi) for all i and j. Suppose that

x1 · · ·xr = e with xi ∈ G(pi) for i = 1, . . . , r. As x
n/p

mi
i

j = e for all j 6= i and p divides
the order of xi, it follows that xi = e for all i. Thus the map is a monomorphism and by
counting an isomorphism. �
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It follows, to determine all finite abelian groups up to isomorphism, we have reduced
to the study of groups of order a power of a prime. If p > 1 is a prime, a nontrivial group
of order a power of p is called a p-group.

For notational reasons, it is easier to write abelian groups additively, i.e., use additive
groups. If H and K are subgroups of an additive group, we know that H + K is a
subgroup. If H and K also satisfy H ∩ K = 0, we shall write H ⊕ K for the group
H + K. Of course, if H and K are finite groups of relatively prime order, we know that
H +K = H ⊕K. The interesting case is when this is not true.

The following lemma is the key to the existence of a cyclic decomposition for p-groups.

Lemma 14.6. Let G be a finite additive p-group and suppose that the element x in G
has maximal order. Then there exists a subgroup H of G satisfying G = 〈x〉 ⊕H.

Proof. Let pn be the order of x. By the Well-ordering Principle, there exists a
maximal subgroup H of G satisfying H ∩ 〈x〉 = {0}. Therefore, 〈x〉+H = 〈x〉 ⊕H, and
we are done if 〈x〉 + H = G. So suppose not. Let G = G/(〈x〉 + H) and : G → G the
canonical epimorphism. By Proposition 14.2, there exists an element y ∈ G satisfying
y /∈ 〈x〉+H and y has order p in G. In particular, py lies in 〈x〉+H. Write

(*) py = lx+ h with l ≥ 0 in Z and h ∈ H.
It follows that pny = pn−1lx + pn−1h. Since x has maximal order pn among all elements
in G, we have 0 = pny = pn−1lx + pn−1h. Therefore, pn−1lx = −pn−1h and it lies in
〈x〉 ∩H = 0. It follows that p | l, say l = l′p. Thus (*) becomes

(†) py = l′px+ h equivalently p(y − l′x) = h in H.

As y /∈ 〈x〉+H, we must have y − l′x /∈ 〈x〉+H. The maximality of H now yields

〈y − l′x,H〉 ∩ 〈x〉 6= 0.

Therefore, there exist integers r, s with r nonzero satisfying

0 6= rx = s(y − l′x) + h′ for some h′ ∈ H.
Hence sy = rx+ sl′x− h′ lies in 〈x〉+H. We look at the integer s.

If p | s, then by (†), we have s(y− l′x) lies in H. This implies that rx lies in 〈x〉 ∩H = 0,
a contradiction.

If p 6 | s, then p and s are relatively prime, so there exists an equation 1 = pa + sb for
some integers a and b. Since both py and sy lie in 〈x〉+H, we have y = apy + bsy lies in
〈x〉+H, a contradiction. The lemma now follows. �

Corollary 14.7. Let G be a finite p-group. Then G is a product of cyclic p-groups.

Proof. We may assume that G is additive and not cyclic. In particular |G| > p. By
the lemma, G = 〈x〉 ⊕ H for some x in G and subgroup H of G. As G is not cyclic,
H 6= G, and the result follows by induction on |G|. �

Remark 14.8. Let p > 0 be a prime, N a positive integer. Suppose that G is an additive
group in which every element a in G satisfies pNa = 0. Let x be an element of G of
maximal order. Then there exists a subgroup H of G satisfying G = 〈x〉 ⊕H. The proof
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is essentially the same as that above except that one replaces the Well-Ordering Principle
by Zorn’s Lemma, an axiom that we shall study later. [Cf. §28.]

Proposition 14.9. Every finite abelian group is a product of cyclic groups.

Proof. By 14.5 every finite abelian group is a product of finite abelian p-groups. By
Corollary 14.5, every finite abelian p-group is a product of cyclic p-groups. �

Theorem 14.10. (Fundamental Theorem of Finite Abelian Groups) Let G be a finite
additive group and for each prime p > 0 dividing G, let G(p) be the unique p-subgroup of
G of maximal order. Then

G =
⊕
p||G|

G(p)

Moreover, if p | |G|, then

G(p) ∼=�
r
i=1Z/p

niZ

with r unique and 1 ≤ n1 ≤ · · · ≤ nr also unique relative to this ordering. In particular,
any finite abelian group is a product of cyclic p-groups for various primes p.

Proof. Let p | |G|. By Corollary 14.5 and Proposition 14.9, it suffices to show G(p) ∼=
�

r
i=1Z/p

niZ and uniquely up to isomorphism. As every abelian p-group is isomorphic to
a product of cyclic p-groups by Lemma 14.6 and every cyclic p-group must be isomorphic
to Z/paZ for some integer a, to finish, it suffices to show that if

(*) �
r
i=1Z/p

niZ ∼=�
s
j=1Z/p

mjZ

with n1 ≥ · · · ≥ nr and m1 ≥ · · · ≥ ms (we changed notation for convenience), then r = s
and ni = mi for all i. We may assume that the number N of the ni that are equal to 1 is
less than the number M of the mj that equal 1. In particular, pN ≤ pM . Multiplying (*)
by p, we see that

�
r
i=N+1Z/p

ni−1Z ∼=�
s
j=M+1Z/p

mj−1Z

as p(Z/pkZ) ∼= Z/pk−1Z for all k. By induction, ni − 1 = mi − 1 for all i > N . It follows
that N = M Hence r = s and ni = mi for all i. �

We can obtain an alternate form of the Fundamental Theorem of Finite Abelian
Groups using the isomorphism Z/mZ× Z/nZ ∼= Z/mnZ if (m,n) = 1, viz.,

Theorem 14.11. (Fundamental Theorem of Abelian Groups – Alternate Form) Let G be
a finite abelian group of order m. Then there exist unique positive integers m1, . . . ,mr sat-
isfying m1 | · · · | mr and m = m1 · · ·mr for some r such that G ∼= Z/m1Z� · · ·�Z/mrZ.

We leave a proof of this as an exercise.

We now want to extend the Fundamental Theorem of Finite Abelian Groups to finitely
generated abelian groups. In §44, we shall prove an important generalization of this
extension that has significant application to the theory of matrices.

Some of our results below are true when discussing sets of infinitely many abelian
groups. In this case, we must distinguish between two group constructions.
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Definition 14.12. Let Gi, i ∈ I, be groups. We have defined the direct product

�i∈IGi := {(gi)I | gi ∈ Gi, i ∈ I}
with component-wise operations. (It is also denoted by

∏
I Gi.) If all the groups Gi, i ∈ I,

are additive groups, the direct product contains a proper subgroup called the (external)
direct sum of the Gi’s defined by∐

I

Gi := {(gi)I ∈�i∈IGi | gi = eGi for all but finitely many i ∈ I}.

Of course, if I is a finite set, these two groups are the same.

We also want to look at an abelian group G containing subgroups Gi, i ∈ I, with

G =
∑
I

Gi := {
∑
I

gi | gi ∈ Gi and gi 6= eG for finitely many i ∈ I}

that is isomorphic to
∐

I Gi. The condition for this to be true is that if∑
I

gi = 0 in G, gi ∈ Gi, i ∈ I, then gi = eG for all i ∈ I.

(Cf. this to linear independence in vector spaces.) If this is true, then we write G =
⊕

I Gi

and call it the (internal) direct sum of G by the Gi’s. (Cf. Exercise 15.18(1).)

We begin with an analogue of vector spaces in group theory. We write our abelian
groups additively.

Definition 14.13. Let G be an abelian group. We call G a free abelian group if there
exists a basis B for G, i.e., for every element g ∈ G, there exist nx in Z for x ∈ B, with
all but finitely many nx nonzero, satisfying g =

∑
B nxx and if g = 0, then nx = 0 for all

x ∈ B. (Cf. bases for vector spaces.)

We show that the analogue of dimension makes sense for finitely generated abelian
groups.

Lemma 14.14. Let G be a finitely generated free abelian group on bases B and C. Then
|B| = |C|. In particular, any finitely generated abelian group has a finite basis.

Proof. Let G be a free abelian group on basis B = {x1, . . . , xn}. Let p > 0 be a
prime and : Z → Z/pZ, the canonical ring epimorphism. Define VB to be the vector
space over Z/pZ on basis B. Then ϕ : G→ VB by

∑n
i=1 nixi 7→

∑n
i=1 nixi is a well-defined

bijective map as B is a basis. (Note as groups, this is equivalent to the canonical group
epimorphism : G→ G/pG.) In particular, it follows if C = {y1, . . . , ym} is another basis
for G, then we must have |B| = dimZ/pZ VB = dimZ/pZ VC = |C|. If G is finitely generated,
then the map : G→ G/pG takes G onto the finitely generated vector space G/pG over
Z/pZ. As any basis B of G must go to a basis of G/pG, it must be finite. �

Remark 14.15. In the lemma, the common value of |B| = |C| is called the rank of G. If
G is a finitely generated free abelian group, we write rankG for the rank of G.

Corollary 14.16. Let G be a finitely generated free abelian group of rank n. Then G ∼=
Z× · · · × Z︸ ︷︷ ︸

n

(= Zn) is product of n cyclic infinite groups.
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Proof. The standard basis S := {e1, · · · , en} with ei = (0, . . . , 0, i, 0, . . . ) for i =
1, . . . , n is a basis for Zn. �

Remark 14.17. More generally, if G is a free abelian group on basis B (possibly not
finite), then by Exercise 14.27(12), G ∼=

∐
B Z with the cardinality of |B| independent of

basis B (assuming that the cardinality of a vector space is independent of bases that is
proven using the Schroeder-Bernstein Theorem (cf. Remark 1.12 or Theorem Appendix
A.13) and the Universal Property of Free Modules 39.3 (that includes vector spaces).

Definition 14.18. Let G be an abelian group. An element x ∈ G is called a torsion
element if the order of x is finite. Let

Gt := {x ∈ G | x is torsion}.

We call an abelian group G a torsion group if G = Gt and a torsion-free group if Gt = 0.

By the Binomial Theorem, Gt ⊂ G is a subgroup and by the Correspondence Principle,
G/Gt is torsion-free.

Examples 14.19. 1. Every finite abelian group if a torsion group.

2. Any infinite cyclic group is torsion-free, in fact, free abelian of rank one. In particular,
any nontrivial torsion-free group is infinite.

3. If G is a free abelian group, then G is torsion-free.

4. (Q,+) is a torsion-free group, but it is not a free abelian group. Note that (Q,+) is
not finitely generated.

5. If G is an abelian group, then G/Gt is a torsion-free group.

To prove our extension of the Fundamental Theorem of Finite Groups, we need the
following new idea.

Definition 14.20. Let G be an additive group and n ∈ Z. Set

nG := {g ∈ G | g = nx for some x ∈ G}.

We call a subgroup H ⊂ G pure if H ∩ nG = nH for all n ∈ Z+.

We begin with a simple observation that allows us to obtain a pure subgroup.

Lemma 14.21. Let G be an additive group and H a subgroup of G with G/H torsion-free.
Then H is a pure subgroup of G.

Proof. Let : G → G/H be the canonical epimorphism. If g ∈ G satisfies ng = 0
in G, then g lies in ker = H. �

Next we look a a pure subgroup of an abelian group when the quotient group is a
direct sum of cyclic groups.

Lemma 14.22. Let G be an additive group and H a pure subgroup of G. Suppose that
G/H is isomorphic to a direct sum of cyclic groups. Then G ∼= H⊕K with K a subgroup
isomorphic to G/H.
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Proof. Let : G→ G/H be the canonical epimorphism and

(*) G = G/H = ⊕IZxi
with xi ∈ G and the order o(xi) of xi is ni. If 〈xi〉 ∼= Z, we view ni as∞. Since H is a pure
subgroup, there exist hi ∈ H satisfying nixi = nihi, so ni(xi−hi) = 0, i.e., o(xi−hi) ≤ ni
if ni is finite. In this case, we have xi − hi = xi, so o(xi − hi) = o(xi − hi) = o(xi). If
xi has infinite order, then xi must also have infinite order, lest nxi = 0, some n, and
nxi = nh, some h ∈ H which implies xi has finite order. Therefore we can choose yi ∈ xi
satisfying yi = xi with yi having order ni for all i with ni finite and yi = 0 if not. Set
K = 〈yi | i ∈ I〉. If g ∈ G, then g =

∑
I miyi for some mi ∈ Z, i ∈ I, almost all mi = 0.

Therefore, g −
∑

I miyi lies in ker = H. It follows that G = 〈K,H〉. Suppose that
a ∈ H ∩K. Relabeling, we can write

a = miy1 + · · ·+mryr

for some r, yi. So
0 = a = miy1 + · · ·+mryr

in G. By (*), we have ni | mi if ni is finite and can assume mi = 0 if ni =∞. It follows
that mi = 0 for all i. Hence K ∩H = 0 and G = K ⊕H �

Lemma 14.23. Let G be a finitely generated free additive group and H a subgroup of G.
Then H is a finitely generated free additive group. Moreover, rankH ≤ rankG.

Proof. By Lemma 14.14, we know that G has a finite basis B = {x1, . . . , xn} for
some n. Set

Hj = H ∩ ⊕i<j Zxi.

Therefore, Hj+1/Hj, for j < n, is isomorphic to a subgroup of Zxj+1
∼= Z (why?). Hence

by the Cyclic Subgroup Theorem 9.11, Hj+1/Hj
∼= Z or 0. By Lemma 14.22,

Hj+1 = Hj ⊕Kj with Kj
∼= Z or 0 and K0 = H1.

If follows that H ∼=
⊕n

i=0Hi, so is a free abelian group of finite rank. (Why?) �

Remark 14.24. The lemma is true without the hypothesis that G be finitely generated.
The proof is essentially the same if you know about ordinals noting that Hj =

⋃
i<j Hi if

j is a limit ordinal.

Putting this together, we can classify finitely generated torsion-free abelian groups.

Proposition 14.25. Let G be a finitely generated torsion-free additive group. Then G is
a free abelian group of rank at most rankG.

Proof. As G is finitely generated, it has a finite set of generators. We induct on
finite sets of generators for G. If G is generated by a single element, then G is cyclic
and torsion-free. Therefore, G ∼= Z. So by induction, we may assume the result for
any finitely generated torsion-free additive group generated by n elements. Suppose that
G = 〈x1, . . . , xn+1〉. Let H = 〈x1, . . . , xn〉. By induction, H is free abelian.

Let : G → G/H be the canonical epimorphism. Then G/H is a cyclic group
generated by xn+1. Suppose that G/H ∼= Z or 0. Then H is torsion-free. By Lemma
14.21, H is pure and by Lemma 14.22, G ∼= H ⊕ K with K ∼= G/H. It follows that G
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is free abelian. So we may assume that G/H ∼= Z/nZ, for some n > 1. This means that
nG ⊂ ker = H. Since G is torsion-free, G ∼= nG. Therefore, G is free abelian by Lemma
14.23 We leave the last statement as an exercise. �

Putting the pieces together, we can now prove our generalization of the Fundamental
Theorem of Finite Abelian Groups.

Theorem 14.26. (Fundamental Theorem of Finitely Generated Abelian Groups). Let
G be a finitely generated abelian group. Then there exists a free abelian subgroup F of G
or unique rank such that G = Gt ⊕ F . Moreover, Gt is finite and the product of cyclic
p-groups unique up to isomorphism and order.

Proof. As G is finitely generated, so is G/Gt. Since G/Gt is also torsion-free, it is a
free abelian group of finite rank by Proposition 14.25. In particular, it is a finite product
of infinite cyclic groups of unique rank by Lemma 14.14. By Lemma 14.21 and Lemma
14.22, G = Gt ⊕K with K a finitely generated free abelian group of unique rank. Since
the sum is direct, we must also have Gt finitely generated. (Why?) In particular, by the
Fundamental Theorem of Finite Abelian Groups, Gt is a direct sum of cyclic p-subgroups
unique up to order. The result follows. �

Exercises 14.27. 1. Prove Lemma 14.1. If we assume that G is an arbitrary group, what
conditions on H1 and H2 will still guarantee the result. Prove this.

2. Let G be an abelian group. Show that G(p) := {x ∈ G | xpr = e some r} is a subgroup
of G.

3. Show that p(Z/pkZ) ∼= Z/pk−1Z for all primes p and positive integers k.

4. Prove the alternate form of the Fundamental Theorem of Finite Abelian Groups 14.11

5. Determine up to isomorphism all finite abelian groups up to order 360 in both forms
of the Fundamental Theorem of Finite Abelian Groups.

6. Determine all n > 1 such that all abelian groups of order n are cyclic and prove your
determination.

7. Let G be an abelian group and Gi, i ∈ I, subgroups satisfying G =
∑

I Gi. Prove that
the following are equivalent:

(i) G =
⊕

I Gi.

(ii) If
∑

I gi = 0 in G, then gi = eG for all i ∈ I.

(iii) For all j ∈ I, we have Gj ∩
∑

I\{j}Gi = {eG}.
(iv)

∐
I Gi →

∑
I Gi given by (gi)I 7→

∑
I gi is a group isomorphism.

8. Let G be an additive group and x ∈ G. Suppose that 〈x〉 is a pure torsion subgroup
of G, Prove that G = 〈x〉 ⊕H for some subgroup H ⊂ G.

9. In the proof of Lemma 14.23, why is Hj+1/Hj
∼= Z?

10. If G is a finite free abelian group and H is a subgroup, prove that rankH ≤ rankG.
If 1 < H < G, Can rankH = rankG?

11. Prove if G is a finitely generated group and G = H ⊕ K with K finitely generated,
then H is also finitely generated.
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12. Let G be an additive group. Suppose that G is a free abelian group on basis X. Prove
all of the following:

(i) If n ∈ Z+, then nG is free on basis nX := {nx | x ∈ X}.
(ii) There exists an isomomorphism ϕ : G→

∐
X Zx ∼=

∐
ϕ(X) Z.

(iii) Let Y = ϕ(X). Then
∐

Y Z is free abelian on basis Y .

(iv) Let p > 0 be a prime and Y = {y + p
∐

Y Z | y ∈ Y }. Then
∐

Y Z/(p
∐

Y Z) ∼=∐
Y (Z/pZ) and is a vector space over Z/pZ on basis Y .

(v) We have |Y | = |Y |. In particular, assuming the cardinality of a basis for a vector
space is unique (which is true), any two bases for G have the same cardinality.

13. Let G be a torsion-free abelian group and H a subgroup of G. Prove all of the following:
(i) H is a pure subgroup of G if and only if G/H is torsion-free.

(ii) There exists a unique minimal pure subgroup Hpu of H containing H.
(iii) if H1 and H2 are pure subgroups of G, then H1 ∪H2 is a pure subgroup of G

15. Addendum: Divisible Groups

In this section, we investigate another class of abelian groups consisting of non-finitely
generated abelian groups (if we exclude the trivial group). These abelian groups are
called divisible groups. They arise naturally from the divisibility property of the rational
numbers. It is convenient to continue our use additive notation for our abelian group, and
will call them additive groups as usual when we do so. In this section, we shall also need
to use some results to be proven in later sections, the major one is a proof of Theorem
15.13 (which requires Zorn’s Lemma) as does the fact that all vector spaces have bases.
We shall also leave many details as exercises.

We extend our definition of the subgroup G(p), p a prime, of a finite additive group
G used in Section 14 to: If G is an additive group and p > 0 a prime, let

G(p) := {x ∈M | prx = 0 for some positive integer r},
a torsion group.

Definition 15.1. Let P denote the positive primes. Let G be an additive group and
p ∈ P . We call G(p) the p-primary part of G. If G = G(p), we call G a p-primary group.
We also let

pG := {g ∈ G | pg = 0}, .
the subgroup generated by elements of order p in G (or G(p)).

We shall also need a suitable generalization of Fundamental Theorem Finite Abelian
Groups 14.10. The general version is called the Primary Decomposition Theorem that we
shall later prove in Theorem 44.20 below. The case that we need below in Theorem 15.2
can be proven by facts that you know (and Exercise 15.18(1)), so we omit it.

Theorem 15.2. Let G be a torsion additive group. Then G =
⊕
P G(p).

If G is an abelian group, it was mentioned in Section 14 [to be done later in Corollary
44.16], that G ∼= Gt× (G/Gt) if G is finitely generated. It is not true in general, however,
that G ∼= Gt

∐
(G/Gt) when G is not finitely generated. We give a counterexample.
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Example 15.3. Let G =
∏
P Z/pZ as an additive group. We show that G 6∼= Gt

∐
(G/Gt).

Let x = (xp)P ∈ G. Suppose that q ∈ P satisfies qy = x for some y ∈ G, i.e., qyp = xp for
all p ∈ P . We say that x is divisible by q. Then xq = 0. In particular, the only element
x ∈ G divisible by every p ∈ P is x = 0, i.e., that there cannot be a nonzero element in
G that is divisible by every prime p ∈ P .

Let : G → G/Gt be the natural group epimorphism. We show that G/Gt contains a
nonzero element a ∈ G/Gt, a ∈ G, divisible by all primes p ∈ P . Let ap be a generator
of Z/pZ and a = (ap)P . Fix q ∈ P . Then for every prime p 6= q, there exists xp ∈ Z/pZ
satisfying qxp = ap. Set xq = 0 and let y ∈ G be the element with entries all 0 except
for the qth coordinate that is aq. In particular, y ∈ Gt and qx = a − y. It follows that
qx = a− y = a. Since this is true for every prime q, the element a in G/Gt is divisible by
every prime. Since a cannot have finite order in G, we have a is nonzero and the assertion
is verified. In particular, if G ∼= Gt

∐
(G/Gt), then there exists a nonzero element in G

divisible by all primes, contradicting that no such element lies in G.

We shall show that that we do have such a decomposition for one type of abelian
group. To do so, we will need a few facts about vector spaces. We shall assume that
all vector spaces have bases. This will be proven in Proposition 28.6 below. By linear
algebra, we then have two vector spaces over a field F are isomorphic if and only if they
have bases of the same cardinality (in the infinite case one needs to use the Schroeder-
Bernstein Theorem (cf. Remark 1.12)). For any F -vector space V , we write dimV for
the cardinality of a basis (it is well-defined). We leave the proofs of the following three
lemmas as exercises.

Lemma 15.4. Let V be a vector space over a field F . Suppose that V has a basis B = {vi}I
Then (V,+) =

⊕
B Fx as an additive group.

Lemma 15.5. Let V and W be vector spaces over F with F either Q or Z/pZ with p > 0 a
prime. Then V and W are isomorphic as vector spaces if and only if they are isomorphic
as additive groups.

Lemma 15.5 is false in general, e.g., it can be shown R ∼= R2 as abelian groups using
that they have bases as vector spaces over Q of the same uncountable cardinality.

Lemma 15.6. Let G be an additive group and p > 0 a prime. Then pG is a vector space
over Z/pZ.

Definition 15.7. Let G be an additive group. We say that G is a divisible group if for
all y ∈ G, n ∈ Z+, there exists an x ∈ G satisfying nx = y, i.e., 1

n
y ∈ G. Equivalently,

the group homomorphism G → G given by x 7→ nx is surjective for all positive integers
n.

Examples 15.8. 1. Q, R, C are all torsion-free divisible additive groups.

2. R+ is a multiplicative torsion-free divisible group

3. If G is a torsion-free divisible group, then G→ G by x 7→ nx is an isomorphism for all
n ∈ Z+.

4. C× is a divisible group. The circle group T in C× is the torsion subgroup of C×.
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Checking that the axioms of a vector space hold, we see that the following is true.

Lemma 15.9. A torsion-free additive divisible group is a vector space over Q.

Corollary 15.10. Let G be a torsion-free divisible group. Then G ∼=
∐

I Q for some
indexing set I.

The following observations are easily seen:

Observations 15.11. Let G be a nonzero divisible group. Then

1. G is an infinite group.

2. Gt is a divisible group.

3. If ϕ : G→ G′ is a group epimorphism, then G′ is also a divisible group. In particular,
G/Gt is a torsion-free divisible group.

4. Let Gi, i ∈ I, be additive groups. Then Gi is a divisible group for all i ∈ I if and only
if
∏

I Gi is a divisible group if and only if
∐

I Gi is a divisible group.

Example 15.12. By Observation 15.11(3), the additive group Q/Z is a divisible torsion
group. It is not a finitely generated group, hence neither is Q. Let p be a prime number.
Define Zp∞ := (Q/Z)(p). Then Zp∞ is a divisible group and is not finitely generated.
(Why?) Moreover, by Theorem 15.2, we have Q/Z =

⊕
P Zp∞ .

We wish to classify divisible groups. To do so, we shall need a defining property of
divisible groups. Unfortunately, to prove this theorem, we need to use Zorn’s Lemma to
be done later, so we shall postpone it proof until then [cf. Proposition 28.10]. We shall,
however, assume its validity here.

Theorem 15.13. Let G be a divisible abelian group and B an abelian group with A ⊂ B
a subgroup. Suppose that ϕ : A→ G is a group homomorphism. Then there exists a group
homomorphism ψ : B → G satisfying ψ|A = ϕ. We say that ψ extends ϕ to G.

Corollary 15.14. Let G be an abelian group and H a subgroup of G that is a divisible
group. Then G = H ⊕X, for some subgroup X of G.

Proof. The identity map 1H : H → H extends to ψ : G → H, i.e., ψ|H = 1H
by the theorem. We show that G = H ⊕ kerψ. If x ∈ G, then ψ(x) ∈ H, hence
ψ
(
x − ψ(x)

)
= ψ(x) − 1Hψ(x) = 0. Therefore,

(
x − ψ(x)

)
+ ψ(x) lies in H + kerψ. If

x ∈ H ∩ kerψ, then x = ψ(x) = 0. This shows that G = kerψ ⊕H by Exercise 15.18(1)
as needed. �

Using Theorem 15.13, we prove the following lemma.

Lemma 15.15. Suppose that G1 and G2 are divisible p-primary groups. Then G1
∼= G2

if and only if pG1 = pG2.

Proof. (⇒) follows easily from Lemma 15.6
(⇐): Let ϕ : pG1 → pG2 be a group isomorphism. We view it as a monomorphism into
G2. By Theorem 15.13, we can extend ϕ to ψ : G1 → G2, i.e., ψ|pG1 = ϕ. We show that
ψ is an isomorphism.

ψ is injective: We show that x = 0 by induction on elements of order pr in G1. Let x be a
nonzero element in G1 of order pr and suppose that ψ(x) = 0. If r = 1, then px = 0 and
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x = 0 as ϕ is an isomorphism. Let r > 1. Since px has order pr−1, by induction px = 0,
contradicting x has order pr. Therefore, ψ is injective.

ψ is surjective: Let y ∈ G2 have order pr. If r = 1, since ϕ is an isomorphism, there exists
an x ∈ G1 such that ψ(x) = y. So assume that r > 1. Since 0 6= pr−1y ∈ pG2, there
exists x ∈ pG1 such that ψ(x) = pr−1y. Since G1 is divisible, there exist z ∈ G1 such that
pr−1z = x. Therefore, pr−1

(
y − ψ(z)

)
= 0. By induction on r, there exists an element

w ∈ G1 satisfying ψ(w) = y − ψ(z). Therefore, y = ψ(w + z). �

We can now classify divisible abelian groups.

Theorem 15.16. Let G be a divisible additive group. Then

G =
∐
I

Q
∐(∐

P

∐
Ip

Zp∞

)
for some indexing sets I, Ip, p ∈ P (possibly empty).

Proof. Since Gt is divisible by Observation 15.11(2), we have G ∼= Gt

∐
(G/Gt) by

Corollary 15.14. Since G/Gt is torsion-free, it is a direct sum of copies of Q by Lemma
15.10. By Observation 15.11(4) and Theorem 15.2 each G(p) is divisible. Finally, let G′p
be the direct sum of dimZ/pZ(pG) copies by of Zp∞ . By Lemma 15.15, the groups G(p)
and G′p are isomorphic. �

Divisible groups have the important property that given any abelian group A, there
exits a divisible abelian group G and a group monomorphism ϕ : A → G. To establish
this, we need some further ideas from vector space theory.

The additive group, the direct sum
∐

I Z has a Z-basis (with scalars from Z) just as
with an F -vector space over a field F (with scalars from F ). In fact, S := {ei | i ∈ I} is
a basis for

∐
I Z where ei has 1 in the ith coordinate and 0 in the jth coordinate for all

j 6= i in I. So every every element x is a finite sum of some of the ei, i.e., x =
∑

I aiei
with ai ∈ Z, all but finitely many ai nonzero. This means that S spans. In addition, the
ai are unique as y = 0 in

∐
I Z if and only all the coordinates are zero. This means that S

is linear independence. Just as for vector spaces, this means that if G is an abelian group
and ai ∈ Z, i ∈ I, (not necessarily distinct), there exists a unique group homomorphism
induced by ei 7→ ai for all i ∈ I. [The same proof used for vector spaces works.] For
example, since S ⊂

∐
I Q (and is a Q-basis for it), the inclusion map inc :

∐
I Z →

∐
I Q

via ei → ei is a group monomorphism.

Theorem 15.17. Let A be an abelian group. Then there exist a divisible abelian group
G and a group monomorphism ϕ : A→ G.

Proof. Let {ai | i ∈ I} be a set of generators for A. Then there exists a group
homomorphism ψ :

∐
I Z → A determined by ei 7→ ai for all ı ∈ I. Let K = kerψ. By

the First Isomorphism Theorem, ψ induces a group isomorphism ψ : (
∐

I Z)/K → A.
The group monomorphism inc :

∐
I Z→

∐
I Q takes K → QK, where QK is the Q-vector

space spanned by {ei | i ∈ I}. Since QK ∩
∐

I Z = K (why?), the map ι : (
∐

I Z)/K →
(
∐

I Q)/K is a group monomorphism. By Observation 4(3), the group (
∐

I Q)/K is a

divisible group. Therefore, the composition ϕ := ι ◦ ψ−1
: A→ (

∐
I Q)/K works. �
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Exercises 15.18. 1. Let G be an abelian group and Gi, i ∈ I subgroups satisfying
G =

∑
I Gi. Prove that the following are equivalent:

(i) G =
⊕

I Gi.

(ii) If
∑

I gi = 0 in G, then gi = eG for all i ∈ I.

(iii) For all j ∈ I, we have Gj ∩
∑

I\{j}Gi = {eG}.
(iv)

∐
I Gi →

∑
I Gi given by (gi)I 7→

∑
I gi is a group isomorphism.

2. Prove Lemma 15.4

3. Prove Lemma 15.5

4. Prove Lemma 15.6

5. Prove Theorem 15.2

6. Prove Lemma 15.9
7. Let G be the group in Example 15.3. Show that G/Gt is a divisible group.

8. Let p be a prime number. Show all of the following:

(i) Zp∞ is a divisible group.

(ii) The set { 1
pr

+ Z | r a non-negative integer }r generates Zp∞ . In particular, Zp∞ is

not finitely generated.

(iii) The subgroup
〈

1
pr

+ Z
〉

of Zp∞ is isomorphic to Z/prZ for all r ∈ Z+.

9. Prove Observations 15.11.

10. Let G1 and G2 be divisible abelian groups. Prove that G1
∼= G2 if and only if

dimQ

(
G1/(G1)t

)
= dimQ

(
G2/(G2)t

)
and dimZ/pZ(pG1) = dimZ/pZ(pG2) for all primes

p.

11. Prove that the following groups are isomorphic: R/Z, the circle group T ,
∏

p Zp∞ ,QZ⊕
R.

12. An abelian group G is divisible if and only if it satisfies the property in Theorem 15.13.

13. An abelian group G is divisible if and only if every nonzero quotient of G is infinite.

14. An abelian group G is divisible if and only if it has no maximal subgroups, i.e., a
subgroup M < G so that there exists no subgroup H in G with M < H < G.

15. Let A be an arbitrary abelian group and B ⊂ A a subgroup with A. Let a ∈ A \ B.
Show that there exists a group homomorphism ϕ : A → D with D a divisible group
satisfying ϕ|B = 0 and ϕ(a) 6= 0.

16. Addendum: Finitely Generated Groups

Most of what we do in the study of group theory in these pages involves finite groups.
In this short section, we show how the General Cayley Theorem 12.4 can be used to
obtain a few results about finitely generated groups, i.e., a group G containing a finite set
S of elements satisfying G = 〈S〉. Of course, finite groups are finitely generated, but the
results that we obtain here are trivial for finite groups, as the questions we ask are about
finitely generated groups that contain a proper subgroup of finite index.
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We have seen that if G is an arbitrary group and H a subgroup of finite index n in G,
then the General Cayley Theorem gives a group homomorphism

λ : G→ Σ(G/H) ∼= Sn given by x 7→ λx : gH 7→ xgH,

with kerλ ⊂ H ⊂ G (and the largest normal subgroup of G in H). Hence, by the First
Isomorphism Theorem, λ induces a group monomorphism

λ : G/ kerλ→ Σ(G/H) ∼= Sn given by x 7→ λx : g 7→ gH.

Since Σ(G/H) is a finite group, so is G/ kerλ, i.e., kerλ ⊂ G has finite index. Therefore,
G contains a normal subgroup of finite index. [Cf. Exercise 12.12(7).] We want to
strengthen this result if G is finitely generated.

Proposition 16.1. Let G be a finitely generated group and n a positive integer. Then
there exist finitely many subgroups (if any) of G of index n.

Proof. Let G = 〈a1, . . . , ar〉 and

(*) ϕ : G→ Sn

be a group homomorphism. Then the map ϕ is completely determined by

ϕ(a1), . . . , ϕ(ar)

in the finite set Sn. Thus there exist only finitely many possible group homomorphisms
ϕ in (*), hence finitely many normal subgroups N of G of finite index with N = kerϕ for
such ϕ. Fix a ϕ. By the First Isomorphism Theorem, we have G/ kerϕλ ∼= ϕ(G) ⊂ Sn is
a subgroup. As Sn is finite, the Correspondence Principle implies that there exist finitely
many subgroups H of G satisfying kerϕ ⊂ H ⊂ G, in particular, there can be only finitely
many H (if any) with [G : H] = n. As there are finitely many ϕ, the result follows. �

Our strengthening of the goal above can now be stated and established. Recall that
a subgroup K of a group G is called characteristic if σ|K is an automorphism of K
(equivalently, σ(K) = K) for every automorphism σ of G.

Corollary 16.2. Let G be a finitely generated group. Suppose G contains a subgroup H
of finite index. Then there exists a characteristic subgroup K of H of finite index in G.

Proof. By the proposition, there exist finitely many subgroups

H = H1, . . . , Hm

of finite index [G : H]. It follows, given an automorphism ϕ of G, that ϕ(H) = Hi for
some i, i.e., ϕ permutes the Hi. Let K := ∩mI=1Hi. Then we have ϕ(K) = K, so K is a
characteristic subgroup of H. By Poincaré’s Lemma (cf. Exercise 10.16(7)), K is of finite
index in G. �

The second result is much harder to prove.

Theorem 16.3. Let G be a finitely generated group and H be a subgroup of finite index.
Then H is a finitely generated group.
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Proof. Let G = 〈a1, . . . , ar〉 and

y1 = e, . . . , yn

be a transversal (i.e., a system of representatives for the cosets) of H in G. Let

λ : G→ Σ(G/H) be given by a 7→ λx : aH 7→ xaH.

Therefore, λx permutes y1H, . . . , ynH. Fix i, 1 ≤ i ≤ r. Then for each j, 1 ≤ j ≤ n, there
exists a k = k(i, j) with 1 ≤ k ≤ n satisfying

aiyjH = ykH.

Therefore, there exist hij in H, 1 ≤ i ≤ r and 1 ≤ j ≤ n satisfying

yk = aiyjhij.

Let H0 := 〈hij | 1 ≤ i ≤ r, 1 ≤ j ≤ n〉 ⊂ G. Then H0 is clearly a finitely generated
subgroup of G contained in H. So it suffices to show that H ⊂ H0. Set

W :=
⋃

yjH0.

For each i, 1 ≤ i ≤ r, we have

aiW =
n⋃
j=1

aiyjH0 =
n⋃
j=1

yk(i,j)hijH0 =
n⋃
k=1

ykH0 = W,

since

{aiy1H, . . . , aiyn} = {y1, . . . , yn}.

Consequently, aiW = W for each i = 1, . . . , r. As G = 〈a1, . . . , ar〉, we have

GW = W =
n⋃
j=1

H0.

Since e ∈ W , we conclude that

G = W =
n⋃
j=1

yjH0 =
n∨
j=1

yjH0.

In particular,

H ⊂ G =
n∨
j=1

yjH0.

But H = y1H is disjoint from
⋃n
j=2 yjH0 as it is disjoint from

⋃n
j=2 yjH, so we conclude

that H = H0 as needed.
�
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17. Series

One way of studying algebraic objects is to break them down into simpler pieces. For
example, ifG is a group, it may be the direct product of groups, e.g., Z/6Z ∼= Z/2Z×Z/3Z.
Unfortunately, this does not happen very often for groups. An alternative approach would
be to take a given nontrivial group G and find the largest normal subgroup N1 in G
satisfying N1 < G. By the Correspondence Principle, G/N1 then would be a simple
group, and we have, in some sense reduced the study of G to the groups N1 and G/N1.
We then proceed with the same analysis on N1, etc. Another approach would be to find
a normal subgroup N1 of G such that G/N1 is abelian (or cyclic), then continue on N1,
etc. In any of these cases, we produce a chain of subgroups G > N1 > N2 > · · · (where
A > B means A ⊃ B, A 6= B). Then various possibilities open:

(1) This process never stops.
(2) There exists an i such that Ni is nice, e.g., in our cases simple, abelian, cyclic,

respectively.
(3) At some point, there does not exist such an Ni.

Of course, we are interested in the second possibility.

Definition 17.1. Let G be a nontrivial group. A sequence of groups

(*) N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Nn = G

is called a subnormal (respectively, normal) series if Ni /Ni+1 (respectively, Ni /G) for all
i, and proper if Ni < Ni+1 for all i. The quotients (G/Nn−1 =)Nn/Nn−1, . . . , N1/N0 are
called the factors of the series. If (*) is a subnormal series for which N0 = 1 and Nn = G,
then it is called

(i) a cyclic series if Ni+1/Ni is cyclic for all i.
(ii) an abelian series if Ni+1/Ni is abelian for all i.

(iii) a composition series if Ni+1/Ni is simple for all i.

A group is called solvable if it has an abelian series and polycyclic if it has a cyclic series.
(Since the trivial group is cyclic, we also say that it has a cyclic series.)

Example 17.2. Every abelian group is solvable and every cyclic group is polycyclic.

One of the major results in finite group theory is the Feit-Thompson Theorem that
every finite group of odd order is solvable. It is the first major theorem in the classification
of finite simple groups. Its proof takes over 250 journal pages.

Theorem 17.3. The following are true:

(1) A subgroup of a solvable group is solvable.
(2) The homomorphic image (i.e., the image of a group under a group homomor-

phism) of a solvable group is solvable.
(3) If N / G and both N and G/N are solvable then so is G.

Proof. We leave this as an exercise. It is important that you do this exercise, as it
will teach you how to use the isomorphism theorems. �

Let G be a group. The commutator of x and y in G is [x, y] := xyx−1y−1. The
group generated by all commutators is called the derived subgroup of G and denoted
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either by [G,G] or by G ′. By recursion, we define, the nth derived subgroup of G by
G(n) = [G(n−1), G(n−1)]. We leave the following easy computations as an exercise.

Properties 17.4. Let G be a group. If a, b, c are elements of G and σ : G→ G1 a group
homomorphism. Then

(1) [a, b]−1 = [b, a].
(2) σ([a, b]) = [σ(a), σ(b)].
(3) [a, bc] = [a, b]b[a, c]b−1 = [a, b][bab−1, bcb−1].

Proposition 17.5. Let G be a group. Then G(n) is a characteristic subgroup of G(n−1)

for all n. In particular, G(n) is characteristic in G, and

G(n) ⊂ G(n−1) ⊂ · · · ⊂ G(1) ⊂ G(0) = G

is a normal series (even a characteristic series — obvious definition).

Proof. Being characteristic is transitive, so this follows immediately, using Properties
17.4 �

Theorem 17.6. Let G be a group. Then G is solvable if and only if there exist an integer
n such that G(n) = 1.

Proof. By Exercise 11.9(21), each factor groupG(i)/G(i+1) is abelian. Hence ifG(n) =
1 for some n, then G is solvable. Conversely, suppose that

(†) 1 = Nn ⊂ Nn−1 ⊂ Nn−2 ⊂ · · · ⊂ N1 ⊂ G

is an abelian series. It suffices to show that G(i) ⊂ Ni for all i. By Exercise 13.7(12), we
know that G ′ ⊂ N1. By induction, we may assume that G(i−1) ⊂ Ni−1. But then we have
G(i) = [G(i−1), G(i−1)] ⊂ [Ni−1, Ni−1] ⊂ Ni, again using Exercise 13.7(12). �

We turn to composition series. We need the following easy lemma.

Lemma 17.7. (Dedekind’s Modular Law) Let A, B, and C be three subgroups of G. If
A is a subset of C, then A(B ∩ C) = (AB) ∩ C.

Proof. ⊆: If a ∈ A, x ∈ B ∩ C, then ax ∈ AB ∩ AC ⊂ (AB) ∩ C.

⊇: If a ∈ A, b ∈ B satisfy ab ∈ C, then b = a−1C ⊂ C. �

We next prove an elaborate form of the Second Isomorphism Theorem. For notational
simplicity, we use right cosets.

Lemma 17.8. (Zassenhaus Butterfly Lemma) Let G be a group containing four subgroups
h, H, k, and K satisfying h / H and k / K. Then we have the following:

(1) (H ∩ k)(h ∩K) / H ∩K.
(2) k(h ∩K) / k(H ∩K).
(3) h(H ∩ k) / h(H ∩K).
(4) There exist isomorphisms:

k(H ∩K)/k(h ∩K) ∼= H ∩K/(H ∩ k)(h ∩K)
∼= h(H ∩K)/h(H ∩ k).
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We have the following picture illustrating the subgroups, where a group at the bottom
of a line means that it is a subgroup of the group at the other end. We shall see the
quotients (top/bottom) of like dotted, double, dashed lines, respectively, are isomorphic.

H K

h(H ∩K) k(H ∩K)

H ∩K

h(H ∩ k) k(h ∩K)

h • k

h ∩K H ∩ k

(h ∩K)(H ∩ k)

KK

Proof. We use the Second and Third Isomorphism Theorems. As k/K in the lemma
and H ∩K ⊂ K is a subgroup, we have k(H ∩K) is a group satisfying k / k(H ∩K), and
H ∩ k = (H ∩K) ∩ k / H ∩K together with an isomorphism

(*) k(H ∩K)/k
∼−→ H ∩K/H ∩ k given by ka 7→ (H ∩ k)a.

Similarly, as h/H and H ∩K ⊂ H is a subgroup, we have h(H ∩K) is a group satisfying
h / h(H ∩K), and h ∩K / H ∩K together with an isomorphism

h(H ∩K)/h
∼−→ H ∩K/h ∩K given by ha 7→ (h ∩K)a.

As the product of normal subgroups is normal, we also have

(†) (H ∩ k)(h ∩K) / H ∩K.

By restriction, the isomorphism in (*) induces an isomorphism

(?) k(H ∩ k)(h ∩K)/k
∼−→ (H ∩ k)(h ∩K)/H ∩ k.

By the Modular Law, we have k(H ∩ k) = kH ∩ k = k. Consequently, k(H ∩ k)(h ∩K)
= k(h∩K). Applying the Correspondence Principle to the isomorphism in (*), we know
that (H ∩ k)(h ∩K) / H ∩K corresponds to k(h ∩K) = k(H ∩ k)(h ∩K) / k(H ∩K).
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Using the Third Isomorphism Theorem, we conclude by (*) and (?) that

k(H ∩K)/k(h ∩K) ∼=
k(H ∩K)/k

k(h ∩K)/k

∼=
H ∩K/H ∩ k

(H ∩ k)(h ∩K)/H ∩ k
∼= H ∩K/(H ∩ k)(h ∩K).

The other isomorphism is obtained similarly. �

Next we wish to show if a group has a composition series, then the number of terms in
a minimal, proper composition series is constant with factors unique up to isomorphism.

Definition 17.9. Given a proper subnormal series of a group G, we say another subnor-
mal series is a refinement of the given series, if we add in new subgroups, and it is called
a proper refinement if the resulting subnormal series is proper. Two proper subnormal
series for G are called equivalent if they have the same number of terms, say n, and the
n factors of each are isomorphic up to a permutation.

If a group has a composition series, we want to prove that the number of factors in
a composition series is unique as well as these factors are unique up to isomorphism and
order. The next theorem is the key to this. We use the Butterfly Lemma to prove it.

Theorem 17.10. (Schreier Refinement Theorem) Any two proper subnormal series for
a group G have equivalent refinements.

Proof. Suppose

1 = N0 / N1 / · · · / Nr = G and

1 = H0 / H1 / · · · / Hs = G

are two proper subnormal series for G. We have groups:

Ni,j = Ni(Hj ∩Ni+1)

that form subnormal series

Ni = Ni,0 / · · · / Ni,s = Ni+1 for all i.

by the Butterfly Lemma. It follows that we have a subnormal series

(1) 1 = N0,0 / · · · / Nr,s = G.

Similarly, we have another subnormal series

(2) 1 = H0,0 / · · · / Hs,r = G

where

Hj,i = Hj(Ni ∩Hj+1).

By the Butterfly Lemma, we have

Ni,j+1/Ni,j
∼= Hj,i+1/Hj,i for all i and j,
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hence the series (1) and (2) are equivalent. In particular, if a factor isomorphic to 1 occurs
in one, it occurs in the other. It follows that from these we can obtain common proper
refinements. �

If 1 < N1 / · · · / Nr−1 / G is a proper subnormal series, we say the series has length r
(which equals the number of links). As the trivial group is not considered a simple group,
any composition series for a group must be proper. Moreover, by the Correspondence
Principle, no composition series can have a proper refinement.

Theorem 17.11. (Jordan-Hölder Theorem) Let G be a group having a composition series
of length r. Then every composition series for G has length r and any proper subnormal
series for G can be refined to a composition series for G. Moreover, all composition series
of G are equivalent.

Proof. Let 1 = N0 < · · · < Nn < G be a proper subnormal series for G. By the
Schreier Refinement Theorem, this subnormal series and a composition series for G have
a common proper refinement. The result follows by the above remark. �

Example 17.12. Let m = a1 · · · ar in Z with each integer ai > 1. Then we have a
subnormal series:

0 = a1 · · · arZ/mZ < · · · < a1Z/mZ < Z/mZ.

As Z/mZ is a finite group, it has a composition series by Exercise 17.14(10) that is
essentially unique. This is really the Fundamental Theorem of Arithmetic.

Remark 17.13. In an analogous way, one can define composition series for vector spaces.
A “simple” vector space is a line [proof?]. Finite dimensional vector spaces have com-
position series (and infinite dimensional ones do not). Let V be a nonzero finite dimen-
sional F -vector space. Say V has a composition series of length d, i.e, we get a a series
0 < V1 < · · · < Vd = V , with simple factors Vi/Vi−1 (after generalizing the concept of
quotients to vector spaces). Thus d is the dimension of V , and the Jordan-Hölder Theo-
rem gives an alternate proof of the invariance of the number of vectors in the basis for a
finite dimensional vector space.

Exercises 17.14.

1. Prove Properties 17.4.
2. Prove that every finite abelian group is polycyclic. Use this to prove that every finite

solvable group is polycyclic. Give an example of a solvable group that is not polycyclic.

3. Prove Theorem 17.3 using the isomorphism theorems. (Do not use Theorem 17.6.)

4. Prove the analogue of Theorem 17.3 replacing the word solvable with the word poly-
cyclic using the isomorphism theorems.

5. Let H and K be subgroups of a group G. Define

[H,K] := 〈[h, k] | h ∈ H, k ∈ K〉.
Show both of the following:

(i) If K / G and K ⊂ H, then [H,G] ⊂ K if and only if H/K ⊂ Z(G/K).
(ii) If ϕ : G→ L is a group epimorphism and A ⊂ Z(G), then ϕ(A) ⊂ Z(L).
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6. Let G be group.

(i) Set Γ1(G) = G and inductively define Γn+1(G) := [Γn(G), G] for n > 1. Show
Γn+1(G) ⊂ Γn(G) and Γn(G) / /G for all n.

(ii) Set Z0(G) = 1 and inductively define Zn+1(G) by

Zn+1(G)/Zn(G) = Z(G/Zn(G)),

i.e., the preimage of G/Zn(G) in G under the canonical epimorphism. Show
Zn+1(G) / Zn(G) and Zn(G) / /G for all n > 0.

7. Define the descending central series of G by

G = Γ1(G) ⊃ Γ2(G) ⊃ · · · ⊃ Γn(G) ⊃ · · ·

and the ascending central series of G by

1 = Z0(G) ⊂ Z1(G) ⊂ · · · ⊂ · · · .

Prove that Zn(G) = G if and only if Γn(G) = 1. Moreover, if this is the case, then
Γi+1 ⊂ Zn−i for i = 0, . . . , n.

8. A group G is called nilpotent if there exists an n such that Γn(G) = 1 (and n is called
the class of G if n is the least such integer). Show the following

(i) If G is nilpotent, then every subgroup of G is nilpotent.
(ii) If G is nilpotent and H / G, then G/H is nilpotent.

(iii) A direct product of finitely many nilpotent groups is nilpotent.
(iv) Give an example of a group G with H /G with H and G/H nilpotent, but G not

nilpotent.

9. Show that a group G is nilpotent if and only if there exists a normal series

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = 1

in which each Gi /G and satisfies Gi/G+1 ⊂ Z(G/Gi+1 for all i. Such a series is called
a central series for G.

10. Prove that every finite group has a composition series. Give an example of an infinite
group that does not have a composition series.

11. Let G be a group and N a normal subgroup of G. Prove that G has a composition
series if and only if N and G/N have composition series. [It is not true that if G has
a composition series that any subgroup does. Cf. Exercise 24.24(21).]

18. Free Groups

Let V be a vector space over F . We shall prove Proposition 28.6 below that says
every vector space has a basis and any linearly independent subset in a vector space can
be extended to a basis. Let V be a vector space over F with basis B. Then V,B satisfies
the following universal property of vector spaces: Given any vector space W over F and
diagram of set maps
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B

f   

� � inc // V

W

with inc the inclusion of B into V , there exists a unique linear transformation T : V → W
such that the diagram

B

f   

� � inc // V

T
��

W

commutes. This follows from the theorem in linear algebra that says a linear transforma-
tion T : V → W is completely determined by where a basis for V is mapped.

Conversely, suppose that we know that B is a subset of the vector space V and V,B
satisfies the universal property above.

Let W be the subspace spanned by B. The additive group V/W becomes a vector space
by r(v +W ) := rv +W , for r ∈ F and v ∈ V , with : V → V/W the natural surjective
linear transformation. By the (UP) there exists a unique transformation T : V → V
satisfying

B � p

0 ""

� � inc
// V

T
��

V/W.

commutes. By uniqueness, T must be the zero map.
Let v ∈ B and

B

fv ��

� � inc // V

V

with fv : B → V the map sending v 7→ v and v′ 7→ 0 for all v′ ∈ B \ {v}. Then there
exists a unique linear transformation Tv : V → V such that

B

fv ��

� � inc // V

Tv
��

V

commutes. It follows that B is linearly independent, hence can be extended to a basis
by Proposition 28.6. It follows by the universal property of vector spaces that B spans
V , the details of which we leave as an exercise (Exercise 18.18(1)). In particular, V is
completely determined by the universal property of vector spaces. Note that this says
that V is completely determined by a set of generators satisfying no nontrivial relations
in V .
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We can, in fact, modify this universal property with the inclusion map replaced by a
set injection iV : B0 → V with iV (B0) = B. Indeed, we can even drop the requirement
that iV be an injection and this still shows that V is a vector space with basis B. We leave
this as an exercise. Therefore, we can reformulate the definition of the universal property
of vector space as follows: Let V be a vector space over F and iB0 : B0 → V a set map.
Then iB0 : B0 → V satisfies the universal property: Given any set map iB0 : B0 → W
with W a vector space over F , there exists a unique linear transformation T : V → W
satisfying

B0

f   

iB0
// V

T
��

W

commutes. In this case, B = iB0(B0) is a basis for V . Note that in this formulation, the
universal property applies to the set map iB0 : B0 → V .

We can also give an analogous definition of a free abelian group G on a basis X in a
similar way as follows: Let G be an abelian group with X a nonempty set in G. We say
that G is a free abelian group on basis X if it satisfies the following universal property of
free abelian groups: Given any abelian group G′ and diagram

X

f   

� � inc // G

G′

of set maps with inc the inclusion of X into G, then there exists a unique group homo-
morphism ϕ : G→ G′ such that the diagram

X

f   

� � inc // G

ϕ
��

G′

commutes.

We now mimic the above for groups.

Definition 18.1. Let G be a group with X a nonempty set in G. We say that G is a free
group on basis X if it satisfies the following universal property of free groups: Given any
group G′ and diagram

X

f   

� � inc // G

G′

of set maps with inc the inclusion of X into G, then there exists a unique group homo-
morphism ϕ : G→ G′ such that the diagram
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X

f   

� � inc // G

ϕ
��

G′

commutes.

Remark 18.2. As in the vector space case, we can replace the inclusion map of X in G
with a set injection iX0 : X0 → G with X = iX0(X0); and, in fact, the map iX0 need not
be assumed to be an injection. Therefore, the alternative formulation of a free group is
as follows: Let G be a group and iX0 : X0 → G a set map. Then iX0 : X0 → G satisfies
the following universal property: Given any set map f : X0 → G′ with G′ a group, there
exists a unique group homomorphism ϕ : G→ G′ satisfying

X0

f   

iX0
// G

ϕ
��

G′

commutes. Again in this formulation, the universal property applies to the set map
iX0 : X0 → G and X = iX0(X0) is a basis for the free group G.

It shall be left as an exercise on the construction of free groups and the following
lemma to show if G is a free group on basis X that there exists no nontrivial relations
among the elements in X, i.e., the analogue of linear independence of vectors in a vector
space holds, and X generates G.

We know if V and W are vector spaces over F with bases of the same cardinality, then
they are isomorphic. The analogue for free groups holds.

Lemma 18.3. Let X0 and Y0 be sets, A and B groups with set maps iA : X0 → A
and iB : Y0 → B such that A is a free group on X = iA(X0) and B is a free group of
Y = iB(Y0). Suppose that |X0| = |Y0|. Then A and B are isomorphic.

Proof. Let j : X0 → Y0 be a bijection. As A and B are free on bases X0, Y0,
respectively, there exists unique group homomorphisms ϕ : A → B and ψ : B → A such
that

X0

iA
��

j
// Y0

iB
��

A
ϕ
//
B

ψ
oo

commutes. By the uniqueness in the universal property of free groups, ψ ◦ ϕ = 1A and
ϕ ◦ ψ = 1B. Therefore, ϕ and ψ are inverse isomorphisms. �

We also know that if V is a finite dimensional vector space, then any two bases for V
have the same cardinality. This is also true for infinite dimensional vector spaces using
the Schroeder-Bernstein Theorem (cf. Remark 1.12) which we assume. We have seen
that a finitely generated free abelian group group has a well-defined rank in Lemma 14.14



94 III. GROUPS

(and this also holds in the non-finitely generated case by an analogous argument). We,
therefore, have the following proposition.

Proposition 18.4. Let G be a free group on bases X and Y . Then |X| = |Y |. In
particular, two free groups are isomorphic if and only if they have bases of the same
cardinality.

Proof. Let G be a free group on basis X and : G → Gab be the canonical epi-
morphism where Gab = G/[G,G] is the abelianization of G (cf. Exercise 13.7(12)). The
canonical map takes X 7→ X. Since the kernel of is [G,G] and G is free on X, we
see that Gab is free abelian on basis X and |X| = |X|. The result follows by Remark
14.17. �

We now prove the existence of free groups.

Theorem 18.5. Let X be a nonempty set. Then there exists a free group G on X.

Proof. Choose a set X ′ disjoint from X of the same cardinality, so we have a bijection
X → X ′ which we denote by x 7→ x−1. Let X ′′ be a set disjoint from X ∪ X ′ having
precisely one element. Let X ′′ = {e}. We call A = X ∪ X ′ ∪ X ′′ the alphabet and the
elements of A the letters. If x ∈ X, we also write x1 for x and if a is a letter, we also write
(a−1)−1 for a. Call a sequence w = (a1, . . . , an, . . . ), ai ∈ A (not necessarily distinct), a

word if ai 6= e for only finitely many i. Let W̃ be the set of words in �
∞
i=1A. The word

(e, . . . , e, . . . ) is called the empty word. A word w = (a1, . . . , an, . . . ) in W̃ is called a
reduced word if w satisfies

(i) ai 6= a−1
i+1 if ai 6= e.

(ii) If ai = e, then ak = e for all k ≥ i.

If w is a reduced word, but not the empty word, we can write it as

w =xn1
1 · · ·xnmm , xi ∈ X, not necessarily distinct, ni ∈ {±1} for all i and some m with

xnii 6= x
−ni+1

i+1 for all i.

We write e for the empty word. Let W be the set of reduced words.

Note. Spelling in W is unique by the definition of �
∞
i=1A.

Define · : W ×W → W as follows: w = e ·w = w · e for any w ∈ W and if w = xn1
1 · · ·xnrr

and w′ = ym1
1 · · · ymss with xi, yj ∈ X (not necessarily distinct) and ni,mj ∈ {±1} for

all i and j, let w · w′ = xn1
1 · · ·xnrr y

m1
1 · · · ymss by juxtaposition and then reduce, e.g., if

xnrr = y−m1
1 delete the pair unless reduced to the empty word and continue in this way to

get a reduced word.

Claim 18.6. The · : W ×W → W above is well-defined and makes W into a group such
that the inclusion X ⊂ W makes X into a free group on basis X, so W = 〈X〉.

The fact that · : W ×W → W is a well defined map will follow from our construction
which will also show that W satisfies associativity under this map, it is then clear that W
is a group. To do this we use a trick of Van der Waerden. For each x ∈ X and n ∈ {±1},
define a map
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|xn| : W → W by e 7→ xn and

xn1
1 · · ·xnrr 7→

{
xnxn1

1 · · ·xnrr if xn 6= x−n1
1

xn2
2 · · ·xnrr otherwise.

Clearly,

|xn||x−n| = 1W = |x−n||xn|,
so |xn| is a permutation of W , i.e., |xn| ∈ Σ(W ) for all x ∈ X and n ∈ {±1}. Let

W0 := 〈|x| | x ∈ X〉 ⊂ Σ(W ), a subgroup.

As spelling is unique, we have a well-defined surjection

ϕ : W → W0 given by e 7→ 1W and xn1
1 · · ·xnrr 7→ |x

n1
1 | · · · |xnrr |.

Let z ∈ W0. Then there exist xi ∈ X and ni ∈ {±1} such that z = |xn1
1 | · · · |xnrr |. If

xnii = x
−ni+1

i+1 , then |xn1
i ||x

ni+1

i+1 | = 1W and we can cancel them (or reduce to 1W ), which we
may assume always has been done. Since W0 is a group, the result is always unique. But
then

ψ : W0 → W given by 1W 7→ e and |xn1
1 | · · · |xnrr | 7→ |x

n1
1 | · · · |xnrr |(e)

is well-defined as |xn1
1 | · · · |xnrr | = |xn1

1 · · ·xnrr | and spelling is unique in W. In particular,
ψ ◦ ϕ = e and ϕ ◦ ψ = 1W . It follows that ϕ is a bijection. By construction

ϕ(w1 · w2) = ϕ(w1)ϕ(w2) for all c1, w2 ∈ W.

As W0 is a group, it follows that · : W×W → W above is well-defined and as associativity
holds in W0, associativity holds in W .

We leave it as an exercise to show that W is a free group on basis X, i.e., satisfies the
universal property of free groups. �

Corollary 18.7. Let G be a free group on the set X. Then G = 〈X〉 and there exist no
nontrivial relations among the elements of X.

We leave the proof as an exercise.

Definition 18.8. Let H be a subgroup of a group G. The normal closure of H in G is
the smallest normal subgroup of G containing H, i.e., the group 〈xHx−1 | x ∈ G〉.

Definition 18.9. A group G is said be defined by generators X = {xi | i ∈ I} and
relations Y = {yj | j ∈ J} if G ∼= E/N where E is a free group on basis X, Y ⊂ E, and
N is the normal closure of 〈Y 〉 in E. If this is the case, we say (X, Y ) is a presentation
and also (by abuse of notation) write G = 〈X | Y 〉.

Corollary 18.10. Every group has a presentation, unique up to isomorphism.

Proof. Let G be a group and X a subset of G that generates G (e.g., we can take
G itself). Let E be the free group on basis X. By the universal property of free groups,
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there exists a unique group homomorphism ϕ : E → G such that

X � o

inc   

� � inc // E

ϕ
��

G

commutes. As G =< X >, the homomorphism ϕ is onto. Let Y be any subset of kerϕ
such that kerϕ is the normal closure of < Y >. Then (X, Y ) is a presentation of G. We
leave the proof of uniqueness as an exercise. �

Corollary 18.11. (Van Dyck’s Theorem) Let X be a nonempty set and Y a set of reduced
words based on X (obvious definition). Let G = 〈X | Y 〉 be a presentation of G. Suppose
that H is a group satisfying H = 〈X〉 and H satisfies all the relations in Y . Then there
exists a (group) epimorphism ψ : G→ H.

Proof. Let E be the free group of X and N the normal closure of < Y > in E. As

X � p

inc   

� � inc // E

H,

by the universal property of free groups, there exist unique group homomorphisms

E

ϕ
  

θ
// G

H.

We define ψ : G → H as follows: For each g ∈ G choose xg in the fiber θ−1(g) :=
{y ∈ E | θ(y) = g} and set ψ(g) := ϕ(xg). We must show that ψ is well-defined, i.e.,
independent of the choice of xg ∈ θ−1(g). Suppose that x, y in E satisfies θ(x) = g = θ(y).
Then θ(y−1x) = eG, so y−1x lies in ker θ = N , the normal closure of < Y > in E. If
H =< X|Y ′ >, then N lies in the normal closure kerϕ = N ′ of < Y ′ > in E by
hypothesis. Consequently, ker θ ⊂ kerϕ, so ϕ(x) = ϕ(y) and ψ if well defined. Clearly ψ
is a homomorphism and surjective as both θ and ϕ are. �

Examples 18.12. Let Q =< a, b | a2 = b2, a4 = e, bab−1 = a−1 > be the quaternion
group and G be the subgroup of M2(C) generated by(

1 0
0 1

)
,

(√
−1 0
0 −

√
−1

)
,

(
0 1
−1 0

)
, and

(
0

√
−1√

−1 0

)
.

We show Q ∼= G. Using the Van Dyck’s Theorem, we get a group epimorphism Q → G
given by

a 7→
(√
−1 0
0 −

√
−1

)
and b 7→

(
0 1
−1 0

)
.

Check that |G| ≥ 8. The relations for G imply that ba = a3b and b3 = a2b, so we must
have |Q| ≤ 8. It follows that |Q| = 8 and G ∼= Q.
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We end this section with a further useful example of universal properties.

Definition 18.13. Let G1 and G2 be two groups. A free product of G1 and G2 is a group
E together with group monomorphisms

(*) G1

θ1

  

E

G2

θ2

>>

satisfying the following universal property: If H is a group and we group homomorphisms

G1

ψ1

  

H

G2

ψ2

>>

then there exists a unique group homomorphism ϕ : E → H such that the diagram

G1

θ1   

ψ1

))
E

ϕ
// H

G2

θ2

>>

ψ2

55

commutes.

Theorem 18.14. If G1 and G2 are groups, then a free product of G1 and G2 exists.

In fact if we fix the monomorphisms in (*), then the fiber product is unique up to a
unique isomorphism and it is usually denoted by G1 ∗G2.

We leave the proof as an exercise. It is quite similar to the existence of a free group
defining an alphabet in this case as follows: Assume that G1 \ {eG1} and G2 \ {eG2}
are disjoint. Let {e} be a set disjoint from (G1 \ {eG1}) ∪ (G2 \ {eG2}) and set A =
(G1 \ {eG1}) ∪ (G2 \ {eG2}) ∪ {e}. Then define words in the obvious way, calling a
nonempty word w reduced if w = a1 · · · ar with ai ∈ A \ {e} for i = 1, . . . , r, some r and
no adjacent letters lie in the same Gi, i = 1, 2. Now proceed as before.

Of course, it is clear that the coproduct of G1, . . . , Gn exists, but so does Gi, i ∈ I,
a well ordered set using the Axiom of Choice and its equivalences. For example, ∗I is
isomorphic to the free group on basis I. See the exercises.

More generally, we have
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Definition 18.15. Suppose that G1, G2 and H are groups. A free product of G1 and G2

with amalgamation H is a group G1 ∗H G2 together with group homomorphisms

G1

θ1

$$

H

ϕ1

>>

ϕ2
  

G1 ∗H G2

G2

θ2

::

with ϕi, i = 1, 2, monomorphisms
satisfying the following universal property: If G is a group and we have group homomor-
phisms

(*) G1

ρ1

  

H

ϕ1

>>

ϕ2   

G

G2

ρ2

>>

then there exists a unique group homomorphism µ : G1 ∗HG2 → G such that the diagram

G1

θ1 $$

ψ1

++H

ϕ1

>>

ϕ2
  

G1 ∗H G2
ϕ

// G

G2

θ2
::

ψ2

33

commutes.

That such an free product with amalgamation exists is left as an exercise.

Free products with amalgamation have a nice application in topology. We first need
some definitions.

Definition 18.16. Let X and Y be a topological space and [0, 1] the unit interval in R.
If f, g : X → Y are continuous maps, a homotopy H : X × [0, 1]→ Y between f and

g at x is a continuous map satisfying H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.
We say that f and g are homotopic and write f ≈ g. The relation ≈ is an equivalence
relation. Moreover, if f1, g1 : X → Y are homotopic, and f2, g2 : Y → Z are homotopic,
then their compositions f2 ◦ f1 and g2 ◦ g1 : X → Z are homotopic.

If x0 ∈ X, a loop at x0 is a continuous map f : [0, 1]→ X satisfying f(0) = x0 = f(1),
i.e., a continuous curve f : [0, 1] → R with the same starting and ending point x0.
Let L(X, x0) be the set of all loops at x0. Define a homotopy of loops f and g for
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f, g ∈ L(X, x0) to be a continuous map H : [0, 1]× [0, 1]→ X satisfying

H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ [0, 1]

H(0, t) = x0 = H(1, t) for all t ∈ [0, 1].

This defines an equivalence relation ∼ on L(X, x0). The set of equivalence classes in
L(X, x0) can be given a group structure as follows: Define f ? g : [0, 1] → X for f, g ∈
L(X, x0) by

(f ? g)(t) := f(2t) for t ∈ [0, 1/2]

(f ? g)(t) := f(2t− 1) for t ∈ [1/2, 1],

and define a binary operation ∗ on L(X, x0) = L(X, x0)/ ∼ by

f ∗ g := f ? g.

The operation ∗ is well-defined and the quotient L(X, x0)/ ∼ is called the fundamental
group of X based at x0 and denoted by π1(X, x0).

The application in topology is the following (which we do not prove):

Theorem 18.17. (van Kampen) Suppose that X is a topological space, U1, U2, U1∩U2 ⊂
X all path connected subspaces, i.e., any two points can be connected by a continuous
curve, with U1 ∩ U2 6= ∅. If X = U1 ∪ U2 and x0 ∈ U1 ∩ U2, then

π1(X, x0) = π1(U1, x0) ∗π1(U1∩U2,x0) π1(U2, x0).

An application shows that the figure eight group defined in Example 8.4(9) is isomor-
phic to the free group Z ∗ Z.

Exercises 18.18.

1. Show that if a vector space V over F satisfies the universal property of vector spaces
for a subset B, then B spans V and is linearly independent. In particular, 0 cannot lie
in B unless V = 0

2. Let V be a vector space over F . Suppose that B0 is a set and iV : B0 → V a set map.
Show if for every vector space W over F and set map f : B0 → W there exists a unique
linear transformation T : V → W such that

B0

fv   

iV
// V

T
��

W

commutes, then iV is an injective map and iV (B0) is a basis for V .

3. Prove the part of Claim 18.6 left undone.

4. Prove Corollary 18.7.

5. Prove that a presentation for a group is unique up to isomorphism.
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6. Define a free abelian group A on basis X to be an abelian group satisfying the following
universal property of free abelian groups: Given any abelian group B and diagram

X

fv   

� � inc // A

B

of set maps with inc the inclusion of X in A, there exists a unique group homomorphism
ϕ : A→ B such that

X

f   

� � inc // A

ϕ
��

B

commutes. Prove that a free abelian group on any nonempty set X exists and is unique
up to isomorphism.

7. Show that Z is a free group on basis {1}.
8. Show that if G is a free group on basis B and B has more than two elements that G is

not abelian.

9. Define the free product of a set of groups {Gi | i ∈ I} and prove it exists. It is denoted
by ∗IGi.

10. Show that a free group on a set X is isomorphic to ∗XZ.

11. Show that a free abelian group on a finite set X is isomorphic to �XZ. [What if X is
not finite?]

12. Let p be a prime and G the group G = 〈x, y | xp = yp = (xy)p = 1〉. Prove that G is
isomorphic to the Klein four group if p = 2 and is infinite if p is odd.

13. Define the infinite dihedral group D∞ to be the group

〈r, f | f 2 = e, f−1rf = r−1〉.
Prove that D∞ ∼= Z/2Z ∗ Z/2Z.

14. Let PSL2(Z) := SL2(Z)/{±1}. Show the following:
(i) There is a group homomorphism ϕ : Z/2Z ∗ Z/3Z→ PSL2(Z).

(ii) The homomorphism ϕ is an isomorphism.

15. A group is called finitely presented if it has a presentation 〈X | R〉 in which both X
and R are finite. Let G be a group with N / G. Prove that G is finitely presented if
and only if N and G/N are both finitely presented.

16. Prove that any finitely generated group that has a presentation with n generators and
r relations with r < n is an infinite group.

17. Prove that free products with amalgamation 18.15 exist.

18. Prove the assertions in Definition 18.16.

19. Prove that the figure eight group is isomorphic to Z ∗Z using van Kampen’s Theorem.



CHAPTER IV

Group Actions

In general, groups arise in mathematics not abstractly, but in a very concrete way.
The simplest geometric example is given an object, what are all the symmetries of that
object, e.g., if the object is a circle, a sphere, a tetrahedron or cube in R3? Of course, we
also have already seen examples in the previous chapter. The dihedral group acts on a
regular n-gon, the symmetric group acts on a set. These are all examples of a given set
upon which a collection of maps acts on it bijectively. This set of maps of the object, can
give us much deeper knowledge about that object. As our examples above are maps, the
composition of bijections satisfies associativity and the identity map acts as the identity.
This is already sufficient to give us our desired abstract formulation. In this chapter, we
give many examples of this, and show how powerful an idea it is. Again we concentrate
on applications to finite groups, since using the natural equivalence relation that arises
allows us to count, resulting in many deep theorems about the structure of such groups.

19. The Orbit Decomposition Theorem

Groups are important because they act on objects. For example,

Σ(S) acts on S
GLn(F ) acts on F n

Dn acts on the vertices of a regular n-gon,

and these actions give information about the groups and the objects on which they act.
We begin by defining how a group G acts on a nonempty set S. We then see how this leads
to an equivalence relation ∼G on S and form the set of equivalence classes S/ ∼G, followed
by the application of the Mantra of Equivalence Relations. To be useful, especially when
|S| is finite, we must compute the cardinality of each equivalence class. Unlike the case
of cosets, we cannot expect the cardinality of each equivalence class to be the same.

We begin with the definition of an action.

Definition 19.1. Let G be a group and S a nonempty set. We say that S is a (left)
G-set under ∗ : G × S → S, writing g ∗ s for ∗(g, s), if ∗ satisfies the following: For all
g1, g2 ∈ G and for all s ∈ S,

(1) (g1 · g2) ∗ s = g1 ∗ (g2 ∗ s).
(2) e ∗ s = s.

The map ∗ : G × S → S is then called a G-action on S. Note that the first property is
just a generalization of associativity, the second that the unity acts like an identity.

Note. If S is a G-set and H a subgroup of G, then we can also view S as an H-set by
restriction, i.e., by the H-action ? : H × S → S given by h ? s := h ∗ s.

101
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We now define the equivalence relation. Let S be a G-set under ∗. Define ∼G on S by

(19.2) s1 ∼G s2 if there exists g ∈ G satisfying s1 = g ∗ s2.

Lemma 19.3. Let S be a G-set under ∗. Then ∼G is an equivalence relation on S.

Proof. Reflexitivity: For all s ∈ S, we have s = e ∗ s, so s ∼G s.
Symmetry: If s1 ∼G s2, then there exists a g ∈ G such that s1 = g ∗ s2, hence

g−1 ∗ s1 = g−1 ∗ (g ∗ s2) = (g−1 · g) ∗ s2 = e ∗ s2 = s2.

Note this shows

(19.4) s1 = g ∗ s2 if and only if g−1 ∗ s1 = s2.

Transitivity: Suppose that s1 ∼G s2 and s2 ∼G s3. Then there exist g, g′ ∈ G satisfying
s1 = g ∗ s2 and s2 = g′ ∗ s3. Hence s1 = g ∗ s2 = g ∗ (g′ ∗ s3) = (g · g′) ∗ s3, so s1 ∼G s3. �

Next, let S be a G-set, s ∈ S. The equivalence class of s via ∼G is the set

s := {s′ ∈ S | there exists g ∈ G such that s′ = g ∗ s}
= {g ∗ s | g ∈ G}.

This equivalence class is called the orbit of s under ∗ and denoted by G∗ s. We always let

O be a system of representatives

for the equivalence classes under ∼G .
(So O consists of precisely one element from each orbit — equivalence class.) We write
G\S for S/ ∼G = {G ∗ s | s ∈ O}, the set of orbits for the action ∼G. Applying the
Mantra of Equivalence Relations, we have

Mantra of G-actions. Let S be a G-set, O a system of representatives. Then

S =
∨
O

G ∗ s and if |S| is finite, then |S| =
∑
O

|G ∗ s|.

To make this useful, we must be able to compute the size of an orbit if finite. In
general, orbits may have different cardinalities. We do this by attaching a group to each
element of S in the following way. If S is a G-set, s ∈ S, define the stabilizer or isotropy
subgroup of s by

Gs := {x ∈ G | x ∗ s = s}.

Lemma 19.5. Let S be a G-set, s ∈ S. Then Gs is a subgroup of G.

Proof. By definition of a G-action, e ∈ Gs, so Gs is nonempty. If x, y ∈ G, then
(xy) ∗ s = x ∗ (y ∗ s) = x ∗ s = s and if y ∗ s = s, then s = y−1 ∗ s, so Gs is a subgroup. �

We can now compute the cardinality of an orbit.

Proposition 19.6. Let S be a G-set, s ∈ S. Define

fs : G/Gs → G ∗ s by xGs 7→ x ∗ s.
Then fs is a well-defined bijection. In particular, if [G : Gs] is finite, then

|G ∗ s| = [G : Gs] and |G ∗ s| divides |G|.
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Proof. Let x, y ∈ G. Then

x ∗ s = y ∗ s if and only if y−1 ∗ (x ∗ s) = s

if and only if (y−1x) ∗ s = s

if and only if y−1x ∈ Gs

if and only if xGs = yGs.

This shows that fs is well-defined and one-to-one. As fs is clearly surjective, the result
follows. �

Example 19.7. Let S be the faces of a cube and G be the group of rotations of S. So G
acts on S. Given any two faces s1, s2, there is an element of G taking s1 to s2. So there
is one orbit under this action. We say that G acts transitively on S. If s is a face, then
the isotropy subgroup Gs of s is the cyclic group C4 of rotations of the face s about its
center. By the proposition, we have

|G|/|C4| = [G : Gs] = |G ∗ s| = |S| = 6,

so |G| = 24. More generally, let S be the regular solid having n faces, each which has k
edges (or vertices) and G the group of all rotations of S. Then the G-action is transitive
and |G| = nk by an analogous argument. It can be shown that there are only five such
regular solids: the tetrahedron (n = 4, k = 3), the cube, the octahedron (n = 8, k = 3), the
dodecahedron (n = 12, k = 5), and the icosahedron (n = 20, k = 3). So the corresponding
rotation groups have 12, 24, 24, 60, 60 elements and are isomorphic to A4, S4, S4, A5, A5

respectively. We give further details in Section 20.

Suppose that S is a G-set, s ∈ S. We say that G ∗ s is a one point orbit of S and s is
a fixed point (under the action of G) if G ∗ s = {s}. We set

FG(S) := {s ∈ S | |G ∗ s| = 1} ⊂ S,

the set of fixed points of S under the action of G.
If S is a G-set, a major problem is to determine if FG(S) is nonempty, and if it is, to

compute |FG(S)|.
The following equivalent conditions characterize the one point orbits. The proof is left

as an easy exercise.

Lemma 19.8. Let S be a G-set, s ∈ S. Then the following are equivalent:

(1) s ∈ FG(S).
(2) Gs = G.
(3) G ∗ s = {s}.

In particular, if O is a system of representative, then FG(S) ⊂ O.

If O is a system of representatives for a G-action on a set S, we always set

O∗ = O \ FG(S).

In particular, if s ∈ O∗, we have |G ∗ s| = [G : Gs] > 1, i.e., Gs < G. (Recall that the
symbol < when used for sets means a subset, but not the whole set.)

Putting this all together, we get the desired result:
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Theorem 19.9. (Orbit Decomposition Theorem) Let S be a G-set. Then

S = FG(S) ∨
∨
O∗
G ∗ s.

In particular, if S is a finite set, then

|S| =
∑
O

|G ∗ s| = |FG(S)|+
∑
O∗

[G : Gs].

[ Note if s ∈ O∗, then 1 < [G : Gs] and if G is finite then [G : Gs] | |G|.]

Proof. This follows from the Mantra as |G ∗ s| = [G : Gs]. �

Exercises 19.10.

1. Let S be a G-set, s1, s2 ∈ S. Suppose that there exists an x ∈ G such that s2 = x ∗ s1,
i.e., s2 ∈ G ∗ s1. Show that Gs2 = xGs1x

−1.

2. Let S be a G-set. We say that the G-action is transitive if for all s1, s2 ∈ S, there
exists a g ∈ G satisfying g ∗ s1 = s2, equivalently, S = G ∗ s; and is doubly transitive
if for all pairs of elements (s1, s

′
1) and (s2, s

′
2) in S with s1 6= s′1 and s2 6= s′2, there

exists a g ∈ G satisfying g ∗ s1 = s2 and g ∗ s′1 = s′2. Suppose that S and G are finite.
Show if the action is transitive then |G| ≥ |S| and if the action is doubly transitive
then |G| ≥ |S|2 − |S|.

3. Let G be a group and H a subgroup of G. Show that the set of cosets G/H, so the
quotient (set) of G mod H is a G-set by G×G/H → G/H via (g, kH) 7→ gkH.

4. Let G be a group. Prove that there exists a bijection between the following two sets:
(i) The subgroups of G.

(ii) The cosets (quotient sets) of the G-set G.
This bijection establishes a correspondence between a subgroup H in G with the quo-
tient G-set G/H, i.e., the cosets of H in G.

5. Let G be a group and X and Y G-sets. A set map f : X → Y is called a G-set map or
a G-equivariant if ϕ(gx) = gϕ(x) for all g ∈ G and x ∈ X. Show X is a disjoint union
of quotients of the G-set G. Moreover, if X is finite, then this disjoint union is finite.

6. Let G be a group and H and K be subgroups. Suppose that ϕ : G/H → G/K is
a G-equivariant map. Then there exists an element x ∈ G satisfying ϕ = λx (left
multiplication by x), xgK = gxK, and x−1Hx ⊂ K for all g ∈ G.

20. Addendum: Finite Rotation Groups in R3.

In this addendum, we give further details to Example 19.7. Recall if R is a commu-
tative ring, then the orthogonal group is On(R) := {A ∈ GLn(R) | AAt = I} and the
special orthogonal group is SOn(R) = On(R) ∩ SLn(R). In this section, we shall determine
the finite subgroups of SO3(R). Elements of SO3(R) are very special as any element is,
in fact, a rotation about some axis through the origin in R3. This is easy to see using
linear algebra. Indeed let A be a nonidentity element of SO3(R). Viewing R3 as an inner
product space under the dot product · the matrix A is an isometry, i.e., A preserves dot
products as Av · Aw = v · AtAw = v · w for all v and w in R3 and also in C3. It follows
that every eigenvalue ε of A in C satisfies |ε| = 1. In particular, ε is a root of unity, so is
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±1 if real. As the characteristic polynomial fA of A is of odd degree, it has a real root,
hence an eigenvalue 1 or −1. If all the roots of fA are real, detA = 1 forces A to be
similar to diag(1,−1,−1), a rotation of angle π around some axis. If the roots of fA are

not all real, they must be 1, e2π
√
−1/n, e−2π

√
−1/n, some n, and A is similar to the rotation1 0 0

0 cos 2π/n sin 2π/n
0 − sin 2π/n cos 2π/n

 about some axis.

We view SO3(R) acting on the unit sphere S2. So if A is a nonidentity element in
SO3(R), it is the rotation by some angle about some axis through the origin. This axis
intersects S2 in two points, that we call the poles of A. If A is of finite order, then the
angle of rotation must be 2π/n for some integer n. Let G be a finite subgroup of SO3(R)
of order n, and set P := {p | p is a pole of some element A in G}, called the set of poles
of G.

Lemma 20.1. Let G be a finite subgroup of SO3(R) of order n, and P the set of poles of
G. Then P is a G-set under the natural action. In particular, if p ∈ P , |G| = [G : Gp]|Gp|
and |G ∗ p| = [G : Gp], where Gp is the isotropy subgroup of p and G ∗ p the orbit of p.

Proof. Let p be a pole of A in G. If B is a matrix in G, then (BAB−1)Bp = Bp, so
Bp is a pole of BAB−1. �

Let G be a finite subgroup of SO3(R) of order n and P the set of poles. If p is a pole,
let np = |Gp|. As every nonidentity element of G has two poles and each nonidentity
element in Gp has p as a pole, we have

2(n− 1) =
∑
P

(np − 1).

Let G ∗ p1, . . . , G ∗ pr be the (distinct) orbits of P and ni = npi , for i = 1, . . . , r. As the
order of stabilizers of elements in a fixed orbit are all the same, we have

2n− 2 =
r∑
i=1

(ni − 1)|G ∗ pi|,

so dividing by n = |G| implies that

2− 2

n
=

r∑
i=1

(ni − 1)
|G ∗ pi|
n

=
r∑
i=1

(ni − 1)
1

|Gpi |
=

r∑
i=1

(1− 1

ni
).

As n > 1 and 1 − (1/ni) ≥ 1/2, we have 1 ≤ 2 − (2/n) ≤ 2. It follows that we can only
have r = 1, 2, or 3, i.e., there are at most three orbits. We investigate each possibility
separately.

Case. r = 1:

This cannot occur, as 1 ≤ 2 = (2/n) = 1− (1/n1) is impossible.

Case. r = 2:

As

2− 2

n
= (1− 1

n1

) + (1− 1

n2

),



106 IV. GROUP ACTIONS

we have
2

n
=

1

n1

+
1

n2

.

It follows that n = n1 = n2 and |G ∗ p1| = |G ∗ p2| = 1 as n = ni|G ∗ pi|. In particular,
|P | = 2. Since every nonzero element in G has two poles, we must have G is a cyclic
group of finite order with axis connecting the two poles.

Case. r = 3:

In this case, we have

(*)
2

n
=

1

n1

+
1

n2

+
1

n3

,

and we may assume that n1 ≤ n2 ≤ n3. We must find the groups with data (n1, n2, n3).
Let [|G ∗ p1|, |G ∗ p2|, |G ∗ p3|] = [n/n1, n/n2, n/n3] be the tuple of the sizes of the corre-
sponding orbits. If n1 ≥ 3, then 2/n ≤ 0, which is impossible, so n1 = 2, and

1

2
+

2

n
=

1

n2

+
1

n2

.

This is impossible if n2 ≥ 4, so n2 = 2 or 3.

Subcase. r = 3, n2 = 2:

By (*), we must have n3 = n/2. Therefore, Gp3 has two poles so is cyclic of order n/2.
As P is a G-set and the nonzero element g in Gp1 must be a rotation of angle π, it follows
that the poles of g must be perpendicular to the poles of the nonzero elements in G ∗ p3

(and reverse pole pairs). It follows that G must be the dihedral group Dn
2
.

Therefore we may assume that n2 = 3. If n3 ≥ 6, then (1/2) + (1/3) + (1/n3) ≤ 0, so
n3 = 3, 4, or 5.

Subcase. G has data (2, 3, 3):

It follows by (*) that n = 12, so G also has orbit data [6, 4, 4]. As P is a G-group, if p
lies in G ∗ p3 and q is the closest point to p in G ∗ p2, then Gp3q consists of at least three
points equidistance from p, which form an equilateral triangle. It follows that there are
four such triangles with the poles forming a regular tetrahedron. Therefore, we see that
G is the rotation group of a regular tetrahedron and the orbit data [6, 4, 4] is the number
of edges, vertices, and faces of the tetrahedron, respectively. (Cf. Example 19.7.) This
group can be shown to be isomorphic to A4 using Exercise 24.24(9) below.

Subcase. G has data (2, 3, 3):

It follows by (*) that n = 24, so G also has orbit data [12, 8, 6]. In this case, if p lies in
G ∗ p3 and q is the closest point to p in G ∗ p2, then Gp3q consists of at least four points
equidistance from p, which form a square, and we see that G is the group of rotations
of a cube with orbit data [12, 8, 6], the number of edges, vertices, and faces of a cube,
respectively. (Cf. Example 19.7.) This group can be shown to be isomorphic to S4 using
Exercise 24.24(9) below.

Subcase. G has data (2, 3, 5):

It follows by (*) that n = 60, so G also has orbit data [30, 20, 12]. In this case, if p lies in
G ∗ p3 and q is the closest point to p in G ∗ p2, then Gp3q consists of at least five points
equidistance from p, which form a pentagon, and we see that G is the group of rotations
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of a regular icosahedron with orbit data [30, 20, 12], the number of edges, vertices, and
faces of a regular icosahedron, respectively. (Cf. Example 19.7.) This group can be shown
to be isomorphic to A5 using Exercise 24.24(9) below.

21. Examples of Group Actions

In this section, to demonstrate the usefulness of this concept, we give many examples
of group actions. As this is the most important concept in our study of groups, there are
many exercises at the end of this section. To understand this topic, one should do many
of them. In the following two sections, we shall give further specific applications of some
of examples given in this section.

Example 21.1. Conjugation on Elements.

In this example, we let the G-set S be G itself. The (left) action is given by

∗ : G× S → S by g ∗ s = gsg−1

called conjugation by G. The orbit of an element a ∈ S = G is

C(a) := G ∗ a = {xax−1 | x ∈ G},
called the conjugacy class of a, and the stabilizer of a is

ZG(a) := Ga = {x ∈ G | xax−1 = a} = {x ∈ G | xa = ax}.
This subgroup of G is called the centralizer of a. So ZG(a) is the set of elements of G
commuting with a. In particular, 〈a〉 ⊂ ZG(a). The set of fixed points of this action is

(21.2)
FG(S) = {a ∈ S | xax−1 = a for all x ∈ G}

= {a ∈ G | xa = ax for all x ∈ G},

the center Z(G) of G. Recall it is a normal subgroup of G. Of course, in general, a G-set
is not a group, so one cannot expect the set of fixed points to have an algebraic structure.

Let C be a system of representatives for the conjugation action of G on G. So C∗ =
C \ Z(G), and the Mantra of G-actions becomes

G = Z(G) ∨
∨
C∗
C(a),

with

(21.3) |G| = |Z(G)|+
∑
C∗

[G : ZG(a)],

if G is finite. Equation (21.3) is called the class equation. We give an interesting appli-
cation of the class equation. If G is a finite group of order pn, for some (positive) prime
p and n > 0, we call G a p-group. So a subgroup of a p-group is either a p-group or the
trivial group.

Application 21.4. If G is a p-group, then 1 < Z(G) ⊂ G.
(Recall this means 1 6= Z(G).) In particular, if G is a p-group of order pn, with n > 1,
then G is not simple:
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We know if a ∈ C∗, then p | [G : ZG(a)], so

0 ≡ |G| = |Z(G)|+
∑
O∗

[G : ZG(a)] ≡ |Z(G)| mod p.

Since e ∈ Z(G), we must have |Z(G)| ≥ 1, so p | |Z(G)| and |Z(G)| ≥ p. In particular,
1 < |Z(G| ⊂ G. If G is not abelian, then 1 < Z(G) < G, and G is not simple, as Z(G)/G.
If G is abelian, then G = Z(G) and there exists an element a in G of order p by Exercise
10.16(2). As |G| > p, we have 1 < 〈a〉 < G with 〈a〉 / G.

Useful Observation. If we are trying to prove a property about groups and G is a finite
non-abelian group with Z(G) > 1 (which in general may not occur), then G/Z(G) is a
group of order less than that of G and the canonical epimorphism : G→ G/Z(G) may
allow us to apply induction.

Computation 21.5. Let G = D3 = {e, r, r2, f, fr, rf}, with |G| = 6 and satisfying
r3 = e = f 2 and frf−1 = r−1 = r2. We have fr = r2f and rf = fr2, so

C(e) = {e} and 1 | 6
C(r) = {r, r2} and 2 | 6
C(f) = {f, fr, rf} and 3 | 6

and

ZG(e) = G and |C(e)|= [G : ZG(e)] = 1

ZG(r) = {e, r, r2} and |C(r)|= [G : ZG(r)] = 2

ZG(f) = {e, f} and |C(f)|= [G : ZG(r)] = 3

with fixed points

Z(G) = {e},
so

|G| = |Z(G)| + |C(r)| + |C(f)|
6 = 1 + 2 + 3.

Note that the conjugacy classes (equivalence classes), C(r) = C(r2) and C(f) = C(fr) =
C(rf). This application leads to the following theorem.

Theorem 21.6. Let G be a group of order p2 with p a prime. Then G is abelian.

Proof. Suppose that G is not abelian, then Z(G) < G by Exercise 21.25(1). By
Application 21.4, we have 1 < Z(G); so by Lagrange’s Theorem, we must have |Z(G)| = p.
Let a ∈ G \ Z(G). Then we have Z(G) < ZG(a), as a ∈ ZG(a). But then the subgroup
ZG(a) must satisfy |ZG(a)| = p2 = |G| by Lagrange’s Theorem, hence ZG(a) = G. This
implies that a ∈ Z(G), a contradiction. �

Remarks 21.7. Let G be a p-group.

1. If G = p2, the group G is abelian, but may not be cyclic. If G is cyclic, then G ∼= Z/p2Z.
However, the group Z/pZ× Z/pZ is not cyclic.

2. D4 is a 2-group of order 23, but not abelian.
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Later we shall prove a major theorem. It will imply that every finitely generated
abelian group, which includes all finite abelian groups, is a direct product of cyclic groups.
There is also a uniqueness statement. At present, we only can show that abelian groups
of order pq, with p, q (not necessarily distinct) primes are of this form.

We now jazz up Example 21.1 by letting G act on a subgroup H by conjugation. For
this to work, however, we must have xHx−1 ⊂ H for all x ∈ G, i.e, we must have H / G.
So suppose that H / G. Let G act on H by conjugation, i.e.,

∗ : G×H → H is given by g ∗ h = ghg−1.

We still have C(a) = G ∗ a for all a ∈ H, so if H is a finite group, we have

|H| = |FG(H)|+
∑
O∗

[G : ZG(a)],

as ZG(a) = Ga := {x ∈ G | xax−1 = a}, with a ∈ O, where O is a system of representa-
tives for the G-action on H. An application of this is:

Proposition 21.8. Let G be a p-group and N a nontrivial normal subgroup of G. Then
there exists an non-identity element x ∈ N such that xy = yx for all y ∈ G, i.e.,
1 < N ∩ Z(G).
[Cf. the case N = G with Application 21.4.]

Proof. Let G act on N by conjugation. Every subgroup of G is either 1 or a p-group,
hence

0 ≡ |N | = |FG(N)|+
∑
O∗

[G : ZG(a)] ≡ |FG(N)| mod p

by the Orbit Decomposition Theorem. As xex−1 = e for all x ∈ G, the unity e is a fixed
point, so p | |FG(N)| ≥ 1. Therefore, |FG(N)| ≥ p. The result now follows from

FG(N) = {z ∈ N | xzx−1 = z for all x ∈ G}
= {z ∈ N | xz = zx for all x ∈ G} = N ∩ Z(G). �

We can even generalize this conjugation type action a bit further as follows: Let H
be a subgroup of G. Define the normalizer of H in G by

NG(H) := {x ∈ G | xHx−1 = H}.

The normalizer has the following properties:

Properties 21.9. Let H be a subgroup of G. Then the following are true:

1. NG(H) is a subgroup of G.
2. H / NG(H).
3. If H / K with K a subgroup of G, then K ⊂ NG(H).
4. NG(H) is the unique largest subgroup of G containing H as a normal subgroup.

Replacing G by NG(H), we can let NG(H) act on H by conjugation, by the above,
i.e., we have an NG(H)-action

∗ : NG(H)×H → H given by x ∗ h = xhx−1.
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In fact, we can go one step further. Let K be a subgroup of G and set A = K ∩NG(H).
Then the action

∗ : A×H → H given by x ∗ h = xhx−1

makes H into an A-set. Instead of pursuing this, we generalize conjugation in another
direction.

Example 21.10. Conjugation on Sets.

Let S = P(G) := {A | A ⊂ G, a subset}, the power set of G. Then S becomes a G-set
by

∗ : G× S → S given by x ∗ A = xAx−1

where xAx−1 = {xax−1 | a ∈ A}. Note that |A| = |xAx−1| for all x ∈ G. We also call
this action conjugation. The orbit of A ∈ P(G) is the conjugacy class

C(A) = G ∗ A = {xAx−1 | x ∈ G},

and the stabilizer of A is

NG(A) := GA = {x ∈ G | xAx−1 = A},

called the normalizer of A in G. The Orbit Decomposition Theorem yields

S = P(G) =
∨
O

C(A) = FG(S) ∨
∨
O∗
C(A).

If G is finite so is P(G), and we would then have

2|G| = |S| = |FG(S)|+
∑
O∗

[G : NG(A)].

This is not so useful, so we try to cut S down. We use the following:

Observation 21.11. Let S be a nonempty set and ∼ an equivalence relation of S.
Suppose a subset ∅ 6= T ⊂ S satisfies the following:

For all a ∈ T, we have [a]∼ ⊂ T.

Then ∼ |T (actually ∼ |T×T ) defines an equivalence relation on T and

T/ ∼T= {[a]∼ | a ∈ T}.

[We are just saying: If C partitions S and ∅ 6= D ⊂ C, then D partitions
⋃
D a.]

There are many interesting subsets of P(G). Recall that if H is a subgroup of G, then
so is xHx−1 for all x ∈ G.

Specific Examples 21.12. Let G be a group. Then the following subsets of P(G) are
G-sets by conjugation (i.e., restricting the action above) if nonempty:

(1) P(G).
(2) G := {H | H ⊂ G a subgroup }.
(3) Tn := {A | A ⊂ G with |A| = n}.
(4) G ∩ Tn.
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(5) If G is a finite group, p a (positive) prime satisfying pr|| |G|, with r > 0, so
G = prm with p and m relatively prime, then

Sylp(G) := G ∩ Tpr = {H | H a subgroup of G of order pr}.
(6) If H ∈ G then C(H).
(7) If A ∈ P(G) then C(A).

We can also push this further by restricting the action of G on one of these sets to
the action by a subgroup. We shall later study this action in greater detail, especially (5)
and (6).

Example 21.13. Translation Action.

Let G be a group, then the power set P(G) is a G-set via

∗ : G× P(G)→ P(G) defined by g ∗ T = gT := {gx | x ∈ T}
called translation. As before, this is more interesting when we replace P(G) by appropriate
subsets. For example, using the notation of (21.12), G acts on Tn by translation.

Warning 21.14. G does not act on G by translation as H ∈ G does not mean that
x ∗H ∈ G. In fact, x ∗H would lie in G if and only if x ∈ H.

One also can translate other sets by G. For example, if H is a subgroup of G, we can
let G act on the cosets G/H by translation, i.e., let

∗ : G×G/H → G/H be given by x ∗ aH = xaH.

We have used this action before, viz., in the proof of the General Cayley Theorem. The
stabilizer of aH in G/H under translation by G is given by:

GaH = {x ∈ G | xaH = aH} = {x ∈ G | a−1xaH = H}
{x ∈ G | a−1xa ∈ H} = {x ∈ G | x ∈ aHa−1}
= aHa−1.

Note that if H < G in the above then FG(G/H) = ∅ as G = GaH would imply that
G = aHa−1.

The following proposition is a useful computing devise. We leave its proof as an
exercise.

Proposition 21.15. Let G be a finite group, H a subgroup of G. Suppose that H is a
p-group and p | [G : H]. Then p | [NG(H) : H]. In particular, H < NG(H). Consequently,
if G is a finite p-group and H < G a subgroup, then H < NG(H).

We finish the discussion of translation actions to answer our outstanding question on
how cosets arise naturally. Indeed, if H is a subgroup of G, and G is a right H-set by the
right H-action by translation on G, i.e.

∗ : G×H → G given by g ∗ h = gh,

then the orbit g ∗ H is the left coset gH and the Orbit Decomposition Theorem in this
case is just Lagrange’s Theorem. Note the map ∗ is surjective. What is the fiber of ∗ at
g ∈ G?
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Example 21.16. Automorphic Action.

Let V be a vector space over a field F . A linear transformation T : V → V is called
an endomorphism of V . The set

EndF (V ) := {T | T : V → V a linear transformation}

is a ring under the usual addition and composition of functions. [From linear algebra, you
should know the relationship between EndF (V ) and Mn(F ) if V is n-dimensional.] Let
G = EndF (V ). Then we have a map

∗ : G× V → V given by T ∗ v = T (v)

called evaluation. If V = F n, we can replace EndF (V ) by Mn(F ). Unfortunately, this does
not give a G-action on V as the zero endomorphism under addition is not the identity
on V nor is it a group under composition, so although interesting, it is not an example

of what we are studying. However, if we let G = AutF (V ) = (EndF
(
V )
)×

. Then V is a
G-set via the evaluation

∗ : G× V → V given by T ∗ v = T (v).

Example 21.17. Addendum to Example 21.1.

Let R be any ring, S = Mn(R), and G = GLn(R). Then S is a G-set under conjugation,
i.e.,

∗ : G× S → S is given by A ∗B = ABA−1.

This is an important action and leads to the following:

Problem 21.18. Let F be a field and ∗ the action above. Find a nice system of repre-
sentatives for this action.

If every non-constant polynomial with coefficients in the field F has a root in F , we say
that F is algebraically closed, e.g., the complex numbers are algebraically closed by the
Fundamental Theorem of Algebra (to be proven later). The above sought after system
of representatives is called the set of Jordan canonical forms. For a general field F , the
sought after set is the set of rational canonical forms. Proving this will be a major goal
later.
[We have another action by

∗ : G× S → S given by A ∗B = ABAt.

and ask the same questions. This is especially interesting if S = Mn(F ) is replaced by the
subset of symmetric matrices or the subset of skew symmetric matrices.]

Example 21.19. Evaluation.

We have previously seen another example of an action given by evaluation, viz., if S is a
nonempty set, then S is a Σ(S)-set by the evaluation map

∗ : Σ(S)× S → S given by γ ∗ s = γ(s).
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If H is a subgroup, we can restrict the action to H. For example, let γ ∈ Σ(S) and
Γ = 〈γ〉. Then S becomes a Γ-set by the action ∗ : Γ× S → S given by the evaluation

γi ∗ s = γi(s) for all integers i.

We shall use this action later.
It should be mentioned that evaluation actions are used all the time. If you have an

object, then its automorphism group [definition?] acts on it by evaluation. For example,
such objects can be algebraic as above, topological, or geometric.

Example 21.20. Pullback Action.

As mentioned before a G-action on a set S can be restricted to the action of any subgroup
of G. In the examples above, we have used this. We now generalize this. Recall that
a subgroup of a group is just a group in which the inclusion map is a monomorphism.
More generally, suppose that we have a group homomorphism θ : G→ G ′ and a G ′-set S
defined by ∗ : G ′ × S → S. Then S becomes a G-set by the pullback action defined by

? : G× S → S is given by g ? s = θ(g) ∗ s.

Example 21.21. Shift Action.

Our last example, is an action that leads to a nice result called Cauchy’s Theorem, which
is the first step toward showing that finite groups have subgroups of the order of the power
of a prime for any power of that prime dividing the order of the group. Let G be a finite
group and p a (positive) prime dividing the order of G. Set

S = {(g1, . . . , gp) ∈ Gp | g1 · · · gp = e in G} ⊂ Gp,

where Gp = G × · · · × G (p times). As (e, . . . , e) ∈ S, the set S is nonempty. Moreover,
it follows immediately that

(g1, . . . , gp) ∈ S =⇒ gp = (g1 · · · gp−1)−1 in G.

Therefore, for all ordered (p − 1)-tuples g1, . . . , gp−1, with gi ∈ G, we have a unique gp
such that (g1, . . . , gp) lies in S. Therefore, |S| = |Gp−1|, so p | |S|.

We want a group to act on S. Let : Z → Z/pZ be the canonical epimorphism. If
y ∈ Z, let ỹ ∈ [y]p = y denote the representative that is the smallest positive integer in y.
So ỹ ∈ {1, . . . , p}. With this notation, if x ∈ Z, the ordered tuple

1̃ + x, . . . , p̃+ x

will be a (cyclic) permutation of 1, . . . , p. Let (Z/pZ,+) act on S by

(*) x ∗ (g1, . . . , gp) = (g1̃+x, . . . , gp̃+x)

i.e., if 1 ≤ i, x ≤ p, then the action of x shifts i by x slots to the number x + i until it
hits p which it then maps to 1, etc. For example, if p = 5, then 3 ∗ (g1, g2, g3, g4, g5) =
(g4, g5, g1, g2, g3). The right hand side of (*) still lies in S, since g1 · · · gp = e implies
gi+1 · · · gpg1 · gi = e by conjugating successively by g−1

1 , . . . , g−1
i (1 ≤ i < p). It follows

easily that S is a Z/pZ-set under this action. With this action, we can now prove:

Theorem 21.22. (Cauchy’s Theorem) Let p be a (positive) prime dividing the order of
the finite group G. Then there exists an element of G of order p.
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Proof. Let S be the Z/pZ-group under the shift action of Example 21.21. Apply the
Orbit Decomposition Theorem 19.9 to get

|Gp−1| = |S| = |FZ/pZ(S)|+
∑
O∗

[Z/pZ : (Z/pZ)x].

If x ∈ O∗, then (Z/pZ)x = 1 as Z/pZ has only the trivial subgroups. So

0 ≡ |S| ≡ |FZ/pZ(S)| mod p.

As (e, . . . , e) ∈ FZ/pZ(S), we have |FZ/pZ(S)| ≥ p > 1. Thus there exists an element
(e, . . . , e) 6= (g1, . . . , gp) ∈ FZ/pZ(S). But this means that

(g1, . . . , gp) = (g2, . . . , gp, g1) = · · ·
= (gi+1, . . . , gp, . . . , gi) = · · · = (gp, g1, . . . , gp−1)

lies in Gp. It follows that e 6= g1 = · · · = gp. Consequently, if g = g1, then (g, . . . , g) ∈ S,
which means that gp = e as needed. �

Corollary 21.23. Let p be a prime and G a nontrivial finite group. If every non-identity
element in G has order a power of p, then G is a p-group.

Corollary 21.24. Let p and q be primes and G of order pq. Then G is not simple.

Proof. If p = q, then G is abelian hence not simple as G is not of prime order. If
p < q, then G contains a normal group of order q by Useful Counting 12.8.

�

Exercises 21.25.

1. Let G be a group. Show all of the following:
(a) Z(G) =

⋂
a∈G ZG(a).

(b) a ∈ Z(G) if and only if C(a) = {a} if and only if |C(a)| = 1.
(c) a ∈ Z(G) if and only if G = ZG(a).
(d) If G is finite, then a ∈ Z(G) if and only if |ZG(a)| = |G|.

2. Let G be a group and k(G) the number of conjugacy classes in G. Suppose that G is
finite. Show that k(G) = 3 if and only if G is isomorphic to the cyclic group of order
three or the symmetric group on three letters.

3. Let G be a group of order p2 with p a prime. Show that either G ∼= Z/p2Z or G ∼=
Z/pZ× Z/pZ.

4. Show that Properties 21.9 are valid.

5. Compute all the conjugacy classes and isotropy subgroups in A4.

6. Let G be a group of order pn, p a prime. Suppose the center of G has order at least
pn−1. Show that G is abelian.

7. Let G be a p-group. Using Exercise 17.14(8), show that G is a nilpotent group. In
particular a finite product of p-groups for various p is nilpotent.

8. Let G be a nilpotent group (cf. 17.14(8) and H a proper subgroup of G. Show that
H 6= NG(H).
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9. Suppose that H is a proper subgroup of a finite group G. Show that G 6=
⋃
g∈G gHg

−1.

[This may not be true if G is infinite.]

10. Let H be a subgroup of G. Let H act on G/H by translation. Compute the orbits,
stabilizers, and fixed points of this action.

11. Prove Proposition 21.15. [Hint use the previous exercise.]

12. Let G be a group and S a nonempty set. Show
(a) If ∗ : G × S → S is a G-action, then ϕ : G → Σ(S) given by ϕ(x)(s) = x ∗ s (

i.e., if we let ϕx = ϕ(x) then ϕx(s) = x ∗ s) is a group homomorphism (called the
permutation representation).

(b) If ϕ : G → Σ(S) is a group homomorphism then ∗ : G × S → S given by
x ∗ s = ϕx(s) where ϕx = ϕ(x) is a G-action.

13. Let Q be the quaternion group. Show that there exist no group monomorphism ϕ :
Q→ S7.

14. Let G be a group of order pq with q ≤ p primes. Show that G is not simple and has a
normal subgroup of order p.

15. Let G be a finite p-group. Show if pn | |G| then G has a normal subgroup of order pn.

16. Let p be an odd prime. Classify all groups G of order 2p up to isomorphism.

17. Let S be a G-set. Suppose that both S and G are finite. If x ∈ G define the fixed point
set of x in G by

FS(x) := {s ∈ S |x · s = s}.
Show the number of orbits N of this action satisfies

N =
1

|G|
∑
G

|FS(x)|.

[So N is the average of the size of the fixed point sets of elements of G.]

18. Let G be a finite group acting transitively on a finite set S with |S| > 1. Prove that
there exists an element g ∈ G fixing no element in S.

22. Sylow Theorems

Let G be a finite group of order of order prm with p a prime relatively prime to m
and r > 0. A subgroup H of G is called a Sylow p-subgroup of G if H has order pr. Let

Sylp(G) := {H | H a Sylow p-subgroup of G}.
The natural question is answered by the next result. Its proof uses much of what we

have done.

Theorem 22.1. (First Sylow Theorem) Let p be a (positive) prime dividing the order of
a finite group G. Then Sylp(G) is nonempty, i.e., there exists a Sylow p-subgroup.

We prove the stronger

Theorem 22.2. (Generalized First Sylow Theorem) Let p be a (positive) prime such that
ps, with s ≥ 0, divides the order of a finite group G. Then there exists a subgroup of G of
order ps.
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Proof. We induct on the order of G. If |G| ≤ p, the result is trivial. We make the
following:

Induction Hypothesis. If T is any finite group satisfying |T | < |G| and ps | |T |, s ≥ 1,
then T contains a subgroup of order ps.

We must show that G contains a subgroup of order ps. If H < G is a subgroup of G
satisfying p 6 | [G : H], then ps | |H|. By the Induction Hypothesis, H, hence G, contains
a subgroup of order ps. Therefore, we are done unless we make the following:

Assumption. If 1 < H < G is a subgroup, then p | [G : H].

For example, if a ∈ G satisfies ZG(a) < G, then p | [G : ZG(a)]. In particular, this is
true for any a /∈ Z(G), i.e., a ∈ C∗ = C \ Z(G), where C is a system of representatives
for conjugate action of G on G in Example 21.1. Applying the Class Equation (21.3), we
have

0 ≡ |G| = |Z(G)|+
∑
C∗

[G : ZG(a)] ≡ |Z(G)| mod p,

so p | |Z(G)|. By Cauchy’s Theorem 21.22, there exists an element a ∈ Z(G) of order
p. Let H = 〈a〉, a subgroup of G of order p. Since a ∈ Z(G), we have xaix−1 = ai for
all x ∈ G and i ∈ Z. In particular, H / G (cf. Example 11.5(3)) and G/H is a group of
order [G : H] = |G|/|H| = |G|/p < |G|. Consequently, ps−1 | |G/H|; and, by the Induction
Hypothesis, there exists a subgroup T ⊂ G/H of order ps−1. Let : G → G/H be the
canonical epimorphism. Then H is the kernel and by the Correspondence Principle, there

exists a subgroup T̃ of G containing H and satisfying T = T̃ /H. Hence |T̃ | = |T ||H| = ps,

and T̃ works. �

To investigate the set of Sylow p-subgroups, Sylp(G) of G, we need three lemmas.

Lemma 22.3. Let H and K be subgroups of a finite group G. Then |HK| = |H||K|/|H∩
K|.

Proof. This is equation (13.5). (Cf. Exercise 10.16(5).) �

The main mathematical reason for the validity of the further Sylow theorems below
is the following:

Lemma 22.4. Let G be a finite group, P a Sylow p-subgroup, and H a subgroup of G
that is also a p-group. If H is a subgroup of NG(P ), i.e., hPh−1 = P for all h ∈ H, then
H is a subgroup of P . In particular, if, in addition, H is also a Sylow p-subgroup of G,
then H = P .

Proof. The key to the proof of this lemma is the Second Isomorphism Theorem to-
gether with the counting version of the Second Isomorphism Theorem of Lemma 22.3. By
definition, P /NG(P ) and by hypothesis H ⊂ NG(P ). Hence, by the Second Isomorphism
Theorem, we have HP is a subgroup of NG(P ), with P /HP and H∩P /H, and satisfying
HP/P ∼= H/H ∩ P . In particular, by Lemma 22.3, we have

(*) |HP | = |P | |H|
|H ∩ P |

.
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As P, H are p-groups and H ∩ P ⊂ H a subgroup, (*) implies that HP is a p-group
satisfying P ⊂ HP ⊂ G. Thus HP is a Sylow p-subgroup of G, i.e., |P | = |HP |, so
P = HP , hence H ⊂ P . If, in addition, |H| = |P | then H = P . �

We convert the lemma above into the language of group actions with the action given
by conjugation on sets. Explicitly, we use Specific Examples 21.12(6) after restricting the
action of G to a subgroup.

Lemma 22.5. Let P be a Sylow p-subgroup of a finite group G and H a subgroup of G
that is also a p-group. Then the following hold:

(1) C(P ) consists of Sylow p-subgroups of G.
(2) The conjugacy class C(P ) is an H-set by conjugation, i.e., via the action ∗ :

H × C(P )→ C(P ) by conjugation.
(3) Suppose that T is a fixed point under the H-action in (2), i.e.,

T ∈ FH
(
C(P )

)
= {W ∈ C(P ) | xWx−1 = W for all x ∈ H}.

Then H ⊂ T .
(4) If H in (3) is a Sylow p-subgroup, then, under the H-action in (2), H is the only

possible fixed point, i.e., FH
(
C(P )

)
⊂ {H}.

Proof. (1): As |P | = |xPx−1| for all x in G, this is clear.

(2) is immediate.

(3): As T is an H-fixed point, the orbit H ∗ T = {T}, so xTx−1 = T for all x ∈ H.
By definition, this means that H ⊂ NG(T ). By Lemma 22.4 and (1), we conclude that
H ⊂ T .

(4): If T ∈ FH
(
C(P )

)
, then H ⊂ T by (3). If further, H is a Sylow p-subgroup, then by

(3), we have H = T . �

Note. Under the hypothesis of Lemma 22.5, we have the isotropy subgroup of P is given
by HP = NG(P ) ∩ H for any Sylow p-subgroup of G. But P is then also a Sylow p-
subgroup of NG(P ), so by restricting the H-action to HP the proof of Lemma 22.5 shows
that NG(P ) ∩H ⊂ P .

Theorem 22.6. (Sylow Theorems). Let G be a finite group, p a (positive) prime dividing
the order of G. Then the following are true:

First Sylow Theorem. There exists a Sylow p-subgroup of G.

Second Sylow Theorem. All Sylow p-subgroups are conjugate, i.e., if P is a Sylow
p-subgroup of G, then C(P ) = Sylp(G).

Third Sylow Theorem. Let P be a Sylow p-subgroup of G. Then the following are
true:

(i) | Sylp(G)| = [G : NG(P )].

(ii) | Sylp(G)| | |G|.
(iii) | Sylp(G)| ≡ 1 mod p.

(iv) | Sylp(G)| | [G : P ], i.e., if |G| = pnm with p 6 | m, then | Sylp(G)| | m.

Fourth Theorem. Let H be a subgroup of G that is a p-group. Then H lies in some
Sylow p-subgroup of G.
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Proof. Let H be a subgroup of G that is a p-group. We have already proven the
First Sylow Theorem, so let P be a Sylow p-subgroup of G. By Lemma 22.5, we have
C(P ) ⊂ Sylp(G) is an H-set under conjugation. By the Orbit Decomposition Theorem,
we have

|C(P )| = |FH
(
C(P )

)
|+
∑
O∗

[H : HT ].

If T ∈ O∗, then HT < H, so p | [H : HT ], hence

(†) |C(P )| ≡ |FH
(
C(P )

)
| mod p.

Note. Equation (†) is interesting, since H does not appear at all on the left hand side, i.e.,
(†) is true for all p-subgroups of H. To evaluate a constant function (of such p-subgroups
of H) given by (†), it suffices to evaluate at any such H.

Case 1. Let H = P :

By Lemma 22.5, we conclude that FP
(
C(P )

)
⊂ {P}. As xPx−1 = P for all x ∈ P , we

must have FP
(
C(P )

)
= {P}.

We use Case 1, to evaluate the constant in (†) as

(*) |C(P )| ≡ |FP
(
C(P )

)
| = 1 mod p.

Case 2. Let H be a Sylow p-subgroup (not necessarily P ):

Applying (†) and (*), we have

1 ≡ |C(P )| ≡ |FH
(
C(P )

)
| mod p.

Hence FH
(
C(P )

)
is nonempty so FH

(
C(P )

)
= {H} by Lemma 22.5. In particular,

H ∈ FH
(
C(P )

)
⊂ C(P ) proving that Sylp(G) = C(P ), which is the Second Sylow

Theorem. Plugging this information into (*), we have

| Sylp(G)| = |C(P )| ≡ 1 mod p.

Since |C(P )| = [G : NG(P )] = |G|/|NG(P )| and P ⊂ NG(P ) with p 6 | [G : NG(P )], we also
have proven the Third Sylow Theorem.

Case 3. Let H be an arbitrary p-subgroup of G:

By (*), we have
|FH

(
C(P )

)
| ≡ |C(P )| ≡ 1 mod p.

Thus there exists a T ∈ FH
(
C(P )

)
, hence H ⊂ T ∈ Sylp(G) by Lemma 22.5. This proves

the Fourth Theorem.
�

Recall that a subgroup H of a group G is called a characteristic subgroup of G if the
restriction map res : Aut(G)→ Aut(H) given by ϕ 7→ ϕ|H is well-defined, i.e., the target
is correct. We write H / /G. We know that characteristic subgroups are normal, and
being characteristic is a transitive property.

Proposition 22.7. Let G be a finite group, p a (positive) prime dividing the order of G,
and P a Sylow p-subgroup. Then the following are equivalent:

(1) Sylp(G) = {P}.
(2) C(P ) = {P}.
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(3) P / G.
(4) P / /G.

Proof. The equivalence of (1), (2), and (3) follows from the Second Sylow Theorem.
Clearly, (1) implies (4) as all isomorphic images of a group have the same cardinality.
Finally (4) implies (3) by the comment above.

�

Corollary 22.8. Let G be a finite group, p a (positive) prime dividing the order of G,
and P a Sylow p-subgroup. Then NG(P ) = NG

(
NG(P )

)
.

Proof. As P is a Sylow p-subgroup of NG(P ) and normal in it, P is a characteristic
subgroup ofNG(P ) by the proposition. AsNG(P ) is a normal subgroup of NG

(
NG(P )

)
, we

conclude by Exercise 11.9(22) that P is normal inNG

(
NG(P )

)
, i.e., NG

(
NG(P )

)
⊂ NG(P ).

So we must have equality. �

A stronger result is left as Exercise 22.15(1) below.

Examples 22.9. Let G be a finite group, p a prime dividing the order of G. In the
following examples, we shall use the following notation:

Pp will denote an arbitrary Sylow p-subgroup of G.
np will denote the number of Sylow p-subgroups.

So there exists an integer k (depending on p) with

np = | Sylp(G)| = [G : NG(P )] = 1 + pk
Pp is normal if and only if k = 0.

1. Every group of order 15 is cyclic (hence isomorphic to Z/15Z) and every group of order
45 is abelian (hence isomorphic to Z/45Z or Z/15Z× Z/3Z):

In both cases, the Third Sylow Theorem implies the Sylow p-subgroups are normal for
p = 3, 5. As groups of order p are cyclic and of order p2 are abelian, the result follows
by Exercise 13.7(9). [We leave the statement about isomorphism as an exercise.]

2. If G is a group of order prq with p > q primes, then Pp is normal by the Third Sylow
Theorem.

3. If G is a group of order 315 = 32 · 5 · 7, then G is not simple:

Suppose this is false. Then no Sylow p-subgroup is normal. We have
n3 = 1 + 3k | 5 · 7 some k, so [G : NG(P3)] = 7.
n5 = 1 + 5k | 32 · 7 some k, so [G : NG(P5)] = 21.

By Lagrange’s Theorem,

NG(P3) is of order 45 and NG(P5) is of order 15,

so both are abelian, and Syl5
(
NG(P3)

)
⊂ Syl5(G). In particular, if T ∈ Syl5

(
NG(P3)

)
,

we have T /NG(P3) (or 1+5k | 32 implies k = 0). Thus NG(P3) ⊂ NG(T ). We conclude
that

45 = |NG

(
P3)
)
| | |NG(T )| = 15,

which is impossible.
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4. If G is a group of order 525 = 3 · 52 · 7, then G is not simple:

Suppose this is false. Then no Sylow p-subgroup is normal. Let P and Q be distinct
Sylow 5-subgroups and set I = P ∩ Q. We must have |I| = 1 or 5. Although PQ is
not a group, we know by Exercise 10.16(5) that

|PQ| = |P | |Q|/|P ∩Q| = |P | |Q|/|I|.
Suppose that I = 1. Then |PQ| = 54 > |G|, so this is impossible. Hence |I| = 5. Both
P and Q are abelian as of order 52, so P,Q ⊂ NG(I). Therefore,

|NG(I)| ≥ |PQ| = 53.

As |NG(I)| | |G|, it follows that

|NG(I)| = 3 · 52 · 7 or 52 · 7.
In the first case, I / NG(I) = G; and in the second case [G : NG(I)] = 3 and |G|6 | 3!,
so NG(I) contains a nontrivial normal subgroup of G by Useful Counting 12.8. In fact,
NG(I) / G, as 3 is the smallest prime dividing |G| (cf. Corollary 12.11).

5. If G is a group of order 945 = 33 · 5 · 7, then G is not simple:

Suppose this is false. Then no Sylow p-subgroup is normal. As n3 = 1 + 3k | 5 · 7, we
have [G : NG(P3)] = n3 = 7. Since |G|6 | 7!, the subgroup NG(P3) contains a nontrivial
normal subgroup of G by Useful Counting 12.8.

6. If G is a group of order 1785 = 3 · 5 · 7 · 17, then G is not simple:

Suppose this is false. Then no Sylow p-subgroup is normal. We have

n17 = 1 + 17k | 3 · 5 · 7, so n17 = 5 · 7.
n3 = 1 + 3k | 5 · 7 · 17, so n3 = 7, 5 · 17, or 5 · 7 · 17.

As |G| = 17856 | 7!, we can eliminate n3 = 7 by Useful Counting 12.8. Thus

|NG(P17)| = 3 · 17 and |NG(P3)| = 3 · 7 or 3.

As 3 | |NG(P17)| and 3 | |G|, we may assume that P3 ⊂ NG(P17). But 1 + 3k | 17 implies
k = 0, so P3 / NG(P17). Consequently, NG(P17) ⊂ NG(P3), implying that

3 · 17 = |NG(P17)| ≤ |NG(P3)| = 3 · 7 or 3,

which is impossible.

7. Here is a fact useful in counting. Suppose that |G| = pm with p 6 | m, p a prime, then

G contains np(p− 1) elements of order p, so |G| ≥ np(p− 1) + 1,

adding in the identity. Similarly, if |G| = pqm with p 6 | m, q 6 | m, and p and q distinct
primes, then

|G| ≥ np(p− 1) + nq(q − 1) + 1,

adding in the identity. This last remark does not work if p = q, because two Sylow p-
groups can intersect nontrivially, and it is difficult to estimate the number of elements
in the union of all the Sylow p-subgroups.

For some other results, see the exercises below.
The proof of the following theorem illustrates many of the ideas that we have used in

the examples.
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Theorem 22.10. Let p and q be primes, G a group of order psq with s ≥ 1. Then G is
not simple.

Proof. We may assume that p 6= q and there exist no normal Sylow subgroups. In
particular, if np = | Sylp(G)|, then 1 < np = 1 + kp | q with k ≥ 1, an integer. In
particular, np ≤ q. Among all the Sylow p-subgroups of G, choose two distinct ones, P1

and P2, satisfying I = P1 ∩ P2 has maximal order. If I = 1, then all Sylow p-subgroups
of G intersect pairwise in the identity, so the number of non-identity elements in the
Sylow p-subgroups is (ps − 1)q. As |G| = psq, we conclude that the Sylow q-group is
normal, a contradiction. So we may assume that 1 < I. As I is a p-group but not
a Sylow p-subgroup, we have 1 < I < NPi(I) for i = 1, 2 by Proposition 21.15. Let
H = 〈NP1(I), NP2(I)〉, the group generated by NP1(I) and NP2(I). Then we must have
I / H. In particular, H ⊂ NG(I) by the definition of NG(H).

Claim. q | |H|.
Suppose not. Then H is a p-group, so by the Fourth Theorem, there exists a Sylow
p-group P3 of G such that H ⊂ P3. Hence for i = 1, 2, we have

P1 ∩ P2 = I < NPi(I) ⊂ Pi ∩H ⊂ Pi ∩ P3.

This contradicts the maximality of |I|, lest P1 = P1 ∩ P3 = P2 ∩ P3 = P2. This proves
the claim, i.e., q | |H|. Let Q be a Sylow q-group of H, hence also of G as q || |G|.
Consequently, by Exercise 10.16(5), |P1Q| = |P1| |Q|/|P1 ∩Q| = |P1| |Q| = |G| as p and q
are relatively prime. This means that

(*) G = P1Q := {xy | x ∈ P1, y ∈ Q}.
If g ∈ G, set Ig := gIg−1 and N = 〈Ix | x ∈ G〉. By Great Trick 11.3. we have I ⊂ N /G.
Let g ∈ G. By (*), we can write g = xy, for some x ∈ P1 and y ∈ Q. In particular, as
y ∈ Q ⊂ H ⊂ NG(I), we have

Ig = Ixy = xyIy−1x−1 = xIx−1 = Ix ⊂ P1,

as I ⊂ P1. Thus N ⊂ P1 < G, so 1 < N / G, and the theorem follows. �

Definition 22.11. Let G be a group. We say that a subgroup M of G is a maximal
subgroup if M < G and if M < H ⊂ G is a subgroup, then H = G. We say that G is
called an (internal) direct product of normal subgroups N1, · · · , Nr if G = N1 · · ·Nr and
Ni ∩N1 · · ·Ni−1Ni+1 · · ·Nr = 1, for i = 1, . . . , r. (Cf. Exercises 13.7(3)(4)(5).)

An interesting class of groups in the finite case is determined by the next result
theorem.

Theorem 22.12. Let G be a finite group. Then the following are equivalent

(1) Every Sylow subgroup of G is normal in G.
(2) G is isomorphic to an (internal) direct product of its Sylow subgroups.
(3) Every maximal subgroup of G is normal in G.

Proof. Let |G| = pe11 · · · perr be a factorization of |G| with distinct primes p1, . . . , pr
and ei > 0, i = 1, . . . , r. Let Pi ∈ Sylpi(G) for i = 1, . . . , r. So Pi is normal in G if and
only if Sylpi(G) = {Pi}.
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(1)⇒ (2): Since P1 · · ·Pn is a subgroup of G of the same order as G they are equal. This
is an internal direct product as pi and p1 · · · pi−1pi+1 · · · pr are relatively prime and all the
Pi are normal subgroups of G.

(2) ⇒ (3): Let M be a maximal subgroup of G. By Exercise 13.7 (6), M is a direct
product of the M ∩Pi, i = 1, . . . , r. Since M is maximal, it must be P1 · · ·Pi−1Pi+1 · · ·Pr
for some i.

(3)⇒ (1): If Pi is not normal in G, then P < NG(Pi) < G by Corollary 22.8. As G is
a finite group, there exists a maximal subgroup M of G containing NG(Pi) and hence also
Pi ∈ Sylpi(M). As Pi ⊂ NG(PI) ⊂ M and M / G, by the Frattini Argument (Exercise
22.15(2) below), we have G = NG(Pi)M . But NG(Pi)M ⊂M , a contradiction. �

Definition 22.13. A finite group G is called nilpotent if it satisfies the equivalent condi-
tions of Theorem 22.12 are satisfied. This agrees with the definition of a nilpotent group
defined in Exercise 17.14(8) for finite groups.

Corollary 22.14. Every finite nilpotent group is solvable.

Exercises 22.15.

1. Let G be a finite group, p a (positive) prime dividing the order of G, and P a Sylow
p-subgroup. Suppose that H is a subgroup of G satisfying NG(P ) ⊂ H ⊂ G, then
H = NG(H).

2. (Frattini Argument) Let G be a finite group and K /G. If P is a p-Sylow subgroup of
K, show that G = KNG(P ).

3. Classify groups up to isomorphism of order pq with p and q primes.

4. Let G be a finite group of order p2q with p and q primes. Show that G is not simple
without using Theorem 22.10.

5. Let G be a finite abelian group of order p2q with p and q distinct primes. Show that G
is isomorphic to either Z/p2qZ or Z/pZ × Z/pqZ and the second group is isomorphic
to Z/pZ× Z/pZ× Z/qZ.

6. Let G be a finite group of order p2q2 with p and q primes. Show that G is not simple.

7. Let G be a group of order 56. Using Example 22.9(7) but not Theorem 22.10, show
that G is not simple.

8. Let G be a finite group of order pqr with p, q, and r primes. Show that G is not simple.

9. Show that groups of order 231 = 3 · 7 · 11 are semi-direct products and show that there
are exactly two such groups up to isomorphism.

10. Let G be a finite group of order pqr with p < q < r primes. Show that the Sylow
r-subgroup of G is normal.

11. It can be shown that any finite group that is the product of distinct primes (each to
degree one) is solvable. Prove that the Sylow p-subgroup of any such group G with p
the largest prime dividing the order of G is normal in B.

12. Show that no group of order 112 is simple.

13. Show that no group of order 120 is simple.

14. Show that no group of order 144 is simple.
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15. Show that no group of order 2000 is simple.

16. Show that no group of order 4000 is simple.

17. Show that no group of order 8000 is simple.

18. Let G be a finite group, p the smallest prime dividing the order of G. Suppose that
G contains a cyclic Sylow p-subgroup. Show that NG(P ) = ZG(P ). (Cf. Exercise
12.12(8)).

19. Let p be a prime dividing the order of a finite group G. Let P ∈ Sylp(G). If N / G
show that N ∩ P ∈ Sylp(N).

20. Let G be a finite group with p a prime dividing |G| but not a p-group. Suppose that G
contains two Sylow p-subgroups whose intersection I has maximal cardinality. Show
the NG(I) is not a p-group.

21. Let G be a finite group with p a prime dividing G but not a p-group. Suppose that
G contains two Sylow p-subgroups whose intersection is not trivial. Show that there
exists a subgroup H < G such that either G = NG(H) or H is not a p-subgroup but
contains contains a Sylow p-subgroup of G.

22. Using Exercise 17.14(8) and Exercise 21.25(7) show that a finite group is nilpotent if
and only if it is a product of its Sylow subgroups.

23. A normal subgroup N 6= 1 of G is called a minimal normal subgroup if it contains no
normal subgroups of G other than itself and 1. Show if G is a nontrivial finite solvable
group, then any minimal normal subgroup of G is an elementary p-group, i.e., a group
isomorphic to (Z/pZ)n for some prime p and positive integer n.

24. If G is a finite nilpotent group, then the center of G is not trivial. In particular, S3 is
not nilpotent.

25. If G is a finite nilpotent group, then every subgroup and quotient group of G is nilpo-
tent. Show the converse is false in general.

26. Let G be a finite group. If every proper subgroup of G is nilpotent, then G is solvable.

23. Addendum: Finite Solvable Groups

In this section, we wish to extend the Sylow theorems in the case of a finite solvable
group. We use this to give a new characterization of finite solvable groups. The proofs
give a nice application of results that we have proven.

We will be interested in the following subgroups.

Definition 23.1. Let G be a finite group of order mn with m and n relatively prime. A
subgroup of G of order n is called an Hall n-subgroup of G.

Of course, every Sylow p-subgroup is a Hall subgroup. We are interested when Hall
n-subgroups exist and if any two such are conjugate. In general, this is false. We shall
prove that this is true in the case that G is a solvable group.

Crucial to our study will be the nontrivial normal subgroups of a group, if they exist.

Definition 23.2. Let G be a nontrivial group. A subgroup 1 < N ⊂ G is called a minimal
normal subgroup of G if there exists no normal subgroup H of G with 1 < H < N .
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Note that if G is a nontrivial finite group, then minimal normal subgroups of G exist.
Of course, if G is simple, then G is the minimal normal subgroup of G.

In the following proposition, we use use properties about the internal direct product
of finitely many groups. [Cf. Exercise 13.7(3)-(6).]

Proposition 23.3. Let G be a finite group and 1 < N ⊂ G be a minimal normal
subgroup. Among all the subgroups of G isomorphic to N , choose those N = N1, . . . , Nr,
r ≥ 1 that satisfy

H = N1 · · ·Nr
∼= N1 × · · · ×Nr and with |H| maximal.

Then H is a characteristic subgroup of G.

Proof. We know that H / G. Let σ : G → G be a group automorphism. We have
to show that σ(Ni) ⊂ H for i = 1, . . . , r. We know that σ(Ni) is a normal subgroup
of G isomorphic to N , so if σ(Ni) is not a subgroup of H, then σ(Ni) ∩ H < σ(Ni),
hence is of lesser order. Since σ(Ni) ∩ H is a normal subgroup of G, the minimality of
|H| implies that σ(Ni) ∩H = 1. But this implies that the subgroup generated by H and
σ(Ni) is isomorphic to H×σ(Ni) (why?), contradicting the maximality of |H|. Therefore,
σ(Ni) ⊂ H, and H is a characteristic subgroup of G. �

Corollary 23.4. Let G be a nontrivial finite group having no nontrivial characteristic
subgroups. Then G is either a simple group or a direct product of isomorphic simple
groups.

Proof. We use the notation of Proposition 23.3. If there exists a normal subgroup
1 < H / N , then H / N1 · · ·Nr, since N1N2 · · ·Nr

∼= N1 × · · · ×Nr. By Proposition 23.3
and the hypothesis, we must have N1N2 · · ·Nr = G. As N is a minimal normal subgroup
of G, we must have N = H, so N is simple. The result follows. �

Corollary 23.5. Let N be a minimal normal subgroup of finite group G. Then N is
either simple group or a direct product of isomorphic simple groups.

Proof. If 1 < H is a characteristic subgroup of N , then N is a normal subgroup of
G by Exercise 11.9(22). The result follows by Corollary 23.4. �

Corollary 23.6. Let N be a minimal normal subgroup of a finite solvable group G. Then
there exists a prime p > 0 such that N is cyclic of order p or the direct product of cyclic
groups of order p. In particular, N is abelian.

Proof. This follows immediately as groups of prime order constitute the abelian
simple groups. �

We need a simple lemma whose proof we leave as an exercise.

Lemma 23.7. Let G be a group and H ⊂ G a subgroup. Then for all x ∈ G, we have
NG(xHx−1) = xNG(H)x−1.

We state and prove the first key result in this section. It generalizes the Sylow theorems
in the case of a finite solvable group.
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Theorem 23.8. (Hall) Let G be a finite solvable group of order mn with m and n relatively
prime. Then

(1) There exists a Hall m-subgroup of G.
(2) Every subgroup of G whose order divides m lies in a Hall m-subgroup of G.
(3) Every pair of Hall m-subgroups of G are conjugate.
(4) Suppose that |G| = pe11 . . . perr is a factorization into distinct primes with ei >

0, i = 1, . . . , n. Then the number hm of Hall m-subgroups of G is a product of
factors each of which is congruent to 1 modulo some prime factor of m and a
power of a prime dividing some peii , i = 1, . . . , r.

Proof. As subgroups and homomorphic images of solvable groups are solvable by
Theorem 17.3, this allows us to induct on the order of a solvable finite group. If G = 1,
the result is trivial, so we may also assume that |G| > 1. We may also assume that m > 1
and n > 1.

Case 1. G contains a normal subgroup N / G of order m1n1 with m1 | m and n1 | n
satisfying n1 < n:

(1): As N is normal, G/N is solvable and |G/N | = m
m1

n
n1

with m
m1

and n
n1

relatively prime.
Since n1 < n, by the Correspondence Principle, there exists a subgroup N ⊂ H ⊂ G with
the group H/N a Hall m

m1
-subgroup of G/N by induction. As |H| = m

m1
|N | = mn1 < mn

and H is also solvable, H (hence G) contains a Hall m-subgroup.

(2): Suppose that H ′ is another Hall m-subgroup. We must show that H and H ′ are

conjugate. The subgroup HN of G is of order |N ||H|
|N∩H| = |N ||H|

|N | = mn1. Similarly, the

subgroup H ′N of G is of order mn1. The subgroups HN/N and H ′N/N of G/N are of
order mn1

m1n1
= m

m1
, so Hall m

m1
-subgroups of solvable G/N . By induction on |G|, they are

conjugate. Let : G→ G/N be the canonical group epimorphism. Then there exists an
x in G satisfying x(HN/N)x−1 = H ′N/N . It follows that xHNx−1 = H ′N . Since H ′

and xHx−1 are Hall m-subgroups of solvable H ′N , they are conjugate by induction.

(3): Let H0 ⊂ G be a subgroup of order m0 with m0 | m. Then |H0N/N | | m
m1

, so H0N/N

lies in a Hall ( m
m1

)-subgroup of H0N/N by induction. Therefore, H0 is a Hall m-subgroup
of some subgroup K of G of order mn1. By induction on n

n1
, the group K, hence H0, lies

in a Hall m-subgroup of G.

(4): By the proof above, hm is a product of the number of Hall ( m
m1

)-subgroups of G/N

and the number of conjugates of H in HN . The maximal power of the primes factors pfii
of |HN | divide peii and the maximal power of the primes factors of |G/N | are peii for some
of the pi, 1 = 1, . . . .r. By induction, hm is a product of two factors that satisfy condition
(4). Therefore condition (4) is established for G.
This establishes Case 1.

Reduction. By Case 1, if there exists a normal subgroup 1 < N < G with n6 | |N |, we
are done. So we may assume that n | |N | for every normal subgroup 1 < N < G. In
particular, this applies to each minimal normal subgroup H of G. By Corollary 23.6, H
is an abelian group of order pr for some prime p and r ∈ Z+. Fix such an H. As n | |H|,
we must have n = pr. Therefore, H is a normal Sylow p-subgroup of G, hence the unique
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Sylow p-subgroup of G. In particular, if N is any proper normal subgroup of G, then
H ⊂ N . It follows that H is the unique minimal normal subgroup of G.

Case 2. Case 1 does not hold. In particular, the group H in the Reduction is the unique
minimal normal subgroup of G:

(1): The nontrivial finite group G/H contains a minimal normal subgroup. By the
Correspondence Principle, it follows that there exists a normal subgroup 1 < K < G
satisfying K/H < G/H is a minimal normal subgroup. By Corollary 23.6, |K/H| = qs

for some prime q and s ∈ Z+ with q 6= p. Therefore, |K| = prqs. Let Q ∈ Sylq(G). Then
we have K = HQ, since they are groups of the same order, and Q∩H = 1, since |Q| and
|H| are relatively prime.

Claim. NG(Q) is a Hall m-subgroup of G:

We have NK(Q) = K ∩NG(Q). As H /K and K /G, by the Frattini Argument (Exercise
22.15(2)), we know that

K = HNK(Q) and G = KNG(Q).

As

G/H = KNG(Q)/K ∼= NG(Q)/
(
K ∩NG(Q)

)
= NG(Q)/NK(Q),

we have |NG(Q)| = |G||NK(Q)|/|K|. As |K| = |HNK(Q)| = |H||NK(Q)|
|H∩NK(Q)| , we have

|NG(Q)| = |G|
|K|
|NK(Q)| = |G|

|H|
|H ∩NK(Q)| = m|H ∩NK(Q)|,

since n = pr. To show the claim, we must show that |H ∩ NK(Q)| = 1. To do this
we first show that H ∩ NK(Q) ⊂ Z(K); and then we shall show that Z(K) = 1. Let
z ∈ H ∩ NK(Q). As K = HQ, there exist h ∈ H, y ∈ Q such that z = hy. As H
is abelian, zh = hz. Since z ∈ NK(Q) and H is normal in G, we have (z−1y−1z)y =
z−1(y−1zy) ∈ Q ∩ H = 1. Therefore, z ∈ Z(K). Now we show that Z(K) = 1. Since
Z(K) is a characteristic subgroup of K and K is normal in G, Z(K) is normal in G by
Exercise 11.9(22). If 1 < Z(K), then Z(K) contains a minimal normal subgroup of G.
But then H ⊂ Z(K) by assumption. As K = HQ and H ⊂ Z(K), it follows that Q /K.
This then implies that H ⊂ Q. As q 6= p, this is a contradiction. Therefore, we have
H ∩NK(Q) = 1 and the claim is proven.

(2) and (4): We must show that if A is another Hall m-subgroup of G, then A and
NG(Q) are conjugate. Let K be as above, then m | |AK| and prqs = |K| | |AK|,
so we have |AK| = |G| = mn. It follows that the subgroup AK = G. Therefore,
G/K = AK/K ∼= A/(A ∩K) and |A ∩K| = qs. So A ∩K is a Sylow q-subgroup of K.
Hence A∩K and Q are conjugate in K by the Second Sylow Theorem. By Lemma 23.7,
NG(Q) and NG(A ∩K) are conjugate in G. By the claim, m = |NG(Q)| = |NG(A ∩K)|.
Since A ∩ K / A, we have A ⊂ NG(A ∩ K). It follows that A = NG(A ∩ K), as both
are of order m. Consequently, NG(Q) and A are conjugate subgroups of G. This proves
(2). Since the pr conjugate subgroups of order m constitute all subgroups of order m, (4)
follows.

(3): Let A0 be a subgroup of G of order m′ with m′ | m and A be a Hall m-subgroup of
G. We have A ∩ A0H is a subset of A0H and G = AH. By Dedekind’s Modular Law
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17.7, we have
A0H = A0H ∩ AH = (A0H ∩ A)H,

as H ⊂ A0H. Therefore, |A0H ∩ AH| = |(A0H ∩ A)H|. It follows that. |A0H ∩ H| =
|A0| = m′. By property (2) for A, we have A0H ∩ H is conjugate to A0, so a Hall
m-subgroup. �

Remark 23.9. The conclusions of the theorem for a finite group are usually false. For
example, A5 is simple [by Abel’s Theorem – to be proven in Theorem 24.13]. It can be
shown that A5 has no subgroup of order 15 violating (1) and contains a subgroup of order
6 not contained in a subgroup of order 12, violating (3). Also | Syl5(A5)| = 6 = 3 ·2 which
violates (4). Condition (2) is also violated in general. Let H = Z/2Z × Z/2Z × Z/2Z.
It can be shown that G = Aut(H) is a simple group of order 168 permuting the seven
groups of order two in H transitively and also the seven subgroups of order four in H
transitively. Therefore, G has two distinct conjugate sets of subgroups of index 7 and
order 24, so violates property (2).

An interesting special case of this theorem needs the following definition.

Definition 23.10. Let G be a finite group of order prn with p a prime not dividing n.
A Hall n-subgroup of G, if it exists, is called a p-complement of G. We also call such a
p-complement (if it exists) a p′-subgroup of G. So, by definition, a p′-group if it exists, is

a Hall group of order |G|
pr

.

Corollary 23.11. If G is a finite solvable group, p a prime dividing the order of G, then
G has a p-complement.

We now turn to another characterization of solvable groups. This will follow by proving
the converse to Corollary 23.11. This is also due to Philip Hall and is the second key result
in this section. To prove the theorem, we need Burnside’s Theorem 114.6 that any group
of order paqb, p, q primes, is solvable. The proof of this theorem needs the representation
theory of groups that we shall do later. We shall, however, assume its validity here.

Theorem 23.12. Let G be a nontrivial finite group. Suppose for every prime p dividing
|G| that G has a p-complement. Then G is solvable.

Proof. Suppose the result is false. We may assume that G has been chosen so that
G is a counterexample of minimal order. We first show that such a G must be a simple
group. Suppose that G is not a simple group, then there exists a normal subgroup N of
G with 1 < N < G. Let p be a prime dividing |G| and H a p′-subgroup. Then H ∩ N
and HN/N are p′-subgroups of N and G/N , respectively. By the minimality of |G|, the
groups N and G/N are solvable. Hence G is solvable by Theorem 17.3, a contradiction.
Therefore, we can assume that G is simple. We show that this leads to a contradiction.

Let |G| = pe11 · · · perr with p1, . . . , pr distinct primes and ei > 0 for i = 1, . . . , r. By
Burnside’s Theorem 114.6, we have r > 2. By assumption, there exist p′i-subgroups Gi

of G for i = 1, . . . , r. Let H = G3 ∩ · · · ∩ Gr. Then we have [G : Gi] = peii , hence
[G : H] = pe33 · · · perr and H = pe11 p

e2
2 by Exercise 6(6). In particular, H is solvable by

Burnside’s Theorem 114.6. Let M be a minimal normal subgroup of H, so either a p1- or
p2-subgroup, say a p1-subgroup. Since [G : H ∩G2] = pe22 · · · perr , we have |H ∩G2| = pe11 ,
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i.e., H ∩ G2 is a Sylow p1-subgroup of H. It follows that M ⊂ H ∩ G2 ⊂ G2. The same
counting argument shows that |H ∩ G1| = pe22 . Therefore, we have G = (H ∩ G1)G2 as
sets. Since M is normal in H, we have

NG(M) ={g−1xg | x ∈M, g ∈ G}
={(hg2)−1xhg2) | x ∈M, h ∈ H ∩G1, g2 ∈ G2}
={(g2)−1yg2) | y ∈M, g2 ∈ G2} ⊂ G2.

Therefore, NG(M) is a proper nontrivial normal subgroup of G. This contradicts G being
simple. �

Putting all this together, we have:

Theorem 23.13. Let G be a finite solvable group. Then the following are equivalent:

(1) G is solvable.
(2) Let n be a positive integer satisfying n | |G| with n relatively prime to |G|/n.

Then G contains a Hall n-subgroup.
(3) G has a p-complement for every prime p dividing the order of G.

Recall from Exercise 13.7(3), that a group G is called an (internal) semidirect product
of a normal subgroup N of G and a subgroup H of G if G = NH and N ∩H = 1. [This
is isomorphic to the (external) semidirect product of Exercise 11.9(16).] This means that
the group homomorphism θ : H → Aut(N) by h 7→ θh (conjugation by h on N), satisfies
nhn′h′ = nθh(n

′)hh′.
Therefore, we have

Corollary 23.14. Let G be a finite solvable group. Suppose that there exists a normal

Hall n-subgroup of G with n coprime to |G|
n

. Then G is the semidirect product of N and

a Hall |G|
n

-subgroup of G.

One can ask whether there are other interesting results concerning the existence of
Hall subgroups.

Remark 23.15. Let G be a finite group of order mn with m and n relatively prime.
The Schur-Zassenhaus Theorem is a fundamental result in group theory. It says if there
exists a normal Hall m-subgroup K of G, then there exists a Hall n-subgroup H of G.
In particular, G is a semidirect product of K and H. The Schur-Zassenhaus Theorem
uses group cohomology in its proof, so will not be done here. Using the Feit-Thompson
Theorem that finite groups of odd order are solvable, one then also proves that any two
Hall n-subgroups in the Schur-Zassenhaus Theorem are conjugate and any subgroup of
H of G of order dividing n is a subgroup of some Hall n-subgroup of G.

Exercises 23.16. 1. Prove Lemma 23.7

2. (Wielandt) Suppose that G is a finite group having three solvable groups H1, H2, and
H3 satisfying [G : H1], [G : H2], [G : H3] are pairwise relatively prime. Prove that G is
solvable.

3. Let G be a finite group. Suppose every nontrivial subgroup H of G has a subgroup of
index p for every prime dividing G. Show that G is solvable.
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4. Let G be a group of order 12. Suppose that G is not isomorphic to A4. Show that G
contains a normal Sylow 2-subgroup or a normal Sylow 3-subgroup. Classify all groups
of order 12 up to isomorphism.

24. The Symmetric and Alternating Groups

Recall if σ ∈ Sn, we write σ as(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
where the top row is the elements of the domain and the bottom row the corresponding
values. For example, if

σ =

(
1 2 3 4
2 1 4 3

)
and τ =

(
1 2 3 4
1 3 2 4

)
then

τσ =

(
1 2 3 4
3 1 4 2

)
and στ =

(
1 2 3 4
2 4 1 3

)
.

We want to write permutations in other ways.

Definition 24.1. A permutation α ∈ Sn is called a cycle of length r, or simply an r-cycle,
if there exist distinct elements a1, . . . , ar in {1, . . . , n} (so r ≤ n) satisfying

(1) α(ai) = ai+1 for i = 1, . . . , r − 1.
(2) α(ar) = a1.
(3) α(a) = a for all a ∈ {1, . . . , n} \ {a1, . . . , ar}.

We denote the above r-cycle by (a1 · · · ar). If r > 1, we say that α is nontrivial.

Examples 24.2. (i) (a1) = 1 the identity on {1, . . . , n}.

(ii)

(
1 2 3 4
1 3 2 4

)
= (23).

(iii)

(
1 2 3 4
2 1 4 3

)
= (34)(12) = (12)(34).

(iv)

(
1 2 3 4
3 1 4 2

)
= (1342).

(v)

(
1 2 3 4
2 4 1 3

)
= (1243).

The basic properties of cycles are given by:

Properties 24.3. Let α = (a1 · · · ar) in Sn with n ≥ 2. Then

(1) α = (aiai+1 · · · ara1 · · · ai−1) if 1 ≤ i ≤ r.
(2) α has order r.
(3) α−1 = (ar · · · a1).
(4) If σ ∈ Sn, then σασ−1 =

(
σ(a1) · · ·σ(ar)

)
.



130 IV. GROUP ACTIONS

Proof. We leave the proof of (1) and (3) as an exercise.

(2): αi(a1) = ai+1 6= a1 for 1 ≤ i < r, so the order of α is at least r. It is easy to check
that αr(ai) = ai for 1 ≤ i ≤ r, so the order of α = r.

(4): we have

σασ−1(j) =


σ(ai+1) if σ−1(j) = ai , i.e., j = σ(ai) for i < r.

σ(a1) if σ−1(j) = ar , i.e., j = σ(ar).

j (= σσ−1
(
j)
)

otherwise.

�

We say that two cycles α = (a1 · · · ar) and β = (b1 · · · bl) are disjoint if {a1, . . . , ar} ∩
{b1, . . . , bl} = ∅.

Lemma 24.4. If α and β are disjoint cycles, then α and β commute, i.e., αβ = βα.

Proof. β(ai) = ai for all i and α(bj) = bj for all j. �

We now use the evaluation action in Example 21.19, which we recall.

Construction 24.5. Suppose that S = {1, . . . , n} and γ ∈ Sn with n > 1. Let Γ =
〈γ〉 ⊂ Sn. Then S is a Γ-set via the evaluation

∗ : Γ× S → S defined by γj ∗ a = γj(a).

The orbit of a ∈ S is Γ ∗ a = {γj(a) | j ∈ Z}. Since |Γ| ≤ |Sn| = n! < ∞, just as in the
proof of the Classification of Cyclic Groups 9.9, there exists a least positive integer m =
m(a) satisfying γm(a) = a. Therefore, the orbit of a is Γ∗a = {a, γ(a), . . . , γm−1(a)} ⊂ S.
Associate to this orbit, the m-cycle γa =

(
aγ(a) · · · γm−1(a)

)
in Sn. Let O be a system

of representatives for the equivalence relation ∼Γ arising from the Γ-action on S and let
b ∈ {1, . . . , n}. There exists an a ∈ O satisfying b ∈ Γ ∗ a and γ(b) = γa(b). By the
Mantra of G-actions, S =

∨
O Γ ∗ a. Since disjoint cycles commute, we have γ =

∏
O γa,

i.e., γ is a product of disjoint cycles with the product unique up to order. We call this
the (full) cycle decomposition of γ.

For example, (
1 2 3 4 5 6
3 2 5 4 1 6

)
= (135)(2)(4)(6)

and (
1 2 3 4 5 6
2 1 5 3 4 6

)
= (12)(354)(6).

Note (again) that a 1-cycle (a) is the identity 1S. Therefore, the fixed points of the Γ-
action (i.e., elements a in S satisfying γ(a) = a) are precisely the elements of S occurring
in the 1-cycles (if any) in a cycle decomposition of γ. We usually delete 1-cycles in the

cycle decomposition of a permutation, e.g.,

(
1 2 3 4 5 6
3 2 5 4 1 6

)
is written (135). We shall call the cycle decomposition full if we do not delete the 1-cycles.

By Properties 24.3(4), we have the following useful observation:
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Remark 24.6. If
∏
O γa is a cycle decomposition for γ in Sn, then

∏
O σγaσ

−1 is a cycle
decomposition for σγσ−1. (Cf. Exercise 24.24(5).)

We turn to another representation of permutations. We call a 2-cycle a transposition.
Note if i 6= j then (ij)−1 = (ij) has order 2 as needed. We first show that transpositions
generate Sn (for n > 1).

Proposition 24.7. Let n > 1, then every element in Sn is a product of the transpositions
(12), (13), . . . , (1n).

Proof. We first show that Sn is generated by transpositions. If σ = (a1 . . . ar), then

(24.8) σ = (ar−1ar) · · · (a2ar)(a1ar)

is a product of r − 1 transpositions.
To show that Sn is generated by the specific transpositions in the proposition, we use
Properties 24.3(4) and (5), respectively, to see that

(1i) = (i1) = (i1)−1 if i 6= 1

(ij) = (1i)(1j)(1i)−1 = (1i)(1j)(1i) if 1, i, and j are distinct.

The result follows using the cycle decomposition of permutations. �

Remarks 24.9. If σ ∈ Sn, with n > 1, then σ is not a product of a unique number of
transpositions. However, by equation (11.6), we have group homomorphisms

Sn
θ
// Permn(R)

det
// {±1},

given by σ 7→ [Tσ]Sn 7→ det[Tσ]Sn , where Sn is the standard basis for Rn. The first
map is an isomorphism, the second an epimorphism. So we have the alternating group
An := ker det ◦ θ / Sn and Sn/An ∼= {±1} ∼= Z/2Z by the First Isomorphism Theorem.
In particular, we have [Sn : An] = 2. If σ is a transposition, det[Tσ]Sn = −1 (as it
corresponds to interchanging two columns of the identity matrix). It follows that if τ ∈ Sn
is a product of r transpositions and a product of s transpositions, then (−1)r = (−1)s,
i.e., r ≡ s mod 2. It follows by equation (24.8), if σ is an r-cycle with r odd, then σ ∈ An
and if r is even, then σ ∈ Sn \ An. In particular, if n ≥ 3, then every 3-cycle lies in An.
Using the cycle decomposition of any permutation, we conclude:

An = {σ ∈ Sn | σ is a product of an even number of transpositions}
and

Sn \ An = {σ ∈ Sn | σ is a product of an odd number of transpositions}.
Elements in An are called even permutation and elements in Sn \ An are called odd per-
mutations. So if τ is an odd permutation, we have Sn = An ∨ τAn.

Actually, one must be a bit careful in the above so that we do not get a circular
argument. This would depend on the proof of the determinant, whose existence we have
not proven. One can prove the properties of the determinant so that one does not have
a circular argument, the problem being that interchanging two rows of a square matrix
changes the sign of its determinant. [Cf. Section 121 for a sophisticated proof of the
determinant and its properties.]
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The possible place for the circular reasoning arises from the definition of the signum
map. For completeness, we shall give a proof for this. The standard proof uses polyno-
mials, and although simple seems out of place, so we give a group theoretic proof. Let
σ be a permutation in Sn and suppose that σ = γ1 · · · γr is its full cycle decomposition.
Define the signum of σ by sgn(σ) = (−1)n−r. As a cycle decomposition is unique, this
defines a map sgn : Sn → {±1}.
Note if σ is an s-cycle, then in its full cycle decomposition, the number of 1-cycles is
n − s, so sgnσ = (−1)s−1. In particular, if σ is a transposition, then sgn(σ) = −1. The
result that we need is that sgn is a group homomorphism. Clearly, the sgn of disjoint
cycles is the product of the sgn of those cycles. As every permutation is a product of
transpositions, the result now follows easily from the following:

Let a, b, c1, . . . , cr, d1, . . . , ds be distinct elements in {1, . . . , n} and τ = (ab). If σ =
(ac1 · · · cr), then τσ = (c1 · · · crba), hence

sgn(τσ) = (−1)r+1 = − sgn(σ);

and if σ = (ac1 · · · crbd1 · · · ds), then τσ = (ac1 · · · cr)(bd1 · · · ds), hence

sgn(τσ) = (−1)r+s = −(−1)r+s+1 = − sgn(σ).

In particular, the parity of the number of transpositions in a decomposition of a permu-
tation is invariant.

We turn to the study the alternating group. We know that 3-cycles are even. We start
by showing that 3-cycles generate An. As An, n = 1, 2 is the trivial group, it is generated
by the empty set of 3-cycles, so we may assume that n ≥ 3.

Proposition 24.10. The alternating group An is a normal subgroup of index two in Sn,
and, if n ≥ 3, then An is generated by the 3-cycles:

(123), (124), . . . , (12n).

Proof. We need only show the last statement. We first show that An is generated
by 3-cycles. We have shown that every element in An is a product of an even number of
transpositions, so it suffices to show a product of two distinct transpositions is a product
of 3-cycles. Suppose that i, j, k, l are distinct elements in {1, . . . , n}. Then this follows by
the equations

(ij)(ik) = (ikj)

(ij)(kl) = (kil)(ijk).

To finish, we show that the alleged 3-cycles generate. Let i, j, k be distinct elements
in {1, . . . , n}, and different from 1 and 2. Then, using Property 24.3, this follows from
the equations:

(ijk) = (12i)(2jk)(12i)−1

(2jk) = (12j)(12k)(12j)−1

(1jk) = (12k)−1(12j)(12k). �
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Remark 24.11. We make the following remark to simplify notation below. Let n ≥ 3
and K ⊂ An a subgroup. If σ ∈ Sn, then σKσ−1 ⊂ σAnσ

−1 = An / Sn. In particular, K
contains a 3-cycle if and only if σKσ−1 does.

The key to Abel’s Theorem on the simplicity of the alternating group An for n ≥ 5,
is the following:

Lemma 24.12. Let K be a normal subgroup of An. If K contains a 3-cycle, then K = An.

Proof. As K contains a 3-cycle, we have n ≥ 3. By the proposition, it suffices to
show that (12k) lies in K for k = 3, . . . , n. By Remark 24.11, we may assume that (123)
lies in K, hence (213) = (123)−1 lies in K. Let σ = (12)(3k) with k > 3, a product of an
even number of transpositions, so an element of An. As K / An, we have

(12k) = σ(213)σ−1 lies in K, for all k ≥ 3

as needed. �

We now prove Abel’s Theorem. This gives our first examples of non-abelian simple
groups.

Theorem 24.13. (Abel’s Theorem) Let n 6= 4, then the alternating group An is simple.

Proof. We know that A2 and A3 are simple, so assume that n ≥ 5, and 1 < K /An.
We must show K = An. By the lemma, it suffices to show that K contains a (single)
3-cycle.
Let e 6= α ∈ K be chosen such that

α moves precisely m elements in {1, . . . , n}
and

no other non-identity element in K

moves a fewer number of elements,

where we say α moves i, if α(i) 6= i, i.e.,

m is the minimal number of elements moved

by any non-identity element in K.

Let
α = γ1 · · · γr

be the decomposition of α into a product of disjoint cycles. We may assume that γ1 is a
k-cycle with k maximal among the lengths of γ1, . . . , γr.
As α is not the identity, we must have m ≥ 2. If m = 2, then we must have α = γ1 and be
a transposition, hence it is an odd permutation, so not an element of An, a contradiction.
If m = 3, then we must have α = γ1 and be a 3-cycle, and we are done by the lemma. So
we may assume that m ≥ 4. For clarity, it is convenient to changing notation if necessary.
So, using Remark 24.11, we may assume that

α moves 1, 2, 3, 4.

α moves 5 if m ≥ 5.

γ1 = (12 · · · k).
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We have two cases:

Case 1. k ≥ 3: If this is the case, then m ≥ 5:

For if not, then we have m = 4, and we must have α = γ1 = (1234) and be a 4-cycle
which is not in An, a contradiction.

Case 2. k = 2: Then each γi is a transposition or a 1-cycle, and we may assume, using
Remark 24.11, that α = (12)(34) · · · :
Set β = (345) in An. As K / An, we have α1 = βαβ−1 lies in K and

α1 = βαβ−1 =

{
(124 · · · ) · · · in Case 1.

(12)(45) · · · in Case 2.

In either case, we check that α(3) 6= α1(3) (e.g., in Case 1, if k = 3, then α1(3) 6= 1 and
if k ≥ 4, then α1(3) 6= 4), so e 6= α−1α1 lies in K. Since β fixes every i > 5, we have
α−1α1 fixes every i > 5 that α fixes. If α(5) 6= 5, then we have m ≥ 5 and α(1) = α1(1).
It follows that α−1α1 moves at most m− 1 elements, contradicting the minimality of m.
Therefore, we may assume that α(5) = 5, i.e., m = 4. In particular, we are in Case 2 and
have by computation that α−1(345)α1(345)−1 = (354). This contradicting the maximality
of k. The result follows. �

Remark 24.14. If G is a group containing a non-abelian simple group, then G is not
solvable by Theorem 17.3. Therefore, Sn is not solvable for any n ≥ 5.

We wish to show that A5 is the only simple group of order 60 up to isomorphism
(non-abelian as its order is not a prime). It is the first non-abelian simple group by
computation, using the Sylow Theorems. We make the general observation:

Lemma 24.15. Let n ≥ 5, then An is the only subgroup of Sn of index two.

Proof. Suppose that K is a normal subgroup of G of index two and K 6= An. By
the Second Isomorphism Theorem, we conclude AnK is a group with K < AnK normal
and AnK/K ∼= An/(An ∩ K). As An < AnK ⊂ Sn, we must have Sn = AnK, so
2 = [An : An ∩K]. In particular, 1 < An ∩K < An. It follows that An ∩K is a proper
normal subgroup of the simple group An, a contradiction. �

Theorem 24.16. Up to isomorphism, the alternating group A5 is the only simple group
of order 60.

Proof. Let G be a simple group of order 60. We prove this in three steps.

Step 1. If G contains a subgroup H of index 5, then G ∼= A5:

Let λ : G → Σ(G/H) given by x 7→ (λx : gH 7→ xgH) be the homomorphism defined in
the General Cayley Theorem 12.4. Since H < G, we have ker(λ) ⊂ H < G. Consequently,
λ must be monic (since not the trivial map), as G is simple. Therefore, G is isomorphic
to λ(G) ⊂ Σ(G/H), a subgroup of index two. By the lemma G ∼= A5.

Step 2. G does not contain a subgroup of index three:

Suppose that H is a subgroup of index three in G. Then |G|6 | [G : H]!, which implies
that G is not simple by Useful Counting 12.8.

Step 3. Finish:
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By the first two steps, we may assume that G has no subgroup of index 3 or index 5.
Let P be a Sylow 2-subgroup of G. Then P is not a normal subgroup of G by assumption,
hence by the Third Sylow Theorem, we have [G : NG(P )] = 1 + 2k | 3 · 5, for some integer
k ≥ 1. By the first two steps, we must have [G : NG(P )] = 15, so |NG(P )| = 4. (Note
that this means that P = NG(P ).) Let Q 6= P be another Sylow 2-subgroup of G, and
set I = P ∩Q. We may also assume that Q and P were chosen such that I = P ∩Q has
maximal cardinality.

Case 1. 1 < I, so |I| = 2:

In this case, we have, by Exercise 10.16(5) (cf. equation (13.5)),

|PQ| = |P | |Q|/|P ∩Q| = |P | |Q|/|I| = 23.

As both P and Q are groups of order 22, they are both abelian, so normalize I. Conse-
quently, P,Q ⊂ NG(I). It follows that

23 = |PQ| ≤ |NG(I)| | 22 · 3 · 5 and 22 | |NG(I)|.
Therefore, |NG(I)| = 22 · 3, 22 · 5, or 22 · 3 · 5. By the first two steps, we conclude that
|NG(I)| = 22 · 3 · 5 = |G|. Hence I / NG(I) = G, contradicting the simplicity of G.

Case 2. I = 1:

As Q and P were chosen with I = P ∩ Q of maximal cardinality, and each Sylow 2-
subgroup contains (4− 1) = 3 non-identity elements, the Sylow 2-subgroups of G contain
45 = 15(4− 1) distinct non-identity elements. By the simplicity of G, the number of the
Sylow 5-subgroups, which divides 22 · 3, must be at least six. Each Sylow 5-subgroup of
G is cyclic of order 5, so G must contain at least 6 · (5−1) = 24 distinct elements of order
5, which implies that |G| ≥ 45 + 24 > 60, a contradiction. �

Remarks 24.17. Let F be a field, then the group

PSLn(F ) := SLn(F )/Z
(

SLn(F)
)

is called a projective special linear group of F . It can be shown that PSLn(F ) is simple
for all n ≥ 3.

We shall see later that for all primes p and q = pn, with n ∈ Z+, there exists a field
Fq with q elements, and unique up to isomorphism of fields [definition?]. Computation
shows that

|PSL2(Fq)| =

{
(q + 1)(q2 − q) if q = 2n

1
2
(q + 1)(q2 − q) if q = pn with p and odd prime

(cf. Exercise 9.12(1)). We will show that PSL2(Fq) is simple if and only if q > 3 in
Section 25. The computation shows that PSL2(F4) and PSL2(F5) both have order 60, so
are isomorphic to A5. The simple group PSL2(F7) of order 168 is the next non-abelian
simple group up to isomorphism. Computation shows that the groups A8 and PSL3(F4)
both have 8!/2 elements. It can also be shown that they are not isomorphic, i.e., there
exist non-isomorphic simple groups of the same order.

Our results and exercises have shown that groups of orders psq (s ≥ 1), p2q2, and pqr
are not simple when p, q, and r are primes. It follows that these groups are therefore
solvable, by induction and reduction to simpler cases. Burnside showed that groups of



136 IV. GROUP ACTIONS

order paqb are solvable for any primes p and q for over a hundred years ago. The original
proof did not use abstract group theory (but group representation theory). A group
theoretic proof was finally found, but is much more difficult than this original proof.
More spectacularly, Feit-Thompson proved that any group of odd order is solvable. The
proof is very difficult, and was the first major step in classifying finite simple groups.
Groups of even order are, therefore, much harder to understand. We give two examples
when we can say something more.

The first example, is left as an exercise (cf. the proof of Lemma 24.15):

Proposition 24.18. Let n ≥ 5. If H is a normal subgroup of Sn, then either H = 1,
H = An, or H = Sn.

The order of A5 is divisible by 4. We show groups of even order larger than two but
not divisible by 4 are never simple, i.e., if G is a group of order 2n, with n > 1 an odd
integer, then G is not simple.

Review 24.19. Let G be a nontrivial finite group. We have seen that Cayley’s Theorem
gives a group monomorphism

λ : G→ Σ(G) defined by x 7→ (λx : a 7→ xa)

called the (left) regular representation of G. If xa = λx(a) = a, then x = e, i.e., the
permutation λa has a fixed point if and only if a = e. Note also that the regular represen-
tation corresponds to the translation action of G on S = G which is transitive, i.e., S is
the only orbit under this action. In particular, this action has no fixed points (one-point
orbits).

We want to prove that every finite group of order 2n with n > 1 odd is not simple.
We need two lemmas which themselves are interesting.

Lemma 24.20. Let G be a group of order mn and λ : G→ Σ(G) the regular representa-
tion with m > 1. If the element a in G has order m, then

(1) λa is a product of n disjoint m-cycles.
(2) λa is an odd permutation if and only if m is even and n is odd.

[Note. This characterizes elements in λ(G), but not in Σ(G).]

Proof. (1): By the review, we know if 1 ≤ r < m, then the permutation λar = (λa)
r

has no fixed points. Let λa = γ1 · · · γs be a full cycle decomposition of λa. As λar has no
fixed points for 1 ≤ r < m, each γi must be a cycle of order at least m. But λam = 1G,
so each γi must be a cycle of length m. [Note: γri may no longer be a cycle, but the γri
are still disjoint and each is a product of disjoint cycles.] Since each element of G occurs
precisely once in the cycle decomposition for λa, we must have s = n.

By (1), we have a full cycle decomposition of λa given by λa = γ1 · · · γn, with each γi an
m-cycle. Therefore, λa is an odd permutation if and only if n(m − 1) is odd, i.e., if and
only if n is odd and m is even. �

Lemma 24.21. Let G be a finite group and λ : G→ Σ(G) the regular representation. If
λ(G) contains an odd permutation, then there exists a normal subgroup of G of index two.
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Proof. Let |G| = n and identify Σ(G) and Sn. As λ(G) contains an odd permutation,
H := An ∩ λ(G) < λ(G) and λ(G)An = Σ(G). The regular representation is monic, so,
G ∼= λ(G). Using the Correspondence Principle and the Second Isomorphism Theorem,
we must have

[G : λ−1(H)] = [λ(G) : H] = [λ(G) : An ∩ λ(G)]

= [Anλ(G) : An] = [Sn : An] = 2.

Therefore, λ−1(H) < G is a subgroup of index two hence is also normal. �

Application 24.22. Let G be a finite group of order 2n with n odd. Then G contains a
normal subgroup of index two. In particular, if n > 1, G is not simple.

Proof. By Cauchy’s Theorem, there exists an element a in G of order two. Let
λ : G → Σ(G) be the regular representation. By Lemma 24.20, the permutation λa is a
product of n disjoint transpositions, hence is an odd permutation. The result now follows
by Lemma 24.21. �

This application can be pushed a bit further. Since all Sylow p-subgroups of a group
are conjugate, if one is abelian (respectively, cyclic) all are.

Theorem 24.23. Let G be a finite group of order 2rm with m odd. If G contains a cyclic
Sylow 2-subgroup then there exists a normal subgroup of G of index 2r. In particular, if
m > 1 or r > 1, then G is not simple.

Proof. We may assume that m > 1 and r ≥ 1. Let λ : G→ Σ(G) be the regular
representation. By Lemma 24.20, the group λ(G) contains an odd permutation, so by
Lemma 24.21, there exists a normal subgroup N of G of index two. Hence |N | = 2r−1m,
and we may assume that r > 1. Let P0 ∈ Syl2(N). By the Fourth Theorem, there exists
P ∈ Syl2(G) containing P0. By the remark above, P is cyclic, say P = 〈x〉, so P0 = 〈x2〉
by the Cyclic Subgroup Theorem. By induction on r, there exists a normal subgroup
H in N of index 2r−1. In particular, |H| = m. By the Second Isomorphism Theorem,
P0H ⊂ N is a subgroup, and P0 and H have relatively prime orders, so P0 ∩ H = 1
(why?). It follows by counting that N = P0H. Let Hx := xHx−1. We have G = N ∨xN ,
since x /∈ N . Therefore, H / G if and only if Hx = H, as H / N . If this is the case,
we are done, so we may assume that H 6= Hx. The group N being normal in G implies
that Nx = xNx−1 = N . Since N = P0H and P x

0 = xP0x
−1 = P0 in cyclic P , we have

N = P0H = Nx = (P0H
x) = P x

0 H
x, so Hx ⊂ N . As |H| = |Hx|, we know that 26 | |Hx|.

By the Second Isomorphism Theorem, as H/N and Hx ⊂ N , we have HHx is a subgroup
of N . In particular, |H| | |HHx|. But we also have 26 | |H||Hx|/|H ∩Hx| | |HHx|, so
we must have |HHx| ≤ |N |/2r−1 = |H|, hence |HHx| = |H| = |Hx|. We conclude that
H = H ∩Hx = Hx, a contradiction. Therefore, H / G. �

Exercises 24.24.

1. Let α be a product of disjoint cycles γ1, . . . , γm. Show that the order of α is the least
common multiple of the orders of the γi, 1 ≤ i ≤ m. In particular, show that this
means that the order of each γi divides the order of α and further, that if p > 1 is a
prime, then every power of a p-cycle is either a p-cycle of the identity.
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2. Let n ≥ 3. Show that the center Z(Sn) = 1. We call a group centerless if its center is
trivial.

3. Let p be a prime and G a subgroup of the symmetric group Sp containing a p-cycle
and a transposition. Show that G = Sp.

4. Show that S4 and SL2(Z/3Z) are not isomorphic.

5. We say that an element α ∈ Sn has cycle type (r1, . . . , rm) if α is a product of disjoint
cycles γ1, . . . , γm with γi an ri-cycle for 1 ≤ i ≤ m and r1 ≤ · · · ≤ rm. Prove that two
elements of Sn are conjugate in Sn if and only if they have the same cycle type.

6. A permutation in Sn is called regular if it is the identity or has no fixed points and is
the product of disjoint cycles of the same length. Show that a permutation is regular
if and only if it is a power of an n-cycle.

7. Let α be an r-cycle. If k > 0 is an integer and (r, k) the gcd of r and k, show that αk

is a product of (n, k) disjoint cycles, each of length r/(r, k).

8. Let ϕ : Sn → Sn be a group automorphism that takes every transposition to a trans-
position. Prove that ϕ is an inner automorphism.

9. Show the following:
(a) A4 can be generated by two elements x and y satisfying x2 = y3 = (xy)3 = 1.
(b) S4 can be generated by two elements x and y satisfying x2 = y3 = (xy)4 = 1.
(c) A5 can be generated by two elements x and y satisfying x2 = y3 = (xy)5 = 1.

10. Show that A4 is the only subgroup of index two in S4.

11. Show That any subgroup of order 12 not isomorphic to A4 contains a cyclic subgroup
of order 6.

12. Show that A5 is generated by 5-cycles. Generalize.

13. Show that Sn has no normal subgroups of order two if n ≥ 5.

14. Let n ≥ 5. Show if H is a normal subgroup of Sn, then either H = 1, H = An, or
H = Sn.

15. Let n > 2 be an integer. Show that every subgroup of index n in An is isomorphic to
An−1.

16. Let p be a prime and H the cyclic subgroup generated by a p-cycle in Sp. Determine
the order of the normalizer NSp(H). Prove your determination is correct. Generalize
this to the cyclic subgroup generated by an n-cycle in Sn.

17. Let G be a finite group and N a normal subgroup of G of prime index p. Prove that
[G,G] ⊂ N and use it to prove that Sn, n ≥ 5 is not polycyclic, hence not solvable
without using Abel’s Theorem.

18. Let n ≥ 5. Prove that the only proper subgroup of Sn of index at most n− 1 is An.

19. Let G be a free group on basis B with B having at least two elements. Show that G is
not solvable.

20. Show that the free product Z/2Z ∗ Z/5Z (cf. Definition 18.13 and Theorem 18.14) is
not solvable.
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21. Let A∞ :=
⋃∞
i=1 An and S∞ :=

⋃∞
i=1 Sn be groups defined in the obvious way (with An

and Sn respective subgroups for all n). Show that A∞ is a normal subgroup of index
two in S∞ and 1 < A∞ < S∞ is a composition series. Also show the infinite abelian
subgroup of S∞ generated by the transpositions (2k − 1 2k), k ≥ 1, does not have a
composition series.(Cf. Exercise 17.14(11).)

22. Classify all groups of order 2pq up to isomorphism if p < q are odd primes with p 6 | q−1.

23. Classify all groups of order 2pq up to isomorphism if p < q are odd primes.

25. Addendum: The Projective Special Linear Group

In this section, we shall produce another infinite collection of finite simple groups, viz.
SL2(F )/Z(SL2(F )), with F a finite field and |F | > 3. Do so, we shall need some results
from other sections in the book that we shall assume as facts in this section.

We need the following results about fields.

Facts 25.1. (Lagrange) Let F be a field. Then a nonzero polynomial f ∈ F [t] of degree
n has at most n roots in F . (Cf. Corollary 34.8)

Most of the following Facts will be exercises arising as examples of our results in the
study of polynomials over a field.

Fact 25.2. Let F be a finite field.

1. There exist a prime p > 0 and q = pn, some n, such that |F | = q. In particular, F is
an n-dimensional vector space over Z/pZ.

2. Let |F | = q. Then F× is a cyclic group of order q − 1.(Cf. Theorem 34.15.)
3. If |F | = q, then every element of F is a root of the polynomial tq − t ∈ F [t] and every

element of F× is a root of tq − 1. (Cf. Fermat’s Little Theorem.)
4. For every prime p, there exists a field F having pn elements.
5. Given q = pn, p > 0 a prime, all fields of order q are isomorphic as fields. (What is

the definition of a field?) We shall denote a choice for such a finite field of q elements
by Fq. We may assume also that Fq contains Z/pZ, e.g., Fp = Z/pZ.
(Warning: Z/pnZ is not a field if n > 1).

We shall also need a special case of the following from linear algebra that classifies
square matrices over an arbitrary field up to similarity: Let F be a field. If h is the monic
polynomial h = tn + an−1t

n−1 + · · ·+ a0 ∈ F [t], let Ch denote the matrix

Ch :=


0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
... · · · ...
0 0 · · · 1 −ad−1


in Md(F ). It is called the companion matrix of h.

Facts 25.3. If A ∈ Mn(F ), there exist unique monic polynomials q1 | q2 | · · · | qr in F [t]
(where polynomial f | g in F [t] if g = fh in F [t], g ∈ F [t]), satisfying B = PAP−1 with
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P ∈ GLn(F ) and

B =

Cq1 · · · 0
...

. . .
...

0 · · · Cqr

 (in block form).

The matrix C is unique and called the rational canonical form of A. (Cf. Section 45).

We shall only need this fact in the special case that n = 2 and A ∈ GL2(F ). The
two possibilities for the rational canonical form C that can occur for such an A is C is an

invertible matrix with C either a diagonal matrix (2 blocks) or of the form

(
0 −a0

1 −a1

)
.

Definition 25.4. If R is a commutative ring, a matrix E = (eij) ∈ GLn(R) is called an
elementary matrix (of Type I) or a transvection if if there exists 0 6= λ ∈ R and l 6= k such
that

eij =


1 if i = j

λ if (i, j) = (k, l)

0 otherwise.

We denote E by Eij(λ). Transvections lie in SLn(R) := {A ∈ GLn(R) | detA = 1}, the
special linear group of R of degree n. They will play the role that 3-cycles played in An,
n ≥ 5.

Note. If B ∈ Rm×n (respectively B ∈ Rn×m), then multiplying B on the left (respectively
right) by a transvection E is just adding a multiple of a row (respectively column) of B
to another row (respectively column) of B. (Cf. Gaussian elimination.)

Proposition 25.5. Let R be a commutative ring. Then the centralizer of SLn(R) in
GLn(R) is the subgroup of invertible scalar matrices {aI | a ∈ R×}.

Proof. Let A = (aij) ∈ SLn(R). As {aI | a ∈ R×} centralizes GLn(R), we need only
show the converse. Suppose that i 6= j. Then AEij(1) = Eij(1)A. Hence A(Eij(1)− I) =
(Eij(1)−I)A (where I is the identity matrix as usual). As the kjth entry of A(Eij(1)−I)
is aki and the kjth entry of (Eij(1)− I)A is zero if k 6= i and ajj otherwise, it follows that
aki = 0 if k 6= i and aii = ajj. The result follows. �

Corollary 25.6. Let R be a commutative ring. The center of GLn(R) is {aI | a ∈ R×}
and the center of SLn(R) is {aI | an = 1, a ∈ R×}.

Using row and column operations on a matrix over a field (or over a polynomial ring
over a field using the division algorithm (cf. Appendix D, Theorem D.2), we deduce the
following:

Corollary 25.7. Let F be a field. Then any element A ∈ GLn(R) can be written as
A = UD(µ) with U ∈ SLn(R) a product of transvections and D(µ) = (dij) a diagonal
matrix with dnn = µ ∈ R× and all the other diagonal entries one. In particular, SLn(F )
is generated by transvections.
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If R a commutative ring, then the subgroup SLn(R) is normal in GLn(R). However,
conjugates of a normal subgroup N of SLn(R) by elements of GLn(R) may not lie in N .
Of course, it may happen that some conjugates of N by an element in GLn(R) may still
lie in N . We give an illustration of this that will be useful.

Construction 25.8. Let F be a field and A =

(
a b
c d

)
in SL2(F ).

Suppose that there exists an S ∈ GL2(F ) satisfying SAS−1 =

(
0 −1
1 r

)
with detS = µ.

Set T = D(µ)−1S. We have T ∈ SL2(F ) and(
0 −1
1 r

)
= D(µ)T

(
a b
c d

)
T−1D(µ)−1.

or

(*) D(µ)−1

(
0 −1
1 r

)
D(µ) = T

(
a b
c d

)
T−1.

The left hand side of (*)(
1 0
0 µ−1

)(
0 −1
1 r

)(
1 0
0 µ

)
=

(
0 −1
µ−1 µ−1r

)(
1 0
0 µ

)
=

(
0 −µ
µ−1 r

)
.

As T = D(µ)−1S ∈ SL2(F ), we have A is conjugate to

(
0 −µ
µ−1 r

)
in SL2(F ) by an

element in SL2(F ). In particular, if N is a normal subgroup of SL2(F ) and A ∈ N , then

the constructed matrix

(
0 −µ
µ−1 r

)
lies in N .

Definition 25.9. Let R be a commutative ring. Define the projective general linear
group by PGLn(R) := GLn(R)/Z(GLn(R)) and the projective special linear group by
PSLn(R) := SLn(R)/Z(SLn(R)).

So we have shown the following:

Corollary 25.10. Let R be a commutative ring. Then Z(SLn(R)) = SLn(R)∩Z(GLn(R)).

Notation 25.11. Let q = pn, p > 0 a prime, and n > 0. We shall denote the groups
GLn(Fq), SLn(Fq), PSLn(Fq) by GL(n, q), SL(n, q), PSL(n, q), respectively.

Over a finite field, we know the cardinality of these groups.

Lemma 25.12. Let p > 0 be a prime and q = pn with n > 1. Then we have

(1) |GL(n, q)| = (qn − 1)(qn − q) · · · (qn − qn−1).
(2) | SL(n, q)| = |GL(n, q)|/(q − 1) = |PGL(n, q)|.
(3) |PSL(n, q)| = |GL(n, q)|/(q − 1)(n, q − 1).

Proof. We leave a proof of (1) and (2) to the reader. (Cf. Exercise 9.12(1).) As for
(3), we use the fact that if F is a finite field of cardinality q, then F× is a cyclic group by
Fact 25.2(2). For such an F , every element x in F× satisfies xq−1 = 1 and the number of
x with xn = 1 is the gcd (n, q − 1). The result follows. �
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Our goal is to show that PSL(2, q) is a simple group if q > 3. To do so, it suffices to
show that every proper noncentral normal subgroup of SL(2, q) is simple whenever q > 3.
We first show that transvections play the role analogous to that played by 3-cycles in the
proof of the simplicity of An, n ≥ 5.

Lemma 25.13. Let N / SL(2, q). If N contains a transvection, then N = SL(n, q).

Proof. By Corollary 25.7, it suffices to show that N contains all the tranvections in

SL(n, q). Suppose that N contains the transvection E12(µ) (so µ 6= 0). Let A =

(
a b
c d

)
be an element of SL(2, q). Since E12(µ) ∈ N / SL(2, q), we have

(*) AE21(µ)A−1 =

(
a b
c d

)(
1 µ
0 1

)(
d −b
−c a

)
=

(
1− µac µa2

−µc2 1 + µac

)
also lies in N . In particular if c = 0, we have E21(−µa2) lies in N and if a = 0, we have
E12(−µa2) lies in N .

Now consider the map of multiplicative groups F×q → F×q by x 7→ x2. It is a group

homomorphism with kernel {x | x2 = 1}. In particular if p = 2, this kernel is trivial
and if p > 2, it is {±1}. It follows that in either case more than half the elements in Fq
are squares. Consequently, the additive subgroup H = {x ∈ Fq | Eij(x) ∈ N} ∪ {0} of
Fq must be Fq as its index in Fq is less than two. Therefore, by the special case of (*)

with c = 0 and a = 0 we have E12(λ) lies in N for all λ ∈ F×q . As U =

(
0 1
−1 0

)
lies in

SL(2, q), we also have

E21(λ) =

(
0 1
−1 0

)(
1 −λ
0 0

)(
0 −1
1 0

)
= UE12U

−1

lies in N for all nonzero λ. The result follows. �

Theorem 25.14. (Jordan-Moore) The groups PSL(2, q) are simple if and only if q > 3.

Proof. By Lemma 25.12, we have

PSL(2, q) =

{
(q + 1)(q2 − q) if q = 2n.
1
2
(q + 1))(q2 − q) if q = pn, p an odd prime.

As |PSL(2, 2)| = 6 and |PSL(2, 3)| = 12, we know that PSL(2, 2) and PSL(2, 3) are not
simple. So it suffices to show that PSL(2, q) is simple if q > 3.

Let N / SL(2, q) be a noncentral subgroup and A =

(
a b
c d

)
∈ N not in the center

of SL(2, q). We first show that N contains a transvection in the special case when A =(
a b
c d

)
satisfies b = 0, and a 6= ±1.

Let S =

(
1 0
1 1

)
. Then N contains the commutator

(*) SAS−1A−1 =

(
1 0

1− d2 1

)
.
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As detA = ad = 1, if a 6= ±1, we would have E21(1− a2) lies in N and we would be done
for the case that b = 0, and a 6= ±1.

From the general form of A, we shall construct a matrix in N of the form

(
α 0
β α−1

)
∈ N

not in the center of SL(2, q) with α 6= ±1, β ∈ Fq. This would finish the proof.
By Fact 25.3, there exists a matrix P ∈ GL(2, q) such that C := PAP−1 is in rational

canonical form. As SL(2, q) / GL(2, q), the matrix C lies in SL(2, q). In the case at hand,
this rational canonical form has one or two blocks.

Case 1. The matrix C is diagonal, i.e., there are two blocks.

If C =

(
y 0
0 x

)
, then y = x−1 as C ∈ SL(2, q). As A was assumed not to be in the center,

neither is C. So y 6= ±1. Replacing A by C in (*), we see that N contains a transvection.

Case 2. The matrix C has one block, i.e., it is the companion matrix of a monic polyno-
mial in Fq[t] of degree two.

Suppose that C :=

(
0 y
1 x

)
.

Since C ∈ SL(2, q), we must have y = −1. As P ∈ GL(2, q), by Construction 25.8, there

exists a matrix D =

(
0 −µ−1

µ x

)
that is a conjugate of C by an element in SL(2, q) for

some nonzero element µ. Hence the matrix D lies in N / SL(2, q).

Let α ∈ F×q and T =

(
α−1 0
0 α

)
in SL(2, q). Then N contains the commutator

(†) U = TDT−1D−1 =

(
α−2 0

µx(α2 − 1) α2

)
in SL(2, q). Therefore, we are done if α−2 6= ±1. i.e., α4 6= 1. The polynomial t4−1 ∈ Fq[t]
has at most four roots in Fq by Fact 25.1 and every root of Fq is a root of t5 − t ∈ Fq[t]
by Fact 3. It follows that Fq = Z/5Z is the only case left. Note in this case, As 1 and −1
are the only distinct nonzero squares in Z/5Z, α2 = ±1, so we must look more closely.
There are two possible subcases.

Subcase 1. The element x 6= 0.

In Z/5Z, there exists an element α2−1 6= 0, e.g., α = 2 in Z/5Z. Therefore, µx(α2−1) 6= 0
in (†) and U2 = E21(−2µx(α−2)) lies in N .

Subcase 2. The element x = 0.

We know that D =

(
0 −µ−1

µ x

)
lies in N . Let z ∈ F×q . Then(

1 z
0 1

)(
0 µ−1

µ x

)(
1 −z
0 1

)
=

(
zµ −z2µ− µ−1

µ −µz

)
lies in N . Setting z = 2µ−1, we see that

(
2 0
µ 2

)
lies in N . �
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It is, in fact, true that PSLn(F ) with n ≥ 3 is simple for any field R is simple. We
shall not prove this. A key lemma that is used to prove this is the following:

Lemma 25.15. Let n ≥ 3. Then any two transvections in SLn(F ) are conjugate.

We leave this as an exercise. It can be proved using conjugation of transvections by
good choices of elements in SLn(F ).

Exercises 25.16. 1. Prove Corollary 25.7.

2.
3. Let F be a field. Show that GLn(F ) is a semidirect product of SLn(f) be F×.

4. Prove Lemma 25.15
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CHAPTER V

General Properties of Rings

In this chapter, we begin our formal study of rings, especially that of commutative
rings. We find the analogues in ring theory for the notions and basic theorems we learned
in group theory. The analogue in ring theory of a normal subgroup is called an ideal. As in
group theory, this turns out to be those subsets of a ring that are kernels of ring homomor-
phisms. This leads to analogous isomorphism theorems and an analogous correspondence
principle.

When studying the integers, we looked at integers themselves. In this chapter, we
switch our perspective from studying elements to studying ideals. We discover the type
of ideal corresponding to a prime integer in commutative rings. This type of ideal, called
a prime ideal, is the major object of study in commutative ring theory whose definition is
based upon Euclid’s Lemma. (For elements the analogue of a prime integer is called an
irreducible element.) We also introduce an important generalization of the ring of integers
called a principal ideal domain or PID. Although this ring is a very special type of domain
(a commutative ring in which ab = 0 implies a = 0 or b = 0), it will be the main type
of domain that we shall study. However, we shall show that even for a general domain,
there exists a field of fractions or quotient field, thus constructing, in particular, the field
of rational numbers. We shall also find the ring analogue of the Chinese Remainder
Theorem that we have previously proved for the integers. Finally, we shall define the set
theoretic extension of finite induction used in algebra, called Zorn’s Lemma. This axiom,
equivalent to the Axiom of Choice that you may have seen, is a powerful tool. [A proof
of the equivalence of these two axioms can be found in Appendix A.] We shall then give
some simple applications of it that are basic to ring theory and linear algebra.

26. Definitions and Examples

We begin by recalling the definition of a ring, together with specific types of rings.

Definition 26.1. Let R be a set with two binary operations

+ : R×R→ R and · : R×R→ R.

We call R a ring (under + and ·) if:

(1) (R,+) is an additive group (with identity written 0 or 0R).

(2) (R, ·) is a monoid (with identity written 1 or 1R).

(3) R satisfies the distributive laws, i.e., for all a, b, c ∈ R, we have:
(a) a · (b+ c) = a · b+ a · c.
(b) (b+ c) · a = b · a+ c · a.

If (2) is replaced by

147
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(2′) (R, ·) satisfies associativity (i.e., possibly no 1),

then (following Jacobson), we call R (under + and ·) a rng. [Take out the condition of
having an identity, take out the i from ring.]
A ring satisfying

(4) (R \ {0}, ·) is a group

is called a division ring.
As usual if a, b ∈ R, we usually write ab for a · b.

Also recall that if R is a ring with 1 6= 0, then

R× := {x ∈ R | There exists x−1 ∈ R such that xx−1 = 1 = x−1x}
= {x ∈ R | There exists a, b ∈ R such that ax = 1 = xb}

is called the group of units of R. [Why is it a group?] In particular, a ring is a division
ring if and only if R× = R \ {0} (cf. Property 26.4(3c) below).

Definition 26.2. A ring R is called a commutative ring if for all a, b ∈ R, we have

ab = ba.

A commutative ring R is called an (integral) domain if

(i) 0 6= 1.
(ii) Let a, b ∈ R. If ab = 0, then either a = 0 or b = 0.

A commutative division ring is called a field.

Remark 26.3. Check that a field is a domain.

Rings satisfy the following basic properties (which we leave as an exercise):

Properties 26.4. Let R be a rng and a, b, c ∈ R. Then the following are true:

(1) a · 0 = 0 = 0 · a.

(2) a · (−b) = (−a) · b = −(a · b).
(3) If R is a ring, then for all a ∈ R:

(a) (−1) · a = −a.
(b) (−1) · (−1) = 1.
(c) |R| > 1 if and only if 1 6= 0.

(4) If R is a commutative ring with 1 6= 0, then R is a domain if and only if R
satisfies the Cancellation Law: If a, b, c lie in R, then

a · b = a · c with a 6= 0 implies b = c.

We already know many examples of rings. We recall some of these.

Examples 26.5. 1. A trivial ring is a ring with one element. By the above, this is the
case if and only if 1 = 0 in R.

2. Z is a domain.

3. Q,R,C are fields.
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4. The subset of C given by

Z[
√
−1] = {a+ b

√
−1 | a, b ∈ Z}

is a domain under the restriction of the + and · of C called the Gaussian integers. If
z ∈ Z[

√
−1], there exist unique integers a and b satisfying z = a + b

√
−1. (Cf. the

next example.)

5. The subset of C given by

Q[
√
−1] = {a+ b

√
−1 | a, b ∈ Q}

is a field under the restriction of the + and · of C. [Can you show this?] Note that
if z ∈ Q[

√
−1], there exist unique rational numbers a and b satisfying z = a + b

√
−1.

Why?

6. Z/nZ, with n ∈ Z+, is a commutative ring. It is a domain if and only if n is a prime
if and only if it is a field.

7. If R is a ring so is Mn(R). If R is a commutative ring with |R| > 1, then Mn(R) is
commutative if and only if n = 1. (If R is a rng then so is Mn(R) — obvious definition.)

8. If R is a ring, then R[t], the set of polynomials with coefficients in R, is a ring under
the usual + and · of polynomials.
[What are the usual + and · of polynomials? What is 1R[t]?]

9. Let R be a ring. Define the ring of (formal) power series over R to be the set

R[[t]] := {
∞∑
i=0

ait
i | ai ∈ R for all i}

with properties and operations:

0R[[t]] = 0R and 1R[[t]] = 1R, with t0 = 1R
∞∑
i=0

ait
i =

∞∑
i=0

bit
i if and only if ai = bi for all i

∞∑
i=0

ait
i +

∞∑
i=0

bit
i :=

∞∑
i=0

(ai + bi)t
i

∞∑
i=0

ait
i ·
∞∑
i=0

bit
i :=

∞∑
i=0

cit
i with ci =

i∑
j=0

ajbi−j for all i.

Since we do not have to worry about convergence, it is easy to define power series
(inductively) to satisfy conditions.

Just as for groups, we need to define the maps of interest between rings.

Definition 26.6. A map ϕ : R → S of rings is called a ring homomorphism if for all
a, b ∈ R, the map ϕ satisfies:

(1) ϕ(0R) = 0S.
(2) ϕ(a+ b) = ϕ(a) + ϕ(b).
(3) ϕ(1R) = 1S.
(4) ϕ(a · b) = ϕ(a) · ϕ(b).
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I.e., ϕ is both a group homomorphism ϕ : (R,+)→ (S,+) and a ‘monoid homomorphism’
ϕ : (R, ·) → (S, ·). Note that we know that (1) is automatic for group homomorphisms.
[If we omit (3), we call ϕ a rng homomorphism.]
A ring homomorphism ϕ : R→ S is called

i. a ring monomorphism or monic or mono if ϕ is injective.
ii. a ring epimorphism or epic or epi if ϕ is surjective.
iii. a ring isomorphism if ϕ is bijective with inverse a ring homomorphism.
iv. a ring automorphism if R = S and ϕ is a ring isomorphism.

Of course, if R and S are fields, etc., then ϕ is called a field homomorphism, etc.
If ϕ : R→ S is a ring homomorphism, we let

kerϕ := {x ∈ R | ϕ(x) = 0S} ⊂ R

called the kernel of ϕ, and

imϕ := {ϕ(x) | x ∈ R} ⊂ S

called the image of ϕ.

Remarks 26.7. 1. A ring homomorphism ϕ : R → S is a ring isomorphism if and only
if ϕ is bijective. [Proof?]

2. We say two rings R and S are isomorphic if there exists an isomorphism ϕ : R → S.
If this is the case, we write R ∼= S and often write the isomorphism as ϕ : R

∼−→ S.

3. A ring homomorphism ϕ : R→ S is monic if and only if kerϕ = 0 := {0}.
4. Let n ∈ Z+, then the canonical map : Z → Z/nZ is a ring epimorphism with

ker = nZ = {ny | y ∈ Z}.
Remark 26.8. Let ϕ : R → S be a ring homomorphism. We leave it as an exercise to
show that ϕ is a monomorphism if and only if given any ring homomorphisms ψ1, ψ2 :
T → R with compositions satisfying ϕ ◦ ψ1 = ϕ ◦ ψ2, then ψ1 = ψ2. (Cf. Exercise
1.13(7).) However, the analogue of Exercise 1.13(8) is false. In particular, suppose that
a ring homomorphism ϕ : R → S has the property that whenever there exists ring
homomorphisms θ1, θ2 : S → T with compositions satisfying θ1 ◦ ϕ = θ2 ◦ ϕ that θ1 = θ2.
Then this does not necessarily imply that ϕ is surjective. For example the inclusion map
of Z into Q is a ring homomorphism that satisfies this condition, but is not a surjective
ring homomorphism. (Cf. Exercise 27.20(8).) In category theory, being epi is defined by
this condition. For this reason, it is no longer common to define a ring epimorphism as
a surjective ring homomorphism. However, for consistency of notation, we shall use this
older definition, i.e., call a surjective ring homomorphism a ring epimorphism.

We also need the analogues from group theory of subgroups and normal subgroups.

Definition 26.9. Let R be a ring, S ⊂ R a subset with S a ring. We say S is a subring of
R if the inclusion map inc : S → R (often written inc : S ↪→ R) is a ring monomorphism,
so the restriction of the identity map on R to S is the inclusion map of S into R with
1S = 1R and S is closed under the ring operations + and · on R, meaning that the
restriction of the operations on R to S have image in S, viz., +|S×S : S × S → S and
·|S×S : S × S → S. [We also have the obvious notion of a subrng of a rng, if we ignore, in
this case, the condition on the 1’s, if any.]
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Examples 26.10. 1. Z ⊂ Q and Z,Q,R ⊂ C are subrings.

2. If R is a domain, e.g., a field, and S ⊂ R a subring, then S is a domain.

3. If R is not the zero ring, then 0 ⊂ Z is not a subring. It is a subrng.

4. Let Z × Z be a ring under componentwise + and ·, so 1Z×Z = (1Z, 1Z) and Z × Z is
commutative ring, but not a domain. We also have Z× 0 := Z× {0} ⊂ Z× Z is not a
subring but is a subrng.

5. Let R be a ring. The center of R is the set

Z(R) := {a ∈ R | ax = xa for all x ∈ R}.

It is a commutative subring of R. For example, the center of a division ring is a field.

Remark 26.11. The last example allows us to generalize our terminology. Let R be
a commutative ring, A a ring and ϕ : R → A a ring homomorphism. We call A an R-
algebra via ϕ if ϕ(R) ⊂ Z(A). If B is another R-algebra via τ , then a ring homomorphism
ψ : A→ B is called an R-algebra homomorphism if

A
ψ

// B

R

ϕ

__

τ

??

commutes. Such a τ is called an R-algebra monomorphism (respectively, an R-algebra
epimorphism R-algebra isomorphism) if it is a ring monomorphism (respectively, epimor-
phism, isomorphism).

We need the analogue of normal subgroups in ring theory, i.e., those subobjects of a
ring that are kernels of ring homomorphisms. If a ring homomorphism ϕ : R→ S satisfies
ϕ(1R) = 0S, then S = 0 as ϕ(1R) = 1S. In particular, kerϕ cannot be a subring of R
unless kerϕ = R; so in general kernels are not subrings. They are, however, always
subrngs. Just as in the case when being a subgroup of a group is not sufficient to be the
kernel of a group homomorphism, neither is being a subrng sufficient. Rather we need
the following objects:

Definition 26.12. Let R be a ring and A a nonempty subset of R. We call A a (2-sided)
ideal of R if (A,+) ⊂ (R,+) is a subgroup and for all r in R and a in A, we have both
ar and ra lie in A, i.e., · : R×A→ A and · : A×R→ A. So an ideal of R is a subrng of
R closed under multiplication by R on both the right and left. If A only satisfies being a
subrng and closed under multiplication by R on the left (respectively, on the right), we
call A a left ideal (respectively, right ideal). Of course, if R is a commutative ring, the
notions of (2-sided) ideal, right ideal, and left ideal coincide, making life much simpler.

Examples 26.13. Let R be a nontrivial ring.

1. 0 = {0} is an ideal of R called the trivial ideal and R is an ideal of R called the unit
ideal. If these are the only ideals of R, then we call R a simple ring. (Cf. simple
groups.)
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2. Let a ∈ R. Define

(a) = RaR := {
n∑
i=1

xiayi | n ∈ Z+, xi, yi ∈ R, 1 ≤ i ≤ n},

an ideal of R called the principal ideal generated by a. It is the smallest ideal in R
containing a. [Cf. this with a cyclic subgroup of a group.] If R is commutative, this is
much simpler, as (using the distributive laws), it is just

(a) = Ra := {ra | r ∈ R}.

3. Let a1, . . . , an ∈ R. The smallest ideal generated by a1, . . . , an is

(a1, . . . , an) = Ra1R + · · ·+RanR :=

{
n∑
i=1

mi∑
j=1

xijaiyij | xij, yij ∈ R all i, j some n,mi ∈ Z+}.

If R is commutative, this is simply

(a1, . . . , an) = Ra1 + · · ·+Ran := {
n∑
i=1

riai | ri ∈ R, 1 ≤ i ≤ n},

i.e., it is all R-linear combinations of a1, . . . , an. [Cf. this with the span of finitely
many vectors in a vector space.]

4. Let I be an (indexing) set, A = {ai | i ∈ I}. Then the smallest ideal in R containing
A is

〈A〉 = (ai)I := {a ∈ R | There exist ai1 , . . . , ain ∈ A, some n and

ij ∈ I, satisfying a ∈ (ai1 , . . . , ain)}.
We say that A generates I. [So 〈A〉 is the union of all the ideals generated by ai1 , . . . , ain
in A with i1, . . . , in ∈ I, for some n.]

5. Let A and B be ideals in R. Then

A + B := (A + B) = {a+ b | a ∈ A and b ∈ B}
A ∩B := {x | x ∈ A and x ∈ B}

AB := ({ab | a ∈ A, b ∈ B})

= {
n∑
i=1

aibi | ai ∈ A, bi ∈ B, 1 ≤ i ≤ n, some n}

are ideals in R. Moreover, we have

AB ⊂ A ∩B ⊂ A + B

(and they are usually all different).

Note the formal difference between the definition of AB for rings and HK, with H, K
subgroups of G, although this difference vanishes if H or K is a normal subgroup (the
analogue of an ideal). So AB is the ideal in R generated by ab with a ∈ A, b ∈ B.
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More generally, we can recursively define the product of finitely many ideals. [Note
that infinite products do not make sense in a ring.]

Note A ∪ B is usually not an ideal (cf. groups and vector spaces). Can you give a
condition that will guarantee that it is?

6. If ϕ : R→ S is a ring homomorphism, then kerϕ is an ideal of R. But in general imϕ
is not an ideal of S. Indeed, it is an ideal if and only if ϕ is surjective. It is, however,
a subring of S

7. If A is an ideal of R and A ∩ R× 6= ∅, then A = R, the unit ideal (and conversely).
Indeed, if x ∈ A ∩R× and r ∈ R, then r = r1 = rx−1x ∈ A.

We now give some basic examples.

Specific Examples 26.14. Let R be a ring.

1. If R is a division ring, then R is simple. Indeed, if 0 < A ⊂ R is an ideal, then
A ∩R× 6= ∅.

2. Suppose R is not the trivial ring. If R is commutative, then R is simple if and only if
R is a field. Indeed if R is simple, 0 6= a ∈ R, then (a) = R; so there exists an r ∈ R
satisfying 1 = ar = ra showing a is a unit. The converse is the previous example.

3. Mn(R), for n > 1, is simple and not a division ring. In fact, if R is simple, so is Mn(R)
which is never a division ring if n > 1. [We leave this as an exercise.]

4. Let R = Z and 0 < A ⊂ Z an ideal. Then (A,+) ⊂ (Z,+) is a subgroup, so A = Zn
for some n ∈ Z+ as an additive group. Clearly, (n) = Zn ⊂ Z is an ideal. Therefore,
every ideal in Z is of the form (n) for some n ≥ 0 in Z. In particular, every ideal in
Z is principal, where an ideal A is called principal if there exists an a ∈ A such that
A = (a).

5. A domain R is called a principal ideal domain or a PID if every ideal in R is principal,
e.g., Z is a PID.

6. We give further examples of PIDs (without proof):
(i) Any field.

(ii) F [t], if F is a field. [Can you show this?]

(iii) Let
Z[θ] := {a+ bθ | a, b ∈ Z} ⊂ C

with

θ =
√
−1,
√
−2,
−1−

√
−3

2
,
−1−

√
−7

2
,
−1−

√
−11

2
,

−1−
√
−19

2
,
−1−

√
−43

2
,
−1−

√
−67

2
, or

−1−
√
−163

2
.

Under the + and · in C, these are rings and each is a PID.

Gauss had conjectured that these were the only PID’s of this form (with negative
square roots). It was proved by Harold Stark.

7. Z[
√
−5] := {a+ b

√
−5 | a, b ∈ Z} ⊂ C is a domain but not a PID.

8. Z[t] is a domain but not a PID.
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We begin our study by generalizing concepts that we investigated when studying the
integers.

Definition 26.15. Let R be a commutative ring, a, b in R with a 6= 0. We say that a
divides b and write a | b, if there exists an x in R satisfying b = ax.

Properties 26.16. Let R be a commutative ring and a, b, c elements in R.

(1) If a | b and a | c, then a | bx+ cy for all x, y in R.

(2) If R is a domain, then a | b and b | a if and only if there exists a unit u in R
satisfying a = ub.

Note the second property generalizes the corresponding result for the integers, as ±1
are the only units in Z.

Proof. The proof of the first property is the same as for the integers, so we need
only prove the second. If a = ub for a unit u then b = u−1a. Conversely, if a | b and b | a
then there exist x, y ∈ R satisfying b = ax and a = by. As a 6= 0 in the domain R and
a = by = axy, we have 1 = xy by the Cancellation Law, so x, y ∈ R×. �

Property (2) motivates the following definition: If R is a domain, a and b nonzero
elements in R, we say that a is an associate of b and write a ≈ b if there exists a unit u
in R such that a = ub. Thus a is an associate of b if and only if a | b and b | a. [Check
that ≈ is an equivalence relation.] For example, if R = Z, then the only associates of n
in Z are ±n. (We also let 0 be the associate of 0.)

Remarks 26.17. Let R be a commutative ring. Then the relationship between division
and principal ideal is given by the following: Let a, b, and c be nonzero elements in R.

1. a ∈ (b) if and only if b | a if and only if (a) ⊂ (b).

2. (a) = (b) if and only if a | b and b | a.

3. a | b and a | c if and only if (b, c) ⊂ (a).

4. (b, c) = (a) if and only if a | b and a | c and there exist x and y in R satisfying
a = bx+ cy.

5. Suppose that R is a domain. Then
(a) a ≈ b if and only if (a) = (b).

(b) If a = rb in R, then a ≈ b if and only if r ∈ R×. In particular, if a 6≈ b and a = rb
in R, then (a) < (b). Indeed, if ub = a = rb with u ∈ R×, then u = r as R is a
domain.

If R = Z and p 6= ±1 is an integer, we know that p is a prime if and only if p | ab
implies p | a or p | b. This motivates the most important definition concerning ideals.

Definition 26.18. Let R be a commutative ring and A < R an ideal. We call A a prime
ideal in R if

ab ∈ A implies that a ∈ A or b ∈ A.

It is called a maximal ideal in R if

A < B ⊂ R is an ideal, then B = R.
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[Note this definition of maximal ideal (even left maximal ideal — definition?) makes sense
in any ring, commutative or not.]

Examples 26.19. Let R be a nontrivial commutative ring.

1. R is a domain if and only if 0 = (0) is a prime ideal in R:

We have 0 is a prime ideal if and only if ab ∈ (0) implies a ∈ (0) or b ∈ (0) if and only
if ab = 0 implies a = 0 or b = 0.

2. Every maximal ideal m < R is a prime ideal:

Let ab ∈ m with a 6∈ m. Then m < m + Ra ⊂ R is an ideal, hence R = m + Ra.
Therefore, there exist m ∈ m and r ∈ R satisfying 1 = m+ ra. Hence b = bm+ rab ∈
m + m ⊂ m.

3. Suppose that R is a PID. Then every nonzero prime ideal in R is maximal:
[Warning: This is not true in general, e.g., in Z[t] – why?]

Let 0 < p < R be a prime ideal and suppose that p < A ⊂ R is an ideal. By the
definition of a PID, there exist p ∈ p and a ∈ A satisfying p = (p) and A = (a).
Therefore, we have p = ra for some r ∈ R and a 6∈ (p). As ra = p ∈ p, we have r ∈ p.
Write r = sp, with s ∈ R. Then p = ra = psa in the domain R, so 1 = sa. Hence
a ∈ R× and A = R. This shows that p is maximal.

4. The prime ideals in Z are:

0 = (0) prime, not maximal

pZ = (p) p a prime, maximal.

We want to view prime ideals as an ideal theoretical property rather than a property
about elements in the ideal. This is easily done and is the direct analogue of Euclid’s
Lemma for ideals.

Lemma 26.20. Let R be a commutative ring and p < R an ideal. Then p is a prime
ideal if and only if for all ideals A and B in R satisfying AB ⊂ p, either A ⊂ p or B ⊂ p.
Moreover, if A < R is not a prime ideal, then there exists ideals A < Bi in R with i = 1, 2
satisfying B1B2 ⊂ A.

Proof. (⇐): If xy ∈ p with x, y ∈ R then (x)(y) ⊂ p, so either x ∈ (x) ⊂ p or
y ∈ (y) ⊂ p.

(⇒): Suppose that the ideal A 6⊂ p but AB ⊂ p with B an ideal. Then there exists an
element a ∈ A \ p. As ab ∈ p for all b ∈ B, it follows that B ⊂ p.

As for the last statement, suppose that A < R is not a prime ideal. Then there exist ideals
Bi 6⊂ A, i = 1, 2 but B1B2 ⊂ A. Let Bi

′ = Bi + A > A, then B1
′B2

′ ⊂ B1B2 + A ⊂
A. �

Exercises 26.21.

1. Prove if R is a domain so is the ring of formal power series R[[t]].

2. Let R be a commutative ring. Show that if f = 1 +
∑∞

i=1 ait
i is a formal power series

in R[[t]], then one can determine b1, . . . , bn, . . . such that g = 1 +
∑∞

i=1 bit
i is the
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multiplicative inverse of f in R[[t]]. In particular,

R[[t]]× = {a0 +
∞∑
i=1

ait
i ∈ R[[t]] | a0 ∈ R×}.

3. Let R be a commutative ring and A = R[[t]], the power series over R. Let P be a
prime ideal in A not containing t and ϕ : A→ R the homomorphism induced by t 7→ 0.
Suppose that ϕ(P) = (a1, . . . , an). Let fi = ai+ higher terms in t for i = 1, . . . , n.
Prove if g ∈ P, then g = f1h1 + · · ·+ fnhn for some elements h1, . . . , hn in A.

4. Let A be an additive group and let End(A) denote the set of group homomorphisms
of A to A. Prove that End(A) is a ring under addition and composition of elements in
End(A). Also show the unit group of End(A) is the group of group automorphisms of
A.

5. Let F be a field. Show that Mn(F ) is a simple ring. If n > 1 then Mn(F ) is not a
division ring.

6. Show that a ring homomorphism ϕ : R → S is a monomorphism if and only if given
any ring homomorphisms ψ1, ψ2 : T → R with compositions satisfying ϕ ◦ψ1 = ϕ ◦ψ2,
then ψ1 = ψ2.

7. Show if R is a commutative ring, then, for any ideal B in Mn(R), there exists an ideal
A in R satisfying B = Mn(A) (obvious definition). In particular, if R is simple, so is
Mn(R). Show that Mn(R) is never a division ring if n > 1.

8. Let R be a commutative ring. Prove the Binomial Theorem: Let a and b be elements
of R and n a positive integer. Then

(a+ b)n =
n∑
i=0

(
n

i

)
aibn−i.

9. If R is a ring satisfying x2 = x for all x in R, then R is commutative.

10. If R is a rng satisfying x3 = x for all x in R, then R is commutative.

11. Let R be a commutative ring and A be an ideal in R satisfying

A = m1 · · ·mr = n1 · · · ns
with all the mi distinct maximal ideals and all the nj distinct maximal ideals. Show
that r = s and there exists a σ ∈ Sr satisfying mi = nσ(i) for all i.

12. Let R be a commutative ring and A an ideal of R. Suppose that every element in R\A
is a unit of R. Show that A is a maximal ideal of R and that, moreover, it is the only
maximal ideal of R.

13. Let R be the set of all continuous functions f : [0, 1] → R. Then R is a commutative
ring under + and · of functions. Show that any maximal ideal of R has the form
{f ∈ R | f(a) = 0} for some fixed a in [0, 1].

14. Let ϕ : R → S be a ring homomorphism of commutative rings. Show that if B is an
ideal (respectively, prime ideal) of S then ϕ−1(B) is an ideal (respectively, prime ideal)
of R. Give an example with B a maximal ideal of S but ϕ−1(B) not a maximal ideal
of R.
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15. Show F [t], with F a field, is a PID.

16. Show that Z[t], the ring of polynomials with coefficients in Z, is not a PID. Show this
by finding a non-principal maximal ideal in Z[t]. Also find a nonzero prime ideal in
Z[t] that is not maximal and prove it is such.

17. Let A1, . . . ,An be ideals in R, at least n − 2 of which are prime. Let S ⊂ R be a
subrng (it does not have to have a 1) contained in A1 ∪ · · · ∪An. Then one of the Aj’s
contains S. In particular, if p1, . . . , pn are prime ideals in R and B is an ideal properly
contained in S satisfying S \B ⊂ p1 ∪ · · · ∪ pn, then S lies in one of the pi’s.

27. Factor Rings and Rings of Quotients

We begin by generalizing the construction of the integers modulo n.

Definition 27.1. Let R be a ring, A an ideal in R. If a and b are elements in R, write
a ≡ b mod A if a− b is an element of A.

A proof analogous proof to that for the integers modulo n, establishes the following:

Proposition 27.2. Let R be a ring and A an ideal in R. Then ≡ mod A is an equiva-
lence relation. Suppose that the elements a, a′, b, b′ in R satisfy:

a ≡ a′ mod A and b ≡ b′ mod A,

then

a+ b ≡ a′ + b′ mod A,

a · b ≡ a′ · b′ mod A.

Let R = R/A := R/(≡ mod A). If a ∈ R, set

a = {b ∈ R | b ≡ a mod A} = a+ A.

If

: R→ R/A given by a 7→ a

denotes the canonical surjection and a, b lie in R, define

a+ b := a+ b(i)

a · b := a · b.(ii)

Then under these operations, R is a ring with 0R = A and 1R = 1R+A with R commutative
if R is. The canonical surjection is an epimorphism with kernel A. We call R the factor
or quotient ring of R by A.

Proofs analogous to those in Group Theory show:

Theorem 27.3. (First Isomorphism Theorem) Let ϕ : R→ S be a ring homomorphism.
Then we have a commutative diagram of rings and ring homomorphisms
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R

��

ϕ
// S

R/ kerϕ
ϕ
// imϕ

inc

OO

with a ring epimorphism, ϕ a ring isomorphism between R/ kerϕ and imϕ, and inc a
ring monomorphism.

and

Theorem 27.4. (Correspondence Principle) Let ϕ : R→ S be a ring epimorphism. Then

{B | B an ideal in R with kerϕ ⊂ B} −→ {C | C an ideal in S}
given by B 7→ ϕ(B) is an order preserving bijection.

We give some applications.

Proposition 27.5. Let R be a nontrivial commutative ring and A an ideal of R. Then

(1) A is a prime ideal of R if and only if R/A is a domain.
(2) A is a maximal ideal of R if and only if R/A is a field.

Proof. Let : R→ R/A be the canonical epimorphism, so ker = A.

(1): R is a domain if and only if (0) is a prime ideal in R if and only if whenever a, b ∈ R
satisfy a · b = 0, then a ∈ (0) or b ∈ (0) if and only if whenever a, b ∈ R satisfy a · b ∈ A,
then a ∈ A or b ∈ A if and only if A is a prime ideal.

(2): (0) 6= R is a field if and only if R is simple if and only if (0) and R are the only
ideals of R if and only if {B | A ⊂ B ⊂ R is an ideal} = {A, R} if and only if A < R is
maximal by the Correspondence Principle. �

Question Is (2) true if the ring R is not necessarily commutative and we replace field by
division ring?

Compare the next application with the Third Isomorphism Theorem of Groups.

Proposition 27.6. Let R be a ring and A ⊂ B ⊂ R ideals. Then

B/A := {b+ A | b ∈ B} ⊂ R/A

is an ideal in R/A and

R/B ∼= (R/A)/(B/A).

Proof. It is easy to check that R/A→ R/B given by r+A 7→ r+B is a well-defined
epimorphism with kernel B/A. �

Proposition 27.7. Let ϕ : R → S be a ring epimorphism of commutative rings with
kernel A. Then the map

{p | p < R a prime ideal with A ⊂ p} → {P | P < S a prime ideal}
given by p 7→ ϕ(p) is a bijection.
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Proof. We may assume that S is not the trivial ring for if not then both sets of
prime ideals would be empty. By the First Isomorphism Theorem, we may assume that
S = R/A and ϕ is the canonical epimorphism : R→ R/A. Let A ⊂ B ⊂ R be an ideal.
Then B is a prime ideal in R if and only if R/B is a domain if and only if (R/A)/(B/A)
is a domain if and only if B/A is a prime ideal in R/A. �

Warning 27.8. If ϕ : R → S is a ring homomorphism of rings with p a prime ideal in
R, it does not follow that the ideal generated by image of p, Sϕ(p), is a prime ideal in S.
For example, the inclusion Z ⊂ Q is a ring homomorphism and (2) is a prime ideal in Z,
but its image (2) is the unit ideal in Q.

Next we want to determine the smallest subring of a ring.

Construction 27.9. Let R be a nontrivial ring. As any ring homomorphism must take
the multiplicative identity to the multiplicative identity, there exists a unique ring homo-
morphism from Z to R. It is given by

ι : Z→ R given by m 7→ m1R =


1R + · · ·+ 1R︸ ︷︷ ︸

m

if m ≥ 0

−1R + · · ·+−1R︸ ︷︷ ︸
−m

if m < 0.

Since Z is a PID, there exists a unique integer n ≥ 0 such that ker ι = (n) [= (−n)]. We
call n the characteristic of the ring R and write char(R) (or just charR) for this integer.
We shall only be interested in the characteristic of commutative rings.

Remarks 27.10. Let R be a ring and ι : Z→ R the unique ring homomorphism.

1. im ι is the unique smallest subring of R.

2. char(R) = 0 if and only if m1R 6= 0 for all nonzero integers m if and only if ι is monic.

3. If char(R) 6= 0 then, by the Division Algorithm, char(R) is the least positive integer n
such that n1R = 0.

4. If ϕ : Z/nZ → R and ψ : Z/mZ → R are ring monomorphisms with n,m positive
integers, then n = char(R) = m and ϕ = ψ are induced by ι.

Examples 27.11. 1. Z is a domain, and Q, R, and C are fields of characteristic zero.

2. If n ∈ Z+ then char(Z/nZ) = n.

3. If ϕ : R→ S is a ring monomorphism, then char(R) = char(S).

4. The canonical epimorphism : Z→ Z/nZ shows that, in general, the characteristic of
a ring is not preserved under a ring homomorphism.

Proposition 27.12. Let R be a domain. Then either

(1) char(R) = 0 and there exists a ring monomorphism Z→ R or
(2) char(R) = p, p a prime, and there exists a ring monomorphism Z/pZ→ R.

Proof. Let ι : Z→ R be the unique ring homomorphism. Then ker ι = (n) for some
non-negative integer n, so char(R) = n. As R is a domain so is im ι ∼= Z/nZ. Therefore,
n = 0 or n is a prime and the induced map ι : Z/nZ→ R is a monomorphism. �
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The proposition says that if R is a domain, we may view Z ⊂ R if char(R) = 0 and
Z/pZ ⊂ R if char(R) = p. Of course, the same discussion shows that if R is a ring, then
the unique smallest subring of R is isomorphic to Z/(charR)

We have now generalized the construction of Z/nZ to R/A, where A is an ideal in R.
Our next goal is to construct Q from Z. Our construction will work for any domain.

Construction 27.13. Let R be a domain. We wish to construct fractions from R, i.e.,
if a, b, c, d ∈ R with b 6= 0 and d 6= 0, we want to have the following:

a

b
+
c

d
=
ad+ bc

bd
. [Note bd 6= 0 in the domain R.](i)

a

b
· c
d

=
ac

bd
,(ii)

and we know that we must have

a

b
=
c

d
if and only if ad = bc in R.(iii)

We do this construction as follows: Let

S = {(a, b) | a ∈ R, 0 6= b ∈ R} = R× (R \ {0})
and

(a, b) ∼ (c, d) in S if ad = bc.

Check that ∼ is an equivalence relation.

Let
a

b
:= [(a, b)]∼, the equivalence class of (a, b) under ∼ and

K := S/∼= {a
b
| (a, b) ∈ S} = {a

b
| a, b ∈ R, b 6= 0}.

Then K satisfies (iii) above. Define + : K ×K → K and · : K ×K → K by (i) and (ii)
above respectively.

Claim. + and · are well-defined:

Suppose that (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) in S. We must show

(ad+ bc)b′d′ = (a′d′ + b′c′)bd

(ac)(b′d′) = (a′c′)(bd)

knowing that
ab′ = a′b and cd′ = c′d,

which is easily checked. Thus K has a + and ·. It is routine to check that K is a
commutative ring with 0K = 0

b
, and 1K = b

b
with 0 6= b ∈ R. If a

b
6= 0K then a 6= 0 in R,

hence b
a

is defined and is the inverse of a
b
, so K is a field called the field of quotients or

the quotient field of R. We write qf(R) for K.

Example. Q = qf(Z).
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This construction of qf(R) is essentially unique as qf(R) has the following universal
property:

Theorem 27.14. (The Universal Property of the Field of Quotients) Let R be a domain.
Then there exists a field K, and a ring monomorphism i : R→ K satisfying the following
Universal Property: If F is a field, then for any ring monomorphism ϕ : R → F , there
exists a unique ring monomorphism ψ : K → F such that the diagram

(†) R

ϕ
  

i
// K

ψ
��

F

commutes.

In particular, if K ′ is a field and j : R → K ′ a ring monomorphism also satisfying the
universal property (†), then there exists a unique (field) isomorphism σ : K → K ′ such
that the diagram

R

j   

i
// K

σ
��

K ′

commutes.

Proof. Let K = qf(R), then i : R → K given by r 7→ r
1

is a ring homomorphism.

Let b be a nonzero element in R. Then r
1

= 0
b

in K if and only if rb = 1 · 0 = 0 in the
domain R if and only if r = 0, so this homomorphism is injective.

Now suppose that we are given a ring monomorphism ϕ : R→ F with F a field. Define

ψ : K → F by ψ(
a

b
) = ϕ(a)ϕ(b)−1.

This makes sense, as ϕ(b) 6= 0, since ϕ is monic and F is a field.

Claim 1. ψ is well-defined and monic.
a

b
=
a′

b′
in K if and only if ab′ = a′b in R if and only if ϕ(a)ϕ(b′) = ϕ(a′)ϕ(b) in F as ϕ is

monic if and only if ϕ(a)ϕ(b)−1 = ϕ(a′)ϕ(b′)−1 in the field F if and only if ψ(a
b
) = ψ(a

′

b′
)

in F . It is easily seen that ψ is a homomorphism. The Claim follows.

Claim 2. ψ is unique.

If ψ′ is another monomorphism making the diagram (†) commute, then

ψ′(
a

1
) = ϕ(a) = ψ(

a

1K
) for all a ∈ R

in the field F . In particular, if b 6= 0 in R, we have

ψ′(
b

1
)ψ′(

1

b
) = ψ′(1) = 1F = ψ(

b

1
)ψ(

1

b
)

in F , so

ψ′(
1

b
) = ψ(

1

b
),
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hence, for all a and b in R with b 6= 0,

ψ′(
a

b
) = ψ′(

a

1
)ψ′(

1

b
) = ψ(

a

1
)ψ(

1

b
) = ψ(

a

b
).

This proves the second claim. Finally, we show:

Claim 3. The map i : R → K satisfies the uniqueness property relative to the diagram
(†).
Suppose that j : R→ K ′ also satisfies (†). Then there exist unique ring monomorphisms
ψ : K → K ′ and ψ′ : K ′ → K such that we have commutative diagrams

R

j   

i
// K

ψ
��

K ′

and R

i   

j
// K ′

ψ′

��

K.

By (†), we have ψ′ψ = 1K and ψψ′ = 1K′ as

R

i   

i
// K

1K
��

K

and R

j   

j
// K ′

1K′
��

K ′

commute.

It follows that ψ and ψ′ are inverse isomorphisms. �

Notation 27.15. If R is a domain, we shall always view R ⊂ qf(R), i.e., we shall identify
R with its image { r

1
| r ∈ R} in qf(R), e.g., Z ⊂ Q.

Remarks 27.16. In general, it is very difficult to define a map between objects. We may
have an idea where generators of the domain object must go, but to show the relations
of the domain are preserved usually presents problems, i.e., to show the putative map
is well-defined. Universal properties are methods to address this in certain cases. One
tries to construct an object with given properties together with a map, so that there is
automatically a map (that preserves the desired structure) between it and any other other
object that satisfies the given properties. Moreover, that map is unique. Therefore, if you
have such a universal property, you automatically obtain unique maps to other appropriate
objects. The above is an example of such. Another, that you have seen in linear algebra,
is given a vector space together with a given basis, any linear transformation from it to
another vector space is completely determined where the basis maps.

The following is a useful observation:

Observation 27.17. Let F be a field and R a nontrivial ring. If ϕ : F → R is a ring
homomorphism, then ϕ is monic as kerϕ < F and F is simple.

If F is a field, then we can say a bit more.

Corollary 27.18. Let F be a field of characteristic n.

(1) If n = 0, then there exists a (unique) monomorphism Q→ F .
(2) If n > 0, then n = p is a prime and there exists a (unique) monomorphism

Z/pZ→ F .
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If K is a field, there exists a unique smallest subfield ∆K of K, viz., the intersection
of all the subfields of K. This field is called the prime subfield of K. By the corollary, we
know that

∆K
∼=

{
Q if char(K) = 0.

Z/pZ if char(K) = p.

For example, let K be a finite field with N elements. Then there exists a unique prime
p such that charK = p and a unique monomorphism Z/pZ → K. We also have K is a
finite dimensional vector space over Z/pZ, say of dimension n. So N = pn. We know that
K× is a group of order N −1, so xN−1 = 1 for all x in K× and xN = x for all x ∈ K. This
shows that the analogue of Fermat’s Little Theorem holds for all finite fields. We shall
show later that K× is, in fact, a cyclic group as well as showing that for every prime p
and positive integer m there exists a field of cardinality pm, and that this field is unique
up to an isomorphism of fields. We also point out that there are many infinite fields of
characteristic p > 0. Indeed, the ring (Z/pZ)[t] is an infinite domain (why?), hence so is
its quotient field.

Next we turn to a generalization of the Chinese Remainder Theorem.
If Ri, i ∈ I, are rings, then the cartesian product of the Ri, R =�IRi becomes a ring

via componentwise operations. We also write this as
∏
Ri. It is commutative if all the

Ri are commutative. It is easy to check that R× =
∏

I(Ri)
×. [As usual, we are sloppy

about writing elements in
∏

I Ri.]

Theorem 27.19. (Chinese Remainder Theorem) Suppose that R is a commutative ring
with A1, . . . ,An ideals in R that are comaximal, i.e., Ai + Aj = R for all i, j = 1, . . . , n
with i 6= j. Let

ϕ : R→
n∏
i=1

R/Ai be given by r 7→ (r + A1, . . . , r + An).

Then ϕ is a ring epimorphism with

kerϕ = A1 ∩ · · · ∩ An = A1 · · · An,

hence induces isomorphisms

ϕ :R/(A1 · · · An)→ R/A1 × · · · ×R/An

ϕ :(R/(A1 · · · An)× → (R/A1)× × · · · × (R/An)×.

Proof. Clearly we have ϕ is a ring homomorphism with kerϕ = A1∩· · ·∩An. By this
and the First Isomorphism Theorem, we need only show that A1 ∩ · · · ∩ An = A1 · · · An

and ϕ is onto, i.e., if x1, . . . , xn lie in R, there exists an x ∈ R satisfying x ≡ xi mod Ai

for all i. We prove this by induction on n.

n = 2: We have R = A1 + A2, so 1 = a1 + a2 for some ai ∈ Ai, i = 1, 2. Therefore,
a1 ≡ 1 mod A2 and a2 ≡ 1 mod A2; hence x = x1a2 + x2a1 ≡ xi mod Ai for i = 1, 2.
As A1A2 ⊂ A1 ∩A2, we need only show that A1 ∩A2 ⊂ A1A2 to complete the n = 2 case.
If b ∈ A1 ∩ A2, then b = b · 1 = ba1 + ba2 ∈ A2A1 + A1A2 ⊂ A1A2.

[Warning: If B1, B2 are ideals in a ring, usually B1B2 < B1 ∩B2.]
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n > 2: By hypothesis, we have R = A1 +Ai for i > 1, so 1 = ai + bi for some ai ∈ A1 and
bi ∈ Ai for each i > 1. Consequently, we have 1 =

∏n
i=2(ai + bi) lies in A1 + (A2 · · ·An)

(why?), so R = A1 + (A2 · · ·An). By the n = 2 case and induction, we conclude that
A1 ∩ · · · ∩ An = A1 ∩ (A2 · · ·An) = A1 · · ·An.

By induction, there exists a y in R satisfying

y ≡ xi mod Ai for i = 2, . . . , n;

and by the n = 2 case, there exists an x in R satisfying

x ≡ x1 mod A1

x ≡ y mod A2 · · ·An.

As A2 · · ·An ⊂ Ai for i = 2, . . . n, we have x ≡ xi mod Ai for i = 1, . . . , n, proving that
ϕ is surjective.

We leave the isomorphism of multiplicative groups as an exercise. �

Exercises 27.20.

1. Let ϕ : R→ S be a ring epimorphism (of rings). Do an analogous analysis before The
First Isomorphism Theorem for Groups 12.1 for ϕ : R→ S to see how ideals and factor
rings arise naturally.

2. Let R = (Z/2Z)[t], f = f(t) = t2 + t+ 1, and g = t2 + 1. Show all of the following:
(i) R/(f) is a field with four elements.

(ii) R/(g) is not a domain and has four elements.
(iii) Neither R/(f) nor R/(g) is isomorphic to the ring Z/4Z.

3. Show that the ideals (2) and (t) are prime ideals in Z[t]

4. Let R be a commutative ring. Suppose for every element x in R there exists an integer
n = n(x) > 1 such that xn = x. Show that every prime ideal in R is maximal.

5. Let R be a commutative ring. If A and B are ideals in R and : R→ R/A is the
canonical epimorphism, show that this induces an isomorphism R/(A + B)→ R/B.

6. (Second Isomorphism Theorem) Let R ⊂ S be a subring, A ⊂ S an ideal. Then A∩R
is an ideal in R, R + A is a subring of S, and (R + A)/A ∼= R/(R ∩ A).

7. Let R be a rng and A an ideal in R. Then there exists an isomorphism of rngs,
(R + A)/A ∼= A/(R ∩ A).

8. Show that the inclusion map i : Z ⊂ Q satisfies the property that if ψ1 ◦ i = ψ2 ◦ i, for
ψ1, ψ2 : Q→ R ring homomorphisms, then ψ1 = ψ2. This shows that a surjective ring
homomorphism is not equivalent to this property. (Cf. Remark 9.5.)

9. Let R be a commutative ring and A = R[[t]], the power series over R. Show if A is an
ideal in R, then A is a prime ideal in R if and only AA is a prime ideal in A. Moreover,
if m is a maximal ideal in R, then Am + At is a maximal ideal in A and the unique
maximal ideal in A containing m. In particular, if R has precisely one maximal ideal,
then so does A. [A commutative ring having precisely one maximal ideal is called a
local ring.]

10. Let R be a commutative ring of characteristic p > 0, p a prime. Prove that the map
R→ R by x 7→ xp is a ring homomorphism. It is called the Frobenius homomorphism.
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In particular, the Children’s Binomial Theorem holds, i.e., (x+ y)p = xp + yp in R for
all x and y in R.

11. Let R be a finite domain. Show that char(R) = p is a prime and R is a field. Moreover,
R is a vector space over Z/pZ.

12. Show that if R is a domain, so is the polynomial ring R[t]. In particular, show that
there exists fields properly containing the complex numbers. Does the field that you
constructed have the property that every non-constant polynomial over it has a root?
Prove or disprove this.

13. Let ϕ : R→ S be a ring isomorphism. Show ϕ induces a group isomorphism R× → S×

by restriction. We also write this map as ϕ.

14. Prove the isomorphism statement about the multiplicative groups in the Chinese Re-
mainder Theorem 27.19

28. Zorn’s Lemma

One would like to have a method of proof generalizing induction. There are many
equivalent ways of doing this: Well-Ordering Principle, Transfinite Induction, Zorn’s
Lemma. These are also equivalent to the Axiom of Choice, Tychonoff’s Theorem, the
theorem that all vector spaces have bases. In algebra, the most useful form is Zorn’s
Lemma, which generalizes the Well-Ordering Principle. These are independent of the
other axioms in Zermelo-Frankel Set Theory, and we accept them as an axiom. [In Ap-
pendix A, we show that the Axiom of Choice, Zorn’s Lemma, and the Well-Ordering
Principle are all equivalent.]

Definition 28.1. Let S be a set with a relation R on S. We call S a partially ordered
set or poset (under R) if the following hold: For all a, b, c in S

aRa. [Reflexitity](1)

If aRb and bRa then a = b.(2)

If aRb and bRc then aRc. [Transitivity](3)

We also say (S,R) is a poset, if the relation is not obvious. So the second condition
replaces symmetry in the definition of an equivalence relation. If S is a poset (under R),
a, b elements in S, then a and b may be incomparable, i.e., neither aRb nor bRa. We say
that the poset S is a chain or totally ordered if for all a and b in S, we have either aRb or
bRa, i.e., all elements are comparable.

Examples 28.2. 1. Recall if T is a set, then the power set of T is defined by P(T ) :=
{A | A ⊂ T}. It becomes a poset under ⊂ (or ⊃). It is almost never a chain. [When
is it?]

2. (Z,≤) and (R,≥) are chains.
3. As {1,

√
−1} is a basis for C as a vector space over R, for each α ∈ C, there exist

unique x, y ∈ R such that α = x + y
√
−1. Define the lexicographic order on C by

α = x + y
√
−1 ≤L β = w + z

√
−1 if α = β and if not this, then x < w and if not

these, then (x = w and y < z) in R. Then (C,≤L) is a chain.
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Note: If α ≤L β and γ ≤L δ, then α + γ ≤L β + δ, but αγ >L βδ is possible (where
>L is the obvious relation), e.g., 0 ≤L

√
−1 but

√
−1
√
−1 <L 0.

[One can generalize the lexicographic order on C to any finite dimensional vector space
V over R with ordered basis {v1, . . . , vn}. How?]

Definition 28.3. Let (S,R) be a poset, T a subset of S. An element a in S is called an
upper bound of T if xRa for all x ∈ T , and s is called a maximal element of S if sRy with
y ∈ S implies that s = y. We say that the poset S is inductive if every chain in S has an
upper bound in S.

Examples 28.4. 1. 1 is a maximal element in ([0, 1],≤).

2. 0 is a maximal element in ([0, 1],≥). (Of course, it is usually called a minimal element.)

3. (Z,≤) is not inductive.

4. (Z+,≥) is inductive. (Note here ‘upper bound’ is usually called ‘lower bound’ for
obvious reasons.)

We can now state the axiom that we shall use as an extension of finite induction.

Lemma 28.5. (Zorn’s Lemma) Let S be a nonempty inductive poset. Then S contains a
maximal element.

This is indeed an extension of finite induction, for if S is a subset of Z+, then (S,≥)
has a maximal element, which is exactly the Well-Ordering Principle. As mentioned, we
cannot prove this lemma; we accept it as an axiom.

We give some applications of Zorn’s Lemma. The first is the result that vector spaces
always have bases.

Proposition 28.6. Let V be a nonzero vector space over a field F and S a linearly
independent subset of V . Then S extends to a basis of V , i.e., is part of a basis for V .

Proof. Let

S = {T | S ⊂ T ⊂ V with T linearly independent},
a nonempty poset under ⊂. Let C be a chain in S.

Claim. A =
⋃
C T is an upper bound for C in S:

Suppose that A is linearly dependent. By the definition of linear dependence, there exists
a finite linearly dependent subset {v1, . . . , vn} of A. For each i, 1 ≤ i ≤ n, there exists
a Ti ∈ C with vi ∈ Ti. Since C is a chain and n finite, there exists a T in C containing
Ti for i = 1, . . . , n, hence containing {v1, . . . , vn}, contradicting the fact that T is linearly
independent. This shows that A is indeed an upper bound of C in S.

As the hypotheses of Zorn’s Lemma have been fulfilled, there exists a maximal element
T in S. We show that T is a basis for V . If the span, 〈T 〉, of T is not V , then there exists
w ∈ V \ 〈T 〉. Let T ′ = T ∪ {w}. As T ′ must be linearly dependent by maximality of T ,
there exist β and βv in F for v ∈ T , with almost all βv = 0, i.e., βv = 0 except for finitely
many v in T , but not all β, βv zero that satisfies

∑
T βvv + βw = 0. As T is linearly

independent, β 6= 0, so w = −
∑

T β
−1βvv lies in 〈T 〉, a contradiction. Consequently, T

spans V , so is a basis for V . �
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Remark 28.7. From linear algebra, we know that any two bases for a finite dimensional
vector space have the same cardinality. As mentioned before, this is also true if the vector
space is not finite dimensional using the same proof that all linear transformations are
completely determined by where a basis is mapped (which does not need finiteness) and
the Schroeder-Bernstein Theorem A.13 which says if X and Y are sets and there is an
injective map X → Y , then |X| ≤ |Y | defines a linear ordering with equality if and only
if there is a bijection X → Y .

Proposition 28.8. Let V be a nonzero vector space over a field F and S a spanning set
for V . Then a subset of S is a basis of V .

We leave a proof of this as an exercise. You should try the obvious proof. It does not
work. Can you figure out what this means? Rather you will have to modify the proof
above.

The two proposition imply, just as in the finite dimensional case, the following:

Corollary 28.9. Let V be a nonzero vector space over a field F and B a subset of V .
Then the following are equivalent:

(1) B is a basis for V .
(2) B s a maximal linearly independent set in V (relative to ⊂).
(3) B is a minimal spanning set for V (relative to ⊃).

As a further application of Zorn’s Lemma, we next give a proof of the crucial result
Theorem 15.13 needed in Section 15. The proof is a typical Zorn’s Lemma argument used
to extend maps.

Proposition 28.10. Let G be a divisible additive group and θ : A→ B a group monomor-
phism of additive groups. If ϕ : A → G is a group homomorphism, then there exists a
group homomorphism ψ : B → G satisfying ϕ = ψ ◦ θ.

Proof. We may replace A by θ(A), i.e., assume that A ⊂ B. Let

S = {(C,ψC) |A ⊂ C ⊂ B,

ψC : C → G a group homomorphism with ϕC |A = ϕ}.
Partially order S by

(C,ψC) ≤ (C ′, ψ′C′) if C ⊂ C ′ and ψC′|C = ψC .

The set S is not empty, since (A,ϕ) ∈ S. Let C be a chain in S and set C =
⋃

(Cα,ψCα )∈C

Cα.

Define ψC : C → G by x 7→ ψCα(x) if x ∈ Cα. Since C is a chain, ψC is well-defined.
Therefore, (C,ψC) ∈ S is an upper bound for C. By Zorn’s Lemma, there exist a maximal
element (C,ψC) ∈ S.

Claim. C = B:

Suppose the claim does not hold. Then there exists an x ∈ B \ C.

Case 1. 〈x〉 ∩ C = 0:

In this case C + 〈x〉 = C ⊕ 〈x〉. Define ψ̃ = ψ ⊕ 0, i.e., (c, rx) 7→ ψC(c). Then (C,ψC) <

(C ⊕ 〈x〉, ψ̃) in S, contradicting the maximality of (C,ψ).
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Case 2. 〈x〉 ∩ C 6= 0:

Choose n ∈ Z+ minimal such that nx ∈ C. Since G is divisible, there exists y ∈ G

satisfying ny = ψC(nx). Define the map ψ̃ : C+ 〈x〉 → G defined by c+ rx 7→ ψC(c)+ ry.

Then ψ̃ is a group homomorphism extending ψ to C + 〈x〉. As (C,ψC) < (C + 〈x〉, ψ̃) in
S, this contradicts the maximality of (C,ψ). �

We next apply Zorn’s Lemma to Ring Theory.

Proposition 28.11. Let R be a nontrivial ring and A < R an ideal. Then there exists
a maximal ideal m in R such that A ⊂ m. In particular, any nontrivial ring contains
maximal ideals.

Proof. Let
S = {B | A ⊂ B < R an ideal}.

The set S is a poset under ⊂, and S is nonempty as A ∈ S. Let C be a chain in S, so

for all B′ and B′′ in C either B′ ⊂ B′′ or B′′ ⊂ B′.

Claim.
⋃

B∈CB < R is an ideal and hence an upper bound for C in S:

Let r ∈ R and x, y ∈
⋃
CB. Then there exist B′ and B′′ in C with x ∈ B′ ∈ C and

y ∈ B′′ ∈ C. As C is a chain, we may assume that B′ ⊂ B′′, so rx, xr, x±y ∈ B′′ ⊂
⋃
CB,

showing
⋃
CB is an ideal. If

⋃
CB is the unit ideal, there exists a B′ in C such that 1 ∈ B′.

This means that B′ is the unit ideal, so not in S, a contradiction. By Zorn’s Lemma,
there exists an ideal m ∈ S that is a maximal element. So m satisfies A ⊂ m < R is an
ideal, maximal with respect to this property. Thus m is a maximal ideal of R containing
A. �

Remark 28.12. The reason the above worked was the claim, i.e.,

(i) The union of ideals in a chain is an ideal under the partial order ⊂.
[The same is true for chains of subgroups, subspaces of a vector space, and other
algebraic objects.]
Note. This does not work for arbitrary unions.

(ii) There exists an element lying in none of the elements in any chain (in this case the
element 1).
In fact, if R is a nontrivial rng (even commutative), it may not have maximal ideals.

We next want to give further application of Zorn’s Lemma to commutative ring theory
that generalizes the existence of maximal ideals and which is quite useful. We begin with
an important definition.

Definition 28.13. Let R be a nontrivial commutative ring, S a nonempty subset of R.
We call S a multiplicative set if

(i) 1 ∈ S.

(ii) If s1 and s2 are elements of S, then s1s2 lies in S, i.e., S is closed under multiplication.

If T is a nonempty subset of R, we say that T excludes S if S ∩ T = ∅.
Examples 28.14. Let R be a nontrivial commutative ring, a ∈ R, and A < R an ideal.

1. A is a prime ideal if and only if R \ A is a multiplicative set.
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2. {an | n ≥ 0} is a multiplicative set.

3. Let S be a multiplicative set with 0 /∈ S. Then S contains no nilpotent elements, i.e.,
an element x ∈ R that satisfies xn = 0 for some n ∈ Z+.

4. R× is a multiplicative set.

5. An element x ∈ R is called a zero divisor of R if there exists a nonzero element y ∈ R
satisfying xy = 0. Let

zd(R) := {x ∈ R | x is a zero divisor}.

Then R \ zd(R) is a multiplicative set.

Using the concept of multiplicative sets, we can now prove the generalization of the
existence of maximal ideals that we seek. The proof will be just as the one for the existence
of maximal ideals but using the ideal analogue for prime ideals of Euclid’s Lemma given
in Lemma 26.20.

Theorem 28.15. (Krull) Let R be a commutative ring and S a multiplicative set. Suppose
that A < R is an ideal in R excluding S. Then there exists an ideal B ⊂ R containing A
excluding S and maximal with respect to these two properties. Moreover, any such B is
a prime ideal.

Note: If R is a nontrivial commutative ring, applying the above to the multiplicative set
R× shows the existence of maximal ideals in a commutative ring.

Proof. Let

I = {B | A ⊂ B < R an ideal excluding S}
We know that I is not empty as A ∈ I. Partially order I by ⊂. Let C be a chain in I.

Claim.
⋃
CB is an ideal in R excluding S (hence not the unit ideal). In particular,

⋃
CB

is an upper bound for C in I:⋃
CB is an ideal exactly as before. If b ∈ S ∩

⋃
CB , then there exists an ideal B ∈ C

such that b ∈ S ∩B, a contradiction. This establishes the claim.

By Zorn’s Lemma, there exists an ideal B in I satisfying

(i) B ∩ S = ∅.
(ii) A ⊂ B.

(iii) If B < B′ ⊂ R is an ideal, then B′ ∩ S 6= ∅.
To finish, we must show that B is a prime ideal. Suppose this is not the case. Then by
Lemma 26.20, there exist ideals B < Bi, i = 1, 2, satisfying B1B2 ⊂ B. By (iii), there
exist si ∈ Bi ∩S, i = 1, 2. As S is a multiplicative set, s1s2 ∈ B∩S, a contradiction. �

Note the last part of the proof is structurally similar to factoring integers into primes.
This is an argument that is often used.

The theorem allows us to begin to see the importance of prime ideals in understanding
the structure of a commutative ring.
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Definition 28.16. Let R be a nontrivial commutative ring. The nilradical of R is the
set

nil(R) := {a | a is a nilpotent element in R}.

Corollary 28.17. Let R be a nontrivial commutative ring. Then nil(R) is an ideal in R
and

nil(R) =
⋂
p<R

p a prime ideal

p.

Proof. We leave it as an exercise to prove nil(R) is a ideal.

nil(R) ⊂
⋂
p<R

p a prime ideal

p: If a ∈ nil(R), there exists an n ∈ Z+ such that an = 0 and 0 ∈ A for

every ideal, in particular for prime ideals. Hence a ∈ p for all prime ideals p in R.⋂
p<R

p a prime ideal

p ⊂ nil(R): Suppose this is not true, then there exists an element

a ∈
⋂
p<R

p a prime ideal

p \ nil(R).

In particular, the multiplicative set S = {an | n ≥ 0} does not contain 0 hence the trivial
ideal (0) excludes S. By the theorem of Krull, there exists a prime ideal p excluding S.
Thus a /∈ p, a contradiction.

Therefore, nil(R) =
⋂
p<R

p a prime ideal

p as needed. �

Note. If R is a domain, then nil(R) = 0. The converse is false, e.g., Z × Z has trivial
nilradical, but is not a domain. A commutative ring whose nilradical is trivial is called a
reduced ring.

Remark 28.18. As the intersection of a chain of prime ideals in a nonzero commutative
ring R is clearly a prime ideal, there exist minimal elements in the set of all prime ideals
by Zorn’s Lemma. We call such a prime a minimal prime ideal of R. As every prime ideal
in R contains a minimal prime, we have

nil(R) =
⋂
p<R

p a minimal prime ideal

p.

Exercises 28.19.

1. Let V be a finite dimensional vector space over R with ordered basis {v1, . . . , vn}.
Define a lexicographic order of V relative to this ordered basis.

2. Prove Proposition 28.8.
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3. Rngs may not have maximal ideals. This problem constructs one. Let p be a prime
number. Let Zp∞ be the (additive) subgroup of Q/Z consisting of all elements having
order some power of p, i.e., x = α+ Z, α ∈ Q, lies in Zp∞ if and only if prx = 0 in Q/Z,
i.e., prα is an integer, for some positive integer r.

(i) Show that the set { 1
pr

+ Z | r a non-negative integer } generates Zp∞ .

(ii) Show the subgroup
〈

1
pr

+ Z
〉

of Zp∞ is isomorphic to Z/prZ.

(iii) Show that any subgroup of Zp∞ is
〈

1
pr

+ Z
〉

for some non-negative integer r and

the subgroups of Zp∞ form a chain under set inclusion.

(iv) Make Zp∞ into a rng by defining x · y = 0 for all x, y ∈ Zp∞ . Show that Zp∞ has
no maximal ideals

4. Let C be a chain of prime ideals under inclusion in a commutative ring R. Show that⋂
C

p and
⋃
C

p are prime ideals.

5. Let R be a commutative ring and A an ideal in R contained in a prime ideal P. Prove
that there exists a prime ideal p in R satisfying A ⊂ p ⊂ P and with p minimal among
all prime ideals containing A.

6. Let p < P be prime ideals in a commutative ring R. Show that there exist prime ideals
p0 and P0 satisfying p < p0 < P0 < P with no primes properly between p0 and P0.

7. Let R be a commutative ring. Prove the following:
(i) Let S be the set of non finitely generated ideals in R and suppose that it is not

empty. Let A be a maximal element in S. Then A is a prime ideal.
(ii) Let A be a non finitely generated ideal in R. Suppose an ideal B in R has the

property that it contains A, is not finitely generated, and is maximal with respect
to this property. Show that there exists a prime ideal in R containing A that is
not finitely generated.

8. Let R be a commutative ring and A = R[[t]], the power series over R. Let ϕ : A→ R
be the ring epimorphism induced by t 7→ 0 (evaluation at 0). Show the following:

(i) If A is an ideal in R, then ϕ−1(A) = AA+ tA.
(ii) ϕ induces a bijection between the set of maximal ideals in A and the set of

maximal ideals in R.

9. As in the previous problem, let R be a commutative ring, A = R[[t]], and ϕ : A → R
be the ring epimorphism induced by t 7→ 0. Show the following:

(i) Let P be a prime ideal in A. Suppose that ϕ(P) = (a1, . . . , an). Then P =
Aa1 + · · · + Aan + At if t ∈ P and P = (f1, . . . , fn) for fi ∈ A with fi = ai+
higher terms in t if t /∈ P.

(ii) Every prime ideal in A can be generated by finitely many elements if and only if
every prime ideal in R can be generated by finitely many elements.

10. Let R be a nonzero commutative ring. Show that the set of nonzero divisors is a
multiplicative group.

11. Let R be a commutative ring. Prove
(i) If x is nilpotent in R, then 1 + x is a unit in R.
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(ii) The nilradical of R is an ideal.
(iii) Compute the nilradical of the rings: Z/12Z, Z/nZ, n > 1, and Z.

12. Let R be a commutative ring. The Jacobson radical of R is defined to be rad(R) :=⋂
Max(R) m, the intersection of all maximal ideals in R. Show that x lies in rad(R) if

and only if 1− yx is a unit in R for all y in R.

13. Let R be an infinite domain that has only finitely many units. Show that R must have
infinitely many maximal ideals.

14. Let R be a commutative ring and A < R an ideal. Define the radical of A to be the set
√
A := {x ∈ R | xn ∈ A for some n ∈ Z+}.

Show the following:
(i)
√
A is an ideal and √

A =
⋂

A⊂p<R
p a prime ideal

p.

(ii) Let : R→ R/A be the canonical ring epimorphism, then nil(R) =
√
A/A.

15. Let R be a commutative ring, A < R an ideal, and : R → R/A be the canonical
epimorphism. We say that A is a primary ideal if ab ∈ A implies that a ∈ A or bn ∈ A
for some positive integer n. Let A < R be an ideal. Show both of the following:

(i) A is a primary ideal if and only if every zero divisor of R/A is nilpotent.

(ii) If A is primary, then its radical,
√
A, (see the previous exercise) is a prime ideal.

16. Determine all primary ideals if R is a PID. (Cf. the previous exercise for the definition
of a primary ideal.)

17. Let R be a commutative ring. An element e of R is called an idempotent if e2 = e. For
example, if S is another commutative ring the element (1R, 0S) is an idempotent in the
ring R× S. The object of this exercise is to prove a converse. Let e be an idempotent
of R. Then prove

(i) e′ := 1− e is an idempotent of R.
(ii) The principal ideal Re of R is a ring with identity 1Re = e. [Note that Re is not

a subring of R since Re will not have the same identity as R unless e = 1.]
(iii) R is ring isomorphic to Re×Re′.

29. Localization

In section 27, we showed that a field of quotients exists for any domain by defining
fractions. The purpose was to create a ring containing the given ring R in which every
nonzero element of R has a multiplicative inverse. [Note if 0 has an inverse then the ring
must be trivial.] Instead, we can try to invert only some elements. This turns out to be
a crucial idea, and the method is to invert elements in a multiplicative set. But to make
it effective, we must weaken what we mean when we say two ‘fractions’ are equal.

Construction 29.1. We shall leave most of the details of this construction as an exercise,
an exercise that you should do. Let R be a commutative ring and S a multiplicative set
in R. Let

S = {(a, s) | a ∈ R, s ∈ S} = R× S.
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Define a relation on S as follows: Write

(a, s) ∼ (a′, s′) in S

if there exists an s′′ ∈ S satisfying s′′(as′ − a′s) = 0 in R.
Then ∼ is a equivalence relation. Let

a

s
denote the equivalence class of (a, s)

and set

S−1R = {a
s
| a ∈ R, s ∈ S} = S/ ∼ .

Define

a

s1

+
b

s2

:=
as2 + bs1

s1s2

a

s1

· b
s2

:=
ab

s1s2

for all a, b ∈ R and for all s1, s2 ∈ S. Then

+ : S−1R× S−1R→ S−1R and · : S−1R× S−1R→ S−1R

are well-defined maps making S−1R into a commutative ring, called the localization of R
at S with 0S−1R = 0

s
and 1S−1R = s

s
, for any s ∈ S. The map

ϕ : R→ S−1R given by r 7→ r

1

is a ring homomorphism.

Examples 29.2. Let R be a commutative ring and S a multiplicative set in R.

1. If 0 ∈ S, then S−1R is the trivial ring.

2. Suppose that R is a domain. Then T = R \ {0} is a multiplicative set and T−1R is the
quotient field of R.

3. Let ϕ : R→ S−1R be the ring homomorphism given by r 7→ r
1
. Then

(i) ϕ(S) ⊂ (S−1R)×.

(ii) kerϕ = {x ∈ R | there exists an s in S such that sx = 0}.
(iii) ϕ is a ring monomorphism if and only if S ∩ zd(R) = ∅.
(iv) If R is a domain and S does not contain zero, then ϕ is a ring monomorphism.

Note if this is the case that a
s

= b
s

in S−1R if and only if a = b. We then view ϕ
as the inclusion map, so R ⊂ S−1R ⊂ qf(R) (cf. (2)).

4. Let p be a prime ideal in R. Then T = R \p is a multiplicative set and the localization
T−1R is denoted Rp. For example, if p is a prime in Z and T = {n ∈ Z | p 6 | n}, then
Z(p) = { n

m
| n,m ∈ Z relatively prime with p 6 | m}.

5. Let f be an element of R. Then T = {fn | n ≥ 0} is a multiplicative set and the
localization T−1R is denoted Rf . For example, if p is a prime in Z, then Zp = { n

m
|

n,m ∈ Z relatively prime with m = pk some k ≥ 0}.
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The existence of the localization of a commutative ring at a multiplicative set is a
basic construction in commutative algebra whose importance cannot be overestimated.
Indeed it, together with the construction of polynomial rings and quotient rings over a
commutative ring are the basic constructions in commutative algebra. It is especially
important when the multiplicative set is the complement of a prime ideal. For example,
the ring Z(p) in Example 29.2(4) has only one nonzero prime ideal and all prime integers
relatively prime to p become units. One can view Z(p) ⊂ Q. It turns out that in this
ring every element can be written upn for some unit u in Z(p) and some positive integer
n. In the more general case that R is a commutative ring and p a prime ideal in R, let
pRp denote the image of p in Rp. Then pRp is the unique maximal ideal in Rp. One can
obtain valuable information for R from Rp via the natural map R → Rp just as one get
valuable information for R from the canonical epimorphism R→ R/p.

Localization serves as the algebraic analogue of the geometric study of germs of func-
tions at a point and of functions in neighborhoods of a point that we shall now discuss.

Example 29.3. Let C([0, 1]) denote the ring of continuous real-valued functions on [0, 1].
Exercise 26.21(13) said that the maximal ideals in C([0, 1]) are in one to one correspon-
dence with [0, 1], the correspondence given by

a 7→ ma = {f ∈ C([0, 1]) | f(a) = 0}.
[This is true with [0, 1] replaced by any finite closed interval (or any compact subset) of
the real line.] However, if we look at C((0, 1]), we have problems with functions that
should have a limit as x→ 0−. For example, the function may be unbounded or oscillate
wildly, e.g., sin(1/x). A continuous function defined on an interval I is called uniformly
continuous if given any ε > 0, there exists a δ > 0 such that |f(x) − f(y)| < ε whenever
x, y ∈ I satisfies |x − y| < δ. If a function is continuous on a closed bounded interval in
R, it is uniformly continuous. Let

Cu((0, 1]) := {f ∈ C((0, 1]) | f uniformly continuous on (0, 1]},
a subring of C((0, 1]). If f ∈ Cu((0, 1]), then lim

x→0−
f(x) exists

and
A = {f ∈ Cu((0, 1]) | lim

x→0−
f(x) = 0 exists}

will putatively be the maximal ideal that would have been associated to the point 0 if f
was defined at 0 or at least contained in a maximal ideal by Krull’s theorem 28.15.

We look at this a bit more algebraically. Limits are local phenomena, so we want to
determine an equivalence relation that determines when two functions are ‘close’ at point
to replace the maximal ideals ma that we found in C([0, 1]).

If f is a continuous function defined on a nonempty open subset U of [0, 1], there is
always a global continuous function g ∈ C([0, 1]) such that g|U = f . This type of statement
is not true in general. Indeed there may not be sufficiently many global functions. For
example, if X = C, by a theorem of Liouville, the only analytic (holomorphic) functions
defined on all of C are the constant functions. So we wish to look at functions on a
topological space X that do not necessarily have this property.

Let X be an arbitrary topological space. Let R be a set of functions each function
defined on some nonempty open subset of X and R(U) be the set of functions defined
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on an open set U of X. Suppose that x ∈ X and f and g are two functions in R such
that there exists a nonempty open neighborhood U of x on which both f and g are
defined. Write f ∼ g if there exists a nonempty open neighborhood V ⊂ U of x such that
f |V = g|V . This is an equivalence relation, and the equivalence classes of such functions
at x is called the germ of functions at x. Suppose for every open set U in X the set R(U)
is a commutative ring, e.g., X is a topological or differentiable manifold with continuous,
respectively differentiable functions. If x ∈ X let px be the set of all the functions zero
at x. Then px is a prime ideal and the set of germs at x ∈ U , is the maximal ideal in
R(U)px , the localization R(U) at px. This includes the case X = [0, 1] if x ∈ X. In the
case of X = (0, 1), we needed to look at uniformly continuous functions. Usually, one
needs to look at functions with what are called compact support. [A closed and bounded
subset of Rn is a compact set by the Bolzano-Weierstraß Theorem.] If R(U) is a ring for
all open U in X as above and R(U)px exists then (X,R) is called a locally ringed space.
Topological and geometric manifolds as well as algebraic varieties are examples of such.
The R having the properties for each such U is an example of as sheaf of functions. The
local rings are called stalks.

Exercises 29.4.

1. Prove all of the claims in Construction 29.1.

2. Let R be a commutative ring and S a multiplicative set in R. Let ϕ : R → S−1R be
given by r 7→ r

1
. Show that this satisfies the following universal property: If ψ : R→ R′

is a ring homomorphism with R′ commutative and ψ(S) a subset of the unit group of
R′, then there exists a unique ring homomorphism θ : S−1R→ R′ such that

R

ψ
""

ϕ
// S−1R

θ
��

R′

commutes.

3. Let R be a commutative ring, S a multiplicative set in R. Show if p is a prime ideal
in R excluding S, then S−1p is a prime ideal, and every prime in S−1R is of this form.
Use this to show if 0 /∈ S, then there exists a prime ideal in R excluding S. (Cf. this
to Theorem 28.15.)

4. Let p be a prime ideal in a commutative ring R. Show that Rp has a unique maximal
ideal. What is it? A commutative ring with a unique maximal ideal is called a local
ring.

5. Let R be a nonzero commutative ring and S ⊂ R be the multiplicative set of nonzero
divisors in R. Show that ϕ : R → S1R by r 7→ r

1
is a ring monomorphism and S−1R

is the largest ring with this property. We call this localization of R the total quotient
ring of R or the total ring of fractions of R and view R ⊂ S−1R.

6. Let A be an ideal in a commutative ring R and S a multiplicative set in R. Define

S−1A := {a
s
| a ∈ A, s ∈ S}.

Show that S−1A is an ideal in S−1R and not the unit ideal if A excludes S.
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[Note. If
x

s
lies in S−1A, this does not mean that x ∈ A, only that there exist an a ∈ A

and an s′ ∈ S such that
x

s
=
a

s′
.]

7. Let R be a commutative ring, S a multiplicative set in R, and ϕ : R→ S−1R the ring
homomorphism given by r 7→ r

1
. Suppose that B is an ideal in S−1R. Show that

A = ϕ−1(B) is an ideal in R and S−1A = B.

8. Let R be a domain, S a multiplicative set in R not containing 0. Then we can view
S−1R as a subring of the quotient field of R. Prove that

R =
⋂

Max(R)

Rm

where Max(R) is the set of maximal ideals in R.



CHAPTER VI

Domains

In this chapter, we study in greater depth special domains. The main goal is to study
those domains that satisfy the analogue of the Fundamental Theorem of Arithmetic called
Unique Factorization Domains or UFDs and explicit examples of these domains. The
UFDs include PIDs and the historically interesting special class of PIDs that satisfy the
division algorithm called euclidean domains. The explicit example of a euclidean domain,
the Gaussian integers, is used to prove the classical two square theorems in Number
Theory. We also prove Lagrange’s Four Square Theorem to indicate the method of proof
developed by Fermat’s called Infinite Descent (a form of induction) to prove this theorem.
We also introduce a more general class of commutative rings called Noetherian rings.
These are the most important commutative rings in algebra and in algebraic geometry
(as well as historically the most important because of the work of Hilbert). We shall
study these rings in greater detail in a later chapter. For purposes here they represent
a generalization of PIDs. From the viewpoint of induction, they represent rings where
finite induction has a direct analogue. Theorems proven using Zorn’s Lemma over a
commutative ring, usually do not need it if the ring is Noetherian.

30. Special Domains

We have seen that prime elements in Z are those elements that satisfy one of two
equivalent conditions: Let a, b ∈ Z. Then p 6= 0 is a prime if

1. whenever p = ab, then either a = ±1 or b = ±1, i.e., either a or b is a unit or

2. whenever p | ab then p | a or p | b.
The first was the original definition, the second Euclid’s Lemma. We have generalized the
concept of a prime element in Z to the concept of a prime ideal, but have not generalized
the first equivalence in this way, nor will we, as its importance is related to elements.
Elements satisfying the generalization of the first condition will be called irreducible el-
ements. That elements in a domain factor into a product of irreducible elements (up to
units) holds for a large class of domains. What does not hold in general and what makes
the two conditions not equivalent is an appropriate uniqueness statement. We shall care-
fully study domains in which we do have such a uniqueness statement. In general the
second condition above is the more important as it gives more information about rings.

Definition 30.1. Let R be a domain and a a nonzero nonunit in R. We say a is irreducible
if whenever a = bc with b, c ∈ R, then either b or c is a unit in R (if a is not irreducible,
we say that it is reducible) and is a prime element if whenever a | bc with b, c ∈ R, then
a | b or a | c.

177
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Note that any associate of an irreducible element (respectively, prime element) is irre-
ducible (respectively, prime).

Remark 30.2. Let R be a domain and p ∈ R a prime element. Then p is irreducible i.e.,
being a prime element is stronger than being an irreducible element.

Proof. Suppose that a = bc with b, c ∈ R. As a is a prime element, either a | b
or a | c, say a | b. Then b = ax some nonzero element x ∈ R. Therefore, we have
b = ax = bcx in the domain R, so cancellation implies that 1 = cx, i.e., c ∈ R× as
needed. �

We want to generalize the Fundamental Theorem of Arithmetic to a wider class of
domains. Before, our approach relied on the concept of greatest common divisors. In
general, our notion of a gcd of two elements below in a domain may not exist. Moreover,
for integers, a gcd was always unique because we could make it positive as Z× = {±1}.
In general, we cannot do this, so must omit this condition that a gcd is unique if it exists.

Definition 30.3. Let R be a domain, a, b and d nonzero elements in R. We call d a
greatest common divisor or gcd of a and b if:

(i) d | a and d | b in R.

(ii) If c in R satisfies c | a and c | b in R, then c | d in R.

If a gcd of a and b exists and is a unit, then we say that a and b are relatively prime.

Remarks 30.4. Let R be a domain and a, b nonzero elements in R.

1. As mentioned above, a gcd of a, b may not exist. For example, there exist elements
in the subring R := {x + 2y

√
−1 | x, y ∈ Z} of the Gaussian integers Z[

√
−1] :=

{x+ y
√
−1 | x, y ∈ Z} not having a gcd.

2. If a gcd d of a, b exists it may not satisfy d = ax+ by for some x, y ∈ R, as it did for Z.

3. If d ∈ R satisfies (d) = (a, b) then d is a gcd of a and b (and, of course, there exist
x, y ∈ R satisfying d = ax+ by).

4. If d and d′ are two gcd’s of a and b in R, then d | d′ and d′ | d, hence d ≈ d′, i.e.,
(d) = (d′). Moreover, if this is the case, then any generator c of (d), i.e., an element
c in R satisfying (c) = (d), is a gcd of a and b. In particular, a gcd of a and b, if it
exists, is unique up to units in R.

We codify some of the remarks above in the following:

Proposition 30.5. Let R be a PID, a and b nonzero elements in R. Let (d) = (a, b).
Then d is a gcd of a and b in R, unique up to units. In particular, gcd’s of nonzero
elements in a PID always exist and if d′ is a gcd of a and b, then d′ = ax + by for some
x, y ∈ R.

The proposition allows us to extend the analogue of Euclid’s Lemma to any PID.

Corollary 30.6. (Euclid’s Lemma) Let R be a PID and r ∈ R. Then r is irreducible if
and only if r is a prime element.
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Proof. We have already shown that prime elements are irreducible. Conversely,
assume that r is an irreducible element in R and satisfies r | ab with a, b ∈ R. As R is
a PID, there exists a c ∈ R satisfying (c) = (r, a). Write r = xc with x ∈ R. As r is
irreducible, either c is a unit or x is a unit in R. If c is a unit, then (c) is the unit ideal,
hence 1 = ry + az in R for some y, z ∈ R. It follows that r | ryb + abz = b as needed. If
x is a unit then (r) = (c) = (r, a), so a ∈ (r), i.e., r | a. �

The Fundamental Theorem of Arithmetic relied on the equivalence of the notion of
irreducible and prime elements. We wish to generalize this theorem to a wider class of
domains, so we must say what we mean by uniqueness of factorization. For the integers
this meant up to ±1, the units in Z, so we will use the following generalization.

Definition 30.7. Let R be a domain. We call R a unique factorization domain or UFD
if for any nonzero nonunit r in R, we have

(i) r = f1 · · · fn for some irreducible elements f1, . . . , fn in R for some n ∈ Z+.

(ii) If r = f1 · · · fn = g1 · · · gm with f1, . . . , fn, g1, . . . , gm irreducible elements in R for
some n,m ∈ Z+, then n = m and there exists a permutation σ ∈ Sn satisfying
fi ≈ gσ(i) for all i.

[Note that if r = uf1 · · · fn with u a unit in R and fi ∈ R for all i, then we can
‘absorb’ the unit by replacing any one of the factors with an associate.]

Remark 30.8. If R is a UFD, then, as desired, an element in R is prime if and only if it
is irreducible.

Proof. We need only show if r is an irreducible element in R that it is a prime. So
suppose that r | ab with a, b ∈ R nonunits. Write a = f1 · · · fn and b = g1 · · · gm, with
f1, . . . , fn, g1, . . . , gm irreducible elements in R for some n,m ∈ Z+. Since ab = rx for
some x ∈ R by assumption, the uniqueness property in the definition of UFD’s implies
r ≈ fi some i or r ≈ gj some j, i.e., r | a or r | b. �

The uniqueness property for a UFD is really just that irreducible elements are prime:

Proposition 30.9. (Euclid’s Argument) Let R be a domain. Suppose that p1 · · · pn =
f1 · · · fm with p1, . . . , pn prime elements in R and f1, . . . , fm irreducible elements in R for
some n,m ∈ Z+. Then n = m and there exists a permutation σ ∈ Sn satisfying pi ≈ fσ(i).
In particular, each fi is a prime element in R.

Proof. As p1 | f1 · · · fm in R, there exists an i such that fi = up1 for some element u
in R. Since fi is irreducible and p1 not a unit, u is a unit in R. Now p1 · · · pn = up1f2 · · · fm
in the domain R. If n = 1 or m = 1 we must have m = n = 1 by cancellation, since
the product of irreducibles is not a unit. So we may assume that m,n > 1. Cancellation
shows p2 · · · pn = uf2 · · · fm, and the result follows by induction. �

An immediate consequence is the following:

Corollary 30.10. Let R be a domain. Suppose that every nonzero nonunit in R is
a product of (finitely many) prime elements, i.e., a = p1 · · · pn, with p1, . . . , pn prime
elements in R. Then R is a UFD.

The most important class of commutative rings is the following:
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Definition 30.11. A commutative ringR is called a Noetherian ring if one of the following
equivalent conditions hold:

(i) R satisfies the ascending chain condition or ACC, viz., given a (countable) chain of
ideals

A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · ·
in R, there exists a positive integer N such that AN+i = AN for all i ≥ 0.
[We say that the chain stabilizes.]
Equivalently, there exists no infinite chain of ideals in R,

B1 < B2 < · · · < Bn < · · · .

(ii) Every ideal A in R is finitely generated (fg), i.e., there exist a1, . . . , an ∈ R, some n,
such that A = (a1, . . . , an).

(iii) R satisfies the Maximal Principle, i.e., any nonempty set of ideals S in R contains
a maximal element relative to the relation ⊂.
[Cf. this condition to the conclusion of Zorn’s Lemma.]

Remark 30.12. We leave it as an important exercise (cf. Exercise 30.22(11)) to show
these three conditions are equivalent. However, the proof of this really needs the Axiom
of Choice (Appendix A (A.8)) to prove ACC implies the Maximal Principle. [In Appendix
A, it is shown that Zorn’s Lemma is equivalent to the Axiom of Choice.] In fact, it is also
known that the Axiom of Choice is also equivalent to the implication that ACC implies
the Maximal Principle. For Noetherian rings one usually uses the Maximal Principle
instead of directly using Zorn’s Lemma in proofs.

Using the second condition we have:

Examples 30.13. 1. Every PID is a Noetherian domain.

2. Let R be a commutative ring. By Exercise 28.19(7), R is Noetherian if and only if
every prime ideal is finitely generated. Let A = R[[t]]. By Exercise 28.19(9), prime
ideals in A are finitely generated if prime ideals in R are. [The converse is also true.]
Hence if R is Noetherian, so is R[[t]].

Noetherian rings are important as they are the rings that arise in classical algebraic
geometry. The collection of Noetherian rings also has the properties of being closed under
basic ring constructions (and combinations of them): viz.,

(i) The homomorphic image of a Noetherian ring is Noetherian.

(ii) The localization of a Noetherian ring is Noetherian.

(iii) (Hilbert Basis Theorem) If R is a Noetherian ring so is R[t].

We shall leave the first two as exercises and prove the last in Section 41. (Cf. Theorem
41.1). It is not true, however, that a subring of a Noetherian ring is Noetherian. Indeed as
any field is a Noetherian domain, one need only find a non-Noetherian domain to provide
a counterexample. Can you do so?

We illustrate the importance of the Noetherian condition by the following interesting
result.
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Theorem 30.14. Let R be a Noetherian domain and r a nonzero non-unit in R. Then
r is a product of (finitely many) irreducible elements.

Proof. Let

S = {(a) |(0) < (a) < R

with a not a product of irreducible elements}.
Suppose that S is nonempty, i.e., the result is false. Then there exists a principal ideal
(a) ∈ S, a maximal element by the Maximal Principle. We call (a) a maximal counterex-
ample. Certainly, a cannot be irreducible, so a = bc for some non-units b, c ∈ R. But
then (a) < (b) and (a) < (c), so by maximality, both b and c are products of irreducible
elements, hence so is a = bc. �

The above proof is called proof by Noetherian induction. Note the similarity between
this proof and that showing positive integers factor into primes. Further application of this
type of decomposition into ‘smaller pieces’ for Noetherian rings is given in the exercises.

Theorem 30.15. Let R be a PID. Then R is a UFD.

Proof. As R is a PID, it is a Noetherian domain. Hence every nonzero nonunit
factors into a product of irreducible elements. As every irreducible element in a PID is a
prime, factorization is (essentially) unique by Euclid’s Argument. �

Corollary 30.16. Z is a UFD.

Next we generalize the Division Algorithm, to study a special type of PID.

Definition 30.17. Let R be a domain. Then R is called a euclidean domain if there
exists a function

∂ : R \ {0} → Z+ ∪ {0}
satisfying the Division Algorithm, i.e., for all a, b ∈ R with b nonzero, there exist q, r ∈ R
satisfying

a = bq + r.(i)

r = 0 or ∂r < ∂b.(ii)

We call ∂ a euclidean function.

Remark 30.18. If we agree that −∞+ n = −∞ for all integers n and let ∂0 = −∞, we
can write (ii) as

∂r < ∂b.

[This is often done.]

Remarks 30.19. 1. A euclidian function is sometimes defined to have the further prop-
erty that

(iii) ∂(ab) ≥ ∂(a) for all nonzero a, b ∈ R.
If (iii) also holds, we shall call ∂ a strong euclidean function.
[If (iii) holds, then ∂(ab) > ∂(a) if b is not a unit and ∂(u) = ∂(1) for all units u ∈ R×.]
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A euclidean domain may have more than one euclidean function. It can be shown
that if a euclidean function ∂ satisfies (i) and (ii), then ∂ ′ : R \ {0} → Z+ ∪ {0}
defined by ∂ ′(x) = min06=r∈R ∂(rx) is a strong euclidean function. In particular, every
euclidean domain satisfies (iii) under some strong euclidean function.

2. Historically, a euclidean function ∂ on a euclidean domain was also required to be
multiplicative, i.e., ∂(ab) = ∂(a)∂(b) for any nonzero a, b ∈ R. Such a euclidean
function is called a normed euclidean function.

Theorem 30.20. If R is a euclidean domain, then R is a PID, hence a UFD.

Proof. Let 0 < A ⊂ R be an ideal and

∅ 6= S = {∂a | 0 6= a ∈ A} ⊂ Z+ ∪ {0}

(as A 6= 0), By the Well-ordering Principle, there exists an element a in A with ∂a ∈ S
minimal.

Claim. A = (a) [Cf. the proof that Z is a PID.]:

Let b ∈ A, then b = aq + r in R with r = 0 or ∂r < ∂a. If r 6= 0, then 0 6= r = b− aq lies
in A, contradicting the minimality of ∂a so r = 0 and A = (a). �

Remarks 30.21. (no justification)

1. Any field is euclidean.

2. If F is a field, then the polynomial ring F [t] is euclidean with normed euclidean function
deg.

3. Z[t] is a UFD but not a PID.

4. Z[
√
−5] is not a UFD.

5. Z[
√
−1], Z[

√
−2], Z[−1−

√
−3

2
], Z[−1−

√
−7

2
], Z[−1−

√
−11

2
] are normed euclidean domains.

6. Motzkin showed that Z[−1−
√
−19

2
], was a PID but not a euclidean domain under a

normed euclidean function. It is not a euclidean domain under a strong euclidean
function.

7. Z(
√

14 is a euclidean domain, but not a euclidean domain under a normed euclidean
function.

Exercises 30.22.

1. Let R be a domain and a a nonzero nonunit in R. Show that a is irreducible if and
only if the principal ideal (a) is maximal in the set {(b) | b a nonzero nonunit in R}.
In particular, if R is a PID, then every irreducible element in R is a prime element.

2. Produce elements a and b in the domain R := {x+ 2y
√
−1 | x, y ∈ Z} having no gcd.

Prove your elements do not have a gcd.

3. Let Z ⊂ R be a subring with R a UFD. Let d be the gcd of two nonzero integers a and
b in Z. Show that d is still a gcd of a and b in R.

4. Show 1 is a gcd for 2 and t in Z[t], but there are no polynomials f, g ∈ Z[t] satisfying
1 = 2f + tg.
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5. Let R be a UFD and a a nonzero element in R. Show that the nilradical of R/(a) is
the intersection of a finite number of prime ideals in R/(a), say p1, . . . , pn, and if P is
any prime ideal in R/(a) then there exists an i such that pi ⊂ P. (Cf. Exercise 28.19
(14).)

6. A domain R is called a Bézout domain if every finitely generated ideal in R is principal.
[A Bézout domain may not be a PID. For example, The ring of entire (holomorphic)
functions f : C → C can be shown to be a Bézout domain.] Show that every two
nonzero elements in a Bézout domain has a gcd.

7. A domain R with quotient field F is called a valuation ring if for any nonzero element
x in F , either x ∈ R or x−1 ∈ R. Show that a valuation ring has a unique maximal
ideal and is a Bézout domain.

8. A domain R is called a GCD-domain if every pair of nonzero elements in R has a gcd.
Let R be a GCD-domain. If a, b are nonzero in R, write [a, b] for a gcd of a, b. Of
course, this is only unique up to units. Show all of the following holds (up to units)
for all nonzero a, b, c, d in R:

(i) [ab, ac] = a[b, c].
(ii) If [a, d] = d, then [a/d, b/d] = 1.

(iii) If [a, b] = [a, c] = d, then [ab, cd] = 1.

9. Show if R is a GCD-domain, then an element in R is a prime element if and only if it
is an irreducible element.

10. Let R be a domain with quotient field F . We say that R is a normal domain or an
integrally closed domain if whenever a monic polynomial f ∈ R[t] has a root x in F ,
then x ∈ R. (Cf. R = Z.) Prove that if R is a GCD-domain, then it is a normal
domain.

11. Prove that the three conditions defining a Noetherian ring in (30.11) are indeed equiv-
alent.

[Note: Technically to prove ACC implies the Maximal Principle, one needs the Axiom
of Choice as mentioned in Remark 30.12. If you see where, you can invoke it.]

12. If in the previous exercise, you do not want to use the Axiom of Choice, but rather
use Zorn’s Lemma, show that if all ideals of a commutative ring are finitely generated,
then the Maximal Principle holds using Zorn’s Lemma.

13. Prove Theorem 30.14 using ACC and not the Maximal Principle.

14. Prove that any Noetherian valuation ring is a PID.

15. A commutative ring R is called Artinian if it satisfies the following condition (called
the descending chain condition or DCC): Any chain of ideals

A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · ·

(countable) in R stabilizes, i.e, there exists an integer N such that AN+i = AN for all
i ≥ 0. Equivalently, there exist no infinite chains

B1 > B2 > · · · > Bn > · · · .
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Show that R is Artinian if and only if it satisfies the Minimal Principle which says that
any nonempty collection of ideals in R has a minimal element (under set inclusion).
(Cf. See the Note in Exercise (11) above. It applies here as well.)

16. If R is a domain, show that it is Artinian (cf. previous exercise) if and only if it is a
field.

17. Let R be a Noetherian ring. Show if ϕ : R → S is a ring epimorphism, then S is
Noetherian.

18. If R is a Noetherian ring and S a multiplicative set in R, then the localization S−1R
is a Noetherian ring. (Cf. Exercise 29.4(7).)

19. Let R be a Noetherian domain. Show that any nontrivial ideal of R contains a finite
product of nonzero prime ideals, i.e., if 0 < A < R is an ideal, then there exist nonzero
prime ideals p1, ..., pn in R such that p1p2 · · · pn ⊂ A.

20. Let R be a Noetherian ring. Show that any ideal A < R contains a finite product of
prime ideals.

21. An ideal C in a commutative ring R is called irreducible if whenever C = A∩B for some
ideals A and B in R, then either C = A or C = B. Show if R is Noetherian, then every
ideal A < R is a finite intersection of irreducible ideals of R, i.e., A = C1 ∩ · · · ∩Cn, for
some irreducible ideals Ci in R.

22. Let R be a Noetherian ring and A < R an irreducible ideal (cf. Exercise 21 above).
Show that A is a primary ideal. (Cf. Exercise 28.19(15) for the definition of a primary
ideal).

23. Let f, g be polynomials with coefficients in a commutative ring R. Suppose the leading
coefficient of f is a unit (i.e., the coefficient of the highest degree term in f is a unit).
Show that there are polynomials q and r with coefficients in R such that g = fq + r
with either r = 0 or the degree of r is less than the degree of f . This says the Division
Algorithm holds when dividing by a polynomial with unit leading term.

24. Let F be a field. Show that F [t], the ring of polynomials with coefficients in F , is a
euclidean domain, hence a PID, hence a UFD.

25. Prove that a domain in which every prime ideal is principal is a PID.

26. Let R = Z + tQ[t], i.e., polynomials with rational coefficients in which the constant is
an integer. Prove that R is a Bézuit domain that is not Noetherian nor a UFD.

27. Suppose that R is a euclidean domain under the euclidean function ∂. Show that R
is a euclidean domain under the strong euclidean function ∂ ′ : R \ {0} → Z+ ∪ {0}
defined by ∂ ′(x) = min0 6=r∈R ∂(rx).

28. Let R be a euclidean domain under a strong euclidean function ∂, a, b nonzero elements
in R, Show that b is a unit if and only if ∂(b) = ∂(1) and if b is a nonunit, then
∂(ab) > ∂(a).

29. Let R be a euclidean domain. Show directly, i.e., without using facts about PIDs or
Noetherian domains, the following:
(a) Every irreducible element in R is a prime element.
(b) If R is a euclidean domain (under a strong euclidean function), then R is a UFD.
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30. Let R be a UFD with quotient field K. Let S be a multiplicative set in R not containing
zero. Show that the localization S−1R of R at S is a UFD. In particular, if p is a prime
ideal in R, then the localization Rp := S−1R of R at S = R \ p,

Rp := {a
b
| a, b ∈ R, b 6∈ p} ⊂ K

is also a UFD.

31. Characterization of UFDs

We prove a generalization of our result that a PID is a UFD by giving Kaplansky’s
characterization of UFD’s.

Theorem 31.1. (Kaplansky) Let R be a domain. Then R is a UFD if and only if every
nonzero prime ideal contains a prime element.

Proof. (⇒): Let 0 < p < R be a prime ideal and a a nonzero element in p. Then
a = f1 · · · fr, with f1, . . . , fr irreducible in R. Since p is a prime ideal, there exist an i
such that fi ∈ p. As R is a UFD, fi is a prime element.

(⇐): Let

S = {r ∈ R | r 6= 0 and r is a unit or a product of prime elements}.
Clearly, S 6= ∅ is a multiplicative set and (0) excludes S. If we show S = R \ {0}, then R
is a UFD by Euclid’s Argument, i.e., we shall be done.

Claim. S is a saturated multiplicative set, i.e., if a, b ∈ R, then

a, b ∈ S if and only if ab ∈ S :

As S is a multiplicative set, we need only show if ab ∈ S, then a and b lie in S. Note that
R× is a saturated multiplicative set, and by definition a subset of S, so we may assume
that neither a nor b is a unit. Write ab = p1 · · · pr with p1, . . . , pr primes hence each pi
lies in S. As p1 | ab and p1 is a prime element, p1 | a or p1 | b, say p1 | a. Write a = p1a1

with a1 ∈ R, hence p1a1b = p1p2 · · · pr in the domain R. By cancellation, we conclude
that a1b = p2 · · · pr in S. By induction on r, we have a1, b ∈ S. As S is a multiplicative
set, a ∈ S. This proves the claim.

As (0) excludes S, by Krull’s Theorem, there exists a prime ideal p ∈ R excluding S
and maximal with respect to excluding S. If 0 < p, then there exists a prime element
p ∈ p, hence p ∈ S∩ p, a contradiction. Consequently, (0) = p is maximal with respect to
excluding S. In particular, if a ∈ R is nonzero and satisfies (0) < (a), we have (a)∩S 6= ∅.
We conclude that there exists an r ∈ R such that ar ∈ S. As S is saturated by the claim,
a ∈ S as needed. �

Definition 31.2. Let R be a commutative ring. We call a prime ideal p in R to be of
height n if there exists a chain of prime ideals p0 < · · · < pn = p and none smaller.

Corollary 31.3. Let R be a UFD. Then every nonzero prime in R is of height one.

Proof. Every nonzero prime P (if any) contains a nonzero prime ideal p that is
principal. In particular, it P is prime, P = p. �
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Remarks 31.4. 1. If R is a Noetherian ring, then, a priori, we do not need Zorn’s Lemma
to prove Krull’s Theorem, hence in the proof above, if R is a Noetherian domain.
However, as mentioned in Remark 30.12 this is really illusory.

2. We shall see that C[t1, . . . , tn] is a UFD, Using this one can show that the geometric
meaning of Kaplansky’s Theorem in the case of Cn is: Any hypersurface in Cn given
by polynomial equations (in several variables) satisfying an irreducible condition can
be defined by a single irreducible polynomial.

Using the argument of Kaplansky’s Theorem 31.1, one shows:

Corollary 31.5. If every prime ideal of a commutative ring R is principal, then every
ideal in R is principal.

This corollary was generalized by I. S. Cohen.

Theorem 31.6. (Cohen) Let R be a commutative ring. Then R is Noetherian if and only
if every prime ideal in R is finitely generated.

We leave its proof as an exercise.

Exercises 31.7.

1. Prove Krull’s Theorem 28.15 if R is a Noetherian ring and Kaplansky’s Theorem 31.1
if R is a Noetherian domain without directly using Zorn’s Lemma (cf. Remark 30.12).

2. Let S ⊂ R be a multiplicative set such that 0 /∈ S. As above, we say that S is saturated
if ab ∈ S implies that a, b ∈ S. Prove that S is a saturated multiplicative set if and
only if R \ S is a union of prime ideals. In particular, the set of zero divisors in a
commutative ring is a union of prime ideals.

3. Let R be a UFD and p a nonzero prime in R. Then p properly contains no nonzero
prime ideal if and only if p is principal and generated by a prime element. Moreover
prime elements generate all such prime ideals in R.

4. Show 31.5.

5. Prove Cohen’s Theorem 31.6.

32. Gaussian Integers

In this section, we study the Gaussian integers Z[
√
−1], a domain as it is a subring of

C. The map : C → C given by x + y
√
−1 7→ x − y

√
−1, x, y ∈ R, will denote complex

conjugation. (As C is a real vector space on {1,
√
−1}, any element z in C can be written

z = x+ y
√
−1 for some unique real numbers x and y. This is a field automorphism that

fixes the reals, i.e., is the identity on the reals. In fact, z = z if and only if z ∈ R. Clearly,
it restricts to a ring automorphism of the Gaussian integers. Let N : C → R+ ∪ {0} be
the map defined by z 7→ zz. It is called the norm map.

Remarks 32.1. 1. If R is a ring, we let Autring(R) denote the set of ring automorphisms
of R. It is a group under composition. As z = z for all z ∈ C, complex conjugation
has order two in Autring(C). A ring automorphism of commutative rings of order one
or two is called an involution. So complex conjugation is an involution on C and on
Z[
√
−1].
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2. Let x, y ∈ R, then N(x + y
√
−1) = x2 + y2, which is positive unless x = 0 = y. This

indicates that the norm map should be of interest when studying sums of two squares.

3. N : (C×, ·)→ (R×, ·) is a monoid homomorphism, i.e., N(1) = 1 and it is multiplicative:

N(z1z2) = N(z1)N(z2) for all z1, z2 ∈ C×.
In particular, if x1, x2, y1, y2 ∈ C, we have the two square identity:

(x2
1 + y2

1)(x2
2 + y2

2) = (x1x2 − y1y2)2 + (x1y2 + x2y1)2,

the product of sums of two squares is a sum of two squares. Of course, once we have
this identity, we see that this holds in any commutative ring by multiplying out.

4. N(z) = N(z) for all z ∈ C.

Lemma 32.2. Z[
√
−1] is a domain and satisfies the following:

(1) N |Z[
√
−1] : Z[

√
−1]→ Z+∪{0} and satisfies N |Z[

√
−1](α) = 0 if and only if α = 0.

We shall write N for N |Z[
√
−1].

(2) Z[
√
−1]× = {±1,±

√
−1}.

(3) Let a, b ∈ Z. Then a + b
√
−1, is a root of the monic polynomial (i.e., leading

coefficient is one), t2 − 2at+ (a2 + b2) ∈ Z[t].

Proof. We only prove (2) leaving the rest as an easy check. If uv = 1 with u, v ∈ Z[t],
then 1 = N(1) = N(u)N(v), so we have N(u) ∈ Z× ∩ Z+ = {1}. As x2 + y2 = 1 with
x, y ∈ Z if and only if x = ±1, y = 0 or x = 0, y = ±1, we conclude that

Z[
√
−1]× ⊂ {β | N(β) = 1} ⊂ {±1,±

√
−1}.

Clearly, {±1,±
√
−1} ⊂ Z[

√
−1]×, establishing the lemma. �

Theorem 32.3. The domain Z[
√
−1] is a euclidean domain, hence a PID and so a UFD.

Proof. Claim. N is a normed euclidean function on Z[
√
−1]. (Consequently,

Z[
√
−1] is a strong euclidean domain under N .):

Let α and β be elements in Z[
√
−1] with β nonzero. We must show that there exist a γ

and ρ in Z[
√
−1] satisfying α = βγ + ρ with ρ = 0 or N(ρ) < N(β).

In C, we can write
α

β
=
α

β

β

β
=

αβ

N(β)
= r + s

√
−1

for some r, s ∈ Q (as N(β) ∈ Z). Choose m,n ∈ Z satisfying

|r −m| ≤ 1/2 and |s− n| ≤ 1/2.

Set γ = m + n
√
−1 and ρ = α − βγ in Z[

√
−1]. If ρ = 0, we are done, so suppose not.

As N : C× → R+ and is multiplicative, we have

N(ρ) = N(α− βγ) = N
(
β(
α

β
− γ)

)
= N(β)N(

α

β
− γ)

= N(β)N
(
(r −m) + (s− n)

√
−1
)

= N(β)[(r −m)2 + (s− n)2]

≤ N(β)(
1

4
+

1

4
) < N(β). �
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Note in the last line of the proof, our estimate on N(ρ) was ≤ 1
2
N(β), so we had some

room to work. This explains why the domains in Remark 30.21(5) work — compute the
restriction of N to each of these domains.

As mentioned before, we can use the Gaussian integers to study sums of squares of
integers. In particular, m = x2 + y2 with x, y integers if and only if m = N(x + y

√
−1).

We wish to determine all the non-negative integers that are sums of two squares. We
have seen that a product of two integers each a sum of two squares of integers is itself
a sum of two squares. By the Fundamental Theorem of Arithmetic, each non-negative
integer factors as pe11 · · · perr with the pi distinct positive primes and the ei ≥ 1. If ei is
even then peii is a square (so a sum of two squares). Hence we are reduced to determining
which products of distinct primes are sums of two squares of integers. In particular, we
must determine which primes are sums of two squares of integers. As 2 is a sum of two
squares, we are reduced to odd primes. If x ∈ Z, then x2 ≡ 0, 1 mod 4. In particular, a
sum of two integer squares can only be congruent to 0, 1 or 2 modulo four. In particular,
no integer n satisfying n ≡ 3 mod 4 can be a sum of two squares of integers, e.g., 3 and
7 are not sums of two squares.

The key to the solution is the following:

Lemma 32.4. Let p be a positive prime in Z satisfying p ≡ 1 mod 4. Then there exists
an integer x satisfying p | x2 + 1 in Z. In particular, −1 is a square modulo p if p ≡ 1
mod 4.

Proof. Let x = 1 · 2 · 3 · · · · · p−1
2

in Z. By Wilson’s Theorem (Exercise 10.16(14)),
we have

−1 ≡ (p− 1)! = (1 · 2 · 3 · · · p− 1

2
)(p− p− 1

2
· · · p− 3 · p− 2 · p− 1)

≡ (1 · 2 · 3 · · · p− 1

2
)(−p− 1

2
· · · − 3 · −2 · −1) = (−1)

p−1
2 x2

≡ x2 mod p,

so p | x2 + 1. �

Theorem 32.5. (Fermat) Let p be a positive prime congruent to 1 modulo 4. Then there
exist integers x and y such that p = x2 + y2.

Proof. By the lemma there exists an integer x such that p | x2 + 1. Consequently,
p | (x+

√
−1)(x−

√
−1) in the UFD Z[

√
−1].

Claim. p is not irreducible (i.e., it is reducible) in Z[
√
−1]:

Suppose that p is irreducible in Z[
√
−1]. Then as Z[

√
−1] is a UFD, it is a prime. Hence

p | x+
√
−1 or p | x−

√
−1. If p | x+

√
−1, then p(a+b

√
−1) = x+

√
−1 for some integers

a and b. It follows that pb = 1 in Z (why?), which is impossible. [Or if p | x +
√
−1,

then p = p | x −
√
−1 also. It follows that p | 2x hence p | x as p is odd.] Similarly,

p 6 | x−
√
−1, so p is not irreducible in Z[

√
−1], proving the claim.

Using the claim, we can write p = πα for some π, α ∈ Z[
√
−1], with π irreducible in

Z[
√
−1] and α not a unit in Z[

√
−1]. Taking the norm of this equation yields

p2 = N(p) = N(π)N(α)
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in Z. As N(π) and N(α) lie in Z+ with Z a UFD, we must have

ππ = N(π) = p = N(α)

is a sum of two squares, proving the theorem. In addition, we have also shown, in view
of this last equation, that π = α is also irreducible and p = ππ is a factorization of p in
Z[
√
−1]. �

To categorize those integers that are sums of two squares, we need the following lemma:

Lemma 32.6. Let a and b be two nonzero relatively prime integers and p a (positive) odd
prime such that p | a2 + b2. Then p ≡ 1 mod 4.

Proof. As p | a2 + b2, we have p | a if and only if p | b. Since a and b are relatively
prime, p cannot divide a or b. By Fermat’s Little Theorem 10.14, we know that bp−3b2 =
bp−1 ≡ 1 mod p. Consequently, a2 + b2 ≡ 0 mod p, i.e., a2 ≡ −b2 mod p, and p−3 even
imply that

(b
p−3
2 a)2 = bp−3a2 ≡ −bp−3b2 ≡ −1 mod p.

Let x = b
p−3
2 a. Then x2 ≡ −1 mod p which means that

1 ≡ xp−1 = (x2)
p−1
2 ≡ (−1)

p−1
2 mod p.

If p ≡ 3 mod 4, then we conclude that 1 ≡ −1 mod p, which is impossible. �

The next result solves our stated problem. We leave its proof as an exercise (that you
should do).

Theorem 32.7. Let n = pe11 · · · perr in Z with 0 < p1 < · · · < pr primes, and ei > 0 for
i = 1, . . . , r. Then n is a sum of two squares in Z if and only if ei are even integers
whenever pi ≡ 3 mod 4 for i = 1, . . . , r.

Let p be a (positive) odd prime. By Lemma 32.6, we know that

−1 is

{
a square mod p if p ≡ 1 mod 4.

not a square mod p if p ≡ 3 mod 4.

Definition 32.8. If a is an integer not divisible by p, define the Legendre symbol(a
p

)
:=

{
+1 if a mod p is a square.

−1 if a mod p is not a square.

It is also convenient to define
(
b
p

)
= 0 if p | b.

Example 32.9.
(

0
7

)
= 0,

(
1
7

)
=
(

2
7

)
=
(

4
7

)
= 1, and

(
3
7

)
=
(

5
7

)
=
(

6
7

)
= −1

We have proven:

Proposition 32.10. (Euler’s Formula) Let p be a (positive) odd prime. Then(−1

p

)
= (−1)

p−1
2 =

{
+1 if p ≡ 1 mod 4.

−1 if p ≡ 3 mod 4.

Corollary 32.11. The set {4n+ 1 | n ∈ Z} contains infinitely many primes.
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Proof. We prove the stronger result that the set {8n+ 5 | n ∈ Z} contains infinitely
many primes.

Check. If n ∈ Z, then n2 ≡ 0, 1, 4 mod 8. In particular, if n is odd, then n2 ≡ 1 mod 8.

Let p be an odd prime and set N = (3 · 5 · 7 · · · p)2 + 22 ≡ 5 mod 8. If q is an odd prime
such that q | N , then by Lemma 32.6, we have q ≡ 1 mod 4, hence q ≡ 1 mod 8 or q ≡ 5
mod 8. If N is a product of primes all congruent to 1 modulo 8, then N ≡ 1 mod 8, a
contradiction. Therefore, there exists a prime q satisfying q ≡ 5 mod 8 and q | N . As
none of the primes 3, 5, 7, . . . , p divides N , we must have q > p, so there exists a prime
larger that p congruent to 5 modulo 8. �

Remark 32.12. It is still an open question whether the set of integers {x2 + 1 | x ∈ Z}
contains infinitely many primes.

The following is a well-known theorem, although we shall not prove it. The usual
proof uses complex analysis, although there is now an elementary (but tricky) proof that
does not.

Theorem 32.13. (Dirichlet’s Theorem on Primes in an Arithmetic Progression) Let a
and b be two nonzero relatively prime integers. Then there exist infinitely many primes p
satisfying p ≡ a mod b.

We shall prove that this is true for a = 1 in Proposition 59.10 below by elementary
means. Other questions arise about arithmetic progressions, i.e., equally spaced integers,
e.g., a, a+b, a+2b, a+3b, . . . with a and b integers. The distance between two consecutive
integers in an arithmetic progression is called the spacing of the progression, e.g., b is the
spacing in the example. Such a progression can be finite or infinite. The most spectacular
theorem is the following proven in 2004:

Theorem 32.14. (Green-Tao) Let N be a positive integer. Then there exists an arith-
metic progression consisting of N primes.

The theorem shows that for any N there exists infinitely many arithmetic progressions
consisting of N primes, but it does not indicate anything about the spacing. Turning this
theorem around, one can ask does there exist infinitely many primes in an arithmetic
progression with a given spacing. The most famous example of this is

Question 32.15. (Twin Prime Conjecture) Do there exist infinitely many twin prime,
i.e., primes pairs of the form p, p+ 2.

Euler had shown that
∑

p a prime

1

p
was infinite, so there was some hope that

∑
p a twin prime

1

p

was also. Brun showed this to be false in 1915.

We shall also study the Legendre symbol further proving the following wonderful
(albeit seemingly strange) theorem of Gauss upon which you should meditate (and we
shall prove it in Theorem 59.19 below):

Theorem 32.16. (Quadratic Reciprocity) Let p and q be distinct odd primes. Then(p
q

)(q
p

)
= (−1)

p−1
2

q−1
2 .
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Exercises 32.17.

1. Show that the evaluation map e√−1 : Z[t]→ C defined by f 7→ f(
√
−1) is a ring homo-

morphism with kernel (t2 + 1) and image the Gaussian integers. [Hint: Use Exercise
30.22(23).]

2. Let R = Z[
√
−1] and n = pe11 · · · perr be the standard factorization of the integer n > 1.

Show that the following are equivalent:
(i) n is a sum of two squares.

(ii) n = N(α) for some α ∈ R.
(iii) If pi ≡ 3 (mod 4), then ei is even.
[Hint: Use Lemma 32.6.]

3. Show the following
(i) Let α be an element in Z[

√
−1] such that N(α) is a prime or the square of a

prime in Z. Then α is a prime element or a product of two prime elements in
Z[
√
−1].

(ii) Let π be an prime element in Z[
√
−1]. Show N(π) is a prime or the square of a

prime in Z.

4. Determine all prime elements, up to units, in Z[
√
−1].

5. Show that Z[
√
−2] is a euclidean domain.

6. Prove that Z
[−1−

√
−3

2

]
and Z[

√
3 ] are euclidean domains.

7. Prove that Z
[−1−

√
−d

2

]
is a euclidean domain for d = 7 and d = 11.

8. Let R = Z[
√
−d] = {a+ b

√
−d | a, b ∈ Z}, a subring of C with d a positive square-free

integer. Let N : R → Z be the norm map, so α = a + b
√
−d 7→ αα = a2 + db2. Show

all of the following:
(i) The field of quotients of R is Q[

√
−d] = {a+ b

√
−d | a, b ∈ Q}.

(ii) N : R \ {0} → Z is a monoid homomorphism.

(iii) R× = {α ∈ R |N(α) = 1} and compute this group for all d.

(iv) The element α is irreducible in R if N(α) is a prime. Is the converse true?

(v) Suppose d ≥ 3, then 2 is irreducible but not prime in R.

9. Let R = Z[
√
−5]. Show the following:

(i) The elements 2, 3, 1 +
√
−5, and 1 −

√
−5 are all irreducible but no two are

associates.

(ii) None of the elements 2, 3, 1 +
√
−5, and 1−

√
−5 are prime. In particular, R is

not a UFD.

10. Let R = Z[
√
−5]. Let P = (2, 1 +

√
−5). Show

(i) P2 = (2) in R.
(ii) P is a maximal ideal.

(iii) P is not a principal ideal.
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33. Addendum: The Four Square Theorem

In the previous section, we characterized those positive elements that are sums of two
squares. In this section, we prove Lagrange’s theorem that every positive integer is a sum
of four squares. The proof is based on a computation of Euler that shows a product of
two integers each a sum four integer squares is a sum of four integer squares. Although
he did not know it at the time, this formula comes from the Hamiltonian quaternions, the
first known division ring that was not commutative. We begin by constructing it.

Construction 33.1. Let H be a four dimensional real vector space with basis {1, i, j, k}.
We view 1 as 1R, so R ⊂ H. We make H into a ring by defining a multiplication on this
basis and extend linearly to the whole space. The multiplication of the basis elements is
given by:

i2 = −1, j2 = −1, ij = −ji = k.

Extending this linearly give a multiplication on H as follows:

(x01 + x1i+ x2j + x3k) · (y01 + y1i+ y2j + y3k)

= (x0y0 − x1y1 − x2y2 − x3y3)1 + (x0y1 + x1y0 + x2y3 − x3y2)i

+ (x0y2 + x2y0 + x3y1 − x1y3)j + (x0y3 + x3y0 + x1y2 − x2y1)k.

By a straight-forward (but arduous) computation, one now checks that this makes H
into a ring with 1H = 1R. Note that the subring generated by {1, i} is isomorphic to
C (as are the subrings generated by {1, j} and {1, k}, respectively). The ring H is not
commutative as its center, i.e., the subring {x ∈ H | xy = yx for all y in H} of H, is
precisely R. [Why is the center a subring?] Note also that H× contains the quaternion
group {1, i, j, ij,−1,−i,−j,−ji}.

Analogous to C, there is a quaternion conjugation map:

: H → H given by x01 + x1i+ x2j + x3k := x01− x1i− x2j − x3k.

It is easy to check that for all x, y in H, we have

1 = 1

x+ y = x+ y

xy = y x.

Therefore, the quaternion conjugation map satisfies the properties of a ring homomor-
phism except that it reverses multiplication. Such a map of rings is called a ring an-
tihomomorphism. Clearly, this map is also a surjective linear transformation of a real
vector space. Hence it is bijective, since H is a finite dimensional vector space over R.
Consequently, the map is, in fact, a ring antiautomorphism. (Note the composition of
two ring antihomomorphisms is a ring homomorphism.) In addition, for all x in H, we
have

x = x,

so is an involution, i.e., an antiautomorphism satisfying the composition ◦ is the
identity. (Cf. with complex conjugation.) We also have a norm map:

N : H → R+ ∪ {0} given by z 7→ zz,
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that is checked to be multiplicative, i.e., N(xy) = N(x)N(y) for all x, y in H. [Note that
if we identify C as the subring of H generated by {1, i}, then N |C is the usual norm map
on C.] This is useful as the norm of x01 + x1i+ x2j + x3k is

N(x01 + x1i+ x2j + x3k) = x2
0 + x2

1 + x2
2 + x2

3,

a sum of four squares. The multiplicativity of this norm map yields Euler’s Equation: the
four square identity

(x2
0 + x2

1 + x2
2 + x2

3) · (y2
0 + y2

1 + y2
2 + y2

3)

= (x0y0 + x1y1 + x2y2 + x3y3)2 + (−x0y1 + x1y0 − x2y3 + x3y2)2

+ (−x0y2 + x2y0 + x1y3 − x3y1)2 + (−x0y3 + x3y0 − x1y2 + x2y1)2,

the formula that a product of two sums of fours squares is a sum of four squares, gen-
eralizing the norm on the complex numbers giving a formula for the product of sums of
two squares. This is the equation that we shall need to prove Lagrange’s Theorem that
any positive integer is a sum of four squares. Of course, we do not need the quaternions
to establish Euler’s Equation — we need only multiply the right hand side out to see
that it holds in any commutative ring. Indeed Euler found this equation without knowing
about quaternions. It does, however, explain why such an equation exists. It can also be
shown that there is a formula that a product of two sums of eight squares is a sum of
eight squares. It arises from a generalization of the quaternions called the octonians., a
algebraic structure that looks a division ring but does not satisfy the associative law for
multiplication. So the two square identity arises from fields, the four square identity from
the quaternions (tossed out commutativity). the eight square identity from the octoni-
ans (toss out commutativity and associativity). Is there a sixteen square identity arising
from a generalization of these algebraic structures by throwing out some other property
of rings? Hurwitz showed not.

As with the norm map on C, it follows that N(z) = 0 if and only if z = 0. In particular,
if z is nonzero, then zz/N(z) = 1 = zz/N(z), so z has a multiplicative inverse. Therefore,
H is a division ring called the Hamiltonian quaternions. By definition, ij 6= ji, so H is
not a field.

Remark 33.2. Let V be a finite dimensional real vector space that is also a division ring
and contains R in its center. Then it can be shown that V is ring isomorphic to R, C, or
H. In particular, dimR V = 1, 2, or 4. We shall show this in Section 104.

To show that every positive integer is a sum of four squares, we shall use the following:

Lemma 33.3. 1 ≤ m < p and mp is a sum of four integer squares.

Proof. Let

S1 := {02, 12, . . . ,
(p− 1)

2

2

}

S2 := {−02 − 1,−12 − 1, . . . ,−(p− 1)

2

2

− 1}.

If x2 = y2 mod p with x, y integers, then p | x2 − y2 = (x + y)(x − y). Consequently,
p | x+ y or p | x− y. It follows (check) that no two elements in S1 are congruent modulo
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p and no two elements in S2 are congruent modulo p. Since

|S1|+ |S2| =
(p− 1

2
+ 1
)

+
(p− 1

2
+ 1
)

= p+ 1,

there exist x2 ∈ S1 and −y2 − 1 ∈ S2 satisfying 0 6= x2 + y2 + 1 and

x2 + y2 + 1 ≡ 0 mod p.

Hence there exists a positive integer m such that

mp = x2 + y2 + 1 ≤
(p− 1

2

)2

+
(p− 1

2

)2

+ 1 <
p2

2
+ 1 < p2.

So 1 ≤ m < p. �

Remarks 33.4. 1. Of course, the proof shows that the element mp is a sum of three
squares.

2. The same proof shows that −1 is a sum of two squares in Z/pZ for any prime p. In
fact, any element a in Z/pZ is a sum of two square — replace the −1 in the proof by
a in S1.

3. A similar (but not obvious) proof works to show that any element in a finite field is a
sum of two squares.
[Note that if char(F ) = 2, then the map F → F given by x 7→ x2 is a (field) monomor-
phism, so an automorphism if F is a finite field.]

Historically, one of the main forms of induction used to prove rather deep theorems
was the idea of Fermat, called Fermat descent. We prove our theorem about four squares
using this method.

Theorem 33.5. (Lagrange). Every positive integer is a sum of four squares of integers.

Proof. We know that 2 = 1+1+0+0 is a sum of four squares, so by Euler’s Formula
and the Fundamental Theorem of Arithmetic it suffices to show every positive odd prime
is a sum of four squares. [We even know this is true for primes congruent to 1 modulo
4, but will not use this.] Let p be an odd prime. By the lemma and the Well-ordering
Principle there exists an element (x0, y0, z0, w0,m) ∈ Z5 with 1 ≤ m < p and satisfying

(*) x2
0 + y2

0 + z2
0 + w2

0 = mp

with m minimial. To finish, it suffices to show that m = 1.

Case 1. m is even:

By (*), an even number of the integers x0, y0, z0, w0 must be odd (if any are odd). If
precisely two of these are odd, we may assume that they are x0, y0. So we have x0 ≡ y0

mod 2 and z0 ≡ w0 mod 2, hence

(
x0 + y0

2
)2 + (

x0 − y2

2
)2 + (

z0 + w0

2
)2 + (

z0 − w0

2
)2 =

m

2
p,

contradiction the minimality of m.

Case 2. m is odd:
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We use the modification of the Division Algorithm given by Exercise 4.24(3). Using this
modified division algorithm, we have equations:

x0 = mx1 + x2 with |x2| <
m

2
.

y0 = my1 + y2 with |y2| <
m

2
.

z0 = mz1 + z2 with |z2| <
m

2
.

w0 = mw1 + w2 with |w2| <
m

2
.

Therefore, we have

x2
2 + y2

2 + z2
2 + w2

2 ≡ x2
0 + y2

0 + z2
0 + w2

0 ≡ 0 mod m,

so

(†) x2
2 + y2

2 + z2
2 + w2

2 = Mm

for some integer M .

Subcase 1. M = 0:
In this subcase, we must have x2 = y2 = z2 = w2 = 0 and m | x0, m | y0, m | z0,
m | w0, so m2 | x2

0 + y2
0 + z2

0 + w2
0 = mp. Hence m | p with 1 ≤ m < p. If follows that

m = 1, so we are done in this subcase.

Subcase 2. M > 0:

We have (x2
1 +y2

1 + z2
1 +w2

1) · (x2
2 +y2

2 + z2
2 +w2

2) = A2 +B2 +C2 +D2 by Euler’s Equation
with A = x1x2 + y1y2 + z1z2 + w1w2 and for some integers B,C,D. Consequently,

mp = x2
0 + y2

0 + z2
0 + w2

0

= (mx1 + x2)2 + (my1 + y2)2 + (mz1 + z2)2 + (mw1 − w2)2

= m2(x2
1 + y2

1 + z2
1 + w2

1) + 2mA+mM.

Multiply this equation by M/m and use (†) to obtain the following equation in Z:

Mp = mM(x2
1 + y2

1 + z2
1 + w2

1) + 2MA+M2

= (x2
2 + y2

2 + z2
2 + w2

2)(x2
1 + y2

1 + z2
1 + w2

1) + 2MA+M2

= A2 +B2 + C2 +D2 + 2MA+M2 = (A+M)2 +B2 + C2 +D2

is a sum of four squares with

0 < mM = x2
2 + y2

2 + z2
2 + w2

2 < 4(
m

2
)2 = m2.

Therefore, 0 < M < m, contradicting the choice of m. �

Remark 33.6. It is much harder to determine which positive integers are sums of three
squares. This was determined by Gauss, who showed that a positive integer n is a sum
of three squares if and only if n 6= 4m(8k + 7) for some non-negative integers m and k.
[Note that 3 = 1 + 1 + 1 and 13 = 22 + 32 but 39 = 3 · 13 is a sum of four squares (as
39 = 12 + 22 + 32 + 52), but not fewer.]
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Hilbert proved a much more general theorem when he solved the Waring Problem that
given any positive integer n there exists a minimal positive integer g(n) such that every
positive integer is a sum of g(n) nth powers. His proof is not constructive, and it is a
difficult problem (and open for most n) to determine g(n).

Exercises 33.7.

1. Show if an integer n satisfies n = 4m(8k + 7), then n is not a sum of three squares.
[The converse is the hard part.]

2. Show H is a ring and prove quaternion conjugation is multiplicative.

3. Let z = x01+x1i+x2j+x3k ∈ H be a quaternion, xi ∈ R. We call z a pure quaternion
if x0 = 0. Suppose z is nonzero. Show that z is a pure quaternion if and only if z
does not lie in R but z2 does lie in R. In particular, if z is a pure quaternion, then
z2 = −x2

1 − x2
2 − x2

3. [Note that if z is a pure quaternion, then z = −z.]

4. Show that t2 + 1 ∈ R[t] has infinitely many roots in H.

5. Let U0 := {x ∈ H | N(z) = 1} and SU2(C) := {A ∈ GL2(C) | AA∗ = I, detA = 1} =

{
(
α −β
β α

)
∈ GL2(C) | α, β ∈ C with αα+ ββ = 1}, the special unitary group. Show

that the map

i 7→
(
i 0
0 −i

)
, j 7→

(
0 −1
1 0

)
, k 7→

(
0 −i
−i 0

)
induces a group isomorphism U0 → SU2(C). [We also have SU2(C)/{±I} ∼= SO3(R),
the special orthogonal group.]

6. Generalize the construction of quaternions as follows: Let F be any field of char-

acteristic different from two and a and b nonzero elements of F . Let
(
a,b
F

)
be the

4-dimensional F -vector space on basis {1, i, j, k}. Show that
(
a,b
F

)
becomes a ring by

defining

i2 = a, j2 = b, ij = −ji = k

and extend linearly with all elements in F commuting with all elements in
(
a,b
F

)
. Such a

ring with F commuting with all elements is called an F -algebra, and the F -algebra
(
a,b
F

)
is called a general quaternion algebra. Define the conjugate of z = x01+x1i+x2j+x3k

in
(
a,b
F

)
, x0.x1, x2, x3 ∈ F , by

x01 + x1i+ x2j + x3k := x01− x1i− x2j − x3k

and the norm map

N :
(a, b
F

)
→ F by z 7→ zz.

Analogous to the Hamiltonian quaternions, show conjugation is an anti-automorphism
and N is multiplicative. Moreover, show

N(x01 + x1i+ x2j + x3k) = x2
0 − ax2

1 − bx2
2 + abx2

3.
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In particular,
(
a,b
F

)
is a division ring if it satisfies the property that N(z) = 0 if and only

if z = 0. [If this does not happen, then
(
a,b
F

)
∼= M2(F ).] Can you give non-isomorphic

examples, of quaternion algebras that are division rings over Q?

7. Let F be a field of characteristic different from two. Show that(a, b
F

)
∼=
(ax2, by2

F

)
are isomorphic as F -algebras, i.e., a ring isomorphism that fixes F . In particular,

H ∼=
(
−1,−1

R

)
.

8. Show that
(

1,−1
F

)
∼= M2(F ). In particular, the only quaternion algebras over C is M2(C).





CHAPTER VII

Polynomial Rings

In this chapter we study polynomial rings over rings, concentrating on the case of a
polynomial ring in one variable over a domain, e.g., a field. Most importantly, we prove
Kronecker’s Theorem that a non-constant polynomial over a field F (in one variable) has
a root in a field containing F . This will be a basic result when we turn to studying Field
Theory. We then investigate polynomial rings over a UFD. We prove that any such ring
is itself a UFD using a classical result of Gauss. In the final section of this chapter, we
attempt to motivate the commutative algebra needed for algebraic geometry that will be
studied more systematically in a later chapter, that is the study of zeros of polynomials
in many variables over a field, especially algebraically closed fields.

34. Introduction to Polynomial Rings

We start by explicitly defining polynomial rings. If R is a ring, let R[t] := {a0 + a1t+
· · ·+ ant

n | ai ∈ R, i = 1, . . . n, some n ≥ 0} with a0 + a1t+ · · ·+ ant
n = 0 if and only if

ai = 0 for i = 0, . . . , n. Therefore, if

f = a0 + a1t+ · · ·+ ant
n and g = b0 + b1t+ · · ·+ bmt

m,

then

f = g if and only if ai = bi for all i

(where we let ai = 0 for all i > n and bj = 0 for all j > m).

With f and g as above, define

f + g := (a0 + b0) + (a1 + b1)t+ · · · =
∑

(ai + bi)t
i

and

fg :=
∑

cit
i with ci =

i∑
k=0

ai−kbk.

This makes R[t] into a ring called the polynomial ring over R with 0R[t] = 0R+0t+ · · · and
1R[t] = 1R + 0Rt + · · · , where we view R ⊂ R[t] by identifying r and r1R[t] for all r ∈ R,
i.e., identifying the ring monomorphism R → R[t] given by r 7→ r1R[t] as the inclusion.
So R is just the set (and subring) of constant polynomials in R[t]. Recursively define the
polynomial ring in n variables t1, . . . , tn over R by

R[t1, . . . , tn] := (R[t1, . . . , tn−1])[tn].

If f = a0 + a1t+ · · ·+ ant
n is a nonzero polynomial with an 6= 0, we define the degree

of f by deg f := n and the leading coefficient of f by lead f := an. If lead f = 1, we say
f is monic. If f = 0 or deg f = 0, we call f a constant polynomial. We let lead 0 = 0

199
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(and one can define deg 0 = −∞ if we let max(n,−∞) = n and n+ (−∞) = −∞ for any
integer n).

Properties 34.1. Let R be a ring and f , g nonzero polynomials.

1. If R is commutative, then so is R[t].

2. deg(f + g) ≤ max{deg f, deg g}. (Strict inequality is possible, e.g., if g = −f .)

3. deg(fg) ≤ deg f + deg g with equality if and only if

(*) lead(fg) = lead(f) lead(g)

is nonzero.

4. If R is a domain, then (*) holds, so R[t] is a domain.

If we had defined the degree of the zero polynomial to be −∞, these properties would
still hold for all polynomials.

Definition 34.2. Let S be a commutative ring and a1, . . . , an elements in S. If R is a
subring of S, then the map

ea1,...,an : R[t1, . . . , tn]→ S given by f 7→ f(a1 . . . , an)

is called evaluation at a1, . . . , an. We denote the image of ea1,...,an by R[a1, . . . , an], as
elements in this image are sums of the form rai11 · · · ainn with r ∈ R and i1, . . . , in non-
negative integers. The evaluation map ea1,...,an is a ring homomorphism and if R = S,
it is surjective. If R is not commutative, then this map may not be a homomorphism.
(Why?) For this reason, we shall only study polynomial rings over commutative rings. Of
course if the subring of S generated by R and a1, . . . , an is commutative, the evaluation
map ea1,...,an is still a ring homomorphism as we may replace S by a commutative subring.

If ϕ : R→ S is a ring homomorphism (respectively, ring monomorphism, ring epimor-
phism, ring isomorphism) of commutative rings, then ϕ induces a map

ϕ̃ : R[t1, . . . , tn]→ S[t1, . . . , tn]

given by
∑
i1

· · ·
∑
in

ai1,...,int
i1
1 · · · tinn 7→

∑
i1

· · ·
∑
in

ϕ(ai1,...,in)ti11 · · · tinn .

and ϕ̃ is a ring homomorphism (respectively, ring monomorphism, ring epimorphism, ring
isomorphism). For convenience, we write the iterated sum by

∑
or
∑

i1,...,in
. Moreover,

if a1, . . . , an are elements in R, we have a commutative diagram:

R[t1, . . . , tn]
ϕ̃
//

ea1,...,an
��

S[t1, . . . , tn]

eϕ(a1),...,ϕ(an)

��

R ϕ
// S.

In particular, the above applies to the case that S = R/A with A an ideal in R and
ϕ is the canonical epimorphism : R → R/A. Assume that A < R (otherwise we would
get no further information). Then the canonical epimorphism induces a ring epimorphism,˜ : R[t1, . . . , tn]→ (R/A)[t1, . . . , tn] given by

∑
i1,...,in

ai1,...,int
i1
1 · · · tinn 7→

∑
i1,...,in

ai1,...,int
i1
1 · · · tinn .
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In this case, for simplicity of notation, we write for ˜. Hence if (a1, . . . , an) ∈ Rn, we
have a commutative diagram:

R[t1, . . . , tn] //

ea1,...,an

��

R[t1, . . . , tn]

ea1,...,an
��

R // R,

i.e.,

f(a1, . . . , an) = f(a1, . . . , an).

In particular, if no (a1, . . . , an) ∈ Rn
satisfies f(a1, . . . , an) = 0, then no (x1, . . . , xn) ∈ Rn

satisfies f(x1, . . . , xn) = 0. Viewed geometrically, this says f = 0 in Rn has no solution
if f = 0 in R

n
has no solution. This is a very useful idea that is used. It is used, for

instance, in number theory to try to show a given Diophantine equation has no solution.

We return to the one variable case. For further remarks in this chapter about poly-
nomials in many variables, see Addendum 36.

Lemma 34.3. Let R be a domain. Then R[t]× = R×.

Proof. Clearly, units in R remain units in R[t]. Conversely, let f , g be polynomials
in R[t] satisfying fg = 1. Then deg(fg) = deg f + deg g = 0, so deg f = deg g = 0 and
f, g lie in R. �

Note that Z/4Z is not a domain and (1 + 2t)2 = 1 in Z/4Z[t].

By Exercise 30.22(23), whose solution mimics how you learned to divide polynomials,
we have the following:

Theorem 34.4. (General Division Algorithm) Let f, g be polynomials with coefficients
in a commutative ring R. Suppose the leading coefficient of g is a unit. Then there are
polynomials q and r with coefficients in R such that f = gq + r with either r = 0 or the
degree of r is less than the degree of g.

As usual, if R is a commutative ring, we say that α in R is a root of a polynomial f in
R[t] if f(α) = eα(f) = 0. The General Division Algorithm has many consequences, most
which you have encountered in middle school algebra that we now state and prove.

Corollary 34.5. Let F be a field. Then F [t] is a euclidean domain. In particular, F [t]
is a PID, hence also a UFD.

Corollary 34.6. (Remainder Theorem) Let R be a commutative ring, α an element in
R, and f a nonzero polynomial in R[t]. Then there exists a polynomial q in R[t] satisfying
f = (t− α)q + f(α). Moreover,

t− α | f in R[t] if and only if f(α) = 0, i.e., α is a root of f.

Proof. Apply the General Division Algorithm with g = t−α to get f = (t−α)q+ r
in R[t] for some q, r ∈ R[t] with r = 0 or deg r < deg(t − α) = 1. It follows that r ∈ R,
hence f(α) = eα(f) = eα

(
(t− α)q

)
+ eα(r) = r. The result now follows easily. �
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Corollary 34.7. Let R be a domain, f a nonzero polynomial in R[t], and x1, . . . , xn
distinct roots of f in R. Then

∏n
i=1(t− xi) | f in R[t]. In particular, deg f ≥ n.

Proof. If n = 1, the result follows by the Remainder Theorem, so assume that n > 1.
We prove a stronger result by induction on the degree of f . By iterating the Remainder
Theorem, we can write f = (t− x1)r1h in R[t] for some r1 in Z+ and h in R[t] with h(x1)
nonzero. We call r1 the multiplicity of the root x1 of f in R. As R[t] is a domain, we
have deg h ≤ deg f − r1. For each i = 2, . . . , n, applying the evaluation homomorphism
exi shows that 0 = f(xi) = (xi − x1)r1h(xi) in the domain R[t]. Hence h(xi) = 0 for
i = 2, . . . , n. By induction on the degree of f , we can write h =

∏n
i=2(t − xi)rih1 in R[t]

with h1 ∈ R[t] satisfying h(xi) 6= 0 for i = 2, . . . , n, i.e., xi is a root of h of multiplicity ri
for i = 2, . . . , n. It follows that f =

∏n
i=1(t− xi)rih1 in R[t]. The result follows. �

Note the proof shows that the degree of f above is greater than the number of roots of f
in R “counted with multiplicity.”

Corollary 34.8. (Lagrange) Let R be a domain and f a nonzero polynomial of degree n
in R[t]. Then f has at most n roots in R.

Corollary 34.9. Let R be a domain and f and g monic polynomials in R[t]. If f(xi) =
g(xi) for n distinct elements x1, . . . , xn in R with n > max(deg f, deg g), then f = g. In
particular, if R is infinite and f(x) = g(x) for all x ∈ R, then f = g.

Remarks 34.10. 1. The polynomial t2 − 1 in (Z/8Z)[t] has four roots: ±1,±3, so the
assumption that R be a domain in Corollary 34.7 is essential.

2. If R is not a commutative ring, evaluation is not necessarily a ring homomorphism,
as we mentioned above. This occurs because we assume that the variable t commutes
with all elements of R, but the element x at which we wish to evaluate will, in general,
not commute with all elements in R. If x does commute with all elements of R, then
evaluation at that element will be a ring homomorphism. The theory of polynomials
over non-commutative rings is, therefore, quite different. For example, let H be the
Hamiltonian quaternions, a, b, c ∈ R satisfy 1 = N(α) = αα = a2 + b2 + c2 with
α = ai+ bj+ ck. Then every such α is a root of the polynomial t2 + 1 in H[t]. So t2 + 1
has infinitely many roots in H[t].

3. If R is an infinite domain, Corollary 34.9 says that polynomials in R[t] and polynomial
functions are essentially the same, where p : R → R is a polynomial function if there
exists a polynomial f in R[t] such that p(x) = f(x) for all x ∈ R. We write pf for
this p. So the corollary says that if f and g are polynomials in R[t], with R an infinite
domain, then f ≈ g if and only if pf = pg. (Clearly, if f = g then pf = pg, and the
zero polynomial is the only polynomial with infinitely many roots.)

4. More generally if R is a infinite domain and ϕ : R → S a ring monomorphism,
then polynomials in R[t1, . . . , tn] and polynomial functions pf : Rn → S given by
pf (a1, . . . , an) = eϕ(a1),...,ϕ(an)(f) where f ∈ R[t1, . . . , tn] satisfies f ≈ g if and only if
pf = pg

5. Let p be a prime in Z+. Then the polynomials tp and t in (Z/pZ)[t] are clearly distinct,
but by Fermat’s Little Theorem, ptp = pt in the notation of the previous remark, so
the condition that R be infinite in the previous remark is crucial.
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For the next corollary, we set up important notation. Let F be a field and A < F [t]
be an ideal. We have the canonical ring epimorphism

: F [t]→ F [t]/A given by g 7→ g = g + A.

As A < F [t], the ring F [t]/A is not the trivial ring. Since a field is simple, the canonical
epimorphism induces a ring monomorphism

|F : F → F [t]/A given by a 7→ a.

We shall always view this as an inclusion, i.e., for all a ∈ F , we shall identify

a and a.

As t = t+A, this identification means that the canonical epimorphism maps g =
∑
ait

i 7→
g =

∑
ait

i
=
∑
ait

i
, i.e., the canonical epimorphism under this identification is none other

than the evaluation map at t, i.e.,

(34.11) : F [t]→ F [t]/A is the map g 7→ g(t).

Corollary 34.12. (Kronecker’s Theorem) Let F be a field and f an irreducible element
in F [t]. Set K = F [t]/

(
f). Then K is a field. Viewing F ⊂ K, i.e., as a subfield of K

as above, we have t is a root of f in K.

Proof. As f is irreducible in the UFD F [t], it is a prime element. As F [t] is a PID,
the nonzero prime ideal (f) is maximal, so K is a field. As 0 = f = f(t), by the above,
the result follows. �

Corollary 34.13. Let F be a field and f a non-constant polynomial in F [t]. Then there
exists a field K with F ⊂ K a subfield such that f has a root in K.

Proof. We can write f = f1g with f1 and g polynomials in F [t] and f1 irreducible.
By Kronecker’s Theorem, f1 hence f has a root in F [t]/(f1), a field containing F . �

Of course, to make Kronecker’s Theorem and its corollary really useful, we would want
to prove results by induction, the natural choice being the degree of a polynomial. That
we can do this follows from the following stronger form of Kronecker’s Theorem, which
we leave as an exercise, but will be essential when we study field theory:

Proposition 34.14. Let F be a field and f a non-constant polynomial of degree n in
F [t]. Then F [t]/(f) is a vector space over F of dimension n. In particular, there exists
a field K containing F such that f has a root in K and the dimension of K as a vector
space over F is at most n.

We next prove a fundamental fact about finite fields. To do so, we use the First Sylow
Theorem. This result is also important in general field theory.

Theorem 34.15. Let F be a field and G a finite (multiplicative) subgroup of F×. Then
G is cyclic. In particular, if F is a finite field, the group F× is cyclic.

Proof. Let p be a prime that divides |G| and P a Sylow p-subgroup of G (so the
only one as G is abelian). Choose xP in P such that the order of the cyclic subgroup
〈xP 〉 generated by xP in P is maximal. Let N be the order of xP . Then N is a power
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of p and we must have yN = 1 for all y ∈ P . (Why?) Therefore, the polynomial tN − 1
has |P | distinct roots in F , so N = |P | by Corollary 34.8. It follows that P is cyclic.

Let x =
∏
p| |G|

p a prime

xP ∈ G. As G is abelian, it follows from Exercise 13.7(9) that G = 〈x〉 is

cyclic. �

Example 34.16. Let F be a field and f = tn− 1 ∈ F [t]. Then the set of roots of f in F
is a cyclic group.

We end this section with a short discussion of irreducible polynomials over a field F .
Clearly, every linear polynomial, i.e., polynomial of degree one, in F [t] is irreducible.

Definition 34.17. The following conditions on a field F are equivalent:

(i) Every non-constant polynomial in F [t] has a root in F .

(ii) The only irreducible polynomials in F [t] are linear.

(iii) Every non-constant polynomial in F [t] factors into a product of linear polynomials.

A field F satisfying these equivalent conditions is called algebraically closed.

When we study field theory, we shall prove (cf. 57.12 below):

Theorem 34.18. (Fundamental Theorem of Algebra) The field of complex numbers is
algebraically closed.

We shall, however, assume here that it has already been established.

Remark 34.19. The Fundamental Theorem of Algebra allows us to compute all irre-
ducible polynomials over the reals. They are

(i) Linear polynomials in R[t].

(ii) Quadratic polynomomials (i.e., polynomials of degree two) of the form at2 + bt + c
in R[t] satisfying a 6= 0 and b2 − 4ac < 0.

In particular, any non-constant polynomial in R[t] factors into a product of linear and
irreducible quadratic polynomials. For example, we have the factorization of the polyno-
mial t4 + 1 = (t2 +

√
2t + 1)(t2 −

√
2t + 1). Over any field F , the polynomial ring F [t]

contains infinitely many non-associative irreducible polynomials. [Can you prove this?]
Finding all irreducible polynomials in F [t], with F or F [

√
−1] (which is in fact always a

field) not algebraically closed is usually very hard, if not impossible, e.g., if F = Q.

One of our goals will be to show that given any field F , there exists an algebraically
closed field K containing F and if F 6= K, then no field properly between F and K is
algebraically closed. Such a field will be called an algebraic closure of F . The proof will
need Zorn’s Lemma. We shall prove this in Section 51 below. In particular, C is not an
algebraic closure of Q.

Exercises 34.20.

1. Let R be a commutative ring. Show that a polynomial f = a0 +a1t+ · · ·+ant
n in R[t]

is a unit in R[t] if and only if a0 is a unit in R and ai is nilpotent for every i > 0.

2. Prove Remark 34.10(4).
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3. Let R be a nontrivial commutative ring and f a zero divisor in R[t]. Show that there
exists a nonzero element b in R so that bf = 0.

4. Let R be a nontrivial commutative ring. If f = a0 + a1t + · · · + ant
n is a polynomial

in R[t], define the formal derivative f ′ of f to be f = a1 + 2a2t+ · · ·+ nant
n−1.

(i) Show that the usual rules of differentiation hold.
(ii) Suppose R is a field of characteristic zero. Show that a polynomial f ∈ R[t] is

divisible by the square of a non-constant polynomial in R[t] if and only if f and
f ′ are not relatively prime.

5. Let R be a ring and G a group (or monoid). Define

R[G] := {
∑
G

agg | ag ∈ R and almost all ag = 0}

(where almost all zero means that only finitely many are nonzero) with + and ·
defined by ∑

G

agg +
∑
G

bgg =
∑
G

(ag + bg)g and∑
G

agg ·
∑
G

bgg =
∑
G

cgg where cg =
∑
g=hl

ahbl

for all ag, bg in R. Show this is a ring. It is called the group (respectively, monoid) ring
of R by G. If N := Z+ ∪ {0}, show that R[Nn] is isomorphic to R[t1, · · · , tn]. Describe
R[Zn].

6. Let F be a subfield of the complex numbers C. Let f ∈ F [t] be an irreducible polyno-
mial. Show that f has no multiple root in C, i.e., a root α of f satisfying (t − α)n | f
in F [t] with n > 1.

7. Prove Proposition 34.14.

8. Prove that the conditions in Definition 34.17 are equivalent.

9. Show that the irreducible polynomials in R[t] are those stated in Remark 34.19.

10. Show that over any field F , there exist infinitely many monic irreducible polynomials
in F [t]. Also show that if F is algebraically closed, then F must have infinitely many
elements.

11. Let F = Z/pZ with p a prime. Show that t4 + 1 ∈ F [t] is reducible.

35. Polynomial Rings over a UFD

In this section, we prove a theorem of Gauss that a polynomial ring over a UFD R is
itself a UFD. The idea is to take a polynomial over R[t], with R a UFD, and view it over
the UFD K[t] where K is the quotient field of R. To make this useful, we must derive a
way of pulling information back to R[t].

We have defined the gcd of two nonzero elements in a domain R. We can extend this
in the obvious way to a finite number of elements, viz., if a1, . . . , an are elements in R not
all zero, then d in R is a greatest common divisor or gcd of a1, . . . , an if it satisfies both of
the following:

(i) d | ai for i = 1, . . . , n.
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(ii) If e | ai for some e in R, i = 1, . . . , n, then e | d.

[We let the gcd of nonzero a in R and 0 be a.]

We have the following lemma that we leave as an exercise.

Lemma 35.1. Let R be a UFD and a1, . . . , an elements in R, not all zero. Then a gcd
of a1, . . . , an exists and is unique up to units.

Let R be a UFD and f = ant
n + · · · + a0 a nonzero polynomial in R[t]. A gcd of

a0, . . . , an is called a content of f . It is unique up to units. We call f primitive if 1 is
a content of f . [So a primitive constant polynomial is just a unit in R.] For notational
convenience, we often use the notation C(f) for a choice of a content of f .

Remarks 35.2. Let R be a UFD, b a nonzero element of R and f a nonzero polynomial
in R[t].

1. If x is an irreducible element in R, then it remains irreducible when considered as an
element of R[t]. (Look at degrees if it would factor.)

2. C(bf) ≈ bC(f), where as before ≈ means is an associate of.

3. There exists a primitive polynomial f1 in R[t] satisfying f = C(f)f1. (As R[t] is a
domain, deg f = deg f1.) This follows easily as we can factor out a content.

4. If deg f > 0 and f is irreducible in R[t], then f is primitive. Indeed, we can write
f = C(f)f1 for some primitive polynomial f1 in R[t]. If C(f) 6≈ 1, then it factors into
irreducibles in R hence in R[t]. It follows that f cannot be irreducible as deg f1 > 0,
so f is not a unit.

5. t2 − 1 is a primitive polynomial, but not irreducible, so the converse to the previous
remark is false.

If R is a UFD, to show R[t] is a UFD, we must show that any nonzero nonunit
polynomial in R[t] factors into a product of irreducible polynomials in R[t] and that this
factorization is essentially unique. The existence is more elementary and will follow from
the following lemma and its corollary.

Lemma 35.3. Let R be a UFD, K the quotient field of R, and f a nonzero polynomial
in K[t]. Then there exist a primitive polynomial f1 ∈ R[t] (of the same degree as f) and
an element α in K satisfying f = αf1. Moreover, f1 and α are unique up to units in R,
i.e, up to elements in R× = R[t]×.

Proof. Existence: Write f =
n∑
i=0

ai
bi
ti with ai, bi in R and bi 6= 0, i = 0, . . . , n.

We clear denominators. Let b = b0 · · · bn 6= 0 in the domain R. Then bf ∈ R[t]. Let
c = C(bf). Then there exists a primitive polynomial f1 in R[t] such that bf = cf1, so
f = c

b
f1 in K[t] as needed.

Uniqueness Suppose that c
b
f1 = f = d

e
f2 in K[t], with nonzero c, b, d, e ∈ R and f1, f2

primitive in R[t]. Then in R[t], we have cef1 = bdf2. Therefore, ce ≈ C(cef1) ≈ C(bdf2) ≈
bd in R. Consequently, there exists a unit u in R× satisfying ce = ubd in R, hence c

b
= ud

e

in K. Thus d
e
f2 = c

b
f1 = ud

e
f1 in the domain K[t]. It follows that f2 = uf1. �
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Corollary 35.4. Let R be a UFD, f , g primitive polynomials in R[t], h a polynomial in
R[t], and K the quotient field of R.

(1) If g = sf in K[t] for some s in K, then s is a unit in R.
(2) If g = ah in R[t] for some a in R, then a is a unit in R and h is primitive in

R[t].

In particular, if g is non-constant primitive polynomial in R[t] but not irreducible, then
g = q1q2 for some q1, q2 in R[t] satisfying 0 < deg qi < deg g, for i = 1, 2.

Proof. (1): We have 1 · g = s · f in K[t] with both f and g primitive, so s = u · 1 for
some unit u in R by Lemma 35.3, hence s is a unit in R.

(2): Write h = C(h)h1 with h1 primitive in R[t]. Then 1 · g = a · C(h)h1, so aC(h) ≈ 1,
hence a is a unit in R and h is primitive.
[Note if x is a nonzero element in R then x/x is a unit but x is not necessarily a unit.] �

The key to showing the uniqueness statement for factorization in R[t] when R is a
UFD is the following:

Lemma 35.5. (Gauss’ Lemma) Let R be a UFD and f , g non-constant polynomials.
Then C(fg) ≈ C(f)C(g). In particular, the product of primitive polynomials in R[t] is
primitive.

Proof. Write f = C(f)f1 and g = C(g)g1 with f1 and g1 primitive polynomials in
R[t]. Then

C(fg) ≈ C(C(f)f1C(g)g1) ≈ C(f)C(g)C(f1g1)

and

C(f)C(g) ≈ C(f)C(f1)C(g)C(g1) ≈ C(f)C(g)C(f1)C(g1),

so it suffices to show the last statement, i.e., we may assume that f and g are primitive
in R[t] and must show fg is primitive in R[t]. Suppose this is false. Then there exists an
irreducible element p such that p | C(fg) in R. As R is a UFD, p is a prime element,
hence R = R/(p) is a domain. Let : R[t] →

(
R/(p)

)
[t] be the ring epimorphism given

by
∑
ait

i 7→
∑
ait

i. By assumption, 0 = fg = fg in the domain R[t]. As f and g are
primitive in R[t], the prime p does not divide some coefficient of f and some coefficient
of g, i.e., f 6= 0 and g 6= 0 in R[t], contradicting the fact that R[t] is a domain. �

Corollary 35.6. Suppose that R is a UFD with quotient field K. Let f, g be non-constant
primitive polynomials in R[t] and h a non-constant polynomial in K[t]. If f = gh in K[t],
then h lies in R[t] and is primitive.

Proof. By Lemma 35.3, we can write h = αh1 with α ∈ K and h1 a primitive
polynomial in R[t], so f = αgh1. By Gauss’ Lemma, gh1 is primitive, so α lies in R× by
Corollary 35.4. It follows that h lies in R[t] and is primitive. �

A similar proof yields:

Lemma 35.7. Let R be a UFD with quotient field K and f a non-constant irreducible
polynomial in R[t]. Then f remains irreducible in K[t].
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Proof. As f is a non-constant irreducible polynomial in R[t], it is primitive. Suppose
that f factors as f = g1g2 in K[t], with gi ∈ K[t] and 0 < deg gi < deg f , for i = 1, 2.
By Lemma 35.3, we can write gi = αihi with αi ∈ K and hi in R[t] primitive (and
deg gi = deg hi), for i = 1, 2. Therefore, we have f = (α1α2)h1h2. By Gauss’ Lemma,
h1h2 is primitive, so by Corollary 35.4, we have α = α1α2 is a unit in R and f = αh1h2

in R[t]. It follows that f is reducible in R[t], a contradiction. �

We can now prove our theorem.

Theorem 35.8. Let R be a UFD. Then R[t] is a UFD.

Proof. Existence: Every nonzero element in R is a unit or factors into irreducibles
that remain irreducible in R[t], so it suffices to factor a non-constant polynomial in R[t].
Let f be such a polynomial. As f = C(f)f1 with f1 a primitive polynomial in R[t], we
may also assume that f is primitive. If f is not irreducible, then f = g1g2 for some
polynomials gi ∈ R[t] satisfying 0 < deg gi < deg f for i = 1, 2 by Corollary 35.4. By
induction on deg f , we conclude that g1 and g2 hence f factor into irreducible polynomials
in R[t].

Uniqueness: We know that any nonzero element in R has a unique factorization (up
to associates and order), so the content of a polynomial factors uniquely up to units. It
follows by Lemma 35.3 that it suffices to show any non-constant primitive polynomial f
has a unique factorization (up to associates and order). Suppose that

f1 · · · fr = f = g1 · · · gs
with all the fi and gj irreducible in R[t]. By Lemma 35.7, all the fi and gj remain
irreducible in K[t], where K is the quotient field of R. As K[t] is a UFD, r = s, and after
relabeling, we may assume that fi = cigi in K[t] for some ci ∈ K× for each i. But the fi
and gj are primitive in R[t] as they are irreducible, so ci ∈ R× for all i by Corollary 35.4.
We conclude that fi ≈ gi in R[t] for all i, and the proof is complete. �

Corollary 35.9. If R is a UFD, then so is R[t1, . . . , tn].

Examples 35.10. Let R be a UFD and F a field.

1. Z[t] and F [t1, t2] are UFDs but not PIDs. In fact, R[t] is a PID if and only if R is a
field.

2. A polynomial ring in any number of variables [even infinitely many — definition of
such a polynomial ring?] over R is a UFD.

3. Let ϕ : R → S be a ring epimorphism of domains. Then S is not necessarily a UFD
(even if a domain), e.g. e√−5 : Z[t]→ Z[

√
−5] is such an example.

We end this discussion with a few remarks about irreducible elements in R[t], with R
a domain.

Remarks 35.11. 1. (Eisenstein’s Criterion) Let R be a UFD and K its quotient field.
Let f =

∑n
i=0 ait

i be a non-constant polynomial in R[t] of degree n. Suppose that
there exists an irreducible element p in R (hence a prime) satisfying:

(i) p 6 | an.
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(ii) p | ai, for i = 0, . . . , n− 1.

(iii) p2 6 | a0.
Then f is irreducible in K[t]. In particular, if f is primitive in R[t], then it is irreducible
in R[t].
We leave this as an exercise.

2. If R is a domain, f a non-constant polynomial in R[t], let y = t + a, for some a in R,
and set g(y) = f(y − a). Then f is irreducible in R[t] if and only if g is irreducible in
R[y] (as R[t]→ R[y] defined by

∑
ait

i →
∑
aiy

i is a ring isomomorphism).

3. Let p ∈ Z+ be a prime. Then the polynomial tp−1 + tp−2 + · · ·+ t+ 1 is irreducible in
Z[t] and tp − 1 = (t− 1)(tp−1 + tp−2 + · · ·+ t+ 1) is a factorization into irreducibles in
Z[t] (and Q[t]):
Let y = t− 1. Then

f = tp−1 + tp−2 + · · ·+ t+ 1 =
tp − 1

t− 1

=
(y + 1)p − 1

y
= yp−1 + pyp−2 +

(
p

2

)
yp−3 + · · ·+ p.

As p |
(
p
i

)
in Z for i = 1, . . . , p − 1, we conclude that f is irreducible in Z[t] by

Eisenstein’s Criterion and the previous remark.

4. Let R be a commmutative ring, A < R an ideal, : R → R/A the canonical epimor-
phism. If f = g1 · g2 in R[t], then f = g1 · g2 in R[t]. In particular, if R is a domain, A
a prime ideal, f monic, then f irreducible in R[t] implies f is irreducible in R[t].

Exercises 35.12.

1. Prove Lemma 35.1.

2. Let R be a domain that is not a field. Show that R[t] is not a PID.

3. Let R be a UFD, K its quotient field. Let f and g be non-constant polynomials in
R[t]. Write f = C(f)f1 and g = C(g)g1 with f1 and g1 primitive polynomials in R[t].
Show

(i) If f |g in K[t] then f1|g1 in R[t]. In particular, if f and g are primitive, then f |g
in K[t] if and only if f |g in R[t].

(ii) Suppose that f and g are primitive. Then f and g have a common factor over
K[t] if and only if they have a common factor over R[t].

4. Let R be a commutative ring, and {t1, | i ∈ I} indeterminants. Define the polynomial
ring R[ti]i∈I in the variables {t1, | i ∈ I}. Show that it is a UFD if R is.

5. Let f =
∑n

i=0 ait
i be a polynomial in Z[t] with an 6= 0. Let r = a/b with b nonzero

and a and b relatively prime integers. If r is a root of f , show that b | an and if a is
also nonzero, then a | a0. In particular, if f is monic, any rational roof of f , if any, is
an integer.

6. Prove Eisenstein’s Criterion (Remark 35.11(1)).

7. Let y = t + a. Show that the map R[t] → R[y] given by
∑
ait

i 7→
∑
aiy

i is a ring
isomorphism.
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8. Prove the identity of binomial coefficients(
n+ 1

n− j

)
=

n∑
i=j

(
i

i− j

)
and use it to prove that the polynomial

tp
r−1(p−1) + tp

r−1(p−2) + · · ·+ tp
r−1

+ 1

is an irreducible polynomial in Z[t] (hence Q[t]) for every (positive) prime p in Z.

36. Addendum: Polynomial Rings over a Field

In this addendum, we make some motivational remarks that we shall come back to
when studying modules. If R is a commutative ring, we have defined the ring R[t1, . . . , tn].
We view R as a subring of R[t1, . . . , tn] of constant polynomials. We look at the case,
when R is a field.

Let F be a field and S be a nontrivial commutative ring. We have seen that any
ring homomorphism ϕ : F → S is monic. Let A < F [t1, . . . , tn] be an ideal. We apply
this to S = F [t1, . . . , tm]/A. Let : F [t1, . . . , tn] → F [t1, . . . , tn]/A be the canonical
epimorphism. Then the composition

(*) F ⊂ F [t1, . . . , tn] −→ F [t1, . . . , tn]/A

is also monic. As before, we view this as an embedding, i.e., identify a in F with a
in F [t1, . . . , tn]/A. Under this identification the map : F [t1, . . . , tn] → F [t1, . . . , tn]/A
becomes f 7→ f = f(t1, . . . , tn), so it is the evaluation map e(t1,...,tn) : F [t1, . . . , tn] →
F [t1, . . . , tn]/A. Observe that if A ⊂ B < F [t1, . . . , tn] are ideals, then we have a commu-
tative diagram

F [t1, . . . , tn] //

##

F [t1, . . . , tn]/B

F [t1, . . . , tn]/A

::

with all the maps the obvious ring epimorphisms. The most interesting case is when B
is a maximal ideal, hence F [t1, . . . , tn]/B is a field. We look at a special case of this.

Let x = (x1, . . . , xn). For each x = (x1, . . . , xn) in F n set

mx = (t1 − x1, . . . , tn − xn),

an ideal in F [t1, . . . , tn]. Let A = mx in (*). For each i = 1, . . . , n, we have ti = xi lies in
F , so we can view F [t1, . . . , tn]/mx ⊂ F . By (*), we conclude that F [t1, . . . , tn]/mx = F .
In particular, mx is a maximal ideal in F [t1, . . . , tn]. We conclude that the canonical

epimorphism : F [t1, . . . , tn] → F [t1, . . . , tn]/mx takes f ∈ F [t1, . . . , tn] to f = f(t) =
f(x) = ex(f) in F . So we have

f(x) = 0 in F if and only if f = 0 in F if and only if f ∈ mx.
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The question of interest is to solve the following:

Problem 36.1. Let f1, . . . , fr be polynomials in F [t1, . . . , tn]. Does there exist an x in
F n such that fi(x) = 0 for i = 1, . . . r, i.e., a common point lying on all the hypersurfaces
f1 = 0, . . . , fr = 0 in F n?

Let A = (f1, . . . , fr), the ideal generated by the fi in F [t1, . . . , tn] and x ∈ F n. Then we
have fi(x) = 0 for i = 1, . . . , r if and only if f(x) = 0 for all f ∈ A. We set up a useful
notation. If B is an ideal in F [t1, . . . , tn], let

ZF (B) := {x ∈ F n | f(x) = 0 for all f ∈ B}.

We call ZF (B) the affine variety defined by B in F n. If B = (g1, . . . , gs), we write
ZF (g1, . . . , gs) for ZF (B).

So our problem is: Is ZF (A) nonempty?

If A is the unit ideal, then ZF (A) is empty as f(x) = 1 if f is the constant function 1. So
a necessary condition is that A < F [t1, . . . , tn]. The equation t21 + t22 = −1 has no solution
in R2, so ZR(t21 + t22 + 1) is empty. In particular, (t21 + t22 + 1) lies in no mx with x in Rn.
Therefore, in general, the answer is no, and we would need some stronger condition on
the field F .

Next suppose that A is an ideal in F [t1, . . . , tn] such that there exists an x ∈ F n

with A ⊂ mx. In particular, if f ∈ A, then f ∈ mx, i.e., if A ⊂ mx, then x ∈ ZF (A).
Conversely, suppose that x ∈ ZF (A). If f ∈ A, then we have f(x) = 0, hence f lies in the
kernel of the map ex : F [t1, . . . , tn]→ F [t1, . . . , tn]/mx, i.e., f ∈ mx. Therefore,

(36.2) A ⊂ mx if and only if x ∈ ZF (A).

This says that the answer to our problem will be yes for every ideal A < F [t1, . . . , tn],
if for each ideal A, there exists an x ∈ F n such that A ⊂ mx. In particular, this will
be true if and only if whenever m is a maximal ideal in F [t1, . . . , tn], there exists an
x ∈ F n satisfying m = mx. (Cf. Exercise 26.21(13).) [Recall we have shown (using Zorn’s
Lemma) that every nonunit ideal in a nontrivial commutative ring lies in a maximal ideal
(for a Noetherian ring this would follow by the Maximal Principle).]

Hilbert proved the following:

Theorem 36.3. (Hilbert Basis Theorem) Let R be a Noetherian ring. Then R[t1, . . . , tn]
is Noetherian. In particular, if F is a field then F [t1, . . . tn] is Noetherian.

This means that if A is ideal in F [t1, . . . , tn] with F a field, then ZF (A) = ZF (f1, . . . , fr),
for some f1, . . . , fr in F [t1, . . . , tr]. He also proved the following wonderful theorem:

Theorem 36.4. (Hilbert Nullstellensatz) Let F be an algebraically closed field. Then
every maximal ideal in F [t1; , . . . , tn] is of the form mx for some x in F n. In particular,
if A < F [t1, . . . , tn] is an ideal, then ZF (A) is not empty.

The above is also called the Weak Hilbert Nullstellensatz. It says, under the additional
requirement that F be algebraically closed, the map

F n −→ {m | m < F [t1, . . . , tn] a maximal ideal } given by x 7→ mx
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is a bijection. Actually, Hilbert proved more. In the above, let
√
A = {f ∈ F [t1, . . . , tn] | fn ∈ A for some n ∈ Z+},

the radical of the ideal A. Then the Hilbert Strong Nullstellensatz says, if F is algebraically
closed, A < F [t, . . . tn] an ideal, then

√
A =

⋂
A⊂mx

mx.

We will return to this later and prove these assertions.

Exercises 36.5. 1. Let R = F [t1, . . . , tn], F a field, and A, B, and Ai, i ∈ I, be ideals in
R. Show the following:

(i) If A ⊂ B, then ZF (B) ⊂ ZF (A).
(ii) ZF (∅) = F n

(iii) ZF (R) = ∅.
(iv) ZF (

∑
I Ai) =

⋂
I Z(Ai).

(v) ZF (AB) = ZF (A ∩B) = ZF (A) ∪ ZF (B).

(vi) ZF (A) = ZF (
√
A).

2. Let f, g ∈ C[t1, t2] \ C. Suppose that

Z(f) ∩ Z(g) = {(xi, yi) | i = 1, . . . n}.

Using Z(f) ∩ Z(g), show that there exists a ring epimormphism ϕ : C[t1, t2]/(f, g) →
�

n
i=1C (with coordinate operations) which induces an isomorphism C[t1, t2]/(f)∩(g)→
�

n
i=1C.

37. Addendum: Algebraic Weierstraß Preparation Theorem

If R is a commutative ring, we have defined the ring of formal power series R[[t]].
Inductively, let R[[t1, . . . , tn]] := (R[[t1, . . . , tn−1]])[[tn]], the formal power series in the
variables t1, . . . , tn.

Previous exercises imply that R[[t1, . . . , tn]]× = R× + (t1, . . . , tn), i.e., formal power
series with unit constant term,

(
cf. Exercise 26.21(2)

)
and if R is a domain, then so is

R[[t1, . . . , tn]]
(
cf. Exercise 26.21(1)

)
Moreover, if R is Noetherian, so is R[[t1, . . . , tn]] by

Example 30.13(2). Further, as with polynomials, if a1, . . . , an lie in R, then the evaluation
map ea1,...,an : R[[t1, . . . , tn]]→ R by f 7→ f(a1, . . . , an) is a ring epimorphism.

In this section we shall show that if F is a field then F [[t1, . . . , tn]] is a UFD. By Exercise
37.11(2), it is also a local ring, i.e., commutative ring with a unique maximal ideal. One
nice thing about formal power series is that we do not have to worry about convergence.
This means that proving the algebraic analogue of the Weierstraß Preparation Theorem
in complex analysis becomes a formal proof, hence much easier.

Definition 37.1. Let F be a field and f an element of F [[t1, . . . , tn]]. We say f is regular
in tn if f(0, . . . , 0, tn) 6= 0. So if f is regular in tn, the element f has a term ctin for some
nonzero element c of F . If f is regular, write

f = g0 + g1tn + g2t
2 + · · · with gi ∈ F [[t1, . . . , tn−1]] for all i
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and satisfying

0 6= f(0, . . . , 0, tn) = g0(0, . . . , 0) + g1(0, . . . , 0)tn + g2(0, . . . , 0)t2n + · · ·

If s is the first i such that gi(0, . . . , 0) is nonzero, we say s is the order of tn in f(0, . . . 0, tn)
and write s = ordtn f .

We need two lemmas.

Lemma 37.2. Let g be a nonzero element in F [[t1, t2]]. Then there exists a positive
integer r satisfying g(tr2, t2) is nonzero.

Proof. Order the nonzero monomials ar1r2t
r1
1 t

r2
2 of g lexicographically, i.e., (r1, r2) ≥

(s1, s2) if r1 > s1 or r1 = s1 and r2 ≥ s2. Let as1s2 be the smallest monomial in g relative
to this ordering. Choose r > s2 and let t1 7→ tr2. If (r1, rr) > (s1, s2), then rr1 > rs1 + s2

since either r1 > s1 (and r > s2) or r1 = s1 and r2 > s2. The only term of order rs1 + s2

in g(tr2, t2) is as1s2t
rs1+s2
2 . �

The next lemma shows that the notion of regularity is rather mild.

Lemma 37.3. Let f1, . . . , fm be nonzero elements in F [[t1, . . . , tn]]. Then there exists
a ring automorphism σ of F [[t1, . . . , tn]] fixing F [[tn]] with σ(fi) regular in tn for i =
1, . . . ,m.

Proof. As F [[t1, . . . , tn]] is a domain, f = f1 · · · fm is nonzero. So we are done
if we find a σ that works for f , i.e., we may assume that f = f1. By the previous
lemma, there exist r1, . . . , rn−1 such that f(tr1n , t2, . . . tn) 6= 0, f(tr1n , t

r2
n , t3, . . . tn) 6= 0, . . .

, f(tr1n , . . . , t
rn−1
n , tn) 6= 0. Let σ be the ring automorphism of F [[t1, . . . , tn]] fixing F [[tn]]

induced by t1 7→ ti+t
ri
n for i = 1, . . . , n−1. [Why does it exist? Its inverse is t1 7→ ti−trin .]

Then σ
(
f(t1, . . . , tn)

)
= f(t1 + tr1n , . . . , tn−1 + trn−1

n , tn). Consequently,

e(0,...,0,tn)

(
σ(f)

)
= f(tr1n , t

r2
n , . . . , t

rn−1
n , tn) 6= 0. �

Theorem 37.4. (Algebraic Weierstraß Preparation Theorem) Let R = F [[t1, . . . , tn]] with
F a field and f ∈ R regular in tn. Suppose that s = ordtn f and g lies in R. Then there
exist unique elements h and r in R satisfying g = hf + r with r ∈ F [[t1, . . . , tn−1]][tn] and
degtn r < s.

Proof. We induct on n.

Suppose that n = 1 and t = t1: Then

f = cst
s +
∑
j>s

cjt
j with cs 6= 0

g =
s−1∑
i=0

ait
i +
∑
i≥s

ait
i =

s−1∑
i=0

ait
i + ts

(∑
i≥s

ait
i−s).

Let

r =
s−1∑
i=0

ait
i and h =

(∑
i≥s

ait
i−s)(∑

j≥s

cjt
j−s)−1

.
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[Note that cs 6= 0, so the second power series in h is a unit by Exercise 26.21(2).] Then
r, h satisfy g = hf + r. Since hf = 0 or ordt(hf) ≥ s, we see that r =

(∑s−1
i=0 ait

i
)

is
uniquely determined and hence so is h.

Suppose that n > 1: The result holds for R0 = F [[t2, . . . , tn]] by induction. Write

f =
∞∑
i=0

fit
i
1 and g =

∞∑
i=0

git
i
1

with fi, gi in R0 for all i. Set h =
∑∞

i=0 hit
i
1 and r =

∑∞
i=0 rit

i
1 with all the hi and ri in

R0 to be determined by the equation
∞∑
i=0

rit
i
1 =

∞∑
i=0

git
i
1 −

( ∞∑
i=0

hit
i
1

)( ∞∑
i=0

fit
i
1

)
,

i.e.,

r0 = g0 − h0f0

r1 = g1 − (h0f1 + h1f0)

...(*)

ri = gi − (h0fi + · · ·+ hig0)

...

Since f(0, . . . , 0, tn) = f0(0, . . . , tn) and f0 in R0 is regular in tn with s = ordtn , by in-
duction there exist unique h0, r0 with the appropriate properties, hence unique r1, h1, . . . ,
etc. working from the top of (*) down with degtn ri < s for each i, where we have replaced
f by f0 and g by g0 − h0f1, etc. As all the hi, ri are unique, so are r and h. �

We wish to prove that F [[t1, . . . , tn]] is a UFD when F is a field by reducing to the
polynomial case where we can use the fact that a polynomial ring over a UFD is a UFD.
We begin with the following definition.

Definition 37.5. Let f ∈ F [[t1, . . . , tn]] with F a field. Then f is called a pseudo-
polynomial of degree s, if f = tsn+a1t

s−1
n + · · ·+as with ai in F [[t1, . . . , tn−1]] and satisfying

ai(0, . . . , 0) = 0 for 1 ≤ i ≤ s.

In this language, the Weierstraß Preparation Theorem implies:

Corollary 37.6. Let R = F [[t1, . . . , tn]] with F a field and f an element of R regular in
tn with s = ordtn f . Then there exists a unique pseudo-polynomial of degree s that is an
associate of f in F [[t1, . . . , tn]].

Proof. Apply the Weierstraß Preparation Theorem to f and g = tsn, to obtain unique
elements h ∈ R and r ∈ F [[t1, . . . , tn−1]][tn] with degtn r < s satisfying tsn = hf − r. Write

r =
∑s−1

i=0 rit
i with ri in F [[t1, . . . , tn−1]] for all i.

Claim. f ∗ = tsn + r works.

Since f ∗ = hf with h and r unique, it suffices to show that ri(0, . . . , 0) = 0 for all i
and h ∈ R×. For the latter, by Exercise 26.21(2), it suffices to show that h(0, . . . , 0) is
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nonzero. But if it is, then hf has no monomial of the form atsn with a ∈ F×, contradicting
f ∗ = tsn + r. Therefore, h is a unit. Write f = cst

s +
∑

j>s fjt
j
n with cs nonzero in F and

each fj ∈ F [[t1, . . . , tn−1]]. Then

h(0, . . . , 0, tn)
(
cst

s
n +

∑
j>s

fj(0, . . . , 0)tjn
)

= tsn +
s−1∑
i=0

ri(0, . . . , 0)tin.

Comparing tsn terms shows that ri(0, . . . 0) = 0 for all i. �

Notation 37.7. We denote the unique pseudo-polynomial of f in Corollary 37.6 by f ∗.

Corollary 37.8. Let R = F [[t1, . . . , tn]] with F a field and f and g elements of R both
regular in tn. Then (fg)∗ = f ∗g∗.

Proof. Note that fg is regular at tn as f and g are. By the previous result, there
exist unique units u, v, w ∈ R× satisfying f ∗ = uf, g∗ = vg, and (fg)∗ = wfg pseudo-
polynomials of the appropriate degree. Thus f ∗g∗ = uvfg and uniqueness shows that
(fg)∗ = f ∗g∗. �

Theorem 37.9. Let F be a field. Then F [[t1, . . . , tn]] is a UFD.

Proof. We induct on n, the case n = 0 being immediate. So we may assume that
n ≥ 1. Let R0 = F [[t1, . . . , tn−1]] and R = R0[[tn]] = F [[t1, . . . , tn]]. By induction R0 is a
UFD, hence so is the polynomial ring R0[tn] (by Theorem 35.8). As R is Noetherian by
Example 30.13(2), every nonzero nonunit in R is a product of irreducibles by Theorem
30.14. Let f ∈ R be irreducible. Therefore, it suffices to show that f is a prime element
of R. Suppose that f | rs in R with r and s in R. Write fg = rs with g ∈ R. By Lemma
37.3, there exists a ring automorphism σ of R fixing R0[[tn]] and satisfying σ(f), σ(g),
σ(r), and σ(s) are all regular in tn. Therefore, we may assume that f, g, r, s are all regular
in tn. By Corollary 37.6, we have f ∗g∗ = r∗s∗ , so we may further assume that f, g, r, s
are all pseudo-polynomials in R0[tn]. Since R0[tn] is a UFD, we are reduced to showing:

Claim. f is irreducible in R0[tn].

If f ∈ R0[tn] is reducible, then f = f1f2 with f1, f2 ∈ R0[tn] satisfying degtn fi < degtn f
for i = 1, 2. (Why?) But f is irreducible in R, so either f1 or f2 lies in R×, say f1. Then

0 = f−1
1 f − f2

0 = 0 · f − 0

in R. By the uniqueness statement in the Weierstraß Preparation Theorem, f−1
1 = 0,

which is impossible. This proves the claim and finishes the proof of the theorem. �

Remark 37.10. In general, if R is a UFD, it does not follow that R[[t]] is a UFD. For
example, it can be shown that R = F [t1, t2, t3]/(t21 + t32 + t73) is a UFD but R[[t]] is not.

Exercises 37.11.

1. Prove that the map σ in the proof of Lemma 37.3 is well-defined.

2. Let R = F [[t1, . . . , tn]] with F a field. Show that m = (t1, . . . , tn) is the unique maximal
ideal in R and m/m2 is a vector space over F of dimension n.
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CHAPTER VIII

Modules

In this chapter, we study the basic result about modules. A module is a generalization
of abelian groups and vector spaces. It is an object satisfying all the axioms of a vector
space, except that the scalars are allowed to come from any fixed ring instead of from a
field. The basic problem in module theory is given a ring with nice properties, classify
modules over this ring up to isomorphism. Of course, this meets with relatively little
success for all modules, so one looks at classes of modules over the ring.

In the first section, after giving examples of modules over a given ring, we establish the
analogue of the isomorphism theorems and correspondence principle. Modules are nicer,
in that we do not need a stronger property than submodules to state and prove these
results compared to those needing normal subgroups and ideals in group and ring theory
respectively. In particular, the quotient module of any given module and a submodule
always exists.

We also study the special class of free modules. This class of modules generalizes the
notion of vector space. More precisely free module are those that have bases, i.e., linearly
independent spanning sets. This leads to the fact that dimension (called the rank) of a
free module over a commutative ring makes sense, i.e., we can attach a unique integer to
a finitely generated free module over a commutative ring. [Cf. the dimension of a finite
dimensional vector space.]

38. Basic Properties of Modules

In this section, we introduce the concept of a module over a ring. As mentioned
above, this generalizes the definition of vector spaces, by allowing scalars to come from
an arbitrary ring rather than just a field. This difference, however, makes much that one
expects in vector space theory to be false in this general case. One of the main reasons
for this is that the concept of linear independence becomes a rare phenomenon. We begin
with the formal definition.

Definition 38.1. Let R be a ring. A (left) R-module is an additive group M together
with a map, · : R×M →M called scalar multiplication, which we write as r ·x for ·(r, x),
satisfying for all r, s ∈ R and x, y ∈M :

(i) r · (x+ y) = r · x+ r · y.
(ii) (r + s) · x = r · x+ s · x.

(iii) r · (s · x) = (r · s) · x.
(iv) 1 · x = x.

We call the map · : R×M →M an R-action. Note that there are two ·’s in the properties
above, the R-action of R on M and the ring multiplication on R. Note that (i) and (ii)

219
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are the analogues of the distributive law and (iii) the analogue for the associative law for
rings. Condition (iv) says the identity of the ring acts like an identity. You should also
compare this to G-sets where G is an additive group (or a monoid). We drop the · of the
R-action whenever it is clear.

A subgroup N in M is called a submodule if it is an R-module under ·|R×N .

Remarks 38.2. 1. One defines right R-modules in the obvious way.

2. As usual, a submodule of an R-module M should be a subset of M that is an R-
module under the inclusion map. It will be so after we define the appropriate notion of
homomorphism. Of course, you should already know what it is, as we are generalizing
vector space theory.

3. Some authors call M an R-module without assuming (iv) and call an M also satisfying
(iv) a unitary R-module. (If R is a rng, we will not assume (iv) in our definition.)

4. Let M be an R-module, x an element in M , and r an element in R. Then
(a) 0Rx = 0M . (We write 0x = 0.)
(b) r0M = 0M . (We write r0 = 0.)
(c) (−r)x = r(−x) = −(rx).
(d) m(rx) = r(mx) for all integers m.

We leave this an an exercise.

As usual we start with a number of examples.

Examples 38.3. Let R be a ring and M an R-module.

1. If R is a field (or a division ring), then an R-module is the same as a vector space over
R.

2. If R is the ring of integers, then a Z-module is just an additive group. In particular,
module theory generalizes both vector space theory and abelian group theory.

3. 0 := {0} and M are submodules of M .

4. R is an R-module under the addition in R with the R-action given by the multiplication
in R.

5. Let A be a left ideal in R. Then A + A ⊂ A and RA ⊂ A, so A is a submodule of
R. Indeed, a submodule of R is the same thing as a left ideal. So the concept of an
R-module also generalizes the notion of left ideal.

6. R[t] is an R-module. More generally, if R is a subring of S then S is an R-module by
restricting the ring multiplication on S to scalar multiplication by R, i.e., restricting
·|S×S to ·|R×S.

7. Let S be a nonempty set and X an R-module. Set

M := {f : S → X | f a map},
then M is an R-module under the following operations: If f and g lie in M and r in
R, then for all s in S define

(f + g)(s) := f(s) + g(s)

r(f(s)) : rf(s)
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and 0M defined by 0M(s) = 0X .

8. Let N be a submodule of M . Then the factor group M/N (N /M is automatic as M
is abelian) becomes an R-module by

· : R×M/N →M/N defined by r(m+N) = rm+N

for all r ∈ R and for all m ∈M . It is called the quotient or factor module of M by N .

9. Let N be an abelian group. Write it additively, i.e., N is a Z-module. Then

End(N) = EndZ(N) := {ϕ : N → N | ϕ a group homomorphism}

is a ring via

(i) (ϕ+ψ)(x) = ϕ(x)+ψ(x) (the usual addition of functions into an additive group)
(ii) ϕ ◦ ψ(x) = ϕ

(
ψ(x)

)
(composition of functions).

for all ϕ and ψ in End(N) and for all x in N (as nx = x+ · · ·+ x︸ ︷︷ ︸
n

for all positive integers

n); and N is an End(N)-module by evaluation, i.e., ϕ · x := ϕ(x) for all ϕ ∈ End(N)
and x ∈ N .

10. Let F be a field, V a vector space over F . Then

EndF (V ) = {T : V → V | T a linear operator}

is a subring of EndZ(V ) and V is an EndF (V )-module via evaluation, i.e., T ·x = T (x)
for all T ∈ EndF (V ) and x ∈ V .

[Can you define the appropriate notion of homomorphism f : M → N between mod-
ules, then replace EndF (V ) by the appropriate EndR(M)? The ring EndR(M) is called
the endomorphism ring of M and elements in it are called R-endomorphisms. Then
M becomes an EndR(M)-module under evaluation, f · x := f(x) for all x ∈ M and
f ∈ EndR(M).]

11. Let ϕ : R → S be a ring homomorphism and N an S-module. Then N becomes an
R-module via the pullback defined by

· : R×N → N given by r · x = ϕ(r) · x

for all r in R and x in N .

12. Let V be a vector space over the field F and T ∈ EndF (V ) a fixed linear operator (=
endomorphism). Define a ring homomorphism

ϕ : F [t]→ EndF (V ) given by the evaluation f → f(T ).

So we have
∑
ait

i 7→
∑
aiT

i. [What is kerϕ? What can you say if V is a finite
dimensional vector space over F?] Then V is an F [t]-module via the pullback f · v :=
f(T )(v) for all f ∈ F [t] and for all v ∈ V . Let W be a subspace of V . Then W
is a submodule of the F [t]-module V if and only if W is a T -invariant subspace, i.e.,
T (W ) ⊂ W . This is an example that will be used in Section 45.

13. Let A ⊂ R be a left ideal. Then

AM := {
∑
x∈M

axx | ax ∈ A for all x ∈M} ⊂M
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is an R-module. Note that an infinite sum of elements in an additive group does not
make sense, so when we write

∑
x∈M axx, we must have ax is zero for almost all x, i.e.,

ax 6= 0 for only finitely many x.

14. Let M be an R-module and Mi submodules of M for i ∈ I. Then

(i)
⋂
IMi and

(ii)
∑

IMi := {
∑
mi | mi ∈Mi, mi = 0 for almost all i ∈ I}

are submodules of M . If the Mi also satisfy Mi ∩
∑

I\{i}Mj = 0 for all i ∈ I, we call∑
IMi the internal direct sum of the Mi and write it as

⊕
IMi.

15. Let Mi, i ∈ I, be R-modules. Recall (mi)I is the notation for elements in the cartesian
product �IMi. Set

(i)
∐

IMi := {(mi)I | mi ∈ Mi, mi = 0 for almost all i ∈ I}, an R-module under
componentwise operations. It is called the (external) direct sum or coproduct of
the Mi.

(ii)
∏

IMi := {(mi)I | mi ∈ Mi}, an R-module under componentwise operations. It
is called the (external) direct product (or just product) of the Mi.

We have
∐

IMi is a submodule of
∏

IMi with
∐

IMi =
∏

IMi if and only if I is finite
or almost all Mi = 0.

16. Let X be a subset of M . Define

〈X〉 :=
∑
X

Rx,

called the submodule generated by X. Note that, as for vector spaces, this is equivalent
to 〈X〉 =

⋂
X⊂N⊂M N , where N runs over all submodules of M containing X. If there

exists a finite subset Y in M such that M = 〈Y 〉 we say that M is finitely generated
or simply fg. If Y = {y1, . . . , yn}, we write 〈y1, . . . , yn〉 for 〈Y 〉. If there exists a y ∈M
such that M = 〈y〉, we say that M is R-cyclic. (So a cyclic group is the same thing as
a cyclic Z-module.)

Definition 38.4. A map f : M → N of R-modules is called an R-homomorphism (re-
spectively, R-monomorphism, R-epimorphism, R-isomorphism) if f is R-linear, i.e.,

f(rx+ y) = rf(x) + f(y)

for all r ∈ R and x, y ∈M (respectively, and injective, and surjective, and bijective with
inverse R-linear). As usual we also use the abbreviations of monic and epic. Also, as one
would surmise, f is an R-isomorphism if and only if it is a bijective R-homomorphism.

We say that two R-modules M and N are R-isomorphic and write M ∼= N if there
exists an R-isomorphism g : M → N , which we also write as g : M

∼−→ N .

Remark 38.5. As is true with groups and rings an R-homomorphism f : M → N is
an R-monomorphism if and only if given any R-homomorphisms g1, g2 : L → M with
compositions satisfying f ◦ g1 = f ◦ g2, then g1 = g2; and as with groups (but not rings)
f is an R-epimorphism if and only if given any R-homomorphisms h1, h2 : N → L with
compositions satisfying h1 ◦ f = h2 ◦ f , then h1 = h2. (Cf. Exercise 1.13(7) and (8).)
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Examples 38.6. 1. A Z-homomorphism is the same thing as an abelian group homo-
morphism.

2. A linear transformation of F -vector spaces is the same thing as an F -homomorphism
of F -modules.

3. Let M and N be R-modules with N ⊂ M . Then N is a submodule of M if and only
if the inclusion is an R-homomorphism.

4. Let R be a commutative ring and r an element of R. Then

λr : R→ R given by x 7→ rx

is an R-homomorphism (but not a ring homomorphism). More generally, if M is an
R-module, then

λr : M →M given by x 7→ rx

is an R-homomorphism.

5. Let N be a submodule of M . Then the canonical map

: M →M/N given by x 7→ x = x+N

is an R-epimorphism.

6. Let R be a ring and A < R be a (2-sided) ideal, : R → R/A the canonical ring
epimorphism. If M is an R-module then the R-module M/AM is also an R/A-module
by r(x + AM) = rx + AM for all r ∈ R and x ∈ M , so the R- and (R/A)-actions on
M/AM are compatible., i.e., r(x+ AM) = r(x+ AM).

7. Let f : M → N be an R-homomorphism of R-modules. Then the additive subgroups
ker f ⊂ M and im f ⊂ N are submodules. More generally, if N ′ is a submodule of N ,
then ker f ⊂ f−1(N ′) ⊂M is a submodule and if M ′ is a submodule of M , then f(M ′)
is a submodule of N . This makes the study of R-modules and R-homomorphisms very
nice. We do not need to worry about some of the special properties needed with groups
and rings.

8. If M is an R-module, then

EndR(M) := {f : M →M | f an R-homomorphism}

is a ring under the + of functions and composition (as asked for before), called
the endomorphism ring of the R-module M . Elements of EndR(M) are called R-
endomorphisms. Its unit group is AutF (M), the group of R-automorphisms of M ,
where an R-automorphism is an R-isomorphism M → M . The ring End(M) =
EndZ(M) contains EndR(M) as a subring. Note that if R is a field, then a linear oper-
ator T : V → V of a vector space V over R is the same thing as an R-endomorphism
of V .

9. If R is a commutative ring and M , N are R-modules, then

HomR(M,N) := {f : M → N | f an R-homomorphism}

is an R-module with the usual + for functions and the R-action · given by r · f : x 7→
rf(x). [If R is not commutative, HomR(M,N) is not an R-module and we usually just
view it as an abelian group. Is it an S-module for some subrings S of R?]
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We have analogous isomorphism theorems and a correspondence theorem for modules
as we had before with the same proof. We state them for convenience.

Theorem 38.7. (First Isomorphism Theorem) Let f : M → N be an R-homomorphism.
Then we have a commutative diagram of R-modules and R-homomorphisms

M

��

f
// N

M/ ker f
f

// im f

inc

OO

with , the canonical map, an R-epimorphism, f , the map given by x 7→ f(x), an R-
isomorphism between M/ ker f and im f , and the inclusion map inc an R-monomorphism.

Theorem 38.8. (Second Isomorphism Theorem) Let M be an R-module and A and N
submodules of M . Then A/(A ∩N) ∼= (A+N)/N .

Theorem 38.9. (Third Isomorphism Theorem) Let M be an R-module with submodules
A and N satisfying A ⊂ N . Then we have M/N ∼= (M/A)/(N/A).

Theorem 38.10. (Correspondence Principle) Let f : M → N be an R-epimorphism of
R-modules. Then

{A | ker f ⊂ A ⊂M a submodule} −→ {B | B ⊂ N a submodule}

given by A→ f(A) is an order preserving bijection.

Next we introduce the generalization of a zero divisor in a ring.

Definition 38.11. Let M be an R-module and m an element of M . The annihilator of
m is defined to be the set

annRm := {r ∈ R | rm = 0}.

More generally, we shall let

annR(M) := {r ∈ R | rm = 0 for all m ∈M}.

denote the annihilator of M .

The annihilator has the following properties:

Lemma 38.12. Let M be an R-module and m, m′ elements in M . Then

(1) annRm is a left ideal.
(2) annR(M) ⊂ R is an ideal.
(3) ρm : R → M given by r 7→ rm is an R-homomorphism and satisfies ker ρm =

annRm.
(4) If ρm is the R-homomorphism in (3), then ρm induces an R-isomorphism ρm :

R/ annRm
∼−→ Rm.

(5) If R is a commutative ring and Rm ⊂ Rm′, then annRm ⊃ annRm
′. In partic-

ular, annRm is independent of the generator for Rm.
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Proof. (1) and (2) follow immediately.

(3) follows from the First Isomorphism Theorem for modules.

(4): Suppose that we know that m = am′ for some a ∈ R. If rm′ = 0, then ram′ =
arm′ = 0. �

We can now characterize cyclic R-modules.

Corollary 38.13. Let M be an R-module. Then M is a cyclic R-module if and only if
there exists a left ideal A in R satisfying M ∼= R/A.

Proof. R/A = 〈1 + A〉 = R(1 + A) is cyclic, so this follows by the lemma. �

If R is a commutative ring, we can say more.

Proposition 38.14. Let R be a commutative ring, M a cyclic R-module. Then there
exists a unique ideal A in R such that M ∼= R/A. Moreover, if M = Rm, then A =
annRm. In particular, if R is a PID, there exists an element a in R, unique up to units,
satisfying M ∼= R/(a), and, if in addition, M = Rm, then (a) = annRm.

Proof. We already know if M = Rm, then M ∼= R/ annRm. Suppose that we have
an R-isomorphism f : R/A→M for some ideal A of R. Let m = f(1 + A). We have

f(r + A) = f
(
r(1 + A)

)
= rf(1 + A) = rm

for all r ∈ R. In particular, M = Rm. Let ρm : R → M be the R-epimorphism given by
r 7→ rm. Then we have a commutative diagram

R

��

ρm
// M.

R/A.
f

<<

Thus
annRm = ker ρm = ker(f ◦ ) = ker = A,

as f is monic and f(r) = ρm(r), i.e., f = ρm. By Lemma 38.12(4), annRm is independent
of the generator of M when R is commutative. If follows that A is unique. Lemma
38.12(4) also implies the statements about PIDs. �

We now set up a lot of useful notation. We write maps f : A → B as A
f−→ B as we

have done in commutative diagrams.

Definition 38.15. Let A
f−→ B and B

g−→ C be R-homomorphisms of R-modules. We say
that

A
f−→ B

g−→ C

is a zero sequence if g ◦ f = 0, equivalently, im f ⊂ ker g and is an exact sequence if
im f = ker g. A longer sequence

· · · fn+2−−→ An+1
fn+1−−→ An

fn−→ An−1
fn−1−−→ · · ·

of R-modules and R-homomorphisms is called a zero sequence or a chain complex (re-
spectively, an exact sequence or an acyclic complex) if fnfn+1 = 0 (respectively, im fn+1 =
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ker fn) for all n, n+ 1 occurring. The special case of an exact sequence of R-modules and
R-homomorphisms of the form

0→ A
f−→ B

g−→ C → 0

is called a short exact sequence.

Examples 38.16. Let A
f−→ B and B

g−→ C be R-homomorphisms of R-modules.

1. The R-homomorphism f is monic if and only if 0→ A
f−→ B is exact.

[Note that 0→ A must take 0 7→ 0A as it is an R-homomorphism.]

2. The R-homomorphism g is epic if and only if B
g−→ C → 0 is exact.

3. If 0→ A
f−→ B

g−→ C → 0 is a short exact exact sequence, then f is monic, im f = ker g,
and g is epic.

4. The sequence 0 → ker f → A
f−→ B is exact (where the second map is the inclusion)

and 0 → ker f → A
f−→ im f → 0 is a short exact sequence (writing the same f after

changing the target).

5. The R-homomorphism f induces an R-monomorphism A/ ker f
f−→ B by the First Iso-

morphism Theorem. Therefore, the First Isomorphism Theorem is just that we have a
commutative diagram

0 −−−→ ker f −−−→ A −−−→ A/ ker f −−−→ 0∥∥∥ ∥∥∥ yf
0 −−−→ ker f −−−→ A

f−−−→ im f −−−→ 0.

with exact rows and with the right hand vertical arrow f an R-isomorphism. Can you
write the Third Isomorphism Theorem using such sequences?

6. As the factor R-module of M by N exists for any submodule N of an R-module M ,

besides the image and kernel of the R-homomorphism B
g−→ C, we can define another

R-module, the cokernel of g defined by coker g := C/ im g. Then we have a short exact
sequence

0→ im g → C −→ coker g → 0,

where the second map is the inclusion. So we have
(a) g is injective if and only if ker g = 0.
(b) g is surjective if and only if coker g = 0.

7. Let A and B be R-modules. Then the sequence

0→ A
ιA−→ A

∐
B

πB−→ B → 0

with ιA(a) = (a, 0) and πB(a, b) = b is a short exact sequence.

8. Let Ai, Bi, and Ci be R-modules for i ∈ I. If

0→ Ai
fi−→ Bi

gi−→ Ci → 0
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is a short exact sequence for all i ∈ I, then

0→
∐
I

Ai

∐
I fi−−−→

∐
I

Bi

∐
I gi−−−→

∐
I

Ci → 0

and

0→
∏
I

Ai

∏
I fi−−−→

∏
I

Bi

∏
I gi−−−→

∏
I

Ci → 0

are exact. What are the maps
∐

I fi,
∐

I gi, and
∏

I fi,
∏

I gi?

Lemma 38.17. (Five Lemma) Suppose the following is a commutative diagram of R-
modules and R-homomorphisms with exact rows:

0 −−−→ A
f−−−→ B

g−−−→ C −−−→ 0

hA

y hB

y hC

y
0 −−−→ A′ −−−→

f ′
B′ −−−→

g′
C ′ −−−→ 0.

If two of hA, hB, hC are R-isomorphisms, then they all are.

The proof of this lemma is called diagram chasing, and we leave it as an exercise.

Exercises 38.18.

1. Prove Remark 38.2(4)

2. Prove Remark 38.5.

3. Show an R-homomorphism f : M → N is an isomorphism if and only if f is bijective.

4. Let M be a simple R-module, i.e., M has no proper nonzero submodules. Prove that
EndR(M) is a division ring.

5. Let M be an R-module and Mi submodules of M for i ∈ I. Show that there is always an
R-homomorphism f :

∐
IMi →

∑
IMi and this homomorphism is an R-isomorphism

if and only if
∑

IMi is an internal direct sum.

6. Let M be an R-module and M1, . . . ,Mn be R-submodules of M . Show that M =⊕n
i=1Mi if and only if there exist R-homomorphisms ιi : Mi → M and πi : M → Mi,

i = 1, . . . , n, satisfying all of the following:
(i) πiιi = 1Mi

for i = 1, . . . , n.
(ii) πjιi = 0 for i 6= j.

(iii) ι1π1 + · · ·+ ιnπn = 1M .

7. Letm be a positive integer. Determine the abelian groups (Z-modules) HomZ(Z,Z/mZ)
and HomZ(Z/mZ,Z) up to isomorphism.

8. Let m and n be positive integers with greatest common divisor d. Show that we have
an isomorphism HomZ(Z/mZ,Z/nZ) ∼= Z/dZ.

9. (Universal Property of Direct Sums) Let Mi, i ∈ I, be R-modules. Show that the
(external) direct sum

∐
IMi satisfies the following universal property relative to the

R-homomorphisms ιj : Mj →
∐

IMi defined by m 7→ {δijm}i∈I for all j ∈ I: Given an
R-module M and R-homomorphisms fj : Mj → M for all j ∈ I, there exist a unique
R-homomorphism g :

∐
IMi →M satisfying fj = g ◦ ιj for all j ∈ I.
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10. (Universal Property of Direct Products) Let Mi, i ∈ I, be R-modules. Show that the
(external) direct product

∏
IMi satisfies the following universal property relative to

the R-homomorphisms πj :
∏

IMi →Mj defined by {mi}I 7→ mj for all j ∈ I: Given
an R-module M and R-homomorphisms gj : M →Mj for all j ∈ I, there exist a unique
R-homomorphism h : M →

∏
IM satisfying gj = πj ◦ h for all j ∈ I.

11. Write the Third Isomorphism Theorem using exact sequences as in Example 38.16(5).

12. A short exact sequence of R-modules

0→ A
f−→ B

g−→ C → 0

is called split if one of the following three equivalent conditions holds:

(i) There exists an R-homomorphism f ′ : B → A such that f ′f = 1A. We say that
f is a split monomorphism.

(ii) im f is a direct summand of B, i.e., B = im f ⊕D some R-module D.
(iii) There exists an R-homomorphism g′ : C → B such that gg′ = 1C . We say that g

is a split epimorphism.

Prove that these conditions are equivalent.

13. Prove the Five Lemma 38.17.

14. Prove the full version of the Five Lemma: Suppose that

A
α−−−→ B

β−−−→ C
γ−−−→ D

δ−−−→ E

hA

y hB

y hC

y hD

y hE

y
A′

α′−−−→ B′
β′−−−→ C

γ′−−−→ D
δ′−−−→ E.

is a commutative diagram of R-modules and R-homomorphisms with exact rows. Then
show the following:

(i) If hA is an epimorphism and hB and hD are monomorphisms, then hC is a
monomorphism.

(ii) If hE is a monomorphism and hB and hD are epimorphisms, then hC is an epi-
morphism.

is a commutative diagram of R-modules and R-homomorphisms with exact rows.
15. Let R be a commutative ring and M,N R-modules. Recall that HomR(M,N) is an

R-module by Example 38.6(9). If h : A → B is an R-homomorphism of R-modules,
define

h∗ : HomR(N,A)→ HomR(N,B) by f 7→ h ◦ f and

h∗ : HomR(B,N)→ HomR(A,N) by f 7→ f ◦ h.

Show that these are R-homomorphisms and if

0→ A
f−→ B

g−→ C → 0
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is a short exact sequence of R-modules and R-homomorphisms, then

0→ HomR(N,A)
f∗−→HomR(N,B)

g∗−→ HomR(N,C) and

0→ HomR(C,N)
g∗−→HomR(B,N)

f∗−→ HomR(A,N)

are exact. (Note the missing 0 on the right.) [If R is not commutative, then your proof
will only show that h∗ and h∗ are abelian group homomorphisms and the sequences
are exact sequences of abelian groups.]

16. Let R be a commutative ring and Mi, i ∈ I, and N be R-modules. Using the Universal
Property of Direct Sums (cf. Exercise 38.18(9)), show if Mi, i ∈ I, and N are R-
modules, then there exists an R-isomorphism HomR(

∐
IMi, N) ∼=

∏
I HomR(Mi, N).

[If R is not commutative, then the isomorphism is only an abelian group isomorphism.]

17. Let R be a commutative ring and M and Ni, i ∈ I be R-modules. Using the Universal
Property of Direct Products (cf. Exercise 38.18(10)), show if Mi, i ∈ I and N are R-
modules, then there exists an R-isomorphism HomR(Mi,

∏
I Ni) ∼=

∏
I HomR(Mi, N).

(Remember that if I is finite, then the coproduct and product are equal. [If R is not
commutative, then the isomorphism is only an abelian group isomorphism.]

18. LetR be a (commutative) ring, M andN R-modules. Then HomR(M, ) and HomR( , N)
take split exact sequences to split exact sequences.

19. Let Q be an R-module. Then Q is called R-injective if given any R-monomorphism
f : A→ B and R-homomorphism g : A → Q, there exists an R-homomorphism h :
B → Q such that the diagram

A
f
//

g

��

B

h��

Q

commutes. Show that Q is an R-injective if and only if, whenever

0→ A
f−→ B

g−→ C → 0

is a short exact sequence of R-modules and R-homomorphisms, then

0→ HomR(C,Q)
g∗−→ HomR(B,Q)

f∗−→ HomR(A,Q)→ 0

is exact. (Cf. Exercise (123).)

20. Let Qi, i ∈ I be R-modules. Show that
∏

I Qi is R-injective if and only Qi is R-injective
for all i ∈ I. In particular, if I is finite, then

∐
I Qi is R-injective if and only Qi is

R-injective for all i ∈ I (since then the coproduct and product of the QI ’s are the
same).

21. Let A be an R-module. Show that A is R-injective if and only if any short exact

sequence of R-modules of the form 0→ A
f−→ B

g−→ C → 0 splits.
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22. (Baer Criterion) Let Q be an R-module. Show that Q is an R-injective if and only
if given any ideal A in R and an R-homomorphism g : A → Q, there exists an R-
homomorphism h : R→ Q such that the diagram

A �
� inc

//

g

��

R

h��

Q

commutes where inc is the inclusion.

23. Let R be a domain with F its quotient field. Use the Baer Criterion to show that F is
R-injective.

24. Show that a divisible abelian group is an injective Z-module.

39. Free Modules

Vector spaces have nice properties because of the concept of linear independence and
the fact that one can divide by any nonzero scalar. In general, R-modules have neither
of these two properties. There is little we can do about the lack of units in an arbitrary
ring, but we can look at R-modules that are spanned by linearly independent sets. Such
modules are called free R-modules. Though sparse, these modules are quite nice, in fact,
just as a vector space is isomorphic to a external direct sum of copies of the underlying
field, the analogous statement is true for free R-modules. The first result one would then
expect is that the notion of dimension makes sense, i.e., any two linearly independent
spanning set of a free module should have the same cardinality. Unfortunately, this is
false in general. The problem does vanish, however, if the ring R is commutative. We
shall leave the proof of this fact as an exercise. This is fortuitous as these are the rings
we are studying in detail.

Definition 39.1. A nonzero R-module M is called a free R-module (or R-free) if there
exists a basis for M , i.e., a subset B of M satisfying:

(i) M = 〈B〉, i.e., B generates or spans M .

(ii) B is linearly independent, i.e., if 0 =
∑
B rxx (so rx = 0 for almost all x ∈ B), then

rx = 0 for all x ∈ B. Equivalently, M =
⊕
B Rx and if rx = 0 with x ∈ B, r ∈ R,

then r = 0.

We shall also call the trivial module a free R-module.

Of course, a set D in M is called linearly dependent if it is not linearly independent.
Equivalently, there exist x1, . . . , xn ∈ D, some n, and r1, . . . , rn in R not all zero such
that r1x1 + · · ·+ rnxn = 0.

If M is a free R-module on basis B, the definition says that B generates M and there
are no nontrivial relations on these generators. Contrast this with a finite (abelian) group
say of order n which says that every element x satisfies the relation xn = e. In particular,
this is true of any element in any generating set.

Examples 39.2. Let R be a ring and M be a nontrivial R-module.
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1. R is R-free on basis {u} with u a unit in R.

2. Suppose that M is R-cyclic. Then M is R-free if there exists an x ∈ M satisfying
M = Rx and annR x = 0. It follows that M is R-free if and only if M ∼= R.

3. If M is a finitely generated R-module, then M is R-free if and only if there exists a
finite basis for M if and only if

M ∼= R
∐ · · · ∐

R︸ ︷︷ ︸
n

= Rn for some positive integer n. (Why?)

4. If R is a field (or a division ring), then every R-module is free and any two bases have
the same cardinality.

5. If R is commutative and M is R-cyclic, then M is R-free if and only if annRm = 0
whenever M = Rm, i.e., for any generator of M .

To show this one needs to use the first two parts of Exercise 39.12(7) (which establishes
that all bases for a finitely generated free module over a commutative ring have the
same cardinality). If we know this and M is R-free, then say every basis for M has say
n elements. Let B be a basis for M and m be a maximal ideal in R. Then this exercise
would allow us to prove the following sequence of isomorphisms:

Rm/mm = M/mM = (
⊕
B

Rx)/
(
m(
⊕
B

Rx)
)

∼= Rn/mRn ∼= (R/m)n

as R- and as R/m-modules. As R/m is a field, this is an isomorphism of vector spaces
over R/m. As m+ mm generates Rm/mm, by (3), we must have n = 1.

6.
7. If R is not commutative, it can happen that Rm ∼= Rn for different positive integers,

i.e., different bases can have different cardinalities. For example, let M be a free R-
module on a countable (not finite) basis (e.g., M = R[t] (cf (9) below). Let S be the
endomorphism ring EndR(M). Then it can be shown that Sn is S-free and Sn ∼= Sm

for all positive integers n and m.

8. Suppose that M is R-free with basis B and x ∈ B. Then the map ρx : R → M given
by r 7→ rx is an R-monomorphism. In particular, the cardinality of M is at least that
of R. This gives another proof that no nontrivial finite abelian group is Z-free.

9. Let Mi be free R-modules for i ∈ I. Then
∐

IMi is R-free. [If Bi is a basis for Mi for
each i ∈ I, what is a basis for

∐
IMi?] For example

∐∞
i=1 Z is Z-free on the standard

basis
S = {ei = (0, . . . , 1

i
, 0, . . . ) | i ≥ 1}.

[Warning: It turns out that
∏∞

i=0 Z is not Z-free.]

10. Q is not Z-free.

11. R[t] is R-free on basis B = {ti | i ≥ 0}. One can now define the ring R[t] to be the
free R-module on basis B with multiplication induced by ti · tj := ti+j and rt = tr for
all r ∈ R (and extend linearly). More generally, R[t1, . . . , tn] is the free R-module on
basis {ti11 · · · tinn | ij ≥ 0 for all ij}.
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12. Let R0 be a ring and R = R0[t1, t2]. The R-module M = Rt1 + Rt2 is a submodule of
R as it is a left ideal. Then M is not R-free. [Proof?]
[This shows that a submodule of a free R-module may not be free.]

13. Let n | m in Z+ and : Z/mZ → Z/nZ be the ring epimorphism given by r +
mZ 7→ r + nZ. Then Z/nZ is a (Z/mZ)-module via the pullback, e.g., Z/2Z and
Z/3Z are (Z/6Z)-modules. By element count neither Z/2Z nor Z/3Z are Z/6Z-free,
but Z/2Z ∐ Z/3Z ∼= Z/6Z as (Z/6Z)-modules (why?), so a direct summand of a free
module may not be free. (A submodule N is a direct summand of an R-module M if
M = N ⊕M ′ for some submodule M ′.)

14. If M =
⊕

I Rxi is a free R-module on basis B = {xi | i ∈ I} and m is an element in
M , then there exist unique ri ∈ R, i ∈ I, almost all zero such that m =

∑
I rixi. The

ri are called the coordinates of m relative to the basis B and ri is called the coordinate
of m on xi.

15. The set {2} is linearly independent in the free Z-module Z, but it is not a basis as
2Z < Z. Indeed any two distinct elements in Z form a linearly dependent set. This
shows that, in general, not every linearly independent set in a free R-module need be
part of a basis.

16. Let R be a domain and M a free R-module. If z is a nonzero element in M satisfying
rz = 0 for some r ∈ R, then r = 0 (for if B is a basis, then z =

∑
B rxx).

Universal properties usually produce maps satisfying certain properties together with
a uniqueness statement. This is very useful, as one of the more difficult problems is to
show the existence of a map, or to prove that a potential explicit map is well-defined.
Usually the problem arises as we know generators but cannot show that the putative
map respects the relations among these generators. As a basis for a free module does
not satisfy any nontrivial relations, this causes no problems and free modules satisfy the
following universal property:

Theorem 39.3. (Universal Property of Free Modules) Let B = {xi}I be a basis for a free
R-module M . If N is an R-module and yi, i ∈ I, elements in N (not necessarily distinct),
then there exists a unique R-homomorphism f : M → N such that xi 7→ yi for all i ∈ I.

Proof. If z ∈ M , there exist unique ri ∈ R, almost all ri = 0, such that z =∑
I rixi. In particular, the uniqueness of the ri implies that f : M → N given by

z 7→
∑

I riyi is well-defined. Clearly, f is uniquely determined by xi 7→ yi and f is an
R-homomorphism. �

In the notation of the theorem, we say that xi 7→ yi extends linearly to a homomor-
phism f : M → N . The theorem says that any R-homomorphism from a free module M
to another R-module is completely determined by where a basis for M is sent. Note, of
course, that the variant of this statement (and proof) is one that you should know about
vector spaces, which are just free modules over a field.

Remark 39.4. A better way of writing the universal property of free modules is the
following: Let M be a free R-module on basis B and N an R-module. Given any set map



39. FREE MODULES 233

g : B → N there exists a unique R-homomorphism f : M → N such that the diagram

B inc
//

g
  

M

f
��

N.

commutes where inc is the inclusion map.

Corollary 39.5. Let M and N be free R-modules on bases B and C respectively. If there
exists a bijection g : B → C, i.e., |B| = |C|, then M ∼= N .

Proof. The maps g and g−1 of sets induce inverse R-isomorphisms M → N and
N →M . �

Corollary 39.6. Let M be an R-module (respectively, a finitely generated R-module).
Then there exists a free R-module (respectively, a finitely generated free R-module) P and
an R-epimorphism g : P →M . In particular, we have a short exact sequence

0→ ker g −→ P
g−→M → 0.

Proof. Let Y = {yi}I generate M . If M is finitely generated, we may assume that I
is finite. Let P =

∐
I R and SI the standard basis for P . (So SI := {ei | ei = (δij)j∈I)}I ,

i.e., ei has 1 in the ith component, 0 elsewhere.) Then the set map SI → M given by
ei 7→ yi extends linearly to an R-homomorphism g : P →M . As Y generates M , the map
is surjective. �

Unfortunately, the kernel of g in the corollary may not be nice, in particular, it may
not be free. If R is a PID, it will be free. We shall show this later under the assumption
that M is finitely generated.

Example 39.7. Let R be a commutative ring and M a free R-module on basis B. As
R is commutative, M∗ := HomR(M,R) is an R-module, called the dual module of M .
[Warning: It is usually not R-free.] For each x ∈ B define the xth coordinate function
fx : M → R by

∑
B rxx 7→ rx. It is an R-homomorphism. Set B∗ := {fx | x ∈ B}.

The map B 7→ B∗ by x 7→ fx extends linearly to an R-homomorphism f : M 7→ M∗.
This map is monic and its image is R-free on basis B∗. We call B∗ the dual basis of B.
Unfortunately, this map depends on the basis B, so it is not “natural”. However, if we
let M∗∗ := HomR(M∗, R) and L : M → M∗∗ the evaluation map at each x in M , i.e.,
the map L is given by x 7→ Lx : f 7→ f(x), then this map is an R-monomorphism and
is “natural” as it does not depend on the choice of a basis. If B is finite, then f is also
surjective, hence M ∼= M∗ (and M ∼= M∗∗).

Remark 39.8. It follows by the Schroeder-Bernstein Theorem A.13, that any two bases
of a free R-module that is not finitely generated have the same cardinality. Unfortunately,
this is not true in general for finitely genenerated free R-modules, i.e., in general, we have
no notion of dimension for finitely generated free R-modules (cf. Example 39.2(7)).

We end this section addressing an important case when any two bases of a finitely
generated free R-module always have the same cardinality. The proofs of the following
results are left as important exercises.
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Definition 39.9. We say that a ring R satisfies the invariant dimension property or IDP
if for every finitely generated free R-module P , every basis for P has the same cardinality
(finite by Example 39.2(3). If R satisfies IDP, and P is a finitely generated free R-module,
then the cardinality of a basis for P is called the rank of P and written rankP .

We know that fields satisfy IDP. In fact, we have shown this (cf. Remark 17.13). It is
a main ingredient in the proof of the following theorem that we leave as an exercise (cf.
Exercise 39.12(7)).

Theorem 39.10. Let R be a commutative ring. Then R satisfies IDP, i.e., if M is a
finitely generated free R-module then all bases of M have the same cardinality.

We also leave the proof of the following corollary to this theorem as an exercise (Ex-
ercise 39.12(8)).

Corollary 39.11. Let R be a commutative ring and M and N be finitely generated free
R-modules. Then rankM ∐

N = rankM + rankN .

Exercises 39.12.

1. Show if M is a nonzero finitely generated R-module, then M is R-free if and only if
there exists a finite basis for M if and only if M ∼= Rn for some positive integer n.

2. Show that Q is not Z-free. (Hint: Show any two distinct elements of Q are Z- linearly
dependent.)

3. Let R0 be a commutative ring and R = R0[t1, t2]. Let M = Rt1 + Rt2 Show the
R-module M is not R-free.

4. Let R be a nontrivial commutative ring. Show that R is a field if and only if every
finitely generated R-module is free.

5. Suppose that

0→ A
f−→ B

g−→ C → 0

is a short exact sequence of R-modules with C a free R-module. Show the sequence
splits. (Cf. Exercise 38.18(12) for the definition of a split exact sequence.)

6. Let M be a free R-module. Suppose that B is a set and ι : B → M is set map (not
necessarily one-to-one). Then ι : B → M satisfies the following universal property:
Given any set map j : B → N , there exists a unique R-homomorphism f : M → N
such that the diagram

B ι
//

g
  

M

j
��

N.

commutes. [Cf. Remark 39.4.]

7. Let P be a free R-module on basis B = {xi}i∈I . Let A < R be a (2-sided) ideal. Show
all of the following:

(i) P/AP ∼=
∐
I

Rxi/Axi ∼=
∐
I

R/A.
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(ii) Let : R → R/A be the canonical ring epimorphism. Set B = {xi := xi + AP |
i ∈ I}. Then P/AP is a free R-module on basis B and |B| = |B|.

(iii) Let ϕ : R→ S be a ring epimorphism with S 6= 0. If S satisfies IDP so does R.

(iv) Any commutative ring satisfies IDP.

8. Prove Corollary 39.11.

9. Show Example 39.2(7) has the desired properties.
[Hint: If B = {ei | i ∈ Z+} is a basis for P , show that {f1, f2} is a basis for S, where
for all n, we have f1(e2n) = en, f1(e2n+1) = 0 and f2(e2n) = 0, f2(e2n+1) = en.]

Projective Modules:

10. Let P be an R-module. Then P is called R-projective if given any R-epimorphism
f : B → C and R-homomorphism g : P → C, there exists an R-homomorphism h :
P → B such that the diagram

P
h

��

g
��

B
f
// C

commutes. Show that any free R-module is projective.

11. Show that a direct summand of an R-free module is projective and a direct sum of
R-modules is projective if and only if each direct summand of it is R-projective. (Pro-
jective modules are nicer than free modules in some ways, but submodules of pro-
jective modules may not be projective, e.g., Z/2Z is a projective Z/6Z-module as
Z/2Z

∐
Z/3Z ∼= Z/6Z) as Z/6Z-modules).

12. Let P be an R-module. Show P is a projective R-module if and only if whenever

0→ A
f−→ B

g−→ C → 0 is a short exact sequence, then it is split exact.

13. Let P be an R-module. Show that P is a projective R-module if and only if, whenever

(*) 0→ A
f−→ B

g−→ C → 0

is a short exact sequence of R-modules and R-homomorphisms, then

0→ HomR(P,A)
f∗−→ HomR(P,B)

g∗−→ HomR(P,C)→ 0

is exact. In particular, if C is R-projective, then (*) is split exact. (Cf. Exercises
38.18(123) and 38.18(19).)

14. Let Gi, i ∈ I, be groups. Show that �IGi satisfies the following property relative
to the group homomorphisms πj : �IGi → Gj defined by {gi}I 7→ gj for all j ∈ I:
Given a group G and group homomorphisms φj : G→ Gj, there exist a unique group
homomorphism ψ : G→�IGi satisfying φj = πj ◦ ψ for all j ∈ I.

Tensor Products:

15. Let R be a commutative ring and M,N two R-modules. Let P be the free R-module on
basis {(m,n) | m ∈M, n ∈ N} and X the submodule of P generated by the elements

(i) (m1 +m2, n)− (m1, n)− (m2, n) for all m1,m2 ∈M and n ∈ N .
(ii) (m,n1 + n2)− (m,n1)− (m,n2) for all m ∈M and n1, n2 ∈ N .
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(iii) (rm, n)− r(m,n) for all m ∈M , n ∈ N , and r ∈ R.
(iv) (m, rn)− r(m,n) for all m ∈M , n ∈ N , and r ∈ R.

Let f : M × N → P/X be the R-bilinear map induced by (m,n) 7→ (m,n) + X, i.e,
an R homomorphism in each variable. Show that f : M × N → P/X satisfies the
following universal property: If g : M ×N → Q is an R-bilinear map, then there exists
a unique R-homomorphism h : P/X 7→ Q such that

M ×N

g
$$

f
// P/X

h
��

Q

commutes. The R-module P/X is called the tensor product of M and N and denoted
by M ⊗R N and the elements (m,n) +X are denoted by m⊗ n.

16. Let R be a commutative ring and M and N be R-modules. Show that M ⊗R N ∼=
N ⊗RM .

17. Let R be a commutative ring and M an R-module. Show that M ∼= R⊗RM .

18. Letm and n be positive integers with greatest common divisor d. Show Z/mZ⊗Z/nZ ∼=
Z/dZ.

19. Let R be a commutative ring and Mi, i ∈ I, and N be R-modules. Show (
∐

IMi)⊗R
N ∼=

∐
I(Mi ⊗R N). In particular, show if M and N are free R-modules (respectively,

and finitely generated), then M ⊗R N is a free R-module (respectively, of rankM ·
rankN).

20. LetR be a commutative ring and f1 : M1 → N1 and f2 : M2 → N2 beR-homomorphisms.
Show these induce a unique R-homomorphism f1⊗f2 : M1⊗RM2 → N1⊗RN2 satisfying
m1 ⊗m2 7→ f1(m1)⊗ f2(m2) for all m1 ∈M1, m2 ∈M2.

21. Let R be a commutative ring and

0→ A
f−→ B

g−→ C → 0

an exact sequence of R-modules and R-homomorphisms. Show for every R-module M ,
the sequence

A⊗RM
1M⊗f−−−→ B ⊗RM

1M⊗g−−−→ C ⊗RM → 0

is exact.

22. Let M be a free module and 0 → A
f−→ B

g−→ C → C → 0 an exact sequence of
R-modules with R commutative. Show that

0→M ⊗R A
1R⊗f−−−→M ⊗R B

1R⊗g−−−→M ⊗R C → 0

is exact. Show the same holds if F is projective.

23. Let ϕ : R → S be a ring homomorphism of commutative rings. We know that S
becomes an R-module via the pull back rs := ϕ(r)s. Let M be an R-module. Show
that the R-module S ⊗R M becomes an S-module via s2(s1 ⊗m) = s1s2 ⊗m for all
s1, s2 ∈ S and m ∈M . In particular, if M is a free R-module on basis B, then S⊗RM
is a free S-module on basis {1⊗m | m ∈ B}.
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24. Let ϕ : R→ S be a ring homomorphism of commutative rings. Show if P is a projective
R-module, then S ⊗R P is a projective S-module.

25. Let R be a commutative ring and A,B,C be R-modules. Show that

HomR(A,HomR(B,C)) ∼= HomR(A⊗R B,C).





CHAPTER IX

Noetherian Rings and Modules

Although this chapter is relatively short, it includes some of the most important basic
results in commutative algebra, viz. the theorems of Hilbert introduced in Section 36. It is
based upon the concept of a Noetherian ring, previously introduced, and its generalization
to modules. Hilbert’s theorems are necessary to begin the study of algebraic geometry. In
particular, they show any set of polynomials not generating the unit ideal in F [t1, . . . , tn],
with F an algebraically closed field, have a common zero. A brief introduction to affine
plane curves is also discussed.

40. Noetherian Modules

Proposition 40.1. Let R be a ring and M an R-module. Then the following are equiv-
alent:

(1) Every submodule of M is finitely generated.
(2) M satisfies the ascending chain condition, i.e., if Mi ⊂M are submodules and

M1 ⊂M2 ⊂ · · · ⊂Mn ⊂ · · · ,

then there exists a positive integer N such that MN = MN+i for all i ≥ 0. We say
every ascending chain of submodules of M stabilizes. Equivalently, there exists
no infinite chain

M1 < M2 < · · · < Mn < · · · .

(3) M satisfies the Maximum Principle, i.e., if S is a nonempty set of submodules
of M , then S contains a maximal element, that is a module M0 ∈ S such that if
M0 ⊂ N with N ∈ S, then N = M0.

An R-module M satisfying any (hence all) of these equivalent conditions is called a Noe-
therian R-module or R-Noetherian.

Proof. (1) ⇒ (2): Let

C : M1 ⊂M2 ⊂ · · · ⊂Mn ⊂ · · ·
be a chain of submodules of M . It follows that the subset M ′ :=

⋃∞
i=1Mi ⊂ M is a

submodule. By (1), it is finitely generated, so we can write M ′ =
∑n

i=1Rxi for some
xi ∈M ′. By definition, xi ∈Mji some ji. Let s be the maximum of the finitely many ji’s.
Then M ′ = Ms. It follows that Ms = M ′ = Ms+i for all i ≥ 0.

(2) ⇒ (3): Suppose that S is a nonempty set of submodules of M . Let M1 lie in S. If
M1 is not maximal, there exists an M2 ∈ S with M1 < M2. Inductively, if Mi is not

239
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maximal, there exists an Mi+1 in S with Mi < Mi+1. By the ascending chain condition,
the sequence

M1 < M2 < · · · < Mi < · · ·
must terminate.

[To prove this statement completely, note that we made a choice of M2 to contain M1.
This really needs the Axiom of Choice (Appendix A (A.8)). (Cf. the note in Exercise
30.22(11).)]

(3) ⇒ (1): Let N ⊂M be a submodule and set

S := {Mi |Mi ⊂ N is a finitely generated submodule }.

Then (0) ∈ S so S 6= ∅. By assumption, there exists a maximal element M ′ ∈ S. If
N 6= M ′, then there exists x ∈ N\M ′. But M ′ finitely generated means that M ′+Rx ⊂ N
is also finitely generated, so the submodule M ′ +Rx of N lies in S. This contradicts the
maximality of M ′. Hence N = M ′ is finitely generated. �

Remark 40.2. To use Zorn’s Lemma instead of the Axiom of Choice, we proceed as
follows.

(1) ⇒ (3): Let S is a nonempty set of submodules of M ordered by ⊂. If C is a chain
in S, then

⋃
C N is a submodule of M so finitely generated by (1). It follows that there

exists an N0 ∈ C such that
⋃
C N ⊂ N0. As N ′ ⊂

⋃
C N for all N ′ ∈ C,

⋃
C N = N0 lies in

C and is an upper bound for C. Zorn’s Lemma now gives a maximal element in S. (Cf.
Exercise 30.22(12).)

(2) ⇒ (1): Let M be generated by {x1, x2, . . . , }. We may assume that with Rx1 <
Rx1 + Rx2 < · · · . As this must be a finite chain by (2), the module M must be finitely
generated.

(1)⇒ (2) and (3)⇒ (1) are as before.

Remark 40.3. Let R = F [t1, . . . , tn, . . . ] (infinitely many ti). Let M = R as an R-
module. Then M is finitely generated since cyclic but the ideal (t1, . . . , tn, . . . ) is clearly
not finitely generated, so R is not a Noetherian R-module. Thus, in general, submodules
of finitely generated modules need not be finitely generated.

Definition 40.4. Let R be a commutative ring. We say that R is a Noetherian ring if R
is a Noetherian R-module.

Note that Definition 40.4 agrees with our previous definition of a Noetherian ring.

We need another Noetherian R-module result. It is a crucial property about Noether-
ian modules.

Proposition 40.5. Let M be an R-module and N a submodule of M . Then M is R-
Noetherian if and only if N and M/N are R-Noetherian. In particular, if

0→M ′ →M →M ′′ → 0

is an exact sequence of R-modules with two of the modules M,M ′,M ′′ being R-Noetherian,
then they all are R-Noetherian.



40. NOETHERIAN MODULES 241

Proof. ⇒: Since N0 ⊂ N is a submodule, N0 ⊂ M is a submodule hence finitely
generated – or any ascending chain in N is an ascending chain in M . Thus N is R-
Noetherian. By the Correspondence Principle, a (countable) chain of submodules in
M/N has the form M1/N ⊂ M2/N ⊂ · · · where N ⊂ M1 ⊂ M2 ⊂ · · · is a chain of
submodules of M . Thus there exists an r such that Mr = Mr+j for all j ≥ 0 and hence
Mr/N = Mr+j/N for all j ≥ 0.

⇐ is left as an exercise (cf. the analogous solvable groups result). �

Corollary 40.6. If M,N are Noetherian R-modules, so is M ∐
N .

Proof. (M ∐N)/N ∼= M and N are Noetherian. �

The following result shows that the collection of Noetherian R-modules is a good
generalization of finite dimensional vector spaces.

Theorem 40.7. Let R be a Noetherian ring. If M is a finitely generated R-module, then
M is R-Noetherian.

Proof. Suppose M =
n∑
i=1

Rxi. Let f : Rn → M be the R-epimorphism given by

ei 7→ xi, where {e1, . . . , en} is the standard basis for Rn. Since R is R-Noetherian so is
Rn by Corollary 40.6, and hence so is M ∼= Rn/ ker f by Proposition 40.5. �

Corollary 40.8. Let R be a Noetherian ring and M a finitely generated R-module. Then
there exists positive integers m and n and an exact sequence

(40.9) Rm g−→ Rn f−→M → 0.

Proof. As is the proof of the theorem there exists an integer n and an R-epimorphism
f : Rn → M . Since Rn is finitely generated hence R-Noetherian, ker f is also finitely
generated. Therefore, there exists an R-epimorphism h : Rm → ker f . Setting g to be the
composition of h and the inclusion yields the result. �

Remark 40.10. If M is an R-module for which a sequence (40.9) exists, we say that M is
a finitely presented R-module. The corollary says that any finitely generated module over
a Noetherian ring is finitely presented. This is very useful. A commutative ring in which
every finitely generated module is finitely presented is called a coherent ring. Therefore,
every Noetherian ring is coherent.

Proposition 40.11. Suppose that f : R → S is a ring epimorphism of commutative
rings. If R is a Noetherian ring, then S is also a Noetherian ring.

Proof. Let A ⊂ S be an ideal. Then f−1(A) ⊂ R is an ideal hence finitely generated.
Thus A = f

(
f−1(A)

)
is finitely generated. �

Exercises 40.12.

1. Complete the proof of Proposition 40.5.

2. Let M be a Noetherian R-module. Show that any surjective R-endomorphism f :
M →M is an isomorphism.

3. Let M be an R-module. Prove the following are equivalent:
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(i) M satisfies DCC (the descending chain condition), i.e., if Mi ⊂M are submodules
and

M1 ⊃M2 ⊃ · · · ⊃Mn ⊃ · · ·
then there exists a positive integer N such that MN = MN+i for all i ≥ 0.

(ii) M satisfies the Minimum Principle, i.e., if S is a nonempty set of submodules of
M , then S contains a minimal element, that is a module M0 ∈ S such that if
M0 ⊃ N with N ∈ S, then N = M0.

If M satisfies one of these two equivalent conditions, we say that M is an Artinian
R-module.

[One needs the Axiom of Choice to show DCC implies the Minimum Principle.]

Also show that if R is a field then an R-module V is Artinian if and only if V is finite
dimensional.

4. Let

0→M ′ →M →M ′′ → 0

be an exact sequence of R-modules. Show that if two of the modules M,M ′,M ′′ are
R-Artinian, then they all are R-Artinian.

5. Let R be a Noetherian ring, A an ideal in R, A a finitely generated R-module, and
B a submodule of A. Suppose that C is a submodule of A that contains AB and is
maximal with respect to the property that C ∩ B = AB. Let x be an element of A.
Show all of the following:

(i) The chain of submodules of A, Dm = {a ∈ A | xma ∈ C for all a ∈ A}, m ∈ Z+,
stabilizes.

(ii) There exists an integer n such that (xnA+ C) ∩B = AB.
(iii) AnA ⊂ C for some n.
(iv) (Krull Intersection Theorem) If B =

⋂∞
i=0 A

nA, then AB = B.

6. Let R be a commutative ring, A an ideal in R, M an R-module generated by n elements,
and x an element of R satisfying xM ⊂ AM . Show that (xn + y)M = 0 for some y in
A. In particular, if AM = M , then (1 + y)M = 0 for some y ∈ A.

7. Let R be a Noetherian ring. Using the previous two exercises, show the following:
(i) Suppose that R is a domain and A < R be an ideal. Let M be a finitely generated

R-module satisfying annR(m) = 0 for all m ∈ M . (We say that M is R-torsion-
free.) Then

⋂∞
i=0 A

nM = 0.

(ii) Let R be a Noetherian ring A =
⋂

Max(R) m, the Jacobson radical of R, (cf. Exer-

cise 28.19(12)), and M a finitely generated R-module. Then
⋂∞
i=0 A

nM = 0.

41. Hilbert’s Theorems

In this section, we prove the theorems that we discussed in Section 36. These theorems
form the foundation of affine algebraic geometry.

Theorem 41.1. (Hilbert Basis Theorem) If R is a Noetherian ring so is the ring R[t1, . . . , tn].



41. HILBERT’S THEOREMS 243

Proof. By induction on n, it suffices to show that R[t] is Noetherian. Let 0 6= B ⊂
R[t] be an ideal. We must show that B is finitely generated. Let

A = {r ∈ R | r = lead f, f ∈ B}.
(Recall lead f is the leading coefficient of f .)

We first show that A is an ideal. (Note that 0 ∈ A as 0 ∈ B.) Let a, b ∈ A and
r ∈ R. To show ra + b lies in A. We may assume that a and b are nonzero. Choose
f, g ∈ B say of degrees m and n respectively satisfying lead f = a and lead g = b. Set
h = rtnf + tmg in B. Then ra + b = leadh proving A is an ideal. As R is Noetherian,
A = (a1, . . . , an) for some nonzero a1, . . . , an ∈ A with n ∈ Z+. Choose fdi in B such that
ai = lead fdi and deg fdi = di for i = 1, . . . , n. Let B0 = (fd1 , . . . , fdn), an ideal in R[t],
and N = max{d1, . . . , dn}.

Let f ∈ B with lead f = a and deg f = d. Suppose that d > N . There exist ri ∈ R
satisfying a =

∑n
i=1 riai, hence f −

∑n
i=1 rit

d−difdi lies in B and has degree less than d. It
follows by induction that there exists a g ∈ B0 such that f−g lies in B with deg(f−g) ≤
N . As the R-module M :=

∑N
i=0 Rt

i is finitely generated and R is Noetherian, M is a
Noetherian R-module. In particular, the submodule M0 = {f ∈ B | deg f ≤ N} is finitely
generated. If M0 =

∑m
i=0 R[t]gi, then B = B0 +

∑m
i=0R[t]gi is finitely generated. �

It is worth noting the similarity of this proof and that for the general division algo-
rithm. Of course, the division algorithm is a much stronger property, but the idea of a
proof often generalizes.

Remarks 41.2. 1. Noetherian domains need not be UFD’s, as Z[
√
−5] is an example of

such a domain.

2. If F is a field, F [t1, . . . , tn, . . .] is a UFD but is not Noetherian.

Definition 41.3. Let R ⊂ S be commutative rings. We say that S is a finitely generated
commutative R-algebra (or an affine R-algebra when R is a field) if there exist x1, . . . , xn
in S satisfying S = R[x1, . . . , xn] as rings. (Recall that R[x1, . . . , xn] is the image of the
evaluation map ex1,...,xn : R[t1, . . . tn]→ S.)

Remarks 41.4. Let R be a commutative ring.

1. R[t] is a finitely generated commutative R-algebra but definitely not a finitely generated
R-module. (Why?)

2. Let S be a commutative ring with R a subring. If S is a finitely generated R-module,
then S is a finitely generated commutative R-algebra.

3. If S is a finitely generated commutative R-algebra, it is not in general a finitely gener-
ated R-module, a much stronger condition. (Cf. (1).)

4. If T is a finitely generated commutative S-algebra and S is a finitely generated com-
mutative R-algebra, then T is a finitely generated commutative R-algebra.

5. If T is a commutative ring with S a subring such that T is a finitely generated S-module
and S is a finitely generated commutative R-algebra, then T is a finitely generated
commutative R-algebra.

Proposition 41.5. Let R be a commutative ring and S a finitely generated commutative
R-algebra. If R is Noetherian so is S.
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Proof. Let S = R[x1, . . . , xn]. Since R[t1, . . . , tn] is Noetherian and we have a ring
epimorphism R[t1, . . . , tn] → R[x1, . . . , xn] via f(t1, . . . , tn) 7→ f(x1, . . . , xn), all ideals of
S are finitely generated by the Correspondence Principle. �

Remark 41.6. Let R be a commutative ring. The proof (or definition) shows that S is a
finitely generated commutative R-algebra if and only if there exists an ring epimorphism
R[t1, . . . , tn]→ S fixing R. Our definition of a finitely generated commutative R-algebra
S is not the usual one. In general, one does not assume that R ⊂ S, hence only that
there exists a surjective ring homomorphism R[t1, . . . , tn]→ S for some n. If R is a field,
we can always assume that R ⊂ S, as the above map must be monic when restricted to
R if R is a field. This is the case of interest here, except for the following lemma.

Lemma 41.7. (Artin-Tate) Let T be a commutative ring and R ⊂ S be subrings of
T . Suppose that R is Noetherian and T is a finitely generated commutative R-algebra.
Suppose that as an S-module T is finitely generated. Then S is a finitely generated com-
mutative R-algebra. In particular, S is a Noetherian ring.

Proof. Let T = R[x1, . . . , xn] as a commutative R-algebra for some xi ∈ T , some n

and T =
m∑
i=1

Syi as an S-module for some yi ∈ T , some m. Then for all i = 1, . . . , n and

p, q = 1, . . . ,m, we have equations:

(i) xi =
m∑
j=1

aijyj for some aij ∈ S and

(ii) ypyq =
m∑
k=1

bpqkyk for some bpqk ∈ S (since T is a ring).

Let S0 = R[aij, bpqk | i = 1, . . . , n and j, p, q, k = 1, . . . ,m], a finitely generated R-
algebra. Then R ⊂ S0 ⊂ S ⊂ T .

Claim. T is a finitely generated S0-module.

Let f ∈ T , so f =
∑
ci1,...,inx

i1
1 · · ·xinn for some ci1,...,in ∈ R. Applying properties (i) and

(ii) repeatedly shows that f ∈
m∑
i=1

S0yi. Consequently, T = S0y1 + · · ·+ S0ym as claimed.

Since S0 is a finitely generated commutative R-algebra, it is Noetherian by Corollary 41.5.
Thus T , being a finitely generated S0-module, is a Noetherian S0-module. Consequently,
S ⊂ T is a finitely generated S0-module. It follows immediately that S is a finitely
generated commutative R-algebra. �

Let R be an affine F -algebra, say R = F [x1, . . . , xn]. If R is a domain, we write the
quotient field of R by F (x1, . . . , xn). We shall need the following two lemmas about fields
that we leave as easy exercises.

Lemma 41.8. Suppose that L ⊂ K ⊂ M are fields. Then M is a finite dimensional
vector space over L if and only if both M is a finite dimensional vector space over K and
K is a finite dimensional vector space over L.
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Lemma 41.9. Let L ⊂ M be fields. Suppose that x ∈ M has the property that L[x] is
not a finite dimensional vector space over L. Then L[x] ∼= L[t] as rings and L(x) ∼= L(t)
as fields.

The clever Artin-Tate Lemma allows us to give an elementary proof of the following
result that is essentially a form of the Hilbert Nullstellensatz.

Lemma 41.10. (Zariski’s Lemma) Let F be a field and E a field containing F such that
E is an affine F -algebra. Then E is a finite dimensional vector space over F (i.e., a
finitely generated F -module).

Proof. Suppose that E = F [x1, . . . , xm]. Since E is a field, E = F (x1, . . . , xm).
Suppose that E is not a finite dimensional vector space over F . Using Lemma 41.8, we
see that F (xi) is an infinite dimensional vector space over F for some i. Relabeling, we
may assume i = 1. Continuing in this way, we see that after relabeling the xi, we may
assume that F (x1, . . . , xi) is not a finite dimensional vector space over F (x1, . . . xi−1) for
1 ≤ i ≤ r, some r, and E is a finite dimensional fvector space over F (x1, . . . , xr).

Let K = F (x1, . . . , xr) ⊂ E. We have E = K(xr+1, . . . , xm) is a finitely generated
K-module and F is a Noetherian ring (since a field). Thus the Artin-Tate Lemma implies
that K is a finitely generated F -algebra. Write K = F [y1, . . . , yn] for some yi ∈ K. By
Lemma 41.9, it follows that and F [x1, . . . , xr] ∼= F [t1, . . . , tr] and K ∼= F (t1, . . . , tr) as
rings. Thus we can write

yi =
fi(x1, ..., xr)

gi(x1, ..., xr)

for some fi, gi ∈ F [t1, . . . , tr], gi 6= 0, 1 ≤ i ≤ n. Let g = g1 · · · gn in F [t1, . . . , tr]. Thus
g(x1, ..., xr) ∈ F [x1, . . . , xr]. We know the UFD F [t1, . . . , tr] contains infinitely many non-
associative irreducibles hence prime elements by Exercise 34.20(10). In particular, there
exists an irreducible f ∈ F [t1, . . . , tr] such that f 6 | g. Thus f(x1, ..., xr)6 | g(x1, ..., xr) in
F [x1, . . . , xr]. As K is a field,

1

f(x1, ..., xr)
∈ K = F [y1, . . . , yn] = F

[f1(x1, ..., xr)

g1(x1, ..., xr)
, . . . ,

fn(x1, ..., xr)

gn(x1, ..., xr)

]
.

This leads to an equation for 1/f(x1, ..., xr). Choosing an appropriate N ≥ 0 to clear
denominators, we see that we have an equation

g(x1, ..., xr)
N

f(x1, ..., xr)
∈ F [f1(x1, ..., xr), . . . , fn(x1, ..., xr)].

Then
g(x1, ..., xr)

N

f(x1, ..., xr)
lies in F [x1, . . . , xr], i.e., f |gN in F [t1, . . . , tr], a contradiction. �

Recall from §36, if R = F [t1, . . . , tn] and A ⊂ R is an ideal, the affine variety of A in
F n is defined by

ZF (A) = {a = (a1, ..., an) ∈ F n | f(a) = 0 for all f ∈ A}.
By the Hilbert Basis Theorem, there exist f1, . . . , fr in F [t1, . . . , tn] satisfying A =
(f1, . . . , fr). We then also write ZF (f1, . . . , fr) for ZF (A). In particular, a lies in ZF (A)
if and only if fi(a) = 0 for i = 1, . . . , r, as any element in A is an R-linear combination of
the fi’s.
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Theorem 41.11. (Hilbert Nullstellensatz) (Weak Form) Suppose that F is an alge-
braically closed field, R = F [t1, . . . , tn], and A = (f1, . . . , fr) is an ideal in R. Then
ZF (A) is the empty set if and only if A is the unit ideal. Moreover, if A < R, then there
exists a point a ∈ F n satisfying f1(a) = 0, ..., fr(a) = 0.

Proof. Certainly if A = R, then there exists no a ∈ F n such that the element 1 in
R evaluated at a takes the value zero, so we need only show if A < R, then ZF (A) is not
empty.

So suppose that A < R. Then there exists a maximal ideal m < R satisfying A ⊂ m.
Let : R → R/m be the canonical ring epimorphism. Set E = R/m = F [t1, . . . , tn]. As
R is an affine F -algebra, so is E. By Zariski’s Lemma, E is a finite dimensional F -vector
space.

Claim. E = F :

Indeed let x ∈ E. Then F [x] is a finite dimensional F -vector space, so {1, x, x2, . . . , xN}
must be linear dependent over F for some N , i.e., x is a root of some non-zero polyno-
mial f ∈ F [t]. But any such f factors completely over F , as F is algebraically closed.
Therefore, E = F .

Consequently the point t = (t1, . . . , tn) in En = F n lies in ZF (A), since A ⊂ m, i.e.,
A = m = 0 �

Recall if F is a field and mx is the ideal (t1− x1, . . . , tn− xn) with x = (x1, . . . , xn) in
F n, then mx is a maximal ideal and equation (36.2) says

(*) A ⊂ mx if and only if x ∈ ZF (A).

for an ideal A in F [t1, . . . , tn].
The Weak Form of the Hilbert Nullstellensatz says that the analogue of Exercise

26.21(13) that the maximal ideals in the ring of continuous real-valued functions on a
finite closed (or compact) set are in one to one correspondence with the points of the set
is valid over an algebraically closed field.

Corollary 41.12. Let F be an algebraically closed field and m a maximal ideal in F [t1, . . . , tn].
Then there exists an element x in F n such that m = mx.

Proof. By the Weak Nullstellensatz, there exists a point x in ZF (m). Let :
F [t1, . . . , tn] → F [t1, . . . , tn]/mx be the canonical epimorphism. It takes ti → ti = xi
for each i. By (*), we have m ⊂ mx. So m = mx as m is a maximal ideal. �

Note that the corollary says if F is algebraically closed, then there is a bijection
between points in F n and maximal ideals in F [t1, . . . , tn] and the points in ZF (A) bijective
with the maximal ideals containing A in F [t1, . . . , tn]. (Cf. Exercise 26.21(13).)

The geometric interpretation of the Weak Hilbert Nullstellensatz is that the intersec-
tion of the “hyperplanes”

f1 = 0, . . . , fr = 0 in F n.

always contains a common point over an algebraically closed field F , unless the fi generate
the unit ideal in F [t1, . . . , tn].
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Recall also that F being algebraically closed is essential. Indeed f(t1, ..., tn) = t21 +
· · · + t2n + 1 has no solution in Rn yet (f) < R[t1, . . . , tn]. Can you state what the above
argument shows when F is not algebraically closed?

The Weak Hilbert Nullstellensatz says that f1, . . . , fr determine ZF (f1, . . . , fr) when
F is algebraically closed. The natural question is what polynomials in F [t1, . . . , tn]
does ZF (f1, . . . , fr) determine when F is algebraically closed, i.e., what polynomials
in F [t1, . . . , tn] have zeros at every point in ZF (f1, . . . , fr). Certainly elements in A =
(f1, . . . , fr) have this property. However, a point in F n is a zero of a polynomial f in the do-
main F [t1, . . . tn] if and only if it is a zero of fm for any m > 0 if and only if it is a zero of fm

for somem > 0. This means that ZF (A) = ZF (
√
A) for any ideal A, i.e., at a minimum, ev-

ery element in the radical ideal
√
A := {x | xn ∈ F [t1, . . . tn] for some positive integer n}

of A has every point in ZF (A) a zero. The Strong Hilbert Nullstellensatz says, when F is
algebraically closed, this is the totality of such polynomials.

Theorem 41.13. (Hilbert Nullstellensatz) (Strong Form) Suppose that F be an alge-
braically closed field and R = F [t1, . . . , tn]. Let f, f1, ..., fr be elements in R and A =
(f1, ..., fr) ⊂ R. Suppose that f(a) = 0 for all a ∈ ZF (A). Then there exists an integer m

such that fm ∈ A, i.e., f ∈
√
A. In particular, if A is a prime ideal, then f ∈ A.

Proof. (Rabinowitch Trick). We may assume that f is nonzero. Let S = R[t].
Define the ideal B in S by B = (f1, ..., fr, 1 − tf) ⊂ S. If B < S, then there exists a
point (a1, ..., an+1) ∈ ZF (B). Thus fi(a1, ..., an) = 0 for all i and 1−an+1f(a1, ..., an) = 0.
In particular, (a1, ..., an) lies in ZF (A). By hypothesis, this means that f(a1, ..., an) = 0
which in turn implies that 1 = 0, a contradiction. Thus B = S. So we can write

1 =
r∑
i=1

gifi + g · (1− tf)

for some g, gi ∈ S. Substituting 1/f for t and clearing denominators yields the result. �

If R is a commutative ring, and A an ideal in R, then applying the Correspondence
Principle to the canonical epimorphism : R → R/A shows that

√
A is the intersection

of all prime ideals containing A. The strong form of the Nullstellensatz has an algebraic
version that says for any field F , if R is an affine F -algebra and A an ideal in R, then

√
A =

⋂
A⊂m

m a maximal ideal

m.

We do not prove this here [The proof can be found below in Theorem 97.11 using local-
ization techniques.] Instead we indicate what is going on (also without proof) assuming
the reader knows what a topology is.

Let R be a nonzero commutative ring and set

Spec(R) := {p | p < R a prime ideal},
called the Spectrum of R. If T is a subset of R, define

VR(T ) := {p | p ∈ Spec(R) with T ⊂ p}
called a variety. . Note that VR(T ) = VR(〈T 〉). We leave the following as an exercise.
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Lemma 41.14. Let R be a commutative ring, A, B, and Ai, i ∈ I, be ideals in R. Then

(1) If A ⊂ B, then VR(B) ⊂ VR(A).
(2) VR(∅) = Spec(R)
(3) VR(R) = ∅.
(4) VR(

∑
Ai) =

⋂
I VR(Ai).

(5) VR(AB) = VR(A ∩B) = VR(A) ∪ VR(B).

(6) VR(A) = VR(
√
A).

Lemma (2)− (4) means that the collection

C := {VR(T ) | T ⊂ R}

forms a system of closed sets for a topology on Spec(R) called the Zariski topology.
One shows that the set

Max(R) := {m | m < R a maximal ideal}

of maximal ideals in R is precisely the set of closed points in Spec(R), i.e., a closed set
with precisely one element. If F is a field, then the collection

Z := {ZF (T ) | T ⊂ F [t1, . . . , tn]}

also forms a system of closed sets for a topology of F n by Exercise 36.5(1) called the
geometric Zariski topology for F n. If F is algebraically closed, the weak form of the
Nullstellensatz says if Max(R) is given the induced topology, then

Max(F [t1, . . . , tn])→ F n given by mx 7→ x

is a homeomorphism and the strong form of the Nullstellensatz says that Max(F [t1, . . . , tn])
is dense in Spec(F [t1, . . . , tn]), i.e., every nonempty open set in Spec(R) intersects Max(R)
nontrivially. This means that the closed points determine varieties. This last statement
generalizes to Max(R) is dense in Spec(R) for any affine F -algebra R. (Cf. with (*)
above.)

Exercises 41.15.

1. Prove that if R is a Noetherian ring so is the formal power series R[[t]].

2. Prove Lemma 41.8. If M is a finite dimensional vector space over L, then dimLM =
dimkM dimLK? [Compare this to the generalized version of Lagrange’s Theorem for
groups.]

3. Prove Lemma 41.9.

4. Let F be a field and ϕ : A → B be a ring homomorphism of affine F -algebras such
that ϕ|F = 1A. Prove if m is a maximal ideal in B, then ϕ−1(m) is a maximal ideal in
A.

5. Prove if R is a commutative ring, then
√
A is the intersection of all prime ideals.

containing A.

6. Prove Lemma 41.14.
7. Let R be a commutative ring. Prove that Spec(R) contains minimal elements under
⊂.
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42. Addendum: Affine Plane Curves

Let F be a field and A an ideal in F [t1, . . . , tn]. Then the affine variety ZF (A) =

ZF (
√
A) (cf. Exercise 36.5). Note if p is a prime ideal then p =

√
p. One can show:

Fact 42.1. Let F be a field and A < F [t1, . . . , tn] an ideal. Then

(*) ZF (A) = ZF (p1) ∪ · · · ∪ ZF (pn)

where p1, . . . , pn are the finitely many prime ideals in F [t1, . . . , tn] that minimally contain
A (i.e., if P is a prime ideal of F [t1, . . . , tn] satisfying A ⊂ P, then there exists an i such
that A ⊂ pi ⊂ P).

We know that F [t1, . . . , tn] is a Noetherian ring. To show that there are finitely many
such pi in F [t1, . . . , tn] in Fact 42.1 uses this. (cf. Exercise 30.22(21)). This reduces the
study of ZF (A) to ZF (p) with p a prime ideal in F [t1, . . . , tn]. Such a variety is called
irreducible. The decomposition (*) for ZF (A) is called the irreducible decomposition of
ZF (A) (cf. Exercise 30.22(21)) and the ZF (pi) are called the irreducible components of
ZF (A). As F [t1, . . . , tn], is a UFD, it also turns out that every irreducible affine variety
of “codimension one” in F n is ZF (f), for some prime element f . [This essentially follows
from the fact that every nonzero prime ideal in a UFD contains a prime element together
with Exercise 31.7(3)) and “dimension theory”, that we have not and will not develop
that shows how this defines codimension algebraically.]

We shall need to use Exercise 35.12(3ii) in the development below. As we are interested
in affine varieties in F 2, it is convenient to use X, Y as our variables instead of t1, t2.

Example 42.2. Let F be a field and A = (XY ) in F [X, Y ]. Then ZF (A) = ZF (X) ∪
ZF (Y ) is an irreducible decomposition. Here ZF (X) is the Y -axis defined by X = 0 and
ZF (Y ) is the X-axis defined by Y = 0. The origin is the only point in ZF (X, Y ). As
ZF (X, Y ) ⊂ ZF (XY ) (cf. Exercise 36.5), we see that irreducible components can intersect
nontrivially. If f ∈ F [X, Y ] is a non-constant polynomial then ZF (f) is called an affine
(plane) curve and irreducible if f is an irreducible polynomial as ZF (f) is the locus of
f = 0 in F 2.

Proposition 42.3. Let R be a UFD and f and g non-constant polynomials in R[X, Y ]
having no non-constant common factor in R[X, Y ]. Then

ZR(f) ∩ ZR(g) := {(a, b) ∈ R2 | f(a, b) = 0 = g(a, b)}
is a finite set in R2.

Proof. Let F be the quotient field of R and K the quotient field of F [X]. We view
f and g in K[Y ]. By Exercise 35.12(3ii), f and g have no common factor in K[Y ], i.e.,
they are relatively prime in the PID K[Y ], so there exists an equation, 1 = rf + sg,
with r and s polynomials in K[Y ]. Clearing the denominators of the K-coefficients leads
to an equation 0 6= h = wf + zg in R[X, Y ], with w and z in R[X, Y ] and h in R[X].
Any common solution (a, b) in ZF (g) ∩ ZF (g) then satisfies h(a) = h(a, b) = 0 in R2.
Since h has finitely many roots in the domain R, there exist finitely many a satisfying
(a, b) ∈ ZF (g) ∩ ZF (g). Applying the same argument with the variables reversed shows
that ZF (g) ∩ ZF (g) is a finite set. �
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Remark 42.4. (Cf. Exercise 36.5). Let F be a field, A and B ideals in F [X, Y ]. Then

ZF (A ∩B) = ZF (AB) = ZF (A) ∪ ZF (B).

The remark, reduces our study to ideals A = (f1, . . . , fr) in F [X, Y ] with a gcd of the
f1, . . . , fr equal to one, i.e., with no common factors.

If h is a polynomial in R[X, Y ], R a ring, define the total degree deg h of h to be

deg h := max{i+ j | aX iY j a monomial in h with a nonzero}.
The proposition can be improved to

Facts 42.5. (Bezout’s Lemma) Let F be a field and f and g two non-constant polynomials
in F [X, Y ] having no non-constant common factor in F [X, Y ]. Then |ZF (f) ∩ ZF (g)| ≤
deg f deg g.

Our argument does not show this or give any bounds.
The proposition, in some sense, reduces our study of affine plane curves over a field to

ZF (f) with f an irreducible polynomial in F [X, Y ] as ZF (f) = ZF (f r) for any positive
integer r.

If f = f(X, Y ) is a polynomial in two variables, we can view f as a polynomial in
Y over F [X] or its quotient field F (X), say the degree in Y of f is n. If we evaluate X
at x in F , then f(x, Y ) is a polynomial of degree at most n. We want to show if F is
algebraically closed of characteristic zero, that for almost all such x, the polynomial in
the variable Y , f(x, Y ) is precisely of degree n and moreover has no multiple roots in F ,
where a is a multiple root of f(x, Y ) in F if (Y − a)2 6 | f(x, Y ) in F [Y ] for any root a of
f(x, Y ) in F .

Definition 42.6. Let f be a polynomial in F [X, Y ] of degree degY f of f in the variable
Y satisfying degY f = n > 0. An element x in F is called a regular value of f if f(x, Y )
has n distinct roots in F .

Remark 42.7. Let F be a field of characteristic zero and x a regular value of f in F [X, Y ]
of degree n in Y . We can write f =

∑n
i=0 qi(X)Y i with qi(X) polynomials in F [X] and

qn(X) nonzero. As x is a regular value, qn(x) is nonzero and f(x, Y ) has n distinct roots.
In particular none of the roots of f(x, Y ) are roots of the formal derivative ∂f

∂Y
(x, Y ) by

Exercise 34.20(4ii) or by Exercise 42.10(4).

Proposition 42.8. Let F be an algebraically closed field of characteristic zero, e.g., F =
C. Suppose f is an irreducible polynomial in F [X, Y ] with the degree degY f of f in the
variable Y satisfying degY f = n > 0. Then

(1) For each a in F , there exists at most n elements b in F satisfying (a, b) ∈ ZF (f).
(2) There exists a finite subset ∆ of F with the property that for any element a in

F \∆, there exist exactly n elements b in F satisfying (a, b) lies in ZF (f).

Question 42.9. What is ZF (f) if f in the proposition is irreducible but degY f = 0?

Proof. Write f =
∑n

i=0 qi(X)Y i with qi(X) polynomials in F [X], qn(X) nonzero for
some n > 0. If a lies in F , we have f(a, Y ) =

∑n
i=0 qi(a)Y i has at most n roots in F

unless qi(a) = 0 for all i. But X − a | qi(X) in F [X] for all i if and only if X − a | f in
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F [X, Y ]. As f is irreducible and f /∈ F [X], this possibility cannot occur. The remaining
problem is when f(a, Y ) has a multiple root in F [Y ]. Let

∆ = {a ∈ F | qn(a) = 0 or f(a, Y ) has a multiple root in F}.
If a ∈ ∆, then f(a, Y ) has at most n roots in F , as f(a, Y ) is not zero and if a ∈ F \∆

then f(a, Y ) is a product of n linear polynomials in F [Y ] as F is algebraically closed, i.e.,
has precisely n distinct roots. So it suffices to show that ∆ is finite. Certainly, there exist
finitely many a in F with qn(a) = 0, so it suffices to show the following:

Claim. There exist finitely many a in F with the nonzero polynomial f(a, Y ) having a
multiple root.

As F is algebraically closed, Remark 42.7 says that f(a, Y ) has a multiple root if and
only if f(a, Y ) and ∂f(a, Y )/∂Y have a common root in F .
We know that

(i) degY ∂f(X, Y )/∂Y < degY f(X, Y ).

(ii) f(X, Y ) is irreducible in F [X, Y ] (as f(X, Y ) ∈ F (X)[Y ] is irreducible by Lemma
35.7, where F (X) is the quotient field of F [X]).

(iii) ∂f(X, Y )/∂Y is not zero (as 0 < degY f(X, Y ) and the characteristic of F is zero
(Why?).

These conditions mean that f and ∂f/∂Y have no common factors in F [X, Y ]. Conse-
quently, by Proposition 42.3, we have ZF (f)∩ZF (∂f/∂Y ) is a finite set. This proves the
claim. �

If F = C in the above, then the affine plane curve ZC(f) is called a Riemann surface.
It is called a surface as dimR C = 2 and it is viewed as a surface over R.

Using a little bit of analysis (e.g., the Implicit Function Theorem), one can show that
if f is an irreducible polynomial in C[X, Y ] with degY f > 0, then ZC(f) has the following
properties: Let ∆ be as in Proposition 42.9 and ZC(f) the induced topology in C2. Then
there exists a continuous map π : ZC(f)→ ZC(Y ) (so ZC(Y ) is the X-axis in C2, i.e., the
real plane defined by Y = 0 in C2) satisfying

1. |π−1(x)| = n for all x in ZC(Y ) \∆.
2. For every x0 in ZF (Y )\∆, there exists an open neighborhood U of x such that π−1(U)

is a union of n disconnected sets Vi (so π−1(U) = V1 ∪ · · · ∪ Vn) with each Vi ⊂ ZC(f)
open and π|Vi : Vi → U a homeomorphism.

We say that ZC(f) is an n-sheeted branched covering of ZF (Y ).

Exercises 42.10.

1. Prove Remark 42.4.

2. Show if F is a field of characteristic zero and f a non-constant polynomial in F [t], the
its derivative f ′ is never zero. Show that if the characteristic of F is not zero, this may
not be true by producing counterexamples.

3. Let F be a field of characteristic zero and f a polynomial in F [t]. Let f = (t − a)rg
in F [t] for some positive integer n and polynomial g in F [t[ with g(a) nonzero. Show
that a is a multiple root of f , i.e., r > 1 if and only if a is a root of f ′.
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4. Show that the Proposition 42.8 still is valid, if we weaken the condition that f be
irreducible, to f is irreducible as a polynomial in X.



CHAPTER X

Finitely Generated Modules Over a PID

This is the deepest, and most difficult chapter in this part of the text. We are interested
in classifying finitely generated modules over a PID which we succeed in doing. This has
applications to abelian group theory and finite dimension vector spaces.

We begin by discussing row reduction for matrices over a ring. In particular, if the
ring is a PID, we shall show that there is a unique matrix up to equivalence of matrices
called the Smith Normal Form of the matrix.. If R is a euclidean domain, we give an
algorithm for computing this matrix in §D. We shall show that any finitely generated
module over a PID decomposes into a direct sum of two pieces, a free submodule and
a torsion submodule (a module in which for every element m there exists a nonzero
ring element r satisfying rm = 0 ). The torsion submodule also decomposes nicely (in
two different ways). There is also a uniqueness statement for each of the two forms.
For finitely generated abelian groups, this says that, up to isomorphism, every finitely
generated abelian group is isomorphic to Zr×G with r unique and G a unique group that
is a product of finite cyclic groups, each of which decomposes by the Chinese Reminder
Theorem.

The theory is also applied to linear algebra. If V is a finite dimensional vector space
over F and T a linear operator on V , then V becomes and F [t]-module by t acting on V by
T . This leads to canonical forms of matrices over a field F . If F is arbitrary, the desired
canonical form is called Rational canonical form.. If the field is algebraically closed, the
desired canonical form is called Jordan canonical form. Further results in linear algebra
are also proven, e.g., the Cayley-Hamilton Theorem.

43. Smith Normal Form

If R is a ring, two m×n matrices A and B in Rm×n are called equivalent if there exist
invertible matrices P ∈ GLm(R) and Q ∈ GLn(R) such that B = PAQ. Compare this
to Change of Basis Theorem in linear algebra of matrix representations of linear trans-
formations when R is a field (or division ring). [Cf. Appendix C.] Certainly, this relation
is an equivalence relation, so one would like to find a good system of representatives. If
m = n, then we are usually interested in the equivalence relation given by similarity of
matrices, i.e., when Q = P−1. This last equivalence relation is especially important in
linear algebra, i.e., when F is a field. [Cf. this to the Change of Basis Theorem for the
matrix representation of a linear operator in one basis to another in Appendix C.] For a
general field this set of representatives will turn out to be the set of matrices in rational
canonical form and over an algebraically closed field this set of representatives will turn
out to be the set of Jordan canonical forms. In this section, we determine a set of repre-
sentatives for equivalence of matrices over a PID. As this includes F [t] when F is a field,

253
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we shall see that it will aid us solving the equivalence of similarity over matrices. The
system of representatives for equivalence of matices will be the set of matrices in Smith
Normal Form. In Appendix D, we will give an algorithm for compute this form of any
matrix when R is a euclidean ring. In this section, we do the more general case that R is
a PID. Unfortunately, unlike the euclidean case, there is no algorithm to compute it.

Definition 43.1. Let R be a domain and A ∈ Rm×n. We say that A is in Smith Normal
Form if A is a diagonal matrix of the form

A = diag(q1, . . . , qr, 0, . . . , 0) with q1 | q2 | q3 | · · · | qr in R and qr 6= 0.

[Note that the number of diagonal entries is the minimum of n and m.]

We want to prove that every matrix in Rm×n is equivalent to a matrix in Smith Normal
Form if R is a PID. If R is a euclidean domain, using the euclidean function provides a
method to induct on the value of remainders in the division algorithm. As mentioned
above, this leads to a computable algorithm, one used by computer programs to find the
Jordan canonical form of square matrices over the complex numbers. We need a substitute
for the euclidean function on a euclidean domain. As any PID is a UFD, we can induct
on the number of irreducible factors (counted with multiplicity) for any nonzero nonunit.

Definition 43.2. Let R be a UFD and a a nonzero nonunit in R. Let a = p1 · · · pr be a
factorization into irreducibles in R (not necessarily distinct). Define the length, l(a) of a
to be r. If a is a unit, define its length, l(a) to be zero.

To prove our result, we need the following lemma. It requires R to be a PID.

Lemma 43.3. Let R be a PID and A = (aij) a nonzero m× n matrix in Rm×n. Fix i, j
with aij 6= 0 and j < n. Let d in the ideal (aij, ai,j+1) in R satisfy (d) = (aij, ai,j+1). Then
we have:

(1) If aij 6 | d, then l(d) < l(aij). In particular, this is true if aij 6 | ai,j+1.
(2) There exists a matrix B in SLn(R) satisfying AB = (clk) with cij = d and

ci,j+1 = 0.

Remark 43.4. An analogous statement holds for two column entries in A, but in (2),
the elment B in SLn(R) multiplying A on the left. More generally, a similar statement
holds for any two fixed elements in A, at least one not zero, in any fixed row or any fixed
column. We prove the lemma as it is stated for convenience of notation.

Proof. (of the lemma). That d satisfies the first condition is immediate. We con-
struct B in (2). For notational convenience, write v = aij and w = ai,j+1, so (d) = (v, w).
Then 0 6= d = xv + yw = (xa+ yb)d in the domain R, so 1 = xa+ yb in R, hence

P =

(
x −b
y a

)
lies in SL2(R) [with inverse P−1 =

(
a b
−y x

)
].

Then (
v w

)
P =

(
vx+ wy −bv + wa

)
=
(
d −bad+ bda

)
=
(
d 0

)
,
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so

B =



1 · · · 0
. . .

1
... P

...

1
. . .

0 · · · 1


j

j+1

i i+1

works (if j 6= m, otherwise have P end in the mth row). �

Theorem 43.5. Let R be a PID and A an m× n matrix in Rm×n. Then A is equivalent
to a matrix in Smith Normal Form.

Proof. We may assume that the matrix A = (aij) is nonzero.
We use elementary row and column operations on matrices. We call an elementary row

(respectively, column) operation Type I if we add a multiple of one row (respectively, one
column) to another and Type II if we permute two rows (respectively, columns). These
correspond to multiplying on the right or left by invertible matrices. [For more details, see
Appendix D.] In particular, these elementary row and column operations yield equivalent
matrices. Using Type II elementary row and column operations, we may assume that the
(1, 1) entry in A is a nonzero element a in R such that among all nonzero entries in A,
we have l(a) is minimal.

Suppose that a is a unit. Then using Type I elementary row and column operations,
we can convert A to the equivalent matrix

(*)


a · · · 0
0
... A1
0


with A1 an (m− 1)× (n− 1) matrix.

By induction on matrix size, there exist appropriate invertible matrices P1 and Q1

such that P1A1Q1 is in Smith Normal Form. Then
1 · · · 0
0
... P1
0



a · · · 0
0
... A1
0




1 · · · 0
0
... Q1
0


is in Smith Normal Form and is equivalent to A. This proves the result in the case that
a is a unit. Note that if A is equivalent to a matrix in the form of (*) such that a divides
every entry in A1, the argument above shows that we would also be done.
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So we may assume that l(a) > 0. If a 6 | aij for some i = 1 or j = 1, using Lemma 43.3,
we can convert A into an equivalent matrix

d ∗ · · · ∗
∗ · · · ∗
...

...
∗ · · · ∗


with l(d) < l(a), and we are done by induction on l(a). So we may assume that a | aij if
i = 1 or j = 1. Using Type I row and column operations converts A to a matrix equivalent
to A of the form (*). By induction of matrix size, there exist invertible matrices of the
appropriate size such that A is equivalent to a diagonal matrix diag(a, a2, . . . , ar, 0, . . . , 0)
with a2 | a3 | · · · | ar and ar 6= 0 in R. If a | a2, we are done; if not use an Type I
elementary row operation to convert this matrix to

a a2 · · ·
0 a2

0 0 a3
...

. . .
ar

. . .


.

As a 6 | a2, we can apply the Lemma 43.3 to produce an equivalent matrix with (1, 1) entry
d satisfying l(d) < l(a), and we are done by induction on l(a). �

To prove that the Smith Normal Form of a matrix in Rm×n with R a PID is essentially
unique, we shall need facts about the determinant that we shall use but shall not prove
here. [However, cf. Section 121 for a sophisticated proof of the determinant and its
properties.]

Let R be a commutative ring. Then the determinant det : Mn(R)→ R is a map that
has the following properties:

(1) det is n-multilinear (or n-linear) as a function of the rows (respectively, columns)
of matrices in Mn(R). This means that it is R-linear (i.e., an R-homomorphism)
in each of the n entries fixing the others, i.e.,

det(α1, . . ., rαi + α′i, . . . , αn)

= r det(α1, . . . , αi, . . . , αn) + det(α1, . . . , α
′
i, . . . , αn)

for all r in R, and rows (respectively columns) of matrices A in Mn(R).

(2) det is alternating as a function of the rows (respectively, columns) of matrices in
Mn(R), i.e., if A has two identical rows (respectively, columns), then detA = 0.

[Note: This implies that the matrix obtained by interchanging two rows (respec-
tively columns) of A has determinant − detA.

(3) det I = 1
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Indeed it can be shown that det : Mn(R) → R is the unique function satisfying (1),
(2), and (3); and it is given by

det(aij) =
∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n)

where

sgn(σ) =

{
1 if σ ∈ An
−1 if σ /∈ An.

Let A be an m × n matrix in Rm×n and 1 ≤ l ≤ min{m,n}. An l-order minor of A
is a determinant of an l × l submatrix of A, i.e., a matrix obtained from A be deleting
m− l rows and n− l columns of A. The key to proving our uniqueness statement is the
following lemma:

Lemma 43.6. Suppose that R is a UFD and A an m × n matrix in Rm×n. Let P
and Q be invertible matrices in GLm(R) and GLn(R) respectively. Set B = PAQ. If
1 ≤ l ≤ min{m,n} and

(1) if the element a in R is a gcd of all the l-order minors of A, and
(2) if the element b in R a gcd of all the l-order minors of B,

then a and b are associates, i.e., the ideals (a) and (b) are the same.

Proof. Let P = (pij), A = (aij) , Q = (qij) and c in R a gcd of all the l-
order minors of PA. Then the kith entry of PA is

∑
j pkjaji, so the kth row of PA

is
∑

j pkj(aj1 aj2 · · · ajn) (with the obvious notation). As the determinant is multilinear

as a function of the rows of the square submatrices of A, we have a | c in R. As the
determinant is multilinear as a function of the columns of the square submatrices of
PA, an analogous argument shows that c | b in R, hence a | b in R. But we also have
A = P−1BQ−1, so arguing in the same way, we conclude that we also have b | a. Since R
is a domain, a and b must be associates. �

Corollary 43.7. Suppose that R is a PID and A is an m × n matrix in Rm×n with
B = diag(d1, . . . , dr, 0 . . . , 0) in Rm×n satisfying d1 | · · · | dr and dr 6= 0 in R a Smith
Normal Form of A. Let

∆l be a gcd of all the l-order minors of A in R for 1 ≤ l ≤ r

and ∆0 = 1. Then

∆0 | ∆1 | · · · | ∆r and dl ≈
∆l

∆l−1

in R for all l > 0.

Putting this all together, we obtain the following theorem:

Theorem 43.8. Let R be a PID and A an m × n matrix in Rm×n. Then A is equiv-
alent to a matrix in Smith Normal Form. Moreover, if diag(a1, . . . , ar, 0, . . . , 0) and
diag(b1, . . . , bs, 0, . . . , 0) are two Smith Normal Forms for A, then r = s and ai ≈ bi
for 1 ≤ i ≤ r. In particular, the descending sequence of ideals in R

(a1) ⊃ (a2) ⊃ · · · ⊃ (ar)
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completely determine a Smith Normal Form of A with any generator of (al) for 1 ≤ l ≤ r
being an associate of ∆l/∆l−1, where ∆l is a gcd of all the l-order minors of A in R and
∆0 = 1.

The elements a1 | · · · | ar in the theorem are called the invariants factors of A. They
are unique up to units. If g : Rm → Rn is an R-homomorphism, a matrix representation
[g]B,C of g in Smith Normal Form will be called Smith Normal Form of g and the invariant
factors of [g]B,C will be called the invariant factors of g.

Exercise 43.9. Prove Remark 43.4.

44. The Fundamental Theorem

In this section, we completely determine finitely generated modules over a PID up
to an isomorphism. The basic idea is to first show, unlike in the general case, that any
submodule of a finitely generated free module over a PID is itself free. This means that
if we have a finitely generated R-module M with R a PID, that we have a short exact
sequence

0→ Rm g−→ Rn →M → 0.

Therefore, M is isomorphic to coker g. As g is a map of free R-modules, it has a matrix
representation A (cf. Appendix C) relative to the appropriate standard bases. Looking
at a Smith Normal Form of A produces a direct sum decomposition for coker g, hence M
decomposes into a direct sum of R-cyclic modules. The uniqueness of the Smith Normal
Form will show this decomposition is unique up to isomorphism.

We begin by proving that submodules of finitely generated free modules over a PID
are free.

Proposition 44.1. Let R be a PID, N a free R-module of rank n, and M a submodule
of N . Then M is a free R-module satisfying rankM ≤ rankN = n.

Proof. We know that N ∼= Rn, so we may assume that M is a submodule of Rn; and
must show that M is free of rank at most n. We show this by induction on n. If n = 0,
this is trivial, so we may assume that n ≥ 1. Let

π1 : Rn → R given by (a1, . . . , an) 7→ a1

be the projection onto the first coordinate, an R-epimorphism with kernel

kerπ1 = {(0, a2, . . . , an) | ai ∈ R} ∼= Rn−1

free of rank n− 1. Let π1|M : M → R be the restriction. It is an R-homomorphism with
kerπ1|M ⊂ kerπ1

∼= Rn−1, so a free R-module of rank at most n − 1 by induction. For
convenience, let π′1 = π1|M . In particular, we are done if π′1 is the zero map. Hence we
may assume that π′1 is not trivial, i.e., 0 < imπ′1 ⊂ R is a nonzero left ideal in the PID
R. It follows that there exists a nonzero a ∈ R satisfying (a) = imπ′1. As ra = 0 in the
domain R implies that r = 0, we conclude that (a) ∼= R as R-modules, so (a) is free of
rank 1. Choose m ∈ M such that π′1(m) = a 6= 0. If rm = 0, then 0 = π′1(rm) = ra in
the domain R, so r = 0 and Rm ∼= R is a free R-module of rank one.

Claim. M = Rm⊕ kerπ′1:
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If we show the claim, we are done. Indeed if Rm is R-free of rank 1 and ker π′1 is R-free
of rank at most n− 1, then M is R-free of rank rankRm+ rank kerπ′1 ≤ n by Corollary
39.11, as needed. So we need only show the claim.

We first show M = Rm+ kerπ′1:

Let x ∈ M , so π′1(x) = ra for some r in R, hence lies in (a). It follows that x − rm lies
in ker π′1, hence x lies in Rm+ kerπ′1.

Next we show Rm ∩ kerπ′1 = ∅:
Suppose that x lies in Rm ∩ kerπ′1. Then x = rm for some r ∈ R and 0 = π′1(x) =
π′1(rm) = ra in the domain R. As a is nonzero, we have r = 0, so x = 0 as needed.

This establishes the claim and hence the proposition. �

As mentioned before, it is in fact true that any submodule of a free module over a PID
is free, finitely generated or not. The fact that a free submodule of a finitely generated
free module N has rank bounded by the rank of N is in fact true over any commutative
ring, but this is harder (especially the case when the ring is not a domain).

The theorem has an interesting consequence even stronger than that mentioned in the
introduction of this section.

Corollary 44.2. Let R be a PID and M a finitely generated R module. Then there exists
an exact sequence of R-modules

0→ Rm g−→ Rn f−→M → 0.

with m ≤ n.

Proof. As M is generated by n elements, for some positive integer n, we have an
exact sequence

0→ ker f
inc−→ Rn f−→M → 0.

As ker f ⊂ Rn, it is R-free of rank at most n by the proposition. �

If M is a finitely generated R module with R a PID, then the sequence

0→ Rm g−→ Rn f−→M → 0.

says that M can be generated by n elements and the relations on these generators gen-
erates a free R-module of rank at most m, i.e., the minimal number of relations on the
generators that generate all relations on these generators is at most m. It is called a free
resolution of M . We shall also say that M has a free presentation. In particular, if n is
the minimal number of generators of M , one can show that m is the minimal number of
generating relations for M among all free resolutions of M . We can also say something
about submodules of finitely generated modules over a PID.

Corollary 44.3. Let R be a PID and M a finitely generated R-module. Suppose that
M can be generated by n elements. Then any submodule of M can be generated by n
elements.
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Proof. Let

0→ Rm g−→ Rn f−→M → 0

be a free resolution of M and N a submodule of M . By the Correspondence Principle,
there exists a submodule B of Rn satisfying ker f ⊂ B ⊂ Rn and f(B) = N , i.e.,
N ∼= B/ ker f . As B is R-free of rank at most n, it can be generated by ≤ n elements,
hence the same is true of N . �

Remarks 44.4. 1. If R is a commutative noetherian ring but not a PID, then there exists
a non-principal ideal A = (x, y) of R. We have an exact sequence

0→ A→ R −→ R/A→ 0.

R is a cyclic R-module but A is not. Nor is A R-free as x · y − y · x = 0 in R for any
generators of A. In fact, a similar argument shows that an ideal in a ring R is free as
an R-module if and only if it is principal. This shows that the last three results do not
hold for commutative rings that are not PIDs.

2. The proper Z-free submodule 2Z of Z is of rank 1, the same as Z.

3. It is, in fact, true that if R is a commutative ring, M a finitely generated free R-module
of rank n, then any submodule of M that is also R-free has rank at most n. The proof
is not easy (although easier for the case when R is a domain).

Observation 44.5. Let Ni be a submodule of the R-module Mi for i = 1, 2. Then we
have an R-isomorphism

(M1
∐
M2)/(N1

∐
N2) ∼= (M1/N1)

∐
(M2/N2)

Theorem 44.6. (Fundamental Theorem of fg Modules over a PID, Form I) Let R be a
PID and M a nontrivial finitely generated R-module. Then M is a direct sum of cyclic
R-modules. More precisely, there exist a nonnegative integer r and

(*) m1, . . . ,mr ∈M satisfying M = P ⊕Rm1 ⊕ · · · ⊕Rmr

with P a free R-module of rank s, some s ≥ 0, and there exist nonzero nonunits

(**) di ∈ R satisfying

{
annRmi = (di) i = 1, . . . , r

d1 | · · · | dr.

Moreover, r and s are unique in (*) and the di in (**) are unique up to units and the order
determined by d1 | · · · | dr, i.e., any direct sum decomposition of M satisfying (*) and
(**) has the R-free submodule in (*) of the same rank s, the number of non-free R-cyclic
modules the same r with the corresponding descending chain of ideals

(d1) ⊃ (d2) ⊃ · · · ⊃ (dr)

unique.

The elements d1, . . . , dr in the Fundamental Theorem 44.6 are called invariant factors
of M . Note also that the Rmi in the Fundamental Theorem 44.6 are unique up to
isomorphism with Rmi

∼= R/(di) by Proposition 38.14. Of course, if di ≈ dj, then
Rmi

∼= Rmj. In particular,

M ∼= Rs
∐

R/(d1)
∐
· · ·
∐

R/(dr),
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and the right hand side completely determines the isomorphism class of M , i.e., the
invariant factors and s completely determine M up to isomorphism.

Proof. Existence: We have shown that there exists an exact sequence

(44.7) 0→ Rm g−→ Rn →M → 0

of R-modules with m ≤ n, i.e, M ∼= coker g = Rn/ im g. Let Sm and Sn be the standard
bases for Rm and Rn, respectively. By Theorem 43.8 and the Change of Basis Theorem
from linear algebra (cf. Theorem C.7 in Appendix C), there exist bases B and C for Rm

and Rn, respectively, such that the n×m matrix [g]B,C is a Smith Normal Form of [g]Sm,Sn .
Let C = {v1, . . . , vn} and [g]B,C = diag(d1, . . . , dr, 0, . . . , 0) with d1 | · · · | dr in R,

r ≤ m ≤ n, and dr nonzero. As g is injective, no column of [g]B,C can be zero. Therefore,
r = m. We have

V =
n⊕
i=1

Rvi

im g =
m⊕
i=1

Rdivi
⊕ n⊕

i=m+1

0.

Let di = 0 for m < i ≤ n. As R → Rvi by r 7→ rvi is an R-isomorphism taking
(di) → Rdivi isomorphically, we have R/(di) ∼= Rvi/Rdivi for i = 1, . . . , n. Hence by
Observation 44.5, we have

M ∼= coker g ∼= (
n∐
i=1

Rvi)/(
n∐
i=1

Rdivi)

∼=
m∐
i=1

(Rvi/Rdivi)
∐ n∐

i=m+1

Rvi ∼=
m∐
i=1

R/(di)
∐
Rn−m.

If di is a unit, then R/(di) = 0, so dropping such di, we have an isomorphism

f : M −→
m∐
i=1

di /∈R×

R/(di)
∐
Rn−m

Let mi = f−1
(
1R + (di)

)
for di not a unit or zero. Then (di) = annR(mi) by Proposition

38.14. The isomorphism f−1 gives the desired decomposition of M with P = f−1(Rn−m).

For the uniqueness, we need further observations that we leave as exercises.

Observations 44.8. Let R be a PID, e and d nonzero elements in R, g a gcd of e and d,
p a prime element in R (so p is nonzero and R/(p) is a field), and N an R-module. Then
the following are true:

(1) dRm ∼= Rm.

(2) d
(
R/(e)

) ∼= R/(
e

g
).
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(3) R/(p) acts on N/pN by(
r + (p)

)
(x+ pN) := rx+ pN [= r(x+ pN)]

for all r ∈ R and x ∈ N , i.e., the R/(p)-action and the R-action on N/pN are
compatible (have the same effect). In particular, N/pN is a vector space over
R/(p).

(4) As R-modules and R/(p)-vector spaces, we have

(
R/(d)

)
/p
(
R/(d)

) ∼= {R/(p) if p | d
0 if p 6 | d.

Using these observations, we show:

Uniqueness: Suppose that

R/(d1)
∐ · · · ∐

R/(dr)
∐
Rs ∼= M ∼= R/(d′1)

∐ · · · ∐
R/(d′r′)

∐
Rs′

with d1 | · · · | dr, the di nonzero nonunits and d′1 | · · · | d′r′ , the d′i′ nonzero nonunits, for
some integers r, r′, s, s′.

We know that a submodule of a free R-module is R-free, hence an isomorphic copy of
R/(d) with d a nonzero nonunit in R cannot be a submodule of an R-free. In particular,
if there are no di or no d′i, then M is free and there are neither any di nor any d′i. As R
is commutative, s = rankM = s′ by Theorem 39.10. So we may assume both r ≥ 1 and
r′ ≥ 1. Since dr

(
R/(di)

)
= 0 and d′r′

(
R/(d′i′)

)
= 0 for all i and i′, by Observation 44.8(1),

we have

Rs ∼= drd
′
r′R

s ∼= drd
′
r′M
∼= drd

′
r′R

s′ ∼= Rs′

is R-free. Hence s = s′ by Theorem 39.10. Let m ∈ M correspond to a generator of
R/(d′r′) under the given isomorphism. Then Rdrm ⊂ drM ∼= Rs must also be R-free. As
d′r′drm = 0, we have drm = 0 (Why?), so dr ∈ annRm = (d′r′). Similarly, d′r′ ∈ (dr), so
dr ≈ d′r′ , i.e., (dr) = (d′r′).

Assume that r ≥ r′ > 0. Let p be a prime element (so nonzero) satisfying p | d1, which
exists as d1 is a nonzero nonunit. Then by Observations 44.8(2) and (4) and Observation
44.5, we have M/pM ∼=

∐r+s
i=1 R/(p) is an R/(p)-vector space, hence of rank r+ s. There-

fore,
∐r′

i=1 R/(d
′
i)/p

(
R/(d′i)

) ∐
Rs/pRs is free of rank r+ s. But, by Observation 44.8(4),

we also know that it is free of rank at most r′ + s. It follows that r = r′. In particular,
we are done if p ≈ dr ≈ d′r′ . By Observations 44.8(1) and (2), we have∐

R/(
di
p

)
∐
Rs ∼= pM ∼=

∐
R/(

d′i
p

)
∐
Rs.

By induction on the length l(dr) of dr, we conclude that di
p
≈ d′i

p
for all i, hence di ≈ d′i

for all i. �

Note the proof of the uniqueness statement is similar to the corresponding proof of
the Fundamental Theorem of Arithmetic.
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Remark 44.9. It should also be noted, that to prove the existence in Theorem 44.6, we
do not need to use the existence of a free presentation of M . Indeed the same proof works
if we have an exact sequence

Rm g′−→ Rn →M → 0.

But such an exact sequence always exists by Corollary 40.8, since a PID is a Noetherian
ring.

Remarks 44.10. Let M be a finitely generated module over a PID.

1. The proof of the uniqueness part of Theorem 44.6 shows, up to isomorphism, M de-
pends only on the cokernel of g in the free presentation (44.7) of M . Also note that
im g ∼= Rm is of rank m. This determination of M up to isomorphism is independent
of the integers m and n. Indeed given any other free presentation

0→ Rm′ g′−→ Rn′ →M → 0,

we know by Proposition 44.1, that we also must have m′ ≤ n′. Moreover, if we compute
the Smith Normal form associated to the map g′, we must have coker g ∼= coker g′ by
the uniqueness argument in the proof of Theorem 44.6, thus determining M up to
isomorphism, for this different n′. The only difference would be in the number of di
that are units arising in each of the two Smith Normal Forms arising from g and g′,
respectively, i.e., |n −m| and |n′ −m′|, respectively; and we are dropping the trivial
modules corresponding to such di.

2. The only remaining question is what if we have an exact sequence

Rm g′−→ Rn →M → 0

with g′ not necessarily an R-monomorphism? In this case, we have exact sequences

0→ ker g′ → Rm g′−→ Rn →M → 0.

and

0→ Rm/ ker g′
g′−→ Rn →M → 0

with g′ the canonical epimorphism induced by First Isomorphism Theorem. The second
exact sequence is a free presentation since Rm/ ker g′ is free of rank at most n and
coker g′ = coker g′. Indeed, the only difference arising between these two will be zero
columns in the Smith Normal form of g′ arising from its kernel.

Examples 44.11. 1. We determine the abelian group M , up to isomorphism, generated
by x1, x2, x3, x4 subject to the relations

2x1 + 3x2 + x4 = 0

x1 − 2x2 + x3 = 0.

(Cf. presentation of groups.) Let S2,S4 be the standard bases for Z2,Z4 respectively.
Consider the sequence

0→ Z2 g−→ Z4 h−→M → 0.
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with g defined by g(e1) = 2e1 + 3e2 + e4 and g(e2) = e1 − 2e2 + e3 and h defined
by h(ei)) = xi, i = 1, 2, 3, 4. Then the sequence is exact (noting g(e1) and g(e2) are
linearly independent). We have

[g]S2,S4 =


2 1
3 −2
0 1
1 0


and M ∼= coker g.

To find the isomorphism type of M we find a Smith Normal Form of [g]S2,S4 . Using
the algorithm in Appendix D (essentially the division algorithm), we row and column
reduce [g]S2,S4 to 

1 0
0 1
0 0
0 0

 .

Hence by Remark 44.10(1), M is isomorphic to Z/Z ∐ Z/Z ∐ Z ∐ Z ∼= Z2. We also
conclude that

0→ Z2 g−→ Z4 h−→M → 0

is a free resolution of M .

2. We determine the abelian group M , up to isomorphism, generated by x1, x2, x3, x4

subject to the relations

4x1 + 2x2 + 4x3 + 3x4 = 0

2x1 + 2x2 − 2x3 + 2x4 = 0

−6x1 + 6x3 − 6x4 = 0

Using the notation of the previous example, we have an exact sequence

0→ Z3 g−→ Z4 h−→M → 0

with

[g]S3,S4 =


4 2 −6
2 2 0
4 −2 6
3 2 −6


and h(ei) = xi for i = 1, 2, 3, 4.
Row and column reducing [g]S3,S4 using the division algorithm as in Appendix D, we
see that a Smith Normal Form for [g]S3,S4 is

1 0 0
0 2 0
0 0 6
0 0 0

 and h takes ei 7→ xi, 1 ≤ i ≤ 4,
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Hence, by Remark 44.10(1), M is isomorphic to

Z/Z
∐

Z/2Z
∐

Z/6Z
∐

Z ∼= Z/2Z
∐

Z/6Z
∐

Z.

Note that this is also isomorphic to Z/2Z ∐Z/2Z ∐Z/3Z ∐ Z. This last isomorphism
is what the second form of the Fundamental Theorem will give. We also conclude that

0→ Z3 g−→ Z4 h−→M → 0

is a free resolution of M .

We next look at a property of modules that is, in general, weaker than being free but
for finitely generated modules over a PID turn out to be equivalent.

Definition 44.12. Let R be a domain an M and R-module. An element m in M is
called an R-torsion element if there exists a nonzero element r in R satisfying rm = 0,
i.e., annRm > 0. Set

Mt := {m ∈M | m is an R-torsion element}.

We say that M is a torsion R-module if M = Mt and a torsion-free R-module if Mt = 0.

The proof of the following is straight-forward and left as an exercise.

Properties 44.13. Let R be a domain, M an R-module, and m a nonzero element in
M . Then

(1) The element m is not an R-torsion element if and only if Rm is torsion-free if
and only if Rm is R-free.

(2) Mt is a submodule of M .

(3) M/Mt is a torsion-free R-module.

(4) If M is R-free, then it is R-torsion-free.

Remarks 44.14. 1. Any finite abelian group is a Z-torsion module.

2. If S is a domain and R ⊂ S is a subring, then S is an R-torsion-free module.

3. Q is Z-torsion-free but not Z-free.

We shall show that over a PID finitely generated torsion-free modules are free. The
following computation together with the Fundamental Theorem 44.6 will ensure this.

Example 44.15. Let R be a PID and d1 | · · · | dr nonzero nonunits in R. Set

N = R/(d1)
∐ · · · ∐

R/(dr)
∐
Rs and

N0 = R/(d1)
∐ · · · ∐

R/(dr),

so N = N0
∐
Rs. We have

drN = drN0
∐
drR

s = drR
s ∼= Rs

is R-free of rank s and N0 ⊂ Nt. Next, suppose that (n0, v) ∈ Nt with n0 ∈ N0 and
v ∈ Rs. Then there exists a nonzero element a in R satisfying a(n0, v) = 0, i.e., an0 = 0
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and av = 0. As Rs is R-free, it is R-torsion-free, so v = 0 and we conclude that N0 = Nt.
As the diagram

0 −−−→ N0 −−−→ N −−−→ Rs −−−→ 0∥∥∥ ∥∥∥ x
0 −−−→ Nt −−−→ N −−−→ N/Nt −−−→ 0.

has exact rows and is commutative, the vertical right hand arrow exists, (why?), hence is
an isomorphism, so N/Nt

∼= Rs. In particular, N is R-free if and only if N0 = 0 if and
only if Nt = 0 if and only if N is R-torsion-free.

The example together with the Fundamental Theorem yields:

Corollary 44.16. Let R be a PID and M a finitely generated R-module. Then

(1) M is R-torsion-free if and only if M is R-free.
(2) M = Mt ⊕ P for some finitely generated free R-module P ⊂ M with rankP

unique.

Remark 44.17. Q is a torsion-free abelian group but not Z-free, so the assumption in
the corollary that the module be finitely generated torsion-free is necessary in general to
conclude that it is free. [The abelian group

∏∞
i=1 Z is another example of a torsion-free

abelian group that is not Z-free.]

We turn to establishing an alternate form of the Fundamental Theorem. We must do
some preliminary work. We begin with another example.

Example 44.18. Let R be a PID and M a nontrivial cyclic R-module. Then M = Rm ∼=
R/(d), for some m ∈ M and unique (d) = annRm < R. Assume that M is not R-free.
Then (d) > 0 and d is not a unit. Let d = pe11 · · · perr be a factorization, with p1, . . . , pr
non-associative irreducible, hence prime, elements and e1, . . . , er positive integers. Since
R is a PID, we know that the ideals (peii ), i = 1, . . . , r, are all comaximal ideals. In
particular, by the Chinese Remainder Theorem, R/(d) ∼= R/(pe11 )×· · ·×R/(perr ) as rings.
It follows that R/(d) ∼= R/(pe11 ) ∐ · · · ∐

R/(perr ) as R-modules, as the R-action on R/(a)
is compatible with the R/(a)-action for any a ∈ R. (Cf. Observation 44.8(3).) Therefore,
there exist m1, . . . ,mr in M satisfying M = Rm1 ⊕ · · · ⊕ Rmr with annRmi = (peii ) for
i = 1, . . . , r.

Although this example suffices to get our alternate form, we first make some further
comments. If R is a domain, p an irreducible element in R, and M an R-module, we
say that M is p-primary if for all x in M , there exists a positive integer n (depending
on x) satisfying pnx = 0. If R is Noetherian, let P denote a system of representatives of
equivalence classes of irreducible elements in R under the equivalence relation ≈.

Example 44.19. Let R be a Noetherian domain and p ∈ P . Then R/(pr) is a p-primary
R-module for all positive integers r.

Theorem 44.20. (Primary Decomposition Theorem) Let R be a PID and M a torsion
R-module. If p ∈ P, let

Mp := {x ∈M | prx = 0 for some positive integer r}.
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Then Mp is a p-primary submodule of M and M =
⊕
PMp. Moreover, if M is finitely

generated, then Mp = 0 for almost all p in P.

Proof. Clearly, Mp is a p-primary submodule of M for all p ∈ P . We may assume
that M is not trivial.

M =
∑
PMp: Let x be a nonzero element of M and (d) = annR x. Then d is nonzero

nonunit as M is a torsion R-module. It follows by Example 44.18 that x lies in
∑
PMp.

In fact, it follows that x lies in
∑
p|d
p∈P

Mp.

M =
⊕
PMp: Suppose that x ∈ Mp0 ∩

∑
p0 6=p∈P

Mp. Let (d) = annR x, so d is not zero.

We have pe00 x = 0 for some positive integer e0, as x ∈ Mp0 , so pe00 ∈ annR x, i.e., d | pe00 .

As x ∈
∑

p0 6=p∈P

Mp, there exist p1, . . . , pn in P and positive integers e1, . . . , en satisfying

x = x1 + · · · + xn with peii xi = 0 for i = 1, . . . , n. It follows that pe11 · · · penn x = 0, so
pe11 · · · penn ∈ annR x, i.e., d | pe11 · · · penn . By choice p0 and pe11 · · · penn are relatively prime in
the PID R. It follows that d is a unit hence x = 0.

Finally, suppose that M is finitely generated, say M = Rx1 + · · ·+ Rxn with xi nonzero
for i = 1, . . . , n. Let di be a nonzero nonunit satisfying (di) = annR xi for i = 1, . . . , n
and set d = d1 · · · dn a nonzero element in the domain R. It follows that Mp = 0 for all

p ∈ P satisfying p 6 | d. Hence M =
⊕
p∈P
p|d

Mp, a finite sum. �

Example 44.21. Suppose that R is a PID and M is a nontrivial cyclic R-module with
annR x = (d) and d = pe11 · · · penr , with pi ∈ P . Then M =

⊕n
i=1Mpi and Mpi

∼= R/(peii )
for i = 1, . . . , n.

Using this, together with the Fundamental Theorem 44.6, we can reformulate it as

Theorem 44.22. (Fundamental Theorem of fg Modules over a PID, Form II) Let R
be a PID and M a nontrivial finitely generated R-module. Then there exists a finitely
generated free submodule P of M of unique rank and pi ∈ P, i = 1, . . . , r some r and xij
in M , 1 ≤ j ≤ ni and 1 ≤ i ≤ r and for some ni, satisfying

M = P ⊕ (
r⊕
i=1

ni⊕
j=1

Rmij) satisfying

and for all i and j, we have

(1) Rmij
∼= R/(p

eij
i ) and

(2) 1 ≤ ei1 ≤ ei2 ≤ · · · ≤ eini.

Moreover, this decomposition is unique relative the ordering of the pi subject to the order
of the eij above and the uniqueness of the rank of P .

Generators of the ideals (p
eij
i ) in the theorem are called elementary divisors of M . They

are unique up to units, and together with the rank of P completely determine M up to
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isomorphism. The condition on the eij, of course, orders the set of cyclic modules that
are pi-primary submodules in the decomposition (which are unique up to isomorphism).
This data completely determines the isomorphism class of M .

Of course, both forms of the Fundamental Theorem apply to finitely generated abelian
groups, although in this case an easier proof will suffice. If we are given any finitely
generated abelian group defined by generators and relations, the invariant factors will
determine completely the group up to isomorphism. Moreover, given a positive integer n,
up to isomorphism, we can write down every abelian group of order n (assuming that we
can factor n). We give an example how this works.

Example 44.23.
Find all abelian groups up to isomorphism of order 23 · 32 · 5. We write these groups
in both forms. Given the factorization, it is easier to write down the representatives of
isomorphism classes in Form II. To get Form I, we take the biggest p-primary pieces for
each prime p and combine them to get one term. Then continue with what is left. This
is illustrated in our example by the overlines and underlines of various p-primary pieces
and what they become in Form I.

Z/2Z× Z/2Z× Z/2Z× Z/3Z× Z/3Z× Z/5Z ∼= Z/2Z× Z/6Z× Z/30Z

Z/2Z× Z/2Z× Z/2Z× Z/9Z× Z/5Z ∼= Z/2Z× Z/2Z×Z/90Z

Z/2Z× Z/4Z××Z/3Z× Z/3Z× Z/5Z ∼= Z/6Z× Z/60Z

Z/2Z× Z/4Z× Z/9Z× Z/5Z ∼= Z/2Z× Z/180Z

Z/8Z× Z/3Z× Z/3Z× Z/5Z ∼= Z/3Z× Z/120Z

Z/8Z× Z/9Z× Z/5Z ∼= Z/360Z.

[Note: Abelian direct sums of abelian groups are usually written as products as a finite
product of abelian groups is the same as a direct sum of the same groups.]

Exercises 44.24.

1. Let R be a PID. Suppose that M is a finitely generated R-module and

0→ Rm g−→ Rn →M → 0

is a free presentation of M with n minimal. Without using the Fundamental Theorem
(or Smith Normal Forms) show if

0→ Rm′ g′−→ Rn′ →M → 0

is another free presentation of M , then m′ ≤ m.

2. Prove the following generalization of Proposition 44.1 using Exercises 39.12(126.3),
(126.5)): Let R be a commutative (this is not needed) ring with the property that every
(left) ideal of R is R-projective. Let M be an R-module isomorphic to a submodule of
Rn. Then M is a direct sum of m ≤ n submodules each isomorphic to a (left) ideal of
R. In particular M is R-projective.

3. Prove Observation 44.5.
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4. Prove all the statements in Observations 44.8.

5. Prove all the properties in 44.13.

6. Let R be a domain. Show every ideal in R is R-torsion-free, but is free if and only if it
is principal. In particular, show that R is a PID if every submodule of a free module
is free. [The converse is also true.]

7. Let R be a domain and M a finitely generated R-module. Prove that M is isomorphic
to a free submodule of finite rank.

8. Let f : Zn → Zm be a Z-module homomorphism. Let Sl be the standard basis for Zl.
Prove that f is monic if and only if the rank of [f ]Sn,Sm is n and f is epic if and only
if a gcd of the mth ordered minors of [f ]Sn,Sm is 1.

9. Let R be a commutative ring. Let En(R) be the subgroup of GLn(R) generated by all
matrices of the form I + λ where λ is a matrix with precisely one non zero entry and
this entry does not occur on the diagonal. Suppose that R is a euclidean ring. Show
that SLn(R) = En(R). (Cf. Appendix D.)

10. Let A be a finite abelian group and let

Â := {χ : A→ C× |χ a group homomorphism}.

It is easily checked that Â is a group via χ1χ2(x) := χ1(x)χ2(x). Show

(i) A and Â have the same order and, in fact, are isomorphic.

(ii) If χ is not the identity element of Â then
∑

a∈A χ(a) = 0.

11. Determine all abelian groups of order 400 up to isomorphism.

45. Canonical Forms for Matrices

In this section, we use the Fundamental Theorem of fg Modules over a PID to de-
termine a good system of representatives for matrices over a field under the equivalence
relation of similarity. Recall if V is a finite dimensional vector space over a field F with
basis B and T : V → V is a linear operator then the characteristic polynomial of T is
defined to be

fT := det(tI − [T ]B) ∈ F [t].

This is independent of bases by the Change of Basis Theorem (cf. Appendix C). Roots
of fT are called eigenvalues of T . An element λ is a root of fT if and only if there exists
a nonzero vector v in V such that T (v) = λv. Such a v is called a (nonzero) eigenvector
for T .

Construction 45.1. Let V be a finite dimensional vector space of dimension n over a
field F and T : V → V a linear operator (endomorphism). Define

ϕ : F [t]→ EndF (V ) be given by f 7→ f(T )

evaluation at T . This is a ring homomorphism with

imϕ = {
r∑

1=0

aiT
i | ai ∈ F some m},
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a commutative subring of EndF (V ). By the First Isomorphism Theorem F [t]/ kerϕ ∼=
imϕ = F [T ]. As F [t] is a vector space over F on basis {ti | i ≥ 0}, we have dimF F [t] is
infinite. We also know dimF F [T ] ≤ dimF EndF (V ) = dimF Mn(F ) = n2 is finite. Thus ϕ
cannot be monic. Consequently, 0 < kerϕ. As ϕ is a ring homomorphism, ϕ(1) = 1V , so
ϕ is not the trivial map. Therefore, F [t] being a PID means:

There exists a unique non-constant monic polynomial qT in F [t]

satisfying kerϕ = (qT ) > 0.

We call qT the minimal polynomial of T over F .

Note: By definition, qT (T ) = 0. (This polynomial need not be irreducible.)

The vector space V is an EndF (V )-module via evaluation so becomes an F [t]-module via
the pullback along ϕ, i.e., f ·v := ϕ(f)(v) = f(T )(v) for all f ∈ F [t] and all v ∈ V . Thus V
is an F [t]-module via evaluation at T . As V is a finite dimensional vector space over F , it is
a finitely generated F [t]-module. Moreover, qT 6= 0 in F [t] and qT ·v = qT (T )(v) = 0v = 0
for all v in V , so V is a finitely generated torsion F [t]-module. Therefore, the two forms
of the Fundamental Theorem of fg Modules over a PID are applicable. We shall use both
forms. To use them, we need to investigate cyclic submodules of the F [t]-module V .

We shall first apply the first form of the Fundamental Theorem 44.6 to the construction
above. We shall use it for the case of an arbitrary field. We begin with some preliminaries.

Lemma 45.2. Suppose V is a finite dimensional vector space over F and T : V → V a
linear operator. Let V be an F [t]-module by evaluation at T . Then

(qT ) = annF [t] V := {f ∈ F [t] | fv = 0 for all v ∈ V } =
⋂
v∈V

annF [t] v.

Proof. We know that qTv is zero for all v in V , so qT lies in annF [t] V . Let ϕ : F [t]→
EndF (V ) be evaluation at T . Suppose that f ∈ annF [t] V . Then 0 = fv = f(T )(v) for
all v ∈ V , hence f(T ) is the zero endomorphism in EndF (V ), so f ∈ kerϕ = (qT ). The
result follows. �

We need another fact from linear algebra.

Definition 45.3. Let F be a field and h = td + ad−1t
d−1 + · · · + a1t + a0 be a monic

polynomial in F [t] of positive degree d. Define the companion matrix of h to be the
matrix in Md(F ) given by

Ch :=


0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
... · · · ...
0 0 · · · 1 −ad−1

 .

[If h = 1, we let Ch = 0.]

Remarks 45.4. Let F be a field and g, h be monic non-constant polynomials in F [t].

1. g = h if and only if Cg = Ch,
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2. h = fCh , the characteristic polynomial of the matrix Ch:

If h = td + ad−1t
d−1 + · · ·+ a0 with d > 0, then

fCh = det


t 0 · · · 0 a0

−1 t · · · 0 a1

0 −1 · · · 0 a2
... · · · ...

...
0 0 · · · −1 t+ ad−1

 .

Using induction and expanding the determinant by minors along the top row yield

fCh = t(td−1 + ad−1t
d−2 + · · ·+ a1) + (−1)d−1a0(−1)d−1 = h.

To apply the Fundamental Theorem 44.6 to a finite dimensional vector space over a
field F and linear operator T with F [t]-module structure given by evaluation at T , we
must compute F [t]-cyclic submodules. The key is to determine an appropriate F -basis,
for such a submodule.

Proposition 45.5. Suppose V is a finite dimensional vector space over F and T : V → V
a linear operator. Let V be a cyclic F [t]-module by evaluation at T , i.e., there exists a
vector v in V satisfying V = F [t]v. Let B = {v, T (v), . . . , T d−1(v)} with d the degree of
the minimal polynomial qT of T . Then

(1) B is an ordered basis for V .
(2) annF [t] v = annF [t] V = (qT )
(3) The matrix representation [T ]B of T in the B basis satisfies [T ]B = CqT .
(4) The minimal polynomial qT satisfies qT = fT .

Proof. B spans V as a vector space over F : Let w be a vector in V = F [t]v, so
there exists a polynomial h in F [t] satisfying w = hv = h(T )(v), As F [t] is a euclidean
domain with euclidean function the degree, we can write h = qT s+r for some polynomials
s and r in F [t] with r = 0 or deg r < deg qT . Evaluating this polynomial at T yields

w = hv = (qT s+ r)v = qT (T )s(T )(v) + r(T )(v) = r(T )(v)

which lies in the span of B.

B is linearly independent (hence is a basis for V ): Suppose that
∑d−1

i=0 aiT
i(v) = 0

for some ai in F . Set g =
∑d−1

i=0 ait
i in F [t]. Then gv = g(T )(v) = 0, so gfv = fgv = 0

in V = F [t]v for all polynomials f in F [t], i.e., gw = 0 for all w in V . By Lemma 45.2,
we have g ∈ annF [t] V = annF [t] v = (qT ), so qT | g. As g = 0 or deg g < deg qT , we must
have g = 0, i.e., ai = 0 for all i. The proof of (3) is simple and (4) follows from Remarks
45.4. �

We now apply the Fundamental Theorem 44.6.

Theorem 45.6. (Rational Canonical Form) Suppose V is a nontrivial finite dimensional
vector space over F and T : V → V a linear operator. Let V be an F [t]-module by
evaluation at T . Then there exists a direct sum decomposition of F [t]-modules

V = V1 ⊕ · · · ⊕ Vr
for some r with each Vi a cyclic F [t]-module, 1 ≤ i ≤ r, and satisfying:
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(1) Let qi be the monic non-constant polynomial in F [t] satisfying (qi) = annF [t] Vi
for 1 ≤ i ≤ r. Then the qi satisfy q1 | · · · | qr in F [t] and are unique relative to
this ordering and are invariant factors of V as an F [t]-module.

(2) The polynomial qr in (1) is the minimal polynomial qT of T , and (qT ) = annF [t] V .
(3) Let qi, i = 1, . . . , r be as in (1). Then fT = q1 · · · qr.
(4) There exist ordered bases Bi for Vi, 1 ≤ i ≤ r satisfying:

(a) T |Vi lies in EndF (Vi) for i = 1, . . . , r.
(b) [T |Vi ]Bi = Cqi, for i = 1, . . . , r.
(c) qi = fT |Vi = qT |Vi .

(d) Let B = B1 ∪ · · · ∪ Br is an ordered basis for V and

[T ]B =

Cq1 · · · 0
...

. . .
...

0 · · · Cqr

 (in block form.)

This matrix is unique relative to the monic polynomials in (1) as ordered
there.

The monic polynomials, q1, . . . , qr in (1) in the theorem are called the invariant factors
of T and the matrix in (4) is called the rational canonical form of T .

Proof. Apply the Fundamental Theorem 44.6 and Proposition 45.5 after noting that
Vi being F [t]-cyclic implies that annF [t] Vi = (qi) = (q|Vi) and T |Vi : Vi → Vi as Vi is an
F [t]-module, i.e., Vi is T -invariant as tv = T (v) for all v ∈ Vi for i = 1, . . . , r. �

Examples 45.7. Suppose V is a nontrivial finite dimensional vector space over F and
T : V → V a linear operator such that Tm = 0 for some m > 0 (we say that T is
nilpotent), then the rational canonical form of T is upper triangular with diagonal entries
all 0.

An immediate consequence of Theorem 45.6 is the following:

Corollary 45.8. Suppose V is a nontrivial finite dimensional vector space over F and
T : V → V a linear operator. Let V be an F [t]-module by evaluation at T . Then qT | fT
in F [t]. In particular, qT and fT have the same roots in F and qT is a product of linear
polynomials in F [t] if and only if fT is a product of linear polynomials in F [t].

Of course, the multiplicity of a root of qT and fT may be different. [Recall from linear
algebra that the roots of fT are the eigenvalues of T .]

An important consequence of Theorem 45.6 is the well-known:

Corollary 45.9. (Cayley-Hamilton Theorem) Suppose V is a nontrivial finite dimen-
sional vector space over F and T : V → V a linear operator. Then the characteristic
polynomial, fT in F [t], satisfies fT (T ) = 0, i.e., fT ∈ annF [t] V = (qT ). In particular,
qT | fT in F [t] and qT and fT have the same irreducible factors (although not necessarily
with the same multiplicities).

The rational canonical forms of a matrices in Mn(F ) give an excellent system of repre-
sentatives of similarity classes of such matrices. To establish this, we need the following
observation.
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Observation 45.10. If R is a domain, A a matrix in Mn(R) with detA nonzero, and
AX = 0 (X and 0 in Rn×1), then X = 0, i.e., A is an R-monomorphism when viewed as
a map Rn×1 → Rn×1. [This follows as A is invertible in Mn

(
qf(R)

)
.]

Theorem 45.11. (Classification of Similarity Classes of Matrices over a Field) Let F be
a field and A and B be two n× n matrices in Mn(F ).

(1) There exists a unique matrix C in Mn(F ) in rational canonical form with A and
C similar.

(2) The following are equivalent:
(a) A ∼ B.
(b) A and B have the same rational canonical form.
(c) A and B have the same invariant factors.
(d) tI−A and tI−B have the same Smith Normal Form when we choose monic

invariants and the nonidentity monic invariant factors are the same as those
for A and B in (c).

(e) tI − A and tI −B are equivalent in Mn(F [t]).

Proof. Let

Sn,1 = {e1, . . . , en} with ei =
(
0 0 1 0 · · · 0

)t
i

be the standard basis for F n×1 and also for F [t]n×1 as free modules over F and F [t]n×1,
respectively. [Aside: C = {tjei | 1 ≤ i ≤ n, j ≥ 0} is an F -basis for F [t]n×1. The linear
operator A : F n×1 → F n×1 given by v 7→ Av satisfies A = [A]Sn,1 , so there exists a basis
B for F n×1 such that [A]B is in rational canonical form by the Change of Basis Theorem
(cf. Appendix C). Therefore, we have (1) and the equivalence of (a), (b), and (c) in (2)
follow easily.

By the Universal Property of Free Modules 39.3, there exists a unique F [t]-endomorphism
(hence also F -linear) g : F [t]n×1 → F [t]n×1 extending ej 7→ tej −Aej. So g = tI −A. We,
therefore, have a sequence

(45.12) 0→ F [t]n×1 g−→ F [t]n×1 eA−→ F n×1 → 0

with eA evaluation at A, i.e., defined by fej → f(A)ej for all f ∈ F [t] and all j. We shall
show that this sequence is an exact sequence.

As det(tIn − A) = fA, the characteristic polynomial of the matrix A, hence nonzero,
we have g an F [t]-monomorphism by Observation 45.10 above. It is also clear that the
evaluation map eA is a surjection. So we must show exactness at the middle term, i.e.,
im g = ker eA.

Clearly, im g ⊂ ker eA. Therefore, x+im g 7→ x+ker eA defines an an F [t]-epimorphism
F [t]n×1/ im g → F [t]n×1/ ker eA. As we want to show im g = ker eA, it suffices to show that
this map is an isomorphism. Composing this map with eA : F [t]n×1/ ker eA → F n×1, the
map induced by eA given by the First Isomorphism Theorem, defines an F [t]-epimorphism
ẽA : coker g → F n×1, so it suffices to show that ẽA is an isomorphism, i.e., a bijection.

By Remark 44.10(1), a Smith Normal Form S of the matrix representation tIn − A
of g determines coker g as an F [t]-module. We may assume that diagonal matrix S was
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chosen with its nonzero diagonal entries monic polynomials. As det(tIn − A) = fA 6= 0,
S has no nonzero diagonal entries.

Let the non-constant monic diagonal entries of S be d1| · · · |dr. We know that S =
P [g]Sn,1Q with P,Q ∈ GLn(F [t]), and an invertible matrix in GLn(F [t]) has determinant
in F [t]× = F×. (This also follows from the algorithm given in Appendix D, Theorem
D.2, since Type I, II, and III matrices have determinant in F×). Consequently, we have
fA = d1 · · · dr as fA and all the di are monic. Hence

dimF coker g =
r∑
i=1

dimF F [t]/(di)

=
r∑
i=1

deg di = deg fA = n = dimF F
n×1

using the isomorphism we showed when proving the Fundamental Theorem 44.6 and
Proposition 34.14. It follows that the F [t]-epimorphism hence F -epimorphism ẽA is an
F -isomorphism, hence im(g) = ker eA and the sequence in 45.12 is exact.

It follows from the exactness of 45.12 that the non-constant invariant factors of a Smith
Normal Form S determines the invariants of F n×1 as an F [t]-module which therefore must
be the same as those determined by the invariants of A. The equivalence of (c), (d), and
(e) follow.

�

Remark 45.13. As pointed out in the proof above, the Smith Normal Form for a matrix
A ∈ Mn(F ) is determined by the Smith Normal Form of the matrix tI −A ∈ Mn(F [t]. In
particular, the Smith Normal form of a linear operator on a finite dimensional F -vector
space can be computed using the algorithm given in Appendix D, Theorem D.2, hence
the invariant factors of A.

Corollary 45.14. Let F be a field and A ∈ Mn(F ). Then A is similar to its transpose
At.

Proof. It follows by Theorem 43.8 (or by the algorithm given in the proof of Theorem
D.2 in Appendix D) that a matrix and its transpose in Mn(F [t]) have equivalent Smith
Normal Forms. In particular, the matrices tI−A and tI−At have the same Smith Normal
Form when we choose monic invariants. �

Using the proof above, we can give a summary of what is going on. Instead of giving
this summary using matrices, we use linear operators.

Summary 45.15. Let V be a finite dimensional vector space over F of dimension n and
T : V → V a linear operator. We view V as an F [t]-module by tv := T (v) for all v ∈ V .
We then have an exact sequence

(45.16) 0→ F [t]n
t1F [t]n−T−−−−−→ F [t]n

eT−→ V → 0

with the F [t]-homomorphism eT defined by
∑
fiei 7→

∑
f(T )ei, where ei in the ith basis

element in the (ordered) standard basis Sn for F [t]n (and F n). We call the sequence 45.16
the characteristic sequence of T . The matrix t1F [t]n − [T ]Sn is called the characteristic
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matrix of [T ]Sn . It has nonzero determinant fT , the characteristic polynomial of T (and
is the reason that t1F [t]n − [T ]Sn is a monomorphism). In particular, the characteristic
matrix of [T ]Sn is nonsingular, so has a unique Smith Normal Form of (tIn− [T ]Sn) given
by diag(1, . . . , q1, . . . , qr) has the qi monic non-constant polynomials satisfying q1 | · · · | qr.
(The entries of a Smith Normal Form are unique up to units.)

As the sequence 45.16 is exact, we have

coker(t1F [t]n − T ) = F [t]n/ im(t1F [t]n − T )

= F [t]n)/ ker(t1F [t]n − T ) ∼= V.

By the Fundamental Theorem, we can decompose the finitely generated torsion F [t]-
module V into cyclic F [t]-submodules, say

V = V1

∐
· · ·
∐

Vr

with Vi = F [t]vi some vi for each i and satisfying

Vi ∼= F [t]/ annF [t](vi) = F [t]/ annF [t](Vi) = F [t]/(qi), i = 1, . . . , r

with the descending chain of ideals

(q1) ⊃ · · · ⊃ (qr)

unique. Moreover,
qi = qT |Vi , qr = qT , fT = q1 . . . qr,

and

RCF (T ) := RCF ([T ]Sn =

Cq1 . . .
Cqr

 .

In particular, to find the invariant factors of T one computes the Smith Normal Form of
the characteristic matrix using the algorithm given in the Appendix D.

We turn to the second form of the Fundamental Theorem. It is immediate that we
have the following:

Theorem 45.17. Suppose V is a nontrivial finite dimensional vector space over F and
T : V → V a linear operator. Let V be an F [t]-module by evaluation at T . Then there
exists a direct sum decomposition of F [t]-modules

V = V11 ⊕ · · ·V1r1 ⊕ · · · ⊕ Vr1 ⊕ · · · ⊕ Vrnr
for some r and ri with each Vij a cyclic F [t]-module, 1 ≤ i ≤ r and 1 ≤ j ≤ ir, satisfying:

(1) Vij ∼= F [t]/(q
eij
i ) with qij ∈ F [t] monic.

(2) 1 ≤ ei1 ≤ ei2 ≤ · · · ≤ eini.
(3) (q

eij
i ) = annF [t] Vij for 1 ≤ i ≤ r and 1 ≤ ei1 ≤ ei2 ≤ · · · ≤ eini, are unique relative

to the ordering in (2), and are the elementary divisors of V as an F [t]-module.
(4) The polynomial q

eij
i satisfy q

eij
i = qT |Vij = fT |Vij 1 ≤ i ≤ r, 1 ≤ ei1 ≤ ei2 ≤ · · · ≤

eini.
(5) fT =

∏
i,j q

eij
i .

(6) There exist ordered bases Bij for Vij, 1 ≤ i ≤ r and 1 ≤ ei1 ≤ ei2 ≤ · · · ≤ eini
satisfying:
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(a) T |Vij lies in EndF (Vij) for i = 1, . . . , r and 1 ≤ ei1 ≤ ei2 ≤ · · · ≤ eini.
(b) [T |Vij ]Bij = Cqij , for i = 1, . . . , r and 1 ≤ ei1 ≤ ei2 ≤ · · · ≤ eini.
(c) Let B = B1 ∪ · · · ∪ Br. Then B is an ordered basis for V , and

[T ]B =

Cq11 · · · 0
...

. . .
...

0 · · · Cqrnr

 (in block form.)

This matrix is unique relative to the monic polynomials in (1) as ordered in (2)
up to a permutation of the blocks determined by

∏ni
j=1 qij.

We now shall apply the second form for matrices in the more interesting case when the
field is an algebraically closed field, i.e., when non-constant polynomials always factor into
a product of linear polynomials, as it is this case that the elementary divisors arising from
this form are useful. Instead of the form above, we shall get a more useful form. We first
establish the cyclic case when the minimal polynomial is a power of a linear polynomial.

Lemma 45.18. Suppose V is a finite dimensional vector space over F and T : V → V a
linear operator. Let V be a cyclic F [t]-module by evaluation at T , i.e., there exists a vector
v in V satisfying V = F [t]v. Suppose that the minimal polynomial qT of T is (t− a)d in
F [t]. Then B = {v, (T − a)(v), . . . , (T − a)d−1(v)} is an ordered basis for V and

[T ]B =


a 0 0 · · · 0
1 a 0 · · ·
0 1 a
...

. . . . . .
0 · · · 1 a

 in Md(F ).

Proof. We know that C = {v, T (v), . . . , T d−1(v)} is an F -basis for V by our previous
work. If B is linearly dependent, then there exists an equation

(*) 0 =
d−1∑
i=0

ai(T − a)iv for some ai in F , not all zero.

Choose N maximal such that aN 6= 0 and expand (*) to get

0 = aNT
Nv +

N−1∑
i=0

biT
iv for some bi in F .

As C is linearly independent, aN = 0, a contradiction. Therefore, B is linearly independent
hence a basis as |B| = |C|. We have

0 = qr(T ) = (T − a1V )r and

T (T − a1V )i =
(
(T − a1V ) + a

)
(T − a1V )i = (T − a1V )i+1 + a(T − a1V )i

for i = 0, . . . r − 1. So

T (T − a)i(v) = (T − a)i+1(v) + a(T − a)i(v) for i = 0, . . . , r − 1

and the last statement follows. �
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When the minimal polynomial of a linear operator on a finite dimensional vector space
factors into a product of linear terms, the Fundamental Theorem 44.22 and the last lemma
now immediately implies the following:

Theorem 45.19. (Jordan Canonical Form) Suppose V is a nontrivial finite dimensional
vector space over F and T : V → V a linear operator. Let V be an F [t]-module by
evaluation at T . Suppose that qT factors into linear terms in F [t]. Then there exists an
ordered basis B for V satisfying

[T ]B =

A1 · · · 0
...

. . .
...

0 · · · Ar

 with Ai =



ai 0 · · · 0
1 ai 0 0

0 1 ai 0
...

...
. . .
1 ai 0

0 · · · 1 ai


for i = 1, . . . , r. The ai, i = 1, . . . , r are the eigenvalues of T (with ai = aj, i 6= j
possible). This matrix of these blocks is unique up to the order of the blocks. The monic
polynomials fAi, 1 ≤ i ≤ r, are the elementary divisors of V with the above F [t]-module
structure and the characteristic polynomial of T satisfies ft =

∏r
i=1 fAi

In the theorem, the blocks Ai are called Jordan blocks and, as the monic elementary divi-
sors fAi are unique, they are called the elementary divisors of T . The matrix representing
T in 45.19 is called the Jordan canonical form of T .

Corollary 45.20. Let A and B lie in Mn(F ). If each of the characteristic polynomials fA
and fB factor into a product of linear terms in F [t], then A and B are similar in Mn(F )
if and only if A and B have the same Jordan canonical form (up to block order) if and
only if they have the same elementary divisors (counted with multiplicity). In particular,
if F is an algebraically closed field, then a matrix in Mn(F ), n ∈ Z+, is determined up to
similarity by its Jordan Canonical Form.

Remark 45.21. The rational canonical form of a matrix is quite computable, as the
division algorithm is computable, but the Jordan canonical form (when it exists) maybe
harder to compute as it depends on factoring the invariant factors of the monic polyno-
mials arising in the rational canonical form.

If A in Mn(F ) is an upper triangular matrix, then the characteristic polynomial fA
of A is a product of linear polynomials (why?), hence the minimal polynomial qA also is
a product of linear polynomials. The next two standard results in linear algebra results
now follow easily.

Corollary 45.22. Let F be a field and A a matrix in Mn(F ). Then A is similar to a
diagonal matrix if an only if the minimal polynomial qA factors as a product of monic
linear factors without multiple roots, i.e., qA = (t − λ1) · · · (t − λr) for some distinct
λ1, . . . , λr in F .

We say that a non-constant polynomial in F [t] splits over F if it is a product of linear
polynomials in F [t]. The corollary says that the matrix is diagonalizable if and only if qA
splits over F without any multiple roots.
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Corollary 45.23. Let F be a field and A a matrix in Mn(F ). Then A is similar to a
triangular matrix if an only if the minimal polynomial qA splits over F .

We say that A is triangularizable if qA splits over F .

Remark 45.24. Let V be a finite dimensional vector space over a field F and T ∈
EndF (V ). We say that the linear operator T is diagonalizable if there exists a basis
for V consisting of eigenvectors of T . The linear operator T is called triangularizable if
there exists an ordered basis B = {v1, . . . , vn} for V such that [T ]B is upper triangular.
(Equivalently, if B′ = {vn, . . . , v1}, then [T ]B′ is lower triangular.) So in this terminology
Corollaries 45.22 and 45.23 say:

(i) T is diagonalizable if and only if qT splits over F [t] and has no multiple roots.
(ii) T is triangularizable if and only if qT splits over F [t]’

Examples 45.25. Let F be a field

1. Similarity classes of matrices in M3(F ) are completely determined by the minimal and
characteristic polynomials of a matrix:
Let A lie in M3(F ) and q1 | · · · | qr be the invariant factors of A. So fA = q1 · · · qr with
qr = qA. As A ∈ M3(F ), we know that r ≤ 3.

r = 1: We must have q1 = qA = fA determines A up to similarity, so A is similar to
Cq1 = CqA . We can say more if qA is reducible. First suppose that qA = (t − λ)h in
F [t] with h irreducible. By Exercise 45.26(2) below, A is similar to the matrix(

λ 0
0 Ch

)
,

which is unique up to block order (as that Ct−λ = (λ)). Suppose instead that qA splits
over F , say qA = (t− λ1)(t− λ2)(t− λ3) and A is triangularizable. As r = 1, we must
have A is similar to λ1 0 0

0 λ2 0
0 0 λ3

 if λ1, λ2, λ3 are distinct,

λ1 0 0
1 λ1 0
0 0 λ3

 if λ1 = λ2 6= λ3,

λ1 0 0
1 λ1 0
0 1 λ1

 if λ1 = λ2 = λ3,

matrices in Jordan Canonical Form, unique up to order of the blocks.

r = 2: We have q1 | q2 = qA and fA = q1q2, so q1 = fA/qA in F [t]. Therefore, qA and
fA determine A up to similarity, and A is similar to(

Cq1 0
0 Cq2

)
.
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Note that if this is the case, deg q1 = 1 and deg q2 = 2, so q1 | q2 implies that q2 splits
so A is triangularizable, i.e., a Jordan canonical form for A exists. If q1 = t − λ1 and
q2 = (t− λ1)(t− λ2), then A is similar to

λ1 0 0
0 λ1 0
0 0 λ2

 if λ1 6= λ2,

λ1 0 0
0 λ1 0
0 1 λ1

 if λ1 = λ2,

unique up to the order of the blocks.

r = 3: We have q1 | q2 | q3 = qA, so q1 = q2 = q3 = qA. So in this case qA and fA
determine A up to similarity, and A is diagonalizable with a single eigenvalue, i.e., A
is similar to the matrix λI with λ an (the) eigenvalue of A. In particular, A is similar
to a matrix in Jordan canonical form.

2. Similarity classes of matrices in M4(F ) are not determined by minimal and characteristic
polynomials. For example the matrices

A B
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 and


1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1


have

qA = (t− 1)2

fA = (t− 1)4

elementary divisors
t− 1, t− 1, (t− 1)2

invariant factors
t− 1 | t− 1 | (t− 1)2

qB = (t− 1)2

fB = (t− 1)4

elementary divisors
(t− 1)2, (t− 1)2

invariant factors
(t− 1)2 | (t− 1)2

,

so they are not similar.

3. A system of representatives for the similarity classes of matrices in M4(F ) having char-
acteristic polynomial t(t− 1)3 are:
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0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




0 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1




0 0 0 0
0 1 0 0
0 1 1 0
0 0 1 1


minimal polynomial

t(t− 1)
elementary divisors
t, t− 1, t− 1, t− 1
invariant factors

t− 1 | t− 1 | t(t− 1)2

minimal polynomial
t(t− 1)2

elementary divisors
t, (t− 1), (t− 1)2

invariant factors
(t− 1) | t(t− 1)2

minimal polynomial
t(t− 1)3

elementary divisors
t, (t− 1)3

invariant factors
t(t− 1)3

4. A system of representatives for the similarity classes of matrices in M4(F ) with minimal
polynomial t(t− 1) are:

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


as these matrices must be diagonalizable with eigenvalues 0 and 1.

5. Let A be a 3×3 matrix in M3(Q) satisfying A3 = I. Then qA | t3−1 = (t−1)(t2 + t+1)
in Q[t], so the only possibilities are t− 1, t2 + t+ 1, or t3 − 1. If qA = t2 + t+ 1, then
q1 | q2 = qA, but qA is irreducible, so no linear polynomial divides it, so this case cannot
occur. If qA = t− 1, A is diagonalizable and t− 1 | t− 1 | t− 1 are the invariants. So
the possible rational canonical forms for A are:1 0 0

0 1 0
0 0 1

 0 0 1
1 0 0
0 1 0


[Note: Using Exercise 45.26(2) below, an alternate matrix similar to0 0 1

1 0 0
0 1 0

 is

1 0 0
0 0 −1
0 1 −1

]

Exercises 45.26.

1. Prove Observation 45.10.

2. Let F be a field and A a matrix in Mn(F ). Let f1, . . . , fr be the monic elementary
divisors of A, i.e., those of F n×1 as a F [t] module via tv = Av for all v in F n×1. Show
that A is similar to the matrix Cf1 · · · 0

...
. . .

...
0 · · · Cfr


and this matrix is unique up to the order of the blocks.
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3. Let V be a finite dimensional vector space over F and T ∈ EndF (V )

4. Let A be a matrix in M5(Q) satisfying A3 = I. Determine all possible rational canonical
forms of A and justify your answer.

5. Determine the Rational or Jordan canonical form of all 3 × 3 matrices A over a field
F satisfying A4 = I, over each prime field and justify your answer.

6. Determine all 4× 4 matrices A over a field F satisfying A5 = I in the following three
cases and justify your answer.

(i) F is the field of rational numbers.
(ii) F is Z/2Z.

(iii) F is Z/5Z.

7. Compute the Jordan and Rational Canonical Forms of the matrix
0 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0


8. Prove Corollaries 45.22 and 45.23.

9. Let V be a real vector space, T an R-endomorphism. Suppose that the minimal poly-
nomial of T factors into linear terms over R with no repeated and no negative roots.
Show that there exists an R-endomorphism S of V such that S2 = T .

10. Recall that a matrix C ∈ MnC is called diagonalizable if there exists a matrix Q ∈
GLn(C) such that QAQ−1 is a diagonal matrix. Show if A,B ∈ MnC are both diago-
nalizable, then there is a matrix P ∈ GLn(C) satisfying both PAP−1 and PBP−1 are
diagonal matrices if and only if AB = BA.

46. Addendum: Jordan Decomposition

We prove a weaker form of Jordan canonical form that only needs the Primary De-
composition Theorem, not the full Fundamental Theorem 44.6. [The Cayley-Hamilton
Theorem can be proven without the full version of the Fundamental Theorem.]

Definition 46.1. Suppose that F is a field, V a vector space over F , and T is a linear
operator on V . Let

ET (λ) := {v ∈ V | T (v) = λv},
a subspace of V . If λ is an eigenvalue of T , then ET (λ) is called the eigenspace of λ
relative to T , i.e., ET (λ) is an eigenspace if and only if it is not the zero subspace. We
say that T is semisimple if V has a basis consisting of eigenvectors of T , equivalently,
V =

⊕
F ET (λ). Of course, T |ET (λ) = λ1ET (λ) for all λ ∈ F .

Observation 46.2. Let V be a vector space over F and S, T two commuting linear
operators on V , i.e., T ◦ S = S ◦ T . If λ is an eigenvalue of T , then ET (λ) is S-invariant,
i.e., S|ET (λ) : ET (λ)→ ET (λ):

If v ∈ ET (λ), then T
(
S(v)

)
= S

(
T (v)

)
= S(λv) = λS(v).

The observation has the following consequence:
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Theorem 46.3. Let V be a finite dimensional vector space over the field F and S a set
of commuting semisimple linear operators in EndF (V ), i.e., if T and S lie in S, they are
semisimple and ST = TS. Then there exists a basis B for V consisting of eigenvectors
for every T in S simultaneously. In particular, T + S is semisimple for all T, S ∈ S.

Proof. If T = ρ1V for some ρ ∈ F for every T ∈ S, the result is trivial. So we may
assume that there exists a T in S so that this is not true. As T can have only finitely many
eigenvalues, say λ1, . . . , λr, we have V = ET (λ1) ⊕ · · · ⊕ ET (λr) with each ET (λj) < V .
By the observation, S|ET (λj) ∈ EndF (ET

(
λj)
)

for all S ∈ S. As qS|ET (λj)
| qS (why?), we

know that qS|ET (λj)
splits over F , so S|ET (λj) is semisimple. By induction, the result holds

on each ET (λj), hence on V . �

Definition 46.4. Let F be a field, V a nontrivial vector space over F , and T a linear
operator on V . We say that T is nilpotent if there exists a positive integer N such that
TN = 0 and unipotent if T − 1V is nilpotent.

Note that a unipotent linear operator is always an isomorphism (why?) and an oper-
ator that is both nilpotent and semisimple must be the zero linear operator.

Theorem 46.5. Let V a finite dimensional vector space over F , and T a linear operator
on V . Suppose that fT splits over F . Then there exist unique linear operators Ts and
Tn on V semisimple and nilpotent respectively and if T is a linear automorphism, there
exists a unique unipotent operator Tu satisfying the following:

(1) (Additive Jordan Decomposition) T = Ts + Tn and TsTn = TnTs.
(2) (Multiplicative Jordan Decomposition) If T is a linear automorphism, then T =

TsTu and TsTu = TuTs.
(3) There exist polynomials g and h in F [t] with zero constant term, i.e., g(0) = 0 =

h(0) = 0 satisfying Ts = g(T ) and Tn = h(T ). In particular, if a linear operator
S on V commutes with T , then it commutes with both Ts and Tn.

(4) If T is a linear automorphism and T commutes with a linear operator S on V ,
then it commutes with Ts and Tu.

Proof. Let V be an F [t]-module by evaluation at T and suppose that the character-
istic polynomial of T is fT =

∏r
i=1(t − λi)ei in F [t] with λi 6= λj if i 6= j, and ei > 0 for

all i. Then by the Cayley-Hamilton Theorem, fTv = 0 for all v in V . Let

Vi = ker(T − λi1V )ei ∼= F [t]ei/
(
(t− λi)ei

)
for i = 1, . . . , r, so V = V1 ⊕ · · · ⊕ Vr as F [t]-modules by the Primary Decomposition
Theorem 44.20 (Why?). The ideals (t− λi)ei and

∑
j 6=i(t− λj)ej in the euclidean domain

F [t] are comaximal for all i. Therefore, there exists a polynomial g in F [t] satisfying
g ≡ λi mod (t − λi)ei , 1 ≤ i ≤ r and g ≡ 0 mod t by the Chinese Remainder Theorem
27.19. (Of course, if some λi = 0, the last congruence is redundant.) In particular,
g(0) = 0. Let Ts = g(T ). Each Vi is T -invariant, as it is an F [t]-module by evaluation at
T , so each Vi is also Ts-invariant. We also have Ts|Vi = λi1Vi for i = 1, . . . , r, as the λi’s
are eigenvalues of T . Therefore, Ts is semisimple.

Let h = t− g in F [t], so h(0) = 0. Set Tn = h(T ). We have

T = g(T ) + h(T ) = Ts + Tn and TsTn = TnTs.
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In addition,

0 = (T |Vi − λi1Vi)ei = (T |Vi − Ts|Vi)ei = T ein |Vi
for each i, so Tn is nilpotent. This proves (3) and establishes the existence in (1).

If T is a linear automorphism, then 0 is not an eigenvalue of T , so Ts is invertible. Let
Tu = 1V + T−1

s Tn. Then Tu is unipotent as T−1
s Tn = TnT

−1
s is nilpotent. Statement (4)

and the existence in (2) now follow.

We next show the uniqueness in (1). Suppose that we have a semisimple operator T ′s
and a nilpotent operator T ′n satisfying

Ts + Tn = T ′s + T ′n and T ′sT
′
n = T ′nT

′
s

Then Ts − T ′s = T ′n − Tn. By (3), T ′s and T ′n commute with both Ts and Tn, as they
commute with T = T ′s+T ′n. Therefore, T ′n−Tn is nilpotent and by Theorem 46.3 we have
Ts − T ′s is semisimple. Therefore, Ts − T ′s = T ′n − Tn = 0, i.e., Ts = T ′s and Tn = T ′n.

Finally, we show the uniqueness in (3). Suppose that

TsTu = T ′sT
′
u and T ′sT

′
u = T ′nT

′
u

with Tu unipotent. Then S = T ′u − 1V is nilpotent and commutes with T ′s, hence T ′sS
is nilpotent and T = T ′s + T ′sS is a additive Jordan decomposition, so T ′s = Ts (and
Tn = T ′sS). Hence Tu = T−1

s T = T ′−1
s T = T ′u, and we are done. �

Our definition of a semisimple operator T on V is equivalent to the minimal polynomial
qT splitting without any repeated factors over F . The theorem generalizes if we can find an
alternate condition of a linear operator on V when qT does not split over F that will agree
with our definition of a semisimple operator over a field containing F in which qT splits.
Then we can mimic the proof on a factorization of qT , if it is not a product of distinct
linear terms. To do this, one can redefine an operator T to be a semisimple operator on a
vector space V over F if it satisfies the following: Let V be an F [t]-module by evaluation
at T . If W is an F [t]-submodule of V then V = W ⊕W ′ for some F [t]-module W ′, i.e.,
and exact sequence

0→ W → V → W ′ → 0

of F [t]-modules is split exact (cf. Exercise 39.12(12)). With this definition, the theorem
still holds if the characteristic of F is zero. [If the characteristic of F is positive, irreducible
polynomials can have multiple roots over some field containing F .]

Exercises 46.6.

1. Show a unipotent operator on a vector space is an isomorphism and an operator that
is both nilpotent and semisimple on a vector space is the trivial operator.

2. In the proof of Theorem 46.5, show that Vi = ker(T −λi1V )ei ∼= F [t]/
(
(t−λi)ei

)
is the

(t− λi)-primary submodule of V as an F [t]-module.

3. In Theorem 46.5, show if W is an F [t]-submodule of V , i.e., is T -invariant, then the
Jordan decomposition(s) of T induce those on T |W and TV/W (where TV/W (x+W ) =
T (x)).
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47. Addendum: Cayley-Hamilton Theorem

In this addendum, we generalize the Cayley-Hamilton Theorem. Let R be a commu-
tative ring and M a finitely generated R-module. Let

M [t] := {
∑

tixi | xi ∈M almost all xi = 0} =
∞∐
i=0

tiM.

This is clearly an R-module and becomes a finitely generated R[t]-module in the obvious
way.

For example, if V is a finite dimensional vector space over F on basis {vi}, then V [t]
is the F -vector space on basis {tivj | i ≥ 0, j} and a free F [t]-module on basis {vi}. So if
dimF V = n, V [t] ∼= F [t]n.

If f : M → N is an R-homomorphism, define f [t] : M [t] → N [t] by
∑
tixi 7→∑

tif(xi), an R[t]-homomorphism.
Suppose that N is an R[t]-module. Then it is also an R-module and N is completely

determined by

(i) the R-module structure.
(ii) The R-endomorphism f : N → N given by f(x) = tx.

In particular, an R-module becomes an R[t]-module via (i) and (ii). We denote this
R[t]-module Nf . We then have an R[t]-epimorphism ϕf : N [t] → Nf given by

∑
tixi 7→∑

f i(xi).

Theorem 47.1. Let R be a commutative ring and M a finitely generated R-module.
Suppose that f is an R-endomorphism of M . Then, in the notation above, we have an
exact sequence

0→M [t]
t1M [t]−f [t]
−−−−−−→M [t]

ϕf−→Mf → 0

of R[t]-modules.

The exact sequence in the theorem is called the characteristic sequence for f .

Proof. Exactness at the middle M [t]: As(
ϕf ◦ (t1M [t] − f [t])

)
(
∑

tixi) = ϕf
(∑

ti+1xi − tif(xi)
)

=
∑

f i+1(xi)− f i+1(xi) = 0,

we have im(t1M [t] − f [t]) ⊂ kerϕf . If x =
∑
tixi ∈ ker f , then

∑
f i(xi) = 0, hence

x = x−
∑

f i(xi) =
∑
i≥0

(
tixi − f i(xi)

)
=
∑
i>0

(ti1M [t] − f i)(xi).

Check if hi =
∑i

j=0 t
j1M [t]f

i−j[t], then

x =
∑
i>0

(t1M [t] − f [t])
(∑
i>0

hi(xi)
)

lies in im(f(t1M [t] − f [t]).

ϕf is surjective: This follows as ϕf (x) = x for all x ∈M .



47. ADDENDUM: CAYLEY-HAMILTON THEOREM 285

t1M [t]−f [t] is monic: We leave this part of the proof as an exercise noting that t1M [t]−f [t]
raises the “degree” by one and preserves the “leading coefficients”, so induction on degree
works. �

Cramer’s Rule can be stated in the following way: Let R be a commutative ring,
f an R-endomorphism of the free R-module Rn. Set M = coker f = Rn/ im f . Then
there exists an R-endomorphism g of Rn such that fg = gf = (det f)1Rn . In particular,
Rn det f ⊂ im f . If M is a free R-module of rank n on basis B and f ∈ EndR(M), then
M [t] is R[t]-free on B and [f ]B = [f [t]]B. If follows that P (t) := det(t1M [t] − f [t]) is that
characteristic polynomial of f . Applying the characteristic sequence of f in the theorem
implies that P (f)Mf = 0. As the R-endomorphism of Mf defined by Pf (t) is just Pf (f),
we have Pf (f) = 0, i.e., the Cayley-Hamilton Theorem.

Exercises 47.2.

1. Prove that t1M [t] − f [t] in the characteristic sequence is monic.

2. Let R be a commutative ring and A an ideal, and M an R-module generated by n
elements. Suppose that ϕ is an R-endomorphism satisfying ϕ(M) ⊂ AM . Show that
there exists a a monic polynomial f = tn + a1t

n−1 + · · ·+ an in F [t] satisfying ai ∈ Ai

for i = 1, . . . , n, and f(ϕ) = 0 as an endomorphism of M .

3. Let R be a commutative ring and M a finitely generated R-module. Show that any
R-epimorphism of M is an R-automorphism.

4. Let R be a commutative ring and M a free R-module isomorphic to Rn. Prove that
any generating set B of M consisting of n elements is a basis. In particular, show that
this gives another proof that the rank of M is well-defined.





Part 5

Field Theory





CHAPTER XI

Field Extensions

In this chapter, we begin our study of fields. Given a non-constant polynomial, it is
natural to ask what are its roots? To make this more precise, if R is a ring and f is a
non-constant polynomial in a single variable over R, one asks does f have any roots in R.
If so, how many, and if not, does there exist a ring S with R a subring such that f has a
root in S? We have seen that if R is a domain, then the number of distinct roots f has
in R is bounded by the degree of f . The first domain one encounters is the integers. The
arithmetic problem, i.e., for f in Z[t] and monic leads to the study of algebraic number
theory that we shall investigate in Chapter XV and is harder than that over fields. If
R = F is a field, we already know how to obtain a field K containing F such that f
has a root in K. By induction, it is easy to construct a field E containing F for which
the polynomial f splits. We shall show that the smallest such E is essentially unique.
Generalizing this construction, we indicate, using Zorn’s Lemma, how to do this for sets
of polynomials in F [t]. In particular, we construct a field over which every polynomial
in F [t] splits (and is the smallest possible). This field turns out to be an algebraically
closed field, i.e., one in which every non-constant polynomial over it splits. We also use
the theory developed to answer the classical euclidean construction problems using only
straight-edge and compass: the trisection of an angle, doubling of a cube, squaring of the
circle, and construction of regular n-gons, showing how to turn a geometric problem into
an algebraic one. The solution of the first two will be done in this chapter as well as the
last (assuming a result proven in the next chapter) and the third will be done in §73.
Finally, we investigate the difficulty arising from the case of positive characteristic of a
field, where irreducible polynomials can have multiple roots over some bigger field.

48. Algebraic Elements

In this section, given a field F , we are mostly interested in roots of polynomials with
coefficients in F . We have seen before that if f is a non-constant polynomial in F [t], then
there exists a field K containing F such that f has a root in K. In fact, we explicitly
constructed such a field. We shall investigate this situation in depth.

Let K be a field containing F as a subfield, so F ⊂ K. We shall write this as K/F .
We call F the base field of K/F and K the extension field of K/F . If E is a field with
F ⊂ E ⊂ K (as subfields), written K/E/F , we call E an intermediate field of K/F . We
allow E to be K or F . A sequence of fields F = F1 ⊂ · · · ⊂ Fn ⊂ · · · is called a tower of
fields. It may be infinite.

Definition 48.1. Let K/F be an extension of fields. Then K is a vector space over F by
restriction of scalars. We denote the dimension, dimF K, of K as an F -vector space by

289
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[K : F ] and call it the degree of K/F . We call K/F a finite extension if [K : F ] is finite,
and an infinite extension otherwise.

Examples 48.2. 1. If F is any field, thenF/F is a finite extension of degree one.

2. C/R is a finite extension of degree two.

3. R/Q is an infinite extension.

Proposition 48.3. Let L/K/F be an extension of fields. Then L/F is a finite extension
if and only if both L/K and K/F are finite field extensions. Moreover, if L/F is a finite
extension, then

[L : F ] = [L : K][K : F ].

Proof. We prove a stronger statement. By Proposition 28.6, we know that all vector
spaces have bases. Let

B = {xi}I be an F -basis for K,

C = {yj}J be a K-basis for L, and

D = {xiyj}I×J .

Claim. D is an F -basis for L and |D| = |I × J |.
Note xiyj = xi′yj′ if and only if xi = xi′ and yj = yj′ as C is a K-basis of L and xi, xi′ lie
in K, hence |D| = |B||C| = |I × J |.
If we show this, then we are done.

D F -spans L: Let z ∈ L. Then z =
∑

J αjyj for some αj ∈ K almost all zero, as C spans
L as a vector space over K. As B spans K as a vector space over F , each αj =

∑
I cijxi

for some cij ∈ F almost all zero. Hence we have z =
∑

I

∑
J cijxiyj lies in the F -span of

D.

D is F -linearly independent: Suppose that
∑

I×J cijxiyj = 0 for some cij in F almost
all zero. Then

∑
J(
∑

I cijxi)yj = 0. As C is K-linearly independent,
∑

I cijxi = 0 for all
j. As B is F -linearly independent, cij = 0 for all i and j. �

This field theoretic analogue of Lagrange’s Theorem has two analogous consequences.

Corollary 48.4. Let L/K/F be an extension of fields with L/F finite. Then [K : F ] |
[L : F ] and [L : K] | [L : F ]. In particular, if [L : F ] is prime, then K = L or K = F .

If [L : F ] is prime in the above, we say that there exist no nontrivial intermediate fields
in L/F .

Corollary 48.5. If F1 ⊂ · · · ⊂ Fn is a tower of fields with Fn/F1 finite, then

[Fn : F1] = [Fn : Fn−1] · · · [F2 : F1].

Given a field extension, we want to look at intermediate fields. We do this just as we
do to get subgroups of groups, submodules of modules, etc.

Lemma 48.6. Let K be a field and S a nonempty subset of K. Then there exists a unique
minimal subfield F0 of K containing S, i.e., if S ⊂ F ⊂ K with F a field, then F0 ⊂ F .



48. ALGEBRAIC ELEMENTS 291

Proof. Let
F = {F | F a field satisfying S ⊂ F ⊂ K}.

As K ∈ F , the set F is not empty. Set F0 =
⋂
F F . Certainly, S ⊂ F0. We show that F0

works. We first prove that F0 is a field. Indeed if x, y ∈ F0 with x 6= 0, then x and y lie
in any F ∈ F , hence x± y, xy, x−1 also lie in any F in F , establishing F0 is a field. To
finish, we show that F0 is the unique minimal field containing S. But this is clear, for if
E ∈ F , then F0 ⊂

⋂
F F ⊂ E. �

Notation 48.7. Let K/F be a field extension and X a nonempty subset of K. Let
S = F ∪X. The field F0 in Lemma 48.6 will be denoted by F (X). If X = {α1, . . . , αn},
we shall write F (α1, . . . , αn) for F (X). In particular, if α ∈ K, then

F (α) = the unique minimal intermediate field of K/F containing α

and will be called a simple (or primitive) extension of F .

Remark 48.8. Let K/F be a field extension and X a nonempty subset of K. As usual
F [X] will denote the ‘polynomials’ in the x ∈ X with coefficients in F , i.e., if we let
tx, with x ∈ X, be independent variables and T = {tx | x ∈ X}, then F [X] is the
homomorphic image of the evaluation map e : F [T ] → K, a ring homomorphism as F
is commutative, given by tx 7→ x for all x in X (where F [T ] = F [tx]X). As F [X] ⊂ K,
the ring F [X] is a domain. (So ker e is a prime ideal in F [T ].) By the universal property
of quotient fields (Theorem 27.14), we must have F ⊂ F [X] ⊂ qf(F [X]) ⊂ K and
qf(F [X]) ⊂ F (X). It follows by Lemma 48.6 that qf(F [X]) = F (X). In particular, if
x = {α}, then F ⊂ F [α] ⊂ F (α) = qf(F [α]) ⊂ K, with all of these domains and, in fact,
except for possibly F [α], all are fields. Our first problem is to determine when F [α] is a
field.

Remark 48.9.

Let F ⊂ C be a subfield and d ∈ F . Note that we must have Q ⊂ F is a subfield. If
√
d

lies in F , then F = F [
√
d]. So suppose not, i.e., suppose that d is not a square in F . Let

α = a+ b
√
d and 0 6= β = c+ e

√
d in C with a, b, c, e ∈ F . We must have c2 − e2d is not

zero, since d is not a square in F . Therefore,

α

β
=
a+ b

√
d

c+ e
√
d

=
a+ b

√
d

c+ e
√
d
· c− e

√
d

c− e
√
d

=
(a+ b

√
d)(c+ e

√
d)

c2 − e2d

makes sense and lies in F [
√
d]. In particular, F [

√
d] = F (

√
d), hence a field. In this case,

we also have dimF F [
√
d] = 2 with {1,

√
d} an F -basis for F (

√
d). We now compare this

to complex conjugation of C over R. Consider the map

σ : F (
√
d)→ F (

√
d) given by a+ b

√
d 7→ a− b

√
d for a, b ∈ F.

It is a field automorphism satisfying σ(a) = a for all a ∈ F . We call σ an F -automorphism.

In fact, σ(α) = α for α ∈ F (
√
d) if and only if α lies in F , so the set {α ∈ F (

√
d) | σ(α) =

α}, called the fixed field of σ, is precisely F . This means that σ moves every element in
F (α) \F . It is also noteworthy to observe that {1, σ} (with 1 the identity automorphism

1F (
√
d)) is a group of order two which is precisely the F -dimension of F (

√
d).
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Examples 48.10. 1. R[
√
−1] = R(

√
−1) = C, as all are 2-dimensional real vector spaces.

2. Let d ∈ Z. Then
Q[
√
d] = Q(

√
d) = qf(Z[

√
d)])

is a vector space over Q of dimension at most two and exactly two if d /∈ {x2 | x ∈ Z},
in which case {1,

√
d} is a Q-basis.

3. If F is a field, then we have

F < F [t] < F (t) := qf(F [t]), F [t]× = F×, and F (t)× = F (t) \ {0}.
The last follows as F (t) = {f/g | f, g ∈ F [t] with g 6= 0} is a field.

Definition 48.11. Let K/F be a field extension and α an element of K. We say

(1) α is algebraic over F if there exists a nonzero polynomial f in F [t] satisfying
f(α) = 0, i.e., α is a root of a nonzero polynomial with coefficients in F (hence
of a monic polynomial in F [t]).

(2) α is a transcendental element over F if it is not algebraic over F .

Our main interest in field theory is the study of algebraic elements over a fixed field.
A good analog is to consider linear operators on a finite dimensional vector space. His-
torically the study of algebraic elements was the study of roots of polynomials in Q[t].

Examples 48.12. Let F be a field.

1. Every element α in F is algebraic over F as α is a root of the polynomial t−α in F [t].

2. Let a, b be elements in Q and α = a+b
√
−1 in C. Then α is a root of t2−2at+(a2 +b2)

in Q[t], so α is algebraic over Q.

3. Suppose F ⊂ C and d ∈ F . Then F [
√
d] = F (

√
d). Let α be an element in F [

√
d].

We can write α = a + b
√
d for some a, b ∈ F . Then α is a root of the polynomial

t2 − 2at+ (a2 − b2d) in F [t], hence is algebraic over F .

4. Lindemann’s Theorem says that the element π is transcendental over Q. This is not
easy [cf. Section 73]. It is easier to show that the real number e is transcendental over
Q [cf. Section 71], as is the Liouville number

∑
1/10n! [cf. Section 70]. We have seen

that R is uncountable. The set of roots of all nonzero polynomials over Q is countable,
since there are countably many polynomials over Q each having finitely many roots.
Therefore, “most” elements in R are transcendental. However, it is usually very difficult
to show that a specific real number is transcendental over Q. It is still unknown if πe

is transcendental over Q.

5. The real numbers π and e are algebraic over the field R. The notion of being transcen-
dental is a relative notion, it depends on the field F unlike the indeterminant t which
by definition is transcendental over any field F . Of course, if an element is algebraic
over a field, it is algebraic over any extension field.

6. The complex number e
√
−1π is algebraic over Q as it is equal to −1, but it can be shown

that the number eπ is transcendental over Q (cf. Theorem 1.4).

7. Let L/K/F be field extensions. If α is an element in L algebraic over F then it is
algebraic over K, since F [t] ⊂ K[t]. However, in general, if α is algebraic over K it
need not be algebraic over F .
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8. Let K/F be a field extension and u an element in K that is transcendental over F .
We know that the evaluation map eu : F [t] → F [u] given by f 7→ f(u) is a ring
epimorphism and an F -linear transformation. Suppose that f lies in ker eu. As u is
transcendental over F , we must have f = 0, hence eu is a ring monomorphism. As it is
also surjective, eu : F [t]−̃→F [u] is an isomorphism. The variable t is not a unit in F [t],
since F [t]× = F×. Therefore, we also have F [t] < F (t), so F [u] < qf(F [u]) = F (u).
In addition, as {ti | i ≥ 0} is an F -basis for F [t], we have {ui | i ≥ 0} is an F -basis for
F [u]. In particular, F [u] and F (u) are both infinite dimensional vector spaces over F .

Note: By (4), this means that Q[π] ∼= Q[t]. But R[π] = R < R[t], so being transcendental
is a relative notion depending on the base field F .

The main theorem about an algebraic element over a field is given by the following
foundational result, much of which we have implicitly seen before.

Theorem 48.13. Let K/F be an extension of fields and α an element in K that is
algebraic over F . Then there exists a unique monic irreducible polynomial mF (α) in F [t]
satisfying all of the following:

(1) α is a root of mF (α).
(2) If α is a root of a nonzero polynomial g in F [t], then mF (α) | g in F [t] and

deg g ≥ degmF (α) with equality if and only if g = amF (α) for some nonzero
element a ∈ F .

(3) Let n = degmF (α). Then F (α) = F [α] and {1, α, . . . , αn−1} is an F -basis for
F [α] = F (α). In particular,

[F (α) : F ] = dimF F [α] = degmF (α).

The polynomial mF (α) in the theorem is called the minimal or irreducible polynomial of
α over F . The integer degmF (α) = [F (α) : F ] is called the degree of α over F .

Proof. We begin the proof by modifying the argument in Construction 45.1. Let
eα : F [t]→ F [α] be given by f 7→ f(α), evaluation at α, a ring epimorphism and F -linear
transformation of vector spaces over F . As α is algebraic over F , α is the root of a nonzero
polynomial in F [t] which may be assumed to be monic. Therefore, there exists a positive

integer N such that αN lies in the F -vector space
∑N−1

i=0 Fαi. It follows by induction that

αN+j lies in
∑N−1

i=0 Fαi for all j ≥ 0, so F [α] =
∑N−1

i=0 Fαi is a finite dimensional vector
space over F . Since F [t] is an infinite dimensional vector space over F , it follows that eα
cannot be a monomorphism, so 0 < ker eα < F [t] (eα(1) = 1, so eα is not the trivial map).

Since F [t] is euclidean, it is a PID, hence there exists a unique non-constant monic
polynomial f in F [t] such that ker eα = (f). [It is unique, as generators of ker eα only differ
by a nonzero element in F .] By the First Isomorphism Theorem, F [α] = im eα ∼= F [t]/(f).
Let n = deg f .

Claim. f = mF (α) works.

As F [t]/(f) ∼= F [α] ⊂ K, it is a domain, so 0 < (f) < F [t] is a prime ideal. In particular,
f must be an irreducible polynomial. Since F [t] is a PID, it must be a maximal ideal,
hence F [t]/(f) ∼= F [α] is a field, so F [α] = F (α).

We next show that B = {1, α, . . . , αn−1} is an F -basis for F [α]. Let g ∈ F [t]. As F [t]
is euclidean (under the degree map), g = fq + r for some q, r ∈ F [t] with r = 0 or
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deg r < deg f . Since eα is a ring homomorphism, g(α) = f(α)q(α) + r(α) = r(α), which
lies in

∑n−1
i=0 Fα

i, the span of B. Moreover, g(α) = 0 if and only if r(α) = 0. As r = 0
or deg r < deg f , we have r(α) = 0 if and only if r ∈ ker eα if and only if f | r in F [t]
if and only if r = 0. We conclude that if g(α) =

∑n−1
i=0 aiα

i = 0 with ai ∈ F , then each
ai = 0. Consequently, B is also F -linearly independent, hence an F -basis for F [α]. The
other needed properties of f now follow easily. �

Remarks 48.14. Let K/E/F be field extensions and α in K an algebraic element over
F .

1. mE(α) | mF (α) in E[t] and degmE(α) ≤ degmF (α). [Of course, they can be different.]

2. If f ∈ F [t] is monic and irreducible with f(α) = 0, then f = mF (α).

3. If g ∈ F [t] satisfies deg g = [F (α) : F ] and g(α) = 0, then g is irreducible.

Proposition 48.15. (Characterization of algebraic elements) Let K/F be a field exten-
sion and α ∈ K. Then α is algebraic over F if and only if [F (α) : F ] is finite.

Proof. (⇒): This follows from Theorem 48.13.

(⇐): Suppose that n = [F (α) : F ]. Then {1, α, . . . , αn} is F -linearly dependent. There-
fore, there exist ai ∈ F , 1 ≤ i ≤ n, not all zero such that

∑n
i=0 aiα

i = 0, so α is a root
of the nonzero polynomial

∑n
i=0 ait

i in F [t]. �

Corollary 48.16. Let K/F be a finite field extension. Then every element in K is
algebraic over F .

Proposition 48.17. (Characterization of transcendental elements) Let K/F be a field
extension and u ∈ K. Then the following are equivalent:

(1) u is transcendental over F .
(2) F [u] ∼= F [t].
(3) F [u] < F (u).
(4) [F (u) : F ] is infinite.
(5) dimF F (u) is infinite.

Proof. By Example 48.12(8), we know that (1) implies (2), (3), (4), and (5), and if
(2), (3), (4), or (5) holds, then u cannot be algebraic and (1) must also hold. �

Corollary 48.18. Let K/F be a field extension. If a1, . . . , ar are elements of K algebraic
over F , then F [a1, . . . , ar] = F (a1, . . . , ar) and [F (a1, . . . , ar) : F ] ≤

∏r
i=1[F (ai) : F ] (with

strict inequality possible).

Proof. As ar is algebraic over F , it is algebraic over F (a1, . . . , ar−1). By induc-
tion and the r = 1 case (that we have done), F [a1, . . . , ar] = F [a1, . . . , ar−1][ar] =
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F (a1, . . . , ar−1)[ar] = F (a1, . . . , ar) and

[F (a1, . . . , ar) : F ] ≤ [F (a1, . . . , ar) : F (a1, . . . , ar−1)]
r−1∏
i=1

[F (ai) : F ]

= degmF (a1,...,ar−1)(ar)
r−1∏
i=1

[F (ai) : F ]

≤
r∏
i=1

[F (ai) : F ].

�

Corollary 48.19. Let A be a domain containing a field F . If A is a finite dimensional
vector space over F , then A is a field.

Proof. If A has an F -basis B, then A = F [B] and its quotient field K = F (B) is a
finite dimensional vector space over F on basis B, hence each element of B is algebraic
over F . It follows that A = K by Corollary 48.18. �

If K/F is a field extension, we arrive at the important conclusion that the set of
elements in K algebraic over F form an intermediate field.

Theorem 48.20. Let K/F be a field extension with a, b elements in K algebraic over F .
Then a± b, ab, and b−1, if b 6= 0, are algebraic over F . In particular, the set of elements
in K algebraic over F forms an intermediate field of K/F .

Proof. Let γ = a± b, ab, or b−1, if b 6= 0. Then F ⊂ F (γ) ⊂ F (a, b), so

[F (γ) : F ] ≤ [F (a, b) : F ] ≤ [F (a) : F ][F (b) : F ] <∞.
The result follows. �

Definition 48.21. Let K/F be a field extension. We say that it is an algebraic extension
(or simply algebraic) if every element of K is algebraic over F . If K/F is not algebraic,
we say that it is a transcendental extension.

We have shown that every finite field extension is algebraic. The converse is false, as
we shall see below. First, however, we show that being an algebraic extension is transitive.
In fact, we have

Theorem 48.22. Let L/K/F be field extensions. Then L/F is algebraic if and only if
both L/K and K/F are algebraic.

Proof. (⇒): Any element in L algebraic over F is clearly algebraic over K and any
element in K lies in L so is algebraic over F .

(⇐): Let α be an element of L. We must show that α is algebraic over F . As it
is algebraic over K, the minimal polynomial mK(α) =

∑n
i=0 cit

i in K[t] exists. Let
E = F (c0, . . . , cn−1) ⊂ K. Since the elements c0, . . . , cn−1 are algebraic over F , we have
[E : F ] <∞. As mK(α) ∈ E[t], we also have [E(α) : E] <∞, so

[F (α) : F ] ≤ [E(α) : F ] = [E(α) : E][E : F ] <∞
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and α is algebraic over F . �

The above trick is very useful. If you want to prove a result and can reduce to a finite
amount of data, you can often reduce to checking in a nicer set, e.g., in the above we
reduced from an algebraic extension to a finite extension because we needed to attach
only finitely many elements algebraic over the base field. In commutative ring theory, a
finite amount of data over a commutative ring often reduces a proof to a Noetherian ring
containing it by the Hilbert Basis Theorem.

Examples 48.23. 1. C/R and Q(
√
d)/Q, with d an integer, are algebraic extensions.

2. R/Q is transcendental as R is uncountable (by Cantor’s Theorem) and Q is countable.

3. Let

Ω := {α ∈ C | α algebraic over Q}.
Ω is a countable field as it is the set of roots of countably many nonzero polynomials,
each having finitely many roots.

Claim. Ω/Q is not finite:

Let p be a (positive) prime in Z and n a positive integer. By Eisenstein’s Criterion
(35.11(1)), tn − p in Q[t] is irreducible and has a root α in Ω. In particular, [Ω : Q] ≥
[Q(α) : Q] = degmQ(α) = deg(tn − p) = n, establishing the claim.

4. Ω in (3) is algebraically closed, i.e., every non-constant polynomial in Ω[t] has a root
in Ω. To see this, we use the Fundamental Theorem of Algebra (to be proved in 57.12
below) which says that C is algebraically closed. If f is a non-constant polynomial in
Ω[t], it has a root α in C, so Ω(α)/Ω is algebraic. As Ω/Q is algebraic, it follows that
so is Ω(α)/Q, hence α is algebraic over Q hence is in Ω. As C is uncountable, we must
have Ω < C.

5. The same argument as in (4) shows if K/F with K algebraically closed and Ω the
set of elements of K that are algebraic over F , then Ω is an algebraically closed field.
Moreover, by definition, if F < E < Ω is a field, then E is not algebraically closed. We
call Ω an algebraic closure of F . We shall see in §51 that all such algebraic closures of
a field F are unique up to a field isomorphism fixing F .

Calculations 48.24. 1. Let p ∈ Z+ be a prime. Then the polynomial f = tp−1 + tp−2 +
· · ·+ t+ 1 is irreducible in Q[t] by the application of Eisenstein’s Criterion in 35.11(3).
Let ζp be a root of f in C. Then f = mQ(ζp), so [Q(ζp) : Q] = deg f = p − 1 = ϕ(p)
(where ϕ is the Euler φ-function) and {1, ζp, . . . , ζp−2

p } is a Q-basis for Q(ζp). The
element ζ is called a primitive pth root of unity.

[Note that tp − 1 = (t− 1)(tp−1 + tp−2 + · · · t+ 1) is a factorization into irreducibles in
Q[t]. There exists an irreducible polynomial of degree n dividing tn − 1 in Q[t] when n
is not a prime, but it is not so easy.]

2. Let α in C be a root of the irreducible polynomial f = t3 − 2t+ 2 in Q[t] (irreducible
by Eisenstein’s Criterion). So [Q(α) : Q] = deg f = degmQ(α) = 3 and B = {1, α, α2}
is a Q-basis for Q(α). As α3 = 2α−2 in Q(α), we have −α−1 = (α2/2)−1 in Q(α). Let
β ∈ Q(α), so Q(β) ⊂ Q(α), hence [Q(β) : Q] | [Q(α) : Q] = 3. Therefore, either β ∈ Q or
Q(β) = Q(α). For example, suppose that β = α2 − α. As B is Q-linearly independent,
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β /∈ Q, so Q(β) = Q(α) and C = {1, β, β2} is a Q-basis for Q(β) and {1, β, β2, β3} is
Q-linearly dependent. Computation shows that

1 = 1, β = α2 − α, β2 = 3α2 − 6α + 4

and

(*) β3 = 16α2 − 28α + 18.

It follows that the change of basis matrix for the basis C to the basis B is

[Id]C,B =

1 0 4
0 −1 −6
0 1 3

 .

Inverting this matrix to [Id]B,C then shows that

1 = 1, α = −β
2

3
+ β +

4

3
, α2 = −β

2

3
+ 2β + 4 +

4

3
,

and substituting this into (*) yields β3 − 4β2 − 4β − 2 = 0, i.e., β is a root of monic
g = t3 − 4t2 − 4t− 2 in Q[t]. This must be the irreducible polynomial mQ(β) as g has
the same degree and satisfies g(β) = 0. [Of course, we also know that it is irreducible
by Eisenstein’s Criterion.]

3. It is easy to check that [Q(
√

2,
√

3) : Q] = 4 with {1,
√

2,
√

3,
√

6} a Q-basis for
Q(
√

2,
√

3) (by showing that
√

3 cannot lie in Q(
√

2)). [Cf. Exercise 50.18(12) for
the generalization.] Using this we determine [Q(

√
2 +
√

3) : Q] and mQ(
√

2 +
√

3). Let

K = Q(
√

2 +
√

3) ⊂ Q(
√

2,
√

3). So [Q(
√

2 +
√

3) : Q] = 1, 2 or 4. Let α =
√

2 +
√

3.
Then

1 = 1, α =
√

2 +
√

3, α2 = 5 + 2
√

6.

These must be Q-linearly independent (why?). It follows that the set {1, α, α2, α3}must
be a Q-basis for Q(

√
2,
√

3). In particular, Q(α) = K = Q(
√

2,
√

3). Now α2 = 5+2
√

6,
so the polynomial g = t2−(5+2

√
6) lying in Q(

√
6)[t] has a root α in K with α 6∈ Q(

√
6).

Consequently, [K : Q(
√

6)] = 2 and g = mQ(
√

6)(α). Computation shows that

h = (t2 −
(
5 + 2

√
6)
)(
t2 − (5− 2

√
6)
)

= t4 − 10t2 + 1,

so it lies in Q[t] and has α as a root in K = Q(
√

2,
√

3) with deg h = degmQ(α) = 4 =
[K : Q]. Thus h = mQ(α).

We shall show later that if F is a field of characteristic zero and K/F a finite extension,
that there always exists a θ in K such that K = F (θ). [Cf. Theorem 57.9.] In general,
such a θ is hard to find, although many different ones work. This result is also not true
for arbitrary fields of positive characteristic p > 0.

Exercises 48.25.

1. Let D is a division ring containing a field F and α ∈ D a root of a nonzero polynomial
in F [t]. Show that F [α] is a field. [Cf. A finite division ring is a field.]

2. (a) Find u ∈ R such that Q(u) = Q(
√

2, 3
√

5).
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(b) Describe how you how you would find all w ∈ Q(
√

2, 3
√

5) such that Q(w) =
Q(
√

2, 3
√

5).

3. Let a, b ∈ K be algebraic over F of degrees m,n respectively with m,n relatively prime.
Show that [F (a, b) : F ] = mn.

4. Show that [Q(
√

2,
√

3) : Q] = 4 with {1,
√

2,
√

3,
√

6} a Q-basis for Q(
√

2,
√

3).

5. If |F | = q <∞ show:
(a) There exists a prime p such that char F = p.
(b) q = pn some n.
(c) aq = a for all a ∈ F .
(d) If b ∈ K is algebraic over F then bq

m
= b for some m > 0.

6. Let u be a root of f = t3 − t2 + t+ 2 in Q[t] and K = Q(u).
(a) Show that f = mQ(u).
(b) Express (u2 + u + 1)(u2 − u), and (u − 1)−1 in the form au2 + bu + c, for some

a, b, c ∈ Q.

7. Let ζ = cos π
6

+
√
−1 sin π

6
in C. Show that ζ12 = 1 but ζr 6= 1 for 1 ≤ r < 12. Show

also that [Q(ζ) : Q] = 4 and find mQ(ζ).

8. Let K = F (u), u algebraic over F and degree of u odd. Show that K = F (u2).

9. Let u be transcendental over F and F < E ⊂ F (u). Show that u is algebraic over E.

10. Let f, g ∈ F [t] be relatively prime and suppose that u = f/g lies in F (t) \ F . Show
that F (t)/F (u) is finite of degree d = max{deg(f), deg(g)}.

11. If f = tn − a ∈ F [t] is irreducible, u ∈ K is a root of f , and n/m ∈ Z, show that

[F (um) : F ] =
n

m
. What is mF (um)?

12. If an is algebraic over a field F for some n > 0, show that a is algebraic over F .

49. Addendum: Transcendental Extensions

What can we say about a field extension of a field that is not algebraic, i.e., is tran-
scendental? In this short section, we answer this question, leaving most of the details to
the reader.

Definition 49.1. Let K/F be an extension of fields and suppose that B = {xi | i ∈ I}
is a subset of K. We say that the set B is algebraically independent over F if xi 6= xj for
i 6= j and if f ∈ F [B] satisfies f(xi)I = 0, then f = 0. This is equivalent to

{xni1i1
· · ·xnirir | nij ≥ 0 for all ij in I, some r ≥ 0}

is an F -linearly independent set for the F -vector space F [B].

For example, a set of indeterminants T = {ti | i ∈ I} is an algebraically independent set
in the quotient field F (T ) of F [T ]. A maximal algebraically independent subset B in an
extension field K of F is called a transcendence basis for K over F .

Remarks 49.2. Let K/F be an extension of fields.

1. There exists a transcendence basis for K over F . If K/F is algebraic, it is the empty
set. A proof of this is analogous to the proof of the existence of bases for vector spaces.
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2. If B is a transcendence basis for K over F then K/F (B) is algebraic.

3. The set {t1, . . . , tn} is a transcendence basis for F (t1, . . . , tn) over F .

4. The set B = {xi}I ⊂ K is a transcendence basis for K over F if and only if B is a
maximal subset of K satisfying F (B) ∼= F ({ti}I).

5. The extension K/F is called finitely generated if there exists a finite set S ⊂ K such
that K = F (S). If K/F is finitely generated, then K has a finite transcendence basis
over F .

The analogue of dimension of vector spaces holds for the cardinality of transcendence
bases. The proof for the case in which K/F finitely generated is analogous to the so-called
Replacement Theorem used to prove that dimension is well-defined for finite dimensional
vector spaces. We shall only prove this case in some detail.

Proposition 49.3. Let K/F be an extension of fields. Then any two transcendence bases
of K over F have the same cardinality.

Proof. Although this follows from the fact that the cardinality of any basis for a fixed
vector space is well-defined, we present a proof in the case that K/F is a field extension
and K has a finite transcendence basis {x1, . . . , xn} over F . Suppose that {y1, . . . , ym}
is a subset of K that is algebraically independent over F . We must show m ≤ n. As
{x1, . . . , xn} is a maximal algebraically independent set over F , the set {y1, x1, . . . , xn}
must be algebraically dependent, i.e., is not algebraically independent. Therefore, there
exists a nonzero polynomial f ∈ F [t0, t1, . . . , tn] satisfying f(y1, x1, . . . , xn) = 0. By
assumption, y1 occurs nontrivially in f as well as some xi, say x1. Then x1 is alge-
braic over F (y1, x2, . . . , xn). Hence both F (x1, . . . , xn) and F (y1, x1, x2, . . . , xn) are alge-
braic over F (y1, x2, . . . , xn). It follows that K/F (y1, x2, . . . xn) is algebraic. A subset B
of {y1, x2, . . . , xn} must be a transcendence basis of K over F and it must include y1,
for if B < {y1, x2, . . . , xn}, reversing the argument would show that a proper subset of
{x1, . . . , xn} would be a transcendence basis for K over F . It follows that {y1, x2, . . . , xn}
is a transcendence basis for K over F . The argument continues, as in the proof of the
Replacement Theorem for vector spaces, by throwing in y2 and seeing that we have to
throw away some xi in {x2, . . . , xn}, etc. It follows that m ≤ n. �

Let K/F be a field extension. Then the cardinality of a transcendence basis B for K
over F is called the transcendence degree of K/F and is denoted by tr degFK. It follows
that K/F is finitely generated if and only if tr degFK is finite and K/F (B) is a finite
extension.

Proposition 49.4. Let L/K/F be field extensions. Then tr degFL is finite if and only
if both tr degFK and tr degKL are finite. Moreover, if tr degFL is finite, then

tr degFL = tr degKL+ tr degFK.

Exercises 49.5.

1. Prove that if K/F is an extension of fields, then there exists a transcendence basis for
K over F .
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2. If K/F is an extension of fields, prove that B = {xi}I ⊂ K is a transcendence basis
for K/F if and only if B is a maximal subset of K satisfying F (B) ∼= F ({ti}I) and
F [B] ∼= F [{ti}I ].

3. Prove Proposition 49.4.

50. Splitting Fields

We have shown in Kronecker’s Theorem 34.12 that an irreducible polynomial over a
field F has a root in an extension field. Indeed we construct such an extension as follows:

Let F be a field and f an irreducible polynomial in F [t]. As F [t] is a PID, the nontrivial
prime ideal (f) in F [t] is maximal, so K = F [t]/(f) is a field. Let : F [t] → K be the
canonical epimorphism given by g 7→ g + (f). The composition of maps F ⊂ F [t] → K
is monic, since F is simple. Consequently, we can, and do, view this composition as an
inclusion of F into K, i.e., we identify a in F and a in K. Therefore, we view K/F is a
field extension. Under this identification,

g :=
∑
i

ait
i 7→ g =

∑
ait

i
=
∑

ait
i

= g(t)

is evaluation at t. In particular, 0 = f = f(t) in K, so f ∈ F [t] ⊂ K[t] has a root in K.
If h lies in F [t] then, as F [t] is euclidean, h = fq + r in F [t] for some q, r ∈ F [t] with
r = 0 or deg r < deg f . Therefore, h = fq + r = r. It follows that if n = deg f , then

B = {1, t, . . . , tn−1} spans the vector space K over F . As h = 0 in K if and only f | h
in K[t], we have h = 0 or deg f ≤ deg h. It follows that B is an F -basis for K (why?),
f = (lead f)mF (t), and n = deg f = degmF (t) = [K : F ].

So we have proved

Proposition 50.1. Let F be a field and f an irreducible polynomial in F [t]. Then there
exists an extension K/F of degree deg f such that f has a root in K.

Generalizing (as we did before), we have:

Theorem 50.2. (Kronecker’s Theorem) Let F be a field and f a non-constant polynomial
in F [t]. Then there exists an algebraic extension K/F such that f has a root in K and
[K : F ] ≤ deg f .

Proof. Let f1 | f in the UFD F [t] with f1 irreducible. Then f has a root in the field
K = F [t]/(f1), as f1 does, with [K : F ] = deg f1 ≤ deg f . �

Definition 50.3. Let K/F be an extension of fields and f a non-constant polynomial
in F [t]. We say that f splits over K if f factors into a product of linear polynomials in
K[t] and that K is a splitting field of f over F or K/F is a splitting field of f if K is a
minimal field extension of F such that f splits over K, i.e.,

(1) f splits over K.
(2) Either K = F or whenever K/E/F are field extensions with E < K, the poly-

nomial f does not split over E.

The existence of splitting fields of a non-constant polynomial now will follow by an
easy induction using Kronecker’s Theorem.
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Theorem 50.4. Let F be a field and f a non-constant polynomial in F [t]. Then there
exists a splitting field K of f over F satisfying [K : F ] ≤ (deg f)!.

Proof. Let n = deg f . By Kronecker’s Theorem, there exists a field extension K1/F
such that f = (t − α1)f1 in K1[t] with f1 ∈ K1[t] and [K1 : F ] ≤ n. By induction, there
exists a splitting field K2 of f1 over K1 satisfying [K2 : K1] ≤ (deg f1)! = (n− 1)!. Thus
[K2 : F ] = [K2 : K1][K1 : F ] ≤ n! and f splits over K2. By well-ordering, there exists
an intermediate field K2/K/F with K a splitting field of f over F and [K : F ] ≤ n!. [Is
K = K2?] �

Remarks 50.5. Let F be a field and f a non-constant polynomial in F [t] of degree n,
K a splitting field of f over F , and α1, . . . , αn the roots of f in K. [They may not be
distinct.]

1. We have K = F (α1, . . . , αn) and the proof of the theorem shows that [K : F ] ≤
(deg f)! = n! = |Sn|. One often calls the splitting field K of f over F the root field of
f over F for this reason.

2. Let L/F be a field extension with both K and L lying in some larger field. Then
L(α1, . . . , αn) is a splitting field of f over L. Of course, it is possible that L =
L(α1, . . . , αn).

3. If K/L/F are field extensions, then K is a splitting field of f over L.

4. If g | f in F [t] with g a non-constant polynomial, then g splits over K, hence there
exists an intermediate field K/E/F such that E is a splitting field of g over F .

We turn to uniqueness statements for splitting fields. We shall do this in greater
generality, so we need some notation.

Definition 50.6. Let R1 ⊂ S1 and R2 ⊂ S2 be commutative rings and ϕ : R1 → R2 and
τ : S1 → S2 be ring homomorphisms. We say that τ lifts or extends ϕ if τ |R1 = ϕ, i.e.,
we have a commutative diagram:

S1
τ−−−→ S2

inc

x xinc
R1

ϕ−−−→ R2

where inc is the inclusion map. If R = R1 = R2, ϕ = 1R, and τ lifts ϕ, we call τ an
R-algebra homomorphism. If, in addition, τ is an isomorphism (respectively, monomor-
phism, epimorphism), then we call τ an R-algebra isomorphism (respectively, R-algebra
monomorphism, R-algebra epimorphism). (Cf. Remark 26.11.) If S = S1 = S2 and τ
is an automorphism, we call it an R-algebra automorphism. As is standard, if R = F
is a field, we call such an F -algebra homomorphism (respectively, F -algebra monomor-
phism, F -algebra epimorphism, F -algebra isomorphism, F -algebra automorphism (when
appropriate) just an F -homomorphism (respectively, F -monomorphism, F -epimorphism,
F -isomorphism, F -automorphism). Of course, an F -algebra homomomorphism is also a
F -vector space linear transformation, but the converse is not true in general. Since these
standard notations conflict with our usage of a module homomorphism if F is a field, a
F -vector space homomorphism will be called an F -linear homomorphism or an F -linear
transformation from now on.
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Examples 50.7. 1. Let ϕ : R → S be a ring homomorphism of commutative rings.
Define ϕ̃ : R[t] → S[t] by

∑
ait

i →
∑
ϕ(ai)t

i, a ring homomorphism extending ϕ.
Given such a ϕ, we shall always let ϕ̃ denote this map. If ϕ is a monomorphism,
respectively an epimorphism, isomorphism, then ϕ̃ is a monomorphism, respectively
an epimorphism, isomorphism.

2. Complex conjugation : C → C given by a + b
√
−1 7→ a − b

√
−1, for a, b ∈ R is an

R-automorphism. In fact, it is an R-involution, i.e., an automorphism of order two.

3. If F is a field, as we always view F ⊂ F [t]/(f) for any non-constant polynomial f
in F [t], F [t]/(f) is an F -algebra. [By the definition of R-algebra A given in Remark
26.11, we only need a ring homomorphism of a commutative ring R into the center of
a ring A.]

To prove a uniqueness statement for splitting fields, we use an approach that we
shall often use, viz., first prove a result for irreducible polynomials and then proceed to
arbitrary ones. We begin with an analysis of irreducible polynomials.

Lemma 50.8. Let ϕ : F → F ′ be a field isomorphism, f an irreducible polynomial in
F [t] and f ′ = ϕ̃(f). Then

(1) f ′ is an irreducible polynomial in F ′[t].
(2) There exists a field isomorphism τ : F [t]/(f)→ F ′[t]/(f ′) extending ϕ and taking

the root t = t+ (f) in F [t]/(f) to the root t = t+ (f ′) in F ′[t]/(f ′).

Proof. (1) is clear, so both F [t]/(f) and F ′[t]/(f ′) are fields. Let : F ′[t] →
F ′[t]/(f ′) be the canonical epimorphism and µ the composition

F [t]
ϕ̃−→ F ′[t] −→ F ′[t]/(f ′).

As ϕ is an isomorphism, so is ϕ̃. In particular, µ is epic. By definition, ker = (f ′), so ϕ̃
an isomorphism implies that

kerµ = {h ∈ F [t] | µ(h) = 0} = {h ∈ F [t] | ϕ̃(h) ∈ (f ′)}
= {h ∈ F [t] | h ∈ (f)} = (f).

Therefore, µ induces an isomorphism µ : F [t]/(f) → F ′[t]/(f ′) given by g + (f) 7→
ϕ̃(g)+(f ′) by the First Isomorphism Theorem. As µ|F = µ|F = ϕ and µ

(
t+(f)

)
= t+(f ′),

the map τ = µ works. �

Lemma 50.9. Let K/F be an extension of fields and f an irreducible polynomial in F [t].
If α in K is a root of f , then there exists an F -isomorphism

θ : F [t]/(f)→ F (α) given by t+ (f) 7→ α.

Proof. Let eα : F [t] → F [α] by g 7→ g(α) be the evaluation map at α, a ring
epimorphism, and, in fact, an F -epimorphism. As f(α) = 0, the element α is algebraic
over F , so, as before, eα induces an F -isomorphism θ : F [t]/

(
mF (α)

)
→ F [α] = F (α).

As f is irreducible with root α, we have (f) =
(
mF (α)

)
(by the proof of Theorem 48.13),

so θ works. �

By combining these two lemmas, we shall easily deduce the following:
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Proposition 50.10. Let ϕ : F → F ′ be a field isomorphism, f an irreducible polynomial
in F [t] and f ′ = ϕ̃(f) ∈ F ′[t]. Suppose that K/F is a field extension with α a root of
f in K and K ′/F ′ a field extension with α′ a root of f ′ in K ′. Then there exists an
isomorphism σ : F (α) → F ′(α′) extending ϕ and satisfying σ(α) = α′. Moreover, the
multiplicity of the root α of f in F (α) is the same as the multiplicity of the root β of f
in F (α′).

Proof. The two lemmas determine isomorphisms

F (α)
θ←−−−−

lifts 1F
F [t]/(f)

τ−−−→
lifts ϕ

F ′[t]/(f ′)
θ′−−−−→

lifts 1F ′
F ′(α′)

with θ
(
t + (f)

)
= α, τ

(
t + (f)

)
= t + (f ′), and θ′

(
t + (f ′)

)
= α′. The map θ′ ◦ τ ◦ θ−1

works. Moreover, if f = (t − α)rh in F (α)[t] with f ′(α) 6= 0, then the isomorphism σ̃
takes f to f ′ = (t− α′)rh′ in F (α)[t] with f(α′) 6= 0 where h′ = σ̃(h). �

The following important corollary follows immediately:

Corollary 50.11. Let K/F be an extension of fields, f an irreducible polynomial in F [t]
and α, β two roots of f in K. Then the map

σ : F (α)→ F (β) given by
∑

ciα
i 7→

∑
ciβ

i

is an F -isomorphism. Moreover, the multiplicity of the root α of f in F (α) is the same
as the multiplicity of the root β of f in F (β).

The previous proposition is the first step in the induction proof of the result to which
we have been striving.

Theorem 50.12. Let ϕ : F → F ′ be an isomorphism of fields, f a non-constant polyno-
mial in F [t] and f ′ = ϕ̃(f) ∈ F ′[t]. Suppose that E is a splitting field of f over F and E ′

is a splitting field of f ′ over F ′. Then there exists an isomorphism τ : E → E ′ extending
ϕ and taking the set of roots of f in E bijectively onto the set of roots of f ′ in E ′ (and
preserving multiplicities).

An immediate consequence of this theorem is the result that we had wished to prove.

Corollary 50.13. (Uniqueness of Splitting Fields) Let F be a field and f a non-constant
polynomial in F [t]. If E and E ′ are splitting fields of f over F , then there exists an
F -isomorphism E → E ′ taking the set of roots of f in E bijectively onto the set of roots
of f in E ′ (and preserving multiplicities). In particular, a splitting field of f over F is
unique up to an F -isomorphism.

Of course, one would like to say given a polynomial there is a unique splitting field.
We could do this if we assume that all the fields in which we work lie in some larger field
Ω. Then one could say that a field extension E/F is the splitting field of a non-constant
polynomial f in F [t], as the splitting field of f is uniquely determined by the roots of f
in Ω. For example, we view all splitting fields of rational polynomials to lie in C.

Proof. (of the theorem.) We induct on n = [E : F ].

n = 1: We have E = F , so f splits over F , hence f ′ splits over F ′. In particular, if
f = a

∏
(t− αi) in F [t], then f ′ = ϕ(a)

∏(
t− ϕ(αi)

)
in F ′[t], and the result follows.
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n > 1: If f does not split over F , then f = gh, for some polynomials g and h in F [t], with
g an irreducible polynomial satisfying deg g > 1. As ϕ̃ : F [t] → F ′[t] is an isomorphism,
f ′ = g′h′ with g′ = ϕ̃(g) irreducible of degree greater than one, and h′ = ϕ̃(h). Let α ∈ E
be a root of g in E and α′ ∈ E ′ be a root of g′ in E ′ (which exist as f , f ′ split over E,
E ′, respectively). By Proposition 50.10, there exists an isomorphism τ1 : F (α) → F ′(α′)
extending ϕ and mapping α to α′. Let f = (t− α)f1 in F (α)[t]. Then ϕ̃(f) = (t− α′)f ′1
in F ′(α′)[t] with f ′1 = τ̃1(f1) and ϕ̃(f) = τ̃1(f).

We know that E is a splitting field of f1 over F (α) and E ′ is a splitting field of f ′1 over
F (α′). Since [E : F (α)] < [E : F ], induction provides an isomorphism τ : E → E ′ lifting
τ1, hence ϕ, and taking the set of roots of f1 bijectively onto the set of roots of f ′1 (and
preserving multiplicity of roots). The result now follows. �

The proof above filled in the maps in the following picture:

E
τ

// E ′

F (α)
τ1
// F ′(α′)

F
ϕ

// F ′

where we shall always use the vertical lines in such pictures as the appropriate set inclusion.
We now look at what we have accomplished, in the following crucial discussion.

Remark 50.14. Let F be a field, f a non-constant polynomial in F [t] of degree n, and
L a splitting field of f over F . Let L/K/F . Define

AutF (K) := {τ : K → K | τ is an F -automorphism},
a group called the Galois group of K over F . The Galois group AutF (L) is also called
the Galois group of f , although if we omit having a fixed splitting field, then it is only
unique up to isomorphism. Now let g be a non-constant polynomial in F [t] and set
S = {x ∈ K | g(x) = 0}, i.e., the set of roots of g in K. This is of interest when S is
not empty. Let τ ∈ AutF (K), then τ̃ fixes the coefficients of any g in F [t], so τ̃(g) = g.
Therefore, if x ∈ K, we have

τ
(
g(x)

)
=
(
τ̃(g)

)(
τ(x)

)
= g
(
τ(x)

)
.

Thus, if S is non-empty and x ∈ S, we have

0 = τ
(
g(x)

)
= g
(
τ(x)

)
, i.e., τ(x) ∈ S.

So we have a map,

AutF (K)→ Σ(S) given by the restriction τ 7→ τ |S.
Check that this is, in fact, a group homomorphism.

Now let L = K and f = g and let α1, . . . , αn be the roots of f in K, not necessarily
distinct. We know that K = F (α1, . . . , αn) = F [α1, . . . , αn]. Let τ and ψ lie in AutF (K),
and suppose that τ |S = ψ|S. Then τ−1 ◦ ψ fixes F and S, so τ−1 ◦ ψ = 1K , as K =
F (S) = F [S]. We conclude that τ |S = ψ|S if and only if τ = ψ. Therefore, the map
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AutF (K) → Σ(S) given by τ 7→ τ |S is injective, so a group monomorphism, and we can
view AutF (K) as a subgroup of Σ(S) and Σ(S) a subgroup of Sn with Σ(S) = Sn if and
only if α1, . . . , αn are distinct, i.e., f has no multiple roots. Suppose now, in addition,
that f is irreducible in F [t]. Fix i, j, 1 ≤ i, j ≤ n, then K is a splitting field of f over
F (αi) and K is a splitting field of f over F (αj). We have shown that there exists an
F -isomorphism σ : F (αi) → F (αj) sending αi to αj. The theorem now says that there
exists τ in AutF (K) extending σ and taking S onto S bijectively. This means that

AutF (K) ⊂ Σ(S) is a transitive subgroup,

i.e., for every pair of roots αi and αj in S, there exists a τ ∈ AutF (K) satisfying
τ(αi) = αj. We shall see in the sequel, that this will essentially reduce the theory
of algebraic extensions to group theory. This is what Galois discovered. In fact, it is
important to note that the proof above shows more. If h ∈ F [t] is irreducible and has
roots β and β′ in K, the splitting field of f over F , then there exists a automorphism
τ ∈ AutR(K) such that τ(β) = β′. Therefore, AutF (K) also acts transitively on all
the roots (if any) in K of an irreducible polynomial in F [t]. In fact, we shall prove in
Proposition 56.2 below that any irreducible polynomial in F [t] which has a root in K
splits in K when K/F is a splitting field of some polynomial over F . You have the tools
to prove this now. Can you?

We now give a number of examples to illustrate what we have done.

Examples 50.15. Let F be a field.

1. Let f = t2 + bt + c be a polynomial in F [t] and K/F an extension field with α in
K a root of f . If α′ is another root of f or α = α′ is a multiple root of f , then
f = (t−α)(t−α′) = t2− (α+α′)t+αα′ in K[t]. So we have b = −α−α′ and c = αα′.
In particular, α′ = −α− b lies in K. If α = α′ is a multiple root, then f = (t− α)2 in
K[t] and 2α = −b. If, in addition, charF 6= 2, then 2 is a unit and we have α = −b/2
and f = (t − α)2 in F [t] splits over F . In the general case, f = (t − α)(t − α′) splits
over K and F (α) is a splitting field of f over F , so either F = F (α) and f splits over
F or [F (α) : F ] = 2 depending on whether f is irreducible or not. If charF 6= 2, this
depends on whether b2 − 4c is a square in F or not, as the quadratic formula can be
derived over F if 2 is a unit, just as over the real numbers.

2. The field Q(
√

2,
√

3) is the splitting field of (t2− 2)(t2− 3) in C. We already know that
[Q(
√

2,
√

3) : Q] = 4 and {1,
√

2,
√

3,
√

6} is a Q-basis of Q(
√

2,
√

3).

3. Let f = t3 − 2 in Q[t]. It is irreducible by Eisenstein’s Criterion. Let ω = (−1 +√
−3)/2 = cos(2

3
π)+
√
−1 sin(2

3
π) We have the complex conjugate of ω satisfies ω = ω2

and ω3 = 1. The roots of f in C are: 3
√

2, 3
√

2ω, 3
√

2ω2, all distinct. Then K =
Q(3
√

2, 3
√

2ω, 3
√

2ω2) = Q(3
√

2, ω) is a splitting field of f over Q with [K : Q] ≤ 3! = 6.
As f is monic irreducible, we have f = mQ(3

√
2) and, therefore, 3 = deg f = [Q(3

√
2) :

Q] | [K : Q]. As ω =3
√

2ω/3
√

2 is not real, it does not lie in Q(3
√

2). Thus [K : Q] > 3,
hence [K : Q] = 6. [Alternatively, mQ(ω) = t2 + t + 1 splits in K, so Q(ω) ⊂ K and
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2 = degmQ(ω) | [K : Q], so [K : Q] = 6.] We also have

K = Q(3
√

2, ω)

2

6

3

Q(3
√

2)

3

Q(ω)

2

Q

(where the integers in the diagram are the field extension degrees.)

4. Let p > 1 be a prime and f = tp−1 + tp−2 + · · · + t + 1 in Q[t]. We know that f is

irreducible by Remark 35.11(3). Let ζ = e2π
√
−1/p = cos(2π/p) +

√
−1 sin(2π/p). Then

tp − 1 = (t− 1)f is a factorization into irreducibles in Q[t]. So ζp = 1 with ζ 6= 1. As
f(ζ) = 0, we have that [Q(ζ) : Q] = p − 1 = ϕ(p). Similarly, ζ2, . . . , ζp−1 are roots of
f , all distinct and different than ζ. It follows that Q(ζ) is a splitting field of f (and of
tp−1) over Q. The polynomial f is usually denoted by Φp and called the pth cyclotomic
polynomial in Q[t] and satisfies deg Φp = ϕ(p).

5. The polynomial f = t4 + t2 + 1 = (t2 + t + 1)(t2 − t + 1) in Q[t] has roots ζ =
(−1 +

√
−3)/2, ζ = ζ2, η = (1 +

√
−3)/2, and η, where is complex conjugation.

We have K = Q(
√
−3) = Q(ζ, η) is a splitting field of f over Q and [K : Q] = 2. Note

that if x is a root of f , then x6 = 1. The polynomial t2 − t + 1 = mQ(η) is the 6th
cyclotomic polynomial over Q. It is denoted by Φ6 and satisfies deg Φ6 = ϕ(6).

6. Let p be an odd prime, r a positive integer, and ζ = e2π
√
−1/pr .

Claim: Q(ζ) is the splitting field of tp
r−1(p−1)+tp

r−1(p−2)+· · ·+tpr−1
+1 and tp

r−1 ∈ Q[t]

over Q and [Q(ζ) : Q] = ϕ(pr) = pr−1(p − 1) (The same is true for ζ = e2πn
√
−1/pr for

any n not divisible by p satisfying 1 ≤ n < pr). In particular, Φpr = mQ(ζ), the prth
cyclotomic polynomial over Q satisfies deg Φpr = ϕ(pr):

By Exercise 6.14(7), we know that ϕ(pr) = pr−1(p− 1), so it suffices to show mQ(ζ) =

tp
r−1(p−1) +tp

r−1(p−2) +· · ·+tpr−1
+1, as ζ i, 1 ≤ i ≤ pr, are pr distinct roots of tp

r−1. We
need the following identity of binomial coefficients that is easily proven by induction:

(50.16)
n∑
i=j

(
i

i− j

)
=

(
n+ 1

n− j

)
.

Let f = tp
r−1(p−1) + tp

r−1(p−2) + · · ·+ tp
r−1

+ 1 ∈ Z[t] and t = y+ 1. If we can show that
g(y + 1) = f(t) satisfies Eisenstein’s Criterion for p, we are done by Remark 35.11(2).
By the Children’s Binomial Theorem (Exercise 27.20(10)),

(y + 1)p
r−1i ≡ (yp

r−1

+ 1)i =
i∑

j=0

(
i

j

)
yp

r−1j mod pZ[t].
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We have

g(y + 1) =

p−1∑
i=0

i∑
j=0

(
i

j

)
yp

r−1j mod pZ[t].

The coefficient of yp
r−1j modulo pZ[t] for j 6= 0 is

p−1∑
i=j

(
i

i− j

)
=

(
p

p− j

)
≡ 0 mod p.

The constant term is precisely p, so the result follows.

7. Let f = t3 + t+ 1 in (Z/2Z)[t]. Check that f has no roots in (Z/2Z).

Observation 50.17. If F is a field and a non-constant polynomial g in F [t] has no
roots in F and is of degree at most three, then g is irreducible in F [t].

Therefore, the polynomial f is irreducible in (Z/2Z)[t]. Suppose that L/(Z/2Z) is
an extension field such that f has a root α in L and let K = (Z/2Z)(α). We have
α3 = −α − 1 = α + 1 in K, so α−1 = α2 + 1. Let f = (t − α)(t2 + at + b) in K[t].
Multiplying out, yields α = a and b = 1 + α2 = α−1. It follows that t2 + at + b =
t2 + αt+ (1 + α2) in K[t]. If eα2 : K[t]→ K is the evaluation map at α2, then

eα2(t2 + at+ b) = eα2

(
t2 + αt+ (1 + α2)

)
= α4 + α3 + (1 + α2)

= (α2 + α) + α3 + (1 + α2)

= (α2 + α) + (α + 1) + (1 + α2) = 0.

Consequently, α2 is also a root of f in K with α 6= α2. So we have f = (t−α)(t−α2)g
in K[t] with deg g = 1. Therefore, f splits over K = (Z/2Z)(α), hence K is a splitting
field of f over (Z/2Z) with [K : (Z/2Z)] = deg f = 3. Note that K is a field having
23 = 8 elements.

8. Let p > 0 be a prime, F a field of characteristic p, and α an element in F . Then
tp − αp = (t − α)p in F [t] by the Children’s Binomial Theorem (Exercise 27.20(10)),
has F as a splitting field of f and f has only one distinct root of multiplicity p. Now
let L/F be an extension field, α an element in L satisfying a = αp lies in F . Then
K = F (α) is a splitting field of tp − a in F [t] over F .

Claim. If α is not an element in F , then [K : F ] = p :

Suppose that tp−α = fg in F [t] with f and g lying in F [t]. We may assume that both
f and g are monic and f not a unit. As fg = tp − a = (t − α)p in the UFD K[t], we
must have f = (t − α)r in K[t] for some r satisfying 1 ≤ r ≤ p. As f lies in F [t], its
constant term ±αr must lie in F . If r < p, then r and p are relatively prime, so αr,
αp lying in F implies that α lies in F , a contradiction. Therefore, g = 1 and r = p, so
tp − a is irreducible in F [t].

Exercises 50.18.

1. If f ∈ Q[t] and K is a splitting field of f over Q, determine [K : Q] if f is:
(a) t4 + 1.
(b) t6 + 1.
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(c) t4 − 2.
(d) t6 − 2.
(e) t6 + t3 + 1.

2. Find the splitting fields K for f ∈ Q[t] and [K : Q] if f is:
(a) t4 − 5t2 + 6.
(b) t6 − 1.
(c) t6 − 8.

3. Show both of the following:
(a) If K/Q and σ ∈ AutK then σ fixes Q.
(b) The fields Q(

√
2) and Q(

√
3) are not isomorphic.

4. Prove Identity 50.16.

5. A primitive nth root of unity is an element z ∈ C such that zn = 1 and zr 6= 1 for
1 ≤ r < n. Show the following:
(a) There exist ϕ(n) := |{d | 0 ≤ d ≤ n, (d, n) = 1}| primitive nth roots of unity.
(b) If ω is a primitive nth root of unity, then Q(ω) is a splitting field of tn − 1 ∈ Q[t].
(c) Let ω1, ..., ωϕ(n) be the ϕ(n) primitive nth roots of unity of tn − 1 ∈ Q[t] and σ ∈

Aut Q(ω1) then σ(ω1) = ωi for some i, 1 ≤ i ≤ ϕ(n).
6. Continued from Exercise 5. Show:

(a) Let Φn(t) = (t − ω1) · · · (t − ωϕ(n)). Then show Φn(t) ∈ Q[t]. Φn(t) is called the
nth cyclotomic polynomial.

(b) Φn(t) ∈ Z[t].
7. Continued from Exercise 6. Show:

(a) Φn(t) ∈ Z[t] is irreducible.
(b) Calculate Φn(t) for n = 3, 4, 6, 8 explicitly and show directly that Φn(t) ∈ Z[t] is

irreducible.

8. Let F = Z/pZ. Show all of the following:
(a) There exists a polynomial f ∈ F [t] satisfying deg f = 2 and f irreducible.
(b) Use the f in (a) to construct a field with p2 elements.
(c) If f1, f2 ∈ F [t] have deg fi = 2 and fi irreducible for i = 1, 2, show that their

splitting fields are isomorphic.

9. Let F be a field of characteristic different from two and f = at2 + bt+ c in F [t]. State
and prove the quadratic formula.

10. Let K/F be an extension of fields and f ∈ F [t].
(a) If ϕ : K → K is an F -automorphism, then ϕ takes roots of f in K to roots of f

in K.
(b) If F ⊂ R and α = a + b

√
−1 is a root of f with a, b ∈ R then α = a − b

√
−1 is

also a root of f .
(c) Let F = Q. If m ∈ Z is not a square and a+ b

√
m in C is a root of f with a, b in

Q then a− b
√
m is also a root of f in C.

11. Any (field) automorphism ϕ : R→ R is the identity automorphism.

12. Let f = (t2 − p1) · · · (t2 − pn) in Q[t] with p1, . . . , pn be n distinct prime numbers. Show
that K = Q[

√
p1, . . . ,

√
pn] is a splitting field of f over Q and [K : Q] = 2n. Formulate

a generalization of the statement for which your proof still works.
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13. Find a splitting field of f ∈ F [t] if F = Z/pZ and f = tp
e − t, e > 0.

14. Let K be a splitting field over F of f in F [t] \ F and g an irreducible polynomial in
F [t]. Suppose that g has a root in K. Show that g splits over K.

15. Suppose F is a field and K is a splitting field of f ∈ F [t] over F . If K/E/F is an
intermediate field, σ : E → K be a monomorphism fixing F , show that there exists an
F -automorphism σ̂ : K → K lifting σ, i.e., such that σ̂|E = σ.

16. Let F be a field of characteristic p > 0. Show that f = t4 + 1 ∈ F [t] is not irreducible.
Let K be a splitting field of f over F . Determine which finite fields F satisfies K = F .

17. Let f = t6− 3 ∈ F [t]. Construct a splitting field K of f over F and determine [K : F ]
for each of the cases: F = Q,Z/5Z, or Z/7Z. Do the same thing if f is replaced by
g = t6 + 3 ∈ F [t] for the same fields F .

51. Algebraically Closed Fields

Recall that a field K is called algebraically closed if every non-constant polynomial in
K[t] has a root in K, equivalently that every non-constant polynomial in K[t] splits over
F . Clearly, this is also equivalent to the condition that if L/K is an algebraic extension
of fields, then L = K. We call an extension field K of F an algebraic closure of F if
K/F is algebraic and K is algebraically closed. We shall later prove the Fundamental
Theorem of Algebra that C is an algebraically closed field. We know that C is not an
algebraic closure of Q. In fact, assuming the Fundamental Theorem of Algebra, we showed
in Example 48.23(4) that Ω := {x ∈ C | x algebraic over Q} is an algebraic closure of Q
and is countable. In this section, we shall show that given any field F , there exists an
algebraic closure of F , and it is unique up to an F -homomorphism. By the argument in
Example 48.23(5), to establish the existence of an algebraic closure of F , it suffices to
show that F is a subfield of some algebraically closed field.

We know that if we have a finite set of polynomials, {f1, . . . , fn}, then we can construct
a field K such that each fi splits in K and K is the smallest such field by letting K be
the splitting field of

∏
fi over F . Another way of constructing this K would be to find

a splitting field K1 of f1 over F , then K2 a splitting field of f2 over K1, and continue in
this way. We use both for the case of an infinite set of polynomials.

To use these two ideas, we first set up some notation. Let I be an indexing set and
S = {ti | i ∈ I} be a set of distinct indeterminants. Then F [S] is the set of polynomials,
coefficients in F in the ti’s, i ∈ I. If J ⊂ I, let SJ = {tj | j ∈ J}. As each such polynomial
needs only finitely many indeterminants to determine it, i.e., f ∈ F [SJ ], for some finite
subset J ⊂ I, we have

F [S] =
⋃
J⊂I
J finite

F [SJ ].

Note that F [S] is a domain, and in fact, a UFD. Using this notation, we give Artin’s
proof of the following theorem.

Theorem 51.1. Let F be a field. Then there exists an algebraically closed field K con-
taining F .
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Proof. Let I = F [t] \F be our indexing set and S = {tf | f ∈ I}. So if f ∈ F [t], we
have f(tf ) lies in F [tf ] ⊂ F [S]. Set T = {f(tf ) | f ∈ F [t] \ F} and A the ideal in F [S]
generated by the set T . So

A = {
∑
finite

gifi(tfi) | gi ∈ F [S]}.

Claim. A < F [S]:

Suppose that A = F [S]. Then there exist fi(tfi) ∈ T and gi ∈ F [S], i = 1, . . . , n, some n,
satisfying

1 = g1f1(tf1) + · · ·+ gnfn(tfn)

and a finite subset J ⊂ I with g1, . . . , gn lying in F [SJ ]. Relabel each tfi as ti and the tj’s
in J such that J = {t1, . . . , tN} some N , so fi(ti), gi ∈ F [t1, . . . , tN ]. We know that there
exists a field extension K/F such that each fi ∈ F [t] has a root αi in K for 1 ≤ i ≤ n
by the preliminary remarks. Set αi = 0 for n < i ≤ N . Applying the evaluation map
eα1,...,αn yields

0 =
∑

gi(α1, . . . , αn)fi(αi) = 1

in K, a contradiction. This establishes the claim.

By the claim, there exists a maximal ideal m satisfying A ⊂ m < F [S] (which we know
exists by Zorn’s Lemma). Define L1 := F [S]/m, viewed as a field extension of F in the
usual way (i.e., identifying F and ϕ(F ) where ϕ : F [S]→ L is given by g 7→ g + m). By
construction, if f is a non-constant polynomial in F [t], then f has a root tf + m in L1.
Inductively, define Li such that Li/Li−1 and every non-constant polynomial g ∈ Li−1[t]
has a root in Li by repeating the same construction. Set L = ∪Li. If α, β lie in L with
β nonzero, then α ± β, αβ, β−1 lie in some subfield Li of L, hence L is a field. Finally,
let f be a non-constant polynomial in L[t]. As f has finitely many nonzero coefficients,
there exists an i such that f lies in Li[t] hence has a root in Li+1 ⊂ L. Therefore, L is
algebraically closed. �

We showed in the argument in Example 48.23(5) that if F is a field and K/F a field
extension with K algebraically closed, then the elements in K algebraic over F form an
algebraic closure of F . Therefore, we have established the following result.

Corollary 51.2. Let F be a field. Then an algebraic closure of F exists.

Algebraic closures are “super” splitting fields, so we expect a uniqueness statement.
We prove this.

Theorem 51.3. Let K/F be an algebraic extension of fields and L an algebraically closed
field. Suppose that there exists a homomorphism σ : F → L. Then there exists a ho-
momorphism τ : K → L that lifts σ. In particular, if K is also algebraically closed and
L/σ(F ) is algebraic, then τ is an isomorphism.

Proof. We use a Zorn Lemma argument that is often repeated in algebra to define
maps. Let

S := {(E, η) |K/E/F an intermediate field

η : E → L a homomorphism lifting σ}.
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Partially order the set S by ≤ defined by

(E, η) ≤ (E ′, η′) if E ⊂ E ′ and η′|E = η.

As (F, σ) lies in S, the set S is nonempty. Let C = {(Ei, ηi) | i ∈ I} be a chain in S. We
know that E = ∪IEi is a field. Define

η : E → L

as follows: If α lies in E, choose i ∈ I such that α ∈ Ei and set η(α) := ηi(α). By the
definition of our partial ordering, η(α) is independent of i, i.e., η is well-defined. It follows
that (E, η) is an upper bound for C. By Zorn’s Lemma, there exists a maximal element
(E, η) in S, so K/E/F and η : E → L extends σ.

Claim. K = E:

Suppose this is false and α ∈ K \E. As α is algebraic over F , it is algebraic over E. Let
β be a root of η̃

(
mE(α)

)
in η(E)[t] in the algebraically closed field L. Then we know by

Proposition 50.10 that there exists an isomorphism

η′ : E(α)→ η(E)(β) with α 7→ β lifting η.

It follows that (E(α), η′) lies in S with (E, η) < (E(α), η′), contradicting the maximality
of (E, η). This proves the claim.

If K is algebraically closed so is the subfield τ(K) in L. If L/σ(F ) is algebraic, then
L/τ(K) is algebraic, hence L = τ(K) and the theorem if proven. �

We immediately see that this implies the desired result.

Corollary 51.4. Let F be a field. Then any algebraic closure of F is unique up to an
F -isomorphism.

Because of the corollary, one usually fixes an algebraic closure K of a field F and views
all roots of all polynomials in F [t] as lying in K. More generally, one fixes some E/F
with E algebraic closed and only works with fields K with E/K/F . Then E contains a
unique algebraic closure of F , hence for each polynomial in F [t] a unique splitting field
in E. One then views every algebraic extension of F to be in E. For example, one can

let E = C when F = Q. More generally, if F is a field of characteristic zero and F̃ an

algebraically closed field, we can view F/Q and the algebraic closure of Q in F̃ in C by
replacing it with an isomorphic copy. We shall always do so implicitly.

Exercises 51.5.

1. Let F be a finite field and K an algebraic closure of F . Show that K is countable and
infinite. (In all other cases, an algebraic closure of a field has the same cardinality of
the given field).

2. Let S be a collection of polynomials over a field F . Define what it means for an
extension field K/F to be a splitting field of the collection S and prove that one exists
and is unique up to an F -isomorphism. Also prove that an algebraic closure of F is a
splitting field for the collection of irreducible polynomials in F [t].
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52. Constructible Numbers

The ancient Greeks were very interested in constructing geometric objects under cer-
tain rules. The most famous ones that they could not solve were the following:

Euclidean Construction Problems. Using a straight-edge and compass, can you:

I. Trisect a given angle?

II. (Delian Problem) Double a cube, i.e., construct the edge of a cube whose volume
is twice the volume of a given cube?

III. Square a circle, i.e., construct a square whose area equals the area of a given
circle?

IV. Construct a regular n-gon, n ≥ 3?

Given a specific set of initial points, the following constructions were allowed:

C1. You can draw a line through two initial points.
C2. You can draw a circle with center at an initial point with radius equal to the

length between two initial points.

From these constructions on your given set of initial points, you were allowed to enlarge
this original set by adding the points of intersection arising from the constructions C1
and C2 and add further points by iterating this process.

We shall solve the Euclidean Problems, by converting them into problems in field
theory. In the case of squaring the circle, some analysis will also be needed.

Algebraic Reformulation (Preliminaries). Let S = {P1, . . . , Pn} be a finite nonempty
set of points in the euclidean plane. Recursively define Sr as follows:

S0 = S and having defined Sr define Sr+1 := Sr ∪ Tr
where Tr is the union of the following sets:

1. The set of points of intersections of lines through two distinct points in Sr (that we
call Sr-lines).

2. The set of points of the intersection of circles having center in Sr and radii equal in
length to line segments connecting two distinct points in Sr (that we call Sr-circles).

3. The set of intersections of Sr-circles and Sr-lines.

Now set

(52.1) C(P1, . . . , Pn) :=
∞⋃
r=0

Sr,

the set of points constructible from P1, . . . , Pn. We say a point P in the euclidean plane
is constructible from P1, . . . , Pn, if P ∈ C(P1, . . . , Pn) and not constructible otherwise. If
C = C(P1, . . . , Pn), call a line segment a C-line if an Sr-line for some r and a C-circle if
an Sr-circle for some r.

Remarks 52.2. Let P1, . . . , Pn be our initial given points in the euclidean plane and
C = C(P1, . . . , Pn) Using elementary euclidean geometry, we deduce the following:
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1. C(P1) = {P1}. As this is not interesting, we shall always assume that we begin with
at least two given points, i.e., n ≥ 2.

2. We can begin to define a coordinate system of our euclidean plane by setting P1 = (0, 0),
the origin, and P2 = (1, 0).

3. Given a line segment of length d between two points in C, we can construct a line
segment of length md for all integers m, can bisect the given line segment between two
points in C, and can construct a perpendicular at each endpoint of the line segment
between two points in C. In particular, we can construct axes.

4. We can drop a perpendicular from a point in C to a given C-line as well as construct
a parallel through a point in C to a C-line. In particular, we see that any point in Z2

is constructible from P1, . . . , Pn.

5. Given two C-lines of angles θ and ϕ with the X-axis respectively, we can construct
rays (C-lines through the origin) of angles θ ± ϕ, −θ, θ/2. In fact, this can be done
with the X-axis replaced by any allowable C-line.

It is now convenient to complexify everything, i.e., to replace the euclidean plane
with the complex plane. Let P1, . . . , Pn, n ≥ 2, be points in the euclidean plane. As
above, we let P1 = (0, 0) and P2 = (1, 0). To complexify, if Pi = (xi, yi) lie in R2, let
zi = xi+yi

√
−1, e.g., we have z1 = 0 and z2 = 1, and let C(z1, . . . , zn) denote the complex

numbers constructible by straight-edge and compass from z1, . . . , zn. We call C(z1, . . . , zn)
the set of complex constructible numbers from z1, . . . , zn. We have (x, y) ∈ C(P1, . . . , Pn)
if and only if x + y

√
−1 ∈ C(z1, . . . , zn). Note that we already know that C(z1, . . . , zn)

contains the Gaussian integers. But we have much more.

Theorem 52.3. Let n ≥ 2 and z1 (= 0), z2 (= 1), . . . , zn be complex numbers. Then
C(z1, . . . , zn) is a field satisfying Q ⊂ C(z1, . . . , zn) ⊂ C.

Proof. As C(z1, . . . , zn) ⊂ C with char C = 0, it suffices to show that C(z1, . . . , zn)
is a field. Let z, z′ lie in C(z1, . . . , zn), with z nonzero. As we can draw parallel lines,
we can add given vectors (line segments starting at the origin), so we see that z ± z′ lies
in C(z1, . . . , zn). We need to show that zz′ and z−1 lie in C(z1, . . . , zn). Write z and z′

in polar form, say z = re
√
−1θ and z′ = r′e

√
−1θ′ with r, r′, θ, θ′ real numbers, r, r′ non-

negative. Then zz′ = rr′e
√
−1(θ+θ′) and z−1 = r−1e−

√
−1θ. We know that we can construct

rays of angle θ ± θ′ and −θ and line segments of length r = |z| and r′ = |z′|. On the
X-axis in the complex plane mark off 1 and 1+r and the ray of angle θ′ through z′, which
we may assume to be nonzero. Then the line through 1 + r parallel to the line through z′

and 1 intersects the ray of an angle θ′ with the X-axis at (r + x)e
√
−1θ′ , and x is seen to

be rr′ by similar triangles. Reversing, the roles of x and r′ constructs r/r′. (Cf. Figure
52.4 below.) As associativity, commutativity, etc. hold in C, we see that C(z1, . . . , zn) is
a field. �
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(52.4)
θ′

1 1 + r

r

r′
x

θ
1 1 + x

x

r
r′

The field C(z1, . . . , zn) is easily characterized using computation of the intersection
points of lines and circles.

Theorem 52.5. Let z1 (= 0), z2 (= 1), . . . , zn be points in C with n ≥ 2. Then the field
C(z1, . . . , zn) has the following properties:

(1) The point zi lies in C(z1, . . . , zn) for i = 1, . . . , n.
(2) If z lies in C(z1, . . . , zn), so does its complex conjugate z.
(3) if z2 lies in C(z1, . . . , zn), so does z, i.e., if z lies in C(z1, . . . , zn), so does

√
z.

Moreover, C(z1, . . . , zn) is the unique smallest subfield of C satisfying these properties,
i.e., if a subfield C ′ of C satisfies (1), (2), and (3), then C(z1, . . . , zn) ⊂ C ′.

Proof. (1) is clear.

(2): If z = re
√
−1θ, then z = re−

√
−1θ, and (2) follows.

(3): Since we can construct rays of angle θ/2 from rays of angle θ, it suffices to show that
we can construct

√
r given a segment of length r. Draw a circle centered at the point

(1 + r)/2 on the X-axis of radius (1 + r)/2. Erect a perpendicular at the point 1 on
the X-axis parallel to the Y -axis. This line segment has length

√
r by the Pythagorean

Theorem. (Cf. Figure 52.6.)

(52.6)
1 1 + r

1+r
2

x

y

This shows that C(z1, . . . , zn) satisfies the desired properties. Suppose that C ′ also does.
As z1, . . . , zn all lie in C ′, by the definition (equation (52.1)) of C(z1, . . . , zn), it suffices to
show that intersection points of two C ′-lines, two C ′-circles, and a C ′-line and a C ′-circle,
lie in C ′. To do this note that

√
−1 lies in C ′ by (3) and if z = a + b

√
−1 with a, b

in R, then z lies in C ′ if and only if a and b lie in the field C ′ ∩ R, e.g., if z lies in C ′,
then by (2), so does b = −

√
−1(z − z)/2 as C ′ is a field. This means that the equations

defining C ′-lines and C ′-circles have coefficients in C ′∩R, so solving these equations leads
to solutions in C ′ (using (3) for intersections with circles). �
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We wish to further characterize the field theoretic properties of fields of constructible
numbers. Property (3) in the theorem gives the key. Such fields are closed under taking
square roots of elements in the field.

Definition 52.7. Let K/F be an extension of fields. We call K/F a square root tower
over F if there exist elements u1, . . . , un in K for some positive integer n, satisfying:

1. K = F (u1, . . . , un).
2. u2

1 lies in F .
3. u2

i lies in F (u1, . . . , ui−1) for each i > 1.

Remarks 52.8. Let K/F be a square root tower defined by K = F (u1, . . . , un) satisfying
the above properties and E/F an extension field. Assume that both K and E lie in some
larger field.

1. We have

[F (u1, . . . , ui) : F (u1, . . . , ui−1)] =

{
1 if ui ∈ F (u1, . . . , ui−1)

2 otherwise.

In particular, [F (u1, . . . , ui) : F ] = 2e for some e ≤ n.

2. The extension E(K)/E is a square root tower. (Of course, E(K) = E(u1, . . . , un).)

3. If E/F is also a square root tower, then so is E(K)/F .

4. If E/K is a square root tower, then so is E/F

5. Suppose that K ⊂ C and F := {z | z ∈ F}, where z is the complex conjugate of z.
Then F is a field and K/F is a square root tower, with K = F (z1, . . . , zn).

6. Suppose that charF 6= 2 and E/F satisfies [E : F ] ≤ 2. Then E/F is a square root
tower:

We may assume that [E : F ] = 2, so there exists an α ∈ E \ F satisfying E = F (α).
Let mF (α) = t2 + bt + a in F [t]. Then mF (α) splits over E and has roots α and
α1 = −b− α. . Let β = 2α+ b. As α2 + bα = −a and β does not lie in F , we see that
E = F (β) and β2 = −4a+ b2 lies in F .

In general, it is not true if a field extension E/F has degree a power of two, then it is
a square root tower. [Can you find an example?] However, we shall prove the following
theorem later (cf. Theorem 57.11):

Theorem 52.9. (Square Root Tower Theorem) Let F be a field of characteristic zero
and K/F an extension of fields that is a splitting field of some non-constant polynomial
in F [t]. Then K/F is a square root tower if and only if K/F is a field extension of degree
a power of two.

In fact, we shall prove a stronger result, that will be applicable to fields of arbitrary
characteristic. We shall use this result when needed later in this section.

The notion of square root tower allows us to give a sufficient condition for a complex
number to be constructible from a set of complex numbers.

Theorem 52.10. (Constructibility Criterion) Let z1 (= 0), z2 (= 1), . . . , zn be complex
numbers with n ≥ 2. Set F = Q(z1, z2, . . . , zn, z1, . . . , zn). If z is a complex number, then
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z is constructible from z1, z2, . . . , zn, i.e., z lies in C(z1, z2, . . . , zn) if and only if there
exists a square root tower K/F (with K ⊂ C) satisfying z ∈ K.

Proof. Let

C ′ = {z ∈ C | There exists a square root tower K/F with z ∈ K}.
By definition, F ⊂ C ′. We must show that C ′ ⊂ C(z1, . . . , zn). We know that C(z1, . . . , zn)
is a field containing z1, . . . , zn closed under complex conjugation and extracting square
roots. In particular, F is a subfield of C(z1, . . . , zn) as is any square root tower K/F . In
particular, C ′ ⊂ C(z1, . . . , zn). To show that C(z1, . . . , zn) ⊂ C ′, it suffices to show by
Theorem 52.5 that C ′ is a field closed under complex conjugation and extracting square
roots. Let z and z′ be elements in C ′ satisfying z ∈ K and z′ ∈ K ′ with K/F and K ′/F
square root towers. Then K(K ′)/F is a square root tower by Remark (3) above contain-
ing zz′, z ± z′, and z−1 (if z 6= 0). As K(K ′) ⊂ C ′, we have C ′ is a field. Moreover,
K(
√
z)/K is a square root tower, hence K(

√
z)/F is also a square root tower as K/F is.

Since F = F , we also have K/F is a square root tower. Therefore,
√
z and z lie in C ′

and C(z1, . . . , zn) ⊂ C ′ as needed. �

Corollary 52.11. Let z1 (= 0), z2 (= 1), . . . , zn be complex numbers with n ≥ 2 and z a
complex number in C(z1, . . . , zn). Then z is algebraic over F = Q(z1, z2, . . . , zn, z1, . . . , zn)
and [F (z) : F ] is a power of two.

Proof. As z lies in C(z1, . . . , zn), there exists a square root tower K/F with z ∈ K,
hence [F (z) : F ] | [K : F ], a power of two. �

In many euclidean constructions, one starts with two points, P1 and P2, which we
may assume correspond to complex numbers z1 = 0 and z2 = 1. In this case, Q =
Q(z1, z2, z1, z2) and C(z1, z2) is called the field of (complex euclidean) constructible numbers
and any z ∈ C(z1, z2) is called constructible. So if z is a constructible number, we have
[Q(z) : Q] is a power of two.

We now can solve the (Greek) Euclidean Construction Problems. Recall that a cubic
(or quadratic) polynomial in F [t], F a field, is irreducible if and only if it does not have
a root in F .

Trisection of an angle θ: To solve this construction problem, we need the following
lemma.

Lemma 52.12. Let α be a ray with the X-axis as one side. Then it is constructible form
z1 (= 0), z2 (= 1), . . . , zn if and only if e

√
−1α is constructible from z1 (= 0), z2 (= 1), . . . , zn

if and only if cosα is constructible from z1 (= 0), z2 (= 1), . . . , zn.

Proof. As z = e
√
−1α = cosα+

√
−1 sinα and we can erect and drop perpendiculars,

this is immediate. �

The trisection of an angle θ is, therefore, equivalent to:

Problem. Given z1 = 0, z2 = 1, z3 = cos θ, can we construct cos(θ/3) from z1 = 0, z2 =
1, z3?

Let F = Q(cos θ, cos θ) = Q(cos θ). For any angle α, we have the trigonometric identity

cos 3α = 4 cos3 α− 3 cosα.
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So β = cos(θ/3) is a root in C of f = 4t3− 3t− cos θ in F [t]. The polynomial is reducible,
i.e., not irreducible in F [t] if and only if f has a root in F if and only if for any root γ
of f in C, we have [F (γ) : F ] = degmF (γ) < 3 if and only if F (β)/F is a square tower if
and only if β is constructible from z1, z2, z3. Hence β /∈ C(z1, z2, z3) if and only if f has
no root in F . We, therefore, have proven the following:

Theorem 52.13. An angle θ can be trisected with straight-edge and compass if and only
if the polynomial f = 4t3 − 3t − cos θ in Q(cos θ) is reducible if and only if f has a root
in Q(cos θ)

Examples 52.14. 1. Let θ = 60o, so cos θ = 1/2, Q = Q(cos θ). The only possible roots
of f = 4t3 − 3t − 1/2 in Q are ±1, ±1/2, ±1/4, ±1/8, none of which are, so f is
irreducible in Q[t], hence an angle of 600 cannot be trisected with straight-edge and
compass.

2. Let θ = 90o, so cos θ = 0 and Q = Q(cos θ). As the polynomial f = 4t3−3t is reducible
in Q[t], the angle 90o can be trisected with straight-edge and compass. (Of course, we
already knew this).

3. Let θ = 180o, so cos θ = −1 and Q = Q(cos θ). As the polynomial f = 4t3− 3t+ 1 has
−1 as a root, it is reducible in Q[t], so the angle 180o can be trisected with straight-edge
and compass. [Of course, this also implies that an angle of 90o can be trisected.] Note
that this means that an equilateral triangle can be constructed from two given points.

4. Let θ = 45o, so cos θ = 1/
√

2. The angle θ can be constructed from 0, 1,
√

2 if and only
if f = 4t3 − 3t − 1/

√
2 ∈ Q(cos 450) is not irreducible. But Q(

√
2)/Q is a square root

tower and an angle of 90o can be trisected, hence so can an angle of 45o. Therefore, f
has a root in Q(

√
2). Of course, you can use the cubic formula (if you know it) to find

the root.

Doubling the cube: We are given z1 = 0, z2 = 1 and we wish to construct a line segment
of length a such that a3 = 2 from z1 = 0, z2 = 1. As the polynomial mQ(3

√
2) = t3 − 2 in

Q[t] is irreducible (by Eisenstein’s Criterion), [Q(3
√

2) : Q] = 3, and hence this construction
cannot be done with straight-edge and compass from the given two points.

Squaring the circle: Given a unit circle, z1 = 0 and z2 = 1, can we construct a segment
of length

√
π from these two points? We can construct such a segment of this length

from z1 = 0 and z2 = 1 if and only if we can construct a segment of length π from these
two points and if this can be done, then [Q(π) : Q] is a power of two. By Lindemann’s
Theorem 73.1 below, π is transcendental, so this cannot occur and it is impossible to
square a circle with straight-edge and compass.

Construction of regular n-gons: We must determine when it is possible to construct
a ray of angle 2π/n radians from z1 = 0, z2 = 1, equivalently, when it is possible to
construct z = cos 2π

n
+
√
−1 sin 2π

n
from z1, z2. To solve this construction problem, we

must use the Square Root Tower Theorem (to be proven in 57.11 below). We begin with
two lemmas.

Lemma 52.15. Any 2n-gon, n > 1, is constructible from two points.
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Proof. As we can erect perpendiculars, i.e., angles 2π/4 radians, we can construct
a square. As we can bisect any angle, we can construct a ray of 1

2m
(π/2) for any m by

induction. �

Lemma 52.16. Let m and n be relatively prime integers each at least three. Then

(1) A regular (mn)-gon is constructible from two points if and only if both a regular
m-gon and a regular n-gon can be constructible from two points.

(2) a regular n-gon can be constructed from two points if and only if a regular 2n-gon
can be constructed from two points.

Proof. (2): Angles can be bisected or doubled using straight-edge and compass.

(1): Suppose that a regular (mn)-gon can be constructed, i.e., a ray of angle θ = 2π/mn
radians. Then rays of angle mθ and nθ can be constructed. Conversely, suppose that
θ = 2π/m radians and ϕ = 2π/n radians are constructible. As m and n are relatively
prime, we have an equation 1 = am+ bn for some integers a and b. So

1

mn
=
a

n
+

b

m
hence

2π

mn
= a

2π

n
+ b

2π

m
is constructible. �

We call a number fn = 22n + 1 a Fermat number. If it is a prime, we call it a Fermat
prime.

Remarks 52.17. 1. f0 = 3, f1 = 5, f2 = 17, f3 = 257, and f4 = 65537 are Fermat
primes.

2. (Euler) f5 = 4294967297 = 641 · 6700417.

3. f6 = 274177 · 67280421310722 is composite.

4. fn for n = 5 — 32, 36 — 39, 42 — 43, 48, 52, 55, 58, 61 — 66, 71 — 77, 81, 83, 88,
90 — 91, 93 — 94, 96, 99 are known to be composite.

At the time of this writing f5523858 is the largest composite Fermat number known
and f4 is the largest Fermat prime known.

The natural question is whether there exist infinitely many Fermat primes, or even
one fn, with n > 4.

Fermat primes are applicable to solving the construction of regular n-gons, because
the following theorem solves this Euclidean problem.

Theorem 52.18. Let n be an integer at least three. Then a regular n-gon can be con-
structed from two points if and only if n = 2kp1 · · · pr with k non-negative, and p1, . . . , pr
distinct Fermat primes for some r or n = 2k for some integer k at least two.

Proof. By the lemmas, it suffices to determine when a regular pr-gon can be con-
structed with p an odd prime, r ≥ 1, i.e., to determine when ζ = cos 2π

pr
+
√
−1 sin 2π

pr

is constructible. By Example 50.15(6), we know that [Q(ζ) : Q] = pr−1(p − 1). By the
Square Root Tower Theorem, ζ is constructible if and only if pr−1(p − 1) = 2e for some
e ≥ 0. For this to be true, we must have r = 1 and p = 2e + 1 a prime. If e = ab, for
positive integers a and b with a odd, then

p = 2ab + 1 = (2b + 1)(2b(a−1) − 2b(a−2) + · · · − 2b + 1)
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is a composite number unless a = 1, i.e., p = 22s + 1 is a Fermat prime. This proves the
theorem. �

Examples 52.19. 1. A regular 9-gon cannot be constructed either by the n-gon theorem
or by our results on trisection of an angle. Indeed, if the 9-gon could be constructed, a
ray of 40o could be constructed, hence an angle of 120o could be trisected, so an angle
of 60o could be trisected which we know is false.

2. We show that a regular pentagon can be constructed, by producing the necessary square
root tower. We must construct z = e2π

√
−1/5, a root of f = t4 + t3 + t2 + t+ 1 in Q[t].

We have z−1 = z4 = e8π
√
−1/5 = e−2π

√
−1/5 = z and z4 + z3 + z2 + z + 1 = 0. So z, z

z2, z2 are the roots of f in C. Let

x1 = z + z and x2 = z2 + z2.

[Note that
x1

2
=
z + z

2
= cos(2π/5) and

z − z
2

= sin(2π/5).]

Then

x1 + x2 = −1

x1x2 = (z + z)(z2 + z2) = −1,

so (t − x1)(t − x2) = t2 + t − 1. This is not quite what we want, so we complete the
square. Let y1 = 2x1 + 1 and y2 = 2x2 + 1, then

y1 + y2 = 0 and y1y2 = 5.

Hence t2 − 5 = (t − y1)(t − y2) with t2 − 5 irreducible in Q[t]. We may assume that
y1 =

√
5. We have x1, x2 ∈ Q(y1, y2) = Q(y1) = Q(

√
5) and

x2
1 = (z + z)2 = z2 + 2zz + z2 = x2 + 2

(z − z)2 = z2 − 2zz + z2 = x2 − 2.

Let K = Q(y1, z − z) = Q(y1, z). As (z − z)2 ∈ Q(y1) = Q(
√

5), the field extension
K/Q is a square root tower. As z = (z − z + x1) lies in K, a regular pentagon can be
constructed. [Note that by the quadratic formula, either x1 or x2 is equal to (

√
5−1)/2

say x1. Then we already know that K/F is a square root tower and x1/2 = cos(2π/5).]
To actually do the construction in the complex plane, draw a circle at the origin of
radius two. Let O be the origin, V =

√
−1, and P0 = 2 in the plane. Let N be the

intersection point of the X-axis and the bisector of the angle θ = OV P0 and P be the
intersection point of the circle (in upper half plane) and the vertical constructed at N .
Then the point P is 2z = 2 cos(2π/5) + 2

√
−1 sin(2π/5). (Cf. Figure 52.20.)
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(52.20)
O

V

P0
N

P

θ

In the figure tan θ = 1/2, so the length of the line segment V P0 is
√

5.

Gauss proved that one could construct the regular 17-gon in 1796 at the age of 19.
This was the first important euclidean construction since ancient times. He showed

16 cos
2π

17
=− 1 +

√
17 +

√
34− 2

√
17+

2

√
17 + 3

√
17−

√
34− 2

√
17− 2

√
34 + 2

√
17.

An actual construction was shown a few years later by Johannes Erchinger. Gauss also
proved that if a regular n-gon was constructible when n was of the form in the theorem
in 1801. He also stated that this was a necessary condition, but his proof (if he had
one) has never been found. Indeed it is doubtful that Gauss actually had a valid proof,
since he made this statement prior to the birth of Galois and Galois theory is needed to
prove necessity. The first published proof of necessity was given by Pierre Wantzel, who
also proved that you could not trisect and angle or double a cube in 1837. Few have
heard of Wantzel, so the truism that solving well-known problems will bring you lasting
fame is not so well-founded. A regular 257-gon was constructed by Friedrich Richelot
(and Schwendenwein) in 1832. The regular 65537-gon was constructed by Johann Hermes
in 1895. Apparently Hermes’ actual construction rests in a trunk in the attic at the
Mathematics Institute at Göttingen (presumably studied by no one). The squaring of the
circle was the last of the problems solved when Lindemann proved the transcendence of
π in 1882.

Exercises 52.21.

1. Prove that the equations in the last paragraph in the proof of Theorem 52.5 have a
solution in C ′ ∩ R.

2. Show the field of complex constructible numbers over Q is closed under quadratic
extensions, but has extensions of every odd prime degree. Does it have extensions of
any odd degree? of nonzero even degree? of any degree but two?

3. Show that Z/2Z has no square root towers over if of degree > 1.

4. Show the construction of the regular 5-gon in Figure 52.20 works.

5. Show an angle of 2π/n radians, n an integer, can be trisected by straight-edge and
compass if and only if n is not divisible by 3.
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53. Separable Elements

A real polynomial that has multiple roots can cause problems as that means that
such a root is also a root of its derivative, hence its graph is more complicated. If the
polynomial is irreducible, this cannot happen. However, if the irreducible polynomial has
coefficients in a field of positive characteristic, this can occur. In this section, we study
this phenomena, formally defining some concepts that we have already used and leaving
many of the details as exercises (although some will be proven later). We recall some
definitions.

Definition 53.1. Let K/F be an extension of fields, f a non-constant polynomial in
F [t] with a root α in K. We say that α is a multiple root of g of multiplicity r in K if
f = (t− α)rg for some g in K[t] with α not a root of g. If α is a root but not a multiple
root, we call it a simple root of f . If f =

∑n
i=0 ait

i in F [t], the derivative of f is defined
to be the polynomial f ′ =

∑n
i=1 iait

i−1 in F [t].

We have, that we (again) leave as an exercise:

Properties 53.2. Let f and g be polynomials in F [t]. Then

(1) (f + g)′ = f ′ + g′.
(2) (af)′ = af ′ for all a ∈ F .
(3) (fg)′ = f ′g + fg′.

As mentioned above, multiple roots are also roots of the derivative. We formally write
this as a lemma. This lemma and its proof also says that the notion of multiple root and
its muliplicity is independent of the field extension of the base field.

Lemma 53.3. Let K/F be an extension of fields, f a non-constant polynomial with a
root α in K. Then α is a simple root of f if and only if α is not a root of f ′.

Proof. We can write f = (t−α)rg for some g in K[t] with g(α) 6= 0 for some integer
r. Therefore, f ′ = r(t − α)r−1g + (t − α)rg′ in K[t]. As g(α) 6= 0 in the domain K, we
have t− α | f ′ in K[t] if and only if t− α | r(t− α)r−1g, i.e., r − 1 ≥ 1 or r = 0 in K. If
r = 0 in K, then charF | r, so r ≥ charF ≥ 2. The result follows. �

Corollary 53.4. Let f be a non-constant polynomial in F [t]. Then f has a multiple root
in some extension field K of F if and only if the ideal (f, f ′) in F [t] is not the unit ideal.

Proof. (⇒): Let α be a multiple root of f in an extension field K of F . Then
mF (α) | f and mF (α) | f ′ in F [t], so (f, f ′) ⊂ (mF

(
α)
)
< F [t].

(⇐): F [t] is a PID, so (f, f ′) = (g) < F [t] for some non-constant polynomial g in F [t]. Let
h be any non-constant polynomial in F [t] satisfying h | g. Let K/F be a field extension
such that h has a root α in K. Then f(α) = f ′(α) = h(α) = 0, so f has a multiple root
in K. �

The corolllary says that one can determine when a polynomial has a multiple root in
some extension is intrinsic to the base field. Moreover, since F [t] is a euclidean domain,
this can be determined quite easily. It also answers the question of multiple roots for
irreducible polynomials.
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Corollary 53.5. Let f be an irreducible polynomial in F [t].

(1) If charF = 0, then f has no multiple roots in any field extension of F . In
particular, f can have only simple roots, if any, in a field extension of F .

(2) If charF = p > 0 and F has a multiple root in some field extension K of F , then
there exists a polynomial g in F [t] satisfying f = g(tp), i.e., f =

∑
ait

pi in F [t].

Proof. We begin the proof, leaving the rest of the proof as exercises. Let K/F be a
field extension such that f has a root α in K, so f = amF (α) for some nonzero a in F . In
particular, if α is a multiple root, we must have f | f ′ in F [t]. So f ′ = 0 or deg f ′ ≥ deg f .
Consequently, f ′ = 0. The result now follows by Exercises 53.10(2a) and(2b). �

Definition 53.6. An irreducible polynomial f in F [t] is called separable over F if it
has no multiple roots in any field extension of F . A non-constant polynomial is called
separable over F if all of its irreducible factors are separable. If f is not separable over
F , it is called inseparable. Let K/F be a field extension and α an element in K. We say
that α is separable over F if it is the root of a separable polynomial defined over F and
the extension K/F is separable if every element of K is separable over F .

Remark 53.7. In reading other books, it is much more common to say that a non-
constant polynomial f in F [t] is separable if it has no multiple roots in any extension field
of F . It is, however, convenient to use the above definition for a separable polynomial in
the sequel.

Remarks 53.8. Let K/F be an extension of fields and f , g non-constant polynomials in
F [t].

1. Every element of F is separable over F .

2. An element α in K is separable over F if and only if α is algebraic over F and mF (α)
is separable over F . In particular, if K/F is separable, then it is algebraic.

3. If charF = 0 and K/F is algebraic, then K/F is separable. A field F in which every
element algebraic over F is separable is called a perfect field. Therefore, any field of
characteristic zero is perfect. It turns out that every finite field is also perfect, but
there exist fields that are not perfect.

4. The polynomial f is separable over F if and only if every divisor of f is separable over
F .

5. If both f and g are separable over F then so is fg.

6. If L/K/F are field extensions with L/F separable, then L/K and K/F are separable.

Theorem 53.9. Let K/E/F be extensions of field. Then K/F is separable if and only if
K/E and E/F are both separable.

We shall not prove this theorem here. We know that if K/F is separable, then K/E
and E/F are separable. The converse is not so easy. To reduce the problem, we can
try a trick that we did before. If α in K is separable over E, then mE(α) in E[t] is
separable. If mE(α) = tn + an−1t

n−1 + · · · + a0 in E[t], then mE(α) is separable over
E0 = F (a0, . . . , an−1), with ai, i = 0, . . . , n − 1 separable over F . So we are reduced to
showing if β1, . . . , βn are separable over F , then F (β1, . . . , βn)/F is separable and if, in
addition, α is separable over F (β1, . . . , βn), then α is separable over F . This is still not
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easy. One way of doing this is given in the exercises. Of course, we may assume that
charF is positive.

Exercises 53.10.

1. Suppose that f be a non-constant polynomial in F [t], L/Ki/F field extensions with
i = 1, 2, and α an element of K1 ∩K2. Show that α is a root of f of multiplicity r in
K1 if and only if α is a root of f of multiplicity r in K2.

2. Let F be a field and f a polynomial in F [t]. Show the following:
(a) If charF = 0, then f ′ = 0 if and only if f is a constant polynomial.
(b) If charF = p is positive, then f(t)p = fp(tp) (The Children’s Binomial Theorem)

and if f ′ = 0, then there exists a polynomial g in F [t] satisfying f(t) = g(tp).

3. If x is transcendental over a field F , then tp − x ∈ F (x)[t] is irreducible for any prime
p.

4. Suppose that F is a field of positive characteristic p. Show the following:
(a) The map F → F given by x 7→ xp is a monomorphism. Denote its image by F p.
(b) If K/F is algebraic and α ∈ K is separable over F (αp), then α ∈ F (αp).
(c) Every finite field is perfect, i.e., every algebraic extension is separable.

5. Suppose that F is a field of positive characteristic p. Show all of the following:
(a) If K/F is separable field extension, then K = F (Kp), where Kp := {xp | x ∈ K}.
(b) Suppose that K/F is finite and K = F (Kp). If {x1, ..., xn} ⊂ K is linearly

independent over F then so is {xp1, ..., xpn}.
(c) If K/F is finite and K = F (Kp), then K/F is separable.

6. Let K/F be an extension of fields. Show all of the following:
(a) If α ∈ K is separable over F then F (α)/F is separable.

(b) If α1, ..., αn ∈ K are separable over F , then F (α1, ..., αn)/F is separable.
(c) Let Fsep = {α ∈ K |α separable over F}. Then Fsep is a field.

7. Let L/K/F be field extensions. Show that L/F is separable if and only if L/K and
K/F are separable using the previous two exercises.

8. Show that any algebraic extension of a perfect field is perfect.

9. Let F0 be a field of positive characteristic p. Let F = F0(tp1, t
p
2) and L = F0(t1, t2).

Show all of the following:
(a) If θ ∈ L \ F then [F (θ) : F ] = p.
(b) There exist infinitely many fields K satisfying F < K < L.

10. Let F be a field of positive characteristic p. Show
(a) If F = F p, then F is perfect.
(b) If F is not perfect, then F 6= F pr := {xpr | x ∈ F} for any r ≥ 1.

11. Let K/F be a field extension and α ∈ K. We say that α is purely inseparable over F if
mF (α) has only one root in a splitting field of α and K/F is purely inseparable if every
element of K is purely inseparable over F . Show that α in K is pure inseparable and
separable over K if and only if α lies in F .

12. Let K/F be a field extension with char(F ) = p > 0. Show that if α in K is algebraic
then there exists a nonnegative integer n satisfying αp

n
is separable over F .
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13. Let K/F be an algebraic extension with char(F ) = p > 0. Show the following are
equivalent:
(a) K/F is purely inseparable.
(b) If α in K, then there exists a nonnegative integer n such that mF (α) = tp

n − a ∈
F [t].

(c) If α lies in K, then there exists a nonnegative integer n such that αp
n

lies in F .
(d) Ksep = F . (Cf. Exercise 6 above.)
(e) K is generated by purely inseparable elements over F .

14. Let K/F be an algebraic field extension. Show that K/Fsep is purely inseparable and
Kpsep; = {α ∈ K|α is purely inseparable over F} is a field.



CHAPTER XII

Galois Theory

In the previous chapter, we studied field theory, i.e., fields and field extensions. In
the chapter, we interrelate field theory with group theory. The goal will be to interwine
the intermediate fields of finite field extension K/F when K is the splitting field of a
separable polynomial in F [t] over F and subgroups of the Galois group AutF (K). This
will allow us to prove some fundamental results. For example, we shall give an algebraic
proof of the Fundamental Theorem of Algebra using only the Intermediate Value Theorem
from analysis, prove that there is no formula involving only addition, multiplication, and
the extraction of nth roots for various n for the fifth degree polynomial over the rational
numbers using the results that were established about solvable groups, and finish the
proof for the existence of the regular n-gon for the allowable n. We shall show how the
study of roots of unity leads to Quadratic Reciprocity and a special case of Dirichlet’s
Theorem of Primes in an Arithmetic Progression.

54. Characters

This section is the key to the interaction of field theory and group theory. We follow
the approach of E. Artin, who proved the main results using systems of linear equations.
The idea is to look at a set S of field homomorphisms from a field K and to determine
the subfield of K on which each homomorphism in S acts in the same way. We begin
with the following definition:

Definition 54.1. Let F be a field and G be a (multiplicative) group. Then a group
homomorphism σ : G → F× is called an (linear) character. [Note that F× = GL1(F ).]
We say that distinct characters σ1, . . . , σn : G→ F× are dependent (or the set {σ1, . . . , σn}
is dependent) if there exist a1, . . . , an in F , not all zero, satisfying

∑
i aiσi(g) = 0 for all g

in G, i.e., the function
∑
aiσi : G→ F is the zero map; and independent otherwise.

Remarks 54.2. 1. A field homomorphism σ : E → F induces an character by restriction,
as a ring homomorphism takes units to units. As field homomorphisms are monic, such
a character is always injective.

2. The set
{σ | σ : G→ F× is a character.}

is not a group under +, but is a group under multiplication of functions, i.e., στ(g) :=
σ(g)τ(g) for all g in G, with the identity the map 1 : G→ F× given by g 7→ 1F .

The key result is:

Lemma 54.3. (Dedekind’s Lemma) Let σ1, . . . , σn : G → F× be distinct characters.
Then σ1, . . . , σn : G→ F× are independent.

325
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Proof. We prove this by induction on n.

n = 1: If aσ1(g) = 0 for all g in G, then a = 0 as σ1(g) 6= 0 for all g in G.

n > 1: Suppose that we have an equation

(*)
n∑
i=1

aiσi(g) = 0 for all g in G with ai in F not all zero.

By induction any proper subset of {σ1, . . . , σn} is independent, so ai is nonzero for every
i. Multiplying the equation in (*) by a−1

n , we may assume that that an = 1. So (*) now
reads

(**)
n−1∑
i=1

aiσi(g) + σn(g) = 0 for all g in G.

By assumption, σ1 6= σn, so there exists an element x in G satisfying σ1(x) 6= σn(x). As
G is a group, xG = G; and as the σi are group homomorphisms, we have

0 =
n−1∑
i=1

aiσi(xg) + σn(xg) =
n−1∑
i=1

aiσi(x)σi(g) + σn(x)σn(g)

for all g in G. Since σn(x) 6= 0, we see that

(†) 0 =
n−1∑
i=1

σn(x)−1aiσi(x)σi(g) + σn(g) for all g in G.

Subtracting the equation in (†) from the equation in (**) yields

0 =
n−1∑
i=1

[ai − σn(x)−1aiσi(x)]σi(g) for all g in G.

By induction, we conclude that

ai = σn(x)−1aiσi(x) for all i

in the domain F with ai 6= 0, hence σn(x) = σi(x) for all i, contradicting σ1(x) 6=
σn(x). �

The proof above also shows, with the obvious definitions, that any set of characters
S = {σi : G→ F× | σi a character for all i ∈ I} is independent.

Corollary 54.4. Let σ1, . . . , σn : F → K be distinct field homomorphisms. Then σ1, . . . , σn :
F× → K× are independent characters.

Definition 54.5. Let S be a nonempty subset of the full set of all field homomorphisms
F → K, {σ : F → K | σ a field homomorphism}. We call an element a in F a fixed point
under S, if σ(a) = τ(a) for all σ and τ in S.

Example 54.6. Let S be a nonempty set of field homomorphisms F → K. Assume that
both F and K contain the same prime subfield ∆ (so ∆ ∼= Q if the characteristic of F is
zero and ∆ ∼= Z/pZ, if the characteristic of F is the prime p.) As every homomorphism
takes 1F → 1K and 1∆ = 1F = 1K , we have σ(x) = x for all x ∈ ∆, Therefore, the term
‘fixed point’ is actually appropriate for elements in ∆.
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Note that if S is a set of field homomorphisms σ : K → K containing 1K , then the fixes
points of this set are all really fixed points, i.e., σ(x) = x for all σ ∈ S.

As should be expected, the set of fixed points has additional structure. We immediately
see that we have:

Lemma 54.7. Suppose that S is a nonempty set of field homomorphisms F → K. Let
E = {x ∈ F | x is a fixed point of S}. Then E is a subfield of F .

If S is a nonempty set of field homomorphisms F → K, we denote the field {x ∈
F | x is a fixed point of S} by F S and call it the fixed field of S. We are interested in
the fixed field of a finite set of field homomorphisms. Following Artin, we use linear
algebra to obtain nontrivial solutions to an appropriate set of linear equations. The first
main result about such is the following which gives a lower bound on a finite set of field
homomorphism. This bound will be often used in the sequel.

Lemma 54.8. (Artin’s Lemma) Suppose that S is a finite nonempty set of field homo-
morphisms F → K. Then [F : F S] ≥ |S|.

Proof. Let S = {σ1, . . . , σn} with n ≥ 1. Suppose that r = [F : F S] < |S| = n and
{ω1, . . . , ωr} is an F S-basis for F . Consider the following system of equations over K:

(*)

σ1(ω1)x1 + · · · + σn(ω1)xn = 0
...

...
σ1(ωr)x1 + · · · + σn(ωr)xn = 0.

As r < n, there exists a nontrivial solution to the system of equations (*) over K, say

x1, . . . , xn with each xi in K and not all zero

is such a solution. Let a be an element of F . We can write a =
∑
aiωi with each ai ∈ F S.

For each i, multiply the ith equation in (*) by σi(ai) to get a new equivalent system of
equations

σ1(a1)σ1(ω1)x1 + · · · + σ1(a1)σn(ω1)xn = 0
...

...
σn(ar)σ1(ωr)x1 + · · · + σn(ar)σn(ωr)xn = 0.

Since σi(ai) = σj(ai) for all i and j and the σi are homomorphisms, we have

(†)
σ1(a1ω1)x1 + · · · + σn(a1ω1)xn = 0

...
...

σ1(arωr)x1 + · · · + σn(arωr)xn = 0.

Adding all the equations in (†) yields

0 =
r∑
i=1

n∑
j=1

σj(aiwi)xj =
n∑
j=1

r∑
i=1

σj(aiwi)xj =
n∑
j=1

σj(a)xj

for all a in F with xj not all zero. This means that the characters σ1, . . . , σn are dependent,
contradicting Dedekind’s Lemma. �

A special case of Artin’s Lemma, is the one in which we shall be interested.
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Corollary 54.9. Let S be a nonempty finite set of field automorphisms of a field K.
Then [K : KS] ≥ |S|.

Of course, we should be very interested in the case when we have equality in Artin’s
Lemma. In general this is not true. We can even have a finite set of field automorphisms
S of a field K with [K : KS] infinite [can you give an example?]. What we need is to
look at those S with additional structure. For example, let K/F be an extension of fields.
Recall the Galois group of K/F is defined to be the set

G(K/F ) = AutF (K)

: = {σ : K → K | an F -automorphism satisfying σ|F = 1F}.
It is immediate that the following is true.

Lemma 54.10. Let K/F be an extension of fields. Then G(K/F ) is a subgroup of the
(field) automorphism group of K and F is a subfield of KG(K/F ).

As a consequence, we have:

Corollary 54.11. Let K/F be a finite extension of fields. Then the Galois group G(K/F )
is a finite group and satisfies [K : F ] ≥ |G(K/F )|.

Proof. As F is a subfield of KS for any nonempty subset S of G(K/F ), we have

[K : F ] ≥ [K : KS] ≥ |S| for any finite S,

i.e., [K : F ] is a uniform upper bound for all such S. It follows that G(K/F ) is finite and
satisfies [K : F ] ≥ |G(K/F )|. �

We arrive at the group theoretic condition in which we are interested.

Definition 54.12. Let K/F be a finite extension of fields. We say that the extension is
Galois if F is the fixed field of G(K/F ), i.e., F = KG(K/F ).

We have defined a field extension K/F to be Galois if K is a finite extension with
F the fixed field of G(K/F ). It would be more appropriate to call this a finite Galois
extension and call K/F a Galois extension if it is algebraic with F the fixed field of
G(K/F ).

Remarks 54.13. Let K/F be a field extension.

1. If F = KG(K/F ), then for any element x ∈ K \ F , there exists an automorphism in
G(K/F ) that moves x, i.e., there exists a σ in G(K/F ) satisfying σ(x) 6= x.

2. If K/E/F is an intermediate field, then G(K/E) ⊂ G(K/F ).

3. Let E = KG(K/F ), then by definition of K/E/F , we have G(K/E) ⊃ G(K/F ), so by
(2), we have

G(K/F ) = G(K/KG(K/F )).

4. If K/F is finite, then a field homomorphism σ : K → K fixing F necessarily is an
element of G(K/F ) as σ is monic and F -linear.

We give examples of Galois groups.
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Examples 54.14. 1. Let K = F be a field. Then G(K/F ) = {1} and K/F is Galois
with [K : F ] = 1 = |G(K/F )|. Moreover, K is the splitting field of t − a in F [t] over
F for any a ∈ F .

2. Let F = R and K = C. Then G(K/F ) = {1, } (with 1 = 1K and complex
conjugation) and K/F is Galois with [K : F ] = 2 = |G(K/F )|. Moreover, K is the
splitting field of t2 + 1 over F .

3. Suppose that F = Q and K = Q(
√

2). Let σ : K → K be defined by a+b
√

2 7→ a−b
√

2
for all a and b in Q. Then G(K/F ) = {1, σ} (with 1 = 1K) and K/F is Galois with
[K : F ] = 2 = |G(K/F )|. Moreover, K is the splitting field of t2 − 2 over F .

4. Suppose that F = Q and K = Q(3
√

2). Then G(K/F ) = {1}, so K/F is not Galois.
It satisfies [K : F ] = 3 > |G(K/F )|. Moreover, K is not a splitting field of any
polynomial over F :

We indicate why these facts are true. Any field automorphism of K must take 3
√

2 to
another root of t3 − 2, but R contains only one root of t3 − 2. If K was the splitting
field of some polynomial g in F [t] over F , then it would be the splitting field of an
irreducible polynomial of degree three. (Why?) Such a g would have three distinct
roots, say α1, α2, α3 in K and we would have K = Q(αi), i = 1, 2, or 3. But then there
must be an F -automorphism σ satisfying σ(α1) = α2.

5. Suppose that F = Q and K = R. Then G(K/F ) = {1} and KG(K/F ) = K with K/F
is infinite and not even algebraic. (Cf. Exercise 50.18(11).) However, (by Exercise
56.22(7)) the Galois group G(C/Q) is uncountable!

6. Suppose that the characteristic of a field F is p > 0 and K = F (α) for some α satisfying
αp = a with a ∈ F . If α /∈ F , then G(K/F ) = {1} and K/F is not Galois. It satisfies
[K : F ] = p > |G(K/F )| and K is the splitting field of tp − a over F .

Artin’s Lemma becomes much stronger, when the nonempty finite set of field auto-
morphisms is a group. This results in the fundamental link between group theory and
field theory on the group theory side. It is the following:

Theorem 54.15. (Artin’s Theorem) Let K be a field and G a finite subgroup of field
automorphisms of K. Then

(1) [K : KG] = |G|.
(2) G = G(K/KG).
(3) K/KG is Galois.

Proof. (1): Let n = |G| and G = {σ1, . . . , σn}. By Artin’s Lemma, we know that
[K : KG] ≥ |G| = n. Suppose that [K : KG] > n. Choose a1, . . . , an+1 in K× that are
KG-linearly independent. The system of n linear equations in (n+ 1)-unknowns

(*)

x1σ1(a1) + · · · + xn+1σ1(an+1) = 0
...

...
x1σn(a1) + · · · + xn+1σn(an+1) = 0

has a nontrivial solution over K. Among all the nontrivial solutions x1, . . . , xn+1 over K,
choose one with the least number of xi nonzero. Relabeling, we may assume this solution
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is
x1, . . . , xr, 0, . . . , 0 with xi ∈ K×, 1 ≤ i ≤ r

with r minimimal. Multiplying this solution by x−1
r , we may also assume that xr = 1. As

G is a group, we may assume also that σ1 = 1K , so

x1a1 + · · ·+ xr−1ar−1 + ar = 0, xi ∈ K×, r > 1 (as a1 6= 0).

Since {a1, . . . , ar, ar+1, . . . , an+1} is KG-linearly independent, this means that for some
integer i, 1 ≤ i ≤ r, we have xi /∈ KG. By definition, there exists an integer k such that
σk(xi) 6= xi. (So k > 1.) The system of equations in (*) has the form

(**) 0 =
r−1∑
i=1

xiσj(ai) + σj(ar) = 0 for j = 1, . . . , n.

Taking σk of each of the equations in (**) yields

0 =
r−1∑
i=1

σk(xi)σkσj(ai) + σkσj(ar) = 0 for j = 1, . . . , n.

As G is a group, σkG = G, hence these equations are the same as

(†) 0 =
r−1∑
i=1

σk(xi)σj(ai) + σj(ar) = 0 for j = 1, . . . , n.

Subtracting the appropriate equations in (†) from those in (*) yields

0 =
r−1∑
i=1

[xi − σk(xi)]σj(ai) = 0 for j = 1, . . . , n.

Since σk(xi) 6= xi, we have

x1 − σk(x1), . . . , xr−1 − σk(xr−1), 0, . . . , 0

is a nontrivial solution over K to the system of the equations in (*). This contradicts the
minimality of r and establishes (1).

(2): By (1), we have [K : KG] = |G| is finite. By Corollary 54.9, we have [K : KG] ≥
|G(K/KG)|, so G(K/F ) is also finite. Since G is a subgroup of G(K/KG) by definition,
we have |G| = |G(K/KG)| and is finite, so G = G(K/KG).

(3) is now immediate. �

We want to interrelate Galois groups and field extensions. An application of Artin’s
Theorem produces one such result.

Corollary 54.16. Let K be a field, G1, G2 two finite subgroups of Aut(K), the group
of field automorphisms of K, and Fi = KGi for i = 1, 2. Then F1 = F2 if and only if
G1 = G2.

Proof. (⇐) is clear.

(⇒): By Artin’s Theorem, Gi = G(K/Fi), so this also follows. �

We now see that for finite field extensions, being Galois only depends on a simple
cardinality test.
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Corollary 54.17. Suppose that K/F is a finite extension of fields. Then K/F is Galois
if and only if [K : F ] = |G(K/F )|.

Proof. (⇒) follows from Artin’s Theorem and the special case of Artin’s Lemma,
Corollary 54.9.

(⇐): Let E = KG(K/F ). Then we know that G(K/E) = G(K/F ). As K/E is Galois, by
the proven sufficiency, we have [K : E] = |G(K/E)|. Therefore,

[K : E] = |G(K/E)| = |G(K/F )| = [K : E][E : F ].

It follows that [E : F ] = 1, i.e., E = F . �

Exercise 54.18. This exercise computes the Galois group of a non algebraic extension.
Using Exercise 48.25(10) show that G(F (t)/F ) consists of all F -automorphisms of F (t)
mapping t to (at+ b)/(ct+ d) where a, b, c, d ∈ F satisfies ad− bc 6= 0

55. Computations

Of course, given a finite extension K/F of fields, one would like to determine its
Galois group. In general, as expected, this is very difficult. In this section, we do a few
computations as well as giving some ideas on how to do such computations. To begin,
we discuss the problem by reviewing (and repeating) some of the material that we have
already discussed.

Summary 55.1. Let K/F be a finite extension of fields and f a non-constant polynomial
in F [t].

1. We know if K/E/F is an intermediate field that
(a) G(K/E) ⊂ G(K/F ).

(b) G(K/F ) = G(K/KG(K/F )).

(c) [K : F ] ≥ |G(K/F )| with equality if and only if K/F is Galois, i.e., F = KG(K/F ).

2. Let α in K be a root of f and σ an element in G(K/F ). Then σ(α) is also a root of
f . In particular, if f = g1 · · · gr in F [t] with gi non-constant polynomials in F [t], then
G(K/F ) takes roots of gi in K to roots of gi for all i:

If f =
∑
ait

i, then

0 = σ
(
f(α)

)
= σ(

∑
aiα

i) =
∑

σ(ai)σ(αi) =
∑

aiσ(α)i = f
(
σ(α)

)
.

3. If K is a splitting field of f and σ an element in G(K/F ), then σ is completely
determined by what it does to the roots of f :

If α1, . . . , αr are the roots of f , then K = F (α1, . . . , αn).

4. Let S = {α | α is a root of f}. If S is not empty, then the map G → Σ(S) given by
σ 7→ σ|S is a group homomorphism. If K is a splitting field of f over F , then this map
is monic and we can view G ⊂ Σ(S). [This was Galois’ viewpoint.]

5. If α is a root of f in F then σ(α) = α for all σ ∈ G(K/F ).



332 XII. GALOIS THEORY

6. This is the most useful remark. If K is the splitting field of f over F and g is an irre-
ducible polynomial in F [t] with roots α and β in K, then there exists an F -isomorphism

τ : F (α)→ F (β) satisfying α 7→ β

and this extends to an F -automorphism τ in G(K/F ), so τ(α) = β. [Make sure that
you can prove this.] In particular,

G(K/F ) acts transitively on the roots of g in K.

We shall later see that, in fact,

if g is irreducible in F [t] and

has a root in a splitting field K of f , then g splits over K.

Can you prove this? [You have all the tools to do so.]

To do some of our computations, we shall need a few lemmas.

Lemma 55.2. Let G be a finite cyclic group of order n and Aut(G) the automorphism
group of G. Then Aut(G) ∼= (Z/nZ)×. In particular, Aut(G) is abelian (and cyclic if n
is a prime) of order ϕ(n).

Proof. Let G = 〈a〉 and σ ∈ Aut(G). Then σ(a) = ai, for some 1 ≤ i ≤ n and
〈a〉 = 〈ai〉. It follows that i and n are relatively prime. Conversely, if i and n are
relatively prime with 1 ≤ i ≤ n, then σi : G → G given by am 7→ ami is checked to be a
group monomorphism, hence an isomorphism as G is finite. The map (Z/nZ)× → Aut(G)
given by i mod n 7→ σi is checked to be an isomorphism, so we also have |Aut(G)| =
|(Z/nZ)×| = ϕ(n). �

Remark 55.3. In F, we shall show the following: If p is an odd prime then (Z/pnZ)× is
cyclic. If p = 2, this is not true. Indeed if m ≥ 3, then (Z/2mZ)× ∼= (Z/2Z)× (Z/2m−2Z).
It then follows, using the Chinese Remainder Theorem, that (Z/nZ)× is cyclic if and only
if n = 2, 4, pr, or 2pr where p is an odd prime.

Proposition 55.4. Let K be a splitting field of tn − 1 in F [t] over F and

U = {z ∈ K | zn = 1} = {z | z a root of tn − 1 in K}.
Then U is a cyclic subgroup of K×. Suppose, in addition, that either charF = 0 or
charF 6 | n. Then |U | = n and the Galois group G(K/F ) is isomorphic to a subgroup of
(Z/nZ)×. In particular, G(K/F ) is abelian and |G(K/F )| | ϕ(n).

Proof. As (zizj)
n = 1 = (z−1

i )n, for all zi, zj ∈ U , we know that U is a group. Since
it is a finite subgroup of K×, it is cyclic by Theorem 34.15. As K = F (U), every σ in
G(K/F ) is determined by σ(z), with z ∈ U , so

ϕ : G(K/F )→ Σ(U) given by σ 7→ σ|U
is a group monomorphism. As U is cyclic, say U = 〈z〉, and every σ in G(K/F ) satisfies
and σ(zi) = σ(z)i, it follows that every such σ is completely determined by σ(z) and
σ|U lies in the automorphism group Aut(U) of U . If charF = 0 or charF 6 | n, we have
(tn − 1)′ = ntn−1 6= 0 has no root in common with tn − 1 in F [t], i.e., tn − 1 has only
simple roots in every field extension of F . In particular, |U | = n. �
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In the proposition, the element z satisfying U = 〈z〉 is called a primitive nth root of
unity. If, in the proposition, charF = 0 or charF 6 | n, then there exists ϕ(n) primitive
roots of unity.

Remark 55.5. A (deep) theorem of Kronecker-Weber says: Suppose a finite extension
of fields K/Q is Galois with abelian Galois group. We call such an extension is an abelian

extension of Q. Then there exists a primitive nth root of unity ζ, e.g., e2π
√
−1/n, for

some n, such that K is a subfield of Q(ζ). One says that all abelian extensions of Q are
cyclotomic. We shall show later this is true in the special case that K/F is quadratic.

Remarks 55.6. The following are left as exercises:

1. If z ∈ F , then |G(K/F )| = 1 = [K : F ].

2. Suppose that |F | = q and L/F a field extension satisfying [L : F ] = r. Let n = qr − 1.
Then xn = 1 for all x in L. The field L is a splitting field of tn − 1 over F , hence also
of tq

r − t in F [t], and G(K/F ) is cyclic of order r.

3. If F = Q, then [K : Q] = ϕ(n) and G(K/Q) ∼= (Z/nZ)×.

We did not investigate the case when charF | n in the above. Can you say anything
in this case?

Corollary 55.7. Let F be a field of characteristic zero or charF 6 | n satisfying the poly-
nomial tn − 1 in F [t] splits over F with U the set of nth roots of units in F . Suppose
that K is a splitting field of the polynomial tn − a in F [t] over F with a nonzero. Then
G(K/F ) is a cyclic subgroup isomorphic to a subgroup of U . In particular, |G(K/F )| | n.

Proof. Let U = {z1, . . . , zn}, a cyclic subgroup of F× of order n. As (tn−a)′ = ntn−1

has only zero as a root, tn − a has n distinct roots in K. Let r in K be a root of tn − a,
then rzi, i = 1, . . . , n, are all its roots. As zi ∈ F for all i, we know that K = F (r) and
σ(rzi) = σ(r)zi for all σ ∈ G(K/F ) and all i. Consequently, σ(r) determines σ for each
σ ∈ G(K/F ). If σ(r) = rzi, then σ(r)/r = zi lies in U . Therefore, we have a map

ϕ : G(K/F )→ U defined by σ 7→ σ(r)

r
.

If σ and τ lie in G(K/F ), say σ(r) = rzi and τ(r) = rzj, then

ϕ(στ) =
στ(r)

r
=
σ(r)zj
r

=
σ(r)zj
r

= zizj = ϕ(σ)ϕ(τ),

so ϕ is a well-defined group homomorphism. If

σ(r)

r
=
τ(r)

r
, then σ(r) = τ(r),

hence σ = τ and ϕ is monic. As U is cyclic of order n, we have G(K/F ) is cyclic of order
dividing n. �

With these preliminaries, we can make some explicit computations.

Computation 55.8. Let F be a field. [You should fill in all the omitted details.]

1. G(F/F ) = 1 and F/F is Galois.
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2. Suppose that the characteristic of F is not two, d an element in F that is not a square
in F . Then K = F (θ) is a splitting field of t2 − d in F [t] over F where θ is a root of

t2 − d. Then K/F is Galois and G(K/F ) ∼= Z/2Z. [Of course, one often writes
√
d for

θ.]

3. Let f = (t2 − 2)(t2 − 3) in Q[t] and K = Q(
√

2,
√

3). Then K is a splitting field
of f over Q. As

√
2 /∈ Q(

√
3), the polynomial t2 − 2 is irreducible in Q(

√
3)[t]. Let

G(K/Q
(√

3)
)

= 〈σ〉 were σ maps
√

3 7→ −
√

3. Similarly, G
(
K/Q(

√
2)
)

= 〈τ〉 where τ

maps
√

2 7→ −
√

2. Then G(K/Q) = {1, σ, τ, στ} ∼= Z/2Z× Z/2Z and K/Q is Galois.

4. Let f = t3 − 2 in Q[t]. It is irreducible, so [Q(3
√

2) : Q] = 3. Let ζ = cos(2π/3) +√
−1 sin(2π/3) and K = Q(3

√
2, ζ). As mQ(ζ) = t2 + t+ 1, we have [Q(ζ) : Q] = 2. The

field K is a splitting field of f over Q so [K : Q] = 6. As K is also the splitting field of f
over Q(ζ) and of degree three, the Galois group G

(
K/Q(ζ)

)
is cyclic and isomorphic to

a subgroup of Z/3Z. Since f remains irreducible in Q(ζ)[t] (why?), there exists a Q(ζ)-
automorphism τ of K satisfying 3

√
2 7→ ζ3

√
2. Therefore, G

(
K/Q(ζ)

)
is cyclic of order

three. The polynomial mQ(ζ) has no real roots, so remains irreducible in Q(3
√

2)[t], so

K is a splitting field of t2 + t + 1 over Q(3
√

2) and there exists a Q(3
√

2)-automorphism
σ : K → K such that ζ 7→ ζ−1 = ζ. Therefore, G

(
K/Q(3

√
2)
)

is cyclic of order two. It
follows G(K/Q) contains an element of order two and an element of order three, hence
[K : Q] = 6 = |G(K/Q)| and K/Q is Galois. As

τσ(3
√

2) = τ(3
√

2) = ζ 3
√

2 and

στ(3
√

2) = σ(ζ 3
√

2) = ζ−1 3
√

2,

G(K/Q) is not abelian, hence isomorphic to S3
∼= D3. Any element of G(K/Q) must

take 3
√

2 to a root of t3−2 in K, so Q(3
√

2) ⊂ R means that the subgroup G(Q(3
√

2)/Q) = 1
and Q(3

√
2)/Q is not Galois. Note also that G

(
K/Q(ζ)

)
is normal in G(K/Q) but

G
(
K/Q(3

√
2)
)

is not normal in G(K/Q).
The following picture summarizes this:

K = Q(3
√

2, ζ)

2

gal

6

3

gal

Q(3
√

2)

3

not gal

Q(ζ)

2

gal

Q

5. Let f = t5 − 1 in Q[t] and ζ = cos(2π/5) +
√
−1 sin(2π/5) in C. Then K = Q(ζ) is the

splitting field of f and [K : Q] = 4 = ϕ(5), as mQ(ζ) = t4 + t3 + t2 + t + 1. We know
that group homomorphism G(K/Q)→ (Z/5Z)× given by σ 7→ i mod 5 if σ ∈ G(K/Q)
satisfies σ(ζ) = ζ i is monic, so |G(K/Q)| = 1, 2, or 4. As K is the splitting field of the
irreducible polynomial mQ(ζ) in Q[t], the Galois group G(K/Q) acts transitively on its
roots, hence |G(K/Q)| = 4. Therefore, K/Q is Galois and G(K/Q) ∼= (Z/5Z)×
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Let σi : K → K be the Q-automorphism determined by ζ 7→ ζ i. Then σ4 takes ζ
to ζ−1 = ζ, so has order two. If H = 〈σ4〉, a subgroup of index two in G(K/Q), then
its fixed field is

KH = {a+ b(ζ2 + ζ3) | a, b ∈ Q}

= {a+ b(ζ2 + ζ
2
) | a, b ∈ Q} = Q(

√
5).

[Can you show this?]. We have [K : KH ] = 2 = [KH : Q], so K/Q is a square root
tower (which leads to the construction of a regular pentagon).

6. Let K be a splitting field of the irreducible polynomial f = t4− 2 in Q[t]. The roots of
f are: 4

√
2,
√
−1 4
√

2, −4
√

2, −
√
−1 4
√

2; so K = Q(4
√

2,
√
−1). As

√
−1 /∈ Q(4

√
2) ⊂ R, the

polynomial t2 + 1 is irreducible in Q(4
√

2)[t] and

[K : Q] = [K : Q(4
√

2)][Q(4
√

2) : Q] = 8 ≥ |G(K/Q)|.

Since t4 − 1 splits over Q(
√
−1), the group G

(
K/Q(

√
−1)

)
is cyclic of order 1, 2, or 4

by Corollary 55.7. We show that it is of order 4. We know that [K : Q(
√
−1)] = 4 and

K is a splitting field of mQ(4
√

2) over Q. We also know that
√

2 /∈ Q(
√
−1), so f does

not factor in Q(
√
−1)[t] into two quadratic polynomials. It follows that mQ(4

√
2) must

remain irreducible in Q(
√
−1)[t], i.e., mQ(

√
−1)(

4
√

2) = mQ(4
√

2). As G
(
K/Q(

√
−1)

)
acts

transitively on the roots of mQ(
√
−1)(

4
√

2), we must have G
(
K/Q(

√
−1)

)
is a group of

order at least 4, hence 4.
Now let

τ : K → K be the element in G
(
K/Q(4

√
2)
)

satisfying
√
−1 7→ −

√
−1

and

σ : K → K be the element in in G
(
K/Q(

√
−1)

)
satisfying (4

√
2) 7→

√
−1 4
√

2.

Then 〈τ, σ〉 ⊂ G(K/Q). It is easy to see this forces |G(K/Q)| = 8. Checking τστ−1 =
σ3 shows that G(K/Q) ∼= D4. Note also that K/Q is Galois but Q(4

√
2)/Q is not as

G(Q(4
√

2)/Q) = {1, σ2|Q(4
√

2)}.
The following picture summarizes this:

K = Q(4
√

2,
√
−1)

2

gal

8

4

gal

Q(4
√

2)

4

not gal

Q(
√
−1)

2

gal

Q
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Note we have another interesting intermediate field of K/F , viz., E = Q(
√
−1,
√

2).
As [K : Q(

√
−1)] = [K : Q]/[Q(

√
−1) : Q] and

√
2 lies in K with 4

√
2 not in E.

Q < Q(
√
−1) < E < K is a square root tower. [Can you say more?]

7. Let p be a prime, F = (Z/pZ)(x) with x transcendental over Z/pZ and f = tp − x
a polynomial in F [t]. Let K be a splitting field of f over F and α in K a root of
f . Then tp − x = tp − αp in K[t], so f has only one root and K = F (α) with
α /∈ F (why?). Since G(K/F ) takes the roots of f to roots of f , the Galois group
G(K/F ) = 1 and K = KG(K/F ). So K/F is not Galois. Check that f is irreducible
over F so [K : F ] = p and K/F is a splitting field of an irreducible polynomial. Note
that K/F is not separable.

Exercises 55.9.

1. Let K = Q(r) with r a root of t3 + t2 − 2t− 1 ∈ Q[t]. Let r1 = r2 − 2. Show that r1 is
also a root of this polynomial. Find G(K/Q).

2. Suppose the |K| = pn, p a prime, and F ⊂ K. Show that |F | = pm for some m with
m | n. Moreover, G(K/F ) is generated by the Frobenius automorphism α 7→ αp

m
. In

particular, G(K/F ) is cyclic.

3. If F is a finite field, n a positive integer, then there exists an irreducible polynomial
f ∈ F [t] of degree n.

4. Let F be a subfield of the real numbers, f an irreducible quartic over F . Suppose that
f has exactly two real roots. Show that the Galois group of f is either S4 or of order
8.

5. Suppose that K/F is Galois with Galois group G(K/F ) ∼= Sn. Show that K is the
splitting field of an irreducible polynomial in F [t] of degree n over F .

56. Galois Extensions

The object of Galois theory is to connect intermediate fields of a finite field extension
extension to subgroups of the Galois group G(K/F ). The results and computations of
the last section indicated a close relation when K/F was a splitting field of a separable
polynomial. We begin by pursuing that here.

Definition 56.1. We call a finite field extension K/F normal if K is the splitting field
over F of some non-constant polynomial in F [t].

We shall see that the important properties of normal extensions are independent of a
polynomial for which it is a splitting field except for whether the polynomial is separable
or not.

It is useful to generalize the definition of a normal field extension. If {fi}I is a set
of non-constant polynomials in F [t], we call an algebraic extension K of F a splitting
field of the set of polynomials {fi}I , if every fi, i ∈ I, splits in K and K is the smallest
algebraic extension with this property. Such a splitting field exists and is unique up to an
F -isomorphism. (Cf. Exercise 56.22(1)). For example, the splitting field of the set of all
minimal polynomials over F is algebraically closed and called an algebraic closure of F .
If an algebraic extension K of F is the splitting field of a set of non-constant polynomials
in F [t], we say that K/F is normal. Note that if {fi}I is a finite set of non-constant
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polynomials in F [t], then K is a splitting field of this set of polynomials over F if and
only if it is the splitting field of

∏
I fi.

The following is a very useful criterion to check if a finite field extension is normal.

Proposition 56.2. Let K/F be a finite extension of fields. Then K/F is normal if and
only if any irreducible polynomial in F [t] having a root in K splits over K.

Proof. (⇒): Let K be a splitting field the non-constant polynomial g in F [t] over F
and f ∈ F [t] an irreducible polynomial having a root α in K. Let L/K with β ∈ L a root
of f . We must show that β lies in K. As f is irreducible, there exists an F -isomorphism
τ : F (α)→ F (β) satisfying α 7→ β. As K(α) is a splitting field of g over F (α) and K(β)
is a splitting field of g over F (β), there exists an isomorphism σ : K(α) → K(β) lifting
τ . In particular, σ is also an F -isomorphism, so we have

[K(α) : F ] = [K(α) : F (α)][F (α) : F ]

= [K(β) : F (β)][F (β) : F ] = [K(β) : F ].

But α ∈ K, so K(α) = K, and

[K : F ] = [K(α) : F ] = [K(β) : F ] = [K(β) : K][K : F ].

Therefore, [K(β) : K] = 1, i.e., β ∈ K, as needed.

(⇐): As K/F is finite, there exist α1, . . . , αr in K, some r, with K = F (α1, . . . , αr) and
each αi algebraic over F . Clearly, K is the splitting field of f =

∏
mF (αi) over F , as

each mF (αi) has a root in K, hence splits over K and any splitting field of f over F in
K must contain all the αi’s. �

Remark 56.3. 1. Q(3
√

2)/Q) is not normal as the irreducible polynomial t3 − 2 in Q[t]
does not split over Q(3

√
2)

[Note: the general proof above is really the same as the special case done before.]

2. Let p be a positive prime and F = (Z/pZ)(x) with x transcendental over Z/pZ. Then
f = tp− x in F [t] is irreducible. (Cf. Exercise 53.10 (3).) Let K/F with α ∈ K a root
of f , i.e., αp = x. Set E = F (α). Then f = (t−α)p in E[t], hence E is a splitting field
of f over F . Therefore, E/F is normal. We saw that G(E/F ) = 1, hence E/F is not
Galois.

Proposition 56.4. Let K/F be a finite, normal extension and K/E/F an interme-
diate field. Suppose that ϕ : E → K is an F -homomorphism. Then there exists an
F -automorphism σ ∈ G(K/F ) satisfying σ|E = ϕ, i.e., every F -homomorphism E → K
arises from an F -automorphism of K by restriction.

Proof. Let K be a splitting field of the non-constant polynomial f in F [t], hence a
splitting field of f over E. In addition, K is a splitting field of f = ϕ̃(f) over ϕ(E), so
there exists an automorphism σ : K → K lifting ϕ : E → ϕ(E), so σ lies in G(K/F ). �

Using Zorn’s Lemma, one can show that the last two propositions hold if we only
assume that K/F is algebraic. (Cf. Exercises 56.22(4), (3), respectively.) Alternatively,
one can use the existence of an algebraic closure (Corollary 51.2) and its lifting property
(Theorem 51.3), together with a restriction argument giving the uniqueness of splitting
fields.
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Definition 56.5. Let K/Ei/F be finite field extensions, i = 1, 2 with K/F normal. We
say that E1 and E2 are conjugate over F if there exists an automorphism σ ∈ G(K/F )
satisfying σ|E1 : E1 → E2 is an isomorphism. Equivalently, by Proposition 56.4, there
exists an F -isomorphism E1 → E2.

Remarks 56.6. Let L/F be a finite normal extension, L/K/Ei/F field extensions, i =
1, 2, with K/F also normal. Then E1 and E2 are conjugate relative to the extensions
K/Ei/F if and only if they are conjugate relative to the extensions L/Ei/F , as any
σ ∈ G(K/F ) lifts to some σ̂ ∈ G(L/F ) and any σ̂ ∈ G(L/F ) restricts to σ̂|K ∈ G(K/F ).
That σ̂ is an F -automorphism of K follows from the following:

Corollary 56.7. Let K/F be a finite normal field extension and K/E/F an intermediate
field extension. Then K/E is normal. Moreover, the following are equivalent:

(1) E/F is normal.
(2) σ(E) = E for every σ ∈ G(K/F ).
(3) σ|E ∈ G(E/F ) for every σ ∈ G(K/F ).
(4) The map Φ : G(K/F ) → G(E/F ) given by σ 7→ σ|E is well-defined and an

epimorphism.
(5) E is the only conjugate of E.

Proof. If K is the splitting field of the non-constant polynomial f ∈ F [t] over F ,
then it is also the splitting field of f over E, so the first statement follows.

We turn to the equivalences. By Proposition 56.4, any ϕ ∈ G(E/F ) lifts to an element
in G(K/F ) and if G(K/F ) → G(E/F ) by σ 7→ σ|E is well-defined – usually it is not as,
in general, σ(E) 6⊂ E – the equivalences of (2), (3), (4) and (5) become clear. So it suffices
to show that (1) and (2) are equivalent.

(1) ⇒ (2): Let x ∈ E and σ ∈ G(K/F ). As x ∈ E and E/F is normal, we know that
mF (x) splits over E. Since G(K/F ) takes the roots of mF (x) to roots of mF (x), the root
σ(x) also lies in E. As the argument also works for σ−1, Statement (2) follows.

(2) ⇒ (1): Let f ∈ F [t] be an irreducible polynomial having a root α ∈ E. As K/F is
normal, f splits over K. Let β ∈ K be root of f . We must show that β ∈ E, i.e., f splits
over E. We know that there exists an F -isomorphism ϕ : F (α) → F (β) taking α 7→ β.
By Proposition 56.4, there exists an automorphism σ ∈ G(K/F ) satisfying ϕ = σ|F (α), so
β = ϕ(α) = σ(α) lies in E as needed. �

Note in the above if E/F is normal, then ker Φ = G(K/E) / G(K/F ) and G(E/F ) ∼=
G(K/F )/G(K/E).

Definition 56.8. Let K/F be a finite field extension. Then a field extension L of K is
called a normal closure of K/F if L/F is normal and [L : K] is minimal with respect to
this property. If this is the case, we write L/K is a normal closure of K/F .

Question 56.9. How would you define the normal closure of an algebraic extension of
F?

Proposition 56.10. Let K/F be a finite field extension. Then a normal closure of K/F
exists and is unique up to a K-isomorphism.
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Proof. Let K = F (α1, . . . , αn) with each αi algebraic over F , f =
∏
mF (αi) in F [t],

and L a splitting field of f over K, hence also a splitting field of f over F . Therefore,
L/F is normal. By the uniqueness of splitting fields, L is unique up to a K-isomorphism
(relative to f). If E/K is a normal extension, then each mF (αi) must split over E, so f
must split over E. The result now follows easily. �

If in the above proposition, K/F is also separable, then L/F is also separable by
Exercise 53.10(6). We shall also give a proof of this below.

The main technical result needed to establish the field theoretic equivalence of a Galois
extension (rather than a group theoretic one) is the following:

Proposition 56.11. Let K/F be a finite extension of fields of degree n. Suppose that
L/K with L/F finite and normal and

τ1, . . . , τm : K → L

are all the distinct F -homomorphisms. Then the following are true:

(1) m ≤ n.
(2) m = n if and only if K/F is separable.
(3) τ1(K), . . . , τm(K) are all the conjugates of K over F in L (and independent of

the normal extension L/F ).
(4) Let E = F

(
τ1(K) ∪ · · · ∪ τm(K)

)
. Then E/K is a normal closure of K/F .

Using the exercises in 56.22, the assumption in the proposition that L/K be finite
may be dropped.

Proof. We may assume that τ1 is the inclusion, so m ≥ 1. Let S = {τ1, . . . , τm}.
(1): By assumption, F ⊂ KS, so [K : F ] ≥ |S| = m by Artin’s Lemma 54.8.

(2): We induct on n. The case of n = 1 is immediate, so we may assume that n > 1.
Let α ∈ K \ F be chosen with α not separable, i.e., mF (α) not separable, if K/F is not
separable. Let

r = [F (α) : F ] > 1

and
α = α1, . . . , αr0 the distinct roots of mF (α) in L.

[Note that mF (α) splits over L as L/F is normal.]
So we have

r = r0 if and only if α is separable over F

if and only if K/F is separable.

In particular,
r0 < r if K/F is not separable.

Let
ϕi : F (α)→ F (αi) [⊂ L]

be the F -isomorphism satisfying α 7→ αi, 1 ≤ i ≤ r0.
Since the roots of mF (α) go to roots of mF (α), we have

ϕi, 1 ≤ i ≤ r0, are all the F -homomorphisms F (α)→ L.
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As L/F is normal, each ϕi lifts to some

ϕ̂i ∈ G(L/F ), 1 ≤ i ≤ r0.

[There can be many distinct lifts of each ϕi — chose one.]
Thus

ϕ̂i|F (α) 6= ϕ̂j|F (α) if i 6= j.

So we have the following:

(i) [K : F (α)] =
n

r
.

(ii) K/F (α) is separable if K/F is separable.

By induction, we have:

There exist m0 distinct F (α)-homomorphisms

ψ1, . . . , ψm0 : K → L

with m0 =
n

r
if and only if K/F (α) is separable.

[Note if K/F is separable so is K/F (α).]
Let

ρij = ϕ̂iψj : K → L, 1 ≤ i ≤ r0, 1 ≤ j ≤ m0.

and

S = {ρij | 1 ≤ i ≤ r0, 1 ≤ j ≤ m0}.
Each ρij is an F -homomorphism, so S ⊂ {τ1, . . . , τm}.

Claim 56.12. S contains all the F -homomorphisms K → L and m = |S| = r0mo:

If we establish the claim, then

m = r0m0 ≤ m0r ≤ n.

So

K/F is separable if and only if r = r0 and m0 =
n

r
if and only if n = m0r0 = m.

In particular, if we prove the claim, (2) follows.

Let ρ : K → L be an F -homomorphism. Then ρ(α) is a root of mF (α), so there exists an
i satisfying ρ|F (α) = ϕi, hence ϕ̂ −1

i ρ : K → L is an F (α)-homomorphism. Consequently,
there exist a j satisfying ψj = ϕ̂ −1

i ρ. Therefore, ρ = ϕ̂iψj = ρij lies in S.
To finish proving the claim, we must show that the ρij are distinct. Suppose that

ρij = ρkl. Then

ϕi = ρij|F (α) = ρkl|F (α) = ϕk,

hence ϕ̂i = ϕ̂k, so i = k. Since

ϕ̂iψj = ρij = ρkl = ϕ̂kψl,

it follows that ψj = ψl as ϕ̂i is an automorphism. Consequently, j = l. This shows that
the ρij’s are distinct and establishes the claim.
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(3). Each of the τi : K → L above lifts to some τ̂i in G(L/F ) as before. In particular,
τ̂i(K) = τi(K). If σ ∈ G(L/F ), there exists a j such that σ|K = τj. It follows that
τ1(K), . . . , τm(K) are all the conjugates of K (repetitions possible).

(4): Suppose that L/F is also a normal closure of K/F . Set E = F
(
τ1(K)∪· · ·∪τm(K)

)
⊂

L. Write K = F (β1, . . . , βs), for some βi, and set f =
∏s

i=1 mF (βi) in F [t]. Then L
is a splitting field of f over F . By the argument proving (2), we know that for any
root of mF (βi), there exist an F -homomorphism K → L sending βi to that root. As
τ1, . . . , τm : K → L are all the F -homomorphisms and each must take roots of mK(βi) to
roots of mF (βi), the field E contains all the roots of the mF (βi). As L/F is a splitting
field of f , we must have E = L. �

Corollary 56.13. Let K/F be a extension of fields with α an element in K algebraic
over F . Then α is separable over F if and only if F (α)/F is separable.

Proof. Let L/F (α) be a field extension such that L/F is finite and normal. We
know that mF (α) splits over L. Let α = α1, . . . , αm be the distinct roots of mF (α) in
L. We know that there exist F -isomorphisms ϕi : F (α) → F (αi) satisfying α 7→ αi for
i = 1, . . . ,m and these are all the distinct F -homomorphisms into L. Thus F (α)/F is
separable if and only if [F (α) : F ] = degmF (α) = m if and only if α is separable over
F . �

Proposition 56.14. Let K be a splitting field of a separable polynomial in F [t]. Then
K/F is separable and Galois.

Proof. Suppose that K is a splitting field of the separable polynomial f ∈ F [t]. We
may assume that F < K. Let α ∈ K be a root of f not in F . As α is separable over F ,
the extension F (α)/F is separable by the corollary. Therefore, there exist m = [F (α) : F ]
F -homomorphisms ϕi : F (α) → K, 1 ≤ i ≤ m. As K/F is normal, each ϕi lifts to
some ϕ̂i ∈ G(K/F ). Since K is a splitting field of the separable polynomial f over
F (α), by induction on [K : F ], we conclude that K/F (α) is separable. As K/K is the
normal closure of K/F (α) (as well as K/F ), there exist precisely [K : F (α)] distinct
F (α)-homomorphisms ψj : K → K, 1 ≤ j ≤ [K : F (α)]. Moreover, the argument to
prove Claim 56.12 shows that

S = {ϕ̂iψj | 1 ≤ i ≤ [F (α) : F ], 1 ≤ j ≤ [K : F (α)]}
is the set of all F -homomorphisms K → K and has [K : F ] = [K : F (α)][F (α) : F ]
elements, hence K/F is separable. Since S ⊂ G(K/F ), we have |G(K/F )| = [K : F ] by
Artin’s Lemma 54.8, so K/F is also Galois. �

Corollary 56.15. Let K/F be a finite separable field extension and L/K a normal closure
of K/F . Then L/F is separable and Galois.

Proof. LetK = F (α1, . . . , αn). Then L is a splitting field of the separable polynomial∏
mF (αi) in F [t], hence L/F is separable and Galois. �

Corollary 56.16. Let K = F (α1, . . . , αn) with αi separable over F for each i = 1, . . . , n.
Then K/F is separable.

Proof. Let L/K be a normal closure of K/F , hence the splitting field of the separable
polynomial

∏
mF (αi). Therefore, L/F is separable hence so is K/F . �
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Corollary 56.17. If K/F is finite field extension and K/E/F , then K/F is separable if
and only if K/E and E/F are separable.

Proof. (⇒) has already been done.

(⇐): Let L/K be a (finite) normal extension and

ϕ1, . . . , ϕm : E → L be all the distinct F -homomorphisms

ψ1, . . . , ψn : K → L be all the distinct E-homomorphisms.

Let ϕ̂i ∈ G(L/F ) lift ϕi for 1 ≤ i ≤ m. Then as in the proof of Claim 56.12,

|{ϕ̂iψj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}| = mn.

As K/E and E/F are separable, [K : F ] = [K : E][E : F ] = mn, hence K/F is separable
by Proposition 56.11. �

We arrive at our goal of finding the field theoretic interpretation for a finite field
extension K/F to be Galois.

Theorem 56.18. Let K/F be a finite extension of fields. Then K/F is Galois if and
only if K/F is normal and separable.

Proof. (⇐) has already been done.

(⇒): Let L/K be a normal closure of K/F . As K/F is Galois, the number of F -
homomorphisms K → L is at least |G(K/F )| = [K : F ]. It follows by Proposition 56.11
there exist exactly |G(K/F )| = [K : F ] such F -homomorphisms and, in addition, K/F
must be separable. Since each of these homomorphisms lies in G(K/F ), Proposition
56.11(4), shows that L = F

(
∪G(K/F ) σ(K)

)
= K. �

Corollary 56.19. Let K/F be a finite extension and K/E/F an intermediate field. Sup-
pose that K/F is Galois. Then

(1) K/E is Galois.
(2) E/F is Galois if and only if E/F is normal.

Proof. As K/F is Galois, it is separable and normal, so K/E and E/F are separable
and K/E is normal. Therefore, K/E is Galois and E/F is normal if and only if E/F is
Galois. �

Let K/F be a finite field extension and K/E/F an intermediate field. Recall that we
have seen, in general, K/F being Galois does not imply that E/F is Galois. For example,

K = Q(3
√

2, e2π
√
−1/3), E = Q(3

√
2), and F = Q. A question left to the reader is: If K/E

and E/F are Galois, is K/F Galois?

Definition 56.20. A field F is called perfect if any algebraic extension K/F is separable.

So we have

Remark 56.21. Let F be a field.

(1) If charF = 0, then F is perfect.

(2) If F is a finite field, then F is perfect.
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(3) If F is perfect, K/F a finite extension, then K/F is Galois if and only if K/F is
normal.

(4) If x is transcendental over Z/pZ, with p > 0 a prime and F = (Z/pZ)(x), then
F is not perfect as tp − x in F [t] is not separable.

Exercises 56.22.

1. Let F be a field and {fi}I be a set of non-constant polynomials in F [t]. Prove that a
splitting field of {fi}I over F exists and is unique up to an F -isomorphism.

2. Let K/F be an algebraic extension. Show that any F -homomorphism σ : K → K is
an F -automorphism.

3. Let K/F be a normal (possibly infinite) extension of fields and K/E/F an intermediate
field. Suppose that ϕ : E → K is an F -homomorphism. Then there exists an F -
automorphism σ ∈ G(K/F ) satisfying σ|E = ϕ, i.e., every F -homomorphism E → K
arises from an F -automorphism of K by restriction.

4. Let K/F be an algebraic extension of fields. Then K/F is normal if and only if any
irreducible polynomial in F [t] having a root in K splits over K.

5. Let K/F be an algebraic field extension. Answer Question 56.9 and prove that a
normal closure of K/F exists and is unique up to a K-isomorphism.

6. Let F be a field and L and algebraic closure of F . Show that L/F is normal. Is it true
that LG(L/F ) = F , i.e., L/F is (infinite) Galois? If not, give an example when it is not.

7. Show that there exist uncountably many field automorphisms of C.

8. Let K/F be an algebraic extension of fields and K/E/F an intermediate field. Show
that K/F is separable if and only if K/E and E/F are separable.

9. Suppose that K/F is Galois and α ∈ K has precisely r distinct images under G(K/F ).
Show [F (α) : F ] = r.

10. Let F be a field of positive characteristic p and f = tp − t− a ∈ F [t].
(a) Show the polynomial f has no multiple roots.
(b) If α is a root of f , show so is α + k for all 0 ≤ k ≤ p− 1.
(c) Show f is irreducible if and only if f has no root in F .
(d) Suppose that a 6= bp − b for any b ∈ F . Find G(K/F ) where K is a splitting field

of tp − t− a ∈ F [t].

11. Let K/F be a finite field extension and K/E/F an intermediate field. Suppose that
K/E and E/F are Galois. Is K/F Galois? Either prove or provide a counterexample.

12. Prove if F is not a finite field and u, v are algebraic and separable over F that there
exists an element a ∈ F such that F (u, v) = F (u + av). Is this true if |K| < ∞ with
K(u) < K(u, v) and K(v) < K(u, v)?

13. Let K = Q(
√

2,
√

3, u) where u2 = (9− 5
√

3)(2−
√

2). Show that K/Q is normal and
find G(K/Q).

14. Let L/F be a finite normal extension and E = LG(L/F ). Show

E = {α | α is purely inseparable over F}.
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(Cf. Exercises 53.10(11) and (14).) In particular, L/E is separable and E/F is purely
inseparable, i.e., we have

L
p insep sep

Lsep

sep

E = LG(L/F )

p insep

F

57. The Fundamental Theorem of Galois Theory

In this section we put together the pieces that we have developed, i.e., the group
theoretic and field theoretic interpretations of Galois extensions. As an application we
prove the Fundamental Theorem of Algebra. We begin with the following lemma.

Lemma 57.1. Let K/F be a finite Galois extension of fields, Hi ⊂ G(K/F ) a subgroup
and Ei = KHi for i = 1, 2. If σ is an element of the Galois group G(K/F ), then

σ|E1 : E1 → E2 is an isomorphism if and only if H2 = σH1σ
−1,

i.e., E1 and E2 are conjugate over F (via σ) if and only if H1 and H2 are conjugate in
G(K/F ) (via σ).

Proof. We know that K/Ei is Galois and Hi = G(K/Ei) for i = 1, 2. In particular,
[K : Ei] = |Hi| for i = 1, 2, so under either condition, we have

|H1| = |H2| = [K : E1] = [K : E2].

(⇒): Let τ ∈ H1 and y ∈ E2. Then σ−1(y) lies in E1, so στσ−1(y) = σσ−1(y) = y
as τ |E1 = 1E1 . Therefore, we have σH1σ

−1 ⊂ H2 = G(K/E2), hence σH1σ
−1 = H2 as

|σH1σ
−1| = |H1| = |H2| <∞.

(⇐): Let x ∈ E1 and τ ∈ H1. Then στσ−1(σ(x) = στ(x) = σ(x), as τ |E1 = 1|E1 . Conse-

quently, σ(x) lies in KσH1σ−1
= KH2 = E2, and σ|E1 : E1 → E2 and is a homomorphism.

As [K : E1] = [K : E2] and [E1 : F ] = [E2 : F ], the map σE1 is an isomorphism (since a
linear monomorphism of finite dimensional vector spaces of the same dimension). �

Notation 57.2. Let K/F be an algebraic extension of fields. We set

F(K/F ) := {E | K/E/F is an intermediate field}
G(K/F ) := {H | H ⊂ G(K/F ) is a subgroup}.

Putting together all our results leads to:

Theorem 57.3. (The Fundamental Theorem of Galois Theory) Suppose that K/F is a
finite Galois extension. Then

i : G(K/F )→ F(K/F ) given by H 7→ KH

is a bijection of sets with inverse

j : F(K/F )→ G(K/F ) given by E 7→ G(K/E).
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Moreover,

(1) The bijection i is order-reversing, i.e., H1 ⊂ H2 if and only if KH1 ⊃ KH2.
(2) If E ∈ F(K/F ), then E/F is normal (hence Galois) if and only if G(K/E) /

G(K/F ).
(3) If E ∈ F(K/F ) with E/F normal, then the canonical epimorphism

: G(K/F )→ G(E/F ) given by σ 7→ σ|E
induces an isomorphism

G(K/F )/G(K/E)→ G(E/F ) given by σG(K/E) 7→ σ|E.
(4) If H ∈ G(K/F ), then |H| = [K : KH ] and K/KH is Galois with H = G(K/KH).
(5) If H ∈ G(K/F ), then [G(K/F ) : H] = [KH : F ].

The bijection i : G(K/F )→ F(K/F ) given by H 7→ KH and its inverse is called the
Galois Correspondence. We have the following picture:

K

−

G(K/K) = 1

−

| = ∪ E

=

G(K/E)

=

| = ∩

F G(K/F )

with the identified verticals having the same degree (index) and if E/F is normal, then
G(K/F )/G(K/E) ∼= G(E/F ).

Proof. We already know that H1 = H2 in G(K/F ) if and only if KH1 = KH2 in
F(K/F ), so i : G(K/F )→ F(K/F ) is injective. Let E ∈ F(K/F ). Then K/E is Galois,
so G(K/E) 7→ KG(K/E) = E. Hence i : G(K/F )→ F(K/F ) is bijective.

(1) is clear.

(2): We know that if E ∈ F(K/F ), then E/F is normal if and only if σ(E) = E for all
σ ∈ G(K/F ). By Lemma 57.1, this is true if and only if σG(K/E)σ−1 = G(K/E) for all
σ ∈ G(K/F ), i.e., if and only if G(K/E) / G(K/F ).

We have seen if E/F is normal then Φ : G(K/F )→ G(E/F ) by σ 7→ σ|E is a well-defined
group epimorphism. As

ker Φ = {σ ∈ G(K/F ) | σ|E = 1E} = G(K/E),

Φ induces an isomorphism G(K/F )/G(K/E) ∼= G(E/F ).

(4): As K/KH is Galois, H = G(K/KH), so H = [K : KH ] by Artin’s Theorem 54.15.

(5): By Artin’s Theorem 54.15,

[K : KH ][KH : F ] = [K : F ] = |G(K/F )| = [G(K/F ) : H]|H|,
so (4)⇒ (5). �

Corollary 57.4. Let K/F be a finite Galois extension of fields. Then F(K/F ) is finite,
i.e., there exist only finitely many intermediate fields E with K/E/F .
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Proof. By the Fundamental Theorem of Galois Theory, we have |F(K/F )| = |G(K/F )|,
hence F(K/F ) is a finite set. �

Corollary 57.5. Let K/F be a finite separable extension. Then F(K/F ) is finite.

Proof. Let L/K be a normal closure of K/F . Then L/F is finite, separable, and
normal, so Galois. Thus |F(K/F )| ≤ |F(L/F )| is finite. �

We give a few examples, before deriving significant consequences of this fundamental
theorem.

Example 57.6. 1. We know that K = Q(
√

2,
√

3) is the splitting field of (t2 − 2)(t2 − 3)
in C over Q. Then we have seen that G(K/Q) = {1, σ, τ, στ} ∼= Z/2Z× Z/2Z with

σ : K → K the Q(
√

3)-automorphism given by
√

2 7→ −
√

2,

τ : K → K the Q(
√

2)-automorphism given by
√

3 7→ −
√

3.

Intermediate fields and corresponding subgroups are given by the following diagrams:

K

Q(
√

2) Q(
√

6) Q(
√

3)

Q

and

1

〈τ〉 〈στ〉 〈σ〉

G(K/Q).

2. Let K be a splitting field of t4 − 2 over Q. Then K = Q(4
√

2,
√
−1) and [K : Q] = 8. If

σ : K → K the Q(4
√

2)-automorphism given by
√
−1 7→ −

√
−1,

τ : K → K the Q(
√
−1)-automorphism given by 4

√
2 7→

√
−1 4
√

2,

then |〈σ〉| = 2, |〈τ〉| = 4, στσ−1 = τ 3, G(K/Q) = 〈σ, τ〉 ∼= D4.
Intermediate fields and corresponding subgroups are given by the following diagrams
with θ = 4

√
2, i =

√
−1:

K

Q(θ) Q(iθ) Q(i,
√

2) Q
(
(1 + i)θ

)
Q
(
(1− i)θ

)
Q(
√

2) Q(i) Q)(
√
−2)

Q
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1

〈σ〉 〈τ 2σ〉 〈τ 2〉 〈τσ〉 〈τ 3σ〉

{1, τ 2, σ, στ 2} 〈τ〉 {1, τσ, τ 3σ, τ 2}��

Q.

3. Let L = F (t1, . . . , tn), the quotient field of F [t1, . . . , tn]. The symmetric group Sn acts
on L as F -automorphisms by permuting the ti, i.e.,

σ(ti) = tσ(i) for all permutations σ ∈ Sn and i = 1, . . . , n.

We view Sn ⊂ G(L/F ). Let

sj = sj(t1, . . . , tn) :=
∑

1≤i1<···<ij≤n

ti1 · · · tij

be the jth elementary symmetric polynomial of t1, . . . , tn for j = 1, . . . , n and set s0 = 1.
We know that t1, . . . , tn are the roots of the polynomial

f := tn − s1t
n−1 + · · ·+ (−1)nsn in F [s1, . . . , sn][t],

as f = (t − t1) · · · (t − tn) in L[t]. Let K = LSn , so L/K is Galois. Let E :=
F (s1, . . . , sn) ⊂ K. Clearly, L is a splitting field of f over E, and by our theory, we
know that

[L : E] ≤ (deg f)! = n! and [L : K] = |G(L/K)| = [Sn| = n!.

So K = E = F (s1, . . . , sn) and G(L/K) = G
(
L/F (s1, . . . , sn)

) ∼= Sn. Note that f
must be irreducible in E[t], lest f = f1f2 in E[t] with 0 < deg f1 < n for i = 1, 2, and
we would have [L : E] ≤ (deg f1)!(deg f2)! < (deg f)! = [L : E]. Note further that
s1, . . . , sn are algebraically independent over F as t1, . . . , tn are and K/E is finite. (Cf.
Proposition 49.4.)

As an application of this computation, we also get a weak form of the Fundamental
Theorem of Symmetric Polynomials. (Cf. Theorem 72.4 below.) Let F be a field and
Sn act on F [t1, . . . , tn] by restriction of the above action. Then we have with sj the jth
elementary symmetric function in t1, . . . , tn:

Corollary 57.7. Let F be a field and f be a symmetric polynomial in F [t1, . . . , tn]. Then
f is a rational function in the elementary symmetric functions in t1, . . . , tn, i.e., f ∈
F (s1, . . . , sn).

The Fundamental Theorem of Symmetric Functions [cf. Theorem 72.4 below] implies
that a symmetric polynomial in F [t1, . . . , tn] actually lies in F [s1, . . . , sn], even with F
replaced by a commutative ring. [Cf. Theorem 72.4 for the proof.]
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We continue with the Examples 57.6

4. Every finite group G is isomorphic to some Galois group, i.e., there exists a Galois field
extension L/K with G ∼= G(L/K):

Let G be a finite group of order n and F be an arbitrary field. Set L = F (t1, . . . , tn).
If E = F (s1, . . . , sn) as in previous example. Then L/E is Galois with G(L/E) ∼= Sn.
By Cayley’s Theorem 12.5, there exists a group monomorphism λ : G → Sn, so G ∼=
λ(G) ⊂ Sn. Let K = Lλ(G), then L/K is Galois with G(L/K) ∼= G.

Open Problem 57.8. (Inverse Galois Problem) Let H be a finite group. Does there
exist a Galois extension L of Q with G(L/Q) ∼= H?

The answer to this question is known for some types of groups, e.g., cyclic groups, abelian
groups, solvable groups, Sn, An.

We now turn to some significant consequences of the Fundamental Theorem of Galois
Theory.

Theorem 57.9. (Primitive Element Theorem) Let K/F be a finite extension of fields. If
F(K/F ) is finite, then there exists an element α in K such that K = F (α). In particular,
this is true if K/F is separable.

Proof. Case 1. F is finite:

K must also be a finite field, so K× = 〈α〉 for some α ∈ K. Therefore, K = F (α) and
F(K/F ) is finite.

Case 2. F is infinite:

Choose α ∈ K with [F (α) : F ] maximal, so [F (α) : F ] ≤ [K : F ]. Suppose that
F (α) < K, then there exists a β ∈ K \ F (α). For each a ∈ F consider the subfield
F (α+ aβ) < F (α, β) ⊂ K. As F(F (α, β)/F ) is a subset of the finite set F(K/F ) and F
is infinite, there exists elements c and d in F with c 6= d satisfying F (α+cβ) = F (α+dβ).
Since c − d lies in F× and (c − d)β lies in F (α + cβ), we must have β ∈ F (α + cβ) and
hence that α also lies in F (α + cβ). It follows that F (α, β) ⊂ F (α + cβ), contradicting
the maximality of F (α). �

By Exercise 53.10(9b), we know this is not always true if K/F is not separable.

Remark 57.10. Let F be an infinite field and K/F a finite extension with F(K/F ) finite.
Suppose that α and β lie in K and S is an infinite subset of F . Then the proof above
shows that there exists an element c in S such that F (α, β) = F (α + cβ). In particular,
if K = F (α1, . . . , αn) and S is an infinite subset of F , then there exist infinitely many
n-tuples c1, . . . , cn in Sn satisfying K = F (c1α1 + · · ·+ cnαn).

We finally prove the loose end in the constructibility of regular n-gons by straight-edge
and compass (cf. Theorem 52.9).

Theorem 57.11. (Square Tower Theorem) Let F be a field of characteristic different
from two and K/F a finite normal field extension. Then K/F is a square root tower if
and only if [K : F ] = 2e for some positive integer e.
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Proof. (⇒) has previously been established.

(⇐): Suppose that [K : F ] = 2e, for some integer e. Let K = F (α1, . . . , αn). We know
that degmF (αi) = [F (αi : F ] | [K : F ] = 2e for each i. As charF 6= 2 each mF (αi) is
separable, hence the extension K/F is separable by Corollary 56.16. Consequently, K/F
is normal and separable, hence Galois, so |G(K/F )| = [K : F ] = 2e. We know that there
exists a subgroup H of the Sylow 2-group G(K/F ) of index two. Therefore, H is a normal
subgroup. It follows that KH/F is normal of degree two. By Remark 52.8(6), KH/F is
a square root tower, as charF is not two. The field extension K/KH is Galois of degree
2e−1, so a square root tower by induction on e. Therefore, K/F is a square root tower by
Remark 52.8(4). �

Next we give a proof of the Fundamental Theorem of Algebra that uses a minimal
amount of analysis. Indeed the only analysis that we need is the Intermediate Value
Theorem from Calculus (which is really the completeness of the real line).

Theorem 57.12. (Fundamental Theorem of Algebra) The field of complex numbers is
algebraically closed.

Proof. Claim. C = C2 := {x2 | x ∈ C}:
Let a be a positive real number. The polynomial t2 − a in R[t] has a real root by the
Intermediate Value Theorem, since f(1 + a) > 0 and f(a) < 0. Therefore, every positive
real number is a square in R hence in C. Since −a = (

√
−1)2a, it follows that every

real number is a square in C. Let α = a + b
√
−1 with a and b real numbers. We must

show α is a square in C. We may assume that b 6= 0. Let x = (a +
√
a2 + b2)/2 in R.

Then x is positive (why?), so there exists a real number c such that x = c2. Similarly,
y = (−a+

√
a2 + b2)/2 in R is positive, so there exists a real number d such that y = d2.

Then α = (c+ d
√
−1)2, establishing the claim.

[The above arises from
√
α =

√
|α|e

√
−1 θ/2 with θ the angle satisfying tan θ = b/a and

the half angle formula in trigonometry – which we do not need!]

Now let f be a non-constant polynomial in C[t]. We must show that f splits over C. Let
K/C be a splitting field of f and L/K a normal closure of K/R. If we show that L = C,
we are done. We know that L/R is Galois and 2 | [C : R]. Therefore, there exists a Sylow
2-subgroup H of G(K/R). In particular, [LH : R] = [G(L/R) : H] is odd. Since R is
a field of characteristic zero, it is perfect, so there exists an element α ∈ LH satisfying
LH = R(α) by the Primitive Element Theorem 57.9. The element α in LH is a root of the
irreducible polynomial mR(α) in R[t] of odd degree. By the Intermediate Value Theorem,
any real polynomial of odd degree has a real root. Therefore, α is real, so LH = R(α) = R,
Therefore, G(L/R) = G(L/LH) is a 2-group. As L/R is Galois and char R 6= 2, L/R is a
square root tower by the Square Root Tower Theorem. It follows that L(C)/C is also a
square root tower by Remark 52.8(2). By the claim, C has no proper square root towers
over it, so L(C) = C as needed. �

Exercises 57.13.

1. Show that the lattices of subgroups and subfields in Example 57.6(2) are correct.
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2. Let F be a perfect field and K/F a finite Galois extension. Show if G(K/F ) ∼= Sn,
then K is the splitting field of an irreducible polynomial of degree n. Is this still true
if G(K/F ) ∼= An?

3. Let K be a splitting field of f ∈ Q[t]. Find K, G(K/Q), and all intermediate fields if:
(i) f = t4 − t2 − 6.

(ii) f = t3 − 3.

4. Let K be a splitting field of t5 − 2 ∈ Q[t].
(i) Find G(K/Q).

(ii) Show that there exists a group monomorphism G(K/Q)→ S5.
(iii) Find all subgroups of G(K/Q) and the corresponding fields.

5. Suppose that L/F is a finite Galois extension and L/K/F an intermediate field. Show
that G(K/F ) = NG(L/F )

(
G(L/K)

)
/G(L/K), the quotient of the normalizer of G(L/K)

in G(L/F ) modulo G(L/K).

6. Suppose that K/F is a finite Galois extension of fields. Let F ⊂ E ⊂ K and L
the smallest subfield of K containing E such that L/F is normal. Show G(K/L) =⋂
σ∈G(K/F )

σG(K/E)σ−1, the core of G(K/E) in G(K/F ).

7. Let L/F be a finite Galois extension, L/Ki/F intermediate fields, and Hi = G(Ki/F )
for i = 1, 2. Show H1 ∩H2 = G

(
L/K1(K2)

)
and the fixed field of the smallest group

in G(L/F ) containing H1 and H2 is K1(K2)

8. Let K/F be a finite Galois extension. Suppose that p is a prime satisfying pr | [K : F ]
but pr+1 6 | [K : F ]. Show that there exist fields Li, 1 ≤ i ≤ r, satisfying F ⊆ Lr <
Lr−1 < · · · < L1 < L0 = K with Li/Li+1 is normal, [Li : Li+1] = p and p 6 | [Lr : F ] for
each i.

9. Let f be an irreducible quartic over a field F of characteristic zero, G the Galois group
of f (i.e., the Galois group of K/F with K a splitting field of f over F ), u a root of
f . Show that there is no field properly between F and F (u) if and only if G = A4 or
G = S4 and that there exist such irreducible polynomials with Galois group A4 and
S4. [This will explode the myth that there must be an intermediate field when the
dimension is not prime.]

10. Let L/F and K/F be finite extensions of fields with L/F Galois and K, L lying in some
extension field F . Let LK = K(L) = L(K). Show that LK/K and L/L∩K are Galois
and the restriction map ϕ : G(LK/K)→ G(L/F ) given by σ 7→ σ|L a monomorphism
with image G(L/L ∩K). In particular, if L ∩K = F , then G(LK/K) ∼= G(L/F ).

11. Suppose that M/F be a finite Galois extension and K and L two intermediate fields
of M/F with K/F Galois. Let KL = L(K), N = G(M/K) / G(M/F ), and H =
G(M/L). Then KL/L is Galois by Exercise 10. Show, in addition, that all of the
following are true:
(a) G(M/KL) = H ∩N / H.
(b) G(KL/L) ∼= H/H ∩N ∼= HN/N .
(c) G(K/K ∩ L) ∼= HN/N .

12. Let E/F be an extension of fields and E/Ki/F be intermediate fields, i = 1, 2 with
Ki/F finite Galois for i = 1, 2. Let K1K2 = K1(K2). Show K1K2/F is a Galois
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extension and the restriction map ϕ : G(K1K2/F ) → G(K1/F ) × G(K2/F ) given by
σ 7→ (σ|K1 , σ|K2) is a monomorphism. In particular, it is an isomorphism if K1 ∩K2 =
F .

13. Let L/F be a finite Galois extension. Suppose that G(L/F ) = G1 × · · · × Gn, a
direct product of subgroups. Let Ki be the fixed field of G1 × · · · × {1} × · · · × Gn

where the group {1} occurs in the ith place. Show that Ki/F is Galois for every i,
Ki ∩ F (∪j 6=iKj) = F , and L = F (∪iKi).

14. Prove Remark 57.10.

15. Let F be a field having no nontrivial field extensions of odd degree and K/F a finite
field extension. Show if K has no field extensions of degree two, then F is perfect and
K is algebraically closed. (Cf. Exercise 53.10(11)).

58. Addendum: Infinite Galois Theory

In this section, we indicate how Galois Theory for finite extensions extends to arbitrary
algebraic extensions. In particular, normal extensions need not be finite and an algebraic
extension K of F is called Galois if F = KG(K/F ). We must generalize some of our proofs.
The first is a proof of Exercise 56.22(2). The key is to reduce our proofs to finite Galois
extensions. We can do this as we often deal with finitely many algebraic elements if K/F
is a Galois extension.

Definition 58.1. Let L/F be a field extension and L/Ei/F intermediate fields with i ∈ I.
The compositum K of the Ei, i ∈ I is the smallest intermediate field L/K/F containing
all Ei, i ∈ I, i.e., K = F (∪IEi). When we talk about compositums, we shall always mean
all fields that are mentioned lie in some larger field L. If we are restricting ourselves to
algebraic extensions, we can always assume that L = F̃ , an algebraic closure of F . We
usually do without comment.

In particular, fixing such an algebraic closure F̃ of F , we would like to take composi-
tums of finite extensions of F . For example the algebraic closure of F is a compositum
of the splitting field of all polynomials in F [t].

Proposition 58.2. Let K/F be an algebraic extension and σ : K → K an F -homomorphism,
then σ lies in G(K/F ), i.e., σ is onto.

Proof. Let α lie in K. Define E to be the intermediate field K/E/F obtained by
adjoining all the roots of mF (α) in K to F . Therefore E/F is a finite extension. Since
the F -homomorphism σ must permute the roots of mF (α) in K, we must have σ(E) ⊂ E.
As σ is a injective linear operator on E and E is a finite dimensional F -vector space, σ
must be onto. So there exists a β ∈ E, such that σ(β) = σ|E(β) = α as needed. �

Proposition 58.3. Let K/F be an algebraic extension. If K/F is normal and K/E/F
is an intermediate field, then any F -homomorphism σ : E → K lifts to an element of
G(K/F ).

Proof. This is Exercise 56.22(3), which follows by a Zorn Lemma argument and the
finite extension case (and the previous proposition). [Alternatively, one can descend from
an algebraic closure of F .] �
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Therefore, we can generalize our characterization of finite normal extensions (proving
Exercise 56.22(4)). [As noted above, we assume that all algebraic extensions of the field
F lie in a fixed algebraic closure of F .]

Corollary 58.4. Let K/F be an algebraic extension. Then the following are equivalent:

(1) K/F is normal.
(2) If f ∈ F [t] is irreducible and has a root in K, then f splits over K.
(3) K is the compositum of all the splitting fields of mF (α) with α ∈ K.
(4) Let L/F be an algebraic extension with L/F normal and L/K/F . If σ : K → L

is an F -homomorphism, then σ defines an element in G(K/F ).

In particular, any normal extension of F is a compositum of finite normal extensions of
F .

Proof. (1) ⇒ (2): As K/F is normal, let K be a splitting field of X over F , X =
{fi | i ∈ I}, and f ∈ F [t] irreducible with a root α in K. We must show that f splits
over K. Since α is algebraic over F , there exist a finite subset Y ⊂ X, such that α lies in
a splitting field E of Y over F with K/E/F . Then F (Y )/F is finite normal with α ∈ E.
Since E/F is finite normal, f splits over E hence over K.

(2)⇒ (3) and (3)⇒ (1) are immediate.

(2)⇒ (4): Let σ : K → L be an F -homomorphism and f ∈ F [t] irreducible with f having
a root α in K. If α lies in K, then mF (α) splits over K by assumption, i.e., K contains
all the roots of mF (α). Hence σ(α) lies in K. Therefore, σ(K) = K. By Proposition
58.2, we must have σ lies in G(K/F ).

(4)⇒ (2): Let L/K/F with L/F/K normal and f ∈ F [t] an irreducible polynomial. Let
α and β be two roots of f in L. There exists an F -homomorphism σ : F (α) → F(β)
such that α 7→ β. This map lifts to σ̂ : L → L by Proposition 58.3. Since σ̂|K : K → L
is an F -homomorphism, by (4) we have σ̂|K ∈ G(K/F ). In particular, if α ∈ K, then
σ̂|K(α) = β. It follows that β ∈ K, i.e., f splits over K. �

We can now show that the field theoretic characterization of finite Galois extensions
extends to the algebraic Galois case.

Theorem 58.5. Let K/F be an algebraic extension. If K/F is normal, then K/F is
Galois if and only if K/F is separable and normal.

Proof. (⇐): Let α lie in KG(K/F ). As above there exists an intermediate field
K/E/F with E a splitting field of mF (α) over F . As K/F is separable, so is E/F , hence
E/F is finite normal and separable so Galois. Let σ lie in G(E/F ), By the Proposition
58.3, there exists an extension σ̂ of σ in G(K/F ), i.e., σ̂|E = σ. So by assumption
σ(α) = σ̂(α) = α. Therefore, α lies in EG(E/F ) = F .

(⇒): Let α lie in F . Every element of S = {σ(α) | σ ∈ G(K/F )} is a root of mF (α) (which
a priori may have other and/or multiple roots), so S is a finite set. Let α = α1, α2, . . . , αn
be the finite distinct elements of S and f =

∏n
i=1(t− αi) in K[t]. As G(K/F ) permutes

α1, . . . , αn, we must have f = σ̃f(:=
∏n

i=1(t− σ(αi)) for every σ ∈ G(K/F ), i.e., f lies in
F [t]. But then f | mf (α) in F [t], so f = mF (α) is separable and F = mF (α) splits over
K. It follows that K/F is separable and normal. �
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We turn to the group theoretic characterization of Galois extensions in the arbitrary
algebraic case. Here we have a problem that will force us to modify our Galois Corre-
spondence in the finite case.

Remark 58.6. Let K/F be an algebraic Galois extension of fields, H a subgroup of
G(K/F ), and E = KH . Suppose that σ and τ are elements of G(K/F ). If τ−1σ lies in H,
then for every x ∈ E, we have τ−1σ(x) = x, so σ|E = τ |E. However, if we only know that
(τ−1σ)|E = 1E, we can only conclude that τ−1σ lies in G(K/F ). It does not necessarily
follow that τ−1σ lies in H. Therefore, we only know that H ⊂ G(K/E) = G(K/KH).
In the case that K/F is a finite extension, we get equality by counting using Artin’s
Theorem, but this does not work in the arbitrary algebraic case.

We do, however, have the following:

Lemma 58.7. Let K/F be an algebraic and Galois extension of fields and K/E/F an
intermediate field. If [E : F ] is finite, then the index [G(K/F ) : G(K/E)] is finite and
[G(K/F ) : G(K/E)] = [E : F ].

Proof. Suppose that σ1, . . . , σn : E → K are all the distinct F -homomorphisms.
These lift to σ̂1, . . . , σ̂n in G(K/F ), i.e., σ̂i|E = σi for each i, by Proposition 58.3 and, as
E/F is finite separable, we have n = [E : F ] by Proposition 56.11. Suppose that σ̂ is an
element of G(K/F ). Then there exists an i such that σ̂|E = σi. Therefore, (σ̂i)

−1σ̂ lies in
G(K/E). It follows that

(58.8) G(K/F ) =
n∨
i=1

σ̂iG(K/E),

and the result follows. �

The major new result that we need about infinite algebraic Galois extensions involves
some knowledge of point set topology, much of which the reader may have seen. For the
convenience of the reader, we summarize some of the concepts that we need.

A topology T on a space X is a collection of sets, called open sets closed under arbitrary
unions and finite intersections. X is then called a topological space (via T ). Let X have
a topology T . A closed set in X is one that is the complement of an open set in T . If x
is an element in X, an open set containing x is called an (open) neighborhood of x, e.g., if
X = R, an open interval containing x. A subcollection of T consisting of neighborhoods
of x such that every neighborhood of x contains an element of this subcollection is called
a fundamental system of neighborhoods or a base for x, e.g., if X = R, all the open
intervals with rational end points containing x forms a base for X. A collection of all the
fundamental neighborhoods of all elements of X together with the empty set (the empty
intersection of fundamental neighborhoods) is called a base for the topology of X. In
particular, B is a base for the topology if and only if every open set is a union of elements
in the base. (One says that a topological space X is the coarsest topology generated by
B.) A collection of open sets S in X is called a subbase for X if all finite intersections of
elements in S together with the empty set form a base for X.

Let X be a topological space via T . X is called a Hausdorff space if given any
two points x, y ∈ X there exist disjoint open sets U and V in X with x ∈ U and
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y ∈ V . Let S be a subset of X. S becomes a topological subspace via the induced topology
TS := {U ∩ S | U ∈ T }. S is called compact if for any {Ui}I , an open cover of the
topological subspace S, i.e., S ⊂

⋃
I Ui with each Ui an open set in TS, there exists a

subcollection {Ui}J ⊂ {Ui}I with J finite and {Ui}J an open cover of S. We say every
open cover has a finite subcover. If X is itself a compact set, then every closed subset S
of X is compact; for if {Ui ∩ S}I , Ui ∈ T , is an open cover of the topological subspace S,
then {Ui}I ∪ (X \S) is an open cover of X. A subset S of X is called connected if S is not
the disjoint union of open sets in TS and a connected component of X if it is a maximal
connected set. The space X is called totally disconnected if the connected components of
X are precisely the points of X.

A map f : X → Y of topological spaces is called continuous if the preimage of an
open set in Y under f is open in X.

We shall also need Tychonoff’s Theorem which we do not prove. Let {Xi}I be a
collection of topological spaces and πj :

∏
I Xi → Xj by (xi)I 7→ xj for each j ∈ I. Then

the set of preimages {(πj)−1(U) | U ∈ TXj , j ∈ I} forms a subbase for
∏

I Xi. The
resulting topology is called the product topology for

∏
I Xi. [Note for this to make sense,

we need to assume the Axiom of Choice.] Tychonff’s Theorem says that a product of
compact spaces is compact. [Tychonoff’s Theorem is, in fact, equivalent to the Axiom of
Choice.]

We now state and prove the theorem that we are after.

Theorem 58.9. (Krull) Suppose that K/F is an algebraic Galois extension of fields. Let

N (K/F ) := {G(K/E) | K/E/F with E/F finite Galois}.

Then there exists a topology on G compatible with the group structure of G (i.e., the
group operation on G is continuous relative to this topology) and which has N (K/F ) as
a fundamental system of neighborhoods of the identity 1K in G(K/F ). With this topology,
G(K/F ) is a Hausdorff, totally disconnected, topological group.

The topology in Krull’s Theorem is called the Krull Topology on G(K/F0. It is an
example of a profinite topology.

Proof. Let

m : G(K/F )×G(K/F )→ G(K/F ) by (σ, τ) 7→ στ and

i : G(K/F )→ G(K/F ) by σ 7→ σ−1

define the group operations. If σ, τ ∈ G(K/F ), we have m−1(στ) = στN (K/F ), which
contains the open neighborhood σN (K/F )×τN (K/F ) and i−1(σ−1) = σN (K/F ), which
contains the open neighborhood σN (K/F ). It follows that this induces a topological
group structure on G(K/F ) with a base of open sets {σN (K/F ) | σ ∈ G(K/F )} by
translation as m and i are continuous in this topology. This shows that G(K/F ) is a
topological group in this topology. Moreover, every element in this basis is both open and
closed called a clopen set by Equation 58.8.

If K/F is a finite Galois extension, then G(K/F ) has the discrete topology, i.e., all
subsets are clopen. As G(K/F ) is finite, it is a compact group. The result then follows
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in this case. So we may assume that K/F is infinite. We set up some notation for the
rest of the proof as follows:

G := G(K/F ).

Ffg := {E | K/E/F withE/F finite Galois}.
Gf := {G(E/F ) | E ∈ Ffg}.

So we have K =
⋃
Ffg E. Suppose that σ, τ ∈ G satisfy σ 6= τ . Then there exists

an E ∈ Ffg satisfying σG(K/E) 6= τG(K/E). Therefore, σG(K/E) ∩ τG(K/E) = ∅
by Equation 58.8. As elements of the base are clopen, G is Hausdorff and G is totally
disconnected. To prove that G is compact, we use the group homomorphism

Φ : G→
∏
Gf

G(E/F ) by σ 7→
∏
Ffg

σ|E.

We first show that this map is a homeomorphism. As
∏
Gf G(E/F ) is a product of compact

sets, it is compact by Tychonoff’s Theorem. Since Φ(σ) = 1 if and only if σE = 1E for all
E ∈ Ffg, we have Φ is injective. For each E0 ∈ Ffg and σ ∈ G(E0/F ), let

UE0,σ =
∏
Ffg
E 6=E0

(G(E/F )× {σ}.

Then {UE0,σ | E0 ∈ Ffg, σ ∈ G(E0/F )} forms a subbase for the topology of
∏
Gf G(E/F ).

Let σ ∈ G(E0/F ) with E0 ∈ Ffg and σ ∈ Φ−1(UE0,σ). Then Φ−1(UE0,σ) = σ(G(K/E0).
Therefore, Φ is continuous. Moreover, Φ

(
σG(K/F )

)
= Φ

(
G(K/F )

)
∩ UE0,σ. Therefore,

Φ is also an open map, hence it is a homeomorphism.
We now show G(K/F ) is compact. To do so, it suffices to show that im Φ is closed in

the compact space
∏

fg G(E/F ). Suppose that E1, E2,∈ Ffg with E2/E1. Set

IE2/E1 := {
∏
Ffg

σE ∈
∏
Ffg

G(E/F ) | σE2|E1 = σE1}.

Then we have Φ(G) =
⋂
Ffg
E2/E1

IE2/E1 . So it suffices to show that each finite set IE2/E1 is

closed. Let G(E1/F ) = {σ1, . . . , σn} and Ji = {σi ∈ G(E1/F ) | σi extends to E2}. Then

IE2/E1 =
n⋃
i=1

( ∏
E 6=E1,E2

G(E/F )× Ji × {σi}
)
.

It follows that IE2/E1 is closed. Hence G is compact. �

Let K/F be a Galois extension and H a subgroup of G(K/F ). Denote by H the closure
of H in G(K/F ) in this topology, i.e., the smallest closed set in G(K/F ) containing H.
This means that if σ in G(K/F ) lies in H, then every open neighborhood of σ intersects H
nontrivially. Because of the topology on G(K/F ), this means that H ∩ σH ′ is nonempty
for every H ′ in N (K/F ).

The key to obtaining a Galois Correspondence generalizing that in the finite Galois
case is the following:
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Lemma 58.10. Let K/F be an algebraic Galois extension of fields, H a subgroup of
G(K/F ), and E = KH . Then G(K/E) = H, the closure of H in G(K/F ).

Proof. G(K/E) ⊂ H: Let σ lie in G(K/E). We must show that σ ∈ H. As remarked
above, since σN (K/F ) is a fundamental system of neighborhoods for σ, it suffices to show
that H∩σH ′ is not empty for all H ′ in N (K/F ). Suppose that H ′ ∈ N (K/F ). As KH′/F
is finite Galois, it is finite separable, so KH′ = F (α) for some α in K by the Primitive
Element Theorem 57.9. Let K/L/E be an intermediate field such that L/E is finite
normal with α ∈ L. Since L/E is finite, normal, and separable, it is finite Galois. As
H ⊂ G(K/E) and L/E is Galois, τ |E lies in G(K/E) for all τ ∈ H, i.e, we have a group
homomorphism Ψ : H → G(L/E) given by τ 7→ τ |L and it has G(L/Lim Ψ) as (its finite)
image. By the definition of H, we have E = Lim Ψ, so Ψ is onto. [Note, a priori, we only
know that E ⊂ KG(K/E).] Thus there exists a τ in H with τ |L = σ|L. In particular, as α
lies in L, we have σ(α) = τ(α), so σ−1τ lies in H ′. This shows that τ ∈ σH ′ ∩H.

H ⊂ G(K/E): Let σ lie in H. We must show that σ lies in G(K/E), i.e., if α is an
element of E, then σ(α) = α. Let K/L/F (α) with L/F finite, normal, and separable,
hence finite Galois. Set H ′ = G(K/L). By assumption, H ∩ σH ′ is not empty, so there
exists an element τ in H ∩σH ′. In particular, τ |E = 1E, since E = KH , and σ(α) = τ(α),
since F (α) ⊂ KH′ . Therefore, σ(α) = τ(α) = α. �

The Fundamental Theorem of Galois Theory in this more general setting becomes:

Theorem 58.11. Let K/F be an algebraic Galois extension of fields and

Gc(K/F ) := {H | H is a closed subgroup of G(K/F )},
then

i : Gc(K/F )→ F(K/F ) given by H 7→ KH

is an order reversing bijection.

Proof. By the lemma, we know that

Gc(K/F ) = {G(K/E) | E ∈ F(K/F )}.
i is injective: If KH1 = KH2 , then by the lemma,

H1 = H1 = G(K/KH1) = G(K/H2) = H2 = H2.

i is surjective: Let E lie in F(K/F ), so E ⊂ KG(K/E). We must show that G(K/E)
moves K \E. Let α ∈ K \E. As before, let K/L/E with L/E finite normal, hence Galois,
and α ∈ L. As α does not lie in E, there exist an element σ in G(L/E) satisfying σ(α) 6= α.
By Proposition 58.3, there exists a lift σ̂ in G(K/F ) of σ. So σ̂(α) = σ(α) 6= α. �

Remark 58.12. Let K/F be an algebraic Galois extension of fields, E ∈ F(K/F ). Then

(i) E/F is normal if and only if G(K/E) / G(K/F ).
(ii) If E/F is normal, then G(E/F ) ∼= G(K/F )/G(K/E).

We leave the proofs of these as exercises.

We give an example to show that the cardinalities of G(K/F ) and Gc(K/F , when K/F
is Galois can be different, showing the extent of the reduction if the groups in which the
Galois Correspondence holds.
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Example 58.13. Let S = {
√
a | a > 0 a prime or a = −1} ⊂ C and K = Q(S) the

splitting field of {t−p2 | p > 0 a prime}∪{t2 + 1} over Q in C. Therefore, K/Q is Galois.
As Z is a UFD, it is easy to see that K is the compositum of all quadratic extensions of
Q in C, i.e., K = Q

(⋃
d∈Z Q(

√
d)
)
, the number of which is countable. If σ and τ lie in

G(K/Q), then we have σ2 = 1K and στ = τσ, i.e., G(K/Q) is abelian and all non-identity
elements are of order two. It follows that G(K/Q) is a vector space over Z/2Z, hence has
a Z/2Z-basis by Proposition 28.6, say B.
Let T be a subset of S and define σ : S → S by

σ(x) =

{
x if x ∈ T
−x if x /∈ T.

j

Then σ induces an element in G(K/Q). In particular, G(K/Q) is uncountable, so cannot
have a countable Z/2Z-basis. Therefore, for all but countably many x ∈ B, the subgroup
Hx := 〈B∪{x}〉 is a normal subgroup of index two in G(K/Q) that does cannot correspond
to a quadratic extension of Q, i.e., only countable manyHx are closed (or open) inG(K/Q).

Exercises 58.14.

1. Show the two items in Remark 58.12 are true.

2. Here is a way to prove Tychonoff’s Theorem:
(i) Let X be a topological space with a base B. Show that X is compact if and only

if every cover of X by elements of B has a finite subcover.
(ii) Let X be a topological space with a subbase B. Show that X is compact if and

only if every cover of X by elements of B has a finite subcover.
(iii) Prove Tychonoff’s Theorem.

59. Roots of Unity

Recall that an arithmetic function f : Z+ → C is called a multiplicative function if
f(1) is nonzero and f(mn) = f(m)f(n), whenever m and n are relatively prime. For
example, the Euler phi-function is multiplicative (by the Chinese Remainder Theorem).
Recall also that if f is a multiplicative function, then f(1) = 1. Let I : Z+ → C be the
Identity multiplicative function defined by I(n) = 1 and I(n) = [ 1

n
] = 0 for all n > 1.

The set A := {f | f : Z+ → C with f(1) 6= 0} is an abelian monoid with unity I under
the Dirichlet product ? : A×A → C defined by

(f ? g)(n) :=
∑
d|n

f(d)g(
n

d
)

(cf. Exercise 59.22(1)). This group arises from the study of Dirichlet series, i.e., abso-

lutely convergent series of the form
∑
n

f(n)

ns
, f a multiplicative function and s a complex

variable. It can be shown that M := {f | f ∈ A multiplicative} is a subgroup. Basic to
this is Möbius inversion that we now investigate. Recall
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Definition 59.1. The Möbius function µ : Z+ → C is defined by µ(1) = 1 and if
n = pe11 · · · perr is a standard factorization of n > 1, then

µ(n) :=

{
(−1)r if n is square-free, i.e., e1 = · · · = er = 1

0 otherwise

Let U : Z+ → C be the multiplicative function defined by U(n) = 1 for all n.

Lemma 59.2. The Möbius function µ is multiplicative and satisfies:

(1) I = µ ? U i.e., ∑
d|n

µ(d) =

{
1 if n = 1

0 if n > 1.

(2) If n = pe11 · · · perr is a standard factorization of n > 1, then
∑

d|n |µ(d)| = 2r.

Proof. Let m and n be relatively prime positive integers. Clearly, either m or n is not
square free if and only if mn is not square free. It follows easily that µ is multiplicative.
Let ε = µ or |µ|. If n > 1 is not square-free, then ε(n) = 0. In particular, we may assume
that n = p1 · · · pr is a standard factorization of n > 1. Then∑

d|n

ε(d) = ε(1) +
∑
i

ε(pi) +
∑
i1<i2

ε(pi1pi2)+

· · ·+
∑

i1<···<ij

ε(pi1 · · · pij) + · · ·+ ε(p1 · · · pr)

= 1 + ε(p1)

(
r

1

)
+ ε(p1p2)

(
r

2

)
+ · · ·+ ε(p1 · · · pr)

(
r

r

)
.

If ε = µ, this is 1 −
(
r
1

)
+
(
r
2

)
+ · · · + (−1)r

(
r
r

)
= (1 − 1)r = 0 and if ε = |µ|, this is

1 +
(
r
1

)
+
(
r
2

)
+ · · ·+ +

(
r
r

)
= (1 + 1)r = 2r. �

Proposition 59.3. (Möbius Inversion Formula) Let f and g be arithmetic functions not
zero at 1. Then

f(n) =
∑
d|n

g(d) if and only if g(n) =
∑
d|n

f(d)µ(
n

d
).

Proof. The proposition is equivalent to f = g ? U if and only if g = f ? µ. By
Exercise 8.5(15), the Dirichlet product is associative with I a unity, so f = g ? U if and
only if f ? µ = (g ? U) ? µ = g ? (U ? µ) = g ? I = g. �

For each n, let ζn be a fixed primitive nth root of unity in C. Define the nth cyclotomic
polynomial Φn(t) in C[t] by Φn =

∏
〈ζn〉(t−ζ) in C[t], a polynomial of degree ϕ(n). Clearly,

tn − 1 =
∏
d|n

Φd,
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so log(tn − 1) =
∑

d|n log Φd. By the Möbius Inversion Formula (viewing the cyclotomic

polynomials as polynomial functions on the integers or use Exercise 59.22(6)), we see that

Φn =
∏
d|n

(td − 1)µ(n
d

) =
∏
d|n

(t
n
d − 1)µ(d) lies in C[t] ∩ Q(t) = Q[t]

and is monic. By induction Φd lies in Z[t] for d < n, hence so does Φ(n) by Corollary 35.6
(the corollary to Gauss’s Lemma).

Example 59.4. Using the formula above, we have

Φ12 =
∏
d|12

(t
12
d − 1)µ(d)

= (t12 − 1)µ(1)(t6 − 1)µ(2)(t4 − 1)µ(3)(t3 − 1)µ(4)

(t2 − 1)µ(6)(t− 1)µ(12)

=
(t12 − 1)(t2 − 1)

(t6 − 1)(t4 − 1)
= t4 − t2 + 1.

Definition 59.5. Let K/F be a finite Galois extension of fields. We say that K/F is an
abelian (respectively, cyclic) extension if G(K/F ) is abelian (respectively, cyclic).

Theorem 59.6. Let ζ be a primitive n root of unity in C. Then Q(ζ)/Q is an abelian
extension of degree ϕ(n).

Proof. We must show that Φn is irreducible in Q[t], equivalently in Z[t]. Let ζ be a
primitive nth root of unity. As Z[t] is a UFD, we see that there exist polynomials f and
g in Z[t] satisfying Φn = fg in Z[t] with f irreducible in Z[t] and having ζ as a root. As
Φn is monic, we may assume that both f and g are monic. [Note that this implies that
f = mQ(ζ).] Let p be a prime such that p 6 | n.

Claim: ζp is a root of f .

If we prove the claim, it would follow that ζm, with m relatively prime to n, is also root
of f , hence f = Φn establishing the theorem.

Suppose the claim is false. We can write tn − 1 = fh in Z[t] with h ∈ Z[t] monic by
Corollary 35.6 (the corollary to Gauss’s Lemma). As ζp is not a root of f , it must be a
root of h. This implies that ζ is a root of the monic polynomial hp := h(tp) in Z[t]. It
follows that hp = fg in Z[t] for some monic g in Z[t] by Corollary 35.6. Let : Z→ Z/pZ
be the canonical epimorphism; and, if f lies in Z[t], let f be the image of f in (Z/pZ)[t].
Applying the Frobenius homomorphism shows that

h
p

= h(tp) = hp = fg

and has ζ as a root, hence so does h. Therefore, tn − 1 = f h has a multiple root over
Z/pZ. As p 6 | n, this is impossible. This establishes the claim and the theorem. �

Remark 59.7. Let p be an odd prime and ζ a primitive prth root of unity. Then
G
(
Q(ζ)/Q

) ∼= (Z/prZ)× is cyclic of order pr−1(p − 1). In particular, Q(ζ) contains a
unique quadratic extension of Q using Proposition F.4.
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Corollary 59.8. Let ζm, ζn, and ζmn be primitive mth, nth, and (mn)th roots of unity
over Q with m and n relatively prime positive integers. Then Q(ζmn) = Q(ζm, ζn) and
Q(ζm) ∩ Q(ζn) = Q.

Proof. As m and n are relatively prime, ζmζn is a primitive (mn)th root of unity.
Since the Euler phi-function is multiplicative, the result follows from the theorem. �

By the results in §F, we know G(Q(ζn)/Q). Indeed if n = 2epe11 · · · perr is a factorization
with 2 < p1 < · · · < pr primes, with e ≥ 0 and ei > 0 for all i, then

G(Q(ζn)/Q) ∼= (Z/2eZ)× × (Z/p1
e1Z)× × · · · × (Z/pr

erZ)×

by the Chinese Remainder Theorem. We know that (Z/pieiZ)× is cyclic of order ϕ(peii ) =
pei−1
i (pi − 1) for every i and if n is even (Z/2eZ)× is cyclic only if e = 1, 2, otherwise

(Z/2eZ)× ∼= (Z/2Z)× (Z/2e−2Z) if e ≥ 3.
We next wish to prove a special case of the following well-known result that uses the

same idea as the proof of the above as well as our previous idea in proving the infinitude
of primes.

Theorem 59.9. (Dirichlet’s Theorem on Primes in an Arithmetic Progression) Let m
and n be relatively prime integers. Then there exist infinitely many primes p satisfying
p ≡ m mod n.

We shall not prove this general theorem. The standard proof uses complex analysis,
although there is an elementary proof, i.e., one that uses no complex analysis. The special
case that we shall prove is the following:

Proposition 59.10. Let n > 1 be an integer. Then there exist infinitely many primes p
satisfying p ≡ 1 mod n.

To prove this, we first establish the following lemma:

Lemma 59.11. Let a be a positive integer and p a (positive) prime not dividing n. If
p | Φn(a) in Z, then p ≡ 1 mod n.

Proof. Let : Z → Z/pZ be the canonical epimorphism. We know that tn − 1 =∏
d|n Φd is a factorization of tn − 1 into irreducible polynomials in Z[t]. In particular,

an ≡ 1 mod p. Let m be the order of a in Z/pZ. So m | n. If m < n, then

tn − 1 =
∏
d|n

Φd = Φn

∏
d|n
d<n

Φd = Φn(tm − 1)
∏
d|n
d<n
d 6 |m

Φd.

It follows that a is a multiple root of tn − 1 in Z/pZ. But p 6 | n, so tn − 1 has no multiple
roots in Z/pZ. It follows that m = n, i.e., n is the order of a, so n | p − 1 by Fermat’s
Little Theorem. The result follows. �

Proof. (of the Proposition) (Cf. Exercise 1.13(4).) Suppose that the result is false,
and p1, . . . , pr are all the primes p satisfying p ≡ 1 mod n. As Φn is monic, we can
choose an integer N > 1 satisfying Φn(M) > 1 for all integers M > N (by calculus). Let
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M = p1 · · · prnN > N and p a prime such that p | Φn(p1 · · · prnN) > 1. (Replace p1 · · · pr
by 1 if r = 0.) Since tn − 1 =

∏
d|n Φd in Z[t], the constant term of Φd is ±1, so

Φn(p1 · · · prnN) ≡

{
±1 mod pi for 1 ≤ i ≤ r

±1 mod n.

In particular, p 6= p1, . . . , pr and p 6 | n. It follows that p ≡ 1 mod n by the lemma, a
contradiction. �

The proof of the full theorem shows that primes are “equally distributed” among the
integers m relatively prime to n with 1 ≤ m ≤ n.

We next turn to a special case of another important theorem whose proof we shall
also omit, viz.,

Theorem 59.12. (Kronecker-Weber Theorem) Let K/Q be a abelian extension of fields.
Then there exists a root of unity ζ in C such that K is a subfield of Q(ζ)

We shall prove this in the case that K is a quadratic extension of Q. The general
theorem shows that abelian extensions of Q are determined by the unit circle. A similar
geometric interpretation is true when Q is replaced by an imaginary quadratic extension
of Q, i.e., by Q(

√
−d), with d = 1 or d > 1 a square-free integer, and the circle replaced

by an appropriate “elliptic curve”. Unfortunately, this does not extend further, although
a major triumph in number theory was the determination of abelian extensions L of K
when K/Q is finite. There just is no geometric formulation in this general case.

If a is an integer not divisible by p, recall we defined the Legendre symbol in Definition
32.8 to be (a

p

)
:=

{
+1 if a mod p is a square.

−1 if a mod p is not a square.

It is convenient to define
(
a
p

)
= 0 if p | a. Clearly, the Legendre symbol

(
a
p

)
only

depends on a mod p. Let p be any prime and consider the squaring map f : (Z/pZ)× →
(Z/pZ)× given by x 7→ x2, Then f is a group homomorphism with ker f = {±1} with

image
(
(Z/pZ)×

)2
. In particular, if p is odd, then | im f | = (p−1)/2, i.e., half of (Z/pZ)×

are squares and half non-squares.

Lemma 59.13. Let p be an odd prime. Then for all integers a and b not divisible by p,
we have the following:

(1)
(a
p

)
=
( b
p

)
if a ≡ b mod p.

(2)
(ab
p

)
=
(a
p

)( b
p

)
.

(3) (Euler’s Criterion) If p 6 | a, then
(a
p

)
≡ (a)

p−1
2 mod p. In particular,

(−1

p

)
= (−1)

p−1
2 .

(4)

p−1∑
a=1

(a
p

)
= 0.
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Proof. We have already observed (1), and (4) is the fact that half of (Z/pZ)× are
squares and half not.

(3): We know that xp−1 ≡ 1 mod p if p 6 | x, so if a is a square modulo p, then a
p−1
2 ≡ 1

mod p. Conversely, suppose that a is a square modulo p. As (Z/pZ)× is a cyclic group
of order p − 1, we have (Z/pZ)× = 〈x〉 for some x. Suppose that a ≡ xn mod p. Then

n must be even lest x
p−1
2 ≡ 1 mod p, hence a is a square modulo p. The case of a = −1

follows easily as
(−1
p

)
− (−1)

p−1
2 is −2, 0, or 2. (In fact, we have previously shown this

case.)

(2) follows from (3). �

Proposition 59.14. Let p be an odd prime and ζ a primitive pth root of unity. Set

S :=

p−1∑
a=1

(a
p

)
ζa

in Q(ζ) (even in Z[ζ]). Then

S2 =
(−1

p

)
p = (−1)

p−1
2 p in Q (even in Z).

Moreover, Q(S) is the unique quadratic extension of Q lying in Q(ζ).

The sum S in the proposition is called a Gauss sum.

Proof. We have

S2 =

p−1∑
a=1, b=1

(a
p

)( b
p

)
ζa+b =

p−1∑
a=1, b=1

(ab
p

)
ζa+b.

As a ranges over 1, . . . , p − 1 mod p, so does ab for b = 1, . . . , p − 1 mod p, so upon
replacing a by ab, we see that

(*)

S2 =

p−1∑
a=1, b=1

(ab2

p

)
ζb(a+1) =

p−1∑
a=1, b=1

(a
p

)
ζb(a+1)

=

p−1∑
b=1

(−1

p

)
ζbp +

p−2∑
a=1

(a
p

) p−1∑
b=1

ζb(a+1),

where the first term on the second line arises from the term a = p − 1. As ζr is also a
primitive pth root of unity for r = 1, . . . , p− 1, we have 1 + ζr + (ζr)2 + · · ·+ (ζr)p−1 = 0
for such r. In particular, we have

∑p−1
b=1 ζ

b(a+1) = −1 if a 6= p − 1 in (*). Therefore, we
have, using Lemma 59.13(4),

S2 =

p−1∑
b=1

(−1

p

)
−

p−2∑
a=1

(a
p

)
= (p− 1)

(−1

p

)
−

p−2∑
a=1

(a
p

)
= p
(−1

p

)
−

p−1∑
a=1

(a
p

)
= p
(−1

p

)
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in Z. Consequently, as S ⊂ Q(ζ), we have
√
p
(−1
p

)
lies in Q(ζ). Finally as G(Q(ζ)/Q)

∼= (Z/pZ)× is a cyclic group of order p−1, there exists a unique subgroup H of G(Q(ζ)/Q)
of index two. By the Fundamental Theorem of Galois Theory, we must have Q(S) =
Q(ζ)H . �

Remark 59.15. . What is unclear is the sign of S above. This caused Gauss a lot of
difficulty. The answer is

S =
√
p if p ≡ 1 mod 4

S =
√
−p if p ≡ 3 mod 4,

where we have taken the positive square root. We shall assume this. A proof will be given
in Appendix G

Remark 59.16. Let p be an odd prime and ζ a primitive prth root of unity in C. Then

Q
(√

(−1)
p−1
2 p
)

is the unique quadratic extension of Q in Q(ζ) by Remark 59.7 and Remark
59.15.

Corollary 59.17. Let p be a (positive) prime, ζp a primitive pth root of unity, and ζ4p a
primitive 4p th root of unity. Then

√
p and

√
−p lie in Q(ζ4p).

Proof. Let ζn be a fixed primitive nth root of unity in C for each n.

Case 1. p an odd prime:

If p ≡ 1 mod 4, then by the proposition and Remark 59.15, we know that
√
p lies

in Q(ζp) ⊂ Q(ζ4p) and if p ≡ 3 mod 4, then
√
−p lies in Q(ζp). As

√
−1 = ζ4 and

Q(ζ4, ζp) = Q(ζ4p), this case follows.

Case 2. p = 2:

Let y = ζ8 + ζ−1
8 . Then ζ8 is the point (1 +

√
−1)/2 on the unit circle in the complex

plane, i.e., the intersection with the 45o ray with the real axis and ζ−1
8 is its complex

conjugate. Computation shows y2 = 2. It follows that
√

2 lies in Q(ζ8). As
√
−1 lies in

Q(ζ4) ⊂ Q(ζ8), it follows that
√

2 and
√
−2 lie in Q(ζ8). �

Theorem 59.18. Let n be a nonzero integer. Then
√
n lies in Q(ζ4n), where ζ4n is a

primitive 4n th root of unity. In particular, any quadratic extension of Q lies in Q(ζ) for
some root of unity ζ in C.

Proof. Let ζn be a fixed primitive nth root of unity in C for each n. We may
assume that n is square-free. We know the result if n = −1, so we may assume that
n = ±p1 · · · pr with p1 < · · · < pr positive primes with r ≥ 1. Then

√
n is an element of

Q(ζ4, ζp1 , . . . ζpr) = Q(ζ4n) if n is odd and
√
n is an element of Q(ζ8, ζp2 , . . . ζpr) = Q(ζ4n) if

n is even. �

We turn to a proof of Quadratic Reciprocity, one of hundreds!

Theorem 59.19. (Law of Quadratic Reciprocity) Let p and q be distinct odd primes.
Then (p

q

)(q
p

)
= (−1)

p−1
2

q−1
2 .
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In addition, we have (−1

p

)
= (−1)

p−1
2 .(Supplement #1) (2

p

)
= (−1)

p2−1
8 .(Supplement #2)

Proof. Let ζ be a primitive pth root of unity in C and

S :=

p−1∑
a=1

(a
p

)
ζa in Z[ζ].

By Proposition 59.14 and Euler’s Criterion, we have

Sq = S(S2)
q−1
2 = S

(−1

p

) q−1
2 p

q−1
2 = S(−1)

p−1
2

q−1
2 p

q−1
2 .

Multiplying this equation by S, we see that

(*)
Sq+1 = S2(S2)

q−1
2 = S2(−1)

p−1
2

q−1
2 p

q−1
2

= p
q−1
2

(−1

p

)
(−1)

p−1
2

q−1
2 p

q−1
2 ,

hence is an integer. By the Binomial Theorem (actually the Multinomial Theorem), since
q is an odd prime, we see upon multiplying out and coalescing terms that

Sq =
( p−1∑
a=1

(a
p

)
ζa
)q

=

p−1∑
a=1

(a
p

)q
ζaq + qr =

p−1∑
a=1

(a
p

)
ζaq + qr

for some r in Z[ζ]. As aq, a = 1, . . . , p − 1, runs over all the nonzero residue classes
modulo p, we have

Sq =

p−1∑
a=1

(q2a

p

)
ζaq + qr =

(q
p

) p−1∑
a=1

(aq
p

)
ζaq + qr

=
(q
p

) p−1∑
a=1

(a
p

)
ζa + qr =

(q
p

)
S + qr.

Multiplying this by S then yields

Sq+1 =
(q
p

)
S2 + qr =

(q
p

)(−1

p

)
p+ qrS

in Z[ζ].

Check 59.20. qZ[ζp] ∩ Z = qZ.

So we have, using (*),

qrS = Sq+1 −
(q
p

)(−1

p

)
p lies in qZ,
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which implies

Sq+1 ≡
(q
p

)(−1

p

)
p mod q.

Using (*) again, now shows that

p
(−1

p

)
(−1)

p−1
2

q−1
2 p

q−1
2 ≡

(q
p

)(−1

p

)
p mod q.

Since p mod q is a unit in Z/qZ and p
p−1
2 ≡

(
p
q

)
mod q by Euler’s Criterion, we have(p

q

)
= (−1)

p−1
2

q−1
2

(q
p

)
mod q.

Finally, as
(
p
q

)
− (−1)

p−1
2

q−1
2

(
q
p

)
is −2, 0, or 2, the result follows.

Since we have already proven Supplements #1, to finish we need only establish Supplement
#2. We work in Z/pZ with p an odd prime. Let ζ be a primitive 8th root of unity in an
algebraic extension of Z/pZ, i.e., a root of t8 − 1 over Z/pZ generating the 8th roots of
unity and set y = ζ + ζ−1 in (Z/pZ)(ζ). As ζ8 = 1 and ζ has order 8, we have ζ4 = −1 in
(Z/pZ)(ζ) with 1 6= −1 since p is odd. Multiplying this last equation by ζ−2, we see that
ζ2 + ζ−2 = 0 in (Z/pZ)(ζ), hence y2 = (ζ + ζ−1)2 = ζ2 + 2 + ζ−2 = 2. [Cf. this to the
case in characteristic zero.] Let : Z→ Z/pZ be the canonical epimorphism. By Euler’s

Criterion,
(2

p

)
= 2

p−1
2 = yp−1 in Z/pZ. [Note that y /∈ Z/pZ, so yp−1 is not necessarily

one.] By the Children’s Binomial Theorem, yp = ζp + ζ−p in (Z/pZ)(ζ).

Case 1. p ≡ ±1 mod 8:

As ζ8 = 1, we have

yp = ζp + ζ−p = ζ + ζ−1 = y in (Z/pZ)(ζ),

so
(2

p

)
= yp−1 = 1 in (Z/pZ)(ζ), hence

(2

p

)
= 1 in Z.

Case 2. p ≡ ±5 mod 8:

As ζ4 = −1, we have

yp = ζp + ζ−p = ζ5 + ζ−5 = −ζ − ζ−1 = −y in (Z/pZ)(ζ),

so
(2

p

)
= yp−1 = −1 in (Z/pZ)(ζ), hence

(2

p

)
= −1 in Z.

This completes the proof. �

Examples 59.21. 1. Quadratic Reciprocity and the properties of the Legendre symbol
allows computing Legendre symbols quite efficiently. For example,(29

43

)
= (−1)

29−1
2

43−1
2

(43

29

)
=
(43

29

)
=
(14

29

)
=
( 2

29

)( 7

29

)
= (−1)

(29−1)(29+1)
8

( 7

29

)
= −

( 7

29

)
= (−1)

7−1
2

29−1
2

(29

7

)
= −

(29

7

)
= −

(1

7

)
.

So 29 is not a square modulo 43.
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2. The Legendre Symbol can also be use to study Diophantine equations. Let x and y
be variables. We show that the Diophantine equation y2 = x3 + 45 has no solution,
i.e., no solution in integers. Suppose that (x0, y0) ∈ Z2 is a solution. We first show
that we cannot have 3 | x0. If x0 = 3x1, then y0 = 3y1 for some integers x1, y1. It
follows that 32y2

1 = 33x3
1 + 325 or y2

1 ≡ 5 ≡ 2 mod 3 which is impossible. If x0 is even,
then y2

0 ≡ 45 ≡ 5 mod 8 which is impossible and if x0 ≡ 1 mod 4, then y2
0 ≡ 46 ≡ 2

mod 4, which is also impossible. Therefore, we are reduced to the case x0 ≡ 3 mod 4,
equivalently, x0 ≡ 3, 7 mod 8.

Case. x0 ≡ 7 ≡ −1 mod 8.

As y2
0 = x3

0+45, we have y2
0−2·32 ≡ x3

0+27 = (x0+3)(x2
0−3x+9) and x2

0−3x0+9 ≡ −3
mod 8. Therefore, there exists a prime p satisfying p ≡ ±3 mod 8 and p | x2

0−3x0 +9.
This implies that y2

0 = 2 · 32 mod p. If p | y0, then p | x0 which is impossible. So

p 6= 3, hence
(2 · 32

p

)
=
(2

p

)
= −1, contradicting the Second Supplement.

Case. x0 ≡ 3 mod 8.

We have y2
0−2·62 = x3

0−27 = (x0−3)(x2
0+3x0+9), so there exists a prime p, satisfying

p ≡ ±3 mod 8 and p | x2
0 + 3x0 + 9, as x2

0 + 3x0 + 9 ≡ 3 mod 8. Therefore, y2
0 ≡ 2 · 62

mod p has a solution. Since p 6= 3, hence
(2 · 62

p

)
=
(2

p

)
= −1, contradicting the

Second Supplement.

Let K/Q be a finite field extension. Number theory studies the set ZK := {x ∈ K |
x is a root of a monic polynomial f in Z[t]}. We mention some of the facts about this
here, and study this subject in Chapter XV. The set ZK is a ring, hence a domain. It is
called the ring of algebraic integers in K. Although it is not a UFD, it has an analogous
property about ideals, viz, that every proper ideal in ZK is a product of prime ideals,
unique up to order. Such a domain is called a Dedekind domain. It turns out that every
nonzero prime ideal p in ZK is maximal, so ZK/p is a field, in fact a finite field so a
finite extension of Z/pZ where p ∩ Z = pZ for some prime p. Let fp denote the degree
of this extension. One studies the factorization of pZ, with p a prime integer, in ZK .
Suppose that this factorization is pZK = pe11 · · · perr , with pi distinct prime ideals in ZK

and ei positive integers. A basic result is that [K : Q] =
∑r

i eifpi . If, in addition, K/Q is
Galois then all the ei’s are equal, say equal e, and all the pi’s are equal, say equal f , so
[K : Q] = efr. The Legendre symbol provides information about the case that K/Q is a

quadratic extension (hence Galois), say K = Q(
√
d) with d a square-free integer or −1.

In this case ZK = Z[D] where D = d if d ≡ 2 or 3 mod 4 and D = (−1 +
√
d)/2 if d ≡ 1

mod 4. Let p be a prime integer. Three possibilities can occur (called the splitting type
of p).

(i) r = 2, i.e., pZK factors as a product of two distinct primes – we say that p splits
completely in ZK .

(ii) f = 1, i.e., pZk is a prime ideal in ZK – we say that p is inert in ZK .

(iii) e = 1, i.e., pZK is the the square of a prime ideal in ZK – we say that p ramifies in
ZK .
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A prime p ramifies in ZK if and only if p | dK , where dk = 4D if D ≡ 2 or 3 mod 4 and
dK = D if d ≡ 1 mod 4. Let p be an odd prime. Then p ramifies if and only if p | D,
so assume this is not the case. Then f = 1 or 2 depending on whether d is a square

or not modulo p, i.e., on
(d
p

)
. If pZ splits completely and a is a square modulo p, then

pZK = (p, a+
√
d)(p, a−

√
d). Note that if p and q are odd primes, the Law of Quadratic

Reciprocity tells the relation of the splitting type of p in ZZ[
√
q] and the splitting type of

q in ZZ[
√
p]. The splitting type of 2 is more complicated.

Exercises 59.22.

1. Show that the set of all arithmetic functions satisfies the associative law under the
Dirichlet product. In particular, the set A of arithmetic functions nonzero at 1 is an
abelian monoid.

2. Let N , τ , and σ be the arithmetic function functions defined by

N(n) = n,

τ(n) = the number of divisors of n, i.e., τ(n) =
∑
d|n

1, and

σ(n) = the sum of the divisors of n, i.e., σ(n) =
∑
d|n

d

for all n, respectively. Show that N = ϕ?U , ϕ = N ?µ, σ = ϕ?τ , and ϕ?σ = N ?N .

3. Let ζ(s) :=
∑

1
ns

, s a real (or complex) variable. Show the following:

ζ(s− 1)

ζ(s)
=
∞∑
1

ϕ(n)

ns
if (the real part of) s > 2.

ζ(s)2 =
∞∑
1

τ(n)

ns
if (the real part of) s > 1.

ζ(s− 1)ζ(s) =
∞∑
1

σ(n)

ns
if (the real part of) s > 2.

4. Show all of the following:
(i) The Dirichlet product of two multiplicative functions is multiplicative.

(ii) If f and g are arithmetic functions not zero at one with g and f ?g multiplicative,
then f is multiplicative.

5. The set of multiplicative functions is an abelian group under the Dirichlet product.

6. Prove the following versions of the Möbius Inversion Theorem.

(a) If f, g : Z+ → G with G an additive group, then

f(n) =
∑
d|n

g(d) if and only if g(n) =
∑
d|n

f(d)µ(
n

d
)

for all n ∈ Z+, where µ is viewed as a function to G.
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(b) If f, g : Z+ → G with G a multiplicative group, then

f(n) =
∏
d|n

g(d) if and only if g(n) =
∏
d|n

f(d)µ(
n

d
)

for all n ∈ Z+, where µ is viewed as a function to G.

7. Let F be any field and d a positive integer. Show that td− 1 | tn− 1 in F [t] if and only
if d | n.

8. Show that every finite cyclic group occurs as a Galois group G(K/Q) for some Galois
extension K/Q.

9. Prove that every finite abelian group occurs as a Galois group over the rational num-
bers. (Hint: Use Proposition 59.10.)

10. Prove Check 59.20.

11. Let K = Q(
√
d) with d a square-free integer (or −1) and p an odd prime integer. Show

directly that pZK = (p, a +
√
d)(p, a−

√
d) in ZK if p does not divide d and a in Z is

a square modulo p.

12. Let K = Q(
√
d) with d a square-free integer (or −1) and p an odd prime integer. Show

directly that pZK is a prime ideal if ZK if a in Z is not a square modulo p.

13. Let K = Q(
√
d) with d a square-free integer (or −1) and p an odd prime integer. Show

directly that pZK = (p,
√
d)2 in ZK if p | d.

60. Radical Extensions

In this section, we generalize the notion of square root towers and solve the problem
of when a formula for roots of a polynomial involving only addition, multiplication (in
which we include taking inverses) and extraction of nth roots of elements for various n
over the rational numbers exists. The key is if the Galois group of a polynomial is a
solvable group.

Definition 60.1. An extension of fields K/F is called a radical extension if there exist
elements ui in K for 1 ≤ i ≤ m (some m) such that K = F (u1, . . . , um) and for each i
there exists a positive integer ni such that un1

1 lies in F and unii ∈ F (u1, . . . , ui−1) for each
i > 1.

As one would expect, radical extensions have properties similar to square root towers,
and they do.

Remark 60.2. Let K/F and L/F be field extensions with K and L lying in an extension
field of K.

1. If K/F is a square root tower, then K/F is radical.

2. If K/F is the splitting field of tn − 1 in F [t], then K/F is radical.

3. If K/F is the splitting field of tn− a in F [t], then K/F is radical, as K = F (ω, θ) with
ω a primitive nth root of unity in K and θ an element in K such that θn = a in K.

4. If K/F is radical, then so is L(K)/L.

5. If L/K and K/F are both radical, then so is L/F .
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6. If L/F is radical and L/K, then L/K is radical.

7. If E/Li/F are intermediate fields with each Li/F radical for i = 1, . . . , n, then F (L1 ∪
· · · ∪ Ln)/F is radical.

8. If K/F is radical and σ : K → L is a (field) homomorphism, then σ(K)/σ(F ) is radical.

9. If K/F is radical and L/K is a normal closure of K/F , then L/F is radical. Indeed
this follows from the last two remarks, as L = F

(
∪G(L/F ) σ(K)

)
.

10. If K/F is a square root tower and L/K is a normal closure of K/F , then L/F is a
square root tower.

The last remark allows us to refine the Constructibility Criterion 52.10.

Theorem 60.3. (Constructibility Criterion (Refined Form)) Let z be a complex number
and z1(= 0), z2(= 1), . . . , zn other complex numbers with n ≥ 2. Set F = Q(z1, z2, . . . , zn, z1, . . . , zn).
Then the following are equivalent:

(1) The complex number z is constructible from z1, . . . , zn.
(2) The complex number z is algebraic over F and the normal closure of F (z)/F in

C is a square root tower.
(3) The complex number z is algebraic over F and if E/F (z) is the normal closure

of F (z)/F in C, then [E : F ] = 2e for some e.

Proof. (2) if and only if (3) follows from the Square Root Tower Theorem 57.11.

(2)⇒ (1) follows from the original Constructibility Criterion 52.10.

(1) ⇒ (2): By the original Constructibility Criterion 52.10, there exists a square root
tower K/F with z ∈ K. By Remark (10) above, we may assume that K/F is normal.
Let K/E/F (z)/F with E/F (z) the normal closure of F (z)/F in K. Since [E : F ] | [K :
F ] = 2e, some e, we are done by the Square Root Tower Theorem 57.11. �

We wish to find the group theoretic criterion for a finite extension to be a radical
extension. For simplicity we shall establish this in the case that the ground field is of
characteristic zero.

Let K/F be a finite Galois extension of fields. Recall that we call it an abelian
extension (respectively, cyclic extension) if G(K/F ) is abelian (respectively, cyclic).

Example 60.4. 1. Any cyclic extension of fields is abelian.

2. Suppose n is a positive integer and either charF = 0 or charF 6 | n. If K is a splitting
field of tn − 1 over F , then K/F is abelian (and, in fact, cyclic if n is 2, 4, pr, 2pr, with
p an odd prime, cf. F.6 below).

3. If K/F is abelian (respectively, cyclic) and K/E/F is an intermediate field, then both
K/E and E/F are abelian (respectively, cyclic).

4. Suppose n is a positive integer and either charF = 0 or charF 6 | n. Suppose that tn−1
splits over F . If K is a splitting field of tn − a over F , then K/F is cyclic.

We review our study about solvable groups.

Review 60.5. A group G is called solvable (respectively, polycyclic) if there exist a finite
sequence of subgroups of G:

1 = N0 ⊂ N1 ⊂ · · · ⊂ Nr = G
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satisfying Ni /Ni+1 and Ni+1/Ni is abelian (respectively, cyclic) for every i = 1, . . . , r− 1,
i.e., G has a finite subnormal series with abelian (respectively cyclic) factors. Let G be a
group. We know the following facts about solvable and polycyclic groups:

1. Abelian groups are solvable.

2. If G is solvable and H a subgroup of G, then H is solvable.

3. If N is a normal subgroup of G, then G is solvable if and only if both N and G/N are
solvable.

4. If G is polycyclic, then G is solvable.

5. If G is finite and solvable, then G is polycyclic.

6. The alternating group An with n ≥ 5 is a nonabelian simple group, hence not solvable.

7. The symmetric group Sn with n ≥ 5 is not solvable.

Applying the above to field theory we have:

Remarks 60.6. Let K/F be a finite extension of fields with K/E/F an intermediate
field.

1. If G(K/F ) is solvable, then G(K/E) is solvable.

2. If K/F and E/F are Galois, then G(K/F ) is solvable if and only if both G(K/E) and
G(E/F ) are solvable, since, by the Fundamental Theorem of Galois Theory, G(E/F ) ∼=
G(K/F )/G(K/E).

Given a field extension, it is often useful to extend the base field by adjoining appro-
priate roots of unity. In investigating radical extensions, this is most useful. Indeed using
the last remark we easily establish the following lemma.

Lemma 60.7. Let n be a positive integer and F a field satisfying charF = 0 or charF 6 | n.
Suppose that K/F is a splitting field of a separable polynomial f over F and L/F is a a
splitting field of tn− 1 over K. Then G(L/F ) is Galois. Moreover, G(L/F ) is solvable if
and only if G(K/F ) is solvable.

Proof. We know that L is a splitting field of the separable polynomial (tn−1)f over
F , so L/F is Galois. As L/K is abelian, by Remark 60.6, the group G(L/F ) is solvable
if and only if the group G(K/F ) is solvable. �

The key result is the following theorem.

Theorem 60.8. Let F be a field of characteristic zero and K/F a radical extension. If
K/E/F is an intermediate field, then G(E/F ) is solvable.

Proof. We begin with two reductions.

Reduction 1. We may assume that E/F is Galois:

Let F0 = EG(E/F ) ⊃ F . Then K/F0 is also radical, G(E/F ) = G(E/F0), and E/F0 is
Galois. Replacing F by F0 establishes the reduction.

Reduction 2. We may assume that K/F is Galois:

Let L/K be a normal closure of of K/F . Since K/F is radical, so is L/F . Replacing K
by L establishes the second reduction.
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So we may now assume that K/F is a Galois and a radical extension. By Remark 60.6,
it now suffices to show that G(K/F ) is solvable as E/F is Galois. Therefore, we have
reduced to proving the following:

Claim. Let F be a field of characteristic zero and K/F a finite extension that is both
radical and Galois. Then G(K/F ) is solvable:

Let K = F (u1, . . . , um) and ni positive integers, i = 1, . . . ,m, satisfying un1
1 lies in F and

unii ∈ F (u1, . . . , ui−1) for each i > 1. We prove the claim by induction.

Induction Hypothesis. Let L/E be a finite, radical, Galois extension of fields with E
a field of characteristic zero. Suppose that L = E(v1, . . . , vm−1) and ri positive integers,
i = 1, . . .m − 1, satisfying vr11 lies in E and vrii ∈ E(v1, . . . , vi−1) for each i > 1. Then
G(L/E) is solvable:

Note: The m = 0 case is trivial (and the m = 1 case is included in the proof below).

With K = F (u1, . . . , um) as above, let ζ be a primitive n1st root of unity, so a primitive
root of unity of tn1 − 1 over K. We have the following picture with the explanation to
follow:

K(ζ)

ab

gal

rad

F (ζ), u1)

cyc

K

gal, rad

F (ζ).

ab

F

K(ζ)/K and F (ζ)/F are Galois and abelian, since a splitting field over tn1 − 1 over K
and F , respectively. The extension K(ζ)/F is Galois by the lemma, hence K(ζ)/F (ζ)
and K(ζ)/F (ζ, un1) are Galois. Since F (ζ, u1) is a splitting field of tn1 − un1

1 over F (ζ),
the extension F (ζ, u1)/F is Galois, as it is a splitting field of the separable polynomial
(tn1−un1

1 )(tn1−1) over F . We know that F (ζ, u1)/F (ζ) is cyclic and F (ζ)/F is abelian, so
G(F (ζ, u1)/F ) is solvable by Remark 60.6. In particular, all the extensions in the picture
above are Galois. We have K(ζ) = F (ζ, u1)(u2, . . . , um) with K(ζ)/F (ζ, u1) radical and
Galois. Consequently, by the induction hypothesis, G

(
K(ζ)/F (ζ, u1)

)
is solvable. As

K(ζ)/F is Galois and G
(
K(ζ)/F (ζ, u1)

)
is solvable, the group G(K(ζ)/F ) is solvable by

Remark 60.6. As K/F is Galois, the group G(K/F ) is solvable again by Remark 60.6. �

The theorem shows that if f is an irreducible polynomial in F [t], e.g., F = Q, then a
formula for a root of f exists that consists of addition, multiplication, and extraction of
nth roots for various n, if and only if there exists a radical extension K of F such that f
has a root in K. As the conjugate of a radical extension is radical, if such a formula for
one of the roots of irreducible fi, such a formula holds for each root of fi in the appropriate
conjugate.
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Let F be a field and f be a non-constant polynomial in F [t]. We say that f is solvable
by radicals if for each irreducible factor fi of f in F [t], there exists a formula for a root of
fi involving addition, multiplication, and extraction of nth roots for various n, i.e., there
exists a radical extension Ki of F such that fi has a root in Ki for each i.

We analyze what we have shown. Let F be a field of characteristic zero. Suppose that
f in F [t] is solvable by radicals and fi an irreducible factor of f in F [t]. Then there exists
a radical extension Ki/F such that fi has a root in K. Assume that each such Ki lies

in a common extension field F̃ , e.g., an algebraic closure of F . If there exist m distinct
(non-associative) factors fi of f , let L = F (K1 ∪ · · · ∪ Km), a radical extension of F .

The normal closure L̃/L in F̃ of L/F is also a radical extension, so there exists a radical

Galois extension L̃/F such that f splits over L̃. Let L̃/E/F with E a splitting field of
f over F . Although E/F may not be radical, by the theorem, we know that G(E/F )
is solvable. Recall if f is a polynomial in F [t] and K/F is a splitting field of f , then
G(K/F ) is called the Galois group of f . In general it is only unique up to isomorphism,
but if we have fixed an algebraic closure of F , as we have done this time, it is unique.
Therefore, we have shown the following:

Theorem 60.9. Let F be a field of characteristic zero and f an non-constant polynomial
in F [t]. If f is solvable by radicals, then the Galois group of f is solvable.

We wish to show that there exist polynomials in Q[t] whose Galois groups are not
solvable by radicals. We need the following group theory result and its application to
field theory.

Lemma 60.10. Let p be a prime and G a subgroup of the symmetric group Sp containing
a p-cycle and a transposition. Then G = Sp.

This is not true if p is not a prime.

To prove the lemma, we recall the following fact: For any n-cycle (a1 · · · an), we have

σ(a1 · · · an)σ−1 =
(
σ(a1) · · ·σ(an)

)
for all permutations σ in SN with n ≤ N .

Proof. (of the lemma) By changing notation, we may assume that (12) ∈ G. Let
σ = (a1 · · · ap) lie in G. As p is a prime, σi, 1 ≤ i < p, is also a p-cycle (cf. Exercise
24.24(1), so we may assume that σ = (12 · · · p). As σ(1 2)σ−1 = (2 3), σ(2 3)σ−1 = (3 4),
etc., we see that (i i + 1) lies in G for all i. Therefore (1 i + 1) = (1 i)(i i + 1)(1 i) lies in
G for all i by induction, hence G = Sp by Proposition 24.7.

�

Proposition 60.11. Let f be an irreducible polynomial in Q[t] of degree p with p a prime.
Suppose that f has precisely two nonreal roots in the splitting field K in C of f over Q.
Then G(K/Q) ∼= Sp.

Proof. Let α in K be a root of f , so [Q(α) : Q] = deg f = p. As charK = 0, we know
that K/Q is Galois, hence |G(K/Q) = [K : Q] ≤ p!. As G(K/Q) acts as permutations
on the roots of f and K is the splitting field of f , we may assume that G(K/Q) ⊂ Sp.
Since f has precisely two nonreal roots, the restriction of complex conjugation to K is
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a nontrivial (Q-) automorphism of K and it must interchange these two nonreal roots
and fix all the other roots of f , i.e., it corresponds to a transposition in G(K/Q). As
p | [K : Q] = |G(K/Q)|, the group G(K/Q) must contain an element of order p by
Cauchy’s Theorem 21.22. But the only elements in Sp of order p are p-cycles. Therefore,
G(K/Q) = Sp by the lemma. �

As a consequence, we obtain the following famous theorem:

Theorem 60.12. (Abel-Ruffini) In general, there is no formula to determine the roots
of a general fifth degree polynomial in Q[t] that involves only addition, multiplication, and
extraction of nth roots for various n.

Proof. It suffices to give an example of a polynomial f in Q[t] that has a nonsolvable
Galois group. Let f = t5−6t+3. We know that f is irreducible by Eisenstein’s Criterion,
and by calculus it has three real roots in R, since f ′ = 5t4 − 6 has only two real roots,
f(−1) > 0, and f(1) < 0. By the proposition, the Galois group of f is isomorphic to S5

which is not solvable. �

Corollary 60.13. In general, there is no formula to determine the roots of a general nth
degree polynomial in Q[t] that involves only addition, multiplication, and extraction of nth
roots for various n.

Proof. Apply the theorem to any nth degree polynomial with n ≥ 5 divisible by a
fifth degree polynomial not solvable by radicals. �

Remark 60.14. 1. For each positive integer n, we have constructed fields F and Kn/F
Galois with G(Kn/F ) ∼= Sn in Example 57.6(3), so, in general, no formula can exist.

2. Hilbert showed that for each positive integer n, there exists a Galois extension Kn/Q
with G(Kn/Q) ∼= Sn. This is not easy. It uses his Irreducibility Theorem. For a proof
see Chapter 69. By the Primitive Element Theorem, Kn = Q(u) for some u, hence the
Galois group of mQ(u) is isomorphic to Sn, so is not solvable for n ≥ 5.

3. There exist fields of characteristic zero such that every algebraic extension is radical,
hence every non-constant polynomial over it is solvable by radicals, e.g., R, C. There
are others, e.g., the so called local fields of characteristic zero that arise in number
theory.

4. If F is a finite field, then any finite extension of F is cyclic so radical. In particular,
the Galois group of any polynomial over f is solvable by radicals.

We want a converse to our result. To do so needs additional concepts.

Definition 60.15. Let K/F be a finite Galois extension of fields and x an element of K.
Define the norm of x to be

NK/F (x) :=
∏

G(K/F )

σ(x)

and the trace of x to be

TrK/F (x) :=
∑

G(K/F )

σ(x).
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Examples 60.16. Let F be a field of characteristic different from two and d an element
in F that is not a square. Let K = F (

√
d). If x = a + b

√
d with a, b in F , then

NK/F (x) = a2 − b2d and TrK/F (x) = 2a. Both of these lie in F . If, in addition, x does
not lie in F , i.e., b is not zero, then K = F (x) and mF (x) = t2 −TrK/F (x)t+ NK/F (x) =(
t− (a+ b

√
d)
)(
t− (a− b

√
d)
)

lies in F [t].

Properties 60.17. Let K/F be a finite Galois extension of fields, G = G(K/F ), and x,
y elements of K.

1. If τ lies in G, then τG = G = Gτ , so

τ
(

NK/F (x)
)

= NK/F (x) = NK/F

(
τ(x)

)
τ
(

TrK/F (x)
)

= TrK/F (x) = TrK/F
(
τ(x)

)
.

In particular,

NK/F (x) and TrK/F (x) lie in KG = F :

We have

τ(
∏
G

σ(x)) =
∏
G

τσ(x) =
∏
G

σ(x) =
∏
G

στ(x)

τ(
∑
G

σ(x)) =
∑
G

τσ(x) =
∑
G

σ(x) =
∑
G

στ(x).

2. Suppose that G = {σ1, . . . , σn}. As before let sj denote the jth elementary symmetric
function

∑
1≤i1<···<ij≤n ti1 · · · tij (and s0 = 1). Then

mF (x) =
∏(

t− σi(x)
)

=
∑

(−1)n−isn−i
(
σ1(x), . . . , σn(x)

)
ti

in F [t]. In particular, if K = F (x), then

NK/F (x) = sn
(
σ1(x), . . . , σn(x)

)
TrK/F (x) = s1

(
σ1(x), . . . , σn(x)

)
.

What can you say if F (x) < K?

3. If x lies in F , then σ(x) = x for each σ in G. It follows that if K/E/F then

NE/F (x) = x[E:F ] and TrE/F (x) = [E : F ]x,

as every F -embedding of E into K lifts to an element of G.

4. The norm is multiplicative, i.e., NK/F (xy) = NK/F (x) NK/F (y) and, if x is nonzero,

NK/F (x−1) =
(

NK/F (x)
)−1

(as NK/F (1) = 1). In particular,

NK/F : K× → F× is a group homomorphism.

5. The map TrK/F : K → F is an F -linear functional of F -vector spaces. By Dedekind’s
Lemma 54.3, TrK/F is not the trivial map as it is the sum of distinct F -homomorphisms.
In particular, dim ker TrK/F = [K : F ]− 1.

We can generalize the norm and trace as follows:
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Remark 60.18. Let E/F be a finite separable extension of fields of degree n with K/E
a normal closure of E/F . Hence K/F is Galois. Let

τ1, . . . , τm : E → K

be all the distinct F -homomorphisms. We know thatm = n as E/F is finite and separable.
Let x be an element in E. Define the norm of x to be

NE/F (x) :=
∏
i

τi(x)

and the trace of x to be
TrE/F (x) :=

∑
i

τi(x).

Since K/F is Galois, if σ ∈ G(K/F ), then

στ1, . . . , στn : E → K

are distinct F -homomorphisms, so these are just a permutation of τ1, . . . , τn, hence

NE/F (x) and TrE/F (x) lie in KG = F

just as in the Galois case. [Note we only needed K/E/F with K/F finite and Galois to
deduce this i.e., is independent of the finite Galois extension of F containing E.] Moreover,
Properties 60.17 hold for E/F with {τ1, . . . , τm} replacing the σ in Property 60.17(1) and
{σ1, . . . , σn} in Property 60.17(2) This generalization is useful in applications, especially
in studying towers of finite separable extensions of fields. (Cf. the exercises at the end of
this section). This can be further generalized to include inseparable extensions, but we
shall not pursue this here.

In his book on algebraic number theory, Hilbert had the following result as his 90th
Satz (theorem):

Lemma 60.19. (Hilbert Theorem 90) Let K/F be a Galois extension of fields of degree
n. Suppose that K/F is cyclic with G(K/F ) = 〈σ〉 and x ∈ K. Then

NK/F (x) = 1 if and only if there exists a y ∈ K× satisfying x =
y

σ(y)
,

i.e., we have an exact sequence

1→ K×
ψ−→ K×

NK/F−−−→ F×

with ψ(y) = y/σ(y).

Proof. (⇐): If x = y/σ(y), then

NK/F (x) =
NK/F (y)

NK/F

(
σ(y)

) = 1.

(⇒): Suppose that
1 = NK/F (x) = xσ(x) · · · σn−1(x).

In particular, x is nonzero. By Dedekind’s Lemma 54.3, we know that the F -automorphisms
1, σ, . . . , σn−1 are independent, so if a0, . . . , an−1 lie in K, we have

∑n−1
i=0 aiσ

i(z) = 0 for



376 XII. GALOIS THEORY

all z in K if and only if all the ai are zero. Set a0 = 1 and ai = xσ(x) · · ·σi−1(x) in K×

for i = 1, . . . , n− 1. Then

g = 1 + a1σ + · · ·+ an−1σ
n−1

= 1 + xσ + xσ(x)σ2 + · · ·+ xσ(x) · · · σn−2(x)σn−1

is not trivial, so there exists an element u in K satisfying

0 6= y := g(u) = u+ xσ(u) + · · ·+ xσ(x) · · ·σn−2(x)σn−1(u).

Since σn = 1K and 1 = NK/F (x) = xσ(x) · · ·σn−1(x), we see that

xσ(y) = xσ(u) + xσ(x)σ2(u) + · · ·+ xσ(x) · · ·σn−1(x)σn(u) = y,

i.e., x = y/σ(y) as needed. �

Although the computational proof reveals little, generalizations of the lemma above
have resulted in very deep theorems in algebra. Hilbert established it to prove the following
important result.

Theorem 60.20. Let K/F be a Galois extension of fields of degree n with the charac-
teristic of F either zero or charF 6 | n. Suppose that K/F is cyclic with G(K/F ) = 〈σ〉
and tn − 1 splits over F . Then there exists an element u in K satisfying K = F (u) and
mF (u) = tn − a in F [t] for some a in F . In particular, K/F is radical.

Proof. Let ζ be a primitive nth root of unity in F . By our previous work, we
know that U = 〈ζ〉 is a cyclic group satisfying |U | = n, so |U | = [K : F ]. As ζ−1

lies in F and NK/F (ζ−1) = ζ−n = 1, an application of Hilbert Theorem 90 shows that
there exists a nonzero element u in K satisfying ζ = σ(u)/u, i.e., σ(u) = ζu. Since
σ(un) = σ(u)n = ζnun = un, we have σi(un) = un for all i. Therefore, a := un lies
in KG(K/F ) = F as K/F is Galois. Let f := tn − a, a polynomial lying in F [t]. This
polynomial has n distinct roots: ζ iu for i = 1, . . . , n. In particular, F (u) is a splitting
field of f over F . To finish, we need to show that K = F (u), as then deg f = degmF (u).
We know that

σi|F (u) : F (u)→ K maps u 7→ ζ iu

comprise n distinct F -homomorphisms, so by Proposition 56.11, we have

[F (u) : F ] ≥ n = |U | = [K : F ],

hence K = F (u). �

Let K/F be a Galois extension of fields of degree n with the characteristic of F either
zero or charF 6 | n. Suppose that K/F is cyclic with G(K/F ) = 〈σ〉 and tn− 1 splits over
F . Then there exists an element u in K satisfying K = F (u) and mF (u) = tn − a in F [t]
for some a in F . In particular, K/F is radical.

Corollary 60.21. Let K/F be a cyclic extension of fields of degree n with the charac-
teristic of F either zero or charF 6 | n. Suppose that K/F is cyclic and tn − 1 splits over
F . Then there exists an x ∈ K such that {σ(x) | σ ∈ G(K/F )} is an F -basis for K. In
particular, this is true if F is a finite field.
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Proof. Let G(K/F ) = 〈σ〉. By the proof of Theorem 60.20, K = F (u) with ui =
σ(ui) for i = 0, . . . , n − 1. The first statement follows. If F is a finite finite field, then
L/F is a cyclic extension with charF 6 | |F | by Exercise 55.9(2). �

We shall show that this corollary generalizes to the case that K/F is a finite Ga-
lois extension in Theorem 63.7 below. Theorem 60.20 allows us to deduce the desired

appropriate converse of Theorem 60.8.

Theorem 60.22. Suppose that F is a field of characteristic zero and K/F is a finite
Galois extension with G(K/F ) solvable. Then there exists a finite extension L/K such
that L/F is Galois and radical.

Proof. Let n = [K : F ] = |G(K/F )|.
Case 1. The polynomial tn − 1 splits over F :

We show in this case that K/F itself is radical and Galois. As the group G(K/F ) is finite
and solvable, it is polycyclic, i.e., has a cyclic series say

1 = N1 / N2 / · · · / Nr = G

with each Ni/Ni−1 cyclic. Let Fi = KNi . By the Fundamental Theorem of Galois Theory
57.3 and induction on i, we conclude that

K/Fi+1 is Galois with G(K/Fi+1) = Ni+1,

and, as Ni / Ni+1,

Fi/Fi+1 is normal with G(Fi/Fi+1) ∼= Ni+1/Ni cyclic.

Let ni = |Ni+1/Ni| = [Fi : Fi+1]. Since [Fi : Fi+1] | [K : F ] = |G(K/F )|, we know that
ni | n, hence tni − 1 | tn − 1 in F [t] (why?). Thus tni − 1 in F [t] ⊂ Fi+1[t] splits over Fi
for each i. It follows that K/F is radical and Galois by Theorem 60.20.

Case 2. tn − 1 in F [t] does not split over F :

Let E be a splitting field of tn − 1 over K and ζ a primitive nth root of unity in E.

Claim: K(ζ)/F is a radical and Galois extension (and, therefore, we are done).

We have already seen that K(ζ)/F is Galois as K/F is the splitting field of a separable
polynomial over F . So we need only show that K(ζ)/F is a radical extension. As
K(ζ)/F (ζ) is Galois and F (ζ)/F is radical and Galois, it suffices to show that K(ζ)/F (ζ)
is radical.

We reduce to Case 1 by showing:

(i) [K(ζ) : F (ζ)] = |G
(
K/F (ζ)

)
| | n.

(ii) G
(
K(ζ)/F (ζ)

)
is a solvable group.

Indeed, suppose we have shown (i) and (ii). Then F (ζ) contains a primitive |G
(
K(ζ)/F (ζ)

)
|th

primitive root of unity, so by Case 1, the extension K(ζ)/F (ζ) is Galois and radical. As
F (ζ)/F is radical, it then follows that K(ζ)/F is radical. So we need only show (i) and
(ii). Let σ ∈ G

(
K(ζ)/F (ζ)

)
. Then σ fixes F (and ζ), hence σ|K : K → K(ζ) is an
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F -homomorphism. By Proposition 56.11, there exist at most [K : F ] = |G(K/F )| F -
homomorphisms K → K(ζ). As each element of G(K/F ) is such an F -homomorphism,
we must have σ|K lies in G(K/F ). Therefore,

ψ : G
(
K(ζ)/F (ζ)

)
→ G(K/F ) given by the restriction σ 7→ σ|K

is a well-defined group homomorphism. But ψ is monic, as σ|K = 1K means that σ fixes
K and ζ hence K(ζ), i.e., σ = 1K(ζ). Therefore,

|G
(
K(ζ)/f(ζ)

)
| | |G(K/F )| = n

and G(K
(
ζ)/F (ζ)

)
is isomorphic to a subgroup of the solvable group G(K/F ), so also

solvable. �

Corollary 60.23. Let F be a field of characteristic zero and f a non-constant polynomial
in F [t]. Then f is solvable by radicals if and only if the Galois group of f is solvable.

Proof. (⇒) has already been done.

(⇐): Let K be a splitting field of f over F . By hypothesis, G(K/F ) is solvable, so by
the theorem there exists an extension L/K with L/F Galois and radical. Since f splits
over L, it is solvable by radicals. �

Corollary 60.24. Let F be a field of characteristic zero and f a non-constant polynomial
in F [t] of degree at most four. Then f is solvable by radicals.

Proof. The Galois group of f is isomorphic to a subgroup of S4, a solvable group. �

Remarks 60.25. The quadratic formula for the general polynomial of degree two is
well-known and gives a root for any quadratic polynomial (and works over any field of
characteristic not two). The corollary says if F is a field of characteristic zero and f
the general polynomial of degree three (respectively, four), then there exists a formula
involving only field operations and taking various nth roots giving a root, hence this
formula is applicable to all polynomials of this degree. This is the formula of Ferro-
Tartaglia-Cardano (respectively, Ferrari). Thus all the roots of polynomials of degree at
most four over a field of characteristic zero can be found by such formulae.

Exercises 60.26.

1. Let L/F be a field extension and L/Ki/F with Ki/F abelian. Show that K1K2 =
K1(K2) is abelian.

2. Show that Lemma 60.10 is false if p is not a prime.

3. Let K/F be a finite separable extension of fields. Show that NK/F = NE/F ◦NK/E and
TrK/F = TrE/F ◦TrK/E for any intermediate field K/E/F .

4. Let K/F be a finite separable extension of fields, x an element of K, and λx : F (x)→
F (x) the F -linear transformation given by y 7→ xy. Show that the characteristic

polynomial of λx is
(
mF (x)

)[K:F (x)]
. In particular, if mF (x) = tr + ar−1t

r−1 + · · · + a0

in F [t], then NK/F (x) = (−1)ra
[K:F (x)]
0 and TrK/F (x) = −[K : F (x)]ar−1
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5. Suppose that K/F is a finite separable extension of fields, K∗ := HomF (K,F ), the
F -linear dual space of K. Show that the map T : K → K∗ defined by x 7→ trx :
y 7→ TrK/F (xy) is an F -linear isomorphism. In particular, if {x1, . . . , xn} is an F -basis
for K, then there exists a basis {y1, . . . , yn} for K satisfying TrK/F (xiyj) = δij (the
Kronecker delta).

6. Let K/F be a finite separable extension of fields, x an element of K, and λx : F (x)→
F (x) the F -linear transformation given by y 7→ xy. If B is an F -basis for K, show that
TrK/F (x) = trace[λx]B and NK/F = det[λx]B.

7. Let K/F be a Galois extension of fields of degree n. Suppose that K/F is cyclic with
G(K/F ) = 〈σ〉 and x ∈ K. Show TrK/F (x) = 0 if and only if there exists a y ∈ K×
satisfying x = y − σ(y).

8. Let F be a field of characteristic zero and K/F an abelian extension. Let n be a
positive integer such that σn = 1 for every σ ∈ G(K/F ) and F contains a primitive
nth root of unity. Show that there exist α1, . . . , αr in K such that K = F (α1, . . . , αr)
with αnii ∈ F for some ni | n for 1 = 1, . . . , r.

61. Addendum: On Hilbert Theorem 90

In this section we use the proof of Hilbert Theorem 90 (Theorem 60.19) to state a
more modern version whose generalizations has become very important in algebra and
number theory.

Let K be a field and G a group of automorphisms of K. We call SG := {xσ ∈ K | σ ∈
G} a solution set to the Noether equations if 0 /∈ SG and

(*) xσσ(xτ ) = xστ , for all σ, τ ∈ G.
If xσ = 0 satisfies (*), then SG = {0}, since τ G = G for all τ ∈ G. This is the reason
that we exclude 0 ∈ SG.

Theorem 61.1. Let K be a field and G a finite group of automorphisms of K. Then a
set S = {xσ ∈ K | σ ∈ G} is a solution set to the Noether equations if and only if there
exists an element y in K satisfying xσ = y/σ(y) for all σ ∈ G.

The proof is almost identical to the proof of Hilbert 90 60.19.

Proof. If y in K× satisfies xσ = y/σ(y) for all σ ∈ G, then

y

σ(y)
σ
( y

τ(y)

)
=

y

σ(y)

σ(y)

στ(y)
=

y

στ(y)

for all σ, τ ∈ G. So S = {y/σ(y) | σ ∈ G} is a solution set to the Noether equations.

Conversely, suppose that S is a solution set to the Noether equations. By Dedekind’s
Lemma 54.3, G is an independent set, so there exists an element z ∈ K× satisfying
0 6= y =

∑
τ∈G xττ(z). Hence we have σ(y) =

∑
τ∈G σ(xτ )στ(z). Multiply this equation

by xσ. Using (*) then yields

xσσ(y) =
∑
τ∈G

xσσ(xτ )στ(z) =
∑
τ∈G

xττ(z) = y.

Therefore, xσ = y/σ(y) for all σ ∈ G. �
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We now construct the general setup where the Noether equations constitute a special
case.

Construction 61.2. Let G be a multiplicative group, A a (multiplicative) abelian group,
and G → Aut(A) a group homomorphism. This defines a G-action on A by evaluation
that we write by σ(a) for σ ∈ G and a ∈ A. We call a map f : G → A a crossed
homomorphism, if

f(στ) = f(σ)σ
(
f(τ)

)
for all σ, τ ∈ G. In particular, if G → Aut(A) is the trivial map, the set of crossed
homomorphisms is just Hom(G,A), the group of group homomorphism G→ A. A crossed
homomorphism f : G → A is called a principal crossed homomorphism if there exists a
y ∈ A satisfying f(σ) = σ(y)/y for all σ ∈ G.

Set

Z1(G,A) := {f : G→ A | f a crossed homomorphism}
B1(G,A) := {f : G→ A | f a principal crossed homomorphism}.

Then Z1(G,A) is an abelian group and B1(G,A) is a subgroup (whose proof we leave as
an exercise). The quotient group

H1(G,A) = Z1(G,A)/B1(G,A)

is called the 1st cohomomology group of G with coefficients in A.

Corollary 61.3. (Hilbert Theorem 90) Let L/F be a finite Galois extension. Then

H1
(
G(L/F ), L×

)
= 1.

Proof. This is just a reformulation of Theorem 61.1. �

It can be shown, if L/F is any Galois extension, that

H1
cont

(
(G(L/F ), L×

)
= 1,

where all the crossed homomorphisms defined above must also be continuous relative to
the topology introduced in Section 58. In particular, if L/F is finite, G(L/F ) has the
discrete topology and this agrees with the corollary.

Exercises 61.4.

1. Let L/F be a finite Galois extension. Let y ∈ K satisfy xσ = y/σ(y) for all x ∈ L×.
Let r be the least common multiple of the orders of the elements of G(L/F ). The yr

lies in F .

2. Let G be a group and A a (multiplicative) abelian group. Show that Z1(G,A) and
B1(G,A) are abelian groups.

3. Let L/F be a finite Galois extension and suppose that the group µn of nth roots of
unity lies in F and consists of n elements. Then show that B1(G(L/F ), µn) = 1 and
Z1(G(L/F ), µn) = Hom(G(L/F ), µn), i.e., H1(G(L/F ), L×) = Hom(G(L/F ), µn).
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62. Addendum: Kummer Theory

In Section 60, we proved Theorem 60.20 classifying finite cyclic field extensions, i.e.,
finite Galois extensions with cyclic Galois group, of degree n when the base field contained
all the nth roots of unity and the characteristic of the field was zero or did not divide n.
Exercise 60.26(8) extends this to finite abelian extension of a field. In this section, we
generalize this to arbitrary abelian extensions of a field, i.e., not necessarily finite. To do
this, we shall need results from Section 58.

We begin with a preliminary discussion of pairing of groups. Let A, B, and C be
abelian multiplicative groups. A pairing 〈 , 〉 : A × B → C is a map that is a group
homomorphism in each variable. Set

A⊥ := {a ∈ A | 〈a, x〉 = eC for all x ∈ B}
B⊥ := {b ∈ B | 〈y, b〉 = eC for all y ∈ A}.

This pairing induces a homomorphism A→ Hom(B,C) by a 7→ 〈a, 〉, hence a monomor-
phism A/A⊥ → Hom(B/B⊥, C). Similarly, this pairing induces a homomorphism B →
Hom(A,C) by b 7→ 〈 , b〉, hence a monomorphism B/B⊥ → Hom(A/A⊥, C).

Suppose m is a positive integer such that both A/A⊥ and B/B⊥ satisfy xm = eA and
ym = eB for all x ∈ A and for all y ∈ B, and C = µm is the cyclic group of order m, i.e.,
m divides the exponent of these three groups, where the exponent N of a (multiplicative)
group G is the least positive integer N such that gN = eG for all g ∈ G (if such exists).
Then in the above,

(62.1) A/A⊥ is finite if and only if B/B⊥ is finite,

and if this is the case, then we have an isomorphism:

(62.2) A/A⊥
∼−→ B̂/B⊥ := Hom(B/B⊥, µm).

We shall apply this when µm is the group of mth roots of unity in a field F of
characteristic zero or characteristic not dividing m.

We set up notation to be used in the rest of this section. Let F be a field. Denote by

F̃ a fixed algebraic closure of F and assume all algebraic extensions of F lie in it. So the

group of mth roots of unity µm lie F̃ . We shall assume that |µm| = m, so the characteristic
of F is zero or does not divide m. We shall also assume that µm ⊂ F . Therefore, if K/F
is a splitting field of tm− a ∈ F [t], then K = F (α) with αm = a and the m distinct roots
of tm − a are given by ζα for ζ ∈ µm by Theorem 60.20. We write this symbolically as
K = F (a

1
m ). Let (F×)m = {xm | x ∈ F} and if (F×)m ⊂ P ⊂ F× is a subgroup, let

FP = F (P
1
m ) be the field generated by the F (a

1
m ) with a ∈ P . The (possibly infinite)

field extension FP/F is normal and separable, hence is Galois by Theorem 58.5.

Definition 62.3. Let K/F be a (possibly infinite) Galois extension of fields. We say that
K/F has exponent m if G(K/F ) has finite exponent dividing m. Suppose, in addition,
that µm ⊂ F and |µm| = m. We say that K/F is a Kummer extension of exponent m if
K/F is abelian of exponent m, i.e., Galois with abelian Galois group.
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Let F be a field containing the mth roots of unity µm with |µm| = m. Set

Fm := {K | K/F is a Kummer extension of exponent m}
Gabm := {P | (F×)m ⊂ P ⊂ F× is a subgroup}.

Theorem 62.4. Let F be a field containing the mth roots of unity µm with |µm| = m.
Then the map i : Gm → Fm given by P 7→ FP is a bijection. Moreover, FP/F is a finite
extension if and only if P/(F×)m is a finite group, and if finite, then [F : FP ] = [P :
(F×)m].

Proof. Let P ∈ Gm. We first show that FP ∈ Fm. Let a ∈ P , so a = αm, some

α ∈ F̃ . In the proof of Theorem 60.20 using Hilbert Theorem 90 (Lemma 60.19), we saw
that if σ ∈ G(FP/F ), then there exists a unique ζσ ∈ µm satisfying σ(α) = ζσα. Check
that ζσ is independent of the choice of α. In particular, σm(α) = α and if τ ∈ G(FP/F ),
then

στ(α) = ζσζτ = τσ(α).

It follows that FP/F is an abelian extension. Since FP = F ({α ∈ F̃ | αm ∈ P}, we have
FP ∈ Fm.

Next let K ∈ Fm. Set

N := {a ∈ F× | there exists α ∈ K such that αm = a} ∈ Gm.
Let G = G(K/F ). Define

f : N → Ĝ := Hom(G, µm)

as follows: Let a ∈ N . Choose α ∈ K satisfying αm = a. If σ ∈ G, then, as above, there

exists a unique ζσ ∈ µm satisfying σ(α) = ζσα. Define fa : N → Ĝ = Hom(G, µm) by
σ 7→ σ(α)/α = ζσ.

Claim 62.5. fa is a well-defined homomorphism.

If fa is well-defined, it is clearly a homomorphism. So we must show that fa is independent
of the choice of α. We leave its proof as an exercise. By the claim we obtain a map

f : N → Ĝ given by a 7→ fa.

We apply this construction to K = FP with P ∈ Gm. So we have a pairing

〈 , 〉 : G× P → µm

defined by 〈σ, a〉 = fa(σ) = σ(α)/α where a = αm.

Claim 62.6. G⊥ = 1 and P⊥ = (F×)m.

That G⊥ = 1 is easy, so we turn to P⊥. Suppose that α ∈ K = FP satisfies αm = α
and 〈σ, a〉 = σ(α)/α = 1 for all σ ∈ G, but α /∈ F . Then there exists a τ ∈ G such that
τ(α) 6= α. Hence 〈τ, a〉 = τ(α)/α 6= 1, a contradiction. The Claim now follows easily.

We also conclude by (62.1) that G is finite, i.e., FP/F is finite, if and only if P/(F×)m

is finite. If this is the case then by (62.2), we have

(62.7) [F : FP ] = [P : (F×)m] and P/(F×)m/(F×)m ∼= ̂G(FP/F ).

This is the crucial observation.
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Claim 62.8. P1 ⊂ P2 in Gm if and only if FP1 ⊂ FP2. In particular, i : Gm → Fm is
injective.

The only if statement is clear, so suppose that FP1 ⊂ FP2 . Let α ∈ P1. Then α lies in
FP2 , hence there exists a finitely generated extension K/F (Fm) with FP2/K and α ∈ K.
It follows that we may assume that FP2/F (Fm) is finite generated, hence a finite field
extension. Let P3 be the group generated by α and P2. Then F (P2) = F (P3), and
[FP2 : Fm] = [FP3 : Fm] by (62.7). Hence P2 = P3. This proves the claim.

So we are left to show that i : Gm → Fm is surjective. Let K ∈ Fm, say K = F (P )
with P ∈ Gm. For any element x in K, there exists a finite subgroup P0 ∈ Gm such
that x lies in F (P0), i.e., K is the compositum of finite abelian extensions. Therefore, we
may assume that K/F is finite abelian extension with G = G(K/F ) of finite exponent
dividing m. Since G is a finite abelian group of finite exponent dviding m, it is a product
of finitely many cyclic groups of exponent dividing m by Theorem 44.6 (or Proposition

14.9). Consequently, G ∼= Ĝ by Exercise 44.24(10). By Exercise 57.13(13), this reduces
us to the case that K/F is finite cyclic which has been done. �

Remark 62.9. Let F contain µm with |µm| = m as in the theorem. In the notation of
the theorem, if we let P ∈ Gm and G = G(FP/F ), then the map

(62.10) f : P → Ĝ given by a 7→ (fa : σ → σ(α)/α) with αm = a

induces a monomorphism f : F/(F×)m → Ĝ. If we take continuous homomorphisms

G→ µm in the Krull topology on G(F̃ /F ), then this map is an isomorphism. [As µm lies
in F , its topology is discrete.] We leave this as an exercise. Write this as

(62.11) 1→ (F×)m → P → Homcont(G, µm)→ 1

is exact where Homcont(G, µm) denotes the group of continuous maps G→ µm.

More generally, let Fsep denote the separable closure of F in F̃ , i.e., the maximal

separable extension of F in F̃ . Then ΓF := G(Fsep /F ) is G(F̃ /F ) and called the absolute
Galois group of F . If µm ⊂ F and has m elements, then we have an exact sequence

1→ µm → F×sep

g−→ F×sep → 1.

where g(x) = xm By using ‘group cohomology’ — a subject that we shall not discuss —
one obtains an exact sequence

1→ µm → F×
g−→ (F×)

δ−→ Homcont(ΓF , µm)→ 1.

called the Kummer sequence with δ a map coming from group cohomology theory called
a connecting map. The surjectivity of δ arises from a homological version of Hilbert
Theorem 90, the finite case can be found in Corollary 61.3.

Exercises 62.12.

1. Prove 62.1
2. Prove that ζσ in the proof of the theorem is independent of the choice of α.

3. Prove Claim 62.5.

4. Prove that (62.10) implies (62.11).
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63. Normal Basis Theorem

In this section, we shall show that every finite Galois field extension K/F has an
F -basis {σ(α) | σ ∈ G(K/F )}. If the extension is cyclic, this is easy to prove using our
knowledge of linear algebra (in particular, using facts about the minimal polynomial of a
linear operator on a finite dimensional vector space). We have seen that Hilbert Theorem
90 was the crucial fact needed to classify finite cyclic extensions (with appropriate roots
of unity). We used the norm map to proved it. An additive version of this result is also
true, which we now state.

Lemma 63.1. Let K/F be a finite, cyclic extension with Galois group G(K/F ) = 〈σ〉
and x ∈ K. Then TrK/F (x) = 0 if and only if there exists a y ∈ K satisfying x = y−σ(y).

The proof that we gave for the multiplicative version works for this additive version by
using the trace in exactly the same way (by taking the log). One can extend the definition
of both the norm and trace to an arbitrary finite extension of fields. Unfortunately, the
trace becomes useless in the nonseparable case. However, the trace is quite useful in
the finite separable case because it is a nontrivial linear functional. In the multiplicative
case, a fuller interpretation of the proof of Hilbert Theorem 90 by Noether was that
H1(G(K/F ), K×) = 1 for all finite Galois extensions K/F . We also wish to indicate a
stronger result in the additive case.

Construction 63.2. Let K/F be a finite, separable extension with L/K a normal closure
of K/F . Let σ1, . . . , σn : K → L be all the distinct F -homomorphisms of K into L. Since
K/F is separable, L/F is Galois and n = [K : F ]. Let B = {α1, . . . , αn} be an F -basis for
K. As β =

∑n
j=1 ajαj for each β ∈ K with aj ∈ F for all j, we have σ(β) =

∑n
j=1 ajσ(αj)

lies in L. Recall that we defined the trace of a finite separable field extension in Remark
60.18. Define

T : L× L→ F by T (x, y) := TrK/F (xy).

So

T (αi, αj) =
n∑
k=1

σk(αi)σk(αj).

Let
D =

(
σk(αi)

)
∈ Mn(L).

We have
(
T (αiαj)

)
= DDt in Mn(L). By Dedekind’s Lemma 54.3, we know that the

system of equations,
∑n

k=1 xkσk(αi) = 0, i = 1, . . . , n, can only have the trivial solution.
Therefore,

(
T (αiαj)

)
must be invertible by Cramer’s Rule, hence D is also invertible. The

element det
((
T (αiαj)

))
is called a discriminant of K/F relative to the basis B.

Application 63.3. Let K/F be finite of degee n and Galois with an F -basis B =
{α1, . . . , αn} for K and G(K/F ) = {σ1, . . . , σn}. Then we have seen that α =

∑n
i=1 aiαi

with ai ∈ F , then σ(α) =
∑n

i=1 aiσj(αi) and the matrix
(
σj(αi)

)
in Mn(K) is invertible.

Conversely, suppose that β, . . . , βm in K satisfy
(
σj(βi)

)
∈ Mn(K) is invertible. If

β1, . . . , βm were linearly dependent, then the system of equations,
∑n

i=1 σj(βi)xi = 0
with j = 1, . . . , n would have a nontrivial solution. Therefore, {β1, . . . , βn} is linearly
independent over F hence a basis.
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Next, following Artin, we strengthen the notion of independence of characters over an
infinite field under certain conditions.

Definition 63.4. Let K be an infinite field and σ1, . . . , σn : K → L be (field) homomor-
phisms. We say that σ1, . . . , σn are algebraically independent over L if f ∈ K[t1, . . . , tn]
is a polynomial satisfying

f
(
σ1(x), . . . , σn(x)

)
= 0 for all x ∈ K, then f = 0.

Since K is an infinite field, we can (and do) identify polynomials and polynomial functions
over K by Remark 34.10(4).

Theorem 63.5. Let F be an infinite field, K/F a finite separable extension, and L/K a
normal closure of K/F . Let σ1, . . . , σn : K → L be all the distinct F -homomorphisms of
K into L. Then σ1, . . . , σn are algebraically independent over L.

Proof. As K/F is separable, [K : F ] = n. Let {α1, . . . , αn} be an F -basis for K.
Suppose that f ∈ K[t1, . . . , tn] is a polynomial satisfying f

(
σ1(x), . . . , σn(x)

)
= 0 for all

x ∈ K. Then, for all a1, . . . , an in F n, we have an equation

0 = f
(
σ1(

n∑
i=1

aiαi), . . . , σn(
n∑
i=1

aiαi)
)

= f
( n∑
i=1

aiσ1(αi), . . . ,
n∑
i=1

σnai(αi)
)

in L. Define g ∈ K[t1, . . . , tn] by

g =
( n∑
i=1

σ1(αi)ti, . . . ,
n∑
i=1

σn(αi)ti
)
.

So we have g(a1, . . . , an) = 0 for all ai ∈ F , i.e., g|Fn = 0 Let B = {β1, . . . , βm} be an
F -basis for L. We can write

g =
m∑
j=1

βjgj

for appropriate gj ∈ F [t1, . . . , tn] (as F -linear functionals are polynomial functions). Since
B is a basis and g(a1, . . . , an) = 0 for all ai ∈ F , we conclude that gj(x1, . . . , xn) = 0 for
all xi ∈ F . It follows that g(x1, . . . , xn) = 0 for all xi ∈ K i.e., g|Kn = 0. Since F is
infinite, g = 0 (in F [t1, . . . , tn]).

By Construction 63.2, det
(
σi(αj)

)
6= 0. It follows that

(
σi(αj)

)
is invertible. Let (γij)

be the inverse of
(
σi(αj)

)
in Mm(L). Since g(t1, . . . , tn) = f

(∑
i σ1(αi)ti, . . . ,

∑
i σn(αi)ti

)
,

we have

0 = g
(∑
j,k

γ1jσj(αk)tk, . . . ,
∑
j,k

γnjσj(αk)tk
)

= f(t1, . . . , tn).

Since g = 0, we have f = 0 also. the result follows. �

Definition 63.6. Let K/F be a finite Galois extension. An F -basis B for K is called a
normal basis if there exists an element α in K such that B = {σ(α) | σ ∈ G(K/F )}.
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Theorem 63.7. (Normal Basis Theorem) Let K/F be a finite Galois extension. Then
K has a normal basis.

Proof. Case 1: F is an infinite field.

Let G(K/F ) = {σ1, . . . , σn}. By the previous theorem, σ1, . . . , σn are algebraically in-
dependent. By Application 63.3, if α ∈ K, then {αi(α), . . . , σn(α)} is an F -basis if
and only if det

(
σiσj(α)

)
6= 0. Write σiσj = σr(i,j). For fixed i, the map j 7→ r(i, j)

is a permutation of 1, . . . , n. Let A =
(
tr(i,j)

)
in Mm(K[t1, . . . , tn]). Evaluate A at

(t1, . . . , tn) 7→ (1, 0, . . . , 0). Then this matrix is a permutation matrix, hence has de-
terminant ±1. Since det is a polynomial function on t1, . . . , tn, we have det(A) 6= 0.
By the algebraic independence of σ1, . . . , σn, there exists an element u in K satisfying
det
(
σiσj(u)

)
6= 0. Consequently, {σ1(u), . . . , σn(u)} is a normal basis for K.

Case 2: F is a finite field.

We know that K/F is a cyclic extension. We prove the result in this more general
situation. Let G(K/F ) = 〈σ〉 As K is a finite dimensional vector space over F and
σ : K → K is an F -linear operator, it has a minimal polynomial qσ. We know that
deg qσ ≤ fσ = [K : F ] (and, in fact, qσ | fσ) by the Cayley-Hamilton Theorem, where
fσ is the characteristic polynomial of σ. If n = [K : F ] = |G(K/F )|, then 1, σ, . . . , σn−1

are independent by Dedekind’s Lemma. It follows that deg qσ = n. Since qσ is the monic
polynomial of minimal degree satisfying qσ(σ)(u) = 0 for all u in the vector space K,
there must exist an α ∈ K such that {α, σ(α), . . . , σn−1(α)} is a basis. �

We showed that the cohomological version of Hilbert Theorem 90 is thatH1(G(K/F ), K×) =
1 for any finite Galois extension K/F . In general, as we shall see that H2(G(K/F ), K×) 6=
1. [For example, H2(G(C/R) = 2.] We have also seen that the additive version of Hilbert
Theorem 90 H1(G(K/F ), K+) = 0 is also true. Using homological methods, one can show
that the Normal Basis theorem implies that Hn(G(K/F ), K+) = 0 for all n > 0.

Exercise 63.8. Let K/F be a finite separable extension with bases B and C. Show that
the discriminants of K/F relative to B and C respectively differ by a square in F .

64. Addendum: Galois’ Theorem

In this section, we establish Galois’ characterization of the Galois group of an irre-
ducible polynomial of prime degree over a field of characteristic zero. We begin with a
lemma, previously given as Exercise 22.15 (23). If p is a prime, then a finite group is
called an elementary p-group if it is isomorphic to (Z/pZ)n for positive integer n. Note
that any elementary p-group can be viewed as a finite dimensional vector space over Z/pZ.
A minimal normal subgroup of a nontrivial group G is a normal subgroup of G such that
the trivial group is the only normal subgroup of G properly contained in it.

Lemma 64.1. Let G be a nontrivial finite solvable group. Then any minimal normal
subgroup of G is an elementary p-group.

Proof. Let H be a minimal normal subgroup of G. As H is a subgroup of a solvable
group, it is solvable. We also know that any characteristic subgroup of H is normal in G
(cf. Exercise 11.9(22)). Since the commutator subgroup of any group is a characteristic
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subgroup, the series obtained by successively taking commutators gives a characteristic
series for H (cf. Proposition 17.5). As H is solvable, it contains a characteristic nontrivial
abelian normal subgroup, so we may assumeH is abelian. Since Sylow groups of an abelian
group are characteristic, we may assume that H is a p-group. Since {x ∈ H | xp = 1} is
easily seen to be a characteristic subgroup of H, the lemma follows. �

More generally, it can be shown that a minimal normal subgroup of a nontrivial finite
group is either simple or a product of simple groups all which are isomorphic.

Let p be a prime and V a finite dimensional vector space over Z/pZ. If v0 is a vector
in V , then the map τv0 : V → V given by v 7→ v + v0 is called translation by v0. [Note
that it is not an F -linear transformation unless v0 = 0.] The set of all translations of V
form a subgroup of the the group of affine transformations of V , the group defined by

Aff(V ) := {τ : V → V | τ : v 7→ av + v0 with a in Z/pZ and v0 in V }.

So every element in Aff(V ) is a composition τλa with τ a translation and λa : V → V the
F -linear map given by x 7→ ax for some a in F .

Theorem 64.2. Let p be a prime and S a set with p elements. Suppose that G is a
transitive subgroup of Σ(S) ∼= Sp. Then the following are equivalent:

(1) G is solvable.
(2) Each non-identity element in G fixes at most one element in S.
(3) There exists a transitive normal subgroup T of G satisfying |T | = p and T is its

own centralizer in G, i.e., T = ZG(T ).
(4) G is isomorphic to a subgroup of the group of affine transformations Aff(Z/pZ)

and contains the subgroup of translations.

Moreover, if G is solvable and if T is as in (3), then there exists a cyclic subgroup H in G
satisfying G = HT , H ∩ T = 1, and |H| | p− 1. Furthermore, any non-identity normal
subgroup of G is of the form H ′T for some subgroup H ′ of H.

Proof. We may assume that G ⊂ Sp, so S = {1, . . . , p}. As G is transitive, the orbit
Gs for any s ∈ S, has order p, so p | |G| and all the Sylow p-groups of G are cyclic of
order p, i.e., is generated by a p-cycle.

(1)⇒ (3): Let N be a normal subgroup of G.

Claim. The group N acts transitively on Sp. In particular, p | |N |:
Let x and y be elements in S. As G acts transitively on S, there exists an element σ in
G satisfying y = σ(x). As the map Nx → Ny given by zx 7→ zσ(x) is a well-defined
bijection, we see that all orbits of N have the same number of elements. If O is a system
of representatives for the action of N on S, then p = |S| =

∑
O |Nx| =

∑
O[N : Nx], by

the Orbit Decomposition Theorem 19.9. So either S has one orbit under the action of N ,
i.e., N is transitive, or every orbit of S under the action of N has one point, i.e., N is the
identity subgroup. This establishes the claim.

Let T be a minimal normal subgroup of G. By the lemma and claim, T is a cyclic subgroup
of order p, hence is generated by a p-cycle, say T = 〈σ〉. The normality of T implies that
it is the unique Sylow p-subgroup of G. Suppose τ centralizes T , i.e., lies in ZG(T ). If
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τ(s) = s for some s ∈ S, then τσ(s) = στ(s) = σ(s), hence τσi(s) = σiτ(s) = σi(s) for
all i implying τ = 1. Therefore τ is either 1 or is fixed point-free, so a p-cycle.

(3) ⇒ (4): Suppose that T = 〈σ〉 is a cyclic subgroup of G of order p. We may assume
that S = Z/pZ and σ is the p-cycle (0 1 · · · p− 1) where : Z → Z/pZ is the canonical
epimorphism. Therefore, σ generates the group of translations in Aff(Z/pZ). Let τ be
an element in G. Then there exists an integer n with p 6 | n, unique modulo p, such
τστ−1 = σn, i.e., we have a well-defined map ϕ : G→ (Z/pZ)× given by τ 7→ n. Clearly,
this map is a group homomorphism with kerϕ = ZG(T ). As τσ = σϕ(τ)τ , we have

τ(x+ 1) = τσ(x) = σϕ(τ)τ(x) = τ(x) + ϕ(τ).

In particular, τ(1) = τ(0) +ϕ(τ) = ϕ(τ) + b with b = τ(0). Inductively, τ(x) = ϕ(τ)x+ b.
This yields (4).

(4)⇒ (1): The translations form a cyclic normal subgroup T in G with quotient embed-
ding in (Z/pZ)×.

(4)⇒ (2): The equation
ax+ b ≡ x mod p,

with a and b integers, has a unique solution modulo p if either a 6≡ 1 mod p or b 6≡ 0
mod p. It follows that any non-identity element in G can fix at most one point.

(2) ⇒ (3): We apply Exercise 21.25(17) — known as the Burnside Counting Theorem –
to see that

|G| =
∑
G

|Fτ (S)| where Fτ (S) := F〈τ〉(S).

As τ = 1 fixes p points, we have
∑

G\{1} |Fτ (S)| = |G| − p. By hypothesis, if τ 6= 1

then |Fτ (S)| ≤ 1, so we must have precisely p− 1 non-identity elements τ in G satisfying
|Fτ (S)| = 0, i.e., p− 1 elements in G have no fixed points in S. If σ is one such, then so
is σi for i = 1, . . . , p − 1. It follows that σ is a p-cycle and T = 〈σ〉, a group of order p,
contains all the p-cycles in G. As the conjugate of a p-cycle is a p-cycle, T / G. Suppose
that τ lies in ZG(T ). If Fτ (S) is empty, then τ lies in T , so assume that Fτ (S) is not
empty, say τ(x) = x. It follows that τσ(x) = στ(x) = σ(x), i.e., both x and σ(x) lie in
Fτ (S). By assumption this means τ = 1, so T = ZG(T ), establishing (3).

For the last two statements, let G satisfy (4). Set

H = {τ ∈ G | τ(x) ≡ ax mod p with a an integer satisfying p 6 | a}.
Clearly, H ∩ T = 1 and HT = G. Certainly, we have a monomorphism H → (Z/pZ)×,
so H is cyclic and |H| | p − 1. If N / G is not the trivial group, then by the claim, N
acts transitively on S and contains T , the unique Sylow p-subgroup of G. It follows that
N = H ′T for some subgroup H ′ of H by the Correspondence Principle. �

Theorem 64.3. (Galois) Suppose that F is a field of characteristic zero and f an ir-
reducible polynomial in F [t] of prime degree p. Let K be a splitting field of f over F .
Then f is solvable by radicals if and only if K = F (α, β) for any two roots of f in K.
Moreover, if f is solvable by radicals, G(K/F ) is isomorphic to a subgroup of Aff(Z/pZ)
containing the subgroup of translations, and there exists an intermediate field K/E/F
with E/F cyclic, [K : E] = p. Furthermore, if K/L/F is an intermediate field with L/F
normal with F < L, then L ⊂ E.
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Proof. We know that G(K/F ) can be viewed as a transitive subgroup of Sp and f is
solvable by radicals if and only if G(K/F ) is solvable. By the previous theorem, G(K/F )
is solvable if and only if no non-identity element in G(K/F ) fixes two roots of f . Let α
and β be two roots of f in K. By the Fundamental Theorem of Galois Theory 57.3, we
know that K = F (α, β) if and only if G

(
K/F (α, β)

)
= 1 if and only if no non-identity

element of G(K/F ) fixes α and β. The result now easily follows. �

65. The Discriminant of a Polynomial

Let R be a commutative ring and let the symmetric group Sn act on R[t1, . . . , tn] by
σti = tσ(i) for all i and σ ∈ Sn. This induces a group monomorphism Sn → Aut(R[t1, . . . , tn])
by viewing σ ∈ Sn as a ring homomorphism fixing R. Analogous to the field case of
F (t1, . . . , tn)Sn , one can show that the set of elements R[t1, . . . , tn]Sn in R[t1, . . . , tn] fixed
by Sn, is equal to R[s1(t1, . . . , tn), . . . , sn(t1, . . . , tn)], where

sj(t1, . . . , tn) =
∑

1≤i1<···<ij≤n

ti1 · · · tij

with 1 ≤ j ≤ n are the elementary symmetric functions in t1, . . . , tn. [Cf. the Fundamental
Theorem of Symmetric Polynomials 72.4.] Let D =

∏
i<j(ti − tj) in Z[t1, . . . , tn]. If σ is

the transposition (ij) in Sn, then σD = −D. It follows if σ lies in Sn, then

σ(D) =

{
−D if σ /∈ An
D if σ ∈ An.

Let F be a field of characteristic different from two, f a polynomial in F [t], and K/F
a splitting field of f . Suppose that deg f = n and f has no multiple roots in K, say
the roots are α1, . . . , αn. Hence K/F is Galois and the Galois group G(K/F ) permutes
α1, . . . , αn, so defines a monomorphism G(K/F ) → Sn. If σ lies in G(K/F ), we have a
commutative diagram:

F [t1, . . . , tn]
σ̂
//

eα1,...,αn

��

F [t1, . . . , tn]

eα1,...,αn

��

K σ
// K,

where σ̂ is the automorphism of F [t1, . . . , tn] induced by ti 7→ tσ(i) for i = 1, . . . , n, and
eα1,...,αn is the obvious evaluation map. It follows that

d := eα1,...,αn(D) =
∏
i<j

(αi − αj) 6= 0

satisfies

σ(d) =

{
−d if σ /∈ An
d if σ ∈ An.

Therefore, G
(
K/F (d)

)
= G(K/F ) ∩ An. Let

∆ := d2 =
∏
i<j

(αi − αj)2.
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Then σ(∆) = ∆ for every σ in G(K/F ), hence d2 = ∆ lies in KG(K/F ) = F and is called
the discriminant of f when f is monic. [In general, if lead(f) = an, then a2n−2

n d2 is called
the discriminant of f .] As

[G(K/F ) : G(K/F (d)] ≤ [Sn : An] = 2,

either F = F (d) or F (d)/F is of degree two, as d ∈ F if and only if ∆ ∈ F 2 if and only if
G(K/F ) is a subgroup of An (where we view G(K/F )→ Sn as an inclusion).

Computation 65.1. In the setup above, let si = si(α1, . . . , αn). As Sn fixes each
sj(t1, . . . , tn), we have each si lies in KG(K/F ) = F . By linear algebra, the Vandermonde
determinant

(65.2) det


1 · · · 1
α1 · · · αn
...

...
αn−1

1 · · · αn−1
n

 =
∏
i>j

(αi − αj) = d,

so if

(65.3) A =


1 · · · 1
α1 · · · αn
...

...
αn−1

1 · · · αn−1
n

 ,

is the Vandermonde matrix , we have detAAt = d2 = ∆.

Check 65.4. Let ei :=
∑n

j=1 α
i
j for i = 1, . . . , 2n− 2. Then

AAt =


n e1 e2 · · · en−1

e1 e2 e3 · · · en
...

...
en−1 en en+1 · · · e2n−2

 .

As
∑n

j=1 t
i
j lies in F [t1, . . . , tn]Sn , for every positive integer i, each

∑n
j=1 t

i
j is a polynomial

in the si(t1, . . . , tn)’s (in fact, with integer coefficients), hence each ei lies in F [s1, . . . , sn].
We can, therefore, compute formulas for ∆ for specific n.

Example 65.5. In the computation and the notation there, we let n = 2. Then

f = (t− α1)(t− α2) = t2 − (α1 + α2)t+ α1α2 = t2 − s1t+ s2.

So s1 = α1 +α2 and s2 = α1α2, hence e1 = s1 = α1 +α2 and e2 = α2
1 +α2

2 = (α1 +α2)2−
2α1α2 = s2

1 − 2s2. It follows that

∆ = det

(
2 e1

e1 e2

)
= 2e2 − e2

1 = 2(s2
1 − 2s2)− s2

1 = s2
1 − 4s2.

In general, if f is a polynomial of degree n and splits over K with the roots α1, . . . , αn
(possibly not distinct), we define the discriminant of f to be ∆ =

∏
i<j(αi − αj)2.

If one knows a root of an irreducible polynomial, then we can express the discriminant
of it in another way.
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Proposition 65.6. Let f be an irreducible and separable polynomial in F [t] of degree n,
L/F a splitting field of f , α = α1, α2, . . . , αn the (distinct) roots of f in L, K = F (α),
and Tα : L→ L the F -linear isomorphism given by x 7→ αx. Then the following are true:

(1) α1, . . . , αn are the eigenvalues of Tα. In particular, Tα is diagonalizable.
(2) αk1, . . . , α

k
n are the eigenvalues of Tαk for all positive integers k and Tαk is diago-

nalizable.
(3) If f = tn + an−1t

n−1 + · · · + a0 in F [t], then fTα = f [L:K], where fTα is the
characteristic polynomial of Tα. In particular,
(a) TrK/F (α) = −an−1.
(b) NK/F (α) = (−1)na0.

(4) Let A be the Vandermonde matrix 65.3. Then the (ij)th term of AAt satisfies

(AAt)ij = TrK/F (αi−1αj−1).

In particular, det
(

TrK/F (αi−1αj−1)
)

= ∆(α), hence nonzero.
(5) We have

∆(α) = (−1)
n(n−1)

2 NK/F

(
f ′(α)

)
.

Proof. (1) and (2) are left as new exercises and (3) is Exercise 60.26(3).

(4): Using (2), we have TrK/F (αk) = αk1 + · · ·+ αkn for all k ≥ 1, hence

(AAt)ij =
n∑
l=1

αi−1
l αj−1

l =
n∑
l=1

αi+j−2 = TrK/F (αi−1αj−1).

(5): We have detA =
∏

i>j(αi−αj) and there exist n(n−1)/2 pairs of integers (i, j) with

1 ≤ j < i ≤ n in the product ∆(α) =
∏

i>j(αi−αj)2. As (αi−αj)2 = −(αi−αj)(αj−αi),
it follows that

∆(α) = (−1)
n(n−1)

2

n∏
i=1

n∏
j=1
j 6=i

(αi − αj).

Since f =
∏n

i=1(t− αi) in L[t], we have

f ′ =
n∑
i=1

n∏
j=1
j 6=i

(t− αj), so f ′(αi) =
n∏
j=1
j 6=i

(αi − αj)

and

∆(α) = (−1)
n(n−1)

2

n∏
i=1

f ′(αi).

Let σi : K → L be the F -homomorphisms satisfying α 7→ αi for i = 1, . . . , n. Then
σi
(
f ′(α)

)
= f ′(αi), hence

∆(α) = (−1)
n(n−1)

2 NK/F

(
f ′(α)

)
as claimed. �

We use the above in the following computation:
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Example 65.7. In Proposition 65.6, set F = Q and L = K = Q(ζ), where ζ a primitive
pth root of unity in C with p an odd prime. The pth cyclotomic polynomial Φp =
tp−1 + · · ·+ 1 = mQ(ζ). So by Proposition 65.6(5), we have

∆(ζ) = (−1)
(p−1)(p−2)

2 NK/F

(
Φ′p(ζ)

)
= (−1)

p−1
2 NK/F

(
Φ′p(ζ)

)
.

We compute the right hand side of this equation. Since tp − 1 = (t − 1)Φp, taking the
derivative yields ptp−1 = Φp + (t− 1)Φ′p. Hence

Φ′p(ζ) =
pζp−1

ζ − 1
.

By Proposition 65.6(5),

NQ(ζ)/Q

(
Φ′p(ζ)

)
=

NQ(ζ)/Q(pζ−1)

NQ(ζ)/Q(ζ − 1)
=

pp−1 · 1
NQ(ζ)/Q(ζ − 1)

.

As
∏p−1

i=1 (t− ζ i) = tp−1 + · · ·+ t+ 1, we have

p−1∏
i=1

(ζ i − 1) = (−1)p−1Φp(1) = (−1)p−1p = p.

Consequently, NQ(ζ)/Q

(
Φ′p(ζ)

)
= pp−2, hence

∆(ζ) = (−1)
p−1
2 pp−2.

In particular, Q
(√

∆(ζ)
)

is the unique quadratic extension of Q in Q(ζ) by Proposition
59.14.

Note, since ∏
p−1≥i>j≥1

(ζ i − ζj)2 =
∏

p−1≥i>j≥1

(
(ζ i − 1)− (ζj − 1)

)2
,

we also have ∆(ζ) = ∆(1− ζ).

The technique above can be generalized in order to compute ∆(ζ) with ζ a primitive
pmth root of unity (and from it ζ a primitive nth root of unity). To show this, one uses:

Lemma 65.8. Let ζ be a primitive nth root of unity in C and K = Q(ζ). Then ∆(ζ) |
nϕ(n).

Proof. Let Φn = mK/F (ζ), then tn − 1 = Φng for some g ∈ Z[t]. Taking derivatives,
we have ntn−1 = Φng

′ + Φng. Evaluating at t = ζ and taking norms give

nϕ(n) = NK/Q(nζn−1) = NK/Q(Φ′n) NK/Q(g) = (−1)
n(n−1)

2 ∆(ζ) NK/Q(g)

in Z. The result follows. �

Exercises 65.9.

1. Show that equation (65.2) is valid.

2. Prove Check 65.4.

3. Let f = t3 − a1t
2 − a2t− a3 ∈ R[t]. Show

(a) The discriminant ∆ = −4a3
1a3 + a2

1a
2
2 − 18a1a2a3 + 4a3

2 − 27a2
3.
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(b) f has multiple roots if and only if ∆ = 0.
(c) f has three distinct real roots if and only if ∆ > 0.
(d) f has one real root and two non-real roots if and only if ∆ < 0.

4. Let F be a field and f be an irreducible separable cubic in F [t]. Show the Galois group
of f is either A3 or S3 and if the characteristic of FE is not two, it is A3 if and only if
the discriminant of f is a square in F .

5. Let t3 + pt + q be irreducible over a finite field F of characteristic not 2 or 3. Show
that −4p3 − 27q2 is a square in F .

6. Prove (1) and (2) of Proposition 65.6

7. Let ζ be a primitive pmth root of unity in C and K = Q(ζ). Show that ∆(ζ) =
±pm−1(mp−m−1) with the plus sign occurring if and only if either p ≡ 1 mod 4 or
a = 2a with a > 2.

66. Purely Transcendental Extensions

Let K/F be a finitely generated extension of fields in which K is purely transcendental
over F , i.e., K ∼= F (t1, . . . , tn). If K/E/F is an intermediate field, the question arises
whether E/F is a purely transcendental extension. In general, this has been shown to be
false, but if n = 1 this is true and is the subject of this section.

Lemma 66.1. Let F be a field and x an element transcendental over F . Suppose that u
is an element in F (x) not lying in F , say u = f/g with f and g nonzero non-constant
relatively prime polynomials in F [t], and r = max{deg f, deg g}. Then x is algebraic over
F (u) with mF (u)(X) = f − ug in F (u)[t].

Proof. Let h = f − ug in F [u][t] ⊂ F (u)[t] with f and g as in the lemma. Suppose
that f =

∑
ait

i and g =
∑
bit

i. If bj is nonzero then so is aj − ubj, lest u lies in F . Thus
deg h = max{deg f, deg g} and x is algebraic over F (u). It follows that u is transcendental
over F as x is. To finish, we must show that h is irreducible in F (u)[t]. Suppose this
is false, then h is also reducible in the UFD F [u, t] by a consequence of Gauss’ Lemma
(Lemma 35.7). As h is primitive, we have h = h1h2 in F [u, t] with h1 and h2 lying in
F [u, t]\F . As u occurs linearly in h, we may assume that it occurs in h1, say h1 = uh3+h4

with h3, h4 in F [t] and h2 lies in F [t]. So we have

g = f − ug = uh2h3 − h2h4.

As u is transcendental over F (t), w must have f = −h2h4 and g = −h2h3. Therefore,
h2 | f and h2 | g in F [t], a contradiction. �

Corollary 66.2. Let F be a field, x a transcendental element over F , and u an element
of F (x). Then F (u) = F (x) if and only if there exist elements a, b, c, d in F with ad− bc
nonzero and u =

ax+ b

cx+ d
.

[Note the condition on a, b, c, d insures that u does not lie in F .]
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Proposition 66.3. Let F be a field and x a transcendental element over F . Then

G(F (x)/F ) =

{f : F (x)→ F (x) | x 7→ ax+ b

cx+ d
an F -homomorphism with

a, b, c, d in F satisfying ad− bc 6= 0}
∼= GL2(F )/Z

(
GL2(F )

)
.

The group GL2(F )/Z
(

GL2(F )
)

is called the (second) projective linear group and denoted

by PGL2(F ). If F = C, then C = C2, so PGL2(C) = PSL2(C) := SL2(F )/Z
(

SL2(F )
)
. (If

A ∈ GL2(C) multiply it by

(
d 0
0 d

)
where d = (

√
detA)−1.)

Theorem 66.4. (Lüroth’s Theorem) Let F be a field and x a transcendental element
over F . If F (x)/E/F is an intermediate field, then there exists an element y in F (x)
such that E = F (y).

Proof. We may assume that F < E ⊂ F (x). Let z be an element in E not in F .
Then F (x)/F (z) is algebraic by the lemma, hence F (x)/E is algebraic. Let f = amE(x)
with a ∈ F [x] and f ∈ F [x][t] primitive. Say

f = an(x)tn + · · ·+ a0(x) with ai ∈ F [x] for all i

where n is the degree degt of f in t, so an(x) is nonzero and n = degmE(x) = [F (x) : E].
We also have all ai(x)/an(x) lie in E but as x is transcendental over F , there exists an
i such that u = ai(x)/an(x) does not lie in F . We can also write u = g(x)/h(x) with
g and h nonzero relatively prime polynomials in F [t]. If r = max{deg g, deg h} then
r = [F (x) : F (u)] by the lemma, so

n = [F (x) : E] ≤ [F (x) : F (u)] = r.

Let d = g(x)h(t)−h(x)g(t) in F [x, t]. As g and h are relatively prime in the UFD F [x, t],
the polynomial d is nonzero. In addition, the polynomial

uh(t)− g(t) = h(x)−1d in E[t] has x as a root,

so mE(x) | h(x)−1d in E[t], hence f = a(x)mE(x) | h(x)−1d in F (x)[t]. Since f is primitive
in F [x, t] and d lies in F [x, t], we must have f | d in F [x, t], as a consequence of Gauss’
Lemma (e.g., by Exercise 3ii(35.12)). Write d = αf with α in F [x, t] and let degx denote
the degree in x. We have degx d ≤ r and degx f ≥ max{deg aj(x) | aj(x) 6= 0}. By
choice, u = g(x)/h(x) = ai(x)/an(x), so degx f ≥ max{deg g, deg h} = r. Consequently,
d = αf in F [x, t] and f | d in F [x, t] implies that degx d = r = degx f and degx α = 0. In
particular, α lies in F [t], so is primitive when viewed as a polynomial over F [x], i.e., an
element in F [x][t]. By Gauss’ Lemma, d = fα is also primitive in F [x][t]. Since d is skew
symmetric in x and t, it must also be primitive in F [t][x]. As α lies in F [t] and α | d in
F [x, t], we must have α lies in F [t]× = F×, hence

n = degt f = degt d = degx d = degx f = r,

so E = F (u). �
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It is known if F is an algebraically closed field of characteristic zero, e.g., C, that any
subfield of F [t1, t2] is purely transcendental. [A similar result holds if the characteristic is
positive with a mild additional assumption.] However, the result is false for F [t1, t2, t3].

Suppose that F is a field and x is transcendental over F . Let H ⊂ G(F (x)/F ) ∼=
PGL2(F ) be a finite subgroup. Then F (x)/F (x)H is a finite Galois extension. By Lüroth’s
Theorem, there exists an element u in F (x) such that F (u) = F (x)H . Suppose that F = C,
Then using a bit of complex analysis (stereographic projections, etc.), one can show that
if H ⊂ PGL2(C) is a finite subgroup, then H is isomorphic to a finite rotation group in R3.
In Section 20 we classified such rotation groups in R3. Recall that they are the following:

(1) cyclic: ∼= µn, all n (planar).
(2) dihedral: ∼= Dn, all n (planar).
(3) tetrahedral: ∼= A4 (the rotations of a regular tetrahedron).
(4) octahedral: ∼= S4 (the rotations of a cube or a regular octahedron).
(5) icosohedral: ∼= A5 (the rotations of a regular dodecahedron or a regular icosahe-

dron).

Exercise 66.5. Prove that the rotations of a regular tetrahedron is isomorphic to A4, the
rotations of a cube or octahedron is isomorphic to S4, and the rotations of a dodecahedron
or icosahedron is isomorphic to A5 using Exercise 24.24(9).

67. Finite Fields

A major property of a finite field F is that the multiplicative group of F is cyclic. If
you have done the appropriate exercises, you see that we have all of the following:

Theorem 67.1. Let F be a finite field with |F | = q. Then all the following are true:

(1) F× is a cyclic group.
(2) The characteristic of F is p for some prime p and q = pn.
(3) If K/F is a finite extension of fields of degree m, then |K| = qm.
(4) If p is a prime and m a positive integer, then there exists a field with pm elements.
(5) If |F | = pn, with p a prime, then F is a splitting field of tp

n − t over Z/pZ.
(6) Any two finite fields with the same number of elements are isomorphic. In par-

ticular, in a fixed algebraic closure of Z/pZ, with p a prime, there exists a unique
field of order pm for each positive integer m.

(7) If |F | = q = pn, then ϕF : F → F by x 7→ xq is an F -automorphism, the
Frobenius automorphism, and G(F/Z/pZ) = 〈ϕF 〉.

(8) If |F | = pn and K a field with |K| = pm in an algebraic closure of F , then K/F
if and only if n | m.

(9) If K/F is a finite extension of degree m and ϕK : K → K the Frobenius auto-
morphism x 7→ xq

m
, then K/F is a cyclic extension with G(K/F ) = 〈ϕqK〉.

(10) Any finite field is perfect.
(11) There exists an x in F such that F = (Z/pZ)(x).

Given a finite field F with q = pn elements, one would like to find irreducible polyno-
mials in F [t]. If f is an irreducible polynomial of degree d in F [t], then by the theorem,
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f | tpn − t if and only if d | n. In particular, we must have

tp
n − t =

∏
d|n

fi,d

where the fi,d in F [t] run over all the monic irreducible polynomials of degree d. So
we have pn =

∑
d|n dNp,d, where Np,d is the number of monic irreducible polynomials of

degree d in F [t], by comparing degrees. By the general form of Möbius Inversion (Exercise
59.22(6)), we conclude that

Proposition 67.2. The number Np,n of monic irreducible polynomials of degree n in
(Z/pZ)[t], with p a prime, satisfies

Np,n =
1

n

∑
d|n

µ(
n

d
)pd.

Using the general form of the Möbius Inversion given by Exercise 59.22(6), we can
determine irreducible polynomials, just as in the case of cyclotomic extensions of Q. Let
ζn be a primitive root of unity over Z/pZ, i.e., a generator for F× if F is a field with pn

elements satisfying p 6 | n. Let Φn denote the product of t − ζ where ζ is a primitive nth
root of unity in an algebraic closure of Z/pZ, so deg Φn = ϕ(n). Unlike the case of Q, the
polynomial Φn is not irreducible. We have tn − 1 =

∏
d|n Φd. Arguing as the case over Q,

we conclude that

Φn =
∏
d|n

(td − 1)µ(n
d

) =
∏
d|n

(t
n
d − 1)µ(d).

in (Z/pZ)[t] by Möbius Inversion.

Example 67.3. Let p be a prime not dividing 12. Then

Φ12 =
∏
d|12

(t
12
d − 1)µ(d)

= (t12 − 1)µ(1)(t6 − 1)µ(2)(t4 − 1)µ(3)(t3 − 1)µ(4)

(t2 − 1)µ(6)(t− 1)µ(12)

=
(t12 − 1)(t2 − 1)

(t6 − 1)(t4 − 1)
= t4 − t2 + 1.

Lemma 67.4. Let F be a finite field with q elements and i a positive integer. Set

S(t̂i) :=
∑
x∈F

xi in F ,

then

S(t̂i) =

{
−1 if q − 1 | i
0 otherwise.

For convenience, as q = 0 in F , we shall set S(t̂0) = 0 also, i.e., let 00 = 1.
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Proof. Suppose that q − 1 | i. Then xi = 1 for all x in F× and S(t̂i) =
∑

F× x
i =

|F q−1|1F = −1 in F . So we may assume that q− 16 | i. Then there exists an element y in
F× such that yi 6= 1 as F× is cyclic of order q − 1. Since yF× = F×, we have

S(t̂i) =
∑
F×

xi =
∑
F×

(yx)i = yi
∑
F×

xi,

so (1− yi)
∑

F× x
i = 0. It follows that S(t̂i) = 0 �

If f =
∑
ai1,...,int

i1
1 · · · tinn is a polynomial in R[t1, . . . , tn] (R a commutative ring), then

define the total degree deg of f is defined to be max{i1 + · · ·+ in | ai1,...,in nonzero}. We
are interested in solutions of f = 0 in Rn for such an f when R is a finite field.

Theorem 67.5. (Chevalley-Warning Theorem) Let F be a finite field of characteristic p
and f a non-constant polynomial in F [t1, . . . , tn] having total degree deg f < n. Set

V = {x = (x1, . . . , xn) ∈ F n | f(x) = 0 in F}.
Then |V | ≡ 0 mod p.

Proof. Suppose that F has q elements. Set P = 1 − f q−1 in F [t1, . . . , tn]. As
|F×| = q − 1, if x lies in V , then f(x) = 0 in F , so P (x) = 1 in F ; and if x does not lie
in V , then P (x) = 0 in F , i.e.,

P (x) =

{
0 if x /∈ V
1 if x ∈ V .

(So P is the characteristic function for V .) For any g in F [t1, . . . , tn], let

S(ĝ) :=
∑
Fn

g(x) in F,

so
S(P̂ ) =

∑
Fn

P (x) =
∑
V

1 = |V |1F in F.

In particular, if we show S(P̂ ) = 0 in F , then |V | ≡ 0 mod p as needed.
We know that for all (i1, . . . , in),∑

Fn

xi11 · · ·xinn =
(∑

F

xi11
)
· · ·
(∑

F

xinn
)

and degP < n(q − 1). If P =
∑

i1,...,in
ai1,...,int

i1
1 · · · tinn , we have

∑n
j=1 ij < n(q − 1) if

ai1,...,in 6= 0. In particular, if ai1,...,in 6= 0 is a coefficient of P , then, there exists a j,
1 ≤ j ≤ n, with ij < q − 1. Therefore, we have

S(P̂ ) =
∑
Fn

P (x) =
∑
Fn

∑
i1,...,in

ai1,...,inx
i1
1 · · ·xinn

=
∑
i1,...,in

ai1,...,in
∑
Fn

xi11 · · ·xinn

=
∑
i1,...,in

ai1,...,in
(∑

F

xi11
)
· · ·
(∑

F

xinn
)

= 0,
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as
∑
F

yj = S(t̂j) = 0 for j < q − 1 by the lemma. �

Of course, one is interested in solutions of such a non-constant polynomial f in
F [t1, . . . , tn] if every variable ti occurs in f nontrivially, since the result is always true
otherwise. A polynomial f in F [t1, . . . , tn] is called homogeneous of degree d if every
nonzero monomial in f has the same total degree d.

Corollary 67.6. Let F be a finite field and f a non-constant polynomial in F [t1, . . . , tn]
having total degree deg f < n. Suppose that f(0) = 0. Then there exists a point x in
F n besides the origin such that f(x) = 0. In particular, if f is homogeneous of degree d
satisfying n > d, then f has a nontrivial solution in F n.

A homogeneous polynomial of degree two is called a quadratic form. The corollary
says that any quadratic form in at least three variables over a finite field has a nontrivial
solution. A much deeper theorem (due to Weil) says that if f is any homogeneous poly-
nomial in Z[t1, . . . , tn] that remains irreducible in C[t1, . . . , tn], then f ≡ 0 mod p has a
nontrivial zero for all primes p >> 0.

A theorem of Jacobson says that if R is a ring (even a rng) in which for each element
x there exists an integer n = n(x) > 1 satisfying xn = x, then R is commutative. For
a proof of this more general result, see Section 68. The following result is the starting
point.

Theorem 67.7. (Wedderburn) Every finite division ring is a field.

Proof. (Witt) Let D be a division ring. Define the center Z(D) of D to be Z(D) :=
{x ∈ D | xy = yx for all y in D}. So Z(D×) is the center of the group D×. Clearly,
Z(D) is a field. Now suppose that D is finite. Let F = Z(D). Then F is also finite,
so charF = p for some prime p and |F | = q = pn, for some n. We know that D is an
F -vector space, so |D| = qm where m = dimF D. Assume that D is not commutative, i.e.,
m > 1. If x ∈ D does not lie in F , then the conjugacy class of x in D× is {y ∈ D× | y =
axa−1 for some a in D×} and the centralizer of x in D× is ZD×(x) = {y ∈ D× | xy = yx}.
Set ZD(x) = ZD×(x) ∪ {0}. Then F ⊂ ZD(x) ⊂ D. Clearly, ZD(x) is also a division
ring and a finite dimensional vector space over F . Set δ(x) := dimF ZD(x). We have
|ZD(x)| = qδ(x). The notation and basic theorems about vector spaces over fields hold over
division rings (i.e., as (left) modules over division rings) with the same proofs. [The one
exception is the Representation Theorem of linear operators where matrix multiplication
of matrices A and B must be modified so that the ijthe entry of AB is

∑
BkjAik –

unless linear operators and scalars are written on opposite sides.] In particular, D is a
(left) ZD(x)-vector space. It is easy to see that qm = |D| = |ZD(x)|r = qδ(x)r, some r.
In particular, m = δ(x)r, so δ(x) | m (cf. with the analogue of a tower of fields). By
assumption δ(x) < m if x does not lie in F . Let C∗ be a system of representatives of the
conjugacy classes of D× not in the center of D× = F×. By the Class Equation (21.3), we
have

qm − 1 = |F×|+
∑
C∗

[D× : ZD×(x)] = (q − 1) +
∑

C(x)∈C∗

qm − 1

qδ(x) − 1
.
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Let Φm be the mth cyclotomic polynomial
∏

ζ∈µm primitive

ζ in Z[t]. Then we know that

Φm |
tm − 1

tδ − l
in Z[t] if δ | m and δ 6= m, as tm − 1 =

∏
d|m Φd. Therefore,

Φm(q) | qm − 1 and Φm(q) |
∑
C∗

qm − 1

qδ(x) − 1

in Z. Consequently, Φm(q) | q − 1 in Z.

Claim. If ζ is a primitive mth roof of unity, then |q − ζ| > |q − 1|:
This is clear, if you draw a picture or if ζ = e2π

√
−1r/m with r and m relatively prime,

then

|q − ζ|2 = (q − e2π
√
−1r/m)(q − e−2π

√
−1r/m)

= q2 + 1− 2q cos
2πr

m
> q2 + 1− 2q = (q − 1)2.

As −1 < cos 2πr
m
< 1, the claim is established. The claim implies that

|Φm(q)| =
∏

ζ∈µn primitive

|q − ζ| > |q − 1|.

Hence Φm(q) | q − 1 in Z is impossible. This contradiction shows that D = F . �

Exercises 67.8.

1. Prove Theorem 67.1.

2. Show that the nth cyclotomic polynomial Φn ∈ Z/pZ[t] with p a prime not dividing n
is a product of ϕ(n)/d of irreducible polynomials of the same degree d.

3. Show that over over finite field F , every element of F is a sum of two squares.
4. Let K/F be a finite extension of finite fields. Prove that the norm map NK/F : K → F

is surjective.

5. Let F be a finite field and f a homogeneous form of degree 2 (i.e., a quadratic form) in
two variables with both variables occurring nontrivially. Then every nonzero element
x in F is a value of f , i.e., there exists a y in F satisfying f(y) = x.

68. Addendum: Jacobson’s Theorem

In this section, we generalize Wedderburn’s Theorem that finite division rings are
fields.

Let R be any ring. Then its center, Z(R) := {x ∈ R | xy = yx for all y in R}, is a
commutative subring. If D is a division ring, then Z(D) is a field. In addition, if x ∈ D
and F any subfield of Z(D), then F [x] is a commutative subring of D and its quotient
field F (x) is a field and also lies in D. Moreover, if x is algebraic over F , i.e., F [x] is
a finite F -vector space, then F (x) = F [x] and F (x)/F is finite. We have looked at two
cases for D, the case that D is finite and the case that D is the Hamiltonian quaternions
(where it is a finite dimensional R-vector space). In the first case, D was commutative,
but in the second case this might not be true. When D is a finite division ring, we have
x|D| = 1 for all x in D. Jacobson’s Theorem says that a ring R that satisfies xn = x for
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each x in R for some integer n = n(x) > 1 is commutative. We prove this in this section.
We also show that any such ring is a subring of a product of fields, each algebraic over a
finite field.

If D is a division ring, then two nonzero elements x and y in D commute if and only
if yxy−1 = x. We want to exploit this in the special case of Jacobson’s Theorem when R
is a division ring (and reduce to the finite division ring case that we have answered).

Proposition 68.1. Let D be a division ring that satisfies xn = x for each x in D and
some integer n > 1 depending on x. Then D is a field.

Proof. We know that the center of D contains a prime field, so n1D lies in the center
for all integers n. Let x be a nonzero element of D. Then there exist positive integers n
and n′ such that xn = x and (2x)n

′
= 2x. It follows with N = (n − 1)(n′ − 1) + 1 that

(2N − 2)x = 0 in D, so 2N − 2 = 0. We conclude that the center of D has characteristic
p for some prime p. Let F be the prime field in the center of D, so F ∼= Z/pZ. Suppose
that D is not commutative. Let x in D not lie in the center. As x is algebraic over F ,
since it is a root of tn− t in F [t] for some positive integer n, the field extension F (x)/F is
finite by the discussion prior to the proposition. Therefore, F (x) is a finite field. Indeed
the same argument shows that F (y) is a finite field for all y in D. Let |F (x)| = pm. We
also know that any element z in F (x) satisfies zp

m
= z.

Claim: There exists an element y in D and an integer k such that xk 6= x and yxy−1 = xk:

Let Tx : D → D be the F -linear transformation defined by z 7→ zx − xz. As x is not in
the center of D, this map is not the trivial map, i.e., Tx(z) 6= 0 for some z. Since

T 2
x (z) = Tx(zx− xz) = zx2 − 2xzx+ x2z,

inductively, we see that

T lx(z) =
l∑

i=0

(−1)i
(
l

i

)
xizxl−i for all positive integers l and all z in D.

Since charF = p, the Children’s Binomial Theorem implies that T px (z) = zxp−xpz, hence

T p
m

x (z) = zxp
m − xpmx = zx− xz = Tx(z) for all z in D,

i.e., T p
m

x = Tx. For each w in D, left multiplication by w, λw : D → D, i.e., z 7→ wz is
also an F -linear transformation. We have for each w in F (x) (so wx = xw)

Txλw(z)− Tx(wz) = wzx− x(wz) = w(zx− xz) = λwTx(z),

i.e., Txλw = λwTx for all w in F (x) and z in D. As λwλw′ = λw′λw if w,w′ lie in F (x), we
have

(*) 0 = T p
m

x − Tx =
∏
F (x)

(Tx − λw).

By assumption, there exists an element y in D satisfying xy− yx 6= 0. As D is a division
ring, D× satisfies the cancellation law and y is invertible in D. It follows that there exists
a nonzero element w in F (x) such that 0 = (Tx−λw)(y) = yx−xy−wy, i.e., yxy−1 = x+w
in F (x) by (*). Let s = pm − 1, the order of F (x)× = 〈x〉. As 1, x, . . . , xs−1 are all the
roots of ts−1 in F (x)[t], we must have yxy−1 = xk for some k > 1. This proves the claim.
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Let y in D be as in the claim. We know by the argument above that F (y) is also a finite
field with say pn elements. So we have yp

n
= y and xy 6= yx. Set

W := {z ∈ D | z =

pm∑
i=0

pn∑
j=0

aijx
iyj with aij in F}.

We have W a finite set closed under addition. By the claim, W is closed under multipli-
cation, so W is a finite subring of D. If z lies in W , F (z) = F [z] ⊂ W , so W is a finite
division ring. Consequently, W is a field by Wedderburn’s Theorem, contradicting x and
y do not commute. �

Let F be a field and D a division ring containing F . If x ∈ D, then F (x) is a field in
D. We say that D is algebraic over F if every element in D is algebraic over F .

Corollary 68.2. Let D be a division algebra that is algebraic over a finite field. Then D
is commutative. In particular, D/F is an algebraic extension of fields.

Proof. If F is the finite field in D and of characteristic p, then F (x) is a finite field
for each x ∈ D, hence xp

n
= x for some n. It follows that D is commutative by the

proposition. �

We next generalize the proposition.

Theorem 68.3. (Jacobson) Let R be a rng (i.e., a ring possibly without a one). Suppose
for each element x in R, there exists an integer n > 1 depending on x such that xn = x.
Then R is commutative.

Proof. We may assume that R is not the trivial rng. We want to reduce to the
proposition. Let x be an element in R and n > 1 an integer such that xn = x. Since
for every element z in R, zm = z for some integer m > 1, R cannot have any nonzero
nilpotent elements, i.e., we cannot have zm = 0 unless z = 0 – why?

Step 1. The element xn−1 is a central idempotent in R, i.e., xn−1 lies in the center of R
and (xn−1)2 = xn−1:

Set e = xn−1. We have e2 = x2n−2 = xnxn−2 = xxn−2 = xn−1 = e, so e is an idempotent
in R. If y lies in R, then (ye − eye)2 = 0 = (ey − eye)2. As R has no nonzero nilpotent
elements, we have ye = eye = ye, so e is central.

Step 2. Every right ideal A in R is a (two-sided) ideal:

Let r be an element in R and x an element in A. Then, as A is a right ideal, with xn−1

central and lying in A, we have rx = rxn−1x =
(
(xn−1)r

)
x lies in A.

Step 3. Suppose that R is a ring (i.e., has a one). Define the right radical R of R to be
the intersection of all maximal right ideals in R. [It can be shown that the left radical of
R and the right radical of R are the same, but we do not need this.] Then for all y in R,
the element xy − yx lies in R:

Since 1 lies in R, the Zorn’s Lemma argument showing that nonzero commutative rings
have maximal ideals, shows that maximal right ideals exist in R. Let m be any such
maximal right ideal. By Step 2, m is an ideal in R. By the Correspondence Principle,
R/m is a ring with no nontrivial right ideals. It follows that every nonzero element in
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R/m has a right inverse and therefore an inverse, i.e., R/m is a division ring – why? If
z is an element in R with zm = z and m > 1, we have (z + m)m = zm + m = z + m, so
R/m is a division ring satisfying the hypothesis of the proposition, hence commutative.
Therefore, (z + m)(y + m) = (y + m)(z + m) for all y, z in R, i.e., zy − yz lies in m for
any right maximal ideal in R as needed.

Step 4. If R is a ring, then R is commutative:

It suffices to show the (right) radical R in R is zero. Suppose not and x is a nonzero
element in R. Let xn = x with n > 1 and e = xn−1. By Step 1, e is a central idempotent
and lies in R as x does. Suppose that 1 − e is not a unit. Then 1 − e lies in a maximal
right ideal m in R. This implies that 1 lies in m as e ∈ R ⊂ m, which is impossible.
Therefore, the right ideal (1 − e)R = R, so (1 − e)r = e for some r in R. We conclude
that 0 = e(1− e)r = e2 = e = xn−1, contradicting x cannot be nilpotent.

Step 5. Finish:

By Step 4, we may assume that R does not have a one. Let e be a central idempotent in
R as in Step 1 and set T = eR = Re. Check that T is a ring with e = 1 and for each
y in T , there exists an integer n > 1 such that yn = y. By Step 4, we know that T is
a commutative ring. Let x and y be elements of R. Then using the commutativity of
T , we have xye = (xe)(ye) = (ye)(xe) = yxe. It follows that (xy − yx)e = 0. Since e
was a central idempotent in R (xy − yx)e = 0 for every central idempotent e in R. In
particular, if m > 1 an integer such that (xy − yx)m = xy − yx in R, then (xy − yx)m−1

is a central idempotent by Step 1, so xy − yx = (xy − yx)(xy − yx)m−1 = 0. This proves
that R is commutative. �

Corollary 68.4. Let R be a ring satisfying for each element x in R, there exists an
integer n > 1 depending on x such that xn = x. Then R is isomorphic to a subring that
is a product of fields each algebraic over a finite field of positive characteristic.

Proof. We know that R is commutative. Let R→�Min(R)R/p be the natural map

where Min(R) is the set of minimal prime ideals in R. Then each R/p is a commutative
domain. Since xn = x for some x, either x = 0 or xn−1 = 1. It follows that R/p is a field
and R has no nonzero nilpotent elements. Therefore, nil(R) = 0 and the map is a ring
monomorphism. Finally since each element in R/p, p ∈ Min(R), is a root of a polynomial
of the form tm− 1 over its prime field, we must have R/p must be of characteristic p and
be an algebraic extension over its prime field. The result follows �

Exercises 68.5.

1. Show that if R is a rng in which every element x satisfies xn = x for some integer n
(depending on x), that R has no nontrivial nilpotent elements.

2. If R is a nontrivial ring in which every nonzero element has an inverse, show that R is
a division ring.

69. Addendum: Hilbert Irreducibility Theorem

Throughout this section, x, y, t, t1, . . . , tn will be independent variables. Hilbert’s Ir-
reducibility Theorem says if f(t1, . . . , tn, t) is an irreducible polynomial in Q[t1, . . . , tn, t],
then f(α1, . . . , αn, t) is irreducible in Q[t] for infinitely many rational numbers α1, . . . , αn.
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Hilbert used this theorem to prove that there exists a finite Galois extension of Q with
Galois group Sn and An for every n. We shall apply the theorem to show Sn occurs as a
Galois group over Q for all n. This will show that there exist irreducible polynomials of
any degree over Q having no root solvable by radicals.

We begin by looking at a polynomial f(x, t) in Q[x, t]. Write it as

f(x, t) = an(x)tn + · · ·+ a0(x) with ai(x) ∈ Q[x] and an(x) nonzero,

so the degree of f(x, t) in t, degt f , is n. We can view f(x, t) in C[x, t]. Since Q is
infinite, we can and do identify polynomial functions and polynomials over C. We know
by Proposition 42.8 if, in addition, that f is irreducible in C[x, y] that all but finitely
many complex numbers x0 are regular values, i.e., an(x0) is not zero and f(x0, t) has n
distinct roots in C. We say that a real or complex valued function ρ(x) is analytic at x0

if ρ converges to its Taylor series in a neighborhood of x0, i.e., has a positive radius of
convergence R centered at x0. If x0 is a regular value of f(x, t), we shall call an analytic
function ρ = ρ(x) a root function of f(x, t) in a neighborhood of x0 if f

(
x, ρ(x)

)
= 0 in a

neighborhood of x0, i.e., there exists a real number R > 0 such that ρ(x) are power series
in x − x0 for all x satisfying |x−xO| < R. In particular, ρ(x0) is a root of f(x0, t). We
begin by constructing root functions in a neighborhood of regular value x0 of any given
polynomial in C[x, t].

Proposition 69.1. Let

f(x, t) = an(x)tn + · · ·+ a0(x) with ai(x) ∈ Q[x]

be a polynomial in Q[x, t] of degree n in t (so (an(x) is nonzero) and x0 a regular value of
f(x, t). Then there exist precisely n distinct root functions ρ1, . . . , ρn of f(x, t) at x0 and
they satisfy

(*) f(x, t) = an(x)
n∏
i=1

(
t− ρi(x)

)
in a neighborhood of x0

with the ρi(x) power series expansions in x−x0 with coefficients in Q̃, the algebraic closure
of Q in C, in this neighborhood of x0.

Proof. Let α1, . . . , αn be the (distinct) roots of f(x0, t) in C, so lie in a finite extension

of Q, e.g., any field containing K = Q(α1, . . . , αn) in Q̃. For each i = 1, . . . , n, we shall
construct a unique root function ρi satisfying ρi(x0) = αi with coefficients K in its power
series expansion about x0. We make the following reductions:

(i) As an(x0) 6= 0, we may assume that an(x0) = 1.
(ii) We may assume that x0 = 0 by replacing f(x, t) by the polynomial g(x, t) = f(x+

x0, t).
(iii) We may assume that αi = 0 by replacing f(x, t) by the polynomial g(x, t) = f(x, t−

αi).

So we can assume that x0 = 0 is a regular value of f(x, t) having root αi = 0 and we must
construct a unique root function in a neighborhood of x = 0 with the given conditions.



404 XII. GALOIS THEORY

Therefore, we must find a unique power series

(69.2) ρ(x) =
∞∑
i=1

bix
i with bi ∈ K converging for all |x| < R

for some positive real number R that satisfies f
(
x, ρ(x)

)
= 0 in a neighborhood of x = 0.

As f(0, 0) = 0, we can write the polynomial

f(x, t) = a10x+ a01t+
∑
i+j≥2

aijx
itj in Q[x, t]

with almost all aij zero and the aij ∈ K. Since x0 = 0 is a regular value of f(x, t), we

also have
∂f

∂t
(0, 0) = a01 is nonzero, so we can further assume that a01(0, 0) = −1, i.e.,

(69.3) f(x, t) = a10x− t+
∑
i+j≥2

aijx
itj in Q[x, t].

Assume that ρ(x) has a positive radius of convergence about 0. We show that the bi
in (69.2) are uniquely determined by the equation

(69.4) f(x,
∞∑
i=1

bix
i) = 0

in a neighborhood of x = 0, i.e., ρ(x) is the unique root function in a neighborhood of 0
and with the bi lying in K.

The coefficient of xi in the expansion of the left hand side of equation (69.4) must be
zero for each i. In particular, evaluating the x term shows that 0 = a10 − b1, so we must
have b1 = a10. Inductively, we may suppose that we have constructed unique b1, . . . , bk−1

in K. It is convenient to view y as a new variable to replace t. Let

h(x, y) = a10x− y +
∑
i+j≥2

aijx
iyj and y0 =

k−1∑
i=1

bix
i.

Then the (formal) Taylor expansion for h(x, y) at y0 exists by Exercise 69.19(2) and is

h(x, y) = f(x, y0) +
∂f

∂y
(x, y0)(y − y0)

+ terms in higher powers of y − y0.

By (69.3), we must have
∂f

∂y
(x, y) = −1 + g(x, y)

with every term in g(x, y) having total degree at least one. Evaluating y at ρ(x) yields
ρ(x)− y0 =

∑∞
i=k bix

i, so

0 = f(x,
k−1∑
i=1

bix
i) +

(
− 1 + g(x,

k−1∑
i=1

bix
i)
)
(
∞∑
i=k

bix
i)

+ terms with power of x at least 2k.
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As the coefficient of xk in this equation is zero, the coefficient −bk of xk of f(x, y0) in this
equation is uniquely determined by f and b1, . . . , bk−1 as desired.

We can say more. If ρ(x) is an analytic function, i.e., has positive radius of convergence,
then in some neighborhood of x0 = 0, we would have b1 = a10 and f(x,

∑∞
i=1 bix

i) = 0, so
∞∑
i=2

bix
i =

∑
i+j≥2

aijx
i(
∞∑
l=1

blx
l)j.

Expanding this and looking at the coefficient of xk for k > 1 leads to an equation bk =∑
i+lj=k cijlaijbl for some nonnegative integers cijl. In particular, l < k. For each of the

finite nonzero aij occurring in f(x, t), let tij be a new variable. By induction, it follows
that there exist nonzero polynomials pk ∈ Z[tij]i,j having positive integer coefficients (in
the nonzero terms) and satisfying bk = pk(aij).

To finish we must still show that ρ(x) =
∑
bix

i has a positive radius of convergence in
a neighborhood of x0 = 0. Choose a positive integer A satisfying A > |aij| for all of the
finitely many nonzero aij occurring in f(x, t) and set

fA(x, t) = Ax− t+ A(
∑
i+j≥2

xitj).

By the argument above, we know if fA has a positive radius of convergence, then there

exist unique b̃k ∈ C and p̃k ∈ Z[tij]i,j satisfying fA(x,
∑∞

i=1 bix
i) = 0 and b̃k = p̃k(A, . . . , A)

are positive integers for all k. Since b̃k ≥ pk(|aij|) ≥ |bk| for all k, it suffices to show that

y =
∑∞

i=1 b̃ix
i converges for |x| < R for some positive real number R. Summing the

geometric series, shows

0 = Ax− y + A
∑
i+j≥2

xiyj

= Ax− y + Ax0

∞∑
j=2

yj + Ax1

∞∑
j=1

yj + A

∞∑
i=2

xi(
∞∑
j=0

yj)

= Ax− y + A
y2

1− y
+ Ax

y

1− y
+ A

x2

1− x
1

1− y
.

Multiplying by 1− y yields

0 = Ax− Ayx+−y + y2 + Ay2 + Axy + A(
x2

1− x
)

= (A+ 1)y2 − y + A
x

1− x
.

One of the two solutions for y(0) = 0, i.e., when x = 0 is

y =
1−

√
1− 4(A+ 1)Ax/(1− x)

2(A+ 1)
.

Since
√

1−
(
bx/(1− x)

)
= (
√

1− cx)/(
√

1− x) has a positive radius of convergence

about x = 0 for b = 4A(A + 1) and c = b + 1, it follows that fA is analytic in some
neighborhood of 0, hence ρ(x) is a root function in a neighborhood of 0.
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We therefore conclude that for each i = 1, . . . , n, there exist a unique root function
ρi(x) in a neighborhood of x0 for the root αi of f(x0, y) with coefficients in its power series
expansion in K. Since the the constant term of ρi(x) is αi for i = 1, . . . , n, the ρi are all
distinct in some common neighborhood of x0 and satisfy f(x, t) =

∏n
i=1

(
t−ρi(x)

)
in this

neighborhood. �

We shall need the following well-known lemma whose proof we leave as an exercise.

Lemma 69.5. (Lagrange Interpolation) Suppose that F is an infinite field, a0, . . . , an
distinct elements in F and c0, . . . , cn elements in F . Then there exists a unique polynomial
f in F [t] of degree at most n satisfying f(ai) = ci for each i = 0, . . . , n.

Let α0 < · · · < αm be real numbers. Recall that the (m+ 1)st Vandermonde determi-
nant is given by

Vm = Vm(α0, α1, . . . , αm) = det

1 α0 · · · αm0
...

...
. . .

...
1 αm · · · αmm


=

∏
0≤i<j≤m

(αj − αi) 6= 0.

If z is a real-valued function of x, let

Wm = Wm(α0, α1, . . . , αm, z) = det

1 α0 · · · αm−1
0 z(α0)

...
...

. . .
...

...
1 αm · · · αm−1

m z(αm)

 .

With this notation, we have:

Lemma 69.6. Let α0 < · · · < αm be real numbers and z(x) an m times differential
real-valued function on the closed interval [α0, αm]. Then there exist a real number α
satisfying

z(m)(α)

m!
=
Wm

Vm
satisfying α0 < α < αm with Wm and Vm as above. In particular, if z(m)(x) is nonzero on
[α0, αm], then Wm is also nonzero.

Proof. Let y(t) = a0 + a1t+ · · ·+ amt
m in R[t] be the unique polynomial satisfying

y(αi) = z(αi) for i = 0, . . . ,m given by Lagrange Interpolation. By Cramer’s Rule, the
system of equations

a0 + a1αi + · · ·+ amα
m
i = z(αi) for i = 0, . . . ,m

satisfies am = Wm/Vm.

By Rolle’s Theorem there exists m distinct real numbers αi with each αi lying in the
open interval (αi, αi+1) and satisfying y(1)(αi) = z(1)(αi) for i = 0, . . . ,m − 1. Similarly,
we see that there exist m− 1 distinct points on which y(2) and z(2) agree. Inductively, we
find that there exists a point α satisfying α0 < α < αm on which y and z agree. Since
y(m)(x) = m! am, we have z(m)(α) = y(m)(α) = m! am as needed. �



69. ADDENDUM: HILBERT IRREDUCIBILITY THEOREM 407

We now prove the Hilbert Irreducibility Theorem in the special case of two variables.
We shall use the following observation.

Observation 69.7. As char(C) = 0, the domain of polynomials in C[t], can be identified
with the domain of polynomial functions on an interval I (of nonzero length) of C, hence
as a subring of the domain R of convergent functions on I. It follows that we can identify
the quotient field of C[t] with a subfield of the quotient field of R, the field of finite
Laurent series on I. [Note we can also work with polynomials in 1/t with the appropriate
modifications.] We shall utilize this as an identification below.

Proposition 69.8. Let f(x, t) be an irreducible polynomial in Q[x, t]. Then there exist
infinitely many rational numbers α such that f(α, t) is irreducible in Q[t].

Proof. Let

f(x, t) = an(x)tn + · · ·+ a0(x)

with ai(x) in Q[x] for i = 0, . . . , n and an 6= 0. Let d = max{degx ai(x) | 0 ≤ i ≤ n}.
Almost all elements of C are regular values of f(x, t). Let x0 be one such. Replacing
f(x, t) by the irreducible polynomial h(x, t) = f(x + x0, t), we may assume x0 = 0. By
Proposition 69.1, we can write

(i) f(x, t) = an(x)
n∏
i=1

(
t− ρi(x)

)
for each x in some neighborhood of x0 = 0 with ρi the n distinct root functions of f at
x = 0 (so ρi(x0) are the roots of f(x0, t)) and these root functions have coefficients lying

in Q̃, the algebraic closure of Q in C, in their power series expansion in this neighborhood.
It is convenient to work at ‘infinity’ rather than at 0, where a real or complex valued
function h(x) is said to be analytic at infinity if it can be represented by a power series∑∞

i=1 ci
1

xi
converging for all |x| > R for some positive real number R. Set

g(x, t) = xdf(
1

x
, t),

then g(x, t) also lies in Q[x, t]. Moreover, g(x, t) is irreducible. Indeed, suppose that

g(x, t) = r(x, t)s(x, t)

with r(x, t) and s(x, t) polynomials in Q[x, t] of degrees m1 and m2 in x, respectively.
Then d = m1 +m2 and

f(x, t) = xdg(
1

x
, t) = xm1r(

1

x
, t)xm2s(

1

x
, t)

is a factorization of f(x, t) into polynomials. As f(x, t) is irreducible, this must be a trivial
factorization, i.e., either r or s lies in Q as required. Now note if g(α, t) is irreducible for
α ∈ Q, so is f( 1

α
, t) = 1

αd
g(α, t). Therefore, we can replace f(x, t) by g(x, t) and work with

power series analytic at infinity, i.e., we may assume all the root functions ρi of f(x, t)
have power series that converge for all |x| > R and (i) holds for all |x| > R for some real
number R.



408 XII. GALOIS THEORY

Let S be a nonempty proper subset of {1, . . . , n} and consider the equation

(ii)
n∏
i=1

(
t− ρi(x)

)
=
∏
i∈S

(
t− ρi(x)

)∏
i/∈S

(
t− ρi(x)

)
.

We know that for every value of x with |x| > R, we have f(x, t) = an(x)
∏n

i=1

(
t−ρi(x)

)
is a

factorization into linear terms in Q̃[t], Since f(x, t) is irreducible in Q[x, t] and an(x) ∈ Q[x],
neither factor on the right hand side of (ii) can lie in Q(x)[t] by Lemma 35.7, a consequence
of Gauss’ Lemma, and Observation 69.7. Consequently,

(iii)
∏
i∈S

(
t− ρi(x)

)
= t|S| + b1t

|S|−1 + · · ·+ b|S| in Q̃[t],

with each bj = bj(x), 1 ≤ j ≤ |S|, analytic at infinity, but at least one, say bi = bi(x)
does not lie in Q(x). Let N be the number of such factorizations (ii), so N = 2n−1 − 1.
For each such S, let yS(x) be a coefficient bi(x) on the right hand side of (iii) analytic at
infinity and not in Q(x).

Claim. Let R′ ≥ R be arbitrary. Then there exists a rational number x0 satisfying
x0 > R′ (so a regular value of f) satisfying yS(x0) is not rational for all nonempty proper
subsets S of {1, . . . , n}. In particular, f(x0, t) is irreducible and the proposition is true.

Suppose that x0 satisfies the property of the claim, but that f(x0, t) = r(t)s(t) in Q[t] with
r and s non-constant polynomial in Q[t]. Then there exists a nonempty proper subset S
of {1, . . . , n} satisfying

r(t) = an(x0)
∏
i∈S

(
t− ρi(x0)

)
and s(t) =

∏
i/∈S

(
t− ρi(x0)

)
in Q[t]. This means that yS(x0) lies in Q, a contradiction. So we need only construct x0

as claimed, since R′ > R is arbitrary.

We construct an x0 in Q satisfying the claim. In fact, we shall produce an integer x0

satisfying the claim. Fix a nonempty proper S and let y = yS(x). Then y lies in

Q[ρ1(x), . . . , ρn(x)] ⊂ Q̃, so y(x) satisfies an equation

(iv) dly
l + dl−1y

l−1 + · · · d0 = 0

with di ∈ Q(x) for i = 0, . . . , l and dl nonzero for some integer l. Clearing denominators,
we may assume all the di lie in Q[x] and then clearing denominators again that all di lie
in Z[x].

Multiplying equation (iv) by dl−1
l shows that z = z(x) = dly(x) satisfies an equation

zl + bl−1z
l−1 + · · ·+ b0 = 0

with b0, . . . , bl−1 all lying in Z[x]. If α > R satisfies y(α) is rational, then z(α) is an
integer as each bi(α) is an integer and any rational root of a monic equation with integer
coefficients must be an integer. Therefore, we conclude that z(x) has an integral value
at some integer α > R if and only if y(x) has a rational value at that α. Consequently,
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it suffices to work with z(x). As z = dly with dl ∈ Z[x] and y(x) analytic at infinity, we
have

(v) z(x) = ckx
k + · · ·+ c0 + c−1

1

x
+ higher powers of

1

x

with ci ∈ C and z converges for all |x| > R.

We must show that z(α) is not an integer for some integer α > R′ for infinitely many
integers α > R, hence for any R′ ≥ R. There are three cases to consider.

Case 1. z(x) is a polynomial in C[x]:

The polynomial z(x) can have at most k integer values by Lagrange Interpolation, lest
z(x) hence y(x) be a polynomial in Q[x], contrary to choice. So z(x) has no integer values
at integer points for sufficiently large x.

Case 2. There exists a coefficient cj of z(x) in (v) that is not real:

We may assume that j has been chosen maximal with cj not real. Then we have, where
Im is the imaginary part,

lim
x→∞

Im
(z(x)

xj
)

= Im(cj) 6= 0,

hence z(x) is not real for all large real values of x.

Case 3. All the cj in (v) are real and there exist a j > 0 with c−j not zero:

Choose m = m(S) > 0 such that the mth derivative of z(x) has no non-negative powers
of x, say

z(m)(x) =
d

xk
+ terms with larger powers of

1

x
.

So d is a nonzero real number and k a positive integer. In particular, we have

lim
x→∞

xkz(m)(x) = d 6= 0.

Choose R1 > R′ such that if α > R1, then

0 < |z(m)(α)| < 2|d|
αk

.

Suppose that there exist m+ 1 integers αi satisfying

R1 < α0 < · · · < αm with z(αi) ∈ Z for i = 0, . . . ,m.

Let

Vm = det

1 α0 · · · αm0
...

...
. . .

...
1 αm · · · αmm


and

Wm = det

1 α0 · · · αm−1
0 z(α0)

...
...

. . .
...

...
1 αm · · · αm−1

m z(αm)

 .

Applying Lemma 69.6, we see that both Vm and Wm are nonzero integers and

2|d|
m!αk0

≥ 2|d|
m!αk

≥ |z
(m)(α)|
m!

=
|Wm|
|Vm|

≥ 1

|Vm|
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for some α satisfying α0 < α < αm. Therefore,

m!

2|d|
αk0 ≤ |Vm| =

∏
i<j

(αj − αi) < (αm − α0)
m(m+1)

2 .

Consequently, there exist positive real numbers γ and δ depending on m satisfying

(vi) αm − α0 > γαδ0.

Note that the right hand side of (vi) goes to infinity as α0 →∞, i.e., the αm’s get further
and further from α0 as it gets larger. Recall that N = 2n−1 − 1 is the number of the
y(x)’s. (We can replace N by any larger integer.) Choose R2 > R1 > R′ ≥ R satisfying

γRδ
2 > Nm.

In the above, we may also assume that α0 > R2. Therefore, we have α0 < α1 < · · · < αm
with each αi and each z(αi) integers, i = 1, . . . ,m, and

αm − α0 > γαδ0 > γRδ
2 > Nm.

We conclude that among any Nm+1 sufficiently large consecutive integers l, l+1, . . . , l+
Nm, the function z(x) takes on integer values on at most m of these, equivalently y(x)
takes on rational values on at most m of these.

If z(x) satisfies Case 1 or 2, it has only finitely many integer values at integer points.
Choose R0 > R2 such that all such z(x)’s have no integer values, hence y(x) no rational
values, at integers greater than R0.

For each of the finite number of S’s, we have constructed an integer m = m(S) and a
real number R0 = R0(S) > R′ such that for any x > R0 and string of Nm+ 1 consecutive
integers greater than R0, the analytic function yS(x) has at most m rational values at
such a string of Nm+ 1 consecutive integers. Let

M ≥ max
S

(
m(S)

)
and R3 > max

S

(
R0(S)

)
.

For any string of NM + 1 consecutive integers greater than R3, each yS(x) can have at
most M rational values. In particular, in each string of NM + 1 consecutive integers
greater than R3, there exists an integer α such that yS(α) is not rational for every one of
the N functions yS(x). This establishes the claim and completes the proof. �

Corollary 69.9. Let f1(x, t), . . . , fm(x, t) be irreducible polynomials in Q[x, t]. Then there
exist infinitely many rational numbers α such that f1(α, t), . . . , fm(α, t) are all irreducible
in Q[t].

Proof. By the proof of the proposition, we can work with the union of all the y(x)’s
that arise from the fi(x, t)’s with N the number of all of these. �

To prove the full version of the Hilbert Irreducibility Theorem, we use a trick developed
by Kronecker.

Definition 69.10. Let F be a field, d and n positive integers. Set

Pd(n, F ) := {f ∈ F [t1, . . . , tn] | degti f < d for all i = 1, . . . , n}
and

Sd : Pd(n, F )→ Pdn(1, F )
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defined by

Sd
(
f(t1, . . . , tn)

)
= f(t, td, td

2

, . . . , td
n−1

).

For example, Sd(t
i1
1 · · · tinn ) = ti1+i2d+i3d2+···indn−1

. Let m be a positive integer, then m has
a unique d-adic expansion. In particular, applying this to all positive integers m < dn,
we deduce that Sd is a bijection. Although Pd(n, F ) is not closed under products, we do
have:

Remark 69.11. If f, g, fg ∈ Pd(n, F ), then

Sd(fg) = Sd(f)Sd(g).

In particular, since Sd is a bijection, if Sd(f) is irreducible in F [t], then f is irreducible
in F [t1, . . . , tn].

The converse of this remark is false. For example, if F = Q, then f = t21 + t22 in Q[t1, t2]
is irreducible, but S3(f) = t2 + t6 is not. Suppose that we have an irreducible polynomial
f ∈ Pd(n, F ) but

Sd(f) = G(t)H(t) in F [t] with 0 < degG, degH < dn,

i.e., Sd(f) is not irreducible. Then G and H lie in Pdn , so there exist unique polynomials
g and h in Pd(n, F ) satisfying G = Sd(g) and H = Sd(h), i.e.,

Sd(f) = Sd(g)Sd(h) = Sd(gh)

Theorem 69.12. (Kronecker’s Criterion) Let F be a field and f an element in Pd(n, F ).
Then f is irreducible in F [t1, . . . , tn] if and only if for all nontrivial factorizations (i.e.,
polynomials of positive degree)

Sd(f) = Sd(g)Sd(h)

with g and h in Pd(n, F ), the polynomial gh contains a nonzero monomial of the form
bti11 · · · tinn for some ij ≥ d.

Proof. (⇐): If f = f1f2 with f1, f2 ∈ F [t1, . . . , tn], then we have f1, f2 ∈ Pd(n, f),
Sd(f) = Sd(f1f2) = Sd(f1)Sd(f2), and f = f1f2 has no nonzero monomial bti11 · · · tinn , some
ij > 0.

(⇒): Suppose that f is irreducible and Sd(f) = Sd(f1)Sd(f2) for some f1, f2 ∈ Pd(n, F ).
If f1f2 ∈ Pd(n, F ), then Sd(f) = Sd(f1)Sd(f2) = Sd(f1f2). As Sd : Pd(n, F ) → Pdn(1, F )
is one-to-one, f = f1f2, and one of f1, f2 lies in F . �

Example 69.13. If f = t21 + t22 in Q[t1, t2], we have S3(f) = t2(1 + t4), S3(g) = t2 with
g = t21, S3(h) = 1 + t4 with h = 1 + t1t2, and gh = t21 + t31t2.

Corollary 69.14. Let F be a field and f ∈ F [t0, . . . , tn] irreducible with degti < d for

i = 1, . . . , n. Let Sd : Pd
(
n, F (t0)

)
→ Pdn

(
1, F (t0)

)
be defined by Sd

(
f(t0, t1, . . . tn)

)
=

f(t0, x, x
d, . . . , xd

n−1). Suppose that

(*) Sd(f) =
m∏
i=1

pi(t0, x)
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with pi(t0, x) ∈ F [t0][x] irreducible for i = 1, . . . ,m. Then there exists an element
ϕ ∈ F (t0) with the following property: If α ∈ F satisfies ϕ(α) is defined and nonzero
and pi(α, x) is irreducible in F [x] for i = 1, . . . , n, then f(α, t1, . . . , tn) is irreducible in
F [t1, . . . , tn].

Proof. As F [t0] is a UFD, all factorizations of Sd(f) into two polynomials in F [t0, x]
arise from (*) (up to constants in F ). View f as an irreducible polynomial in F (t0)[t1, . . . , tn].
By Kronecker’s Criterion, any such factorization can also be written Sd(f) = Sd(g)Sd(h)
with g, h ∈ Pd

(
n, F (t0)

)
and satisfying some nonzero monomial ϕght

i1
1 · · · tinn occurs in gh

with ϕgh ∈ F (t0) (and, in fact, in F [t0]), for some ij > d. Let ϕ be the product of all
the ϕgh arising from such factorizations. If α ∈ F satisfies ϕ(α) is defined and nonzero
and pi(α, x) is irreducible in F [x] for 1 ≤ i ≤ m, then Sd(f(α, t1, . . . , tn) =

∏m
i=1 pi(α, x)

is a factorization into irreducibles in F [x]. It follows that f(α, t1, . . . , tn) is irreducible in
F [t1, . . . , tn] by Kronecker’s Criterion. �

Theorem 69.15. (Hilbert Irreducibility Theorem) Let f(x1, . . . , xn, t) be an irreducible
polynomial in Q[x1, . . . , xn, t]. Then there exist infinitely many (α1, . . . , αn) in Qn such
that f(α1, . . . , αn, t) is irreducible in Q[t].

Proof. We induct on n. The case of n = 1 is Proposition 69.8. We shall apply
the previous corollary and its notation to complete the proof. If f ∈ Pd

(
n,Q(x1)

)
and

Sd : Pd
(
n,Q(x1)

)
→ P1

(
dn,Q(x1)

)
, we are done if Sd(f) is irreducible by induction by

choosing α in Q(x1) such that ϕ(α) is defined and nonzero. [For almost all x0, we have
ϕ(x0) is defined and nonzero.] So we may assume that we can factor Sd(f) =

∏m
i=1 pi(x1, t)

as in (*). By Corollary 69.9, there exist infinitely many α in Q satisfying pi(α, t) is
irreducible in Q[t] for i = 1, . . . ,m. By the previous corollary and induction, the theorem
follows. �

It can be shown that the Hilbert Irreducibility Theorem holds with F replacing Q for
any number field, i.e., any finite field extension of Q or more generally any non-algebraic
finitely generated field extension of any field. However, it does not hold for every field
replacing Q, e.g., it does not hold for C (although it holds for C(t)).

We now apply the Hilbert Irreducibility Theorem to show that Sn is a Galois group
over Q.

Theorem 69.16. Let n be any positive integer. Then there exists a finite Galois extension
L/Q with G(L/Q) ∼= Sn.

Proof. Let K = Q(t1, . . . , tn) and Sn act on K by σ(ti) = tσ(i) for i = 1, . . . , n. Set
F = KSn . By Example 57.6(3), we know that F = Q(s1, . . . , sn) with each si is the ith
elementary symmetric function of t1, . . . , tn, the extension K/F is a finite Galois extension
with Galois group G(K/F ) ∼= Sn, and K is a splitting field of

f =
n∏
i=1

(t− ti) = tn − s1t
n−1 + · · ·+ (−1)nsn.

By Remark 57.10 to the Primitive Element Theorem, we can find distinct integersm1, . . . ,mn

satisfying K = F (m1t1 + · · ·+mntn).
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Let c = m1t1 + · · · + mntn. Then the σ(c), σ ∈ G(K/F ) (∼= Sn), give n! distinct
elements in K. Let g =

∏
G(K/F )

(
t − σ(c)

)
∈ K[t]. Since σ(g) = g for all σ ∈ G(K/F ),

we know that g ∈ F [t] and K = F (c) is a splitting field of g over F . In particular, as
deg g = [K : F ] and mF (c) | g in F [t], we must have g = mF (c) is irreducible in F [t]. Since
s1, . . . , sn are algebraically independent, g(s1, . . . , sn, t) is irreducible in Q[s1, . . . , sn, t], so
we can choose α1, . . . , αn in Q, such that g(α1, . . . , αn, t) is irreducible in Q[t] by the Hilbert
Irreducibility Theorem 69.15, i.e, we apply the evaluation map eα1,...,αn : Q[s1, . . . , sn]→ Q
with si 7→ αi for each i. Let β1, . . . , βn be the roots of the polynomial f(α1, . . . , αn, t) in
Q[t] in its splitting field L in C. Then

f(α1, . . . , αn, t) =
n∏
i=1

(t− βi) = tn − α1t
n−1 + · · ·+ (−1)nαn

in Q[t]. Let e = m1β1 + · · · + mnβn in L = Q(β1, . . . , βn). As c = m1t1 + · · · + mntn
is a root of g with t1, . . . , tn the roots of f , we must have e is a root of the irreducible
polynomial g(α1, . . . , αn, t). Therefore,

|G(L/Q)| = [L : Q] ≥ degmQ(e) = deg g(α1, . . . , αn, t) = n!.

It follows that G(L/Q) ∼= Sn, since deg f = n and we can view G(L/F ) ⊂ Sn. �

Corollary 69.17. There exists an irreducible polynomial of every degree n ≥ 5 not solv-
able by radicals.

Corollary 69.18. Let m ≥ 2. Then there exists an element algebraic of degree 2m over
Q that is not constructible.

Proof. Let f be an irreducible polynomial of degree n in Q[t] with Galois group Sn
with n = 2m and K = F (α) a splitting field of f over Q. If α was constructible (from
z = 0, z = 1), then n! = [K : Q] = 2e for some e by the refined form of the Constructibility
Criterion 60.3, which is impossible �

Exercises 69.19.

1. Let F be a field of characteristic zero and g and h two polynomials in F [t]. Show if
the (formal) derivative (g − h)′ = 0, then h = g +

(
h(0)− g(0)

)
.

2. Let F be a field of characteristic zero, h be a polynomial of degree n in F [t] and t0 an
element of F . Show that the (formal) Taylor expansion of h exists at t0, i.e.,

h(t) =
n∑
i=0

h(i)

i!
(t− t0)i

where h(i) is the ith derivative of h.

3. Let f(x, t) be an irreducible polynomial in Q[x, t], Show that the set {α ∈ Q | f(α, t) ∈
Q[t] is irreducible} is dense in R.





CHAPTER XIII

Transcendental Numbers

70. Liouville Numbers

Although we have seen that there are uncountably many real numbers transcendental
over Q, it is usually quite difficult to prove a particular real number that is not easily
seen to be algebraic over Q is transcendental. In this section, we demonstrate that certain
numbers are in fact transcendental over Q. The first numbers shown to be transcendental
over Q were constructed by Liouville. His approach depends on the following theorem:

Theorem 70.1. (Liouville) Let α be a complex number algebraic over Q of degree n > 1.
Then there exists a positive constant c = c(α) satisfying

|α− p

q
| > c

|q|n
for all integers p and q with q nonzero.

Proof. By definition, degmQ(α) = n > 1, so α is not a rational number. Clearing
denominators, we see that there exists a nonzero integer a such that amQ(α) lies in Z[t].
Dividing amQ(α) by its content, we see that there exists an irreducible polynomial f in
Z[t] of degree n with f(α) = 0. As mQ(α) has no rational roots, neither does f . (Of
course, the ideals (mQ

(
α)
)

and (f) are the same in Q[t].) As the characteristic of Q is
zero,

f ′(α) = lim
z→α

∣∣∣f(z)− f(α)

z − α

∣∣∣ = lim
z→α

∣∣∣ f(z)

z − α

∣∣∣
is nonzero, equivalently

lim
z→α

∣∣ f(z)
z−α

∣∣
|f ′(α)|

= 1.

Choose δ′ > 0 such that if 0 < |z − α| < δ′, then∣∣∣ f(z)

z − α

∣∣∣ < 2|f ′(α)|, so |f(z)| < 2|f ′(α)||z − α|.

Let p and q be integers with q nonzero. Let 0 < δ < δ′. Suppose that 0 < |p
q
−α| ≤ δ < δ′

(as α is not rational), then

|f(
p

q
)| < 2|f ′(α)||p

q
− α|.

Since deg f = n and f(p
q
) is nonzero, f(p

q
) = b

qn
for some nonzero integer b. It follows, if

|p
q
− α| ≤ δ, then

1

|qn|
≤ |f(

p

q
)| < 2|f ′(α)||p

q
− α|,

415
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i.e.,

|p
q
− α| > 1

2|f ′(α)|
1

|qn|
.

Now suppose that |p
q
− α| > δ. Then δ > δ

|qn| , so |p
q
− α| > δ

|qn| . Set c := min{δ, 1
2|f ′(α)|}.

Then |p
q
− α| > c

|qn| for all nonzero integers q. �

Let α ∈ C be a nonrational number. We say that α is a Liouville number if there exist
no pair of real numbers c > 0 and n ≥ 2 satisfying

|p
q
− α| > c

|qn|
for all integers p and q with q nonzero.

Note that if α is a Liouville number, it must be real, since a nonreal complex number has
positive distance from any rational number.

Corollary 70.2. Liouville numbers are transcendental over Q.

Remark 70.3. Let α be a Liouville number, N a positive integer. Then there exist
infinitely many rational numbers p

q
, with p, q with q 6= 0 satisfying

0 < |p
q
− α| < 1

|qN |
for all integers p and q with q nonzero.

Indeed suppose this is false, then we could choose a real number c > 0 smaller than the
distance of α to each of these finitely many rational numbers p

q
, p, q ∈ Z, q 6= 0, satisfies

0 < |p
q
− α| < c

|qN |
holds for no integers p and q with q nonzero.

We use this to give an alternative characterization of Liouville numbers.

Proposition 70.4. Let α be a real number. Then α is a Liouville number if and only if
for every positive integer N there exist integers p and q, with q ≥ 2 satisfying

(*) 0 < |p
q
− α| < 1

qN
.

Proof. (⇒) is the remark above.

(⇐): Let c > 0 and n ≥ 2 be given. Choose an integer m so that 1
2m

< c and set
N = n+m. By assumption, there exist integers p and q, with q ≥ 2 satisfying

|p
q
− α| < 1

qN
≤ 1

2mqn
<

c

qn
.

By the theorem, it follows that α is a Liouville number if we can show that α is not a
rational number. Suppose to the contrary that α = r/s, with r and s integers, s positive.
We may assume that we have chosen N so that it satisfies 2N−1 > s. So by assumption,
there exist integers p and q, with q ≥ 2 with satisfying (*). However, we also have

|p
q
− α| =

∣∣p
q
− r

s

∣∣ =
∣∣ps− qr

qs

∣∣ > 1

sq
>

1

2N−1q
≥ 1

qN
,

a contradiction. �
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Example 70.5. Let α =
∞∑
k=1

1

10k!
. Then α is a Liouville number:

Let
N∑
k=0

1

10k!
=

PN
10N !

, so PN and 10N ! are positive integers satisfying

0 < |α− PN
10N !
| =

∞∑
k=N+1

1

10k!
≤ 1

10(N+1)!

∞∑
k=0

1

10k!

≤ 1

9

( 1

(10N !)N+1

)
<

1

(10N !)N
.

Hence α is a Liouville number.
The basic reason that the example is transcendental over Q is that the series con-

verges very rapidly. Liouville numbers have this property. Of course, most transcendental
numbers do not, e.g., π. Mahler showed that |π − p

q
| > q−42 if q ≥ 2.

Much work was done to strengthen Liouville’s theorem. The best theorem was estab-
lished by Roth who proved the following

Theorem 70.6. (Roth’s Theorem) Let α be a complex number algebraic over the rational
numbers but not rational. Suppose that there exists a non-negative real number µ satisfying

|α− p

q
| < 1

qµ

for infinitely many p/q with p, q relatively prime integers q > 0. Then µ ≤ 2. Moreover,
this is best possible, i.e., if α is algebraic over Q and ε > 0, then

|α− p

q
| > 1

q2+ε

holds for all but finitely many p/q with p, q relatively prime integers q > 0, and there
exists a positive constant c = c(α, ε) such that

|α− p

q
| > c

|q|2+ε
for all integers p and q with q nonzero,

i.e., is independent of n > 0.

Roth won the Fields Medal for this work. This subject is part of what is called
diophantine approximation. The proof is delicate, but does not use a lot of theory. A
proof can be found in Leveque’s book Topics in Number Theory, Volume II, Chapter 4.

Exercises 70.7.

1. Let b0 < b1 < b2 < · · · an increasing sequence of positive integers satisfying lim sup
k→∞

bk+1/bk =

∞ and let {ek} be a bounded sequence of positive integers. If a ≥ 2 is an integer, show
∞∑
k=0

(−1)k

abk
and

∞∑
k=0

ek
abk

are Liouville numbers.
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2. For any choice of signs, show that

1± 1

21!
± 1

22!
± 1

23!g
± · · ·

is a Liouville number.

71. Transcendence of e

In this section we prove that the real number e is transcendental over Q. The ideas
give the basis for showing that π is transcendental, which we shall do in Section 73. The
key to the proof is the two basic properties of the exponential function, viz., the derivative
(ex)′ of ex is ex and ex has the Taylor expansion

∑∞
n=o

xn

n!
, so converges rapidly because

of the factorial in each term.

Theorem 71.1. (Hermite) The real number e is transcendental over Q.

Proof. Suppose that there exist integers a0, . . . , am not all zero satisfying

ame
m + am−1e

m−1 + · · ·+ a1e+ a0 = 0,

i.e., e is a root of the nonzero polynomial
∑m

i=0 ait
i in Z[t], equivalently, e is algebraic

over Q, by clearing denominators. We may assume that am is nonzero and without loss
of generality that a0 is nonzero as well. Define a polynomial function

f(x) :=
xp−1(x− 1)p(x− 2)p · · · (x−m)p

(p− 1)!
.

where p > 2 is a prime number to be specified later.

Note that f(x) =
xp−1

p− 1!
g(x) with g(x) = (x− 1)p(x− 2)p · · · (x−m)p satisfying g(x) = 0

for x = 1, . . . ,m.

Now set

F (x) := f(x) + f ′(x) + f (2)(x) + · · ·+ f (mp+p−1)(x)

where f (j) is the jth derivative of f . Note that deg f = mp + p − 1, so the (mp + p)th
derivative of f , f (mp+p)(x) = 0. In particular, F (x) =

∑∞
i=0 f

(i)(x).

We shall need the following observation. For 0 < x < m, we have the upper bound

(71.2) |f(x)| < mp−1mp · · ·mp

(p− 1)!
=
mmp+p−1

(p− 1)!
.

Check 71.3. We have the following:

(1)
d

dx

(
e−xF (x)

)
= e−x

(
F ′(x)− F (x)

)
= −e−xf(x)

(2) aj

∫ j

0

e−xf(x)dx = aj
[
− e−xF (x)

]x=j

x=0
= ajF (0)− aje−jF (j).
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Multiplying equation (2) by ej and adding yields

(71.4)

A : =
m∑
j=0

aje
j

∫ j

0

e−xf(x)dx =
m∑
j=0

aje
jF (0)−

m∑
j=0

ajF (j)

= −
m∑
j=0

ajF (j) = −
m∑
j=0

mp+p−1∑
i=0

ajf
(i)(j).

Claim: f (i)(j) is an integer for all i and j and p | f (i)(j) in Z if (i, j) 6= (p− 1, 0).
The claim will follow from the following:

Lemma 71.5. Let h(x) =
xng(x)

n!
with g a polynomial in Z[t]. Then

(1) The number h(j)(0) is an integer for all j.
(2) The integer n+ 1 satisfies n+ 1 | h(j)(0) in Z if j 6= n.
(3) If g(0) = 0, then n+ 1 | h(n)(0) in Z.

Proof. Let tng(t) =
∑∞

j=0 cjt
j in Z[t] (almost all cj = 0). So we have cj are integers

and zero if j < n. Since h(x) =
xng(x)

n!
, we see that h(j)(0) = cjj!/n!. If j < n, then

cj = 0. Hence h(j)(0) = 0 and if j > n, then h(j)(0) = cj(j!/n!) in Z. If j = n, then
h(n)(0) = cn in Z. Finally, if g has a zero constant term, i.e., g(0) = 0, then cn = 0 and
the lemma follows. �

We return to the proof of the theorem. We apply the lemma to f(x), f(x+1), . . . , f(x+
m), respectively to see that f (i)(j) is an integer for all i and j and p | f (i)(j) with the
possible exception when i = p− 1 and j = 0. Therefore, as ai are integers, we see that A
is an integer by 71.4 satisfying

A = −
m∑
j=0

mp+p−1∑
i=0

ajf
(i)(j) ≡ −a0f

(p−1)(0) mod p.

We also have f (p−1)(0) = (−1)p(−2)p · · · (−m)p. (This is just g(0), if in the lemma,
g(x) = (x− 1)p · · · (x−m)p.) In particular, if p > m, then p 6 | f (p−1)(0). Consequently, as
a0 6= 0, we must have: if p is a prime satisfying p > |a0| and p > m, then

A ≡ −a0f
(p−1)(0) 6≡ 0 mod p.

In particular, |A| ≥ 1. By (71.2) and (71.4), we have

|A| =
∣∣ m∑
j=0

aje
j

∫ j

0

e−xf(x)dx
∣∣ ≤ m∑

j=0

∣∣ajej ∫ j

0

f(x)dx
∣∣

≤
m∑
j=0

|aj|ejj
mmp+p−1

(p− 1)!
≤

m∑
j=0

|aj|emm
mmp+p−1

(p− 1)!

=
( m∑
j=0

|aj|
)
em

mmp+p

(p− 1)!
=
( m∑
j=0

|aj|
)
em

(mm+1)p

(p− 1)!
.
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Choosing p sufficiently large leads to |A| < 1, a contradiction. �

Exercise 71.6. Verify the two statements in Check 71.3.

72. Symmetric Polynomials

We discussed symmetric polynomials in the study of Galois Theory. In order to prove
that π is transcendental, we shall need a finer discussion. This material is very important
in its own right and is fundamental in the study of polynomials as well as its various
generalizations.

We first establish some nomenclature for polynomials in finitely many variables over
a commutative ring. Let R be a commutative ring and f a nonzero polynomial in
R[t1, . . . , tn]. Write

f =
∑
i1,...,in

ai1,...,int
i1
1 · · · tinn .

Each nonzero term ai1,...,int
i1
1 · · · tinn in f is called a monomial of total degree i1 + · · · + in

of f in t1, . . . , tn and the total degree of f in t1, . . . , tn is defined to be the maximum of
the total degree of the nonzero monomials of f in t1, . . . , tn. For each positive integer k,
order the subset

{ati11 · · · tinn | a nonzero in R with k = i1 + · · ·+ in}
of R[t1, . . . , tn] lexicographically, i.e., if a, b ∈ R are nonzero and k = i1 + · · · + in =
j1 + · · ·+ jn, then

ati11 · · · tinn ≤ btj11 · · · tjnn
if

il = jl for all l or

there exists an l satisfying is = js for all s ≤ l and il+1 < jl+1.

For example,
t1t2t

2
3 < t31t2t3 and t27

2 < t1t
27
2

in R[t1, t2, t3] where < of course means ≤ but not =. We define the leading term of a
nonzero f in R[t1, . . . , tn] to be the nonzero monomial of f that has maximal total degree
relative to the lexicographic ordering on R[t1, . . . , tn]. In particular, the total degree of
the leading term is the same as the total degree of f , although there can be many nonzero
monomials of f of the same total degree. The coefficient of the leading term is called the
leading coefficient.

Definition 72.1. Let R be a commutative ring. A polynomial f in R[t1, . . . , tn] is
called symmetric in t1, . . . , tn if for all permutations σ ∈ Sn, we have f(t1, . . . , tn) =
f(tσ(1), . . . , tσ(n)).

Example 72.2. The following are symmetric in R[t1, . . . , tn]:

1. Any element of R.

2. tr1 + · · ·+ trn for every positive integer r.

3. t1t2 + t1t3 + · · ·+ t1tn + t2t3 + · · ·+ tn−1tn =
∑

i<j titj
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4.
∑

1≤i1<i2<···ir≤n

tsi1 · · · t
s
ir for each 1 ≤ r ≤ n and each positive integer s.

The rth elementary symmetric polynomials in t1, . . . , tn is defined to be

sr(t1, . . . , tn) =
∑

1≤i1<i2<···ir≤n

ti1 · · · tir .

For example,

s3(t1, t2, t3, t4) = t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4 and

s4(t1, t2, t3, t4) = t1t2t3t4.

We shall write sr for sr(t1, . . . , tn) if n is clear and we set s0 = 1.

Observation 72.3. Let R be a commutative ring, S = R[t1, . . . , tn], and si(t1, . . . , tn) in
S. Then in S[t], we have

f :=
∏

(t+ ti) := tn + s1t
n−1 + · · ·+ sn and

g :=
∏

(t− ti) := tn − s1t
n−1 + · · ·+ (−1)nsn

with −t1, . . . ,−tn (respectively, t1, . . . , tn) the roots of f (respectively, of g) in S. Set
S0 = R[s1, . . . , sn] ⊂ S = R[t1, . . . , tn]. Then the subset

SSn := {f ∈ S | f symmetric in t1, . . . , tn}
satisfies S0 ⊂ SSn ⊂ S. We shall show that S0 = SSn .

Theorem 72.4. (Fundamental Theorem of Symmetric Polynomials) Let R be a commu-
tative ring, si = si(t1, . . . , tn) in R[t1, . . . , tn]. Then

R[s1, . . . , sn] = R[t1, . . . , tn]Sn := {f ∈ S | F symmetric in t1, . . . , tn}.
More specifically, let f ∈ R[t1, . . . , tn] be symmetric in t1, . . . , tn of total degree k in
t1, . . . , tn. Then there exists a unique polynomial g in R[s1, . . . , sn] satisfying f = g and
the total degree of g in s1, . . . sn is at most k.

Proof. Existence: Let f ∈ R[t1, . . . , tn] be symmetric in t1, . . . , tn of total degree k
and leading term ati11 . . . t

tn
n in the lexicographical ordering. In particular, k = i1 + · · ·+in.

As f is symmetric, ati1σ(1) . . . t
in
σ(n) is also a nonzero monomial in f for every σ in Sn. It

follows that i1 ≥ i2 ≥ · · · ≥ in. Set

jl := il − il−1 ≤ il for l = 1, . . . , n

where in+1 = 0. Therefore, jl ≥ 0 and il = jl + jl+1 + · · · jn for every l. The monomial
asj11 · · · sjnn has total degree in t1, . . . , tn equal to

j1 + 2j2 + · · ·+ njn = i1 + i2 + · · ·+ in = k

and total degree in s1, . . . , sn equal to

j1 + j2 + · · ·+ jn ≤ i1 + i2 + · · ·+ in = k.
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The leading term of asj11 · · · sjnn as a polynomial in t1, . . . , tn is

atj11 (t1t2)j2(t1t2t3)j3 · · · (t1 · · · tn)jn = ati11 . . . t
in
n ,

so f1 := f − asj11 · · · sjnn has leading term in t1, . . . , tn less than asj11 · · · sjnn in the lexi-
cographic ordering. Iterating the process rids us of all monomials of total degree k in
t1, . . . , tn except for monomials in s1, . . . , sn of total degree at most k in s1, . . . , sn that
when viewed as polynomials in t1, . . . , tn have total degree k. Induction on the total
degree of f produces the existence of the required g.

Uniqueness: Suppose that f has two such expressions. Then we would have an equation∑
i1,...,in

ai1,...,ins
i1
1 · · · sinn = 0

not all ai1,...,in zero. Let asj11 · · · sjnn be the leading term of this expression in s1, . . . , sn.
Writing this term in t1, . . . , tn would produce a leading term in t1, . . . , tn

ati11 · · · tinn with jl = il − il+1, i.e., il = jl + · · ·+ jn

just as before. As the ti are indeterminants, we would have a = 0, a contradiction. �

We deduce the immediate specialization of this result.

Corollary 72.5. Let R be a commutative ring and f ∈ R[t1, . . . , tn] a symmetric poly-
nomial. Suppose that α1, . . . , αn are elements in R and si(t1, . . . , tn) the elementary sym-
metric polynomials in t1, . . . , tn. Then the evaluation eα1,...,αn of f , f(α1, . . . , αn), lies in
R[s1(α1, . . . , αn), . . . , sn(α1, . . . , αn)].

We shall need the following consequence of this.

Corollary 72.6. Let F be a field, K/F a field extension, and f in F [t] a polynomial
of degree n with roots α1, . . . , αn in K. Suppose that P ∈ F [t1, . . . , tn] is symmetric in
t1, . . . , tn. Then P (α1, . . . , αn) lies in F .

Proof. Using Observation 72.3, we know if f = ant
n + · · ·+ a0 in F [t], then

±sn−i(α1, . . . , αn) = ai/an

lies in F . The result follows. �

73. Transcendence of π

The proof of the transcendence of π over the rationals takes the approach of the
analogous statement for e, but it is significantly harder. In particular, we shall need the
Fundamental Theorem of Symmetric Polynomials.

We begin with the observation that a function f : Z → Z satisfying f(p) → 0 as
p→∞ must satisfy f(p) = 0 for large enough primes, since |f(p)| < 1 for all primes large
enough.

We give Hilbert’s proof of the following famous result.

Theorem 73.1. (Lindemann) The real number π is transcendental over Q.
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Proof. Suppose that π is algebraic over Q. Then α1 :=
√
−1π is also algebraic over

Q. We have

(i) (Euler) eα1 + 1 = 0.

Let g1 = mQ(α1) in Q[t]. Supposes that deg g1 = n and

α1, . . . , αn are all the (distinct) roots of g1 in C.

Then by (i), we have

(ii)
n∏
i=1

(eαi + 1) = 0.

Expanding (ii) yields

(iii)
( ∑

1≤r≤n

∑
1≤i1<···<ir≤n

eαi1+···+αir
)

+ 1 = 0.

Let sj(t1, . . . , tn) :=
∑

1≤i1<···<ij≤n ti1 · · · tij be the jth elementary polynomial in C[t1, . . . , tn].

Then the monic polynomial

n∏
i=1

(t− αi) = tn − s1(α1, . . . , αn)tn−1 + · · ·+ (−1)nsn(α1, . . . , αn)

in C[t] has precisely α1, . . . , αn as roots. In particular, this polynomial is just g1. It follows
that each sj(α1, . . . , αn) lies in Q.

Fix r with 1 ≤ r ≤ n and let

Ti1,...,ir , 1 ≤ i1 < · · · < ir ≤ n,

be k :=

(
n

r

)
independent variables, ordered lexicographically on the i1, . . . , ir. Let s′j,

1 ≤ j ≤ k, be the elementary symmetric polynomials in the Ti1,...,ir evaluated at the
corresponding αi1 + · · ·+ αir . Set

gr := tk − s′1tk−1 + · · ·+ (−1)ks′k, a polynomial in C[t].

Therefore, gr has roots

αi1 + · · ·+ αir for 1 ≤ i1 < · · · < ir ≤ n.

We can view the evaluation of the elementary symmetric polynomials in the Ti1,...,ir in
two steps:

(a) Evaluate these elementary symmetric polynomials in the Ti1,...,ir at ti1 + · · ·+ tir
for each 1 ≤ i1 < · · · < ir ≤ n.

(b) Evaluate the resulting polynomials in (a) at the corresponding αi1 + · · ·+ αir .

Check 73.2. The polynomials in (a) above are symmetric in t1, . . . , tn
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It follows by Corollary 72.6, the corollary to the Fundamental Theorem of Symmetric
Polynomials 72.4, that the polynomials in (a) lie in Q[s1(t1, . . . , tn), . . . , sn(t1, . . . , tn)] and

s′j ∈ Q[s1(α1, . . . , αn), . . . , sn(α1, . . . , αn)] ⊂ Q.

Consequently, gr ∈ Q[t] for r = 1, . . . , n.

Claim: There exists a polynomial g in Z[t] having as its roots in C precisely all the
nonzero αi1 + · · ·+ αir , 1 ≤ i1 < · · · < ir ≤ n, 1 ≤ r ≤ n:

Let g̃ = g1 . . . gn, a polynomial in Q[t]. We know that g̃ has as its roots all αi1 + · · ·+αir ,
1 ≤ i1 < · · · < ir ≤ n, 1 ≤ r ≤ n. Let

M := precisely the number of (i1, . . . , ir), 1 ≤ i1 < · · · < ir ≤ n

1 ≤ r ≤ n, satisfying αi1 + · · ·+ αir = 0.

Therefore, the non-negative integer M satisfies tM | g̃, but tM+1 6 | g̃ in Q[t]. Let ĝ := g̃/tM

in Q[t]. Consequently, ĝ has as roots, precisely those αi1 +· · ·+αir , 1 ≤ i1 < · · · < ir ≤ n,
1 ≤ r ≤ n, that are nonzero. Let m be the least common multiple of all the denominators
of the (reduced) coefficients of ĝ (i.e., if ĝ =

∑
ai
bi
ti with ai, bi relatively prime integers

(bi 6= 0) if ai 6= 0 (and bi = 1 otherwise), then m is the least common multiple of the bi’s).
Set g = mĝ, a polynomial in Z[t] that satisfies the claim.

Let r = deg g and rename the roots of g by

β1, . . . , βr not necessarily distinct.

By choice, all the βi are nonzero, so (iii) becomes

(iv) eβ1 + eβ2 + · · ·+ eβr + k = 0, for some positive integer k.

Write
g = ctr + c1t

r−1 + · · ·+ cr, a polynomial in Z[t].

As deg g = r and g(0) is not zero, we have

c and cr are nonzero integers.

Now fix a prime p and set
s = rp− 1.

Define

f =
cstp−1gp(t)

(p− 1)!

F = f + f ′ + f (2) + · · ·+ f (s+p)

where f (j) is the jth derivative of f .
Note that deg f = p− 1 + pr = p+ s, so f (s+p+1) = 0.
It follows that

d

dt

(
e−tF (t)

)
= −e−tf(t) so e−tF (t)− F (0) = −

∫ t

0

e−xf(x)dx.

Multiply this equation by et and let x = λt (λ is a new variable), to get

(v) F (t)− etF (0) = t

∫ 1

0

e(1−λ)tf(λt)dλ.
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Setting t = β1, . . . , βr (one at a time) into (v) and summing, we get, using (iv),

(vi)
r∑
i=1

F (βi) + kF (0) =
r∑
i=1

βi

∫ 1

0

e(1−λ)βif(βiλ)dλ.

We shall show that this leads to a contradiction by analyzing

A =
r∑
i=1

F (βi) + kF (0), the left hand side of (vi), and

B =
r∑
i=1

βi

∫ 1

0

e(1−λ)βif(βiλ)dλ, the right hand side of (vi).

Claim: If p >> 0, then A is a non-zero integer.

To prove this, we have to first evaluate
∑r

i=1 f
(j)(βi). We show

(a)
r∑
i=1

f (j)(βi) is an integer.

(b) p |
r∑
i=1

f (j)(βi) in Z :

As g(βi) = 0 for all i, all terms in

(?)
dj

dtj

∣∣∣
t=βi

(cstp−1gp(t)

(p− 1)!

)
having a gl term with l > 0 are zero. In particular, (a) and (b) hold if j < p.

So we may assume that j ≥ p.

Check 73.3.
1

pcs
f (j)(t) lies in Z[t] for j ≥ p. (Cf. Example 2.11.)

Therefore,
1

pcs

r∑
i=1

f (j)(ti) ∈ Z[t1, . . . , tr] is symmetric in t1, . . . , tr of total degree (p−1)+

rp− j = s+ p− j ≤ s in t1, . . . , tr as j ≥ p. By the Fundamental Theorem of Symmetric
Polynomials 72.4,

(†) 1

pcs

r∑
i=1

f (j)(ti) lies in Z[s1(t1, . . . , tr), . . . , sr(t1, . . . , tr)]

and is of total degree in s1(t1, . . . , tr), . . . , sr(t1, . . . , tr) at most (p−1+pr)−j = s+p−j ≤
s.
We conclude by (†) that the sum

1

pcs

∑
i

f (j)(βi) lies in Z[s1(β1, . . . , βr), . . . , sr(β1, . . . , βr)]

by evaluating the ti at the βi. Since
g

c
= tr +

c1

c
tr−1 + · · ·+ cr

c
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has roots β1, . . . , βr, we see that

sn−j(β1, . . . , βr) = (−1)j
cj
c

for j = 1, . . . , r,

so
1

pcs

r∑
i=1

f (j)(βi) lies in Z[
c1

c
, . . . ,

cr
c

].

Since (†) has total degree in s1(t1, . . . , tr), . . . , sr(t1, . . . , tr) at most s, it follows that

1

p

r∑
i=1

f (j)(βi) lies in Z[c1, . . . , cr] ⊂ Z,

i.e.,
∑r

i=1 f
(j)(βi) is an element of pZ. This shows (a) and (b).

Check 73.4. We have

f (j)(0) =


0 if j ≤ p− 2

cscpr if j = p− 1

ljp if j ≥ p some integer lj.

We conclude that there exists an integer N satisfying( r∑
i=1

F (βi)
)

+ kF (0) = Np+ kcscpr in Z.

As k, c, and cr are not zero, if p is chosen such that p > max {k, |c|, |cr|}, then

p 6 |
( r∑
i=1

F (βi)
)

+ kF (0).

This shows that A is a nonzero integer for all p >> 0.

We turn to computing B.

Claim: B = 0 for all p >> 0.

Of course, if we show this, then we have finished the proof. For each j with 1 ≤ j ≤ r, let

m(j) := sup
0≤λ≤1

|g(βjλ)|.

Hence if 0 ≤ λ ≤ 1, we have

|f(βjλ)| ≤ |c|
s|βj|p−1m(j)p

(p− 1)!
.

Let

N = max
j

(
sup

0≤λ≤1

∣∣e(1−λ)βj
∣∣),

then ∣∣ r∑
j=1

βj

∫ 1

0

e(1−λ)βjf(βjλ)dλ
∣∣ ≤ r∑

j=1

|c|s|βj|pm(j)p

(p− 1)!
N,
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so the integer
r∑
j=1

βj

∫ 1

0

e(1−λ)βjf(βjλ)dλ→ 0 as p→∞.

It follows (by the remark at the beginning of the section) that this sum must be zero for
all p >> 0 �

Corollary 73.5. It is impossible to construct a square from a given circle with the same
area using only straight-edge and compass.

Lindemann’s proof of the transcendence of π was generalized by Lindemann and proved
completely by Weierstraß. The proof is based on our proofs of the transcendence of e and
π. To carry this out, we introduce some notions previously mentioned that we shall
study more deeply later. Let Ω be the algebraic closure of Q in C. We use this notation
below. An element α of Ω is called an algebraic number. If, in addition, α ∈ Ω is the
root of a monic polynomial in Z[t], it is called an algebraic integer. If Ω/K/F , set
ZK = {α ∈ K | α is an algebraic integer}. We shall see in Corollary 79.7 (where ZK is
the integral closure of Z in K) that ZK is a domain. This is the analogue of the fact that
the set of elements in Ω forms a field. For example, Z = QZ by the rational root test
(Exercise 35.12(5)).

Remarks 73.6. Let α be an algebraic number.

1. Clearing denominators, we may assume that α satisfies a nonzero polynomial ant
n +

· · ·+a1t+a0 ∈ Z[t]. Multiplying this polynomial by an−1
n shows that anα is an algebraic

integer. In particular, given a finite set S of algebraic numbers, there exist a nonzero
integer N such that Nβ is an algebraic integer for all β ∈ S.

2. If α ∈ ZK and σ : K → Ω is a Q-automorphism, then σ(α) ∈ Zσ(K). In particular, if
K/Q is normal then σ(α) ∈ ZK . This implies if K/Q is finite, then NK/Q(α) ∈ ZK∩Q =
Z, since ZK is a domain.

3. if L/K is a field extension in Ω, then ZK = ZL ∩K as algebraic integers are defined
by monic polynomials over Z.

Theorem 73.7. (Lindemann-Weirstraß Theorem) Let α1, . . . , αn be distinct algebraic
numbers with n ≥ 1 and d1, . . . , dn be nonzero algebraic numbers. Then

n∑
i=0

die
αi 6= 0.

In particular, eα1 , . . . , eαn are linearly independent over Ω.

Much of the proof is analogous to the proofs of the transcendence of e and π over the
rationals except for the generalization to a set of arbitrary nonzero algebraic numbers. So
we leave many details to the reader.

Proof. Suppose the result is false. Then there exist algebraic numbers d1, . . . , dm
not all zero satisfying
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(i)
n∑
i=0

die
αi = 0.

Let K = Q(d1, . . . , dk), a finite extension of Q say of degree m. Multiplying by an
appropriate nonzero integer, we may assume that all the di are algebraic integers, i.e., lie
in ZK . Let E/K be the normal closure of K/Q in Ω and σj : K → L, j = 1, . . . ,m, be
the m distinct Q-homomorphisms (as L/Q is separable). Then we have an equation

(ii)
m∏
j=1

( n∑
i=0

σj(di)e
αi
)

= 0.

As di ∈ ZL for all i, so is σj(di) for all i and all j. Multiply equation (i) out. Let γi,
i = 1, . . . ,m, be all the distinct αi1 + · · ·+ αik , 1 ≤ i1 < . . . ik ≤ n for k = 1, . . . , n, that
occur when multiplied out. So equation (ii) becomes

(iii) a1e
γ1 + · · ·+ ame

γm = 0

for some ai ∈ ZL. Since the ai are symmetric in the σj(di), they must be rational numbers.
Multiplying by a suitable positive integer (or by the Fundamental Theorem of Symmetric
Polynomials 72.4), we may assume that a1, . . . , am are all integers not all zero in (iii).

Now let L/E(γ1, . . . , γm) be the normal closure of E/Q in Ω. Add all the unlisted
conjugates of γi to γ1, . . . , γm if any. To each added γi, let ai = 0. Changing notation
again, we may assume that (iii) contains all the conjugates of all the γi.

Let γ
(l)
j denote the lth conjugate of γj under the action of G(L/Q). Set

Cl(x) :=
m∑
k=1

ake
γ
(l)
k x.

As γ
(l)
1 , . . . , γ

(l)
m are distinct for each l, by linear algebra, eγ1x, . . . , eγmx are linearly

independent over C (proven by induction or by using the Wronkian). In particular, Cl(x)
is not the zero function for any l. Viewing each Cl(x) in the domain C[[x]] of (convergent)
powers at zero, we also have C(t) :=

∏
l Cl(x) is not the zero function. So

C(x) =
∏
l

Cl(x) =
N∑
k=1

bke
βkx.

with bi ∈ Z not all zero. By hypothesis, C(1) = 0. Finally, choose an integer c > 0 such
that cβi is an algebraic integer in ZL for i = 1, . . . , N

We have now completed the analogue to the proofs of the transcendence of e and π
before the introduction of the associated polynomials that led to a contradiction, that we
now do.

Let p > 0 be a prime. For each r, 1 ≤ r ≤ N , let

fr(x) :=
cNp

t− βr

N∏
k=1

(t− βk)p.
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So s := deg fr = Np− 1 for all r. Set

Fr(x) :=
∞∑
i=0

f (i)(x) =
s∑
i=0

f (i)(x)

where f (i)(x) is the ith derivative of f . Arguing as before, we see that

Fr(t)− etFr(0) = −
∫ t

0

et−xfr(x)dx.

This implies that

Ar : =
N∑
i=1

bk
(
eβk

s∑
j=0

f (j)
r (0)−

s∑
j=0

f (j)
r (βk)

)
= −

N∑
k=1

bk

s∑
j=0

f (j)
r (βk),

as C(1) = 0. We now can apply our arguments before to conclude that A :=
∏N

i=1Ai is an
algebraic integer fixed by the Galois group G(L/Q) so must be an integer. Moreover, for
each prime p, we have (p−1)! | A and for all sufficiently large p that p 6 | A. It follows that
the integer A is not zero. Approximating |A|, as in the proof of the transcendence of e and
π, shows that |A| < 1 for all sufficiently large p. This gives the desired contradiction. �

Corollary 73.8. Let α be a nonzero algebraic number. Then eα is transcendental over
Q.

Proof. If γ = eα is algebraic, then eα − γe0 = 0, a contradiction. �

Corollary 73.9. Let α be a nonzero algebraic number. Then the numbers e, π, sinα,
cosα are transcendental over Q as is logα if α 6= 1.

Proof. Suppose that logα is algebraic. Then γ = eα is transcendental, a contradic-
tion. If sinα or cosα is transcendental over Q, then the equations

e0 sinα− 1

2
√
−1

e
√
−1α +

1

2
√
−1

e−
√
−1α = 0

e0 cosα− 1

2
e
√
−1α − 1

2
e−
√
−1α = 0

would lead to a contradiction. �

Corollary 73.10. Let α1, . . . , αn be algebraic integers that are linearly independent over
Q. Then eα1 , . . . , eαn are algebraically independent over Q.

Proof. If this is false, then there exists a nonzero polynomial f(t1, . . . , tn) ∈ Z[t1, . . . , tn]
such that

0 = f(eα1 , . . . , eαn) =
∑
i1,...,in

ai1,...,ine
i1α1+···+inαn

with the ai1,...,in rational numbers but not all zero. By the Lindemann-Weierstraß Theo-
rem 73.7, the integers i1α1 + · · · inαn cannot be all distinct. It follows that α1, . . . , αn are
linearly dependent over Q. �
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One of the famous Hilbert Problems is:

Problem 73.11. (Hilbert Seventh Problem) Let α and β be algebraic numbers with α

not zero or one and β not rational, is it true that αβ is transcendental over Q, e.g.,
√

2
√

2

is transcendental over Q?

This was solved in the affirmative independently by Gelfond and Schneider. We will
prove that the Hilbert Problem is true in the next section. It uses some number theory
and complex analysis.

One formulation of Gelfond’s and Schneider’s work solving this problem is the follow-
ing:

Theorem 73.12. Suppose that α1, α2, β1, β2 are nonzero algebraic numbers. If logα1 and
logα2 are linearly independent over Q, then β1 logα1 + β2 logα2 is not zero.

This was generalized by Baker in the 1966, who showed

Theorem 73.13. Let α1, . . . , αn be nonzero algebraic numbers satisfying logα1, . . . , logαn
are linearly independent over Q. Then 1, logα1, . . . , logαn are linearly independent over
the quotient field of Ω.

This theorem implies the following:

Remark 73.14. Let α1, . . . , αn be nonzero algebraic numbers and β0, . . . , βn be algebraic
numbers with β0 6= 0. Then

(1) β0 + β1 logα1 + · · · βn logαn 6= 0.

(2) If, in addition, all of the βi are nonzero, then eβ0αβ11 · · ·αβnn is transcendental over
Q.

(3) If, in addition, none of the αi are one and 1, β1, . . . , βn are linearly independent

over Q, then αβ11 · · ·αβnn is transcendental over Q.

Baker won the Fields Medal for this work.

Exercises 73.15.

1. Prove Check 73.2.

2. Prove Check 73.4.

3. Prove Check 73.3.
4. Fill in the details of the proof of Theorem 73.7.

5. Prove that the Lindemann-Weierstraß Theorem 73.7 is equivalent Corollary 73.10.

6. Let α be a nonzero algebraic number. Prove that tanα, sinhα, and tanhα are all
transcendental over Q.

7. Let α 6= 1 be an algebraic number. Show that the inverse trigonometric and inverse
hyperbolic trigonometric functions defined at α are transcendental over Q.

8. Let P (t0, . . . , tn) ∈ Ω[t0, . . . , tn] be nonzero with the property that no nonzero polyno-
mial in Ω[t0] divides P (t0, . . . , tn) in Ω[t0, . . . , tn]. Show if α0, . . . , αn are algebraic num-
bers that are linearly independent over Q and β is a nonzero root of P (t0, e

α1t, . . . , eαnt),
then β is transcendental over Q.
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74. Gelfond-Schneider Theorem

In this section we shall prove the Gelfond-Schneider Theorem that shows that Hilbert’s
seventh problem has a positive answer, i.e., if α and β are algebraic over the rationals
with α 6= 0 or 1 and β not a rational, then αβ is transcendental over Q. A geometric
formulation of Hilbert’s problem is: Suppose that the ratio of the base angle to the angle
at the vertex in an isosceles triangle is algebraic but not rational. Is the ratio between
base and side always transcendental? Hilbert seventh problem was proved independently
by Gelfond and Schneider in 1934.

Let Ω denote the algebraic closure of Q in C. If α ∈ C\Ω. we just say α is transcenden-
tal (i.e., it is transcendental over Q in C). We shall prove the Gelfond-Schneider Theorem
using Schneider’s approach as modified by Lang. Like the proof of e and π, this calls for
delicate bounds on the size of functions. In this case, our functions will be meromorphic
functions on the complex plane. We shall assume facts needed from complex analysis, but
these are rather minimal. We shall also need some facts about integral elements. These
will be proved later in the book but stated and are not deep.

We begin with material that we shall need in this section.
We use the notion about algebraic numbers and algebraic integers set up in the last

section. So if Ω/K/Q is a field extension, ZK is the ring of algebraic integers in K, i.e., the
set of elements in K satisfying a monic polynomial in Z[t]. (As remarked in the previous
section it is a domain by Corollary 79.7 below.) It also satisfies Remarks 73.6. If KQ
is finite, K is called an algebraic number field of degree [K : Q].algebraic number field In
addition, we shall need the following whose proof can be found in Corollary 80.8 below:

Theorem 74.1. Let K/Q be a number field of degree s. Then ZK is a free Z-module (i.e.,
free abelian group) of rank s.

A basis for Zk is called an integral basis for ZK . For example, Z[
√
−1] = ZQ(

√
−1) has

{1,
√
−1} as an integral basis.

[It is not true in general if K = Q(α) with α integral over Z that ZK = Z[α].]

We shall use the following notation:

Notation 74.2. Let K/Q be a number field and α ∈ K. Let α1, . . . , αn be all the
conjugates of α in a normal extension of Q(α)/Q, e.g., in Ω. We define

α := max{|αi| | i = 1, . . . n}.

Let S be a non-empty connected open subset (called a region) of the complex plane.
A complex-valued function f(z) on S is called analytic (or holomorphic) if it converges to
its Taylor series on an open neighborhood for each of the points in S. In particular, f(z)
is infinitely differentiable. A complex-valued function is called an entire function if it is
analytic at each point in C. A complex-valued function f(z) is called meromorphic if at
each point in z0 ∈ S, there exists an open neighborhood U of z0 such that f(z) is analytic
at each point in U \ {z0}. If f is meromorphic at z0, then f(z) =

∑∞
n=d an(z − z0)n with

ad 6= 0 for some d ∈ Z on some open neighborhood of z0. If d ≥ 0, then f(z) is analytic
at z0 and we call z0 a zero of order d of f(z). If d < 0, we call z0 a pole of order |d| of
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f(z). A meromorphic function f is a quotient of two analytic functions, the denominator
not the zero function, with any pole z0 of f coinciding with the zero of the denominator
at z0 of the same order.

We shall also need a special case of the Maximum Modulus Principle that we state
without proof. (It is usually proved using Cauchy’s Theorem.)

Theorem 74.3. (Maximum Modulus Principle) Let DR = {z ∈ C | |z)| ≤ R} be the
closed disc of radius R in C. If f(z) is a continuous function on DR that is analytic in
the interior of DR, i.e., in {z ∈ C | |z| < R}, then f(z) assumes its maximal value on
DR on its boundary {z ∈ C | |z| = R}.

We shall also need the following notation:

Let f(z) be a complex-valued function on an unbounded region S in C and g(x) a
positive real-valued function defined for all x ≥ 0. We write

|f(z)| = O(f(|z|) if |f(z)| ≤ Cg(|z|) for all z ∈ S

for some constant C > 0.

If f is an entire function, we say f is of order ≤ ρ for ρ ≥ 0 if f(z) = O(e|z|
ρ
). As usual,

we let f (i)(z) denote
di

dzi
f(z) for all i ≥ 0 (with f(z) = f (0)(z)). If f(z) is a meromorphic

function on C, and f = g/h with g and h entire, h(z) not the zero function, with h having
zeros only at the poles of f , then we say the order f has ≤ ρ if g has order ≤ ρ.

The set of analytic functions on a region S is a domain with the set of meromorphic
functions on S its quotient field. As with fields, a meromorphic function f(z) on C
is called transcendental if it is transcendental over C(z). A collection of meromorphic
functions f1, . . . , fn on C is called algebraically independent over C, if for any nonzero
polynomial P ∈ C[t1, ..., tn], the function P (f1, ..., fn) is not the zero function. Otherwise,
the functions are called algebraically dependent.

With these preliminaries, we start the proof of the Gelfond-Schneider Theorem with
estimates of upper bounds of nontrivial solutions of certain systems of linear equations.

Lemma 74.4. Let

(*)

a11x1 + · · · + a1nxn = 0
...

...
am1x1 + · · · + amnxn = 0

be a system of linear equations in n unknowns x1, . . . , xn with aij ∈ Z not all zero, i =
1, . . . ,m and j = 1, . . . n. Suppose that n > m ≥ 1. Then there exists a nontrivial solution
x1, . . . , xn to the linear system (*) in Z satisfying

|xj| ≤ 1 + (nA)
m

n−m

for j = 1, . . . , n with A = max
i,j
|aij|.

Proof. We may assume that A > 0, otherwise we are done. Let M > 0 in Z. To each
of the (2M + 1)n n-tuples w = (w1, . . . , wn) ∈ Zn with |wi| ≤ M for i = 1, . . . , n, there
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exists an m-tuple v = (v1, . . . , vm) ∈ Zm defined by vi =
∑n

j=1 aijwj for i = 1, . . . ,m.

Since |vi| ≤ nAM , at most (2nAM + 1)m of these can be distinct. Thus if

(i) (2nAM + 1)m < (2M + 1)n

two of these m-tuples say v and v′ must be equal. Let w′ and w′′ correspond to v and v′ in
Zn, respectively. Therefore, the components xj of w′ − w′′ with |xj| ≤ 2M , j = 1, . . . , n,
give a nontrivial solution. So we must find an M satisfying (i) and

(ii) 2M ≤ 1 + (nA)
m

n−m .

Let M be the greatest integer in 1
2

+ 1
2
(nA)

m
n−m . Then

2
(1

2
+

1

2
(nA)

m
n−m
)
≤ 2M ≤ 2

(1

2
+

1

2
(nA)

m
n−m
)

+ 2.

Therefore, M satisfies (ii) and

2M >
(1

2
+

1

2
(nA)

m
n−m
)
− 2.

Hence (2M + 1) > (nA)
m

n−m and

(2M + 1)n = (2M + 1)n−m(2M + 1)m > (nA)m(2M + 1)m > (2nAM + 1)m

satisfies (i) as needed. �

Lemma 74.5. Let K/Q be a finite extension of degree s and

(*)

a11x1 + · · · + a1nxn = 0
...

...
am1x1 + · · · + amnxn = 0.

be a system of linear equations in n unknowns x1, . . . , xn with aij ∈ ZK not all zero,
i = 1, . . . ,m and j = 1, . . . , n. Suppose that n > sm. Then there exists a nontrivial
solution (x1, . . . , xn) to the linear system (*) in Zn

K satisfying

|xi| ≤ 2(cnA)
sm

n−sm

with A = max
i,j

aij and c > 0 a constant depending only on K.

Proof. Let {v1, . . . , vs} be an integral basis for ZK in K. Then there exist bijk ∈ Z
such that

(†) aij =
s∑

k=1

bijkvk.

Hence, the system of linear equations (*) is equivalent to the system of linear equations
n∑
j=1

bijkxj = 0, i = 1, . . . ,m and k = 1, . . . , s.

Therefore, to prove the lemma, it suffices to find a constant c such that

cA ≥ B := max
i,j,k
|bijk| ≥ 1.
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Let T : K ×K → Q be the map given by (x, y) 7→ TrK/Q(xy). As K/Q is separable, this
map is non-degenerate, i.e., T (x, y) = 0 if and only either x = 0 or y = 0 by Dedekind’s
Lemma 54.3. By Lemma 80.1, there exist w1, . . . , wn in K satisfying T (vi, wj) = δij.
Hence

bijk = TrK/Q(aij) =
∑
σ

σ(aij)σ(wk)

by (†), where σ run over all the distinct Q-homomorphisms σ : K → L and L/K is the
normal closure of K/Q. Therefore, B ≤

∑s
k=1 wk A, with c = wk . �

The key to Schneider’s proof of the Gelfond-Schneider Theorem is his theorem that
bounds m points in C that are not poles of two algebraically independent meromorphic
functions both of order at most ρ if certain algebraic and analytic conditions are met.
Explicitly,

Theorem 74.6. (Schneider) Let f1(z) and f2(z) be meromorphic functions on the whole
complex plane each of order ≤ ρ and z1, . . . , zm be distinct points in C that are not poles
of f1 or f2. Suppose that fi, i = 1, 2, satisfy all of the following conditions:

(1) f
(k)
i (zl), i = 1, 2, lies in K for all k ≥ 0 and l = 1, . . . ,m with K/Q finite of

degree s.

(2) There exists b ∈ Z+ satisfying bk+1f
(k)
i (zl) ∈ ZK for all i, k, l.

(3) There exists a constant η ∈ Z+ such that f
(k)
i (zl) = O(kηk).

(4) f1 and f2 are algebraically independent.

Then m ≤ ρ(4sη − 2η + 2s+ 1).

We will prove the theorem in a number of steps. The idea is to define a function F (z)
that satisfies F (z) = P

(
f1(z), f2(z)

)
where P is a polynomial in Z[t1, t2] having conditions

bounding its coefficients in such a way that F (z) has zeros of a high order depending on
degP (the total degree) at all the points z1, . . . , zm with f1(z) and f2(z) satisfying all the
conditions of Schneider’s Theorem 74.6.

We begin with a lemma extending the previous two lemmas when conditions of Schnei-
der’s Theorem 74.6 holds.

Lemma 74.7. Let f1(z) and f2(z) be meromorphic functions on the whole complex plane
each of order ≤ ρ and z1, . . . , zm be distinct points in C that are not poles of f1 or f2.
Suppose that the conditions (1) (with K/Q finite of degree s), (2), and (3) of Schneider’s
Theorem 74.6 holds with the same notation as in that theorem. Let M be a positive integer
satisfying

M | 2sm and N :=
M2

2sm
.

and

F (z) =
M∑
i,j=1

cijf
i
1(z)f j2 (z)
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with integer coefficients cij, i, j = 1, . . . ,M . Suppose that F (z) has a zero of order at least
N at each zi, i = 1, . . . ,m, i.e, F (k)(zl) = 0 for k = 0, . . . , N − 1 and l = 1, . . . ,m. Then
there exist cij ∈ Z not all zero satisfying

|cij| < δNN ( 1
2

+η)N

for some constant δ independent of M and N .

Proof. The requirement that the F (k)(zl) = 0 for k = 0, . . . ,M − 1 and l = 1, . . . ,m
is equivalent to the system of N linear equations

(i) Lkj :=
M∑
i,j=1

cij(f
i
1f

j
2 )(k)(zl) = 0, k = 0, . . . , N − 1, l = 1, . . . ,m

in the M2 variables cij, has a nontrivial solution in integers.

By Leibnitz Formula for differentiation, we see that the term (f i1f
j
2 )(k)(zl) can be expressed

as a sum of (i+ j)k terms, each having the form of a constant times

(ii) f
(k1)
1 · · · f (ki)

1 f
(ki+1)
2 · · · f (ki+j)

2 (zl) with k1 + · · ·+ ki+j = k.

With η as in condition (3) of Schneider’s Theorem 74.6 and the definition that N =
M2

2sm
, we see that there exists constants C1 and C2 satisfying:

(74.8)

(f il f
j
2 )(k)(zl) ≤ (i+ j)kCi+j

1 kηk11 · · · kηki+ji+j

≤ (2M)kC2M
1 kη(k1+···+ki+j) = (2M)kC2M

1 kηk

< CN
2 N

N
2 NηN .

By condition (2) of Schneider’s Theorem 74.6 that there exists a nonzero integer b such

that bkn+1f
(kn)
i (zl) ∈ ZK for all i, kn and l. It follows by equation (ii) that

(iii) aijkl = bi+j+k(f i1f
j
2 )(k)(zl) ∈ ZK

for all i, j, k, l. So the system of linear equations (i) is equivalent to the linear system

(iv) bi+j+kLkj :=
M∑
i,j=1

cijaijkl = 0, k = 0, . . . , N − 1, l = 1, . . . ,m,

with

(v) aijkl ≤ bi+j+kCN
2 N

( 1
2

+η)N < CN
3 N

( 1
2

+η)N

for all i, j, k, l for some constant C3.

We can now apply Lemma 74.5 with the integer n in that lemma with our M2 and the
m in that lemma with our our mN and the same constant c > 0 arising in that lemma.
Hence N > sM and sM

N−sM = 1 assures a nontrivial solution to the linear system (iv),
hence to the linear system (i) with

(74.9) |cij| < 2cM2CN
3 N

( 1
2

+η)N < δNN ( 1
2

+η)N

for some constant δ as needed. �
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We now want to estimate lower and upper bounds for |F q(zl)| for suitable q ≥ N where
F (z) is as in Lemma 74.7 under further conditions that will lead to a proof of Schnei-
der’s Theorem 74.6 if we also assume condition (4), i.e., f1(z) andf2(z) are algebraically
independent.

In the proof of these bounds, we shall use the following notation:

Notation 74.10. The function τi = τi(q) will denote a function of q ∈ Z+ satisfying
limq→∞ τi(q)/q

εq = 0 for all ε > 0. [The τi will come up sequentially in the proofs below.]

Lemma 74.7 allows us to obtain a lower bound given by the following proposition.

Proposition 74.11. Let all conditions of Lemma 74.7 hold. In addition, suppose for
some l that F (q)(zl) is nonzero at q. Hence by assumption q ≥ N . Then there exists
τ2 = τ2(q) such that

|F (q)(zl)| ≥ τ2q
(1+2η)(s−1)q.

Proof. By equations (74.8) and (74.9) in the proof of Lemma 74.7, we see that (as
there are M2 terms)

F (q)(zl) < M2δNN ( 1
2

+η)N(2M)qC2M
1 qηq.

Since M =
√

2sm and N ≤ q, we deduce that

F (q)(zl) ≤ τ1q
(1+2η)q

for some τ1 = τ1(q). As F (q)(zl) has s conjugates whose product is its nonzero norm, it
follows that

|F (q)(zl)| ≥
|NK/Q

(
F (q)(zl)

)
|

τ s−1
1 q(1+η)q(s−1)

.

By condition (2) of Schneider’s Theorem 74.6 and Lemma 74.7 (and equations (ii) and
(iii) in its proof), there exists a positive integer b such that 0 6= b2M+qF (q)(z1) lies in ZK .
Therefore,

|NK/Q

(
F (q)(zl)

)
| ≥ 1

b(2M+q)s
.

Hence

|F (q)(z1)| > 1

τ2q(1+2η)(s−1)q

for some τ2 = τ2(q) as needed. �

Next we compute an upper bound.

Proposition 74.12. Let all conditions of Lemma 74.7 hold. In addition, suppose that
F (q)(zl), l = 1, . . . ,m, has zeros of order ≥ q at each zl, l = 1, . . . ,m. Then there exists
an l, 1 ≤ l ≤ m, satisfying

|F (q)(zl)| < τ6q
( 3
2

+η−m
2ρ

)q

for some τ6 = τ6(q).
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Proof. By condition (4) of Schneider’s Theorem 74.6, f1 and f2 are algebraically
independent (which we did not use to obtain the lower bound). In particular, F (z) cannot
be the zero function. So in Lemma 74.7, we may assume at least one of the integers cij is
not zero. Choose q ≥ N such that F (q)(zl) has a zero of order ≥ q and exactly q for some
l. Changing notation, we may assume that l = 1. The Taylor series of F at z1 is

(1) F (z) =
F (q)(z1)

q!
(z − z1)q + · · · with F (q)(z1) =

q!F (z)

(z − z1)q

∣∣∣
z=z1

.

The hypotheses of Schneider’s Theorem 74.6 insures that there exist entire functions
h1, h2 of order ≤ ρ with hi(z1) 6= 0 for i = 1, 2 and hifi entire functions for i = 1, 2.

Set H = hM1 h
M
2 . Then HF is an entire function with zeros of order ≥ q at zl,

l = 1, . . . ,m. Let

(2) G(z) =
H(z)F (z)∏m
l=1(z − zl)q

.

Then G is an entire function satisfying

(3) |F (q)(z1)| = |G(z1)|
∣∣q!∏m

l=2(z1 − zl)q

H(z1)

∣∣.
by equation (1).

By Sterling’s Formula (i.e., limq→∞
q!√

2πq(q+1)/2e−q=1
), we have the second factor of the

right hand side of equation (3) satisfies

(4)
∣∣q!∏m

l=2(z1 − zl)q

H(z1)

∣∣ < τ3q
q.

for some τ3 = τ3(q). So we are reduced to determining an upper bound for |G(z1)|. By
the special case of the Maximum Modulus Principle 74.3,

|G(z1)| ≤ max
|z|=R

|G(z)| for all R > |z1|.

Assuming that R ≥ 1 + max
l
|zl|, we have the denominator of the righthand side of (2)

satisfies

(5) |
m∏
l=1

(z − zl)q| ≥ (DR)mq,

for some constant D > 0 independent of R.

As |cij| ≤ δNN ( 1
2

+η)N by Lemma 74.7 and hi, hifi, i = 1, 2, are all of order ≤ ρ, there
exists a constant C1 such that for z satisfying |z| = R, we have

(6) |H(z)F (z)| ≤M2δNN ( 1
2

+η)N(C1e
Rρ)2M ≤ τ4q

( 1
2

+η)qe2MRρ

for some τ4 = τ4(q). Using equations (2)-(6), we see that

(7) |F (q)(z1)| < τ5q
( 3
2

+η)qe2MRρ

Rmq
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for some τ5 = τ5(q). Set R = q
1
2
ρ. Then for all sufficiently large M > 0, also N will be

large enough so that with q > N and all the above will hold. In particular, equation (7)
becomes

|F (q)(z1)| < τ6q
( 1
2

+η−m
2ρ

)q

for some τ6 = τ6(q) as desired. �

Proof. (of Schneider’s Theorem 74.6). Under the hypotheses of Schneider’s Theorem
74.6, by the lower and upper bounds on |F (q)(z1)| established in the last two propositions
with M > 0 sufficiently large, we can make N , hence q ≥ N sufficiently large so that both
of these bounds hold simultaneously. Hence

3

2
+ η − m

2ρ
≥ −(1 + 2η)(s− 1),

i.e, m ≤ ρ(4sη − 2η + 2s+ 1), as needed. �

We want to use Schneider’s Theorem 74.6 to prove the Gelfond-Schneider Theorem
that solves Hilbert’s Seventh Problem. We shall show that the meromorphic functions
in Schneider’s Theorem 74.6 have further analytic properties. In particular, we want the
following local conditions at a point z0 to hold:

Conditions 74.13. Letf1, . . . , fn be meromorphic functions and z0 ∈ C. Then f1, . . . , fn
satisfy all of the following:

(i) K/Q is a finite algebraic extension in C.
(ii) fi(z), i = 1, . . . n, are defined and analytic on an open neighborhood of z0.

(iii) f1(z0), . . . , fn(z0) all lie in K.
(iv) The derivative d/dz maps the ring K[f1, . . . fn] to itself, i.e.,

d

dz
: K[f1, . . . , fn]→ K[f1, . . . , fn].

This will be applied in the following way.

Construction 74.14. Let f(z) be a meromorphic function that satisfies a differential
equation

(74.15)
dnf

dzn
= f (n)(z) = P (f (n−1), f (n−2), . . . , f ′, f)

with P ∈ Ω[t1, . . . , tn]. Suppose that f(z) is analytic at z0 and satisfies f(z0), . . . , fn−1(z0)
are all algebraic over Q. Let K/Q be the algebraic number field generated by the (finitely
many) coefficients of P and the f (i)(z0), i = 0, . . . , n− 1. Let U be an open neighborhood
of z0 on which f is analytic and defined.

We shall show that if f1, . . . , fn satisfy Conditions 74.13 at z0, i.e., such a K/F finite
exists, then fi, i = 1, . . . , n, satisfy conditions (1), (2), and (3) in Schneider’s Theorem
74.6 at z0.

Note that Condition 74.13(iv) says that there exist P1, . . . , Pn ∈ K[t1, . . . , tn] such
that

(74.16) f ′i =
dfi
dz

= Pi(f1, . . . , fn) for each i = 1, . . . , n.
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This is where Condition 74.13(iv) is crucial. Upon taking derivatives, we only want
algebraic numbers arising as coefficients. For example, if f1 = eαz with α algebraic, then
P ∈ K[t] and K will have to contain α. We now how show we use Condition 74.13(iv) in
this construction.

A map D : A→ A of an R-algebra is called a derivation if it is an R-module map that
satisfies Leibnitz’s Rule D(ab) = D(a)b+ aD(b) for all a, b ∈ A. For example, Condition
74.13(iv) implies that

D : K[t1, . . . , tn]→ K[t1, . . . , tn] given by Dti = Pi

is a well-defined K-derivation. In particular,

(74.17) if Q ∈ K[t1, . . . , tn], then DQ =
n∑
i=1

∂Q

∂ti
Pi.

Therefore, if

(74.18) g(z) = Q
(
fi(z), . . . , fn(z)

)
,

we have

(74.19) g(k) =
dk

dzk
g = DkQ(f1, . . . , fn) for l = 0, . . . , n.

Condition 74.13(iii) says g(k)(z0) ∈ K for all k ≥ 0 for some K/Q finite. If g = fi with
i = 1 or 2, the meromorphic functions in Schneider’s Theorem 74.6, then this is precisely
condition (1) of Schneider’s Theorem 74.6.

Let d = max(degQ, degP1, . . . , degPn) (where degree is the total degree) and b > 0
is an integer such that for any α, a coefficient of Q or a coefficient of any the Pi with
e1 + · · ·+ en ≤ d, then b

(
αf e11 · · · f enn (a0)

)
lies in ZK . It follows by induction that

bk+1DkQ
(
f1(z0), . . . , fn(z0)

)
= bk+1g(k)(z0) lies in ZK for all k ≥ 0.

For g = fi, i = 1 or 2, in Schneider’s Theorem 74.6, this is precisely condition (2).

We turn to showing that condition (3) of Schneider’s Theorem 74.6 holds, i.e.,

g
(k)
l (z0) = O(kηk),

if Conditions 74.13 holds. To do this, we need a new relation.

Definition 74.20. Let R =
∑

i1,...,in
ri1,...,int

i1
1 · · · tinn ∈ C[t1, . . . , tn] and

S =
∑

i1,...,in
si1,...,int

i1
1 · · · tinn ∈ R[t1, . . . , tn]. We write R << S if |ri1,...,in| ≤ si1,...,in

for all i1, . . . , in.

Remark 74.21. The relation << preserves addition and multiplication.

Computation 74.22. Suppose in the definition of << that degR = r. Then R <<
C(1 + t1 + · · · + tn)r for some constant C > 0. In particular, if the P1, . . . , Pn are as in
Construction 74.14, there exists a constant B > 0 and an h ∈ Z+ satisfying

Pi << B(1 + t1 + . . . tn)h+1
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for all i = 1, . . . , n using Remark 74.21. We also have

∂Pi
∂ti

<< rC(1 + t1 + · · · tn)r−1.

By Remark 74.21 and equation (74.17), we have

DR << nrCB(1 + t1 + · · · tn)r+h.

Hence by induction on k, we have

DkR << CnkBk
(
(r)(r + h) · · · (r + (k − 1)h)

)
(1 + t1 + · · ·+ tn)r+kh

<< Ck
Rk!(1 + t1 + · · ·+ tn)r+kh.

for some constant CR > 0.

An easy application of Computation 74.22 upon an appropriate evaluation, now shows
that condition (3) of Schneider’s Theorem 74.6 holds under the assumption that Condi-
tions 74.13 hold. In particular, if we assume that condition (4) of Schneider’s Theorem
74.6 holds, we have the following

Theorem 74.23. (Lang) Let f1(z), . . . , fn(z) be meromorphic functions on the whole

complex plane of order ≤ ρ and K/Q a finite extension of degree s with
d

dz
a K-derivation

on K[f1, . . . , fn]. Let z1, . . . , zm be distinct points in C none of which are poles of fi,
i = 1, . . . , n with fi(zl) ∈ K for i = 1, . . . , n and l = 1, . . . ,m. Suppose at least two of
f1, . . . , fn are algebraically independent. Then m ≤ ρ(6s− 1).

Proof. Our hypothesis includes condition (4) of Schneider’s Theorem 74.6. Let R be
as in Computation 74.22. In equations (74.17) – (74.19) of Construction 74.14, suppose
that R = Q. Then

g(k)(z0) = DkQ(f1(z0), . . . , fn(z0))

≤ Ck
Qk!(1 + f1(z0) + · · ·+ fn(z0) )r+kh ≤ Ckk!.

for some constant C. Since k! ≤ kk, we have

g(k)(z0) = O(kηk)) for all η > 1.

This shows that condition (3) of Schneider’s Theorem 74.6 holds. Since condition (3)
holds for all η > 1, it follows that m ≤ ρ(6s− 1). �

Lang’s Theorem 74.23, shows if that if the conditions of Schneider’s Theorem 74.6
holds, that there is a strict bound on the the number of points solving all the hypotheses of
the theorem. In particular, if Conditions 74.13 hold, but algebraic independence condition
in the theorem, e.g., condition (4) of Schneider’s Theorem 74.6 does not hold, can lead
to a transcendental element. So to apply Lang’s Theorem 74.23, we need a property that
will allow us to determine a transcendental element. Such a condition is given by the
following theorem.
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Theorem 74.24. Let K/Q be a finite extension and f1(z), . . . , fn(z), n ≥ 2, be mero-
morphic functions on the whole complex plane of order ≤ ρ <∞. Suppose that

d

dz
: K[f1, . . . , fn]→ K[f1, . . . , fn]

is a K-derivation with at least two of the f1, . . . , fn are algebraically independent over
K. Suppose, in addition, that there exists Ri ∈ K(t1, . . . , tn, t

′
1, . . . , t

′
n) (i.e., rational

functions), where t1, . . . , tn, t
′
1, . . . , t

′
n are 2n independent variables, satisfying for all x, y ∈

C and i = 1, . . . , n the equation

(*) fi(x+ y) = Ri

(
f1(x), . . . , fn(x), f1(y), . . . , fn(y)

)
.

[We allow the case that fi(x + y) = ∞.] Let 0 6= α ∈ K not be a pole of any of the fi,
i = 1, . . . , n. Then at least one of f1(α), . . . , fn(α) is transcendental over K.

Proof. We first note that if x ∈ K. Then the minimal polynomial mQ(x) ∈ Q[t] has
at most degmQ(x) distinct roots in K. Now suppose that all the fi(α) are algebraic over
Q, Enlarging K, we may assume without loss of generality that fi(α) ∈ K for all i. By (*),
it follows that fi(λα) ∈ K for all i = 1, . . . , n and all λ ∈ Z+. It follows by the beginning
note that the denominators of Ri, i = 1, . . . , n, have at most finitely many zeros, hence
finitely many poles. Omitting all such poles, the result follows by Lang’s theorem. �

For example, if we want to apply the theorem to the example K = Q, f1(z) = z,
f2(z) = cos z, f3(z) = sin z, we know that R1 = t1 + t′1, R2 = t2t

′
2, and R3 = t2t

′
3 + t3t

′
2,

then the theorem would apply for algebraic α 6= 0, if at least one of f1(α), f2(α), f3(α),
was transcendental over Q if we knew that two of these f1, f2, f3 were algebraically inde-
pendent. (This is, in fact, true.)

We show an easier case (whose conclusion is really Lindemann’s Theorem).

Corollary 74.25. Let K/Q be finite, f1(z) = z, f2(z) = ez, R1 = t1 + t′1, and R2 = t2t
′
2.

Then for any nonzero α, one of α and eα is transcendental over K.

Proof. We need to show that z and ez are algebraically independent. Suppose this
is false. Then there exists an identity

(*) znP0(ez) + zn−1P1(ez) + · · ·Pn(ez) = 0

with Pi ∈ K[t] and P0 not zero. Choose α satisfying P0(eα) is not zero. Let zk =
α + 2π

√
−1 k , k = 0, 1, 2, . . . . Evaluating (*) at zk shows that

znkP0(eα) + zn−1
k P1(eα) + · · ·+ Pn(eα) = 0

for all k. In particular, tnP0(eα)+ tn−1P1(eα)+ · · ·+Pn(eα) = 0 has infinitely many roots,
which is impossible. Therefore, by Theorem 74.24, for any nonzero α, at least one of α,
eα is transcendental. �

Examples 74.26. 1. Setting α = 1 in the corollary, we see that e is transcendental over
Q, proving Hermite’s Theorem.

2. Let β be algebraic and nonzero. Since β = elog β, any nonzero value of log β is transcen-
dental over Q. In particular, setting β = 1, we see that 2πn

√
−1 is transcendental over

Q. for all non-zero n. In particular, π is transcendental over Q That was Lindemann’s
application of his theorem.
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3. Let β ∈ Ω be nonzero. Suppose that S ⊂ C and ϕ is an arbitrary function defined
on S satisfying ϕ(z) and eβz

∣∣
S

are algebraically dependent over Ω. Then ϕ(α) is
transcendental for all nonzero α in S ∩ Ω. Indeed, suppose that ϕ(α) ∈ Ω. Then we
have an equation

(eβz)nP0

(
ϕ(z)

)
+ (eβz)n−1P1

(
ϕ(z)

)
+ · · ·+ Pn

(
ϕ(z)

)
= 0

for all z ∈ S with P0, . . . , Pn ∈ Ω[t] relatively prime. As ϕ(α) ∈ Ω, we must have
Pi
(
ϕ(α)

)
6= 0 for at least one i as the Pi are relatively prime in Ω[t]. Setting z = α, we

have that eβα lies in Ω. But either βα or eβα is transcendental, a contradiction.
In particular, setting β =

√
−1, we have cosα is transcendental over Q for all

nonzero α ∈ Ω, as (e
√
−1x)2 + 1 − 2e

√
−1x cosx = 0. for all x ∈ R with ϕ(z) = cos z.

Similarly, sinα is transcendental for all nonzero α ∈ Ω.

Theorem 74.27. Let β be a non-rational algebraic integer, K = Q(β), f1(z) = eβz,
f2(z) = ez. Suppose that R1 = t1t

′
1 and R2 = t2t

′
2 and eβz and ez are algebraically

independent. Then at least one of eβα, eα is transcendental over Q for all nonzero α ∈ C.

Proof. The proof is similar to the proof of Corollary 74.25. Suppose that eβt, et are
algebraically dependent. Then we have an equation

(eβz)nP0(ez) + (eβz)n−1P1(ez) + · · ·Pn(ez) = 0

with Pi ∈ K[t] and P0 not zero. Let γ ∈ C satisfy P0(eβγ) 6= 0. Since β is not rational, the

numbers eβ(γ+2kπ
√
−1) = eβγe2kβπ

√
−1, k = 1, 2, . . . are all distinct. Then zk = γ+2kπ

√
−1

are infinitely many roots of

tnP0(eγ) + tn−1P1(eγ) + · · ·Pn(eγ) = 0

which is impossible. The result follows by Theorem 74.24. �

Example 74.28. Applying the theorem to ez, e
√
−1 z, we see that eπ is transcendental.

Similarly, e−π is transcendental.

The major application of the Theorem 74.27 is the solution of Hilbert’s seventh prob-
lem.

Theorem 74.29. (Gelfond-Schneider) Let α, β be algebraic numbers with α 6= 0, 1 and β
not rational, then αβ is transcendental over Q.

Proof. By the theorem, if α 6= 0 and β is algebraic and not rational, at least one of
eβγ, eγ must be transcendental over Q. Setting α = eγ gives the result. �

We have shown that if α 6= 0, 1 and αβ are both algebraic, then β = log(αβ)/ logα)
must be a rational number or transcendental over Q. So the Gelfond-Schneider Theorem
says:

Corollary 74.30. If α and γ are both nonzero algebraic numbers and α 6= 1, then β =
log γ/ logα must be rational or transcendental over Q.

It also follows that

Corollary 74.31. Let β ∈ C be irrational and α ∈ C nonzero. Then at least one of
β, eα, eβα is transcendental.
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In fact, these two corollaries are equivalent to the Gelfond-Schneider Theorem. The most

famous examples of the Gelfond-Schneider theorem are 2
√

2 and
√

2
√

2
. Note also that

eπ = (−1)
√
−1 and e−

π
2 =
√
−1
√
−1

.

Remark 74.32. Theorem 74.24 is applicable to the analogue for the tangent, hyperbolic
sine, hyperbolic cosine, and hyperbolic tangent functions. We leave these as exercises.
Theorem 74.24 is also applicable to the Jacobi elliptic sine, cosine, and delta amplitude
which are meromorphic in the whole complex plane and of order ρ ≤ 3.

Using Using these methods, Lang proved (which we will not) the following theorem.

Theorem 74.33. (The Six Exponentials Theorem) Let γ1, γ2, and γ3 be linearly inde-
pendent complex numbers over the rationals and that β1 and β2 are linearly independent
complex numbers over the rationals. Then at least one of the numbers eγiβj , i = 1, 2, 3
and j = 1, 2, is transcendental.

Exercise 74.34. 1. If P is a polynomial of degree d, determine the order of the function
eP (z).

2. Prove that if f is an entire function of order ≤ ρ, then its derivative f ′ has order ≤ ρ.

3. Show that tanα is transcendental over Q if α is a nonzero algebraic number.

4. Show that sinhα, coshα, and tanhα are transcendental over Q if α is a nonzero alge-
braic number.

5. Show that the statement if α and β are nonzero algebraic numbers with logα and log β
linearly independent over Q, then they are linearly independent over Ω is equivalent to
the Gelfond-Schneider Theorem.

6. Show that the statement if α and β are algebraic numbers linearly independent over
Q, then for any 0 6= x ∈ C, at least one of exα and exβ is transcendental over Q. is
equivalent to the Gelfond-Schneider Theorem.





CHAPTER XIV

The Theory of Formally Real Fields

In this chapter, we develop the theory of formally real fields including the standard
results from Artin-Schreier Theory. In particular, we determine the general form of the
Fundamental Theorem of Algebra and solve Hilbert’s seventeenth problem.

75. Orderings

Definition 75.1. A field F is called formally real if −1 is not a sum of squares in F , i.e.,
the polynomial t21 + · · · + t2n has no nontrivial zero over F for any (positive) integer n.
A formally real field is called real closed if it has no proper algebraic extension that is
formally real.

If F is formally real, then the characteristic of F must be zero for if charF = p > 0,
then −1 is a sum of p− 1 squares.

Notation 75.2. For a commutative ring R, let∑
R2 := {x ∈ R | x is a sum of squares in R}.

A field F of characteristic different from two is not formally real if and only if F =∑
F 2. In general,

∑
F 2 is closed under addition and multiplication while

∑
(F 2)× :=∑

(F 2) \ {0} is a multiplicative group.

Definition 75.3. Let R be a commutative ring, P ⊂ R a subset. We say that P is a
preordering of R if P satisfies all of the following:

(1) P + P ⊂ P .
(2) P · P ⊂ P .
(3) −1 /∈ P .
(4)

∑
R2 ⊂ P .

Let

Y(R) := {P | P ⊂ R is a preordering }.
[Of course, Y(R) may very well be empty.] A preordering P ∈ Y(R) is called an ordering
if, in addition,

R = P ∪ −P and P ∩ −P = {0}
where −P := {x | −x ∈ P}.

Let P be a preordering on R. We shall show below that if P is a maximal preordering
(rel ⊂), then R = P ∪−P and P ∩−P is a prime ideal in R. In particular, if R is a field,
this means that P is a maximal preordering if and only if P is an ordering. Note: We
have not excluded 0 from lying in P .

445
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Let

X (R) := {P ∈ Y(R) |P is an ordering of R}.

By definition, a field F is formally real if and only if
∑
F 2 is a preordering. In general,

the preordering
∑
F 2 in a formally real field F is not an ordering. We shall see that

∑
F 2

is an ordering if and only if |X (F )| = 1. For example, this is the case when a formally
real field F is euclidean, i.e., if every element in F is a square or the negative of a square.
For such a field, we even have

∑
F 2 = F 2. For example, the real numbers or the real

constructible numbers are euclidean fields. Of course, in general F 2 6=
∑
F 2. When a

field of characteristic different from two satisfies F 2 =
∑
F 2, it is called pythagorean.

If F is not formally real (and charF 6= 2), then F is pythagorean if and only if it is
quadratically closed, i.e., F = F 2.

Lemma 75.4. Let R be a commutative ring, P ∈ Y(R).

(1) If a, b ∈ R satisfy ab ∈ P then either P + aP ∈ Y(R) or P − bP ∈ Y(R).
(2) If P ∈ Y(R) is maximal (relative to ⊂), then R = P ∪ −P and P ∩ −P is a

prime ideal in R. In particular, if R is a field then P ∈ X (R).
(3) If R is a field, then P is a maximal preordering if and only if P ∈ X (R).

(4) There exists a P̃ ∈ Y(R) containing P and satisfying R = P ∪ −P and P ∩ −P
is a prime ideal in R. In particular, if R is a field, there exists an ordering

P̃ ∈ X (R) containing P .

Proof. (1): We need only show that −1 cannot lie in both P + aP and P − bP . If
it does then there exist x, y, z, w ∈ P satisfying −1 = x+ ay = z − bw, so

(ay)(−bw) = (−1− x)(−1− z) = 1 + x+ z + xz,

hence −1 = x+ z + xz + abyw ∈ P , a contradiction.

(2): If a ∈ R then a2 ∈ P , so by (1), either P + aP ∈ Y(R) or P − aP ∈ Y(R). By
maximality, either a ∈ P or −a ∈ P , so R = P ∪−P . Certainly, P ∩−P is closed under
addition. If x ∈ P ∩−P and y ∈ R then xy = (−x)(−y) ∈ P ∩−P , so P ∩−P is an ideal.
Suppose that ab = (−a)(−b) ∈ P ∩−P . If a /∈ P ∩−P , we may assume that a ∈ −P \P .
Maximality and (1) imply that −b ∈ P . As a(−b) ∈ P ∩ −P also, the same argument
shows that b ∈ P .

(3): If P ∈ X (R), then [R× : P \ {0}] = 2, so P must be a maximal preordering.

(4) follows from (2) and Zorn’s Lemma. �

Proposition 75.5. Let F be a formally real field and P ∈ Y(F ). Then

P =
⋂

P⊂P̃∈X (F )

P̃ .

Proof. The inclusion P ⊂
⋂
P⊂P̃∈X (F ) P̃ is clear. Conversely, suppose that x 6∈ P .

By definition, −1 6∈ P . We show that P − xP ∈ Y(F ). To do this, it suffices to show
that −1 6∈ P − xP . If this is false, write −1 = y − xz with y, z ∈ P . Then z 6= 0 so

x = 1 · z−1 + yz−1 =
z

z2
+
yz

z2
∈ P,
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a contradiction. By the lemma, there exists P̂ ∈ X (F ) such that P − xP ⊂ P̂ . As

x 6∈ P − xP , lest −x2 ∈ P − xP , it follows that −x ∈ P̂ , so x 6∈
⋂
P⊂P̃∈X (F ) P̃ . �

Corollary 75.6. (Artin-Schreier) Suppose that F is formally real. Then
∑
F 2 =

⋂
X (F ) P .

In particular, X (F ) 6= ∅.
Proof. As F is formally real,

∑
F 2 ∈ Y(F ). �

Remark 75.7. Let F be a formally real field and P ∈ X (F ). An element 0 6= x ∈ F is
called positive (respectively, negative) rel P and also written x >P 0 (respectively, x <P 0)
if x ∈ P (respectively, −x ∈ P ). If x ∈

⋂
X (F )Q, i.e., x is positive at every ordering of F

then x is called totally positive (and −x is called totally negative). In particular, we have⋂
X (F )

Q \ {0} = (
∑

F 2)×,

i.e., 0 6= x is totally positive if and only if it is a sum of squares.

If P ∈ X (F ), let ≤P on F denote the total ordering given by x ≤P y if y − x ∈ P .
Of course, if x ≤P y and z ∈ F then x + z ≤p y + z and if, in addition, 0 ≤P z then
xz ≤P yz. We let >P and ≥P have the obvious meaning.

Exercises 75.8.

1. Prove that the field of real constructible numbers C is euclidean and C(
√
−1) is

quadratically closed.

2. Show that a formally real field is euclidean if and only if it is pythagorean and has a
unique ordering.

3. Show the intersection of pythagorean fields is pythagorean.

4. Let F be a formally real field and F̃ an algebraic closure of F . A pythagorean field L
is called a pythagorean closure of F if either L = F or whenever F ⊂ K < L, then K

is not pythagorean. Show that if K is a field in F̃ containing F and is the intersection

of all pythagorean fields containing F in F̃ , then K is pythagorean. In particular, a

pythagorean closure of F in F̃ exists and is unique. It is denoted by Fpyth.

5. Let F be a formally real field and F̃ an algebraic closure. Call a square root tower
F ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn admissible if for each i, 1 ≤ i ≤ n − 1, there exist xi, yi in
Fi−1 satisfying Fi = Fi−1(

√
x2
i + y2

i ). Show the union of all admissible square towers
over F is the pythagorean closure Fpyth of F . In particular, if F is a formally real field,

then the pythagorean closure of F in F̃ exists.

76. Extensions of Ordered Fields

Definition 76.1. Let K/F be a field extension with K formally real. Let P ∈ X (K).
The pair (K,P ) is called an ordered field. If P0 ∈ X (F ) satisfies P0 = P ∩ F , then
(K,P )/(F, P0) is called an extension of ordered fields and P is called an extension of P0.
If there exists no proper algebraic extension L of F with Q ∈ X (L) satisfying Q∩F = P0,
we say that (F, P0) is real closed (rel P0). Let (K,P )/(F, P0) be an extension of ordered
fields. If (K,P ) real closed (rel P ) and K/F is algebraic, (K,P ) is called a real closure
of (F, P0) (rel P0).
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We shall show that given P ∈ X (F ), there exists a real closure of (F, P ) and it
is unique up to a (unique) F -isomorphism. We begin with the following useful result
characterizing extensions of orderings under certain conditions.

Theorem 76.2. Let (F, P ) be an ordered field.

(1) Let d ∈ F and K = F (
√
d). Then there exists an extension of P to K if and

only if d ∈ P .
(2) If K/F is finite of odd degree then there exists an extension of P to K.

Proof. (1): Suppose d ∈ P . We may assume that d ∈ P \ F 2. Let

S = {
∑

xiy
2
i | xi ∈ P, yi ∈ K for all i}.

We show that S ∈ Y(K). Certainly, S is closed under addition and multiplication and
contains

∑
K2. Thus it suffices to show that −1 6∈ S. If −1 ∈ S, we can write −1 =∑

xi(ai + bi
√
d)2 for some ai, bi ∈ F and xi ∈ P . As {1,

√
d} is an F -basis for K, we

arrive at the contradiction that −1 =
∑
xi(a

2
i + b2

i d) ∈ P . This proves that S ∈ Y(K).

By Lemma 75.4, there exists P̃ ∈ X (K) satisfying P ⊂ S ⊂ P̃ . As P is an ordering,

P = P̃ ∩ F . Suppose that d /∈ P . If P̃ ∈ X (K) contains P then d = (
√
d)2 ∈ P̃ ∩ F = P ,

a contradiction.

(2): As the charF is zero, by the Primitive Element Theorem, K = F (x), for some x ∈ K.
Let f be the minimal polynomial of x and suppose that

S = {
∑

aiy
2
i | ai ∈ P, yi ∈ K for all i} 6∈ Y(K).

As K ∼= F [t]/(f), we have an equation,

−1 ≡
∑

aigi(t)
2 mod (f)

for some ai ∈ P and 0 6= gi ∈ F [t] with deg gi < deg f for all i. Lift this to an equation

−1 =
∑

aigi(t)
2 + qf

in F [t]. Since −1 /∈ P , evaluating at x shows that there exists an i with deg gi > 0. Let
m = maxi(deg gi) > 0. Then the coefficient of t2m in

∑
aigi(t)

2 cannot be zero as it is
of the form

∑
amb

2m >P 0. Thus deg qf = 2m. As deg f = n is odd, so is deg q. By
construction, deg q < deg f . Let h | q in F [t] with h ∈ F [t] irreducible of odd degree.
Then −1 ≡

∑
aig

2
i mod (h), so we may repeat the argument. By induction, this reduces

to the case when f is linear where the result is false. �

The first part of the theorem has the immediate corollary.

Corollary 76.3. Let (F, P0) be an ordered field. Suppose that there exists an element d

in P0 \ F 2. Then there exists an proper extension of ordered fields (F (
√
d), P )/(F, P0)

with P0 + dP0 ⊂ P . In particular F (
√
d) is formally real.

We also conclude that

Corollary 76.4. (F, P ) is real closed (rel P ) if and only if F is real closed. Moreover, if
this is the case, then P = F 2.
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Proof. Suppose that (F, P ) is real closed. Let d ∈ P . By the theorem, P extends to

F (
√
d) so d ∈ F 2 by hypothesis. As (F, P ) is real closed, we must have P = F 2 ∈ X (F ).

Since F 2 ⊂ Q for all Q ∈ X (F ), we have X (F ) = {F 2}. Suppose that L/F is algebraic
and L formally real. Let Q ∈ X (L). Then (L,Q)/(F, F 2) is an extension of ordered fields
as F 2 ⊂ Q, hence L = F and F must be real closed.

If F is real closed, then F (
√
d)/F cannot be a nontrivial extension of formally real fields.

It follows by the Corollary 76.3 and Lemma 75.4 that F 2 ∈ Y(F ) is an ordering hence
X (F ) = {F 2}. If L/F is a proper algebraic extension, then −1 ∈ L2 so F ∩L2 cannot be
a preordering on F . It follows that (F, F 2) is real closed. �

There exist fields such that X (F ) = {F 2} but F not real closed, i.e., euclidean fields
that are not real closed. The real constructible numbers is such an example. The theorem
only implies that a euclidean field has no formally real quadratic extensions. It also means
that F (

√
−1) is quadratically closed. Indeed if α = a+ b

√
−1 in F (

√
−1) with a, b ∈ F ,

then there exist c, d ∈ F satisfying

c2 =
a+ ∆

2
and d2 =

−a+ ∆

2

where ∆ =
√
a2 + b2 is the positive square root in F 2 in euclidean F .

Proposition 76.5. Every ordered field (F, P ) has a real closure (F̃ , F̃ 2).

Proof. Let F̂ be an algebraic closure of F . Let P ∈ X (F ). The statement follows
from a Zorn’s Lemma argument on

{F̂ /K/F | (K,Q)/(F, P ) is an extension}. �

Because of the last results, if (K,P )/(F, P0) is a real closure, then P = K2 and K is
real closed so we just say K is a real closure of F rel P .

Corollary 76.6. Let F be a formally real field and P ∈ X (F ). Then there exists a real
closure of (F, P ).

Theorem 76.7. (Fundamental Theorem of Algebra) The following are equivalent:

(1) F is real closed.
(2) F is euclidean and every polynomial f ∈ F [t] of odd degree has a root in F .
(3) F is not algebraically closed but F (

√
−1) is.

Proof. (1) ⇒ (2): We have seen the hypothesis implies that F is euclidean. Let
p ∈ F [t] be irreducible of odd degree. As K = F [t]/(p) is an extension of odd degree any
ordering of F would extend, hence p is linear. (2) easily follows.

(2)⇒ (3): This is the essentially the same proof given for the usual Fundamental Theorem
of Algebra 57.12. Let K = F (

√
−1). Then K is quadratically closed. Let E/K be an

algebraic extension and L/F the normal closure of K/F . If H is a 2-Sylow subgroup
of the Galois group G of L/F , then LH = F (θ) for some θ by the Primitive Element
Theorem, so we must have LH = F by hypothesis. Consequently, G = H and hence must
be trivial as K is quadratically closed.

(3) ⇒ (1): It suffices to show that F is formally real, i.e., −1 /∈
∑
F 2. As

√
−1 /∈ F , it

suffices to show F is pythagorean. Let a, b ∈ F×. We need only show that a2 + b2 ∈ F 2.
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Let f = t4 − 2at2 + (a2 + b2) ∈ F [t]. Then f =
(
t2 − (a + b

√
−1)

)
(t2 −

(
a − b

√
−1)

)
in

F (
√
−1). As F (

√
−1) is quadratically closed, there exist α, β ∈ F (

√
−1) satisfying

α2 = a+ b
√
−1 and β2 = a− b

√
−1,

hence

f = (t− α)(t+ α)(t− β)(t+ β) in F (
√
−1)[t].

As f ∈ F [t] cannot be irreducible and ab 6= 0, either (t− α)(t− β) or (t− α)(t+ β) is an
irreducible factor of f over F . Thus αβ ∈ F , hence

a2 + b2 = (a+ b
√
−1)(a− b

√
−1) = α2β2

lies in F 2. �

It follows that over a real closed field, the only irreducible polynomials are linear
polynomials and irreducible quadratic polynomials of the form at2 + bt+ c with negative
discriminant (in the unique ordering).

Artin and Schreier proved that the conditions of the Fundamental Theorem of Algebra
were also equivalent to: F is not algebraically closed and its algebraic closure is a finite
extension of it. We shall come back to this below. Before showing this, we turn to the
question of uniqueness.

We first need some facts and notation about symmetric bilinear forms over a field of
characteristic different from two. Details are given Appendix E.

Remark 76.8. Let V be a finite dimensional vector space over a field F of characteristic
different from two and B : V × V → F a symmetric bilinear form, i.e., linear in each
variable and B(x, y) = B(y, x) for all x, y ∈ V . We call (V,B) a bilinear space. We say
x, y in V are orthogonal (rel B) if B(x, y) = 0. We call subspaces W1,W2 of V orthogonal
if B(x, y) = 0 for all x ∈ W1, y ∈ W2 and then denote W2 +W2 by W1 ⊥ W2. Every (V,B)
has an orthogonal basis C, i.e., V =⊥v∈C Fv. If B = {v1, . . . vn} is an ordered basis for V ,
then we write [B]B for the matrix representation

(
(B(vi, vj)

)
of B. So B an orthogonal

basis if and only if [B]B is diagonal. If C is another basis, then [1V ]tB,C[B]B[1V ]B,C = [B]C.
We also have B(x+y, x+y) = B(x, x)+2B(x, y)+B(y, y), so B is determined by B(x, x),
x ∈ V (or v in a basis for V ).

Let A be a finite dimensional commutative F -algebra. If a ∈ A let λa : A → A be
the F -linear map given by x 7→ ax. The trace trace : A → F is the trace of a matrix
representation of λa relative to a fixed basis. It is independent of the choice of basis. If
A is a finite separable field extension of F of characteristic different from two, then this
is just TrA/F (cf. Exercise 60.26(6).) Define the trace form of A

ϕ = ϕA : A× A→ F

to be the symmetric bilinear form given by ϕ(x, y) = trace(λxy).

Let B be a symmetric bilinear form over a formally real field F and P ∈ X (F ).
As an ordering on F is induced by the real closure relative to this ordering, the results
of Appendix E hold. In particular, we have the following: [Cf. Proposition E.12 and
Corollary E.16 in Appendix E.]
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If V is the underlying vector space for B, then V has an orthogonal decomposition V =
V+ ⊕ V− ⊕ V0 where if 0 6= v ∈ V then

B(v, v) =


>P 0 if v ∈ V+

<P 0 if v ∈ V−
= 0 if v ∈ V0

with the dimensions of V0, V+, and V− independent of such an orthogonal decomposition.
The integer

sgnP B := dimV+ − dimV−

is an invariant of B, called the signature of B at P , so sgnP B = sgnP [B]B for any basis
B of V .

If K is an extension field of F and B a basis for V , then we let VK be the vector space
over K on basis B. By restricting scalars to F , we see it is also a vector space over F and
there exists a (natural) linear embedding of V into VK by sending B to B. We call this
extension of scalars. [Cf. making a real vector space into a complex one by extending
scalars.] If B is the bilinear form above, define BK : VK×VK → K to be the map additive
in each variable satisfying BK(αv, βw) = αβBK(v, w) for all α and β in K and v, w ∈ B.
Then, if (K,Q)/(F, P ) is an extension, sgnP B = sgnQ(BK).

Computation 76.9. Let (F, P ) be an ordered field, f ∈ F [t] \ F and A = F [t]/(f). Let
: F [t]→ A be the canonical epimorphism and ϕ : A× A→ F the trace form.

Case 1. f = (t− a)n in F [t]:

Let B = {1, t−a, . . . , (t−a)n−1}, an F -basis for A. As (t−a) is nilpotent, trace(λ(t−a)i) = 0
for all i ≥ 1. It follows that the matrix representation of ϕ in the B basis is given by the
diagonal matrix

[ϕ]B =
(
trace(λ(t−a)i(t−a)j))

)
=


n 0 · · · 0
0 0
...

. . .
0 0

 .

Consequently, sgnP ϕ = sgn[ϕ]B) = 1.

Case 2. f = (t2 + at+ b)n in F [t] with a2 − 4b <P 0:

Let B = {1, t, t2 + 1, t(t
2

+ 1), (t
2

+ 1)2, t(t
2

+ 1)2, . . . , (t
2

+ 1)n, t(t
2

+ 1)n}, an F -basis
for A. Computation shows the matrix representation of ϕ in the B basis is given by the
diagonal matrix

[ϕ]B =


2n 0 · · · 0
0 −2n
... 0

. . .
0 · · · 0

 .

Consequently, sgnP ϕ = 0
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The next result, due to Sylvester, is the main ingredient in proving the uniqueness
of real closures relative to a fixed ordering. It replaces the more common use of Sturm’s
Theorem.

Lemma 76.10. (Sylvester) Let (F, P ) be an ordered field and K a real closure of (F, P ).
Suppose that f is a non-constant polynomial in F [t] and A = F [t]/(f). Let ϕ : A×A→ F
be the trace form. Then

sgnP ϕ = the number of roots of f in K.

In particular, the number of roots of f in K depends only on P and is independent of the
real closure K.

Proof. Let ϕ be the trace form on A = F [t]/(f) and f = upe11 · · · perr a factorization
of f into monic irreducibles in K[t] with u ∈ K×. By the Chinese Remainder Theorem,
we have a natural ring (and K-algebra) isomorphism.

AK := K[t]/(f) ∼=
∏

K[t]/(peii ) =
∏

Ai,

where Ai = K[t]/(peii ). We view this as an identification of K-algebras. It is easy to
check that ϕAK (xi, xj) = 0 if xi ∈ Ai and xj ∈ Aj with i 6= j (by writing down an appro-
priate K-basis), hence we can restrict ϕA to each Ai to obtain sgnP ϕ = sgnK2(ϕAK ) =∑r

i=1 sgnK2 ϕAi . Since K is real closed, it follows from the Fundamental Theorem of
Algebra that pi is either linear or quadratic. Therefore, by the computation, we see that

sgnP ϕ =
r∑
i=1

sgnK2 ϕAi =
∑

pij linear

eij .

The result follows. �

Lemma 76.11. Let (F, P ) be an ordered field and K a real closure of (F, P ). Suppose
that E = F (α) is an algebraic extension of F with ϕ = ϕE : E × E → F the trace form.
Suppose that r = sgnP ϕ > 0. Then the minimal polynomial f of α has r roots in K. Let
α1, α2, . . . , αr be these roots. Then there exist at most r distinct and at least one extension

P̃i of P to E. These are induced by the r distinct F -homomorphisms σi : E → K given

by α 7→ αi with P̃i = σ−1
i (K2).

Proof. Every F -embedding of E into an algebraic closure of K must take α to
a root of f . By Lemma 76.10, the polynomial f has r distinct roots in K. Clearly,

P̃i = σ−1
i (K2) ⊃ P . Suppose that Q ∈ X (E) extends P with Q 6= P̃i for 1 ≤ i ≤ r. Then

there exists an ai ∈ E satisfying ai ∈ Q but σi(ai) 6∈ K2 for all i. By repeated application

of Theorem 76.2, there exists Q̃i ∈ X
(
E(
√
a1, . . . ,

√
ar)
)

extending Q. By the Primitive
Element Theorem, there exists β such that F (β) = E(

√
a1, . . . ,

√
ar). Let L be a real

closure of (F (β), Q̃) hence of (F, P ). The minimal polynomial g ∈ F [t] of β has root
β ∈ L, hence a root in K by Lemma 76.10. Therefore, there exists an F -homomorphism
τ : F (β)→ K. As the F -homomorphism τ |E : E → K must satisfy τ |E = σi for some i,

we have σi(ai) = τ(ai) =
(
τ(
√
ai)
)2

lies in K2, a contradiction. �

Theorem 76.12. Let (F, P ) be an ordered field.
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(1) Let (E,Q)/(F, P ) be an algebraic extension of ordered fields and K a real closure
of (F, P ). Then there exists an order preserving F -homomorphism E → K.

(2) Let K1 and K2 be two real closures of (F, P ). Then there exists a unique F -
homomorphism K1 → K2 and it is an order preserving isomorphism.

(3) In Lemma 76.11 and its notation, all the P̃i are distinct. In particular, there
exist precisely r extensions of P to E.

Proof. (1): Apply Zorn’s Lemma to

{M | E/M/F and there exists an order preserving

F -homomorphism ψM : (M,Q ∩M)→ (K,K2)}

to obtain a maximal such M0. Suppose M0 6= E and x ∈ E \M0. Let L be a real closure
of (E,Q). Then f has a root in L so sgnQ∩M0(x) ϕM0(x) > 0. By Lemma 76.11, we can

extend ψM0 : (M0, Q ∩ M0) → (K,K2) to ψM0(x) :
(
M0(x), Q ∩ M0(x)

)
→ (K,K2), a

contradiction. So M0 = E.

(2): By (1) there exists an F -homomorphism σ : K1 → K2. Let τ : K1 → K2 be another
F -homomorphism. Let α ∈ K1 and α1, . . . , αr be the (distinct) roots of the minimal
polynomial f of α in K1. We may assume that

α1 <K2
1
· · · <K2

1
αr

in K1. As σ(K2
1) ⊂ K2

2 and τ(K2
1) ⊂ K2

2 and X (Ki) = {K2
i } for i = 1, 2 both σ and τ

are order preserving. Thus

σ(α1) <K2
2
· · · <K2

2
σ(αr) and τ(α1) <K2

2
· · · <K2

2
τ(αr) in K2.

As these are the roots of f in K2, we have σ(αi) = τ(αi) for all i. In particular, σ(α) =
τ(α). Hence σ = τ .

(3): Suppose in Lemma 76.11 that we have P̃i = P̃j with i 6= j. Let P̃ = P̃i and M a real

closure of (E, P̃ ). By (1), the embeddings σi 6= σj can be extended to F -homomorphisms
M → K. This contradicts (2). �

Exercise 76.13. Show that the field of real constructible numbers C has algebraic ex-
tensions that are not euclidean. In particular, C(

√
−1) is not algebraically closed.

77. Characterization of Real Closed Fields

We turn to the proof of the generalization of the Fundamental Theorem of Algebra
for fields. [We shall prove a version of the usual statement of the Fundamental Theorem
of Algebra for division rings in Theorem 108.12.] The proof is rather intricate in order
to take care of the positive characteristic case. The proof revolves around the study of
primitive prth roots of unity for a prime p. This is necessary in order to reduce to

√
−1,

a primitive fourth root of unity in characteristic zero.
To prove the last Artin-Schreier characterization of real closed fields, we need a few

facts from field theory. These are

Facts 77.1. Let F be a field.
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(1) Let p be a prime. Then Z/prZ is cyclic unless p = 2 in which case (Z/2rZ)× is
not cyclic if r ≥ 3. (Cf. Section F.)

(2) If char F = p > 0 and a ∈ F \F p, then tp
e − a ∈ F [t] is irreducible for all e ≥ 1.

(Cf. Example 50.15(8.))
(3) If charF = p > 0 and a ∈ F satisfies a 6= up−u for any u ∈ F , then tp− t− a ∈

F [t] is irreducible. (Cf. Exercise 56.22(10).)
(4) If charF = p > 0 and a ∈ F satisfies a 6= up − u for any u ∈ F and E is a

splitting field of tp − t− a over F , then there exists an extension K/E of degree
p.

(5) Let p be a prime different from charF . If tp − 1 splits in F [t] and K/F is a
cyclic extension of degree p, then K = F (r) for some r satisfying rp ∈ F . (Cf.
Theorem 60.20.)

(6) Suppose p is a prime different from charF and F contains a primitive pth root
of unity. If E/F is cyclic of degree p, then there exists an x ∈ E such that
E = F (x) and the minimal polynomial of x over F is tp − a ∈ F [t]. (Same as
the previous.)

(7) If charF = p > 0 and E/F is cyclic of degree p, then there exists an x ∈ E such
that E = F (x) and xp − x ∈ F . (Same as previous.)

We prove Fact 77.1(4), leaving the others as exercises.

Proof. (of Fact 77.1(4)) Let E = F (u) with mF (u) = tp− t−a, a cyclic extension of
degree p with F -basis B = {1, u, . . . , up−1}. We show that the element aup−1 is not of the
form vp−v, v ∈ E. If this is not so, say aup−1 = vp−v. Write v = v0 +v1u+ · · ·+vp−1u

p−1

for some v0, . . . , vp−1 in E. Since up = u+ a, we have

aup−1 = vp − v = vp0 + vp1(u+ a) + vp2(u+ a)2 + · · ·+ vpp−1(u+ a)p−1

− v0 − v1u− · · · − vp−1u
p−1.

As B is a basis, we see that vpp−1 − vp−1 = a, a contradiction. By Fact 77.1(3), we know
that tp− t− aup−1 ∈ E[t] is irreducible, hence its splitting field is of degree p over E. �

Theorem 77.2. ( Artin-Schreier) Let C be algebraically closed and R a proper subfield
with C/R finite. Then R is real closed and C = R(

√
−1).

Proof. Let C ′ = R(
√
−1). As C is the algebraic closure of C ′, it suffices to show

C = C ′. We have:

(77.3) If C/E/C ′, then [E : C ′] ≤ [C : C ′] <∞.
Claim 77.4. C ′ is perfect:

Suppose not, then charF = p > 0 and there exists an element a ∈ C ′ \ (C ′)p. By Fact
77.1(2), for each n ≥ 1, there exists En/C

′ of degree pn contradicting (77.3). Therefore
C ′ is perfect.

By Claim 77.4, we conclude that C/C ′ is finite Galois, since C is algebraically closed.
Let G = G(C/C ′). We may assume that C ′ < C. In particular, there exists a prime
number p dividing |G| and a cyclic subgroup H ⊂ G of order p. Let E be the fixed field
CH , so

C/E is cyclic of degree p.
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Claim 77.5. E contains a primitive pth root of unity and p 6= charE:

Suppose to the contrary that p = charE. By Fact 77.1(7), there exists an x ∈ C such
that C = E(x) is the splitting field of the irreducible polynomial tp− t− a ∈ E[t] over E.
Hence a = xp − x. By Fact 77.1(4), there exists a field extension K/C of degree p which
is impossible.

Let charE = l ≥ 0. We have shown that p 6= l. As tp − 1 = (t − 1)(tp−1 + · · · + 1)
splits in C[t] and each irreducible factor has degree at most p− 1, the polynomial tp − 1
must split in E[t], hence E contains a primitive pth root of unity. As charE 6= p, we
have C = E(r) where the irreducible polynomial of r is tp− a ∈ E[t] by Fact 77.1(5). Let

ζ ∈ C be a primitive p2-root of unity. As tp
2 − a splits in C, we can write

tp
2 − a =

p2−1∏
i=0

(t− ζ is) with a = sp
2

in C[t].

Claim 77.6. There exists a primitive p2-root of unity ε in C such that C = E(ε):

If ζ is ∈ E for some i, then (ζ is)p ∈ E. This would mean that
(
(ζ is)p

)p
= sp

2
= a and

tp − a has a root in E contradicting the irreducibility of tp − a ∈ E[t]. Consequently,

ζ is 6∈ E for all i. This means that every irreducible factor of tp
2 − a ∈ E[t] must have

degree p. Let f be such an irreducible factor, say the minimal polynomial of ζ is. The
constant term of f must be b = ζnsp ∈ E for some n. As sp 6∈ E, we have

C = E(sp) = E(bζ−n) = E(ζn).

Since E contains a primitive pth root of unity, ε = ζn must be a primitive p2-root of unity
as needed.

Let ∆ be the prime subfield in C.

Claim 77.7. There exists an r such that ∆(ε) contains a primitive prth root of unity but
not a pr+1th primitive root of unity:

Let ζpr be a primitive prth root of unity in C. Suppose that ∆ ∼= Q. Then [Q(ζpr) : Q] =
pr−1(p − 1) → ∞ as r → ∞. As [Q(ε) : Q] < ∞, Claim 77.7 holds in this case. Suppose
that ∆ ∼= Z/lZ. By Claim 77.5, we know that l 6= p. As tp

r − 1 has no repeated roots in
C, we have |∆(ζpr)| ≥ pr → ∞. As |∆(ε)| < ∞, Claim 77.7 also holds if ∆ has positive
characteristic.

Let r be as in Claim 77.7. As ε ∈ F (ε) and ε is a primitive p2-root of unity, we have
r ≥ 2. Let ω be a primitive pr+1th root of unity in the algebraically closed field C. Let N
be the Galois group of ∆(ω)/∆. If ∆ is a finite field, then N is cyclic. If char ∆ = 0, then
N ∼= (Z/pr+1Z)×, which is cyclic unless p = 2 and r ≥ 3 by Fact 77.1(1). Moreover, if N
is cyclic, it contains a unique subgroup of order p, hence ∆(ω) contains a unique subfield
over which it has degree p.

Claim 77.8. ∆(ω) contains two subfields over which it has degree p. In particular, p = 2
and charE = 0:
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Let f ∈ E[t] be the minimal polynomial of ω. Since ε 6∈ E also ω 6∈ E. Hence C = E(ω)

and deg f = p. We also have f | tpr+1 − 1 in E[t] and tp
r+1 − 1 =

∏pr+1−1
i=0 (t− ωi) in C[t].

Let K = ∆(ω) ∩ E. Then by the above, f ∈ K[t] so f is the minimal polynomial of ω
over K. Consequently, [∆(ω) : K] = p and K is one of the desired subfields.

Let z = ωp, a primitive prth root of unity and K ′ = ∆(z). As ∆(ω) contains a
primitive prth root of unity and hence all such, we have K ′ = ∆(z) ⊂ ∆(ω). We show
that [∆(ω) : ∆(z)] = [∆(ω) : K ′] = p. As ω is a root of tp − z ∈ K ′[t], it suffices to
show tp − z ∈ K ′[t] is irreducible. By Fact 77.1(5), it suffices to show that tp − z has no
roots in K ′. Since z ∈ K ′, certainly K ′ contains all the primitive pth roots of unity. In
particular, if tp − z has a root in K ′, it splits in K ′[t] and ω ∈ K ′. But this means that
∆(ω) = K ′ ⊂ ∆(ε) contradicting Claim 77.7. Thus [∆(ω) : K ′] = p.

To prove Claim 77.8, we need only show that K 6= K ′. Suppose that K = K ′. Then
z ∈ K ′ = K means that K contains a primitive prth root of unity. As K = ∆(ω) ∩ E,
we have z ∈ E, i.e., E contains a primitive prth root of unity for some r ≥ 2, hence
it contains a p2-root of unity. Thus ε ∈ E which is a contradiction. We conclude that
K 6= K ′ and Claim 77.8 is established.

Thus we have shown that char ∆ = 0 and C = E(ε) with ε a primitive 22 root of
unity, i.e, ε = ±

√
−1. But

√
−1 ∈ E by assumptionThis proves the theorem. �

Let F be a field and C an algebraic closure. Then

Fsep := {x | x ∈ C separable over x},

is called the separable closure of F . It is the maximal separable field extension of F in C.
The Galois group G(Fsep/F ) is called the absolute Galois group of F .

Corollary 77.9. Let F be a field. If the absolute Galois group of F contains a nontrivial
element of finite order, then F is formally real and the element is an involution.

Proof. Let C be an algebraic closure of F and Fsep the separable closure of F in
C. Let σ lie in G(Fsep/F ) be of order r > 1. Then G(Fsep/F

<σ>
sep ) is finite with [Fsep :

F<σ>
sep ] = r. By Theorem 77.2 the result follows if F is perfect, so we may assume that

charF = p > 0. Suppose that C/K/Fsep is an intermediate field and σ : K → C an
embedding. Then σ induces a unique isomorphism K[t]/(tp

n − a)→ σ(K)[t]/
(
tp
n −σ(a)

)
taking the unique root of tp

n − a in K[t]/(tp
n − a) in C to the corresponding root of

tp
n−σ(a) in σ(K)[t]/

(
tp
n−σ(a)

)
for all n and all a ∈ K. It follows that if σ : Fsep → Fsep

lifts to a unique F -automorphism σ̂ of C of order r. Then C/C<σ̂> is a finite extension
of order r > 1. The result follows by Theorem 77.2. �

Corollary 77.10. If the absolute Galois group of a field is finite, then it is isomorphic
to 1 or Z/2Z.

Of course, if F is a field with charF = p > 0 and F̃ an algebraic closure, it is possible

for the absolute Galois group of F to be trivial, but F̃ /F infinite.

Exercise 77.11. Prove Facts 77.1.
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78. Hilbert’s 17th Problem

In this section, we present a solution to Hilbert’s 17th Problem on positive functions
over the reals. We establish the Lang Homomorphism Theorem to solve this problem.
We present the proof of the Lang Homomorphism Theorem based on Sylvester’s Lemma
76.10. To use it, we shall need the fact (which we do not prove) that the trace form
of an algebra over a field of characteristic zero can be diagonalized, i.e., has a diagonal
matrix representation. This is in fact true for all symmetric bilinear forms over fields of
characteristic not two. We prove this for the special case that we need.

Lemma 78.1. Let E be a field of characteristic zero and K/E be a finite field extension
of degree n. Then there exists an E-basis B for K such that the matrix representation of
the trace form ϕ : K ×K → E in the basis B is diagonal.

Proof. We must produce an E-basis {x1, . . . , xn} for K satisfying ϕ(xi, xj) = δij for
all i, j = 1, . . . , n. As K is a field and E perfect, the trace form is just the non-degenerate
field trace TrK/E : K ×K → E by Lemma 80.1. In particular, if x is a nonzero element
in E, then there exists a y in E with TrK/E(xy) nonzero. As

TrK/E(xy) = 1
2

TrK/E
(
(x+ y)2

)
− TrK/E(x2)− TrK/E(y2)

one of TrK/E
(
(x + y)2

)
, TrK/E(x2), TrK/E(y)2) is non-zero, i.e., the nondegeneracy of

TrK/E insures the existence of an element z in K with TrK/E(z2) nonzero. (Of course,
we know this is true for the element z = 1.) As TrK/E(zx) = 0 for x in K implies that
x = 0, the restriction of TrK/E to (Fz)⊥ = {x | TrK/E(zy) = 0}, gives an ‘orthogonal’
decomposition K = Ez ⊥ (Ez)⊥. Repeating the argument yields the result. �

Theorem 78.2. (Lang Homomorphism Theorem) Let F be a real closed field and K =
F (x1, . . . , xn) a proper finitely generated formally real field extension of F (hence not
algebraic). Then there exists infinitely many F -algebra homomorphisms F [x1, . . . , xn] →
F , i.e., if R is an affine F -algebra that is a domain, then there exist infinitely many
F -algebra homomorphisms R→ F .

Proof. Let m = tr deg K/F . By hypothesis, m > 0. We induct on m.

Suppose that m = 1. We may assume that x = x1 is transcendental over F . As
charF = 0, we can write K = F (x)[y] for some y ∈ K and furthermore we may assume
that y is integral over F [x] (cf. Remark 79.14(1)).

Claim 78.3. There exist (infinitely many) F -algebra homomorphisms σ : F [x, y]→ F :

Let f = f(x, t) = tr + ar−1(x)tr−1 + · · · + a0(x) with the ai(x) ∈ F [x] be the minimal
polynomial of integral y over F [x]. It suffices to show that there exist (infinitely many)
(a, b) ∈ F 2 such that f(a, b) = 0, since for each such (a, b) the map σ : F [x, y] → F via

x 7→ a and y 7→ b is well-defined. Let P ∈ X (K) and let K̃ be a real closure of (K,P ).
So we have P ∩K = K2. Let ϕ be the trace form of the F (x)-algebra K. Since f has a

root y in K̃, by Sylvester’s Lemma 76.10, we have sgnP ϕ > 0. As r = [K : F (x)] and ϕ
can be diagonalized over F (x), we may assume that there is an F (x)-basis B for K such
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that

[ϕ]B =

h1(x) 0

0
. . .

hr(x)


is diagonal for some hi(x) ∈ F (x). Moreover, modifying this basis, we may also assume
that all the hi(x) ∈ F [x] and are square-free. As F is real closed, each of the hi(x)
can be factored as a product of a constant in F , monic linear polynomials, and monic
irreducible quadratic polynomials in x. Each irreducible monic polynomial x2 + ax+ b =
(x + a

2
)2 + (b− a2

4
), a sum of two squares in F (x) hence totally positive as is c2 + ac + b

for all c ∈ F by substitution. Thus each hi is a product of a totally positive or totally
negative element and finitely many positive factors x− a relative to P and finitely many
negative factors x− b relative to P for some a, b ∈ F .

Among all the finitely many a’s occurring in all the hi, let a0 be the maximum relative
to the ordering F 2 = P ∩ F and among all the finitely many b’s occurring in all the hi,
let b0 be the minimum relative to the ordering P ∩ F . (If there are no a’s (respectively,
b’s) choose a0 (respectively, b0) such that a0 <P b0 in F .) Thus we have x− a0 ≤P x− a
for all such a and x− b ≤P x− b0 for all such b. As x− b0 <P x− a0, we must also have

a0 <P b0. Thus there exist infinitely many c ∈ F with a0 <P c <P b0 (e.g., a0 +
b0 − a0

2N
for N > 0). For each such c, we have c − a >P 0 and x − a >P 0 for all the a’s and
c− b <P 0 and x− b <P 0 for all the b’s. It follows that

sgnP ϕ = sgnP∩F [ϕ]B = sgnP∩F

h1(c) 0

0
. . .

hr(c)


Assertion. Let c ∈ F satisfy a0 <P c <P b0 and ϕc be the trace form of the F -algebra
A = F [t]/

(
f(c, t)

)
. Then, except for finitely many exceptions, there exists an F -basis C

for A satisfying

(*) [ϕc]C =

h1(c) 0

0
. . .

hr(c)

 .

In particular, for each such c, we have sgnP∩F ϕc > 0.

As f(c, t) has a root in K hence K̃, if (*) holds then sgnP∩F ϕc > 0 by Sylvester’s lemma
76.10. So we need only show the first part.

Let B =
(
bij(x)

)
be the matrix representation of the trace form ϕ relative to the basis

{1, y, . . . , yr−1} of K over F (x). As y is integral over F [x], each bij(x) ∈ F [x]. There
exists a change of basis matrix C =

(
cij(x)

)
∈ GLr(K) such that

CtBC =

h1(x) 0

0
. . .

hr(x)

 .
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If c is not a zero of the denominator of any of the cij(x)’s or a zero of detC, then

C|tx=cB|x=cC|x=c =

h1(c) 0

0
. . .

hr(c)


as desired. As there exist only finitely many c not satisfying these conditions, the assertion
follows.

As F is real closed, for each c in the assertion satisfying sgnP∩F ϕc > 0, there exists a
b ∈ F such that f(c, b) = 0 by Sylvester’s Lemma 76.10. Thus there exist infinitely many
(c, b) such that f(c, b) = 0 and the Claim is established.

Next we show that almost all of the F -algebra homomorphisms σ : F [x, y] → F
extend to F [x, y, x2, . . . , xn] → F . As the transcendence degree m = tr degFK = 1 and
F (x)[y] = F (x1, . . . xn), we can write

xi =
gi(x, y)

qi(x)
for some gi ∈ F [x, t], 0 6= qi ∈ F [x].

Let q =
∏

i qi. As q(c) 6= 0 for almost all of the c constructed above, σ
(
q(x)

)
6= 0 for almost

all the σ constructed above. Let σ be any such one. By properties of localization with

S = {ti | i ≥ 0}, any such σ extends to an F -algebra homomorphism σ : F [x, y][
1

q
] → F

by Exercise 29.4(2). Since F [x1, . . . , xn] ⊂ F [x1, y, x2, . . . , xn] ⊂ F [x, y][
1

q
], the m = 1

case is completed.

Suppose that m > 1. Choose K/E/F satisfying tr degEK = 1. Let Ẽ be the

field of algebraic elements over E lying in a real closure K̃ of K (called the algebraic

closure of E in K̃). By the Fundamental Theorem of Algebra, Ẽ is also real closed.

As tr degẼẼ(x1, . . . , xn) = 1, there exist infinitely many Ẽ-algebra homomorphisms

σ : Ẽ(x1, . . . , xn) → Ẽ by the m = 1 case. Let σ be any one of these. If σ(xi) ∈ F
for all i, then σ|F [x1,...,xn] : F [x1, . . . , xn] → F is an F -algebra homomorphism. So

suppose that there exists an i with σ(xi) 6∈ F . As σ(xi) ∈ Ẽ for all i, we have

tr degFF
(
σ(x1), . . . , σ(xn)

)
≤ tr degF Ẽ = tr degFE < m. By induction there exist

infinitely many F -algebra homomorphisms τ : F [σ(x1), . . . , σ(xn)] → F . Then the com-
positions τ ◦ σ|F [x1,...,xn] : F [x1, . . . , xn] → F give infinitely many F -algebra homomor-
phisms. �

A commutative ring is called semi-real if −1 is not a sum of squares in R and is called
formally real if

∑
x2
i = 0 in R implies that xi = 0 for all i. More generally, an ideal A

in a commutative ring is called semi-real (respectively, formally real) if R/A is semi-real
(respectively, formally real). We note that if R is a domain, then it is formally real if and
only if its quotient field is and a field is semi-real if and only if formally real.

Lemma 78.4. Let R be a commutative ring. Then the following are equivalent

(1) R is semi-real.
(2) There exists P ∈ Y(R) such that P ∩ −P is a prime ideal.
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(3) There exists a formally real prime ideal p in R.
(4) There exists a ring homomorphism R→ F for some formally real field F .

Proof. (1) ⇒ (2): As R is semi-real, we have
∑
R2 ∈ Y(R). Thus (2) follows by

Lemma 75.4.

(2) ⇒ (3): The prime ideal P ∩ −P in (2) is clearly semi-real and excludes the multi-
plicative set S = 1 +

∑
R2. By choice 0 /∈ S and S +

∑
R2 ⊂ S. By Zorn’s lemma there

exists an ideal p containing P ∩ −P and excluding S. It is prime (as is well-known or
easy to check). The quotient field of R/p is checked to be semi-real hence formally real.
It follows that R/p is formally real.

(3)⇒ (4): The quotient field of R/p works.

(4)⇒ (1): As a quotient of R is semi-real so is R. �

Corollary 78.5. Let F be a real closed field and R a domain that is an affine F -algebra.
If R is semi-real the there exists an F -algebra homomorphism R→ F .

Proof. There exists a formally real prime ideal p in R. Then R/p is a real F -affine
ring that is a domain so there exists an F -algebra homomorphism R/p→ R by the Lang
Homomorphism Theorem 78.2. The composition R→ R/p→ R now works. �

Corollary 78.6. Let F be a real closed field and R a real affine F -algebra that is a domain.
Let f1, . . . , fn ∈ R \ {0}. Then there exists an F -algebra homomorphism ϕ : R → F so
that ϕ(fi) 6= 0 for all i.

Proof. R[f−1
1 , . . . f−1

n ] is a real affine F -algebra that is a domain. �

Note that R = R[t1, . . . , tn]/(t21 + · · · + t2n) is a semi-real affine R-algebra that is a
domain but it is not formally real since any R-algebra homomorphism R → R must take
each ti 7→ 0.

Corollary 78.7. Let F be a real closed field and R an affine F -algebra. Let f1, . . . , fr,
g1, . . . , gs lie in R. Suppose that there exists a maximal preordering P ∈ Y(R) such that
0 6= fi ∈ P for all i and gj ∈ P for all j. Then there exists an F -algebra homomorphism
ϕ : R→ F so that 0 6= ϕ(fi) ∈ F 2 and ϕ(gj) ∈ F 2 for all i and j.

Proof. Let p = P ∩ −P , a prime ideal in R. Replacing R by R/p we may assume
that P ∩ −P = p = 0. In particular, R is a domain and P is an ordering on R. Clearly,
P extends to an ordering of the quotient field K of R. Also call this extension P . We
have fi >P 0 and gj ≥P 0 for all i and j. Let E = K(

√
f1, . . . ,

√
fr,
√
g1, . . . ,

√
gs). By

induction on r + s, the ordering P extends to an ordering Q on E. Since the domain
A = R[f−1

1 , . . . , f−1
r ,
√
f1, . . . ,

√
fr,
√
g1, . . . ,

√
gs] is a real affine F -algebra, there exists an

F -algebra homomorphism A→ F . This homomorphism has the desired properties. �

If A be an ideal in F [t1, . . . , tn] with F infinite, let

(1) ZF (A) = {x ∈ F n | f(x) = 0 for all f ∈ A}.
(2) AF (A) = F [t1, . . . , tn]/A.

Suppose that p = A is a prime ideal in F [t1, . . . , tn]. So AF (p) is a domain. As usual we
say a rational function f in the quotient field of AF (p) is defined at x ∈ ZF (p) if f = g/h
for some g, h ∈ AF (A) with h(x) 6= 0. If F is real closed, a rational function f in the
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quotient field of AF (p) is called positive semi-definite if f(x) ≥ 0 for all points x ∈ AF (p)
where f is defined.

Corollary 78.8. (Weak Real Nullstellensatz) If F is real closed and A is an ideal in
F [t1, . . . , tn], then A is semi-real if and only if ZF (A) 6= ∅.

Proof. Let AF (A) = F [x1, . . . , xn]. If (a1, . . . , an) ∈ ZF (A), then f : AF (A) → F
by xi → ai defines an F -algebra homomorphism and A is semi-real by Lemma 78.4.
Suppose that A is semi-real. By Lemma 78.4 there exists a prime ideal p in F [t1, . . . , tn]
such that p/A is a formally real prime ideal in AF (A). It follows that F [t1, . . . , tn]/p
is a formally real domain so by the Lang Homomorphism Theorem 78.2 there exists an
F -algebra homomorphism σ : F [t1, . . . , tn]/p → F . Then (a1, . . . , an) ∈ ZF (A) with
ai = σ(ti + p). �

Theorem 78.9. (Artin) Let F be a real closed field and p a formally real prime ideal in
F [t1, . . . , tn]. Let K be the quotient field of AF (p). Let f ∈ K. If f is positive, then f is
a sum of squares in K.

Proof. Suppose that f is not a sum of squares in K. Then there exists P ∈ X (K)
such that f <P 0 by Corollary 75.6. Thus P extends to E = K(

√
−f) by Theorem

76.2. Let f = g/h, with g, h ∈ AF (p) and let : F [t1, . . . , tn] → AF (p) be the canonical
map. By the Lang Homomorphism Theorem, there exists an F -algebra homomorphism

σ : F [t1, . . . tn,
√
−g, 1

gh
]→ F . For each i, let ai = σ(ti). If q ∈ p then

q(a1, . . . , an) = q
(
σ(t1), . . . , σ(tn)

)
= σ

(
q(t1, . . . , tn)

)
= 0,

so (a1, . . . , an) ∈ ZF (p). As σ(g) 6= 0 and σ(h) 6= 0, the rational function f is defined
at (a1, . . . , an) and is not zero at it. Since σ(−f) ∈ F 2, we must have σ(f) <P 0. But
σ(f) = f(a1, . . . , an) >P 0, a contradiction. �

Artin’s Theorem immediately answers Hilbert’s 17th problem whether every positive
semi-definite function f in R(t1, . . . , tn) is a sum of squares in K in the affirmative.

Corollary 78.10. (Hilbert’s 17th Problem) Any positive semi-definite function in R(t1, . . . tn)
is a sum of squares in R(t1, . . . , tn).

The Motzkin polynomial t41t
2
2 + t21t

4
2 − 3t21t

2
2 + 1 in R[t1, t2] is positive semi-definite but

not a sum of squares in R[t1, t2]. [It is a sum of four squares, but not three squares, in
R(t1, t2). Cf. Lam’s book Introduction to quadratic forms over fields [35] for more detail.]
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CHAPTER XV

Dedekind Domains

The study of fields arose from the desire to understand the roots of polynomials with
rational coefficients. In a similar way, algebraic number theory arose from the desire to
understand the roots of monic polynomials with integer coefficients. In this chapter, we
give an introduction to algebraic number theory. Since the generalization to studying
Dedekind domains – an appropriate generalization of the integers – is not too difficult,
we take this more general approach.

79. Integral Elements

We begin with the study of monic polynomials over (nonzero) commutative rings.

Definition 79.1. Let B be a nonzero commutative ring and A a subring of B. We shall
write this as B/A and call it a ring extension mimicking how we wrote field extensions.
An element x in B is called integral over A if x is a root of a monic polynomial f in A[t].

Examples 79.2. 1. Let K/F be an extension of fields. Then an element x in K is integral
over F if and only if it is algebraic over F .

2. If A is a nonzero commutative ring, then every element x in A is integral over A as it
is a root of t− x in A[t].

3. Let d be a square-free integer and x = a+ b
√
d with a and b in Q. Then x is a root of

t2−2at+ (a2− b2d). In particular, one checks that x is integral over Z if and only if 2a
and a2 − b2d are integers. For example, the complex numbers

√
2 and (−1 +

√
−3)/2

are integral over Z.

4. Every nth root of unity in C, n > 0, is integral over Z.

5. Let C/B/A be ring extensions. If x in C is integral over A, then it is integral over B.

Because of the first example, we expect that some of our field theoretic ideas and
results should generalize. This is true. First, we must find a ring theoretic test for an
element to be integral. It is given by the following basic result.

Proposition 79.3. Let B/A be an extension of nonzero commutative rings and x an
element in B. Then x is integral over A if and only if A[x] is a finitely generated A-
module.

Proof. (⇒): Let x be a root of the monic polynomial f in A[t]. By the General
Division Algorithm 34.4, we can write

g = fq + r with q, r ∈ A[t] and r = 0 or deg r < deg f.

465
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Therefore, if n = deg f , we have

g(x) = r(x) lies in
n−1∑
i=0

Axi, so A[x] =
n−1∑
i=0

Axi.

(⇐): We prove a more general statement.

Claim 79.4. Let M be an A[x]-module that is finitely generated as an A-module. If
annA[x] M = 0 (i.e., if r in A[x] satisfies rm = 0 for all m in M , then r = 0), then x is
integral over A:

Suppose that M = Am1 + · · ·+ Amn. By assumption, M is an A[x]-module, i.e.,

λx : M →M given by m 7→ xm

is an A-endomorphism. For each i, i = 1, . . . , n, we can write

xmi =
n∑
j=1

aijmj some aij ∈ A, 1 ≤ i, j ≤ n.

Therefore,
n∑
j=1

(δijx− aij)mj = 0 for i = 1, . . . , n.

Let ∆ be the determinant of the n× n matrix (δijx− aij). By Cramer’s Rule, ∆mi = 0
for i = 1, . . . , n, so ∆M = 0, i.e., ∆ lies in annA[x] M = 0. It follows that x is a root of
the monic polynomial det((δijt− aij)) in A[t]. This proves the claim.

Let M = A[x], a finitely generated A-module by assumption. As A[x] is a subring of B
it has a one (not zero). Consequently, annA[x] A[x] = 0, so the claim yields the desired
result. �

Corollary 79.5. Let B/A be an extension of nonzero commutative rings, x1, . . . , xn ele-
ments of B. Then x1, . . . , xn are all integral over A if and only if A[x1, . . . , xn] is a finitely
generated A-module.

Proof. (⇒): The case for n = 1 follows from the proposition. By induction,
A[x1, . . . , xn−1] is a finitely generated A-module, say with generating set S. As xn is
integral over A, it is a root of a monic polynomial in A[t], say of degree d. Then⋃d−1
i=0 {sxi | s ∈ S} is a generating set for A[x1, . . . , xn].

(⇐): Since annA[xi] A[x1, . . . , xn] = 0 for i = 1, . . . , n, this follows from Claim 79.4. �

In the above, we could also have used the following lemma that we leave as an exercise.
We shall need it below.

Lemma 79.6. Let B/A be an extension of nonzero commutative rings. If M is a finitely
generated B-module and B a finitely generated A-module, then M is a finitely generated
A-module.
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Note the corollary above is analogous with the result that when K/F is a field ex-
tension, x1, . . . , xn elements in K, then F (x1, . . . , xn)/F is finite if and only if x1, . . . , xn
are all algebraic over F . In a similar way we have the following analogue of another field
theoretical result.

Corollary 79.7. Let B/A be an extension of nonzero commutative rings, x and y elements
of B both integral over A. Then x± y, and xy are integral over A. In particular,

{x ∈ B | x integral over A}
is a subring of B.

Proof. If z is any element in A[x, y], then A[x, y, z] = A[x, y] is a finitely generated
A-module, so z is integral over A. �

Of course, if B/A is an extension of commutative rings with x in B a unit in B, it
may be integral over A but its inverse not. For example, 1/2 is not integral over Z.

Definition 79.8. Let B/A be an extension of nonzero commutative rings and

C = {x ∈ B | x integral over A}.
The ring C is called the integral closure of A in B. If C = B, i.e., every element of B is
integral over A, we say B/A is integral and if C = A, we say that A is integrally closed in
B.

Therefore, B/A being integral is the analogue of an algebraic extension in field theory.
Analogous to the field case, we have:

Corollary 79.9. Let C/B and B/A be extensions of nonzero commutative rings. Then
C/B and B/A are integral extensions if and only if C/A is an integral extension.

Proof. We need only show if C/B andB/A are integral extensions so is C/A. Let c be
an element in C. As c is integral over B, it satisfies an equation cn+bn−1c

n−1 + · · ·+b0 = 0
in B for some b0, . . . , bn−1 in B. Let B0 = A[b0, . . . , bn−1]. As B/A is integral, it follows
that A[c, b0, . . . , bn−1] is a finitely generated B0-module by Proposition 79.3 and B0 is
a finitely generated A-module by Corollary 79.5. The result now follows using Lemma
79.6. �

Corollary 79.10. Let C/B/A be extensions of nonzero commutative rings with B/A
integral. Then the integral closure of A in C is the same as the integral closure of B in
C.

We shall mostly be interested in the case that our rings are domains. For this case,
we shall use the following notation:

Notation 79.11. If A is a domain and K any field containing A, we shall denote the
integral closure of A in K by AK , i.e.,

AK := {x ∈ K | x is integral overA}.

Definition 79.12. Let A be a domain. We say that A is integrally closed or a normal
domain if A is integrally closed in its quotient field, i.e., if F is the quotient field of A,
then A = AF .
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An important example of integrally closed domains is given by:

Proposition 79.13. A UFD is integrally closed. In particular, any PID is integrally
closed.

Proof. Let A be a UFD and a and b be elements in A with b nonzero. Suppose that
a/b is integral over A. As A is a UFD, we may assume that a and b are relatively prime.
By definition, a/b satisfies an equation

(
a

b
)n + c1(

a

b
)n−1 + · · ·+ cn = 0

for some c1, . . . , cn in A. Therefore, we have the equation

an = −b(c1a
n−1 + · · ·+ bn−1cn) in A.

It follows that b | an in the UFD A, hence b is a unit in A and a/b lies in A. �

Remarks 79.14. Let A be a domain, F its quotient field, and L/K/F algebraic field
extensions.

1. If x lies in L, then there exists a nonzero element c in A satisfying cx is integral over
A, i.e., lies in AL. Indeed if x satisfies

anx
n + an−1x

n−1 + · · ·+ a0 = 0

in L with a0, . . . , an elements of A and an nonzero, then multiplying this equation by
an−1
n shows that anx is integral over A.

2. We have AL ∩K = AK .

3. The quotient field of AK is K by the first remark.

4. If E/F is a field extension and E/K/F with K the maximal algebraic field extension
of F in E, then AK = AL.

The case in which we are most interested is when A is the ring of integers. If K/Q is a
finite field extension, then K is called an algebraic number field and ZK is called the ring of
algebraic integers in K. Let Ω be the algebraic closure of Q in C. Then algebraic number
theory is the study of ZΩ. As Ω is the union of number fields, we have ZK = ZΩ ∩ K
for any number field K. Since Q is perfect, we shall not have to worry about separability
that in the general case can cause serious problems.

Exercises 79.15.

1. Let d be a square-free integer and x = a + b
√
d with a and b in Q. Show that x is

integral over Z if and only if 2a and a2 − b2d are integers.

2. Let ϕ : A → B be a ring homomorphism and M a finitely generated B-module. If
B is a finitely generated A-module via the pullback, then M is a finitely generated
A-module. In particular, Lemma 79.6 is valid.

3. Let ϕ : A → B be a ring homomorphism of commutative rings. We say that ϕ is
integral if B/ϕ(A) is integral. Show that a composition of integral homomorphisms is
integral.
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4. Let ϕ : A→ B be a ring homomorphism of commutative rings. We say that ϕ is finite
if B is a finitely generated A-module (via ϕ) and of finite type if there exists a ring
epimorphism A[t1, . . . , tn] → B for some n lifting ϕ. Show that ϕ is finite if and only
if ϕ is integral and of finite type.

5. Let A be a domain with quotient field F and K/F a field extension. If S is a multi-
plicative set (not containing zero) in A, show that (S−1A)K = S−1(AK), i.e., taking
localization and integral closures commute. In particular, this applies when S = A \ p
with p a prime ideal in A.

80. Integral Extensions of Domains

In this section, we shall investigate the integral closure of a domain in a separable
extension of its quotient field. Separability makes life much nicer, and since we are mostly
interested in applications to algebraic number theory, this will not be an impairment.

When we investigated cyclic extensions of fields, we needed to use the norm of such an
extension. Although we introduced the notion of trace at the same time, except for exer-
cises, we did not use it. Although the norm and trace of an arbitrary, i.e., not necessarily
separable, finite extension can be defined, this is not useful for the trace. Indeed, the
trace from a finite inseparable extension turns out to be the zero map. However, for the
separable case, the trace is very useful. This was because of Exercise 60.26(5). Because
this is important to our current investigation, we now prove this exercise.

Lemma 80.1. Let K/F be a finite separable extension of fields of degree n, K∗ :=
HomF (K,F ), the F -linear dual space of K. Then the map T : K → K∗ defined by x 7→
trx : y 7→ TrK/F (xy) is an F -linear isomorphism. In particular, if B = {w1, . . . , wn} is an
F -basis for K, then there exists an F -basis {w′1, . . . , w′n} for K satisfying TrK/F (wiw

′
j) =

δij for all i, j = 1, . . . , n.

Remark 80.2. The basis {w′1, . . . , w′n} in the lemma is called the complementary basis
to B

Proof. By Dedekind’s Lemma 54.3, the map TrK/F : K → F is nontrivial, so there
exists an element z in K with TrK/F (z) nonzero. Therefore, TrK/F (xx−1z) is not zero
for every nonzero x in K. It follows that trx is nonzero for all nonzero x in K, i.e.,
T : K → K∗ is injective, hence an isomorphism by dimension count. Let {f1, . . . , fn}
be the dual basis to B and choose w′i in K to satisfy T (w′i) = fi for i = 1, . . . , n. Then
{w′1, . . . , w′n} works. �

Suppose that Ki/F is a field extension for i = 1, 2 and σ : K1 → K2 is an F -
isomorphism. Let A be a domain lying in F . If x in K1 is integral over A then σ(x) is also
integral over A, i.e., σ(AK1) ⊂ AK2 . In particular, if K = K1 = K2 then σ(AK) = AK .
This means that we can use Galois theory. We shall need the results about the trace
(and norm) for finite separable extensions as stated in Remark 60.18 as well as Exercise
60.26(3) which we now prove.

Lemma 80.3. Let K/F be a finite separable extension of fields. Then NK/F = NE/F ◦NK/E

and TrK/F = TrE/F ◦TrK/E for any intermediate field K/E/F .
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Proof. Let L/F be a finite Galois extension with L/K. Let σ1, . . . , σn : E → L
denote all the F -homomorphisms and τ1, . . . , τm : K → L all the E-homomorphisms.
Extend each σi to σ̂i in G(L/F ). If µ : K → L is an F -homomorphism, then µ|E = σi for
some i and σ̂−1

i µ = τj for some j, hence µ = σ̂iτj. As in the proof of Proposition 56.11,
we see that these are all the distinct E-homomorphisms K → L. It follows that if x lies
in K, then

TrK/F (x) =
∑

σ̂iτj(x) =
∑

σ̂i(TrK/E(x)) = TrE/F (TrK/E(x))

and similarly for the norm. �

Let K/F be finite separable closure with L/K a normal closure of K/F and σ1, . . . , σn :
K → L all the F -homomorphisms. If x is an element ofK, then any elementary symmetric
function in σ1(x), . . . , σn(x) is fixed by G(L/F ) hence lies in F . It also follows that
NK/F (x)(x) = x[K:F (x)].

Proposition 80.4. Let A be a domain with quotient field F and K/F a finite separable
extension. If x in K is integral over A, then the minimal polynomial mF (x) of x lies in
AF [t] and both TrK/F (x) and NK/F (x) lie in AF . In particular, if A is integrally closed,
then mF (x) lies in A[t] and TrK/F (x) and NK/F (x) lie in A.

Proof. Let L/F be a finite Galois extension satisfying L/K and σ1, . . . , σn : K →
L all the distinct F -homomorphisms. If x is an element of K, then any elementary
symmetric function in σ1(x), . . . , σn(x) is fixed by G(L/F ) hence lies in F . Therefore,
mF (x) =

∏n
i=1(t− σi(x)) lies in AL[t] ∩ F [t]. It follows that mF (x) lies in AF [t]. By the

lemma and Property 60.17(3) (cf. Remark 60.18), we have

NF (x)/F (NK/F (x)(x)) = (NF (x)/F (x))[K:F (x)],

hence lies in AL ∩ F = AF , and similarly for the trace. �

The result for which we are aiming can now be established.

Theorem 80.5. Let A be an integrally closed Noetherian domain with quotient field F .
Let K/F be a finite separable extension. Then the integral closure of A in K is a finitely
generated A-module. In particular, AK is also an integrally closed Noetherian domain.

Proof. By Theorem 40.7, we know that any finitely generated A-module is a Noe-
therian A-module, since A is a Noetherian ring. In particular, it suffices to show there
exists a finitely generated A-module M with AK a submodule of M . Let n = [K : F ]
and B = {w1, . . . , wn} be an F -basis for K. As K is the quotient field of AK , by clearing
denominators, we may assume that B lies in AK . As K/F is a finite separable extension,
there exists a complementary basis B′ = {w′1, . . . , w′n} to B for K by Lemma 80.1, i.e.,
TrK/F (wiw

′
j) = δij for all i and j. For each j, j = 1, . . . , n, there exists a nonzero cj in A

such that cjw
′
j lies in AK by Remark 79.14(1). Let c = c1 · · · cn 6= 0. To finish, it suffices

to show the following:

Claim 80.6. AK is a submodule of
∑
Ac−1wi:
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Let z be an element of AK . We can write z =
∑n

i=1 biwi for some b1, . . . , bn in F . Then
for each j, 1 ≤ j ≤ n, we have

TrK/F (czw′j) = cTrK/F (zw′j) = cbj.

As z and each cw′j lies in AK , we conclude that cbj lies in AF = A for every j, i.e.,

bj ∈ c−1A for each j. The result follows. �

Remark 80.7. The result is false if we drop the separability assumption. Indeed there
exist counterexamples with A a PID with precisely one nonzero prime ideal.

Corollary 80.8. Let A be a PID with quotient field F and K/F a finite separable field
extension. Then AK is a finitely generated free A-module of rank [K : F ].

Proof. By the theorem, AK is a finitely generated A-module. Since AK is a domain,
it is a torsion-free A-module, hence A-free by Corollary 44.16 to the Fundamental Theorem
of Finite Generated Modules over a PID. Therefore, we need only compute the rank of
AK . We showed in the proof above that there exists an F -basis for K lying in AK , so the
rank of AK is at most [K : F ] using Proposition 44.1. But any A-linearly independent
set in AK is F -linearly independent, so we must have AK be of rank [K : F ]. �

Let A be a domain with quotient field F and K/F a finite field extension. If AK
is a free A-module of rank [K : F ], then an A-basis for is called an integral basis. The
corollary applies to any ring of algebraic numbers ZK . It says that it is a free abelian
group of rank [K : Q], hence has an integral basis. The theorem also applies to the case
that A = F [t] with F a field, and K/F (t) a finite separable extension. Then F [t]K is a
free F [t]-module of rank [K : F (t)]. These are the primary examples of our next study,
when we further restrict our domain.

Exercise 80.9. Let K be a quadratic extension of Q. Write K = Q(
√
D) with D a

square-free integer. Show every element α of K can be written as α = (a+ b
√
D)/2 with

a and b integers. In particular, TrK/Q(α) = a and NK/Q(α) = (a2 + b2D)/4. Show

(i) If α = (a+ b
√
D)/2 with a and b integers then α ∈ ZK if and only if

a ≡ b mod 2 when D ≡ 1 mod 4

a ≡ b ≡ 0 mod 2 when D ≡ 2, 3 mod 4

(ii) Find a Z-basis for ZK .

81. Dedekind Domains

We know that PIDs are UFDs, but rings of algebraic integers are not always UFDs,
e.g., ZQ[

√
−5]. We wish to study the appropriate generalization of PIDs that allows us to

replace the property of UFDs, which is a property about elements, with an analogous
property about ideals. We shall begin using the theory that we have already developed.
We need the following observation:

Lemma 81.1. Let ϕ : A→ B be a ring homomorphism of commutative rings. If P is a
prime ideal in B, then ϕ−1(P) is a prime ideal in A. In particular, if ϕ is the inclusion
of rings, then P ∩ A is a prime ideal in A.
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Proof. The homomorphism ϕ induces a monomorphism of rings ϕ : A/ϕ−1(P) →
B/P. As B/P is a domain so is A/ϕ−1(P) and the result follows. �

We come to the main subject of this chapter.

Definition 81.2. Let A be a domain, not a field. Then A is called a Dedekind domain
if A is a Noetherian integrally closed domain in which every nonzero prime ideal is a
maximal ideal. Let Max(A) = {p | p a maximal ideal}. Then Spec(A) = {0} ∪Max(R)
in a Dedekind domain A.

Examples 81.3. The verifications of the following are left as exercises:

1. Let A be a PID that is not a field. Then A is a Dedekind domain. In particular, Z and
F [t], with F a field, are Dedekind domains.

2. Let A be a Dedekind domain and S a multiplicative set not containing zero. Then the
localization S−1A of A is a Dedekind domain or a field. In particular, if p is a maximal
ideal in A, then the localization Ap = S−1A with S = A \ p is a Dedekind domain.

3. Recall that a local ring is a commutative ring with a unique maximal ideal. A Dedekind
domain with a unique maximal ideal, so a local integrally closed, Noetherian domain
that is not a field, is called a discrete valuation ring. If A is a Dedekind domain and
p a maximal ideal in A, then the localization Ap of A is a discrete valuation ring, e.g.,
Z(p) is a discrete valuation ring where p is a prime in Z as is F [t](f) with F a field and
f an irreducible polynomial in F [t].

Remark 81.4. If A is a nonzero commutative ring, we define the (Krull) dimension of
A by

dimA = max{n | there exists a chain of

prime ideals p0 < · · · < pn in A},
if this a finite number (and to be infinite if not). (The trivial ring is said to have (Krull)
dimension -1 (or −∞.) With this definition, a Dedekind domain is a Noetherian integrally
closed domain of dimension one. The geometric analogue of a Dedekind domain turns out
to be a smooth affine curve. The points of the curve correspond to the maximal ideals in
a Dedekind domain.

Our extension theory allows us to conclude:

Theorem 81.5. Let A be a Dedekind domain with quotient field F and K/F a finite
separable field extension. Then AK is a Dedekind domain.

Proof. AK is integrally closed by definition and Noetherian by Theorem 80.5. So it
suffices to show if P is a nonzero prime ideal in AK , then it is a maximal ideal, equivalently,
AK/P is a field. By the lemma, P ∩ A is a prime ideal. If x is a nonzero element in P,
it satisfies an equation

(*) xn + an−1x
n−1 + · · ·+ a0 = 0 for some a0, . . . , an−1 in A.

As AK is a domain, we may assume that a0 is nonzero. Since a0 lies in P ∩ A, the
prime ideal p = P ∩ A is nonzero hence maximal, so A/p is a field. But AK is a finitely
generated A-module by Theorem 80.5, so the domain AK/P is a finite dimensional (A/p)-
vector space. It follows that AK/P is a field by Corollary 48.19. �
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Using equation (*) above, we easily see that the following is true:

Corollary 81.6. Let A be a domain with quotient field F and K/F a finite field extension.
If A is a nonzero ideal in AK, then A ∩ AF is nonzero.

Corollary 81.7. Let A be a PID with quotient field F and K/F a finite separable exten-
sion. Then AK is a Dedekind domain. Moreover, AK has an integral basis.

Remarks 81.8. 1. The corollary shows that every ring of algebraic integers is a Dedekind
domain and is a finitely generated free abelian group.

2. The corollary shows that F [t]K for any field F and finite separable extension K of F (t)
is also a Dedekind domain and is a finitely generated free F [t]-module. It turns out
that the theory about rings of algebraic integers and F [t]K is very similar when F is a
finite field. This case can be viewed as the geometric analogue of the arithmetic case of
the ring of algebraic integers. Although one must worry about separability, it is easier
in general. A field that is either a finite extension of the rationals or a finite separable
extension of F (t) with F a finite field is called a global field. Since the expectation that
study of the rings ZK and F [t]K in the appropriate global field K are similar, this often
leads to the search and study for the appropriate analogue. For example, the solution
of the analogue of the Riemann Hypothesis (the Weil Conjecture) for the geometric
case by Deligne is one of the major theorems in mathematics proven in the twentieth
century.

3. In general, if A is a Dedekind domain with quotient field F and K/F a finite separable
field extension, then AK is not a free A-module.

4. Let A be a domain with quotient field F and K/F a finite field extension. In general,
AK will not be a finitely generated A-module. However, the Krull-Akizuki Theorem
96.17 below says if A is a Noetherian domain of dimension at most one, then B has
the same properties for any domain B satisfying A ⊂ B ⊂ K. In particular, if A is a
Dedekind domain, then AK is also a Dedekind domain. In particular, if K/F (t) is a
finite extension, then F [t]K is a Dedekind domain. Therefore, any finite extension of
F (t) is also called a global field.

5. Let A be a Dedekind domain with quotient field F and K/F a finite separable field
extension. If p is a maximal ideal in A, then (Ap)K = (AK)p, the localization at A \ p
by Exercise 79.15(5). In particular, (Ap)K is a Dedekind domain. Although Ap is a
discrete valuation ring, (Ap)K may not be. However, by Exercise 81.14 (6), it does
have only finitely many maximal ideals and both it and Ap are PIDs.

We next prove the defining property of Dedekind domains that also achieves our
desired generalization of a UFD.

Theorem 81.9. Let A be a Dedekind domain. Then every nonzero nonunit ideal in A is
a product of nonzero prime ideals, unique up to order.

Proof. Let A < A be a nonzero ideal and F the quotient field of A. We prove the
result in a number of steps.

The first step uses the fact that A is Noetherian.
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Step 1. There exist nonzero prime ideals (hence maximal ideals) p1, . . . , pr in A, not
necessarily distinct, satisfying p1 · · · pr ⊂ A (Cf. Exercise 30.22 (19)):

If this is not true, by the Maximal Principle, we may assume that A is a maximal coun-
terexample, i.e., A does not satisfy Step 1, but any nonunit ideal properly containing A
does. Of course, A cannot be a prime ideal, so there exist ideals Bi, i = 1, 2 satisfying
A < Bi < A with B1B2 ⊂ A by Lemma 26.20. As each Bi contains a product of prime
ideals by the maximality condition, so does A, a contradiction.

The second step uses the fact that nonzero prime ideals in the Noetherian domain A
are maximal.

Step 2. Let p be a nonzero prime ideal in A. Set

p−1 := {x ∈ F | xp ⊂ A},

an A-submodule of F . Then A < p−1:

Clearly, A ⊂ p−1 ⊂ F and p−1 is an A-module. Let a be a nonzero element of p. If
p = (a), then a−1 lies in p−1 \ A, so we may assume not. By Step 1, there exist nonzero
prime ideals p1, . . . , pr satisfying p1 · · · pr ⊂ (a) ⊂ p < A. Moreover, we may assume that
we have chosen these prime ideals so that r > 1 is minimal. Since p is a prime ideal,
pi ⊂ p for some i, and as pi is a maximal ideal, we, in fact, must have pi = p. Changing
notation if necessary, we may assume that p = p1. By the minimality of r, there exists
an element b in p2 · · · pr \ (a). We then have

bp = bp1 ⊂ p1 · · · pr ⊂ (a).

In particular, a−1bp lies in A, i.e., a−1b lies in p−1. By the choice of b, we have a−1b /∈ A.

The third step uses the fact that the dimension one Noetherian domain A is integrally
closed.

Step 3. Let p be a nonzero prime ideal in A. Then for every nonzero ideal B in A, we
have B < Bp−1. In particular, pp−1 = A:

Suppose that B = Bp−1. By Step 2, there exists an element a in p−1 \ A satisfying
aB ⊂ B. Hence λa : B → B is an A-homomorphism. Therefore, B is an A[a]-module.
As A[a] is a nonzero ring, annA[a] B = 0 (as B ⊂ F is A[a]-torsion free). Moreover, B is
finitely generated, since A is a Noetherian ring. Therefore, a is integral over A by Claim
79.4. As A is integrally closed, we conclude that a lies in A, a contradiction. Finally, if
B = p, then p < pp−1 forces pp−1 to be A, as p is a maximal ideal.

Step 4. Finish:

We first show that A is a product of nonzero prime ideals. If not, as in the proof of Step
1, we may assume that A is a maximal counterexample. Since A cannot be a prime ideal,
there exists a prime ideal p in A with A < p. In particular, Ap−1 ⊂ pp−1 = A. By
Step 3 and the maximality condition, there exist nonzero prime ideals p1, . . . , pr such that
Ap−1 = p1 · · · pr. Applying Step 4 again shows that A = pp1 · · · pr, a contradiction.

Next we show uniqueness. If we have

p1 · · · pr = A = P1 · · ·Ps
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with all the pi and Pj maximal ideals, then as in Step 1, we see that pi = Pj for some
i and j. Changing notation, we may assume that 1 = i = j. Multiplying the above
equation by p−1 leads to our conclusion as p1p

−1
1 = A by Step 3. �

The converse of the theorem is true, i.e., a domain in which every nonzero nonunit
ideal is a product of prime ideals, unique up to order, is a Dedekind domain. This is left
as an exercise.

Let A be a Dedekind domain and A a nonzero nonunit ideal in A. By the theo-
rem, there exist unique nonzero prime ideals p1, . . . , pr in A and unique positive integers
e1, . . . , er satisfying

(*) A = pe11 · · · perr
(unique up to order). We call (*) a factorization of A. For each nonzero prime ideal p
and we define

vp(A) =

{
ei if p = pi, some i = 1, . . . , r

0 otherwise.

Then (*) can be written

A =
∏
p

pvp(A).

Let A and B be two nonzero ideals in a Dedekind domain A. Then, by unique
factorization of ideals, A ⊂ B if and only if vp(A) ≥ vp(B) for all maximal ideals p in
A. Mimicking the case for elements, we say B divides A and write B | A. In particular,
pn | A if and only if n ≤ vp(A). We define the greatest common divisor of A and B in A
to be the largest ideal D of A containing both A and B. As A and B lie in A + B, it

follows that A + B = D =
∏

p p
min
(
vp(A),vp(B)

)
. We say A and B are relatively prime if

D = A, i.e., A = A + B.
We have shown that if A is a Dedekind domain, then any nonzero prime ideal p has an

‘inverse’, viz., p−1 as pp−1 = A. We next generalize this to a notion of inverses of ideals
in Dedekind domains.

Definition 81.10. Let A be a domain with quotient field F . A nonzero A-submodule A
of F is called a fractional ideal of A if there exists a nonzero element x in A satisfying
xA ⊂ A. If A is a fractional ideal, we define

A−1 := {x ∈ F | xA ⊂ A}.

As this is clearly a submodule of F and aA−1 ⊂ A for any a in A, the module A−1 is also
a fractional ideal. Set

IA := {A | A a fractional ideal of A}.

We say that A in IA is invertible if AA−1 = A.

As every maximal ideal in a Dedekind domain A is invertible and there exist unique
factorization of nonzero nonunit ideals in A, we expect that every fractional ideal in A is
invertible. This is in fact true, as we shall now show.
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Corollary 81.11. Let A be a Dedekind domain. Then every fractional ideal of a Dedekind
domain A is invertible. Moreover, IA is a free abelian group on basis the set of maximal
ideals in A.

Proof. Let A be a fractional ideal. Then there exists a nonzero element a in A
satisfying aA ⊂ A. By the theorem, we have factorizations say aA = Pe1

1 · · ·Per
r and (a) =

pf11 · · · pfss . As nonzero prime ideals are invertible, we have A = Pe1
1 · · ·Per

r p
−f1
1 · · · p−fss .

Cancelling appropriate Pi’s and pj’s gives a factorization that is clearly unique. It follows
that IA is a free abelian group on the set of maximal ideals with unity A. �

Of course, if A is a Dedekind domain and A a fractional ideal, we have A =
∏

p p
vp(A),

where vp(p
n) = n for any integer n.

Definition 81.12. Let A be a Dedekind domain. Set

PA := {xA | x ∈ F×}
a subgroup of IA called the group of principal fractional ideals of A. The quotient group

ClA = IA/PA is called the class group of A.

It measures the obstruction of A from being a PID. It also measures when A is a UFD as
we shall now show.

Corollary 81.13. Let A be a Dedekind domain. Then A is a UFD if and only if A is a
PID if and only if ClA is trivial.

Proof. We know that a domain is a UFD if and only if every nonzero prime ideal
contains a prime element by Kaplansky’s Theorem 31.1. As A is a Dedekind domain, this
is equivalent to every maximal ideal being principal which, by Theorem 81.9, is equivalent
to every ideal being principal. �

In general, a Dedekind domain may not be a PID, e.g., Z[
√
−5]. Also the class group

ClA may be infinite. In fact, L. Claburn has shown that any abelian group can be realized
as the class group of some Dedekind domain. However, an important theorem in number
theory is that ClZK is a finite group for any ring of algebraic integers ZK . This is usually
proven by using what is called Minkowski Theory.

Exercises 81.14.

1. Define the least common multiple of two nonzero nonunit ideals in a Dedekind domain
and show that it is equal to the intersection of these ideals.

2. Show that Z[
√
−5] is a Dedekind domain but not a PID.

3. Let A be a discrete valuation ring, i.e., a Dedekind domain with a unique maximal
ideal. Show that A is a PID.

4. Let A be a Dedekind domain and S a multiple set not containing zero. Show that
the localization S−1A is either a field or a Dedekind domain. In particular, if p is a
maximal ideal in A then the localization of A at p, i.e., Ap = S−1A where S = A \ p,
is a discrete valuation ring.

5. Show that every Dedekind domain with finitely many prime ideals is a PID.
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6. Let A be a Dedekind domain with quotient field F and having finitely many prime
ideals. Show if K/F is a finite separable field extension, then AK is a Dedekind
domain with finitely many prime ideals.

7. Let R be an arbitrary domain: Show the following:
(a) Any invertible fractional ideal in R is finitely generated.
(b) A product of fractional ideals in R is invertible if and only if each of the fractional

ideals is invertible.
(c) If an ideal in R is a product of invertible prime ideals, then the prime ideals are

unique up to order.

8. Let R be a domain in which every nonzero ideal is a product of prime ideals. Show
that every nonzero prime ideal is invertible and maximal.

9. Show that a domain, not a field, is a Dedekind domain, if and only if every nonzero
ideal is a product of prime ideals.

10. Let A be a Dedekind domain and p a prime ideal in A. Show the following:
(i) pm = pn if and only if m = n.

(ii) If π ∈ p \ p2, then pm = (π)m + pn for any positive integers n ≥ m.

(iii) The only proper ideals in A/pn are p/pn, . . . pn−1/pn

11. Let A be a Dedekind domain and A a nonzero ideal in A. Using the previous exercise
show the following:

(i) Every ideal in A/A is principal.

(ii) Every ideal in A can be generated by two elements.

12. Let A be a Dedekind domain. Prove the following:
(i) Let A be a fractional ideal of A and B ⊂ A an ideal. Then there exists an element

a ∈ A such that A−1a+ B = A.

(ii) Let A1 and A2 be two fractional ideals of A. Then the A-module A1

∐
A2 is

isomorphic to A
∐

A1A2.

(iii) Let A1 be a fractional ideal of A. Then there exists an A-isomorphism A
∐

A−1 ∼=
A2. In particular, every fractional ideal over A is A-projective (cf. Exercises
39.12(126.1), (126.3), (126.5)).

(iv) Every finitely generated torsion-free A-module is isomorphic to a finite direct sum
of ideals in A. (Cf. Exercise 44.24(2).)

(v) Let M be a finitely generated torsion-free A-module. Then M ∼= An
∐

A for some
n and some ideal A in A. [There is a uniqueness statement. Can you guess what
it is?]

13. Let A be a local noetherian domain of dimension one with m its maximal ideal. Let
k := A/m, called the residue class field of A. Show the following are equivalent:

(i) A is a discrete valuation ring.
(ii) A is integrally closed.

(iii) m is a principal ideal.
(iv) dimk(m/m

2) = 1.
(v) Every non-zero ideal is a power of m.

(vi) There exists x ∈ A such that every non-zero ideal is of the form (xn), n ≥ 0.
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(vii) A is a valuation ring, i.e., if a nonzero x is an element in the quotient field of A,
then either x is an element of A or its multiplicative inverse is.

(viii) A is a Dedekind domain.

14. Let A be a noetherian domain. Then the following are equivalent:
(i) A is a Dedekind domain.

(ii) Am is a discrete valuation ring for all maximal ideals m in A.
(iii) Every non-zero fractional ideal in A is invertible.
(iv) Every integral ideal in A factors uniquely into prime ideals.

15. Let A be a Dedekind domain and A an nonzero ideal in A with factorization A =
pe11 · · · perr into prime ideals in A. Prove all of the following:

(i) There exists a ring isomorphism A/A ∼= A/pe11 × · · ·A/perr .
(ii) If M is an A-module, then there exist A-modules Mi for i = 1, . . . , r and an

A-module isomorphism M ∼=
∐r

i=1 Mi with A/p
kj
i Mi = 0 for every j 6= i and

each i = 1, . . . , r. In particular, each Mi is an A/peii -module.
16. Let A be a Dedekind domain, p a nonzero prime ideal in A, and M a finitely generated

torsion A-module with annihilator, annAM := {x ∈ A | xA = 0
)

=
⋂
x∈A annA x.

Show all of the following:
(i) Let Ap be the localization of A at p, a discrete valuation ring hence a PID. Then

A/pe ∼= Ap/(p
eAp) as rings.

(ii) If M satisfies pe = annA(M), then M is isomorphic to a coproduct of A-modules
A/pk for various 1 ≤ k ≤ e.

(iii) If annA(M) = pe11 · · · perr , then M is isomorphic to a coproduct of A-modules

A/p
kij
i for various 1 ≤ kij ≤ ei for i = 1, . . . , r. [There is a uniqueness statement.

What is it?]
17. Let A be a Dedekind domain and M a finitely generated A-module. Then M = Mtf ⊕

Mt with the submodules Mtf torsion-free and Mt torsion, respectively. In particular,

by (12) and (16) of these Exercises (81.14), M ∼= Rn
∐

A
∐ ∐

i,j A/p
kj
i , for some ideal

A in A and for various A/p
kij
i , 1 ≤ kij ≤ ei, where annA(M) = pe11 · · · perr . (There is

also a uniqueness statement. What is it?)

82. Extension of Dedekind Domains

Let A be a Dedekind domain with quotient field F and K/F a finite separable field
extension. We have shown that AK is also a Dedekind domain. We wish to investigate
how nonzero prime ideals in A factor into a product of primes ideals in AK . We begin
by showing any proper ideal in A remains a proper ideal in AK . This follows from the
following (which is a special case of the Cohen-Seidenberg Theorem 93.14(2) below).

Claim 82.1. Let p be a nonzero prime ideal in the Dedekind domain A above. Then
pAL < AL for any field extension L/F .

We know that p2 < p. Let π ∈ p \ p2. It follows that πA = pA for some ideal A of A with
p6 | A, hence p + A = A. Write 1 = p + a with p ∈ p and a ∈ A. It follows that a /∈ p
and ap ⊂ pA = πA. Suppose that pAL = AL. Then aAL = apAL ⊂ πAL, hence a = πx,
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for some x ∈ AL ∩ F = A. This implies that a lies in p, a contradiction. This proves the
claim.

In particular, if p is a nonzero prime ideal in A, then we have a factorization

(*) pAK = Pe1
1 · · ·Per

r in AK

called the splitting behavior of p in AK . We say a prime ideal P in AK lies over p, if
P∩A = p. If P is such a prime ideal then pAK ⊂ (P∩A)AK ⊂ P < AK , so P = Pi for
some i, as P is a maximal ideal in AK . Conversely if P = Pi, then pAK∩A ⊂ P∩A < A,
so P ∩ A = p, as p is a maximal ideal. Thus

{P1, . . . ,Pr} = {P | with P a prime ideal in AK satisfying P | pAK},
the set of prime ideals in AK lying over p in AK . We shall write P | p for P | pAK . Let P
be a nonzero prime ideal in AK . Then the composition of the inclusion A ⊂ AK and the
canonical epimorphism : AK → AK/P shows that the field AK/P is a field extension
of A/P ∩ A. We define ramification index e(P/p) of P over p and if P lies over p, the
inertia index f(P/p) of P over p by

e(P/p) = vP(pAK)

f(P/p) = [AK/P : A/p].

respectively. If e(P/p) > 1 or if (AK/P)/(A/p) is not separable, we say that p ramifies
in AK . That the inertia index is a finite number follows from the following important
result:

Theorem 82.2. Let A be a Dedekind domain with quotient field F , K/F a finite separable
field extension. If p is a nonzero prime ideal in A, then f(P/p) is finite for all P | p and

[K : F ] =
∑
P|p

e(P/p)f(P/p).

Proof. Let pAK = Pe1
1 · · ·Per

r be a factorization of p in AK . So e(Pi/p) = ei and
f(Pi/p) = fi for each i. Let n = [K : F ] and : AK → AK/pAK be the canonical
epimorphism, so A = A/p. By the Chinese Remainder Theorem

(*) AK/pAK = AK/P
e1
1 � · · ·�AK/P

er
r .

The ring AK = AK/pAK is a finite dimensional A-vector space as AK is a finitely generated
A-module, hence so are the AK/P

ei
i ’s. It follows from this that the f(Pi/p) are all finite.

Step 1. n = [K : F ] = dimA AK :

Choose B = {x1, . . . , xm} in AK , so that B = {x1, . . . , xm} is an A-basis for AK .

We shall show that B is an F -basis for K establishing the claim. We first show B is
linearly independent. Suppose not, then clearing denominators if necessary, we see that
we have an equation

a1x1 + · · ·+ amxm = 0 in AK
for some a1, . . . , am in A, not all zero. Let A be the nonzero ideal (a1, . . . , am). As
AA−1 = A, we can choose a nonzero element a in A−1 such that not every aai lies in p.
As aai ∈ A for every i, we have

aa1x1 + · · ·+ aamxm = 0 in AK
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contradicting B is A-linearly independent. Thus B is linearly independent.

We next show B spans. Let B = Ax1 + · · · + Axm, a submodule of AK . As B is
a basis for AK , if b ∈ B, there exists an x ∈ AK satisfying x − b lies in pAK , i.e.,
AK = B+ pAK . Let M = AK/B, a finitely generated A-module. Then M/pM = 0, since
each xi maps to zero in it so a zero dimensional A-vector space. Consequently, M = pM .
Set M = Ay1 + · · ·+ Ays. Then we have equations

yi =
s∑
j=1

pijyj for some pij ∈ p, 1 ≤ i, j ≤ s,

hence
s∑
j=1

(δij − pij)yj = 0 for i = 1, . . . s.

Let ∆ be the determinant of the s × s matrix (δij − pij). Then ∆yi = 0 for every i
by Cramer’s Rule, so ∆M = 0. It follows that ∆AK ⊂ B, hence also that ∆K ⊂
Fx1 + · · ·Fxm. But ∆ ≡ 1 mod p, so ∆ is nonzero. Therefore, we conclude that

K = ∆K = Fx1 + · · ·+ Fxm.

Therefore, B is an F -basis for K and m = n. This completes Step 1.

Step 2. Finish:

In view of (*), it suffices to show that dimA AK/Pi
ei = eifi for each i, 1 ≤ i ≤ r.

We have a descending chain of A-vector spaces

AK/P
ei
i ⊃ Pi/P

ei
i ⊃ · · · ⊃ Pei−1

i /Pei
i ⊃ 0,

so

dimA AK/P
ei
i =

ei−1∑
m=0

dimA Pm
i /P

m+1
i .

(Why?) As Pm+1
i < Pm

i by unique factorization of ideals, we can choose an element
a in Pm

i \ Pm+1
i for each m. Then Pm

i = aAK + Pm+1
i , the greatest common divisor

of Pm+1
i and aAK and Pm+1

i = aAK ∩ Pm+1
i (the least common multiple of Pm+1

i and
aAK , cf. Exercise 81.14(1)). Let λa : AK → Pm

i /P
m+1
i be the homomorphism defined by

x 7→ ax+ Pm+1
i . The kernel of λa is Pi and λa is onto, as

imλa = (aAK + Pm+1
i )/Pm+1

i = Pm
i /(aAK ∩Pm+1

i ) = Pm
i /P

m+1
i .

Therefore fi = dimA AK/Pi = dimA Pm
i /P

m+1
i for any m > 0 and dimA AK/P

ei
i = eifi

as desired. �

Remark 82.3. If P | p in the theorem and (AK/P)sep is the separable closure of A/p
in AK/P, then f(P/p) = [(AK/P/p)sep : A/p] ps for some s where p = char(A/p).
In particular, if (AK/P)/(A/p) is normal, then f(P/p) = |G

(
AK/P)/(A/p)

)
| ps, so if

(AK/P)/(A/p) is also separable, then f(P/p) = |G
(
(AK/P)/(A/p)

)
|.
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Remark 82.4. If A = Z in the theorem, Step 1 can be simplified. Indeed let {w1, . . . , wn}
be an integral basis for ZK and A any nonzero ideal in ZK . We know that A ∩ Z = (a)
for some nonzero integer a. Set S = {

∑
riwi | 0 ≤ ri < a}. Then using the division

algorithm, one shows that S is a system of representatives for the cosets ZK/A, so has an

elements.

Let A be a Dedekind domain with quotient field F and K/F a finite separable ex-
tension. Let p be a nonzero prime ideal in A and P a prime ideal in AK lying over p.
We say that P is unramified over A if e(P/p) = 1 and Ak/P is a separable extension of
A/p and ramified otherwise (and totally ramified if in addition f(P/p) = 1). We say p is
unramified in AK if every prime ideal in AK lying over p is unramified and the extension
K/F (or AK/A) is called unramified if every prime ideal in A is unramified in AK . We
say a nonzero prime ideal p in A splits completely in AK if e(P/p) = 1 = f(P/p) for
every prime ideal P lying over p. If K is a global field, with A = Z or F [t], we do not
have to worry about the separability condition of AK/P over A/p as either AK/P is of
characteristic zero or a finite field. A deep result in number theory states that there exist
infinitely many nonzero prime ideals in A that split completely in AK when K is a global
field.

The Kummer-Dedekind Theorem gives a method for computing the splitting behavior
of prime ideals for all but finitely many prime ideals in a given separable extension. We
first define the set of prime ideals whose splitting behavior this theorem omits. Let A be
a Dedekind domain with quotient field F and K/F a finite separable extension. By the
Primitive Element Theorem 57.9, K = F (α) for some α in K. We may assume that α
lies in AK . So A[α] is a subring of AK . Define the conductor of A[α] in AK to be the
largest ideal f of AK that lies in A[α], i.e.,

f = {x ∈ AK | xAK ⊂ A[α]}.
We know that AK contains the F -basis {1, α1, . . . , α

n−1} for K, so it follows by Claim
80.6 that f 6= 0. Note that f ⊂ A[α] as 1 lies in AK , so the conductor f is an ideal of both
AK and A[α].

Kummer-Dedekind’s result is the following:

Theorem 82.5. (Kummer-Dedekind) Let A be a Dedekind domain with quotient field F
and p a nonzero prime ideal in A. Suppose that K/F is a finite separable field extension
with K = F (α), α ∈ AK, and p relatively prime to the conductor f of A[α] in AK. Let

: A[t] → (A/p)[t] be the canonical epimorphism and let p1, . . . , pr be distinct monic
polynomials in A[t] such that

mF (α) = p1
e1 · · · prer

is a factorization of the image of the minimal polynomial of α in (A/p)[t] into irreducibles.
Set

Pi = pAK + pi(α)AK for each i = 1, . . . , r.

Then P1, . . . ,Pr are all of the distinct primes in AK lying over p, f(Pi/p) = fi, and
ei = e(Pi/p) for i = 1, . . . , r. In particular,

pAK = Pe1
1 · · ·Per

r

is a factorization of p in AK.
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Proof. Step 1. AK/pAK ∼= A[α]/pA[α]:

Since pAK and f are relatively prime, AK = pAK+f. But f ⊂ A[α], so we haveAK = pAK+
A[α] and the natural map A[α] → AK/pAK is an epimorphism with kernel pAK ∩ A[α].
As f ∩ A and p must also be relatively prime, we have pA[α] + f = A[α], so

pAK ∩ A[α] = (pA[α] + f)(pAK ∩ A[α]) ⊂ pA[α].

It follows that pAK ∩ A[α] = pA[α] establishing Step 1.

Step 2. A[t]/(mF (α)) ∼= A[α]/pA[α]:

The kernel of the natural epimorphism A[t] → A[t]/(mF (α)) is generated by p and
(mF (α)), Therefore, the evaluation map A[t] → A[α] induces the desired isomorphism
as A[t]/pA[t] ∼= (A/p)[t].

Step 3. Finish:

Let B = A[t]/(mF (α)) and ˜ : A[t]→ B be the canonical epimorphism. By the Chinese
Remainder Theorem,

B ∼= A[t]/(p1
e1)� · · ·�A[t]/(pr

er).

It follows that the nonzero prime ideals in B are the distinct principal ideals (p̃i) generated

by the pi mod mF (α), i.e., the (pi). We have deg pi = deg pi = [B/(p̃i) : A] for i =
1, . . . , r. Further,

0 =
(
m̃F (α)

)
=

r⋂
i=1

(p̃i
ei) in B.

By Steps 1 and 2, we know that B ∼= AK/pAK , with the isomorphism induced by evalu-
ation at α, so by the Correspondence Principle, the prime ideals in B correspond to the
prime ideals in AK/pAK . Let Qi in AK/pAK be the prime ideal corresponding to the prime
ideal (p̃i) in B for i = 1, . . . , r. It follows that each Qi is a principal ideal generated by

pi(α) with deg pi = [AK/Qi : A/p] for each i, and furthermore, 0 =
⋂r
i=1 Qi

ei . Let Pi be
the ideal in AK that is the preimage of Qi under the natural epimorphism AK → AK/pAK .
Then Pi is a nonzero prime ideal by Lemma 81.1 and satisfies Pi = pAK + pi(α)AK for
i = 1, . . . , r. It follows that P1, . . . ,Pr are all the prime ideals in AK lying over p, and
fi = [AK/Pi : A/p] = deg pi = deg pi for each i. Moreover, as

ei = |{Qm
i | m ≥ 0}|, we have Pi

ei
= Qei

i ,

so Pei
i is the preimage of Qei

i . Since
∏r

i=1 P
ei
i ⊂

⋂r
i=1 P

ei
i ⊂ pAK , we have vp(Pi) ≤ ei.

We have [K : F ] = degmF (α) =
∑r

i=1 ei deg pi =
∑r

i=1 eifi. If pAK = P
e′1
1 · · ·P

e′r
r is

a factorization of pAK , then
∑r

i=1 eifi = [K : F ] =
∑r

i=1 e
′
ifi by Theorem 82.2. Hence

ei = e′i for i = 1, . . . , r, and pAK = Pe1
1 · · ·Per

r is a factorization of pAK . �

Examples 82.6. Let K = Q(α) with α3 = 2. It can be shown that ZK = Q[α]. Then
t− 2 = (t− 3)(t2 + 3t− 1) in Z/5Z[t]. As t2 + 3t− 1 is irreducible in Z/5Z[t], then by the
Kummer-Dedekind Theorem 82.5, we see that 5ZK splits completely, say as 5ZK = p1p2

with f(p1/5ZK) = 1 and f(p2/5ZK) = 2.

Exercises 82.7.

1. Complete the proof of Remark 82.4.
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2. Let A be a Dedekind domain with quotient field F and L/K/F finite separable exten-
sions. If P is a nonzero prime ideal in AL, show

e(P/P ∩ A) = e(P/P ∩ AK)e(P ∩ AK/P ∩ A)

f(P/P ∩ A) = f(P/P ∩ AK)f(P ∩ AK/P ∩ A).

3. (Nakayama’s Lemma) Let A be a local ring, i.e., a nonzero commutative ring with a
unique maximal ideal, say m. Show if M is a finitely generated A-module satisfying
mM = M , then M = 0.

4. Let A be a local ring with maximal ideal m and : M → M/mM the canonical
epimorphism. Let C = {x1, . . . , xn} ⊂M and C = {x1, . . . , xn}. Show that C generates
M if and only if C spans M as an A/m-vector space and is a minimal generating set
for M (obvious definition) if and only if C is an A/m-basis for M .

5. Let A be a Dedekind domain with quotient field F and K/F a finite separable field
extension. If α is an element of AK , then for each maximal ideal not dividing the
conductor f of A[α] (hence all but finitely many maximal ideals) (Ap)K = Ap[α], where
Ap is the localization of A at A \ p.

6. Let A be a Dedekind domain with quotient field F andK/F a finite separable extension.
Then a prime ideal p in A ramifies in AK if and only if the localization Ap of A ramifies
in (Ap)K .

83. Hilbert Ramification Theory

Theorem 82.2 becomes even nicer when K/F is Galois. We need the following to prove
this.

Proposition 83.1. Let A be a Dedekind domain with quotient field F and p a nonzero
prime ideal in A. If K/F is a finite Galois extension, then the Galois group G(K/F ) acts
transitively on the set of prime ideals in AK lying over p.

Proof. Let Pi | p be prime ideals in AK for i = 1, 2. Suppose that P2 6= σ(P1) for
any σ ∈ G(K/F ). By the Chinese Remainder Theorem, there exists an element x in AK
satisfying x ≡ 0 mod P2 and x ≡ 1 mod σ(P1) for all σ ∈ G(K/F ), i.e., x ∈ P2 but
σ−1(x) /∈ P1 for any σ in the group G(K/F ). Since

NK/F (x) =
∏

G(K/F )

σ(x) lies in P2 ∩ AF = p = P1 ∩ A ⊂ P1,

we have σ(x) ∈ P1 for some σ ∈ G(K/F ), a contradiction. �

Proposition 83.2. Let A be a Dedekind domain with F its quotient field and p a nonzero
prime ideal in A. If K/F is a finite Galois extension, then e(P/p) = e(P′/p) and
f(P/p) = f(P′/p) for all prime ideals P and P′ lying over p in AK. In particular,
if P | p in AK is a prime ideal and e = e(P/p), f = f(P/p), then [K : F ] = efr where
r is the number of primes in AK lying over p.

Proof. By the last proposition, there exists an element σ in G(K/F ) satisfying
P′ = σ(P), hence we have an isomorphism AK/P → AK/σ(P) given by x + P 7→
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σ(x) +σ(P). It follows that f(P/p) = f(P′/p) Further, if Pm | pAK , then σ(P)m | pAK ,
so e(P/p) = e(P′/p). The result now follows using Theorem 82.2. �

Proposition 83.2 allows us to use Galois Theory in the subject. This is called Hilbert
Ramification Theory. We introduce the subject without going into it deeply (leaving some
results as exercises).

For the rest of this section, let A be a Dedekind domain with quotient field F and
K/F a finite Galois extension. Let p be a nonzero prime ideal in A and P a prime ideal
in AK lying over p. As G(K/F ) acts on the set of prime ideals in AK lying over p, we
can look at the isotropy subgroup

GP = {σ ∈ G(K/F ) | σ(P) = P}

of P. It is called the decomposition group of P and its fixed field

ZP = {x ∈ K | σ(x) = x for all σ ∈ GP}

is called the decomposition field of P. As usual, we have σGPσ
−1 = Gσ(P). We also have

the index [G : GP] = number of primes in AK lying over p as G(K/F ) acts transitively
on the primes in AK lying over p. This means that p splits completely in AK if and only
if GP = 1 and G(K/F ) = GP if and only if P is the only prime ideal in AK lying over p.

Proposition 83.3. Let A be a Dedekind domain with quotient field F and K/F a finite
Galois extension, P a prime ideal in AK with P lying over p. Then

(1) P is the only prime ideal over P ∩ ZP.
(2) e(P/P ∩ ZP) = e(P/p) and f(P/P ∩ ZP) = f(P/p).
(3) e(P ∩ ZP/p) = 1 and f(P ∩ ZP/p) = 1.

Proof. By Proposition 83.2, we have [K : ZP] = e′f ′r′ where e′ is the ramification
index of each prime ideal in AK lying over P ∩ ZP, f ′ its inertia index, and r′ is the
number of prime ideals in AK lying over P ∩ ZP. Similarly, we have [ZP : F ] = e′′f ′′r′′

where e′′ is the ramification index of each prime ideal in ZP over p, f ′′ its inertia index,
and r′′ is the number of prime ideals in AZP

lying over p, and [K : F ] = efr where e is
the ramification index of each prime ideal in AK lying over p, f is its inertia index, and
r = [G(K/F ) : GP] is the number of prime ideals in AK lying over p. By the transitivity
of ramification and inertia indices (cf. Exercise 82.7(2), we have e = e′e′′, f ′f ′′ = f , hence
r = r′r′′.

(1): By definition, GP = G(K/ZP), so the primes lying over PZP
are σ(P)ZP

by Propo-
sition 83.1, each is P and r′ = 1.

(2), (3): As r = [G(K/F ) : GP] = [ZP : F ] = e′′f ′′r′′, we have [K : ZP] = |GP| = ef .
By (1), we have, e′e′′f ′f ′′ = ef = [K : ZP] = e′f ′. Thus e′′ = 1 = f ′′ and e′ = e and
f ′ = f �

We next relate the decomposition group GP of P in AK lying over p and the Galois
group of the field extension (AK/P)/(A/p). Let σ be an element of the GP. Then σ
induces an (A/p)-isomorphism

σ : AK/P→ AK/P given by x+ P 7→ σ(x) + σ(P) = σ(x) + P.
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Therefore, we get a group homomorphism

(83.4) : GP → G
(
(AK/P)/(A/p)

)
given by σ 7→ σ.

Proposition 83.5. Let A be a Dedekind domain with F its quotient field and p a nonzero
prime ideal in A. If K/F is a finite Galois extension and P a prime in AK lying over p,
then (AK/P)/(A/p) is a finite normal extension and the map : GP → G

(
(AK/P)/(A/p)

)
in (83.4) is surjective.

Proof. Let : AK [t] → (AK/P)[t] be the natural epimorphism. Since f(P ∩
AZP

/p) = 1, we have A/p = AZP
/(P ∩ AZP

), so we may assume that F = ZP, hence
G(K/F ) = GP. Let x ∈ AK/P and choose α in AK satisfying α = x. Then we have

(*) mA/p(x) | mF (α) in (A/p)[t].

Since K/F is normal, mK(α) splits over K, hence mK(α) splits over AK/P. It follows
that mA/p(x) splits over AK/P, hence the finite extension (AK/P)/(A/p) is normal.

Next, using the Primitive Element Theorem 57.9, we can choose α in K such that
(A/p)(α) is the maximal separable extension of A/p in AK/P. We may assume that α
lies in AK . Suppose that σ lies in G

(
(AK/P)/(A/p)

)
. Then σ is completely determined

by σ(α). As σ(α) is a root of mA/p(α), it is a root of mF (α) by (*). Choose a root α′ of

mF (α) satisfying α′ = σ(α). There exists an element σ in G(K/F ) satisfying σ(α) = α′

as G(K/F ) acts transitively on the roots of mF (α). Then σ 7→ σ. �

The kernel of (83.4) is denoted by

IP = {σ ∈ GP | σ = 1AK/P}
and called the inertia group of P, its fixed field

TP = KIP

is called the inertia field of P. By Proposition 83.5, we have an isomorphism GP/IP ∼=
G
(
(AK/P)/(A/p)

)
. We know that (AK/P)/(A/p) is normal, but it is not Galois in

general. However, if K is a global field, it is as AK/P is then a finite field so separable
over (A/p).

If the extension (AK/P)/(A/p) is separable, then IP = 1 if and only if p is unramified
and GP

∼= G
(
(AK/P)/(A/p)

)
. More generally, in this case of separability, we have

e(P/p) = |IP| = [K : TP] and f(P/p) = [GP : IP] = [TP : ZP].
Suppose that K is a global field, so F = Q and A = ZK or F a finite field and

A = F [t]K . Of course, if F = Q, then p = (p) in Z for some prime element p. Suppose
that P is unramified over p, then there exists a unique element σP in G(K/F ) satisfying

σP(x) ≡ xf(P/p) mod P.

The automorphism σP is called the Frobenius automorphism. If K/F is abelian, then
Gτ(P) = τGPτ

−1 = GP for all τ in G(K/F ). As G(K/F ) acts transitively on the primes
lying over p all decomposition groups over p are equal, so the Frobenius homomorphism
σP depends only on p. This was the first case, called ‘class field theory’, thoroughly
studied in the first third of the twentieth century.

Exercises 83.6.
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1. Let A be a Dedekind domain with quotient field F , p a nonzero prime ideal in A.
Suppose that K/F is a finite Galois extension and P a prime ideal in AK lying over
p. Show that TP/ZP is a normal extension satisfying G(TP/ZP) ∼= G

(
AK/P)/(A/p)

)
and G(K/TP) ∼= IP.

2. Let A be a Dedekind domain with quotient field F , p a nonzero prime ideal in A.
Suppose that K/F is a finite Galois extension and P a prime ideal in AK lying over
p and satisfying (AK/P)/(A/p) is separable. Assuming the previous exercise and
Exercise 82.7(2) show

(i) e(P/p) = |IP| = [K : TP] and f(P/p) = [GP : IP] = [TP : ZP].
(ii) e(P/P ∩ TP) = e(P/p) and f(P/P ∩ TP) = 1.

(iii) e(P ∩ TP/P ∩ ZP) = 1 and f(P ∩ TP/P ∩ ZP) = f(P/p).

84. The Discriminant of a Number Field

In Section 65, we studied the discriminant of a polynomial f in F [t]. If K/F is a finite
separable extension, then by the Primitive Element Theorem, K = F (α), for some α. Of
course there are many such α’s, so there is no unique such discriminant. Suppose that
F is the quotient field of a Dedekind domain A. Then we know that we can choose α to
lie in A. We now have two problems, α is still not unique, and more seriously, AK is not
necessarily A[α] for any α. We investigate what we must do to solve this problem, as the
correct definition is crucial to finding the primes in A that ramify in AK . Although we
shall not prove the full result, this addendum should provide a suitable introduction.

Let K/F be a finite, separable field extension of degree n, L/F be a finite Galois exten-
sion with L/K, and σ1, . . . , σn : K → L the distinct F -homomorphisms. Let w1, . . . , wn
be elements in K and define

∆(w1, . . . , wn) = ∆K/F (w1, . . . , wn) := det
(

TrK/F (wiwj)
)
.

Then ∆(w1, . . . , wn) lies in F as each Tr(wiwj) does. Moreover, if every wi lies in AK ,
then ∆(w1, . . . , wn) lies in A. We have (cf. also Section 65):

Properties 84.1. Let K/F be a finite, separable field extension of degree n, L/F a
Galois extension with L/K, and σ1, . . . , σn : K → L the distinct F -homomorphisms. Let
B = {w1, . . . , wn}

(1) If K = F (α), then {1, α, . . . , αn−1} is an F -basis for K. Set αi = σi(α). Then

∆(1, α, . . . , αn−1) =
∏
i<j

(αi − αj)2

is the discriminant of the minimal polynomial mF (α). We denote it by ∆(α).

(2) ∆(w1, . . . , wn) is not zero if and only if B is an F -basis for K.

(3) If C is an F -basis forK and {w′1, . . . , w′n} its complementary basis, i.e., TrK/F (wiw
′
j) =

δij for all 1 ≤ i, j ≤ n, then

∆(w1, . . . , wn)∆(w′1, . . . , w
′
n) = 1.
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(4) If C is an F -basis for K, then

∆(w1, . . . , wn) = det
(
(σi(wj)

)2
.

(5) If B and {v1, . . . , vn} are two F -bases for K, then

∆(v1, . . . , vn) = (detC)2∆(w1, . . . , wn)

with C ∈ GLn(F ), the change of basis matrix.

(6) If F = Q and B and {v1, . . . , vn} are two integral bases for ZK , then

∆(v1, . . . , vn) = ∆(w1, . . . , wn),

as the change of basis matrix for these two integral bases must lie in GLn(Z).
Denote the integer ∆(v1, . . . , vn), independent of integral basis, by dK . It is called
the discriminant of K.

(7) Suppose that F = Q and B is an integral basis for ZK and {v1, . . . , vn} a Q-
basis for K with each vi lying in ZK . Then there exists an integer a such that
a2dK = ∆(v1, . . . , vn) in Z; and, in fact,

|∆(v1, . . . , vn)| ≥ |dK |
with equality if and only if

{v1, . . . , vn} is an integral basis.

[For this reason, an integral basis for ZK is often called a minimal basis.]

In the case of a ring of algebraic integers, we have the following:

Proposition 84.2. Let K/Q be a finite field extension of degree n and {α1, . . . , αn} a
subset of ZK forming a Q-basis for K. Then we have

Z[α1, . . . , αn] ⊂ ZK ⊂
1

∆(α1, . . . , αn)
Z[α1, . . . , αn].

Proof. The first inclusion is trivial. Let ∆ = ∆(α1, . . . , αn) and δ = det
(
(σi(αj)

)
∈

ZK , where σ1, . . . , σn : K → C are the Q-embeddings of K. So ∆ = δ2 by Property
84.1(4). Suppose that z ∈ ZK . Then z = x1α1 + · · ·+ xnαn for some x1, . . . , xn in Q. We
have

σi(z) = x1σi(α1) + · · ·+ xnσi(αn) for i = 1, . . . , n.

By Cramer’s Rule, xi = yi/δ with yi the determinant of the matrix
(
σi(αj)

)
with the

transpose
(
σ1(z), . . . , σn(z)

)t
, replacing its ith column for each i. Since y1, . . . , yn, δ are

algebraic integers, ∆xi = δ2xi = δyi lies in ZK ∩Q = Z, i.e., xi lies in 1
∆

Z for i = 1, . . . , n.
The result follows. �

Definition 84.3. Let A be a Dedekind domain with quotient field F , and K/F a finite
separable field extension. The discriminant ideal of AK is the ideal DAK/A of A generated
by the elements ∆(w1, . . . , wn) in A for all F -bases {w1, . . . , wn} of K lying in AK . Of
course, if A is a ring of integers, then DAK/A = (dK), but in this case it is important to
work with the integer dK as it has a unique sign attached to it.
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Proposition 84.4. Let A be a Dedekind domain with quotient field F and K/F a finite
separable field extension. Suppose that K = F (α) with α an element of AK. If p is a
nonzero prime ideal of A relatively prime to both DAK/A and the conductor f of A[α] in
AK, then p is unramified in AK. In particular, only finitely many primes in A ramify in
AK.

Proof. Let : AK [t]→ (AK/pAK)[t] be the canonical epimorphism and

mF (α) = p1
e1 · · · prer

be a factorization in A[t] into irreducible polynomials with p1, . . . , pr monic polynomials
in A[t]. By Theorem 82.5,

Pi = pAK + pi(α)AK , i = 1, . . . r

are the prime ideals lying over p in AK and pAK = Pe1
1 · · ·Per

r . Let α1, . . . , αs be the roots
of mF (α) in a finite Galois extension of F containing K. Then ∆(α) =

∏
i<j(αi − αj)2,

so mF (α) has multiple roots if and only if αi = αj for some i 6= j if and only if ∆(α) = 0.
Hence ei = 1 for i = 1, . . . , r and each pi has only simple roots. In particular, AK/P

ei
i =

AK/Pi = AK(αi) is a separable extension of A. �

Of course in the theorem, if AK = A[α] for some α, then f is the unit ideal, so the
condition in this case is that p is relatively prime to DAK/A. Unfortunately, in general
AK is not A[α] for any α. However, in the number field case, we can show by elementary
means that if a prime ideal pZ in Z ramifies in ZK for K/Q finite, then p divides dK .

Proposition 84.5. Let K be a number field and p a prime integer. If (p) ramifies in ZK,
then p | dK.

Proof. Let L/K be a finite extension with L/Q a finite Galois extension. Suppose
that p 6 | dK and (p) ramifies in ZK , say pZK = Pe1

1 · · ·Per
r is a factorization of pZK with

e1 > 1. Let A = Pe1−1
1 · · ·Per

r > pZK . We have Pi | A for i = 1, . . . , r. Let {x1, . . . , xn}
be an integral basis for ZK where n = [K : Q]. Choose x in A \ pZK and write

x = m1x1 + · · ·+mnxn

with m1, . . . ,mn in Z. By assumption, there exists an i such that p 6 | mi. We may assume
that i = 1. We have {x, x2, . . . , xn} ⊂ ZK is a Q-basis for K and, using properties of
determinants and Property 84.1(7), one checks that

∆(x, x2, . . . , xn) = ∆(m1x1 + · · ·+mnxn, x2, . . . , xn)

= m2
1∆(x1, . . . , xn).

As x lies in every prime ideal in ZK lying over (p), it lies in every prime ideal in ZL lying
over (p). Let Q be a prime ideal in ZL lying over (p). As G(L/Q) acts transitively on the
set of prime ideals in ZL lying over (p), we have σ(x) lies in Q for every automorphism
σ in G(L/Q). By Property 84.1(4), the element ∆(x, x2, . . . , xn) lies in Q ∩ Z = (p).
Consequently, p | ∆(x, x2, . . . , xn) = m2

1∆(x1, . . . , xn). Since p 6 | m1, we must have p |
∆(x1, . . . , xn) = dK , a contradiction. �
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It can be shown that the converse to the last proposition is in fact true, i.e., if p is a
prime integer, then (p) ramifies in a ring of algebraic integers ZK if and only if p | dK .
Indeed, in Section 85, we shall prove Dedekind’s Ramification Theorem that states if A is a
Dedekind domain with quotient field F and K/F is a finite separable field extension, then
a prime ideal p ramifies in AK if and only if p | DAK/A. In the exercises for this section,
we shall use localization techniques to reduce this to the case of a discrete valuation ring.
In this section we shall, however, prove the following special case of it.

Proposition 84.6. Let p be an odd prime, ζ a primitive pth root of unity in C, and

K = Q(ζ). Then ZK = Z[ζ]. In particular, ∆K = (−1)
p−1
2 pp−2. Moreover, pZ ramifies in

ZK and is the only prime ideal that ramifies in ZK.

Proof. By Example 65.7, we know that ∆(ζ) = (−1)
p−1
2 pp−2 and that N(ζ) = N(1−

ζ). Certainly, Z[ζ] = Z[1 − ζ]. Suppose that Z[1 − ζ] = Z[ζ] < ZK . Using Proposition
84.2, we can find an element z ∈ ZK \ Z[1− ζ] satisfying

z =

p−1∑
j=i

mj

p
(1− ζ)j for some i ≥ 0 and mj ∈ Z with p 6 | mi.

(why?) By Example 65.7, we know that
∏p−1

j=0(ζj − 1) = p, hence p/(1− ζ)p−1 lies in Z[ζ],

as (1− ζ) | (1− ζj) for all j > 0. Consequently, p/(1− ζ)j lies in Z[ζ] for j = 0, . . . , p− 1
and zp/(1− ζ)j lies in ZK for all j. It follows easily that this implies that mi/(1− ζ) lies
in ZK . But

p = NK/Q(1− ζ) | NK/Q(mi) = mp−1
i ,

which is impossible. Therefore, ZK = Z[ζ].

By Property 84.1(6), we have dK = ∆(ζ). Therefore, Q
(√

∆) = Q
(√

(−1)
p−1
2 p
)
, the

unique quadratic extension of Q in K by Proposition 59.14. Clearly, pZ ramifies in ZQ(
√

∆),
so the proposition follows. �

Remark 84.7. If ζ is a primitive prth root of unity and ζp a primitive pth root of unity
in C with p an odd prime or p = 2 and r > 1, then a modification of the proof shows
that ZQ(ζ) = Z[ζ] = Z[1 − ζ] and the discriminant dZQ(ζ)

is a power of p by Lemma 65.8.

Using Proposition 84.5 and the fact that Q
(√

(−1)
p−1
2 p
)

is a subfield of Q(ζ) if p is odd

with pZ ramifying in Z
Q

(√
(−1)

p−1
2 p

) and with 2 ramifying Z[
√
−1] (cf. the next section),

we see that such pZ are precisely the prime ideals ramifying in ZK . In the general case,
one shows that ZL = Z[ω] for a primitive nth root of unity ω for arbitrary n. This is left
as an exercise. The primes p that ramify in ZL are precisely those odd primes dividing n
and 2 if 4 | n using a similar analysis.

It can be shown that if Q < K is a finite extension, then dK > 1 and some prime ideal
in Z ramifies in ZK .

Exercises 84.8.

1. Prove Properties 84.1.
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2. (Stickelberger’s Criterion) Let K be a number field. Show that dK is congruent to 0
or 1 modulo 4.

3. (Brill) Let K be a number field and r the number of embedding of K into C whose
image does not lie in R. Show that the sign of dK is (−1)r.

4. Let ζ be a primitive pmth root of unity in C with p an odd prime or p = 2 and m > 1.
Let K = Q(ζ). Show that ∆K | pp

m−1(p−1) and ZK = Z[ζ] = Z[1 − ζ]. In particular,
show if p is an odd prime or p = 2 and m ≥ 2, then pZ ramifies in ZK and is the only
prime ideal ramifying in ZK .

5. Let K/Q and L/Q be finite and d the gcd of dk and dL. Show that ZKZL ⊂ 1
d
ZKL

where KL is the compositum K(L) − L(K) of K and L in C. In particular, if d = 1,
then ZKZL = ZKL.

6. Using the last two exercises, show that if K = Q(ζ) with ζ a primitive nth root of unity
in C, then ZK = Z[ζ] and a prime p has pZ ramifies in K if and only if p | n if p is odd
or 2 if 4 | n.

7. Let A be a Dedekind domain with quotient field F and K/F a finite separable field
extension. Let p be a maximal ideal in A and S a multiplicative set not containing
zero. Show that S−1DAK/A = DS−1AK/S−1A. In particular, if S = A \ p, then p | DAk/A

if and only if pS−1A | DS−1AK/S−1A. (Cf. Exercise 82.7(6.) [This reduces the theorem
that p ramifies in A if and only if p | DAK/A if and only if it does so locally, i.e., A is a
discrete valuation ring.]

8. Let A be a discrete valuation ring with quotient field F and K/F a finite separable
field extension with A-basis {x1, . . . , xn}. Then DAK/A = ∆K/F (x1, . . . , xn)A.

85. Dedekind’s Theorem on Ramification

In this short section, we prove that a prime in a Dedekind domain ramifies in a finite
separable extension of its quotient field if and only if it divides the discriminant ideal. We
shall need to extend the definition of the trace of a finite separable field extension to an
arbitrary finite field extension. We do this as follows: Let K/F be a finite field extension
and Ks be the elements in K separable over F . The set Ks is a field (why?) called the
separable closure of F in K. Define TrK/F : K → F by TrK/F := [K : Ks] TrKs/F . In
particular, K/F is not separable if and only if TrK/F = 0. (The norm NK/F is defined by

NK/F := (NKs/F )[K:Ks].) Exercises in previous sections that entail the use of localization
reduce the proof of our desired result to the case of a discrete valuation domain, i.e., a
local Dedekind domain. In particular, assuming these exercises and this extension of the
trace, we are reduced to proving the following result:

Proposition 85.1. Let A be a discrete valuation ring with quotient field F and K/F a
finite separable extension. Then the maximal ideal p in A ramifies in K if and only if
p | DAK/F .

Proof. Let n = [K : F ]. Since a discrete valuation ring is a PID by Remark 81.8(5),
we know that AK is a free A-module of rank n, say with integral basis {x1, . . . , xn}. It
follows by Exercise 84.8(8) that DAK/A = ∆K/F (x1, . . . , xn)A. Hence p | DAK/A if and
only if ∆K/F (x1, . . . , xn) ∈ p.
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Let

(a) : AK → AK/pAK be the canonical epimorphism.

(b) A = A/p.

(c) pAK = Pe1
1 · · ·Per

r be the factorization of p in AK into primes.

(d) Bi = AK/P
ei
i for i = 1, . . . , r.

Using the Chinese Remainder Theorem, we identify AK/pAk with�
r
i=1Bi. We know that

n = [K : F ] = rankA(AK) = dimAAK

by Theorem 82.2 (and its proof). Let Bi = {uji−1+1, . . . , uji} be an A-basis for Bi, i =

1, . . . r. So B = B1 ∪ · · · ∪ Br is an
A

-basis for AK with |B| = n.

For each y in AK define λy : AK → AK by z 7→ yz and tr : AK → AK by y 7→ tr(y) :=
trace(λy). Let tri = tr|Bi for i = 1, . . . , r.

Note that we have

(i) {x1, . . . , xn} is an A-basis for AK .
(ii) tr(uiuj) = 0 if ui and uj lie in different Bk’s.

Claim. Let x ∈ AK , then TrK/F (x) = tr(x) [= trace(λx)]. In particular, there exists a

change of basis matrix C ∈ GLn(A) satisfying

∆K/F (x1, . . . , xn) =
(

det(C)
)2

det
(
tr(uiuj)

)
,

hence

∆K/F (x1, . . . , xn) = 0, i.e., ∆K/F (x1, . . . , xn) ∈ p,

if and only if det
(
tr(uiuj))

)
= 0 :

Write xxi =
∑n

j=1 aijxj with aij ∈ A for all i and j and let α be the matrix
(
aij
)
. Then

α is the matrix representation of λx relative to the basis {x1, . . . , xn} and α is the matrix
representation of λx relative to the basis {x1, . . . , xn}. By Exercise 60.26(5), we have

TrK/F (x) = trace(λx) = trace(λx) = tr(x).

This proves the Claim. Now let Di :=
(
tri(uluk)

)
for ji−1 < l, k ≤ ji, for each i = 1, . . . , r.

Then

D :=
(

tri(uluk)
)

=

D1 · · · 0
...

. . .
...

0 · · · Dr

 (with j0 = 0).

Suppose that Bi = AK/P
ei
i is a field, i.e., ei = 1. Then

detDi = ∆Bi/A
(uji−1+1, . . . , uji) = det

(
TrBi/A(uluk)

)
.

Since Bi/A is not separable if and only if TrBi/A = 0, if follows that if Bi is a field for

every i, then p | DAK/A if and only detDi = 0 for some i if and only if there exists an i

such that Bi/A is not separable.

So suppose that there exists an i with Bi not a field. We may assume that i = 1 and
further that u1 lies in P1/P

e1
1 . Therefore, (u1ui)

e1 = 0 for all i, hence λu1ui is nilpotent.
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It follows that the first row of D consists of 0’s by Example 45.7, hence detD = 0 and
p | DAK/A. �

The generalization of the proposition to arbitrary Dedekind domains now follows by
the reduction given by Exercise 84.8(7). That is, we the following theorem:

Theorem 85.2. (Dedekind Ramification Theorem) Let A be a Dedekind domain with
quotient field F and K/F a finite separable field extension. The a maximal ideal p of A
ramifies in AK if and only if p | DAK/A.

Immediate consequences of the theorem are:

Corollary 85.3. Let A be a Dedekind domain with quotient field F and K/F a finite
separable field extension. Then AK/A is unramified if and only if DAK/A = A.

Remarks 85.4. Let F be a number field, so a finite extension of Q.

1. Using Minkowski Theory, one can show that |dF | > 1 (cf. Corollary 91.10), so ZF/Z
cannot be unramified. As Q and finite fields are perfect, this means that there exists a
prime p and a prime ideal P in ZF lying over pZ such that e(P/pZ) > 1.

2. It can also be shown that there exist finitely many F/Q satisfying d = dF , for some
fixed integer d.

3. There can, however, be finite extensions K of the number field F that are unramified.
Indeed a deep theorem of Classfield Theory says that the maximal unramified abelian
extension K of F (in C) is finite and of degree |ClZF | over F , where CLZF (= IZF /PZK )
is the class group of ZK (finite for a ring of algebraic integers by Minkowski Theory –
cf. Corollary 91.6). Furthermore, its Galois group G(K/F ) is (canonically) isomorphic
to CLZF . [K is called the Hilbert class field of F .] In particular, F < K if ZF is not a
PID.

Corollary 85.5. Let F = Q(α) with α integral over Z satisfying g(α) = 0 with g ∈ Z[t]
monic and p a prime in Z. If p 6 | NF/Q

(
(g′(α)

)
, then pZ is unramified in ZK.

Proof. Let f = mQ(α). By Proposition 65.6, we know that ∆F/Q(α) = ±NF/Q

(
f ′(α)

)
.

Let g = fh in Z[t], then g′ = f ′h + fh′. Consequently, dF | ∆F/Q(α) NF/Q

(
h(α)

)
=

±NF/Q

(
g′(α)

)
�

86. The Quadratic Case

Let d be a square-free integer. In this section, we compute the ring theory of ZK with
K = Z[

√
d] to illustrate the theory that we have developed.

Throughout this section let ZK with K = Z[
√
d] and G(K/F ) = {1K , σ}, the Galois

group of the Galois extension K/Q. We first determine an integral basis and discriminant
of K. We freely use Properties 84.1. We need a special case of Stickelberger’s Criterion
(Exercise 84.8(2)), viz.,

dK ≡ 0 mod 4 or dK ≡ 1 mod 4.

Indeed, if {w1, w2} is an integral basis for ZK , let α = w1σ(w2) and β = w2σ(w1). Then

dK = (α− β)2 = (α + β)2 − 4αβ.
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As (α−β)2, (α−β)2 and αβ are all fixed by G(K/Q), they are all integers, and the result
follows. (The proof in the general case is analogous.) The above notation shall be used
throughout this section. We also have:

∆(1,
√
d) = det

(
1
√
d

1 σ(
√
d)

)2

= det

(
1

√
d

1 −
√
d

)2

= 4d.

As Z[
√
d] ⊂ ZK , there exists an integer a ∈ Z, satisfying

a2dK = 4d, so dK = 4d or dK = d,

since d is square-free. (Note if a = 2, we must have d is odd, lest dK ≡ 2 mod 4 which
contradicts Stickelberger’s Criterion. So if d is even, dK = 4d and 8 | dK .) Using this and
Stickelberger’s Criterion, we solve our first goal.

Case 1. d ≡ 2 or 3 mod 4:

We have dK = 4d and ZK = Z[
√
d]. In particular, {1,

√
d} is an integral basis for ZK by

Property 84.1(7), and the conductor f of Z[
√
d] in ZK is ZK .

Case 2. d ≡ 1 mod 4:

We have (1 − d)/4 is an integer, hence (1 ±
√
d)/2 lies in ZK , as they are the roots of

t2 − t+ (1− d)/4 in Z[t]. It follows that

Z[
√
d] ⊂ Z[

1 +
√
d

2
] ⊂ ZK .

We know that ∆
(
1, (1 +

√
d)/2

)
= b2dK , some integer b and computation yields ∆

(
1, (1 +√

d)/2
)

= d. Therefore, by Property 84.1(7), dK = d, ZK = Z[(1 +
√
d)/2], and {1, (1 +√

d)/2} is an integral basis for ZK . In particular, the conductor f of Z[
√
d] in ZK contains

the ideal (2, 1−
√
d) = (2, 1 +

√
d).

We show f = (2, 1−
√
d). The element (1+

√
d)/2 does not lie Z[

√
d] hence does not lie in

f, since f ⊂ Z[
√
d]. It follows if a + b

(
(1 +

√
d)/2

)
lies in f with a, b ∈ Z, we may assume

that a = b = 1. As 1 + (1 +
√
d)/2 does not lie in Z[

√
d], we have f = (2, 1 −

√
d). If a

prime ideal P | (1−
√
d), then PP | (1− d)Z. It follows that no factor of pZK with p an

odd prime can be a factor of f.

Because of this computation, if p is a prime integer we can compute the splitting
behavior of pZK in ZK for all primes p by Theorem 82.5 except if p = 2 and d ≡ 1
mod 4. In particular, it is applicable to all odd primes.

Case of an odd prime. Let p be an odd prime. We know that 2 = [K : Q] = efr with
e the ramification index of primes over (p), f the inertia index of (p), and r the number

of primes in ZK lying over (p). We also know that the Legendre symbol
(d
p

)
determines

whether t2−d splits over Z/pZ[t] or not when d is not divisible by p, i.e., determines f for
such p. Using the Kummer-Dedekind Theorem 82.5 and Proposition 84.4, we conclude,
if p is an odd prime, that

1. If p | dK , then t2 − d = t2 in (Z/pZ)[t], so

pZK = (p,
√
d)2.
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Therefore (p) ramifies in ZK if and only if p | dK .

2. The ideal pZK splits completely if and only if
(
d
p

)
= 1. If this is the case, then

pZK = (p, x+
√
d)(p, x−

√
d)

a product of two distinct prime ideals with the integer x satisfying x2 ≡ d mod p.

3. The ideal pZK remains prime in ZK if and only if
(
d
p

)
= −1.

Case of the even prime 2:

If d ≡ 2 or 3 mod 4, then Theorem 82.5 applies, and we see that in either case (2)
ramifies (note 2 | dK), because

1. If d ≡ 2 mod 4, then 2ZK = (2,
√
d)2.

2. If d ≡ 3 mod 4, then 2ZK = (2, d+
√
d)2 = (2, 1 +

√
d)2.

So we are reduced to the case that d ≡ 1 mod 4, and this reduces to the two cases of
d ≡ 1 mod 8 and d ≡ 5 mod 8. Since Theorem 82.5 does not apply, we do this by brute
force. Notice the computation shows that 2 does not ramify as expected and (1 +

√
d)/2

lies in ZK .

We have

3. If d ≡ 1 mod 8, then (2) splits completely in ZK :

We have

(2,
1 +
√
d

2
)(2,

1−
√
d

2
) = (4, 1 +

√
d, 1−

√
d,

1− d
4

) ⊂ 2ZK

As 2ZK ⊂ (1 +
√
d, 1−

√
d), we conclude that

2ZK = (2,
1 +
√
d

2
)(2,

1−
√
d

2
)

splits completely.

4. If d ≡ 5 mod 8, then (2) remains a prime ideal in ZK :

We must show that Z/2Z < ZK/P if P|2. If this was false, there are only two cosets of

ZK/P, so there exists an integer a satisfying a ≡ (1+
√
d)/2 mod P. Since (1+

√
d)/2

is a root of t2 − t + (1 − d)/4, we have a2 − a + (1 − d)/4 is even. As a2 − a is even,
we would have d ≡ 1 mod 8, a contradiction. Therefore, (2) remains a prime ideal.

As previously mentioned, a theorem of Kronecker says that any abelian extension of
Q lies in a cyclotomic extension of Q. We have shown that every quadratic extension of
Q is a subfield of a cyclotomic extension of Q in Theorem 59.18. We use the proposition
that implied this together with Hilbert Ramification Theory to interpret when an ideal
(p) with p an odd prime in Z splits completely in ZK .

Proposition 86.1. Let p and l be odd primes, L = Q(ζ) with ζ a primitive l th root of

unity, and K = Q(

√(−1

l

)
l ). Then (p) splits completely in ZK if and only if (p) splits

into an even number of prime ideals in ZL.
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Proof. By Proposition 59.14, we have K is the unique quadratic extension of Q in
L. Suppose that p splits completely in ZK , say pZK = P1P2 is its factorization. There
exists an automorphism σ ∈ G(L/Q) satisfying σ(P1) = P2 by Proposition 83.1. Then σ
takes the set of prime ideals in ZL over P1 bijectively onto the set of prime ideals over P2.
Therefore the set of primes over (p) in ZL is even. Conversely, suppose that the number
of prime ideals in ZL over (p) is even. Let P be one such. Then the decomposition group
GP of P in G(L/Q) has even index in G(L/Q). By Galois Theory, this means the degree
of the decomposition field ZP over Q is even. But L/Q is cyclic and even, so K ⊂ ZP

using Proposition 83.3(2). �

Using the fact that if ζ is a primitive nth root of unity that ZQ(ζ) = Z[ζ], a fact that
we did not prove but left as exercises (cf. Exercise 84.8(6)), one can give another proof
of the Law of Quadratic Reciprocity essentially due to Kronecker. Although we do not
do this, it is key to the generalization of the Law of Quadratic Reciprocity in Number
Theory called Artin Reciprocity. [Cf. Ireland and Rosen, A Classical Introduction to
Modern Number Theory [20], Chapter 13, §3 for this proof.]

We have determined the ideal structure of the quadratic number field ZK and from our
work how nonzero ideals in Z decompose in ZK as ZK is a Dedekind domain and ideals
are products of prime ideals, unique up to order. The remaining problem is to determine
the units in ZK . This depends on whether d is positive or negative. The case of negative
d is easy, the case of positive d not so.

Case of d < 0. We show that

1. If d = −1, then Z×K = {±1,±
√
−1}.

2. If d = −3, then Z×K = {±1,±ζ,±ζ2}, with ζ a primitive cube root of unity.
3. If d < −3 or d = −2, then Z×K = {±1}.

We have seen this for the Gaussian integers, and the proof generalizes, i.e., we take the
norm for K to Q. Let ε be a unit in ZK . Then NK/F (ε) = ±1.

If d ≡ 2 or 3 modulo 4, we can write ε = x + y
√
d for some integers x and y, so

x2 + |d|y2 = 1. If d = −1, we get (1) and if |d| > 3 we have Z×K = {±1}.
If d ≡ 1 mod 4, then {1, (1+

√
d/2} is an integral basis, and we see that we can write ε as

(x+ y
√
d)/2 with x and y integers satisfying x ≡ y mod 2. We then have x2 + |d|y2 = 4.

If d = −3 we get (2) and if |d| > 3, we see that Z×K = {±1}.
To do the case for positive d, we need two results. The first is the following:

Observation 86.2. If M is a positive real number, there exist finitely many α in ZK

such that max(|α|, |σ(α)|) < M .

and the second a famous theorem from elementary number theory, viz.,

Proposition 86.3. Let d be a square-free positive integer. Then Pell’s equation x2−dy2 =
1 has infinitely many solutions in integers. Further, there exists an integral solution
(x1, y1) such that every solution is of the form (xn, yn) with xn + yn

√
d = (x1 + y1

√
d)n

for some integer n. In particular, the solution set in integers to Pell’s equation forms an
infinite cyclic group.
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that we prove in Appendix H.

Using these two results, we prove the case of positive discriminant.

Case of d > 1. We show that there exists a unit u > 1 in ZK such that (ZK)× = {±um |
m ∈ Z}.
By Proposition 86.3, there exist positive integers x and y satisfying x2 − dy2 = 1. Let
ε = x + y

√
d. Then ε is a unit in ZK with ε > 1. Let M > ε and u be a unit in ZK

satisfying 1 < u < M . So NK/Q = uσ(u) = ±1. If σ(u) = −1/u, then −M < −1/u < M
and if σ(u) = 1/u, then we also have −M < 1/u < M . By the observation, there exist
only finitely many such u and ε is at least one of them. Among all of these choose the
smallest unit u > 1. If v > 0 is any other unit, then there exist a unique integer n (not
necessarily positive) satisfying un ≤ v < un+1, so 1 ≤ vu−n < u. By the choice of u, we
must have v = un. If v < 0 is a unit in ZK , then −v > 0 is a unit in ZK and −v = un

some integer n. The result follows.
[Note the similarity of the proof with that in Appendix H.]

The generator of the unit group in this case is called the fundamental unit. It can be
found using continued fractions, but may not be so obvious. For example, the fundamental
unit of Z[

√
94] is 2143295 + 221064

√
94.

If K is a number field, then the structure of ZK can be shown to be µK × Zn where
n = r + s − 1, with r the number of embeddings of K into R and 2s the number of
embeddings of K into C not contained in R, so the number of embeddings into C is r+ 2s
(as the non-real embeddings come in complex conjugate pairs). This is proved using
Minkowski Theory in Section 90.

Exercise 86.4. Prove Observation 86.2.

87. Addendum: Valuation Rings and Prüfer Domains

In this addendum, we shall generalize the concept of Dedekind domain. By Exercise
81.14(14), a Dedekind domain is a Noetherian domain A in which the localization at
every nonzero prime ideal p in A is a discrete valuation ring. Another characterization of
a Dedekind domain was that it was a Noetherian domain A in which every fractional ideal
in A was invertible. We look at these when we do not assume the domain is Noetherian.

In Exercise 81.14(13) we defined a valuation ring. We begin by recalling the definition.

Definition 87.1. A domain A with quotient field F is called a valuation ring of F if for
every nonzero element x in F , either x lies in A or x−1 lies in A. In particular, if a and b
are nonzero elements in A, then a | b or b | a in A. We call a domain a valuation ring if
it is a valuation ring in its quotient field.

Every discrete valuation ring is a Noetherian valuation ring by Exercise 81.14(13),
hence the localization of any Dedekind domain at a nonzero prime ideal is a valuation
ring. Valuation rings are ubiquitous, but unfortunately a valuation ring is Noetherian only
when it is a discrete valuation ring. The general concept, however, was very important in
the algebraization of algebraic geometry.

Properties 87.2. Let A be a valuation ring of F . Then

(1) A is a local ring.
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(2) If a1, . . . , an are nonzero elements in A, then there exists an i such that ai | aj
for j = 1, . . . , n.

(3) If A ⊂ B ⊂ F are subrings, then B is a valuation ring.
(4) A is integrally closed.
(5) Every finitely generated ideal in A is principal. A domain in which every finitely

generated ideal is principal is called a Bézout domain.

Proof. (1): Let A = A \ A×, the set of nonunits in A. As A is a valuation ring, a
lies in A if and only if a−1 does not lie in A.

Claim. A is an ideal.

Let a, b be nonzero elements in A and r a nonzero element in A. Certainly, ra ∈ A.
Suppose that ra /∈ A. Then (ra)−1 ∈ A, hence a−1 = r(ra)−1 lies in A, a contradiction.
So A is closed under multiplication by elements in A. As either ab−1 or a−1b lies in A,
say ab−1, it follows that a+ b = b(ab−1 + 1) lies in A. Hence A is an ideal and clearly the
unique maximal ideal.

Statements (2) and (3) are immediate, (4) follows by Exercise 87.27(1), and (5) follows
form (2). �

We conclude the following:

Corollary 87.3. Let A be a Noetherian domain, not a field. Then A is a valuation ring
if and only if A is a discrete valuation ring.

Proof. (⇒): By the Properties 87.2, A is a local PID so every nonzero prime ideal
is maximal and integrally closed. Since it is Noetherian, it is a local Dedekind domain,
hence a discrete valuation ring.

(⇐): Is Exercise 81.14(13). A key to the proof is if m is the maximal ideal of A, then
x /∈ A× ∪ m2 must satisfy (x) = m by uniqueness of factorization of ideals into prime
ideals in a Dedekind domain. It follows that A must be a PID and the result follows. �

We next look at fractional ideals in a domain a bit more closely.

Let A be a domain with quotient field F and M a fractional ideal, i.e., a nonzero
A-submodule of F such that there exists a nonzero element x of A satisfying xM ⊂ A.
As before, we shall let IA denote the set of fractional ideals in A. We say a fractional
ideal M is an invertible fractional ideal if there exists an A-submodule N of F such that
MN = A. Let Inv(A) denote the set of invertible fractional ideals. As before, we let
PA = {Ax | 0 6= x ∈ F}, the set of principal fractional ideals.

Remarks 87.4. Let A be a domain with quotient field F and M an A-submodule of F .

1. Every nonzero ideal of A is a fractional ideal.

2. A nonzero finitely generated A-submodule of F is a fractional ideal — clear denomi-
nators.

3. Let x be a nonzero element of F , then M ∈ Inv(A) if and only if xM ∈ Inv(A). In
particular, PA ⊂ Inv(A).

4. If A is Noetherian and M ∈ IA, then there exists a nonzero x in F such that xM is
an ideal. In particular, M is a finitely generated A-module. It follows that if A is
Noetherian, IA is the set of nonzero finitely generated A-submodules of F .
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As before if M ∈ IA, we let M−1 := {x ∈ F× | xM ⊂ A}. Of course, MM−1 ⊂ A.

Lemma 87.5. Let A be a domain with quotient field F and M , N be A-submodules of
F satisfying MN = A. Then N = M−1 and M is a finitely generated A-module. In
particular, M ∈ IA.

Proof. By definition N ⊂ M−1, so N ⊂ M−1MN ⊂ AN = N . It follows that
N = M−1. If M is finitely generated then M ∈ IA by Remark 2 above. In any case, since
A = MM−1, we have an equation 1 =

∑n
i=1 aibi for some ai in M , some bi ∈ M−1, and

some n. Then M =
∑n

i=1Aai. Indeed, if x ∈M , then x =
∑

i ai(bix) lies in
∑n

i=1 Aai. �

We call a commutative ring a semi-local ring if it has only finitely many maximal
ideals.

Lemma 87.6. If A is a semi-local domain, then Inv(A) = PA. In particular, A is a PID.

Proof. Let m1, . . . ,mn be the maximal ideals in A and suppose that M ∈ Inv(A),
so MM−1 = A. For each i = 1, . . . , n, choose ai ∈ M and bi ∈ M−1 such that aibi /∈ mi.
Since

⋂
j 6=imj 6⊂ mi for i = 1, . . . , n, there exist ci ∈

(⋂
j 6=imj

)
\ mi for i = 1, . . . n. Let

x =
∑
cibi, an element of M−1. Therefore, xM is an ideal of A. If xM = A, then x is

not zero and M = x−1A is a principal fractional ideal. So suppose that xM < A. Then
xM ⊂ mi for some i. In particular, xai ∈ mi. As cjbjai ∈ mi for every j 6= i, we have
cibiai lies in mi. This is impossible. �

Let A be a commutative ring and S ⊂ A a multiplicative set. If M is an A-module,
then S−1M := {m

s
| s ∈ S, m ∈ M} is an A- and an S−1A-module in the obvious way

[which is?]. If p is a prime ideal in A, we denote by Mp the Ap-module S−1M with
S = A \ p. The following is straight-forward:

Lemma 87.7. If A is a domain, S a multiplicative set in A not containing 0, and M ∈
Inv(A), then S−1M ∈ Inv(S−1A).

We have the following ‘local-global’ principle:

Proposition 87.8. Let A be a domain with quotient field F and M an A-submodule of
F . Then the following are equivalent:

(1) M ∈ Inv(A).
(2) M is a finitely generated A-module and Mp ∈ Inv(A), for all prime ideals p in

A.
(3) M is a finitely generated A-module and Mm ∈ Inv(A), for all maximal ideals m

in A.
(4) M is a finitely generated A-module and Mm ∈ PA, for all maximal ideals m in A.

Proof. (1) ⇒ (2) follows from lemmas 87.7 and 87.5, (2) ⇒ (3) is immediate, and
(3)⇒ (4) follows from Lemma 87.6.

(4) ⇒ (1): Suppose that MM−1 < A. Then there exist a maximal ideal m in A with
MM−1 ⊂ m. By assumption, M is finitely generated, say M = Aa1 + · · · + Aan, and
there exists a nonzero x in M satisfying xAm = Mm. By the definition of localization,
there exist nonzero si in A\m satisfying siai ∈ Ax, i = 1, . . . , n. Set nonzero s = s1 · · · sn.
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Then sM ⊂ Ax, hence sx−1M ⊂ A, i.e., sx−1 ∈ M−1. It follows that s = sx−1x lies in
M−1M ⊂ m, a contradiction. Therefore, MM−1 = A as desired. �

A domain is called a Bézout domain if every finitely generated ideal in A is principal
and a Prüfer domain if every finitely generated ideal is invertible.

Remarks 87.9. 1. Every Bézout domain is a Prüfer domain.

2. A domain A is a Bézout domain if and only if Inv(A) = PA.

3. A domain is a Prüfer domain if and only if every finitely generated fractional ideal is
invertible

We leave the following generalization of the fact that a DVR is a PID as an easy
exercise:

Proposition 87.10. Let A be a local domain. Then A is a valuation ring if and only if
A is a Bézout domain.

The following shows that Prúfer domains generalize Dedekind domains when the Noe-
therian assumption is omitted.

Theorem 87.11. Let A be a domain. Then the following are equivalent:

1. A is a Prüfer domain.

2. Ap is a valuation ring for all prime ideals p in A.

3. Am is a valuation ring for all maximal ideals m in A.

Proof. (1) ⇒ (2): Let A be a finitely generated ideal in Ap with p a prime ideal
in A. Then there exist ai in A \ p and si in S, i = 1, . . . , n, some n, such that A =∑n

i=1Ap
ai
si

= (
∑n

i=1 Aai)p. (Why?) Since
∑
Aai is invertible so is A. But then A is

principal by Proposition 87.8 as Ap is local. In particular, Ap is Bézout, hence a valuation
ring by the previous proposition.

(2)⇒ (3) is immediate.

(3) ⇒ (1): Let A be a finitely generated ideal in A. If m is a maximal ideal in A, then
Am is principal as Am is a valuation ring. Consequently, it is invertible by Proposition
87.8. �

We know that the integral closure of a Dedekind domain in a finite separable closure
of its quotient field is also a Dedekind domain (although separable is not needed by the
Krull-Akizuki Theorem 96.17 to be proven below). We shall generalize this to a Prüfer
domain. Indeed we shall obtain the stronger result that the field extension need only
be algebraic, i.e., we do not have to assume that it is finite nor separable. To do so we
introduce a concept that leads to the ubiquity of valuation rings.

Definition 87.12. Let A be a subring of B and A < A an ideal. We say that A survives
in B if AB < B.

For example, by Claim 82.1, if A is Dedekind domain then any ideal A < A survives in
AL for any field extension L of qf(A). Indeed this is true if B/A is an integral extension
for any commutative ring A (as we shall prove in Theorem 93.14 below).
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Lemma 87.13. (Chevalley) Let A be a subring of the commutative ring B and A < A
an ideal. If u is a unit in B, then A survives in either A[u] or in A[u−1].

Proof. Suppose this is false. Then there exist elements a1, . . . , an and b1, . . . , bm in
A satisfying:

(i) 1 = a0 + a1u+ · · ·+ anu
n

(ii) 1 = b0 + b1u+ · · ·+ bmu
−m

in B, where we may assume that these have been chosen with m,n ≥ 0 minimal. Since
A < A, we may also assume that m and n are positive. We also assume that m ≤ n.
Note that a0 6= 1 and b0 6= 1 as A < A. Multiplying equation (ii) by anu

n yields

(iii) anu
n(1− b0) = b1anu

n−1 + · · ·+ bmanu
n−m

and multiplying (i) by 1− b0 yields

(iv) 1− b0 = (1− b0)a0 + · · ·+ (1− b0)anu
n.

Plug (iii) into (iv) for an(1− b0)un gives an equation of the form (i) of lesser degree in u
than n, a contradiction. �

Theorem 87.14. Let A be a domain with quotient field F with K/F a field extension,
and A < A an ideal. Then there exists a valuation ring B of K containing A with A
surviving in B.

Proof. Let

S = {(Aα,Aα) |A ⊂ Aα ⊂ K subrings,

A ⊂ Aα < Aα with Aα an ideal in Aα}

Partially order S by ⊆ of pairs. Since (A,A) ∈ S, a Zorn Lemma argument produces a
maximal element (B,B) ∈ S. Suppose that B is not a valuation ring of K. Then there
exists a nonzero element x in K with neither x nor x−1 in B. As B survives in B[x] or
B[x−1], say B[x], we would have (B,B) < (B[x], B[x]B). Since B[x] ⊂ B[x, x−1] ⊂ K,
the pair (B[x], B[x]B) lies in S, a contradiction. �

Definition 87.15. Let A and B be local rings with maximal ideals m, n, respectively.
We say that B dominates A if A is a subring of B and m = A ∩ n.

Corollary 87.16. Let A be a local domain with its quotient field F lying in a field K.
Set

DK = {B a local ring | B ⊂ K}
partially ordered by domination. Then

(1) There exists a valuation ring V in DK dominating A.
(2) A is a valuation ring in DF if and only if A is maximal in DF .
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Proof. (1) follows from Theorem 87.14 with A the maximal ideal of A.

(2): The proof of Theorem 87.14 implies the if statement. Conversely, suppose that
A ⊂ B ⊂ F are valuation rings of F with maximal ideals mA and mB, respectively, with
B dominating A, we must show that A = B. If A < B, then there exists a nonzero
element x in B \A ⊂ F . Since A is a valuation ring, x−1 lies in A ⊂ B, so x ∈ B× \A. It
follows that x−1 lies in mA = A \A×. Thus mB ∩A = mA = A \A×, a contradiction. �

This corollary has an application to Prüfer domains.

Corollary 87.17. Let R be a Prüfer domain with quotient field F . Suppose that A is
a valuation ring in F containing R. Then there exists a prime ideal p in R such that
A = Rp.

Proof. Let m be the maximal ideal of A and p = m ∩ R, a prime ideal in R. Let
s ∈ R \ p. Then s−1 lies in A, lest s ∈ m ∩ R. Therefore, Rp ⊂ A. By Theorem 87.11 Rp

is a valuation ring, hence by Corollary 87.16, we have Rp = A. �

This corollary gives a starting point for the theory of algebraic functions in one variable
(geometrically curve theory). The algebraic formulation is the following:

Corollary 87.18. Let F be a field and A a valuation ring satisfying F ⊂ A ⊂ F (t). Then
there exists an irreducible polynomial f in F [t] satisfying A = F [t](f) or A = F [t−1](t−1)

Proof. If t lies in A, then F [t] ⊂ A. As F [t] is a PID, it is Prüfer, so the result
follows from Corollary 87.17. So we may assume that t /∈ A. As A is a valuation ring t−1

lies in A. By Corollary 87.17, A = F [t−1]]p for some prime ideal in F [t−1]. Since t /∈ A,
we have t−1 ∈ p, so (t−1) = p. �

We now wish to generalize Theorem 81.5 to the more general theorem about Prüfer
domains previously mentioned. We need the following lemma.

Lemma 87.19. Let A be an integrally closed local domain with quotient field F and
a ∈ F . Suppose that there exists a polynomial f in A[t] with f(a) = 0 and at least one
coefficient of f is a unit in A. Then either a or a−1 lies in A.

Proof. Suppose that ban + can−1 + g(a) = f(a) = 0 with b, c ∈ A and g ∈ A[t]
satisfying deg g < n− 1. If b is a unit in A, then we are done as A is integrally closed, so
we may assume that b /∈ A×. Then

(*) 0 = (ba)n + c(ba)n−1 + bn−1g(a) = (ba)n + c(ba)n−1 + g1(ba)

for some g1 ∈ A[t] satisfying deg g1 < n − 1. Since A is integrally closed, ba lies in A,
as ba is integral over A by (*). If ba is a unit in A, then so is b−1a−1. This implies
that a−1 ∈ A. Therefore, we ay assume that ba lies in the maximal ideal m of A. We
know that (ba + c)an−1 + g(a) = 0. If c ∈ A×, then ba + c ∈ A×, as A is local and
ba ∈ m. But this means that a is integral over A, so a ∈ A as A is integrally closed.
Therefore, we may assume that ba+ c lies in m and one of the coefficients of g is a unit.
As deg

(
(ba+ c)tn−1 + g

)
< n, we are done by induction on n. �

Theorem 87.20. Let A be a Prüfer domain with quotient field F . Let L/F be an algebraic
(possibly infinite) algebraic field extension. Then AL is Prüfer.
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Proof. Let m be a maximal ideal in AL and p = A∩m. We need to show that Bm is a
valuation ring. Since A is a Prüfer domain, Ap is a valuation ring by Theorem 87.11. Let
a be an element in L and f a nonzero polynomial in F [t] with f(a) = 0. Multiplying by
a suitable element in A, we may assume that f ∈ A[t]. Since Ap is a valuation ring there
exists a coefficient r of f dividing all the other coefficients of f in A. Thus 1

r
f ∈ Ap[t]

and has a coefficient that is a unit in Ap, hence in (AL)m. By the lemma, either a or a−1

lies in (AL)m as needed. �

Corollary 87.21. Let A be a Dedekind domain with quotient field F . Let L/F be an
algebraic (possibly infinite) algebraic field extension. Then AL is a Prüfer domain. In

particular, if Q̃ is an algebraic closure of Q, then ZQ̃ is a Prüfer domain.

Remarks 87.22. 1. If Q̃ is an algebraic closure of Z, then ZQ̃ is not Noetherian so not a
Dedekind domain.

2. The ring of entire functions on an open Riemann surface is a Prúfer domain. In fact,
it is a Bézout domain.

3. If in the proposition, Bézout is substituted for Prúfer, then it can be shown that AL is
also Bézout.

4. Bergman showed that if A = Z
[√
−5
]

+ tQ
[√
−5
]
[t], i.e., A is the ring of polynomials

in Q
[√
−5
]
[t] having constant term in Z

[√
−5
]
, then A is not Noetherian, not Bézout,

but is Prüfer.

5. Every ideal in a Dedekind domain can be generated by two elements by Exercise
81.14(11). The same is false for finitely generated ideals in Prüfer domains. Schulting
gave the first counterexample. It was subsequently generalized by Swan.

We give two further applications of valuation rings that are useful in commutative
algebra. The first has as a consequence Zariski’s Lemma 41.10 that we saw was the key
to the Hilbert Nullstellensatz in Section 41.

Theorem 87.23. Let F be an algebraically closed field and A a domain with R ⊂ A a
subring. Suppose that A is a finitely generated R-algebra and a ∈ A nonzero. Then there
exists an element 0 6= r ∈ R satisfying the following condition: whenever ϕ : A → F
is a ring homomorphism with 0 6= ϕ(r), there exists a ring homomorphism ψ : A → F
satisfying ψ|R = ϕ and 0 6= ψ(a).

Proof. By induction it suffices to assume that A = F [u].

Case 1. The element u is transcendental over R.

Let a =
∑n

i=0 aiu
i in F [u] with a0 nonzero. We show r = a0 works. So suppose that

ϕ : R → F is a ring homomorphism with ϕ(a0) 6= 0. Since F is infinite, there exists an
element x ∈ F such that

∑n
i=0 ϕ(ai)x

i 6= 0. Let ψ : A→ F extend ϕ by setting ψ(u) = x.
This works.

Case 2. The element u is algebraic over R.
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As R is a domain and a nonzero, a−1 is also algebraic over the quotient field of R, so there
exist equations:

a0u
n + a1u

n−1 + · · ·+ an = 0

b0a
−m + b1a

1−m + · · ·+ bm = 0

for appropriate ai and bj in A with a0 and b0 nonzero. It follows that u and a−1 are integral
over R[(a0b0)−1]. Set r = a0bo and suppose that ϕ : R → F is a ring homomorphism
satisfying ϕ(r) 6= 0. Set p = kerϕ. Then p survives in R[r−1] by choice, so there exists a
valuation ring B in the quotient field of R[r−1] such that pR[r−1] survives in B. If b ∈ B,
we can write b = r1/r2 with r1, r2 ∈ A and r2 /∈ p as qf(A) = qf

(
R[r−1]

)
. Hence we have

a ring homomorphism ϕ̃ : B → F given by r1/r2 7→ ϕ(r1)/ϕ(r2). We show that A ⊂ B
and ψ : A → F with ψ = ϕ̃|A work. Since the integral closure of R[r−1] lies in B, we
have a−1 and u lie in B. Thus A ⊂ B and a ∈ B×. It follows that a does not lie in the
maximal ideal of B, so ϕ̃(a) 6= 0. �

Corollary 87.24. (Zariski’s Lemma) Let K/F be an extension of fields. Suppose that K
is a finitely generated F -algebra. Then K/F is a finite field extension.

Proof. Let F̃ be an algebraic closure of F . Then apply the theorem with R = F,

A = F̃ , and a = 1. By the Theorem, if x in F̃ is transcendental over F , the homomorphism

F̃ → F̃ sending x→ 0 cannot occur, which is false. �

Since we have seen that Zariski’s Theorem implies the Hilbert Nullstellensatz, this
gives an alternate proof of it. As a second application, we wish to show if A is an
integrally closed domain, then so is A[t]. To do this we first need the following:

Theorem 87.25. (Krull) Let A be a domain with quotient field F and

S = {B | A is a subring of B and B is a valuation ring}.

The A is integrally closed if and only if A =
⋂
S

B.

Proof. (⇐): As valuation rings are integrally closed,this follows by Exercise 87.27(5).

(⇒): Certainly, A =
⋂
S B, so assume that there exists an element u in (

⋂
S B)\A. Then

u does not lie in AF = A, hence u /∈ A[u−1] by Exercise 87.27(1). Let v = u−1, then
vA[v] < A, as v /∈ A[v]×. Hence there exists a valuation ring B0 ⊂ F such that vA[v]
survives in B0. Since u lies in B for every u ∈ S, we must have v ∈ B×0 . But this means
that vA[v] cannot survive in B0, a contradiction �

Theorem 87.26. Let A be an integrally closed domain. Then A[t] is integrally closed.

Proof. We have

(*)
( ⋂

A⊂B⊂F
B a valuation ring

B
)

[t] =
( ⋂

A⊂B⊂F
B a valuation ring

B[t]
)
.

(Why?) and by the previous theorem,

A =
( ⋂

A⊂B⊂F
B a valuation ring

B
)
.
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As valuation rings are integrally closed by Exercise 87.27(5), we may assume that A is a
valuation ring.

Let f be a nonzero element of F (t) (the quotient field of A[t]) be integral over A[t].
We must show that f lies in A[t]. Since F [t] is a UFD hence integrally closed, f lies
in F [t]. Write f = 1

a
g with g ∈ A[t] and a ∈ A nonzero. If a ∈ A×, we are done, so

assume not. As A is a valuation ring, there exists a nonzero coefficient b of g dividing all
the coefficients of g, so we may write f = b

a
h with h ∈ A[t] and h has some coefficient

1. If a | b we are done, so assume not. As A is a valuation ring, we must have b | a in
A, so f = 1

c
h for some nonzero element c in A. As c is not a unit in A and A is local

it lies in the maximal ideal m of A. As f is integral over A[t], there exists polynomials,
α1(t), . . . , αn(t) in A[t] for some n satisfying fn + α1(t)fn−1 + · · · + αn(t) = 0 in F [t].
Hence hn + cα1(t)hn−1 + · · · + cnαn(t) = 0 in A[t]. Consequently, hn ≡ 0 mod A[t]m.
But A[t]/mA[t] = (A/m)[t] (why?) is a domain, i.e., A[t]m is a prime ideal in A[t], so
h ∈ A[t]m (= m[t]). This implies that every coefficient of h lies in m, a contradiction.

�

Exercises 87.27.

1. Let A be a commutative ring and u a unit in A. If R is a subring of A, show that u−1

is integral over R if and only if u−1 lies in R[u].
2. Let A be a commutative ring. Then A is a domain if and only if Am is a domain for

all maximal ideals m of A

3. Show 87.7.

4. Establish Proposition 87.10

5. Prove that the intersection of integrally closed domains each of which lies in a common
field is integrally closed.



CHAPTER XVI

Algebraic Number Fields

In the previous chapter we studied the algebra of Dedekind domains. Since the ring of
integral elements (i.e., the ring of algebraic integers) in an (algebraic) number field (a finite
field extensions of the rational numbers) is a Dedekind domain, we also developed some of
the properties of a ring of algebraic integers in that chapter. For example, we investigated
Hilbert ramification theory of a ring of algebraic numbers including a discussion of its
discriminant. We also fully computed the theory for quadratic number rings. In the case
of a quadratic number ring, the units were easy to compute (especially in the non-real
case). In this chapter, we wish to classify the units in any ring of algebraic numbers. We
also wish to investigate the discriminant of a ring of algebraic numbers more thoroughly.
Two of the main advantages in the special case of number theory is that its ideals are
finitely generated free Z-modules and its quotient fields by its nonzero prime ideals are
finite fields.

88. Ideal and Counting Norms

In this section, we need a preliminary discussion of norms, that we could have done
previously. We know that if A is a integrally closed domain with quotient field F and K
is a finite separable extension, that NK/F : K → F maps AK to A. If we also assume
that A is a Dedekind domain, then we have unique factorization of fractional ideals into
products of prime ideals in the Dedekind domain AK . This will allow us to define the
norm of a fractional ideal of AK to be a fractional ideal in A. If F = Z, i.e., AK = ZK ,
then the norm of an element in ZK is an integer. Moreover, if p is a nonzero prime ideal
in ZK , then ZK/p is a finite (separable) extension of the finite field Z/p ∩ Z of degree
f(p/p ∩ Z). This allows us to define another norm. We will then show how these norms
are interrelated.

Since we have investigated the case for an arbitrary Dedekind domain, we shall begin
by studying the case of norms of ideals in this more general setting.

We shall need the following that we leave as an exercise.

Lemma 88.1. Let K/F be a finite separable field extension and A a Dedekind domain
with quotient field F . If A ∈ IA, then AK ∩A = A and IA → IAK by A→ AAK is a group
monomorphism.

Definition 88.2. Let K/F be a finite separable field extension and A a Dedekind domain
with quotient field F . If P is a nonzero prime ideal in AK , we know that f(P/P∩A) :=
dimA/(P∩A)(AK/P) is a finite integer by Theorem 82.2. By the unique factorization of
fractional ideals in a Dedekind domain, we can define NK/F : IAK → IA to be the group

homomorphism induced by P 7→ (P ∩ A)f(P/P∩A) called the ideal norm map.

505
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By the multiplicativity the ideal norm, we have:

Remark 88.3. Let K/F be a finite separable field extension and A a Dedekind domain
with quotient field F . If A ∈ IAK , then NK/F (A) =

∑
a∈A N(a)A, i.e., the ideal generated

by norms of elements.

We now show that ideal norms have similar properties as norms of elements and how
the two are interrelated. We need two lemmas.

Lemma 88.4. Let K/F be a finite separable field extension and A a Dedekind domain
with quotient field F . If A ∈ IA, then NK/F (AAK) = A[K:F ].

Proof. As the ideal norm is a group homomorphism, we may assume that A = p is
a nonzero prime ideal in A. Let pAK = Pe1

1 . . .Per
r be a prime factorization of pAK in

AK and fi = f(Pi/p) for i = 1, . . . , r. By definition, NK/F (pAK) = pe1f1 · · · perfr , hence

NK/F (pAK) = p[K:F ] by Theorem 82.2. �

Lemma 88.5. Let L/F be a finite Galois extension and A a Dedekind domain with
quotient field F , pAL = Pe1

1 . . .Per
r a factorization, with p a nonzero prime in A. Then e =

ei and fi = f(Pi/p) for i = 1, . . . , r and NL/F (P1)AL = (P1 · · ·Pr)
ef =

∏
G(L/F ) σ(Pe

1).

Proof. By Proposition 83.2 (and Proposition 83.1), we have e = ei and f = fi for
i = 1, . . . , r and G(L/F ) acts transitively on P1, . . . ,Pr. The result follows by Lemma
88.4. �

Proposition 88.6. Let K/F be a finite separable field extension and A a Dedekind domain
with quotient field F and x ∈ K×. Then

NK/F (x)A = NK/F (xAK),

where the norm on the right-hand side is the ideal norm and the norm on the left-hand
side is the field norm.

Proof. Let L/F be the normal closure of K/F and x ∈ K×, then

NL/F (x)A = NK/F (x[L:K])A =
(

NK/F (x)A
)[L:K]

NL/F (xAL) = NK/F

(
(xAK)[L:K]

)
=
(

NK/F (xAK)[L:K]
)

by Lemma 88.4 and the multiplicativity of f on towers by Exercise 82.7(2). By uniqueness
of factorization of ideals, we are reduced to the case that L = K, i.e., K/F is Galois. We
then have

NK/F (x)AK =
∏

G(K/F )

σ(x)AK =
∏

G(K/F )

σ(xAK)

=
∏

G(K/F )

∏
P

σ
(
PvP(x)

)
=

∏
G(K/F )

∏
P

σ(P)vP(x)

= N(xAK)AK

by Lemma 88.5 and the multiplicativity of N. By Lemma 88.1, AAK ∩ A = A, so the
result follows. �
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We also need another norm in the case of a number field.

Definition 88.7. Let K be a number field. If A is a nonzero ideal in ZK , define the
counting norm of A to be the integer N(A) := |ZK/A|.

We want to extend the counting norm N to a group homomorphism N : IZK → Q×.
To do so, we now show that the counting norm is multiplicative. We also show how it is
related to the ideal norm.

Proposition 88.8. Let K be a number field and A,B ⊂ ZK nonzero ideals. Then

(1) N(A) =
∏

Max(ZK) N(p)vp(A).

(2) N(AB) = N(A)N(B).

(3) If E/K is a finite extension, then N(AZE) = N(AZK)[K:F ].

(4) If a ∈ ZK is nonzero, then NK/Q(aZK) = |NK/Q(a)|.
(5) N(A) = |NK/Q(A)|, where we mean a positive generator for the ideal NK/Q(A)

on the right-hand side.

Proof. (2): If A and B are relatively prime, we have ZK = A + B. In this case, we
have N(AB) = N(A)N(B) by the Chinese Remainder Theorem. So we need only show:

Claim Let p be a nonzero prime ideal in ZK . Then N(pr) = N(p)r for all positive integers
r:

Fix r and choose α ∈ pr \ pr+1. Then we have (cf. Exercise 79.14(1))

(i) pr = αZK + pr+1, the greatest common divisor of αZK and pr+1.
(ii) αpr = αZK ∩ pr+1, the least common multiple of αZK and pr+1.

Since αpr ⊂ pr+1, it follows that for each r, we have a ZK-isomorphism ϕ : ZK/p →
pr/pr+1 given by β 7→ βα, which is also an isomorphism of one dimensional ZK/p-vector
spaces. If follows (say by the Jordan-Hölder Theorem) that

N(ps) = |ZK/p
s| =

s−1∏
i=0

|pi/pi+1| = N(p)s

where p0 = ZK . This proves the Claim and establishes (2).

(1) follows from (2).

(3): By (2), we may assume that A = p is a prime ideal in ZK . Let pZE = Pe1
1 · · ·Per

r

be a factorization in ZE and fi = f(Pi/p) for i = 1, . . . , r. By (2), we have N(Pei
i ) =

N(Pi)
ei = N(p)eifi , hence

N(pZE) = N(p)
∑r
i=1 eifi = N(p)[K:F ]

by Theorem 82.2 as needed.

(5): As above, we may assume that A = p is a prime ideal in ZK . Let pZ = p ∩ Z. Then
N(p) = pf with f = [ZK/p : Z/pZ]. By definition NK/Q(p) = pfZ. Statement (5) now
follows.

(4) follows from (5). �
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Corollary 88.9. Let K be a number field and A,B ⊂ ZK nonzero ideals. Then N extends
to a group homomorphism N : IZK → Q×. Moreover, the counting norm satisfies all the
properties in Proposition 88.8 for all A,B ∈ IA.

The key property that we shall need, besides the multiplicativity of the counting norm,
is that we can replace the ideal norm of a principal fractional ideal by the absolute value
of the field norm of a positive generator of it. In particular, if u is a unit in AK and
α ∈ ZK , then N(aZK) = |NK/Q(au)|.

Exercises 88.10.
Let K/F be a finite separable field extension and A a Dedekind domain with quotient
field F. Suppose that A and B are ideals in A. Prove the following:

1. If AAK | BAK in AK , then A | B in A.

2. Lemma 88.1.

3. Remark 88.3

89. Lattices in Number Fields

In this section, we show how to view a ring of algebraic integers as a lattice in an
appropriate Euclidean space, i.e., a finite dimensional real inner product space in an
appropriate way and thereby establish that it is a discrete subgroup there. Our goal in
this section is to prove the Minkowski Lattice Point Theorem, a most useful result in
number theory. We shall assume the necessary topology and analysis in this section.

We start with the setup that we shall need throughout the rest of this chapter. Let
K be a number field of degree n over Q. Then there exist n embeddings of K into C by
Proposition 56.11 and the comment following (cf. Proposition 58.3).

We write these embeddings as

σ1, . . . , σr1 : K → R

for all the real embeddings (i.e., those with image in R) and

σr1+1, . . . , σr1+r2 , σr1+1, . . . , σr1+r2 : K → C

for the complex embeddings (i.e., those with image not contained in R), where : C→ C is
complex conjugation and σr1+i is the composition ◦σr1+i for i = 1, . . . , r2. In particular,
we have [K : Q] = n = r1 + 2r2. If x ∈ K, we shall use the following notation:

x(i) = σi(x), i = 1, . . . , n, where σr1+r2+j = σr1+j for j = 1, . . . r2.

We view Rr1 × Cr2 =

{(x1, . . . , xr1 , . . . , xr1+r2) | xi ∈ R, 1 ≤ i ≤ r1,

and xj ∈ C, r1 + 1 ≤ j ≤ r2}

as a real vector space (with r1 = 0 or r2 = 0 allowed and with each C having basis
{1,
√
−1}).

Therefore, if V = Rr1 × Cr2 , we have an Z-embedding

iC : K → Rr1 × Cr2 via x 7→
(
σ1(x), . . . , σr1+r2(x)

)
= (x(1), . . . , x(r1+r2))
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where the map will usually be suppressed. If V = Rn, n = r1 + 2r2, we shall also need
another additive embedding given by

iR : K → Rn where

x 7→
(
x(1), . . . , Re(x(r1+1)), Im(x(r1+1)), . . . , Re(x(r1+r2), Im(x(r1+r2))

)
.

Definition 89.1. Suppose that V is an n-dimensional real inner product space, e.g.,
Rr1 × Cr2 above, and {v1, . . . , vr} a linearly independent set in V . Let L :=

∐r
i=1 Zvi.

Then L is a free Z-module of rank r called an r-dimensional lattice in V with lattice basis
{v1, . . . , vr}. We often write L as L(v1, . . . , vr) for clarity, when we wish to highlight the
lattice basis. If r = n = dimV , we call L a full lattice in V , i.e., if {v1, . . . , vr} is a basis
for V . If L is a full lattice in V , we let

DL = DL(v1,...,vn) := {
n∑
i=1

aivi | 0 ≤ ai < 1, ai ∈ R, 1 ≤ i ≤ n}

called the fundamental domain (or parallelopiped) of L.

Note that the fundamental domain DL of L depends on {vi, . . . , vn} even thought L
does not.

Remarks 89.2. Let V be a finite dimensional real inner product space.

1. The determinant of the change of basis matrix of any two lattices bases of a lattice L
in V is ±1.

2. If L is a full lattice in V , then V/L is a compact space.

3. Suppose that L = L(v1, . . . , vn) is a full lattice in V and B = {e1, . . . , en} is an
orthonormal basis for V . If vi =

∑n
i=1 aijej, then

Vol(DL) = Vol(V/L) = | det(aij)|
and is independent of lattice basis by (1).

Example 89.3. Let V = Rr1 × Cr2 or Rn, K a number field of degree n. We know that
ZK is a free abelian group of rank n, so is a full lattice when viewed in the image of
K. Let 0 < A < ZK be an ideal, hence also Z-free. By Corollary 81.6, there exists a
nonzero m ∈ A ∩ Z, so 0 < mZK ⊂ A < ZK . In particular, ZK/mZk is a finite additive
torsion group. Since ZK/A is a finite group, A is also a full lattice in V . More generally,
if A is a fractional ideal, there exists a nonzero c ∈ ZK such that cA is an ideal in ZK .
Therefore, NK/Q(c) is an integer so NK/Q(c)A ⊂ ZK also. As NK/Q(c) ∈ Z, we also have
[ 1
NK/Q(c)

ZK : A] is finite and A is a full lattice in V . Note under iC and iR, these induce

lattices in Rr1 ×Cr2 and Rr1+2r2 , respectively, with fundamental domains having the same
volume. In particular, this will also be true for the lattices induced by any A ∈ IZK

Lemma 89.4. Let V be a finite dimensional real inner product space and L = L(v1, . . . , vn)
be a full lattice in V. Then {λ+DL | λ ∈ L} partitions V.

Proof. Let v ∈ V , then V =
∑n

i=1(qi + ri)vi with 0 ≤ ri < 1 and qi ∈ Z for i =
1, . . . , n. Thus the sets λ + DL cover V . If we have (λ + DL) ∩ (λ′ + DL) 6= ∅, then
DL ∩

(
(λ− λ′) +DL

)
6= ∅. It follows that λ = λ′. �
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If V is a finite dimensional real inner product space and L an additive subgroup of V ,
we call L a discrete subgroup of V if L meets every compact subset of V in a finite set.

Proposition 89.5. Let V be a finite dimensional real inner product space and L an
additive subgroup of V . Then L is a lattice if and only if L is discrete. In particular, if
L is discrete, then it is a finitely generated additive group.

Proof. (⇒): Let C ⊂ V be a compact set, L = L(w1, . . . , wr). If
∑r

i=1 aiwi lies in
C ∩ L, then the integers |ai|’s must be uniformly bounded.

(⇐): Let {v1, . . . , vn} be a basis for V . We may assume that L 6= 0, and we induct on
n = dimV . If n = 1, choose a > 0 minimal such that v = av1 lies in L. (Such an a exists
as we can intersect L with a large enough ball centered at the origin.) Let bv1 ∈ L with
b 6= 0. Write b = da + c with 0 ≤ c < a and d ∈ Z. By hypothesis, we must have c = 0,
so bv1 = dav1, hence L = Zv.

Now suppose that n > 1. We may assume that L lies in no proper subspace of V
by induction. Set V0 =

∐n−1
i=1 Rvi and L0 = L ∩ V0 < L. So L0 cannot lie in any

proper subspace of V0, hence by induction L0 is a full lattice of rank n − 1 in V0. Let
L0 = L(u1, . . . , un−1). Then {u1, . . . , un−1, vn} is a basis for V . Since L0 < L, we see
that there exists an element λ ∈ L satisfying λ =

∑n−1
i=1 riui + rnvn with 0 ≤ ri < 1,

i = 1, . . . , n− 1, and rn > 0. Let

C = {
n−1∑
i=1

xiui + xnvn | 0 ≤ xi ≤ 1, i = 1, . . . , n− 1, |xn| ≤ rn},

a compact subset of V . Hence L ∩ C is a finite set. Choose un ∈ L \ L0 to satisfy

un =
n−1∑
i=1

xiui + xnvn, 0 ≤ xi < 1, i = 1, . . . , n− 1, and |xn| > 0 minimal.

Claim. L = L(u1, . . . , un).

If not then there exists a w ∈ L \ L(u1, . . . , un). Since L(u1, . . . , un) = L(u1, . . . , un−1)⊕
Zun, it is a full lattice in V . Subtracting a suitable nonzero integral multiple of un and
then by a suitable element of L0, we see, using Zun ∩L0 = 0, that there exist 0 ≤ bi < 1,
i = 1, . . . , n− 1, and 0 < an|xn| < |xn| satisfying w0 =

∑n−1
i=1 biui + anxnvn lies in L. This

contradicts the minimality of |xn|. (Cf. the n = 1 case.) �

For the rest of this chapter, we shall let µ denote the natural (Lebesgue) measure on
a finite dimensional real inner product space.

Lemma 89.6. Let V be a finite dimensional real inner product space and L1 ⊂ L2 be full
lattices in V . Then L2/L1 is finite and

µ(DL1) = Vol(V/L1) = [L2 : L1] Vol(V/L2) = [L2 : L1]µ(DL2).

Proof. Since L2/L1 is a finitely generated group of rank zero, it is torsion hence
finite. Let L2 = L(v1, . . . , vn). By linear algebra, there exists a Z-basis {w1, . . . , wn} for
L1 satisfying

(i) wi = ciivi + ci,i+1vi+1 + · · ·+ cinvn, cij ∈ Z and cii > 0 for all i, j.
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Moreover,

α := | det(cij)| = c11 · · · cnn is independent of {w1, . . . , wn}

(as change of bases matrices for lattices lie in GLn(Z)). So Vol(V/L1) = αVol(V/L2).
We finish by proving:

Claim. α = [L2 : L1]:

Let v ∈ L2. Using (i), we see that there exist xi ∈ Z, 0 ≤ xi < cii, satisfying

(ii) v ≡ x1v1 + · · ·+ xnvn mod L1.

It follows that α ≥ [L2 : L1]. (as the number of possible xi is cii all i.)

To show that α = [L2 : L1], it suffices to show that all the v’s in (ii) give different cosets,
i.e., given

v =
n∑
i=1

xivi, v′ =
n∑
i=1

x′ivi in L2 and v ≡ v′ mod L1

with xi, x
′
i ∈ Z satisfying 0 ≤ xi, x

′
i < cii,

we must show v = v′. But if this is the case, v − v′ =
∑n

j=1 bjwj for some bj ∈ Z, hence

(iii) v − v′ =
n∑
i=1

(xi − x′i)vi =
n∑
j=1

bjwj =
n∑
j=1

bj
( n∑
i=1

cjivi
)

by (i). If v 6= v′, then there exists a minimal s satisfying xs 6= x′s. Then by (iii), we have
bj = 0 for all j < s and cssbs = xs − x′s 6= 0. However, 0 < |xs − x′s| < css ≤ |cssbs|, a
contradiction. So v = v′ and the claim, hence the lemma, is proven. �

The lemma allows us to establish the following important computation.

Proposition 89.7. Let K be a number field of degree n, V = Rn (or Rr1 × Cr2), and
A ∈ IZK . Then

µ(DA) = Vol(V/A) = N(A)2−r2
√
|dK |.

Proof. Let {w1, . . . , wn} be a basis for K and V = Rr1 × Cr2 . Write w
(r1+j)
i =

x
(r1+j)
i +

√
−1y

(r1+j)
i , x

(r1+j)
i , y

(r1+j)
i ∈ R for j = 1, . . . , r2. Set ∆ = ∆K/Q(w1, . . . , wn) and
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L = L(w1, . . . , wn). Then we have

∆ = det



w
(1)
1 · · · w

(1)
n

...
...

w
(r1)
1 w

(r1)
n

x
(r1+1)
1 +

√
−1y

(r1+1)
1 · · · x

(r1+1)
n +

√
−1y

(r1+1)
n

...
...

x
(r1+1)
1 −

√
−1y

(r1+1)
1 · · · x

(r1+1)
n −

√
−1y

(r1+1)
n

...
...



2

= (−2
√
−1)2r2 det



w
(1)
1 · · · w

(1)
n

...
...

x
(r1+1)
1 · · · x

(r1+1)
n

...
...

y
(r1+1)
1 · · · y

(r1+1)
n

...
...



2

= (−1)r222r2 Vol(V/L)2

Therefore, (computing Vol(V/L) using the standard basis), we have Vol(V/L) = 2−r2
√
|∆|.

If {w1, . . . , wn} is an integral basis for ZK , then Vol(V/ZK) = 2−r2
√
|dK |. If 0 < A ⊂ ZK

is an ideal, by Lemma 89.6,

Vol(V/A) = [ZK : A] 2r2
√
|dK | = N(A) 2r2

√
|dK |.

Finally, suppose that A ∈ IZK . By Remark 79.14(1), there exists a nonzero integer m
satisfying mA ⊂ A. Then

mn Vol(V/A) = Vol(V/mA) = N(mA)2r2
√
|dK | = mnN(A)2r2

√
|dK |.

The result follows. �

In order to prove our goal, we shall need the following:

Lemma 89.8. Let V be a finite dimensional real inner product space and S ⊂ V be
measurable. If L is a full lattice in V with µ(S) > µ(DL), then there exist s1, s2 ∈ S
satisfying 0 6= s1 − s2 ∈ L.

Proof. The set S is an infinite set, since µ(S) > 0. Suppose that for all s1 6= s2 in
S, we have s1 − s2 /∈ L. It follows that the the sets

(*) S − λ, λ ∈ L are all disjoint.

Since the measure µ is translation invariant, for all λ ∈ L, we have
(
(S − λ)∩DL

)
+ λ =

(DL + λ)∩ S. (Check.) It therefore follows that µ
(
(S − λ)∩DL

)
= µ

(
(DL + λ)∩ S

)
. As

V =
∨
L(DL + λ), we have S =

∨
L S ∩ (DL + λ). Hence

µ(S) =
∑
L

µ
(
S ∩ (DL + λ)

)
=
∑
L

(
(S − λ) ∩DL

)
≤ µ(DL

)
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by (*), a contradiction. �

Definition 89.9. Let V be a finite dimensional real inner product space and X ⊂ V . We
say:

(i) X is symmetric if x ∈ X, then −x ∈ X.
(ii) X is convex if x, y ∈ X, then tx+ (1− t)y ∈ X for 0 ≤ t ≤ 1, (i.e, the line segment

from x to y lies in X).

We now establish the goal of this section.

Theorem 89.10. (Minkowski Lattice Point Theorem) Let V be an n-dimensional real
inner product space and L be a full lattice in V . Suppose that X ⊂ V is a symmetric,
convex, measurable set (respectively, and also compact) and satisfies µ(X) > 2nµ(DL)
(respectively, and µ(X) ≥ 2nµ(DL)). Then X ∩ L 6= {0}.

Proof. Suppose that µ(X) > 2nµ(DL). Set

S :=
X

2
= {x

2
| x ∈ X}, so µ(S) =

1

2n
µ(X) > µ(DL).

By Lemma 89.8, there exist s1, s2 ∈ S such that 0 6= s1 − s2 lies in L. Let si = xi
2

with
xi
2
∈ X for i = 1, 2. So s1− s2 = x1−x2

2
. By symmetry, −x2 ∈ X and by convexity, s1− s2,

the midpoint of the line segment connecting x1 and −x2, lies in X. We are, therefore,
done unless X is compact and µ(x) = 2nµ(DL). Suppose this is the case. Then for each
ε > 0, the set (1 + ε)X is compact, symmetric, convex, and measurable. Therefore, by
what we have seen, there exists a point 0 6= λε ∈ (1 + ε)X ∩L. As (1 + ε)X ∩L is a finite

set for all ε > 0 by Proposition 89.5, the set X =
⋂
ε>0

(1 + ε)X must contain some point

0 6= λ ∈ X ∩ L. �

We give a few applications of the Minkowski Lattice Point Theorem.

Application 89.11. Let fi =
∑n

j=1 aijtj ∈ R[t1, . . . , tn], i = 1, . . . , n, be linear forms (i.e.,

homogeneous of degree one), α = det
(
(aij)

)
6= 0, and c1, . . . , cn > 0 in R. Suppose that

c1 · · · cn ≥ |α|. Then there exists a nonzero x ∈ Zn satisfying |fi(x)| ≤ ci for i = 1, . . . , n.

(E.g., let ci = |α| 1n .)

Proof. Let L = Zn and X = {x ∈ Rn | |fi(x)| ≤ ci} for i = 1, . . . , n. Then X is
symmetric, convex, compact, and

µ(X) =

∫
|f1|≤c1

· · ·
∫
|fn|≤cn

dx1 · · · dxn

=

∫
|f1|≤c1

· · ·
∫
|fn|≤cn

∣∣∣∂(x1, . . . , xn)

∂(f1, . . . , fn)

∣∣∣df1 · · · dfn

=
1

|α|

∫
|f1|≤c1

· · ·
∫
|fn|≤cn

df1 · · · dfn

=
2n

|α|
c1 · · · cn ≥ 2n = 2nµ(DL).

The result follows from the Minkowski Lattice Point Theorem. �
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Recall that the gamma function Γ(s) for Re(s) > 0 is defined by Γ(s) =
∫∞

0
ts−1e−tdt.

We have Γ(s+ 1) = sΓ(s), Γ(n+ 1) = n!, Γ(1
2
) =
√
π, and

π
n
2

Γ(n
2

+ 1)
is the volume of the

n-ball for any integer n > 0.

Application 89.12. Let fi =
∑n

j=1 aijtj ∈ R[t1, . . . , tn], i = 1, . . . , n, be linear forms and

α = det
(
(aij)

)
6= 0. Then there exists a nonzero x ∈ Zn satisfying f 2

1 (x) + · · ·+ f 2
n(x) ≤

4
π

(
|α|Γ(n

2
+ 1)

2
n

)
.

Proof. LetX = {x ∈ Rn |
∑n

i=1 f
2
i (x) ≤ c2}, a compact, symmetric, convex ellipsoid.

Let L = Zn and c =
(
2nΓ(n

2
+ 1)|α|/π n

2

) 1
n , then

µ(X) =

∫
· · ·
∫

∑n
i=1 f

2
i ≤c2

dx1 · · · dxn =

∫
· · ·
∫

∑n
i=1 f

2
i ≤c2

∣∣∣∂(x1, . . . , xn)

∂(f1, . . . , fn)

∣∣∣df1 · · · dfn

=
1

|α|

∫
· · ·
∫

∑n
i=1 f

2
i ≤c2

df1 · · · dfn =
cn

|α|

∫
· · ·
∫

∑n
i=1 y

2
i≤1

dy1 · · · dyn

=
cn

|α|

( πn/2

Γ(n
2

+ 1)

)
= 2n.

The result follows from the Minkowski Lattice Point Theorem. �

Remark 89.13. Let Q(t1, . . . , tn) =
∑n

i,j=1 bijtitj ∈ R[t1, . . . , tn] be a quadratic form

written with bij = bji for all i, j (which can always be arranged as 2 6= 0). We say Q is
positive definite if Q(x) > 0 for all nonzero x = (x1, . . . , xn) ∈ Rn. By the Principal Axis
Theorem in linear algebra, the matrix B = (bij) ∈ GLn(R) is diagonalizable with positive
eigenvalues (which are squares). In particular, there exists a matrix A = (aij) in GLn(R)
such that B = AtA. Let fi =

∑n
i=1 aijtj in R[t1, . . . , tn], linear forms, and T t = (t1 · · · tn).

Then we have Q = T tBT = f 2
1 + · · ·+ f 2

n. The real number detB = (detA)2 is called the
discriminant of Q and written discQ.

So we have:

Application 89.14. Let Q(t1, . . . , tn) =
∑n

i,j=1 bijtitj ∈ R[t1, . . . , tn] be a positive definite
quadratic form. Then there exists a nonzero x ∈ Zn satisfying

Q(x) ≤ 4

π

(√
discQ Γ(

n

2
+ 1)

) 2
n .

We use this to prove a classical theorem of Eisenstein-Hermite. Let b : Rn×Rn → R be a
symmetric bilinear form, L = L(v1, . . . , vn) a full lattice in Rn satisfying b|L×L : L×L → Z
with Bb :=

(
(b(vi, vj)

)
in GLn(R), i.e., detBb 6= 0. We then say that (L, b) is a Z-bilinear

space. We call such a bilinear space positive definite if Qb = T tBbT is positive definite.
This is equivalent to qb : V → R defined by qb(x) = b(x, x) > 0 for all 0 6= x ∈ Rn. We call
n the rank of L. and detBb the discriminant of (L, b). It is unique up to a Z-isometry
(i.e., a Z-isomorphism preserving b) as a change of basis matrix has determinant ±1).

Note that if (L, b) is a positive definite Z-bilinear space, there exists a nonzero x ∈ Zn

satisfying Application 89.14.
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Theorem 89.15. (Eisenstein-Hermite) For each pair of integers (n, d) with n > 0, there
exist finitely many positive define Z-bilinear spaces of rank n and discriminant d up to
isometry.

Proof. Let (L, b) be a positive definite Z-bilinear space of rank n and discriminant

d = discL. Set c(n, d) = 4
π

(
Γ(n

2
+ 1)

2
n

)√
d. By Application 89.14, there exists a nonzero

x ∈ L that satisfies 0 < q(x) := b(x, x) ≤ c(n, d). Let

L0 := {y ∈ L | b(x, y) ≡ 0 mod q(x)} ⊂ L.
Clearly, we have [L : L0] ≤ q(x).

Claim. L0 = Zx⊕ (Zx)⊥ over Z (with the obvious definition):

As (L, b) is positive definite, we have Zx ∩ (Zx)⊥ = 0. Let y ∈ L0. By definition,
b(x, y) = aq(x) for some a ∈ Z and b(x, y− ax) = 0. Consequently, y = (y− ax) + ax lies
in (Zx)⊥ + Zx proving the claim.

In the notation of Remark 89.13, we had Bb = AtA. This translates into

discL0 = µ(DL0)
2 = [L : L0]2µ(DL)2 = [L : L0]2 discL

using Lemma 89.6. It follows that

disc Zx disc(Zx)⊥ = discL0 ≤ q(x)2d ≤ c(n, d)2d.

By induction on rankL, there exist finitely many positive definite Z-bilinear spaces (Zx)⊥,
Zx (up to isometry) of discriminant all bounded by c(n, d)2d. Hence there exist finitely
many positive definite Z-bilinear spaces L0 (up to isometry). Since L/L0 is a finite group
and b is determined by its values on a basis for L, there exist only finitely many possible
(L, b) (up to isometry). �

We shall see in Corollary 91.14 below that there exist finitely many number fields K
with fixed discriminant d.

Exercises 89.16. 1. Use the Minkowski Lattice Point Theorem to prove Fermat’s The-
orem that positive primes congruent to one modulo four are sums of two squares.

2. Use the Minkowski Lattice Point Theorem to prove Lagrange’s Theorem that every
positive integer is a sum of four squares.

3. Prove an analogous result as in the Eisenstein-Hermite Theorem for indefinite Z-bilinear
spaces, i.e., those Z-bilinear spaces (L, b) in which there exist x, y ∈ L satisfying
b(x, x) < 0 and b(y, y) > 0.

4. Let fi =
∑n

j=1 aijtj ∈ R[t1, . . . , tn], i = 1, . . . , n, be linear forms, α = det
(
(aij)

)
6= 0,

and r ∈ R. Show there exists a nonzero x ∈ Zn satisfying
∑n

i=1 |fi(x)| ≤ r if r ≥
(n!|α|) 1

n .

90. Units in a Ring of Algebraic Numbers

In Section 86, we computed the units in the ring of algebraic numbers in a quadratic
number field Q(

√
m) , m a square-free integer. In this section, we generalize this result

by proving the Dirichlet Unit Theorem that determines the units in ZK for any algebraic
number field K. We continue to use the notation of Section 89.
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We begin with a computation.

Lemma 90.1. (Minkowski) Let A = (aij) ∈ Mn(R) satisfy aij < 0 for all i, j = 1, . . . , n
and i 6= j. Suppose that

∑n
j=1 aij > 0 for each i = 1, . . . , n. Then A ∈ GLn(R).

Proof. (Artin). Suppose that detA = 0. Let v1, . . . , vn denote the columns of A.
Then v1, . . . , vn are linearly dependent, so there exist x1, . . . , xn ∈ R not all zero such that∑n

i=1 xivi = 0, i.e.,
∑n

i=1 xiali = 0 for l = 1, . . . , n. Choose l such that |xl| is maximal.
Multiplying by −1 if necessary, we may assume that xl > 0. Since xl ≥ xi and ali < 0 for
all i 6= l, i = 1, . . . , n, we have

0 = xlall +
n∑
i=1
i 6=l

xiali ≥ xlall +
n∑
i=1
i 6=l

xlali = xl

n∑
i=1

ali > 0,

a contradiction. �

Construction/Definition 90.2. Let K be a number field of degree n. As we have n
embeddings of K with σr1+r2+j = σr1+j for j = 1, . . . , r2, we set

ei :=

{
1 if 1 ≤ i ≤ r1

2 if 1 ≤ r1 + 1 ≤ i ≤ r1 + r2

(with r1 or r2 = 0 possible), as we shall be interested in norms from K.
If x ∈ K, define

`i(x) = ei log |x(i)|, 1 ≤ i ≤ r1 + r2

and the logarithmic map

` : K× → Rr1+r2 by x 7→
(
`1(x), . . . , `r1+r2(x)

)
.

In particular, setting

UK := Z×K , we have if ε ∈ UK , then NK/Q(ε) =
n∏
i=1

ε(i) = ±1.

Taking log(
∏n

i=1 |ε(i)|), we get

(90.3) 0 =

r1+r2∑
i=1

ei log |ε(i)|.

It follows that {log |ε(1)|, . . . , log |ε(r1+r2)|} are linearly dependent. We eliminate log |ε(r1+r2)|
from this linearly dependent set. i.e., ε(r1+r2) and set r = r1 + r2−1. So `(UK) ⊂ Rr lying
on the hyperspace in Rr1+r2 defined by 0 =

∑r1+r2
i=1 ti in Rr+1.

Lemma 90.4. Let K be a number field of degree n and r = r1 + r2 − 1. Suppose that
C ⊂ Rr1+r2 is a compact set. Then |`−1(C ∩ `(UK))| <∞. In particular, `(UK) ⊂ Rr is a
lattice (although not a priori full).

Proof. We have C is compact and equation (90.3) holds. It follows that if `(ε) ∈ C
for ε ∈ UK then all the coordinates of such an `(ε) are uniformly bounded, i.e., there
exists an M0 > 0 such that `i(ε) ≤ M0 for i = 1, . . . , r1 + r2 for any ε ∈ UK satisfying
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`(ε) ∈ C. In particular, |ε(i)|ei < eM0 , for i = 1, . . . , r1 + r2. As M1 = eM0 > 1, we have
|ε(i)| < M1, for i = 1, . . . , n. Let Y = {x ∈ Rr1 × Cr2 | |xi| ≤ M1}, a compact subset

of Rr1 × Cr2 containing iC

(
`−1
(
C ∩ `(UK)

))
. Since iC(ZK) is a lattice in Rr1 × Cr2 , we

have
∣∣iC(`−1

(
C ∩ `(UK)

))∣∣ < ∞ by Proposition 89.5. Hence `(UK) ⊂ Rr is a lattice by

Proposition 89.5. �

Corollary 90.5. Let K be a number field. Then ker ` is a finite cyclic group.

Proof. Any finite subgroup of K× is cyclic. �

Notation 90.6. Let K be a number field. Let WK := ker `, and (as usual) let µK denote
the roots of unity in K.

We can now classify the units in a ring of algebraic integers.

Theorem 90.7. (Dirichlet Unit Theorem) Let K be a number field of degree n = r1 +2r2

and r = r1+r2−1. Let ` : UK → Rr be the logarithmic map given by ε 7→
(
`1(ε), . . . , `r(ε)

)
.

Then

(1) WK = µK is a finite cyclic group.
(2) `(UK) ⊂ Rr is a full lattice.
(3) UK ∼= WK × Zr.

Proof. (1): If w ∈ WK , then w|WK | = 1 by Corollary 90.5, so WK ⊂ µK . Conversely
if x ∈ UK satisfies xm = 1 for some m > 0, then `i(x) = 0 for i = 1, . . . , n, hence x ∈ WK .

(2): We know that `(UK) ⊂ Rr is a lattice by Lemma 90.4, so we need to show that it is
a full lattice. To do this it suffices to find ε1, . . . , εr in UK such that L

(
`(ε1), . . . , `(εr)

)
is

a full lattice in Rr.
Let V = Rr1 × Cr2 and define N : V → R by

N(x) = x1 · · ·xr1xr1+1 · · ·xr1+1 · · ·xr1+r2xr1+1 · · · , xr1+r2 .

Viewing iC : K ↪→ V as an inclusion, we have N |K = NK/Q. Let {w1, . . . , wn} be
an integral basis for ZK . Therefore, ZK ↪→ V is a full lattice in V viewing wj =

(w
(1)
j , . . . , w

(r1+r2)
j ). In particular, V is a ZK-module via α(v1, . . . , vr1+r2) = (α(1)v1, . . . , α

(r1+r2)vr1+r2)
for all α ∈ ZK . It follows if x ∈ V satisfies N(x) 6= 0, then Lx := ZKx = Zw1x⊕· · ·⊕Zwnx
is a full lattice in V . Using an analogous calculation that we did to prove Proposition
89.7, we see that if N(x) 6= 0, then

Vol(V/Lx) = |N(x)| 2−r2
√
|dK |.

In particular, if Nx = 1, then

Vol(V/Lx) = 2−r2
√
|dK |

is independent of x ∈ V satisfying N(x) = 1.

Claim. Let X be a compact, convex, symmetric, measurable subset of V with µ(X) >
2r2
√
dK . Then

(1) There exists M0 = M0(X) > 0 such that if β ∈ X, |βi| < M0, i = 1, . . . , n.
(2) If x ∈ V satisfying N(x) = 1, then there exists 0 6= α ∈ ZK such that αx ∈ Lx∩X

and an M = M(X) > 0 independent of x satisfying |NK/Q(α)| < M :
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The first statement is immediate as X is compact. For the second, fix x ∈ V that satisfies
N(x) = 1. By the Minkowski Lattice Point Theorem, there exists 0 6= α ∈ ZK satisfying
αx ∈ Lx ∩X. As X is compact, by (1) all the coordinates of αx are uniformly bounded
by a constant M0 = M0(X) > 0. Since N(αx) = NK/Q(α) N(x) = NK/Q(α), M = Mn

0

works and the claim is proven.

By Proposition 88.8. we have

NK/Q(α)Z = NK/Q(αZK) =
∏
p

NK/Q(p)vp(α) =
∏
p

N(p)vp(α)Z.

Consequently, if 0 6= α ∈ ZK satisfies |NK/Q(α)| < M , then N(p) < M for all prime
ideals p such that vp(α) > 0 and the allowable values vp(α) > 0 are also bounded. It
follows that there exist finitely many principal integral ideals αZK (so α ∈ ZK) satisfying
0 < |NK/Q(α)| < M .

Let

α1ZK , . . . , αsZK

be all the finitely many nonzero principal integral ideals that satisfy |NK/Q(αi)| < M for
i = 1, . . . , s.

[Note that if |UK | is infinite, then |NK/Q(αu)| = |NK/Q(α)| for any algebraic integer α
and any u ∈ UK . In particular, in the above, it is crucial that we deal with principal
ideals rather than elements.]

Let α be any element that satisfies the claim. Then there exists k, 1 ≤ k ≤ s, such that
αZK = αkZK and an ε ∈ UK with α = εαk.

Therefore, for each x satisfying N(x) = 1, we have:

(90.8)
There exists an ε ∈ UK and a k, 1 ≤ k ≤ s, with εαkx ∈ X.

In particular, |ε(i)α
(i)
k xi| < M0, i = 1, · · · , r1 + r2.

Fix j for 1 ≤ j ≤ r1 + r2 and choose

x ∈ V with N(x) = 1 and |xi| >> 0 for all i 6= j, i = 1, . . . , r1 + r2.

Let εj be the corresponding unit in (90.8).

Since there exist finitely many α
(i)
k , in (90.8), we may assume that we have chosen x with

the |xi|, i 6= j so large, 1 ≤ i ≤ r1 + r2, that 90.8 also implies

(*) |ε(i)
j | < 1 i.e., `i(εj) < 0 for all 1 ≤ i ≤ r1 + r2.

For each j ≤ r, choose such x ∈ V and corresponding εj satisfying (90.8) and (*). Set

β =

`1(ε1) · · · `r(ε1)
...

...
`1(εr) · · · `r(εr)

 .

As `i(εj) < 0 for i 6= j and

0 =

r1+r2∑
i=1

`i(εj) =
r∑
i=1

`i(εj) + `r+1(εj),
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we have for all j ≤ r,
r∑
i=1

`i(εj) = −`r+1(εj).

By Minkowski’s Lemma 90.1, det β 6= 0. Therefore, `(ε1), . . . , `(εr) are linearly indepen-
dent as needed.

(3): Since `(UK) is Z-free, (3) follows from the split exact sequence

1→ WK → UK → `(UK)→ 1. �

Remark 90.9. Let K be a number field. The proof of the Dirichlet Unit Theorem shows
how to get r linearly independent units generating a subgroup of finite index in UK . To
get all units, one must use some type of descent. This is usually not easy.

Definition 90.10. Let K be a number field of degree n over Q and {ε1, . . . , εr} a basis
for the free part of UK . We call this basis a set of base units. Therefore, if υ ∈ UK , there
exist unique vi ≥ 0, i = 1, . . . , r, and a unit w ∈ WK such that υ = wεv1 · · · εvr . We let

RK := | det
(
`i(εj)

)
|, for 1 ≤ i, j ≤ r

called the regulator of K.

Remark 90.11. Let K be a number field of degree n over Q.

1. RK is independent of the choice of the last embedding that we drop.

Proof. Let A = 
`1(ε1) · · · `r(ε1) `r+1(ε1)

...
...

`1(εr) · · · `r(εr) `r+1(εr)
e1 er 0

 ,

with

ei :=

{
1 if 1 ≤ i ≤ r1

2 if 1 ≤ r1 < i ≤ r1 + r2

as usual. Then A and the matrices
`1(ε1) · · · `r(ε1)

∑r+1
i=1 `i(ε1)

...
...

`1(εr) · · · `r(εr)
∑r+1

i=1 `i(εr)

e1 er
∑r+1

i=1 ei

 and


`1(ε1) · · · `r(ε1) 0

...
...

`1(εr) · · · `r(εr) 0
e1 er n

 .

all have the same determinant. Hence detA = (−1)n−1nRK . It follows that RK is
independent of the coordinate that is dropped. �

2. RK is independent of the choice of base units as a change of basis matrix has determi-
nant equal to ±1.

3. RK is very important but an elusive invariant.

We next indicate how the Dirichlet Unit Theorem generalizes. We leave the proofs as
exercises.
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Definition 90.12. Let K be a number field of degree n over Q. We call the set of
nonzero prime ideals, Max(ZK), in ZK , the set of finite primes in K and the set S∞ :=
{σ1, . . . , σn} of embeddings K → C the set of infinite primes in K with {σ1, . . . , σr1} the
set of real infinite primes and {σr1+1, . . . , σn} the set of complex infinite primes. We let
SK = Max(ZK)∪S∞(K) called the set of extended primes of ZK . [These represent all the
necessary completions of K – the finite primes p giving rise to the p-adic completions of
K.] If S ⊂ S(K) is a finite set, we set

KS := {a ∈ K× | vp(a) = 0 for all p ∈ Max(ZK) \ S},
called the group of S-units of K. Let ISK be the group generated by Max(ZK) \ S and
IK(S) the group generated by p ∈ S. So UK = ker ι, where ι : KS → IK(S) is given by
a 7→ aZK . For example, UK = KS∞(K).

In algebraic number theory, one often studies finite extensions E of K with finite sets
S containing S∞(K) ∪ {p ∈ Max ZK) | p ramifies inE}.

Theorem 90.13. (Dirichlet-Chevalley-Hasse Unit Theorem) Let K be a number field and
S ⊂ S(K) be a finite set containing S∞(K). Then KS ∼= WK × Z|S|−1

Corollary 90.14. Let K be a number field, ζN be a primitive mth root of unity in K,
and S ⊂ S(K) a finite set containing S∞(K). Then [KS : (KS)N ] = N |S|.

Exercise 90.15. 1. Prove Theorem 90.13.
2. Prove Corollary 90.14.

91. Minkowski Bound

In this section, we use the Minkowski Lattice Theorem in Rr1 × Cr2 to show that the
class number hK := |IZK/PZK | of a ring of algebraic integers in the number field K is
finite. We shall also show that there exist only finitely many algebraic number fields with
a given discriminant. We continue to use the notation of Section 89.

We investigate the following subset of V = Rr1 × Cr2 : For any x ∈ V , we shall write
x = (x1, . . . xr1 , zr1+1, . . . , zr1+r2). Set

X(t) = Xr1,r2(t) := {x ∈ V |
r1∑
i=1

|xi|+ 2

r1+r2∑
i=r1+1

|zi| ≤ t}

= {x ∈ V |
r1∑
i=1

|xi|+ 2

r2∑
i=1

√
x2
r1+i + y2

r1+i ≤ t}.

[Note this is the same as

X(t) := {x ∈ V |
n∑
i=1

|xi| ≤ t, xr1+r2+j = xr1+j for j = 1, . . . , r2}].

Lemma 91.1. X(t) is a compact, convex, symmetric set with measure

µ
(
X(t)

)
=

2r1

n!

(π
2

)r2tn.
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Proof. Clearly, X(t) is compact and symmetric. Let 0 ≤ a ≤ 1, b = 1 − a and
x = (x1, . . . , xn), y = (y1, . . . , yn) in X(t). Then

∑n
i=1 |axi + byi| ≤

∑n
i=1(a|xi| + b|yi|) ≤

at+ bt = t. Therefore, X(t) is convex. It remains to determine µ(X(t)
)
.

Set X0,0(t) = 1. Changing variables shows that

(*) µ
(
Xr1,r2(t)

)
= tnµ

(
Xr1,r2(1)

)
,

so we need only compute µ
(
Xr1,r2(1)

)
. Suppose that r1 > 0. Then by (*) and induction,

we have

µ
(
Xr1,r2(1)

)
= 2

∫ 1

0

µ
(
Xr1−1,r2(1− t)

)
dt

= 2µ
(
Xr1−1,r2(1)

) ∫ 1

0

(1− t)r1−1+2r2dt

=
2

n
µ
(
Xr1−1,r2(1)

)
=

2r1

(r1 + 2r2) · · · (2r2 + 1)
µ
(
X0,r2(1)

)
.

Therefore, it suffices to compute µ
(
X0,r2(1)

)
. We have

µ
(
X0,r2(1)

)
=

∫∫
x2+y2≤ 1

4

µ
(
X0,r2−1(1− 2

√
x2 + y2)

)
dxdy.

Let ρ =
√
x2 + y2, x = ρ cos θ be polar coordinates. Then by (*) and letting u = 1− 2ρ,

we have

µ
(
X0,r2(1)

)
=

∫ θ=2π

θ=0

∫ ρ= 1
2

ρ=0

µ
(
X0,r2−1(1− 2ρ)

)
ρdρ

= 2πµ
(
X0,r2−1(1)

) ∫ ρ= 1
2

ρ=0

(1− 2ρ)2(r2−1)ρdρ

=
π

2
µ
(
X0,r2−1(1)

) ∫ u=0

u=1

u2(r2−1)(1− u)du

=
π

2
µ
(
X0,r2−1(1)

) 1

2r2(2r2 − 1)
=
(π

2

)r2 1

(2r2)!
,

and we are done. �

Definition 91.2. Define the Minkowski Bound to be

Bn,r2 :=
( 4

π

)r2 n!

nn
.

If K is a number field of degree nK , we let BK = BnK ,r
K
2

where nK = rK1 + 2rK2 .

Note that BK → 0 as nK →∞.

The key result in this section is the following crucial inequality.

Theorem 91.3. Let K be a number field and A ∈ IZK . Then there exists a nonzero a ∈ A
satisfying:

|NK/Q(a)| ≤ BK N(A)
√
|dK |.
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Proof. Let X(t) = Xr1,r2(t) ⊂ V = Rr1 × Cr2 be as above. Choose t to satisfy
µ
(
X(t)

)
= 2nµ(V/A). By Proposition 89.7, we then have

2r1

n!
(
π

2
)r2tn = µ

(
X(t)

)
= 2nµ(V/A)

= 2nN(A) 2−r2
√
|dK | = 2r1+r2 N(A)

√
|dK |.

Therefore,

tn =
( 4

π

)r2 n!N(A)
√
|dK |.

By the Minkowski Lattice Point Theorem, there exists a nonzero β in A∩X(t). Therefore,∑n
i=1 |β(i)| ≤ t. Since the geometric mean is bounded by the arithmetic mean, we have(∏n
i=1 |β(i)|

) 1
n ≤ 1

n

∑n
i=1 |β(i)|. Hence |NK/Q(β)| ≤ tn

nn
≤ BKN(A)

√
|dK | as needed. �

This theorem has important applications.

Definition 91.4. Let K be a number field. Recall the class group of ZK is ClZK :=
IZK/PZK . We let hK := |ClZK |, called the class number of K (or ZK).

Corollary 91.5. Let K be a number field and A ∈ ClZK . Then there exists a nonzero

integral ideal A ⊂ ZK in A satisfying N(A) ≤ BK

√
|dK |.

Proof. Let B ∈ A. Then by the theorem, there exists a nonzero a ∈ B−1 satisfying
|NK/Q(a)| ≤ BK N(B−1)

√
|dK |. Since N(aZK) = |NK/Q(a)| by Corollary 88.9, we have

N(aB) ≤ BK

√
|dK |. As a ∈ B−1, the fractional ideal aB ⊂ ZK is an ideal. It follows

that A = aB ∈ A works. �

Corollary 91.6. Let K be a number field. Then the class number hK is finite.

Proof. The inequality N(A) ≤ BK

√
|dK | is satisfied by finitely many ideals A ⊂ ZK ,

since only finitely many ideals can contract to any fixed mZ by the unique factorization
of ideals in a Dedekind domain. �

Remark 91.7. The class group of a Dedekind domain may not be finite. For example,
the Dedekind domain E = C[t, t1]/

(
t21 − t(t− 1(t+ 1)

)
, the integral closure of C[t] in the

quotient field of E, corresponding to the points on the elliptic curve y2 = x(x− 1)(x+ 1)
has an infinite class group.

Corollary 91.8. Let K be a number field. Suppose that for every positive prime integer
p satisfying p ≤ BK

√
|dK |, any prime p in ZK is principal if it satisfies pZ = p∩Z. Then

hK = 1. In particular, ZK is a UFD.

Proof. Let A ∈ ClZK . Choose A ∈ A an integral ideal satisfying N(A) ≤ BK

√
|dK |.

Let N(A) = p1 · · · pn be a factorization into primes in Z. As N is multiplicative, the
hypothesis implies that A is principal. So ClZK = 1. �

Example 91.9. Let K = Q(
√
m) with m a square-free integer. Then hK = 1 if m =

−1, −2, −3, −7, −11, −19, −43, −67, −163.

Baker and Stark showed that the fields in the example are the only imaginary quadratic
fields K with hK = 1.
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Corollary 91.10. Let K be a number field of degree greater than one. Then |dK | > 1.
In particular, ZK is not unramified over Z.

Proof. We know that
(
π
4

)n
2 nn

n!
> 1 if n > 1 (as the left hand side is increasing).

Therefore, there exists a nonzero integral ideal A ⊂ ZK satisfying

(91.11)
√
|dK | ≥

N(A)

BK

≥
(π

4

)r2 nn
n!
≥
(π

4

)nnn
n!

> 1.

Therefore, K ramifies over Z by the Dedekind Ramification Theorem 85.2. �

This result is special to Q. If we look at relative number theory, i.e., L/K/Q is finite
with K 6= Q, it can happen that ZL is unramified over ZK with K < L. For any such field
K, there exists a unique number field L with L/K the maximal abelian extension of K
that satisfies ZL is unramified over ZK . It is called the Hilbert class field of K. It has the
properties that its degree over K is hK and G(L/K) ∼= IZK (canonically). So Corollary
91.10 says that Q is Hilbert class field of Q.

For the next consequence, we need Stirling’s Formula (that we do not prove).

Facts 91.12. (Stirling’s Formula) Let N >> 0 be an integer. Then

√
2πN NN e−N < N ! <

√
2πN NN e−N(1 +

1

12N − 1
).

Corollary 91.13. Let K be a number field of degree nK > 1. Then
nK

log(|dK |)
is bounded.

Proof. By equation (91.11) (and squaring), we have, with n = nK ,

n

log(|dK |)
≤ n

2 log
(nn
n!

(
π

4
)
n
2

) .
Therefore, by Stirling Formula, we have

n

log(|dK |)
≤ n

2 log
( en√

2πn
(
π

4
)
n
2

1

1 + 1
12n−1

) .
≤ n

2n− log(2πn) + n log(π
4
) + log

(
1 + 1

12n−1

)
which is bounded (say by L’Hôpital’s Rule). �

Corollary 91.14. There exists finitely many number fields K with discriminant d.

Proof. Fix a field K and set n = nK . We use the embedding iC : K → Rr1 × Cr2 .

Case 1. r2 > 0:

Define X ⊂ Rr1 × Cr2 to be the set of those x = (x1, . . . , xr1+r2) in Rr1 × Cr2 that satisfy:

(i) |xr1+1 − xr1+1| = 2|Im(xr1+1)| ≤ C
√
|dK |

(ii) |xr1+1 + xr1+1| = 2|Re(xr1+1)| ≤ 1
2

(iii) |xi| < 1
2

if i 6= r1 + 1,
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where C = C(n) is chosen to satisfy µ(X) > 2nµ(DZK ) = 2n−r2
√
|dK |. The set X

is measurable, symmetric, and convex, so there exists a nonzero α ∈ ZK ∩ X by the
Minkowski Lattice Theorem. Since |NK/Q(α)| is a positive integer, (i), (ii), (iii) imply

that |Im(α(r1+1)| > 1. Thus α(r1+1) 6= α(r1+r2+1) = α(r1+1) and |α(r1+1)| > 1. It follows
by (i), (ii), (iii) that α(r1+1) 6= α(i) for any i 6= r1 + 1. Let L/Q be the normal closure
of K/Q and extend each σi : K → C, i = 1, . . . , n to L. Then σr1+1(α) 6= σi(α) for any
i 6= r1 + 1. Therefore, σr1+1(α) = σr1+1σ

−1
j σi(α) if and only if i = j. It follows that α

has n distinct conjugates. Since the degree of the minimal polynomial mQ(α) satisfies
degmQ(α) = n = [K : Q], we must have K = Q(α).

We have, therefore, shown the following:

Conclusion. K is determined by mQ(α) in Z[t] (so monic) whose coefficients are elemen-
tary symmetric functions in the α(i).

As α ∈ X, the coefficients in the conclusion are integers and bounded by a function only
depending on n and |dK |.

For any fixed nK , dK , there exist only finitely many such polynomials, hence only
finitely many K with fixed nK , dK for K having a complex embedding. By Corollary
91.13, if d = dK is fixed, then n = nK is bounded. So we are done in this case.

Case 2. r2 = 0:

Define X ⊂ Rn by those x ∈ Rn satisfying

(i) |x1| ≤ C
√
|dK |.

(ii) |xi| ≤ 1
2

for j > i

where C = C(n) is defined as before. Now argue as in Case 1. (This is easier.) �

We end by giving a few computations of class numbers using Corollary 91.5.

Examples 91.15. 1. Write A ∼ B if A and B in IZK are in the same ideal class in
ClZK . Computation involves not only the Minkowski bound, but also knowledge of the
way primes split. As as example, using the computations in Section 86, we illustrate

this for K = Q(
√
−47). We have {1, 1+

√
−47

2
} is an integral basis for ZK , dK = −47,

BK = 2
√

47/π = 14/2 < 5 and NK/Q(x + y 1+
√
−47

2
) = x2 + xy + 12y2. We know that

it suffices to look at prime ideals in ZK lying over 2, 3 respectively. As 2 and 3 split
in ZK , we have prime factorizations into primes, 2ZK = p2p2 and 3ZK = p3p3 using
the computations in Section 86. As 2 is not a norm from ZK , we know that p2 6∼ 1.

We also know that 26 | 1+
√
−47

2
in ZK . Changing notation if necessary, this means that

vp2(
1+
√
−47

2
) = 2 and vp2(

1+
√
−47

2
) = 0, vp3(

1+
√
−47

2
) = 1 and vp3(

1+
√
−47

2
) = 0, hence

(1+
√
−47

2
)ZK ∼ p3p

2
2. It follows that p3 ∼ p2

2 and the class of p2 generates ClZK . Since

p2 is not principal, hK > 1. Let x = 4 + 1+
√
−47

2
, then 26 | x in ZK and NK/Q(x) = 32.

Arguing as above, we see that p5
2 is principal and ClZK is cyclic of order 5.

2. We give a real quadratic example: K = Q(
√

31), and again use Section 86. [A funda-
mental unit is ε = 1520+273

√
31.] We have ZK has integral basis {1,

√
31}, dK = 4·31,

BK =
√

31 < 6, and NK/Q(x+y
√

31) = x2−31y2. So we need only look at primes lying
above 2, 3, 5. We know that 3 and 5 split in ZK , say 3ZK = p3p

′
3 and 5ZK = p5p

′
5. We
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also know that 2ZK = p2
2 ramifies. Since NK/Q(39+7

√
31) = 2, we see that p2 ∼ 1. We

also have 5 = 62− 31 · 12 is a norm so p5 ∼ 1. Moreover, −2 · 3 · 5 = −30 = 12− 31 · 12

is a norm. It follows that p2p3p5 ∼ 1. Therefore, p3 ∼ 1 also. Hence hK = 1.

3. We give the following example that Lang says was Artin’s favorite. Let g = t5− t+1 ∈
Z[t], α a root of g in C and K = Q(α). Let L/Q be the normal closure of K/Q. Then g
is irreducible (as it is irreducible in Z/5Z), and one checks that G(L/Q) ∼= S5, r1 = 3,
r2 = 1, and ∆(α) = 2869 = 19 · 151 [as ∆(t5 + at + b) = 55b4 + 28a5]. So dK = ∆(a)
(and has only two primes and is square-free) and ZK = Z[α]. We have

BK

√
|dK | =

( 4

π

)( 5!

55

)√
2869 < 4.

so every ideal class contains an integral ideal A with N(A) = 1, 2, or 3. Suppose
that N(A) = 2, 3, respectively. Then A is a prime ideal p with N(A) = p := 2, 3,
respectively. It follows that f(p/pZ) = 1 and g mod p has a root in Z/pZ, which it
does not. Therefore, N(A) = 1 and ZK is a PID.

Exercises 91.16. 1. Prove Example 91.9.

2. Let m is a square-free negative number and suppose that hZQ(
√
m)

= 1. Show all of the
following:

(i) We must have m ≡ 5 mod 8 except when m = −1, −2, or −7.
(ii) If p is an odd prime satisfying m < −4p, then m is a nonsquare modulo p.

(iii) Ifm < −19, thenm is congruent to one of the following modulo 840 : −43,−67,−163,−403,−547,−667.
(iv) If −2000 < m < 0, then ZQ(

√
m) is one of the quadratic number fields given by

Example 91.9.

3. Show that hZQ(
√
−5)

= 2.

4. Show that hZQ(
√
−23)

= 3.

5. Show that ClZQ(
√
−21)

is the Klein 4-group.

6. Show that hZQ(
√
2,
√
−3)

= 1. [An integral basis for ZQ(
√

2,
√
−3) is {1,

√
2, (1+

√
−3)/2, (1+√

2 +
√
−6)/2}.]

7. Fill in the details to Example 91.15(3).

8. Let K be a number field and A ⊂ ZK be an ideal such that (A)m = aZK for some
a ∈ ZK . Show that AZK(m

√
a) is principal.

9. Let K be a number field. Show there exists a finite extension L/K such that every
nonzero ideal in ZK becomes principal in ZL.





CHAPTER XVII

Introduction to Commutative Algebra

In this chapter, all rings will be commutative. We shall be particularly interested in
developing an algebraic dimension theory that coincides with the intuitive notion of the
number of variables needed to describe a geometric object. In addition, we shall establish
a generalization of unique factorization into prime ideals as happens in Dedekind domains
to arbitrary Noetherian rings.

92. Zariski Topology

Throughout this section, R will denote commutative ring.

For a nonzero commutative ring R, we introduced in §41, the Spectrum of R,

Spec(R) := {p | p < R a prime ideal},

and defined the Zariski topology on it as follows:
If T is a subset of R, define

VR(T ) := {p | p ∈ Spec(R) with T ⊂ p}
called the (abstract) variety of T . We have

Lemma 92.1. Let R be a commutative ring. Then

(1) If T is a subset of R, then VR(T ) = VR(〈T 〉).
(2) If T1 ⊂ T2 are subsets of R, then VR(T1) ⊃ VR(T2).
(3) VR(∅) = Spec(R).
(4) VR(R) = ∅.
(5) If Ti, i ∈ I, are subsets of R, then VR(

⋃
I Ti) =

⋂
I VR(Ti).

(6) If A and B are ideals in R, then

VR(AB) = VR(A ∩B) = VR(A) ∪ VR(B).

In particular, the collection
C := {VR(T ) | T ⊂ R}

forms a system of closed sets for the Zariski topology on Spec(R).

Proof. This essentially was Exercise 41.15(6).

As an example, we show (6).

Since AB ⊂ A ∩B, we have V (AB) ⊃ V (A ∩B) by (2).

If p ∈ V (AB), then AB ⊂ p, hence A ⊂ p or B ⊂ p, equivalently, p ∈ V (A) or p ∈ V (B),
i.e., V (AB) ⊂ VR(A) ∪ VR(B).

Finally, if p ∈ V (A) ∪ V (B), then A ∩B ⊂ p, so V (A) ∪ V (B) ⊂ V (A ∩B). �

527



528 XVII. INTRODUCTION TO COMMUTATIVE ALGEBRA

We shall always assume that Spec(R) is given the Zariski topology. If R is clear, we
shall abbreviate VR(T ) by V (T ) and if A = (a1, . . . , an) is a finitely generated ideal in R,
we shall write V (a1, . . . , an) for V (A).

The Zariski topology is very coarse. In general, as we shall see, it is not a Hausdorff
space, i.e., we cannot necessarily find disjoint open neighborhoods of distinct points.
Moreover, we shall see that the set of closed points in Spec(R), i.e., those points p in
Spec(R) such that {p} is a closed set, is precisely the set of maximal ideals, so points are
usually not closed.

Lemma 92.2. Let X be a subset of Spec(R) and X its closure in Spec(R). If A =
⋂

p∈X p,

then X = V (A).

Proof. (⊂:) As A =
⋂
X p ⊂ P for all P ∈ X, we have X ⊂ V (A), hence X ⊂ V (A).

(⊃:) Let X = V (B), with B an ideal in R. If p ∈ X ⊂ X = V (B), then B ⊂ p, hence
B ⊂

⋂
X p = A. Therefore, X = V (B) ⊃ V (A) by Lemma 92.1(2). �

Corollary 92.3. Let R be a commutative ring. Then

(1) Max(R) ⊂ Spec(R) is the set of closed points in Spec(R).

(2) Let p and P be prime ideals. Then P ∈ {p}, the closure of {p} in Spec(R), if
and only if p ⊂ P.

(3) {p} = V (p) for all prime ideals in R.
(4) Spec(R) is a T0-topological space, i.e., if p1 and p2 are two distinct prime ideals

in R, then there exists an open set in Spec(R) containing one of p1, p2, but not
the other.

Proof. (3) follows from the lemma and (2) follows from (3).

(1): Let p ∈ Spec(R). Then we have p is a closed point if and only if p = {q ∈ Spec(R) |
p ⊂ q} = {p} if and only if p ∈ Max(R).

(4): By (2), if p1 6⊂ p2 are prime ideals, then p2 lies in the open set Spec(R) \ V (p1). �

Definition 92.4. An ideal A ⊂ R is called a radical ideal if A = R or A < R and

A =
√
A := {x ∈ R | xn ∈ A some n ∈ Z+} =

⋂
V (A)

p =
⋂

A⊂p∈Spec(R)

p.

Equivalently, if a in R satisfies an ∈ A, then a ∈ A.

Examples 92.5. The following are radical ideals:

(1) Prime ideals.

(2) The nilradical, nil(R), of R as nil(R) =
⋂
V (0) p =

√
(0).

Corollary 92.6. Let A and B be ideals in R. Then V (A) = V (
√
A) and

V (A) ⊂ V (B) if and only if
√
A ⊃

√
B.

Let

R := {A ⊂ R | A is a radical ideal}
V := {V (A) | A is an ideal of R}.
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Then V : R → V given by A 7→ V (A) is an order-reversing bijection with inverse I : V →
R given by V 7→

⋂
V p.

Proof. Clearly, V (A) = V (
√
A) and V (A) ⊂ V (B) implies

√
B ⊂

⋂
V (A) p =

√
A.
�

We leave the following as an exercise:

Proposition 92.7. Let r be an element of R and

D(r) := Spec(R) \ V (r) = {p ∈ Spec(R) | r /∈ p}.

Then

(1) A finite intersection of basic open sets is a basic open set.

(2) {D(r) | r ∈ R} is a base for the topology of Spec(R), i.e., every open set in
Spec(R) is a union of such D(r).

(3) Spec(R) is quasi-compact, i.e., every open cover of Spec(R) has a finite subcover.

(4) Spec(R) is a Hausdorff space if and only if Spec(R) = Max(R).

The set D(r) above is called a basic open set in Spec(R).

Definition 92.8. A nonempty topological space is called irreducible if whenever U, V are
nonempty open subsets of X, then U ∩ V 6= ∅. A subspace Y of a topological space X is
called irreducible if it is irreducible in the induced topology.

Examples 92.9. 1. Points are irreducible.
2. A nonempty Hausdorff space is irreducible if and only if it consists of a single point.

Proposition 92.10. Let X be a nonempty topological space. Then the following are
equivalent:

(1) X is irreducible.

(2) If W1,W2 < X are closed, then W1 ∪W2 < X.

(3) If {W1, . . . ,Wn} is a finite closed cover of X, then X = Wi for some i.

(4) If U is a nonempty open subset of X, then U is dense in X.

(5) Every open set in X is connected.

We leave the proof as an exercise. For varieties, the concept of irreducibility replaces
connectivity.

Notation 92.11. We know if R is a nonzero commutative ring, then there exist minimal
elements in Spec(R) by Zorn’s Lemma that we called minimal prime ideals of R (cf.
Remark 28.18). We let

Min(R) := {p ∈ Spec(R) | there exists no prime ideal p0 < p}

denote the nonempty set of minimal primes ideals in R.

Lemma 92.12. Spec(R) is irreducible if and only if nil(R) is a prime ideal if and only
if |Min(R)| = 1. In particular, if R is a domain, then Spec(R) is irreducible.
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Proof. We know that nil(R) =
⋂

Spec(R) p =
⋂

Min(R) p ⊂ P for every prime ideal P

and V (0) = V (
√

0) = V
(

nil(R)
)

= Spec(R).

Check 92.13. Let A and B be ideals in R. Then

(i) A ⊂ nil(R) if and only if
√
A ⊂ nil(R).

(ii)
√
AB ⊃

√
A
√
B.

Let A and B be ideals in R. Then, using the check, we have |Min(R)| = 1 if and only
if nil(R) is a prime ideal if and only if AB ⊂ nil(R) implies A ⊂ nil(R) or B ⊂ nil(R)

if and only if
√
A
√
B ⊂ nil(R) implies

√
A ⊂ nil(R) or

√
B ⊂ nil(R) if and only if

V (AB) = V (A) ∪ V (B) = Spec(R) implies V (A) = Spec(R) or V (B) = Spec(R) if and
only if Spec(R) is irreducible. �

Since Spec(R) is a topological space based on an algebraic structure, via the ring R,
topological maps of spectra should arise from homomorphisms of the underlying algebraic
structures. Indeed, we have:

Definition 92.14. Let ϕ : A→ B be a ring homomorphism of commutative rings. Define
the associated map to be the map arising from ϕ by

aϕ : Spec(B)→ Spec(A) via aϕ(P) = ϕ−1(P).

That this map makes sense follows by:

Lemma 92.15. Let ϕ : A → B be a ring homomorphism. Then aϕ(B) is a prime ideal
of A for every prime ideal P in B, i.e.,

aϕ : Spec(B)→ Spec(A)

is defined. Moreover, if T ⊂ A is a subset, then

(aϕ)−1
(
V (T )

)
= V

(
ϕ(T )

)
.

In particular, aϕ : Spec(B)→ Spec(A) is a continuous map.

Proof. If P < B is a prime ideal, then the ideal ϕ−1(P) < A is an ideal and ϕ induces
a monomorphism A/ϕ−1(P) → B/P with B/B a domain. Consequently, A/ϕ−1(P) is
also a domain, i.e., ϕ−1(P) is a prime ideal.

We also have

(aϕ)−1
(
V (T )

)
= {P ∈ Spec(B | ϕ−1(P) = aϕ(P) ⊃ T}
= {P ∈ Spec(B) | P ⊃ ϕ(T )} = V

(
ϕ(T )

)
. �

It is easy to check:

Remark 92.16. If ϕ : A→ B and ψ : B → C are ring homomorphisms of commutative
rings, then a(ψ ◦ ϕ) = aϕ ◦ aψ.

Definition 92.17. A map f : X → Y or topological spaces is called dominant if im f is
dense in Y .

The relationship between ϕ and aϕ is illustrated by:

Lemma 92.18. Let ϕ : A→ B be a ring homomorphism.
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(1) If ϕ is an epimorphism, then aϕ : Spec(B)→ Spec(A) is an injective closed map
with image V (kerϕ). In particular, aϕ induces a homeomorphism V (kerϕ) ∼=
Spec(B) ∼= Spec(A/ kerϕ).

(2) If A is an ideal, then V (A) is homeomorphic to Spec(R/A).
(3) If ϕ is a monomorphism, then aϕ : Spec(B) → Spec(A) is a dominant map. [It

may not be onto.]

Proof. (1) follows from the Correspondence Principle and (1) implies (2).

(3): Suppose that a ∈ A satisfies D(a) := Spec(A) \ V (a) is nonempty. We must show
that D(a) ∩ im aϕ is also nonempty. Suppose that this is false, then im aϕ ⊂ V (a). So

a ∈
⋂

Spec(B)

aϕ(P) =
⋂

Spec(B)

ϕ−1(P),

hence ϕ(a) ∈
⋂

Spec(B) P = nil(B), i.e., ϕ(a) is nilpotent in B. In particular, there exists a

positive integer n with 0 = ϕ(a)n = ϕ(an). As ϕ is monic, an = 0 in A, so a ∈ nil(A) ⊂ p
for every prime ideal p. It follows that D(a) = ∅, a contradiction. �

Note: The inclusion i : Z → Z(p), with Z(p) = {a
b
| a, b ∈ Z, p 6 | b}, the localization of Z

at the prime ideal (p), is injective, but ai is not surjective as Spec(Z(p)) = {0, pZ(p)} (but
does have dense image as shown).

Localization will play a decisive role in this chapter as well as being a primary tool
in commutative algebra. It is, therefore, useful to coalesce some of the properties of
localization, many of which appeared in §29 (some as exercises) and subsequent sections,
together with some new observations, leaving all the proofs as useful exercises.

Remark 92.19. Let R be a nonzero commutative ring and S a multiplicative set in R.
We have seen that we have a canonical ring homomorphism ϕR : R → S−1R given by
r 7→ r/1. This makes S−1R into a commutative R-algebra. If A in R is an ideal, then

S−1A := {a
s
| a ∈ A, s ∈ S} ⊂ S−1R

is an ideal. Let B be another ideal in R. The following are true:

(i) S−1A = S−1R if and only if A ∩ S 6= ∅.
(ii) A ⊂ ϕ−1

R (S−1A) ⊂ R is an ideal.

(iii) If D is an ideal in S−1R, then there exists an ideal C in R satisfying S−1C = D.
Moreover, D = S−1

(
(ϕR)−1(D)

)
.

(iv) If A < B and A ∩ S = ∅, then S−1A < S−1B.

(v) S−1(A + B) = S−1A + S−1B.

(vi) S−1(A ∩B) = S−1A ∩ S−1B.

(vii) S−1(AB) = S−1AS−1B.

(viii) The map

{p ∈ SpecR | p ∩ S = ∅} → Spec(S−1R) given by p 7→ S−1p

is a bijection and, in fact, a homeomorphism.
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As mentioned before, the most important examples of localization of a commutative ring
R are:

(i) Rp the localization of R at the multiplicative set R \ p where p is a prime ideal of
R, called the localization at p.

(ii) Ra, the localization of R at the multiplicative set S = {an | n ≥ 0} called the
localization at a, i.e., at “the open neighborhood D(a) of a”. (Note that D(a) is
homeomorphic to Spec(S−1R).)

We return to the topology that interests us. We have seen that irreducible topological
spaces are applicable to our theory. However, connected subspaces are not useful, so we
need a substitute for the usual decomposition of a space into connected components into a
decomposition of another type. This will be a decomposition into irreducible components.

Lemma 92.20. Let X be a topological space and Y a subset of X.

(1) Y is irreducible if and only if Y in X is irreducible.
(2) Every irreducible subspace of X is contained in some maximal irreducible sub-

space. Any such is closed.

Proof. (1): Let U ⊂ X be an open subset, then Y ⊂ U if and only if Y ⊂ U . By
definition, the closure of U ∩ Y in Y is U ∩ Y , so U ∩ Y is dense in Y if and only if U ∩ Y
is dense in Y .

(2) follows from Zorn’s Lemma. �

A maximal irreducible subspace of a nonempty topological space X is called an irre-
ducible component of X. If X is a Hausdorff space, then {x}, x ∈ X, are the irreducible
components of X, so this is not a useful concept in that case.

Definition 92.21. Let X be a topological space. Then a point x ∈ X is called a generic
point of X if X = {x}.

Corollary 92.22. {V (p) | p ∈ Min(R)} is the set of irreducible components of Spec(R)
and p ∈ Spec(R) is a generic point of V (p).

Remark 92.23. Irreducible components may intersect nontrivially. For example, let
x, y be indeterminants, then V (xy) in Spec(C[x, y]) has irreducible components V (x) and
V (y) and they intersect in (x, y), a maximal ideal in C[x, y]. Topologically, V (xy) ∼=
Spec

(
C[x, y]/(xy)

)
. Identifying Max(C[x, y]) with C2 by (x − a, y − b) 7→ (x, y) using

the Hilbert Nullstellensatz, we can view the y-axis as the closed points in V (x) and the
x-axis as the closed points in V (y). The origin corresponds to the intersection of V (x) and
V (y). The following picture illustrates, this where we have identified V (x)∩Max(C[x, y])
and the y-axis, V (y) ∩Max(C[x, y]) and the x-axis) and (x, y) with the origin, using the
Hilbert Nullstellensatz.
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V (y) ∩Max(C[x, y])

V (x) ∩Max(C[x, y])

(x,y)

Definition 92.24. A topological space X is called Noetherian if the collection of open
sets in X satisfies the ascending chain condition. Equivalently, the collection of closed
sets in X satisfies the descending chain condition.

Example 92.25. If R is a commutative Noetherian ring, then Spec(R) is a Noether-
ian topological space, but the converse is false. For example, let F be a field, A =
F [t1, . . . , tn, . . . ], and A = (t1, t

2
2, . . . , t

n
n, . . . ). Then the ring B = A/A is not Noetherian,

as nil(B) is not nilpotent, but Spec(B) is a Noetherian space. In fact, | Spec(B)| = 1.

Proposition 92.26. Let X be a Noetherian space. Then there exist finitely many irre-
ducible components of X and X is their union.

Proof. This proof is a typical proof when we have a Noetherian condition. Let

F(X) := {V |V ⊂ X closed}
C(X) := {C |C ⊂ F(X),

C is a finite union of closed irreducible sets in X}.
Claim. C(X) = F(X):

If this is false, then by the Minimal Principle (equivalent to the descending chain condi-
tion), there exists an element Y ∈ F(X) \ C(X) that is minimal. As, Y /∈ C(X), it is
not irreducible, Y = Y1 ∪ Y2 with Yi < Y and Yi ∈ F(X), for i = 1, 2. By minimality,
Yi ∈ C(X), hence Y = Y1 ∪ Y2 in C(X). This contradiction establishes the claim.

By the claim, we have X =
⋃n
i=1Ci for some Ci ⊂ X closed irreducible. Clearly, we may

assume that Cj is not a subset of Ci for i 6= j. If C is an irreducible component of X, then
we have C ⊂

⋃n
i=1(C ∩Ci) is irreducible. It follows that C ⊂ Ci for some i, hence C = Ci

for some i as C is a maximal closed irreducible subset of X. The result follows. �

Corollary 92.27. Let R be a commutative Noetherian ring. Then Min(R) is a finite set
and Spec(R) =

⋃
Min(R) V (p).

Our primary interest in this chapter will be the Krull dimension of a ring that we shall
just call the dimension of a ring. For the convenience of the reader, we define it again, in
an equivalent formulation, that will be of considerable interest for us.

Definition 92.28. Let R be a nonzero commutative ring and P a prime ideal in R. We
define the height of P by

htP := sup{n | p0 < · · · < pn = P, with pi ∈ Spec(R), i = 1, . . . , n}
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if finite and = ∞ if not, i.e., the maximal number of (proper) links of chains of prime
ideal in P. If A < R is an ideal, we define the height of A to be

htA := inf{ht p | p ∈ V (A)} = inf{ht p | p ∈ V (A) minimal}.
Then the (Krull) dimension of R is defined to be

dimR := sup{ht p | p ∈ Spec(R)} = sup{htm | m ∈ Max(R)}
if finite and =∞ otherwise.

If A is an ideal, we define the dimension of V (A) to be

dimV (A) := dimR/A.

More generally, if X is a topological space, the combinatorial dimension of X is defined
to be

dimX := sup{n | Y0 < · · · < Yn each Yi ⊂ X closed and irreducible}
if finite and =∞ if not. In particular, if A ⊂ R is an ideal, then

dimR = dim Spec(R) and dimV (A) = dim Spec(R/A).

Note that this is consistent, since V (A) is homeomorphic to Spec(R/A).

Remarks 92.29. Let R be a nonzero commutative ring and F a field.

1. If R is a domain, then dimR = 0 if and only if R is a field.

2. dimR = 0 if and only if Spec(R) = Max(R).

3. Let R be a PID but not a field. Then Spec(R) = {(0)}∪Max(R) with (0) not maximal,
so dimR = 1, e.g., R = Z or F [t]. More generally, any Dedekind domain is of dimension
one.

4. dimF [t1, . . . , tn] ≥ n, since

0 < (t1) < (t1, t2) < · · · < (t1, . . . , tn)

is a (proper) chain of prime ideals. In fact, dimF [t1, . . . , tn] = n, a result that we shall
show later.

5. dimF [t1, . . . , tn, . . . ] =∞, but there do exist Noetherian rings of infinite dimension.

6. Recall a local ring is a commutative ring with a unique maximal ideal. [Such a ring
can still have Spec(R) infinite, and in fact, this is the case if dimR > 1 and R is
Noetherian.] If R is a local ring with maximal ideal m, we say (R,m) is a local ring.
We shall see that a local Noetherian ring has finite dimension.

7. Maximal ideals need not have the same height. For example, let p = (3) in Spec(Z)
and Zp the localization of Z at p. Then Zp[t] is a Noetherian UFD of dimension two
containing maximal ideals (3, t) and (3t − 1), maximal ideals of height one and two,
respectively.

8. Suppose that A < R is an ideal. Then we have:

htA + dimR/A ≤ dimR,

i.e.,

htA + dimV (A) ≤ dim Spec(R).
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In general, inequality is possible. If we have equality, then we should view htA as
codimV (A) = codimSpec(R) V (A). One of our primary goals of this chapter is to es-
tablish this in the special case when R is an affine F -algebra, i.e., a finitely generated
commutative F -algebra, and A is a prime ideal.

9. If p is a prime ideal in R, let pRp = pp, the localization of p at R \ p. Then (Rp, pp) is
a local ring and satisfies dimRp = ht pRp.

Remark 92.30. We can also generalize the notions above to modules. Let M and N be
R-modules. Then

(N : M) := {x ∈ R | xM ⊂ N}
is a ideal in R. E.g., (0 : M) = annRM . We define the dimension of M by

dimM := dimV
(
(0 : M)

)
= dimV

(
annR(M)

)
and the support of M by

Supp(M) := {p ∈ Spec(R) |Mp 6= 0},
where Mp = {m

s
| m ∈M, s ∈ R \p}, the localization of M at p, an Rp-module. [We leave

the proof that we can localize an R-module to an S−1R-module with S a multiplicative
set in R as an exercise.]

Exercises 92.31.

1. Prove Proposition 92.7.

2. Prove Proposition 92.10.

3. Show Check 92.13 is true.

4. Check Remark 92.16.

5. Prove the assertions in Remark 92.19.

6. Let R be a nonzero commutative ring, S a multiplicative set in R, and M an R-module.
Show that S−1M := { r

s
| r ∈ R, s ∈ S} with the obvious definition is an S−1R-module

called the localization of M at S. If

0→M ′ f−→M
g−→M ′′ → 0

is an exact sequence of R-modules, prove that the sequence

0→ S−1M ′ S−1f−−−→ S−1M
S−1g−−−→ S−1M ′′ → 0

of S−1R-modules is exact where, e.g., S−1f : S−1M ′ → S−1M , is defined by S−1f( r
s
m) =

r
s
f(m), i.e., the S−1R-module homomorphism induced by f . Moreover, if the original

exact sequence is split (cf. Exercise 38.18(11)), so is the localized one.

7. In the previous exercise, if S = R \ p with p a prime ideal in R, and f : M → N is an
R-homomorphism, let fp denote S−1f . Then show ker(fp) = (ker f)p and coker(fp) =
(coker f)p for all prime ideals p in R. Moreover, show that the following are equivalent:

(i) 0→M ′ f−→M
g−→M ′′ → 0 is an exact sequence of R-modules.

(ii) 0 → M ′
p

fp−→ Mp
gp−→ M ′′

p → 0 is an exact sequence of Rp-modules for all prime
ideals p.
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(iii) 0→M ′
m

fm−→Mm
gm−→M ′′

m → 0 is an exact sequence of Rm-modules for all maximal
ideals m.

In particular, f is an R-monomorphism (respectively, R-epimorphism) if and only if fp
is an Rp-monomorphism (respectively Rp-epimorphism) for all prime ideals p in R if
and only if fp is an Rm-monomorphism (respectively Rm-epimorphism) for all maximal
ideals m in R. It follows that M = 0 if and only if Mp = 0 for all prime ideals p in R
if and only if Mm = 0 for all maximal ideals m in R.

8. Let R be a nonzero commutative ring and a1, . . . , an ∈ R. Show D(a1 · · · an) =
∩ni=1D(ai) and every open set in Spec(R) is a union of basic open sets.

9. Show the assertions in Example 92.25 are true.

10. Let X be a topological space. Show that X is Noetherian if and only if every open
subset of X is quasi-compact.

11. For f ∈ R, let X = Spec(R) and Xf = Spec(Rf ), where Rf the localization of R at
the basic open set D(f). Write R(Xf ) for the localization Rf .
For f, g, h ∈ R and U = Xf , U

′ = Xg, U
′′ = Xh, show the following:

(a) R(U) depends only on U and not on f .

(b) If U ′ ⊂ U , then there exists a positive integer n and an element x ∈ R such
that gn = xf . Using this, defines a homomorphism ρUU ′ : R(U) → R(U ′) via
a/fm 7→ axm/gmn. This map depends only on U and U ′ and is called the restric-
tion homomorphism.

(c) If U = U ′, then ρUU is the identity map.

(d) If U ′′ ⊂ U ′ ⊂ U , then the diagram

R(U)
ρUU′′

//

ρUU′ $$

R(U ′′)

R(U ′)

ρU′U′′

::

commutes. This implies that X := (X,R) is a presheaf of rings.

(e) Let {Ui | i ∈ I} be a finite covering of a basic open set U in X by basic open sets.
Suppose that a ∈ U , ai ∈ Ui for each i. Then

(i) If a ∈ R(U) satisfies ρUUi(a) = 0 for all i, then a = 0.
(ii) If ρUi(Ui∩Uj)(ai) = ρUj(Ui∩Uj)(aj) in R(Ui ∩ Uj) for all i, j, then there exists

an element r ∈ R(U) satisfying ρUUi(r) = ai for all i.
This implies that X is a sheaf of rings. We call (X,R) an affine scheme.
[ If x = p, then the local ring Rp is the stalk of X at p. It is the set of germs at p
on X, i.e., equivalence classes of elements r where r is defined in some R(U), U
a basic open set, and if r′ is defined in R(U ′), then r ∼ r′ if there exists a basic
open neighborhood V of p in U ∩ U ′ such that ρUV (r) = ρU ′V (r′) in R(V ).]

93. Integral Extensions of Commutative Rings

As is true in this whole chapter, R is a commutative ring.
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In this section, we look further at the notion of integral extensions. We use the material
studied in Sections 79 and 80.

Notation 93.1. We begin with some new notation. If A is a commutative R-algebra
via the ring homomorphism ϕA : R → A, we shall write ra for ϕ(r)a, r ∈ R, a ∈ A. If
a1, . . . , an. are elements of A, then we shall write R[a1, . . . , an] for ϕ(R)[a1, . . . , an] (even
if ϕR is not a monomorphism). If S ⊂ R is a multiplicative set, we shall write S−1A for(
ϕ(S)

)−1
A. So if r ∈ R, s ∈ S, and a ∈ A, we write r

s
a for ϕA(r)

ϕA(s)
a. If p is a prime ideal in

R, we write Ap for S−1A where S = R \ p.

Definition 93.2. Let ϕ : R → A be a ring homomorphism of commutative rings, we
shall view A as an R-algebra via ϕ unless otherwise stated. We say

(1) ϕ is of finite type if A is a finitely generated R-algebra.

(2) ϕ is finite if A is a finitely generated R-module (via ϕ).
[One also calls a finitely generated R-module a finite R-module.]

(3) ϕ is integral if A/ϕ(R) is an integral extension.

We leave the various remarks about ring homomorphisms of commutative rings and
localization as useful exercises for the reader.

Remarks 93.3. Let ϕ : R→ A be a ring homomorphism of commutative rings.

1. ϕ is a finite map if and only if it is integral and finite type. (Cf. Exercise 79.15(4).)

2. If ϕ is an epimorphism, then ϕ is finite, hence integral.

3. If ϕ is integral and A an ideal in A, then the induced map ϕ̃ : R/ϕ−1(A) → A/A is
integral and injective.

4. The composition of ring homormorphisms of finite type (respectively, finite, integral)
are of finite type (respectively, finite, integral).

5. Suppose that ϕ is the inclusion and A < R an ideal. As before, we write A/R. It is
possible that AA = A and A < (AA) ∩ R. For example, (2) is a prime ideal in Z but
(2)Q = Q. We shall see that this does not happen if A/R is integral.

6. Suppose that ϕ is the inclusion with R a domain and K = A a field containing R. As
in §79, we shall let RK denote the integral closure of R in K. In this chapter, if R is
integrally closed in its quotient field F , i.e., R = RF , we shall use geometric language
and say that R is a normal domain instead of saying R is integrally closed.

Remarks 93.4. Let ϕ : R→ A be a ring homomorphism of commutative rings and S a
multiplicative subset of R.

1. If ϕ is a monomorphism, so is ϕS−1R : S−1R → S−1A. In particular, this applies if ϕ
is the inclusion map. We then view ϕS−1R as the inclusion. If, in addition, A = K is a
field qf(R) and p a prime ideal in R, then (Rp)K = (RK)p.

2. If ϕ is is of finite type (respectively, finite, integral), then so is ϕS−1R in which case the
integral closure of S−1R in S−1A is S−1C where C is the integral closure of R in A.

In the more elementary part of this tome, we proved the Hilbert Nullstellsatz. We
wish to give deeper insight into why this theorem (rather than the proof we gave) is true.
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One of the keys to the proof, essentially an equivalent formulation, was Zariski’s Lemma
41.10 whose proof we shall derive again later. To do so we must look carefully at integral
extensions. We begin with a summary and the methodology that we shall use.

Summary 93.5. Let i : A ⊂ B be the inclusion of two commutative rings and S ⊂ A a
multiplicative set.

1. S−1i : S−1A→ S−1B is a ring monomorphism, that we view as an inclusion.
2. Let S−1ϕA : A → S−1A by a → a

1
, be the canonical homomorphism. Then aϕA :

SpecS−1A → {p ∈ Spec(A) | p ∩ S = ∅} is a homeomorphism. In particular, if p is a
prime ideal in A such that p ∩ S = ∅, then p = (S−1p) ∩ A := aϕA(S−1p).

3. If p is a prime ideal in A, then (Ap, pAp) is a local ring.
4. A major methodology for trying to prove commutative algebra results is by:

(a) Localize: If p is a prime ideal, then Ap ⊂ Bp with (Ap, pAp) a local ring. Then
try to prove the results here and pullback.

(b) Quotient: If P is a prime ideal in B, let p = P ∩ A a prime ideal in A with the
induced map A/p → B/P a homomorphism of domains. Then try to prove the
results here and pullback.

Lemma 93.6. Let A be a commutative R-algebra and u a unit in A. Then u−1 is integral
over R if and only if u−1 lies in R[u].

Proof. The element u−1 is integral over R if and only if there exists an equation

u−n + r1u
−n+1 + · · ·+ rn = 0 in A for some r1, . . . , rn ∈ R

if and only if

u−1(r1 + r2u+ · · ·+ rnu
n−1) = −1 in A for some r1, . . . , rn ∈ R

if and only if u−1 lies in R[u]. �

Proposition 93.7. Let A ⊂ B be domains with B/A integral. Then A is a field if and
only if B is a field.

Proof. (⇐): Let x ∈ A be nonzero. Then x−1 lies in the field B and is integral over
A if and only if x−1 ∈ A[x] = A by the lemma.

(⇒): Let y ∈ B be nonzero. Then there exists a1, . . . , an in A such that yn + a1y
n−1 +

· · · + an = 0 in B for some n, as B/A is integral. Since B is a domain, we may assume
that an is nonzero. Therefore, a−1

n lies in A ⊂ qf(B), the quotient field of B, as A is a
field. Consequently, y−1 = −a−1

n (yn−1 + · · ·+ an−1) in qf(B), hence lies in A[y] ⊂ B. �

Corollary 93.8. Let ϕ : A → B be an integral ring homomorphism, P a prime ideal in
B. Then P is a maximal ideal in B if and only if aϕ(P) is a maximal ideal in A. In
particular, the restriction of aϕ to Max(B) gives the map

aϕ|Max(B) : Max(B)→ Max(A).

Proof. let P be a prime ideal inB. Then ϕ induces a monomorphism ϕ : A/ϕ−1(P)→
B/P which is integral by Remark 93.3(3). �

Definition 93.9. Let R be a commutative ring. The Jacobson radical of R is defined to
be rad(R) :=

⋂
Max(R) m.
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One of the most useful results is the following lemma, apparently first proved inde-
pendently by Azumaya and Krull:

Lemma 93.10. (Nakayama’s Lemma) Let A be an ideal in rad(R) and M a finitely
generated R-module. If M = AM , then M = 0.

Proof. Suppose that M 6= 0 and M =
∑n

i=1Rmi with n minimal. Then there exist
a1, . . . , an in A satisfying m1 =

∑n
i=1 aimi, as M = AM . Thus (1 − a1)m1 =

∑n
i=2 aimi.

Since each ai lies in rad(R) ⊂ m for every maximal ideal m in R, we have 1 − a1 /∈ m
for every maximal ideal m, hence is a unit in R. It follows that m1 lies in

∑n
i=2 Rmi,

contradicting the minimality of n. �

The following consequence is also called Nakayama’s Lemma.

Corollary 93.11. Let A ⊂ rad(R) be an ideal in R, M a finitely generated R-module,
and N ⊂M a submodule. If M = N + AM , then M = N .

Proof. We have M/N is a finitely generated R-module satisfying M/N = A(M/N),
so M/N = 0 by Nakayama’s Lemma. Hence M = N . �

We leave the proof of the next useful corollary as an exercise.

Corollary 93.12. Let (R,m) be a local ring, M a finitely generated R-module, : M →
M/mM , the canonical epimorphism,

S = {x1, . . . , xn}, and S = {x1, . . . , xn}.
Then

(1) S generates M if and only if S spans the R/m-vector space M = M/mM .
(2) S is a minimal generating set (obvious definition) for M if and only if S is an

R/m-basis for M (and dimR/mM = n).

Remark 93.13. We shall see later that if (R,m) is a Noetherian local ring that

dimR = htm ≤ dimR/mm/m2 <∞.
If we have equality in the above, then (R,m) is called a regular local ring. This notion
of regular is the algebraic replacement for the geometric concept of non-singularity at a
point.

A basic theorem in the study of integral extensions, apparently originally due to Krull,
is the next result that we now prove. The proof is an excellent illustration of the methods
mentioned above.

Theorem 93.14. (Cohen-Seidenberg Theorem)
Let B/A be integral. Then:

(1) (Incomparability) If P1 ⊂ P2 are prime ideals in B, and satisfy P1∩A = P2∩A,
then P1 = P2.

(2) (Lying Over) ai : Spec(B) → Spec(A) is surjective, where i : A → B is the
inclusion map, i.e., (in the notation of Section 82 that we shall continue to use)
if p is a prime ideal in A, there exists a prime ideal P in B lying over p.
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(3) (Going Up). If p1 ⊂ p2 are prime ideals in A and P1 is a prime ideal in B lying
over p1, then there exists a prime ideal in V (P1) lying over p2.

P1 ⊂
(Picture) | |

p1 ⊂ p2.

(4) dimA = dimB.

Proof. (1): Let p = P1 ∩ A = P2 ∩ A in Spec(A) and S = A \ p. Then S ∩Pi = ∅
for i = 1, 2, so S−1B/S−1A is integral, (S−1A, S−1p) is a local ring with

S−1Pi ∩ S−1A = S−1(Pi ∩ A) = S−1p.

Therefore, S−1Pi ∈ Spec(S−1B) lies over S−1p, for i = 1, 2. By Corollary 93.8, S−1Pi is
a maximal ideal in S−1B for i = 1, 2. It follows that P1 ⊂ P2 implies S−1P1 = S−1P2.
Consequently, P1 = P2 as Pi ∩ S = ∅ for i = 1, 2.

(2): Let S = A \ p, then S−1B/S−1A is integral. By the diagram

B
loc−−−→ S−1B S−1P

| | commutes and |

A −−−→
loc

S−1A S−1p

if S−1P lies over S−1p, we see that it suffices to replace A by S−1A and assume that
(A, p) is a local ring with B/A integral. In particular, it suffices to show that there exists
a prime ideal P in B lying over p. Suppose that pB < B. Then there exists an ideal
m ∈ V (pB) ∩Max(B). Since B/A is integral, m ∩ A ∈ Max(A) = {p}, i.e., m ∩ A = p
and we would be done. So we may assume that pB = B. We then have an equation

1 =
m∑
i=1

pibi for some pi ∈ p, bi ∈ B.

Set B′ = A[b1, . . . , bm] a finitely generated commutative A-algebra. As B/A is integral, B′

is a finitely generated A-module satisfying pB′ = B′. It follows by Nakayama’s Lemma,
that B′ = 0, which is impossible. Hence pB < B and (2) follows.

(3): Let P1 ∈ Spec(B) lie over p1 ∈ Spec(A). Since the inclusion A ⊂ B induces an
integral monomorphism A/p1 → B/P1, by Lying Over and the Correspondence Principle,
there exists a prime ideal P2 in V (P1) with P2/P1 lying over p2/p1 in Spec(A/p1).
Therefore, P2 lies over p1 by the Correspondence Principle and (3) follows.

(2): Let
P1 < · · · < Pn

be a chain of prime ideals in B. By Incomparability,

P1 ∩ A < · · · < Pn ∩ A
is a chain of prime ideals in A, so dimB ≤ dimA. If

p1 < · · · < pn
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is a chain of prime ideals in A, then by Lying Over and Going Up, we can construct a
chain of prime ideals

P1 < · · · < Pn

in B, so dimA ≤ dimB. Therefore, dimA = dimB. �

In the theorem, we needed the condition that A ⊂ B, i.e., that we have a monomor-
phism A → B. Indeed a counterexample is provided by the canonical epimorphism

: Z→ Z/nZ, n > 1 if not.

Corollary 93.15. Let B/A be an integral extension with B a domain and B < B a
nonzero ideal. Then B ∩ A < A is a nonzero ideal.

Proof. Let P ∈ V (B). Certainly, P∩A < A as 1 /∈ P. Since A and B are domains,
the zero ideal in B lies over the zero ideal in A. By Incomparability, P does not lie over
(0). Suppose that B∩A = 0. Then the induced mononomorphism A ↪→ B/B is integral.
Therefore, by Lying Over and the Correspondence Principle, there exists a prime ideal
P ∈ V (B) satisfying P/B lies over (0) in Spec(A). As B ∩ A = 0, this means that P
lies over (0), a contradiction. �

We need to generalize Proposition 83.1, whose former proof can be adapted to this
generalization (essentially by localization). Moreover, we shall give a different proof that
uses one of the most useful results, called the Prime Avoidance Lemma that we previously
left as an exercise, but now prove.

Lemma 93.16. (Prime Avoidance Lemma) Let A1, . . . ,An be ideals in R, at least n− 2
of which are prime. Let S ⊂ R be a subrng (it does not have to have a 1) contained in
A1∪· · ·∪An. Then there exists a j such that S ⊂ Aj. In particular, if p1, . . . , pn are prime
ideals in R and B is an ideal properly contained in S satisfying S \B ⊂ p1 ∪ · · · ∪ pn,
then S lies in one of the pi’s.

Proof. The case n = 1 is trivial, so assume that n > 1 and assume that the result

is false. By induction, S 6⊂ A1 ∪ · · · Âi ∪ · · · ∪ An for each i where ̂ means omit. So for

each i = 1, . . . , n, there exists an element xi ∈ S \ A1 ∪ · · · Âi ∪ · · · ∪ An. Therefore, we
have xi ∈ Ai for every i = 1, . . . , n and xi /∈ Aj for all j 6= i. If n > 2, we may assume
that A1 is a prime ideal. Let y = x1 + x2 · · ·xn ∈ S. If n = 2, then y = x1 + x2 does not
lie in A1 + A2, a contradiction. So we may assume that n > 2. As A1 is a prime ideal
and xi /∈ A1 for all i > 1, we have x2 · · ·xn /∈ A1. Consequently, y /∈ A1 ∪ · · · ∪ An, a
contradiction. �

Our generalization of Proposition 83.1 needs us to replace the condition of a finite
Galois extension of fields by an arbitrary normal extension of fields. This requires that
we extend the definition of the norm of a finite separable field extension. Let L/F be
a finite normal extension of fields, and K the separable closure of F in K. We call
[L : F ]i := [L : K] the purely inseparable degree of L/F and [L : F ]s := [K : F ] the
separable degree of F in L. So [L : F ] = [L : F ]i[L : F ]s. Define the norm NL/F : L→ F

by NL/F (x) =
(∏

G(L/F ) σ(x)
)[L:F ]i , i.e., NL/K(x) = NK/F (x[L:F ]i). Then the norm still

satisfies all the expected properties.
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Theorem 93.17. Let A be a normal domain (i.e., an integrally closed domain) with
quotient field F and L/F a normal extension of fields. Let P1 and P2 be prime ideals in
AL lying over p in Spec(A), i.e., P1 ∩ A = p = P2 ∩ A. Then there exists an element σ
in G(L/F ), the Galois group of L/F , satisfying P1 = σ(P2), i.e., if i : A → AL is the
inclusion map, then G(L/F ) acts transitively on the fibers of ai : Spec(AL)→ Spec(A).

Proof. If b ∈ AL and σ ∈ G(L/F ), then σ(b) ∈ L is integral over σ(A) = A, i.e.,
σ(b) ∈

(
σ(A)

)
L

= AL, so σ(AL) = AL. As σ−1 lies in G(L/F ), the map σ : AL → AL
is an A-algebra isomomorphism. If P is a prime ideal in AL and σ ∈ G(L/F ), then
σ(P) ∈ Spec(AL) and P ∩ A = σ(P ∩ A) = σ(P) ∩ A. So every prime ideal in the orbit
G(L/F )P := {σ(P) | σ ∈ G(L/F )} lies in the fiber (ai)−1(p) of p.

Case 1. L/F is finite.

Suppose P2 lies over P1 ∩ A. To show that P2 ∈ G(L/F )P1. Suppose not. By In-
comparability, P2 6⊂ σ(P1) for any σ ∈ G(L/F ). By the Prime Avoidance Lemma, as
G(L/F )P1 is finite, P2 6⊂

⋃
G(L/F ) σ(P1). Let a be an element in P2 \

⋃
G(L/F ) σ(P1).

Then σ(a) /∈ P1 for any σ ∈ G(L/F ). As A is a normal domain, we have

NL/F (a) =
( ∏
G(L/F )

σ(a)
)[L:F ]i

lies in AL ∩ F = AF = A.

Therefore,
NL/F (a) ∈ P2 ∩ A = p = P1 ∩ A ⊂ P1.

As P1 is a prime ideal and G(L/F ) is a finite group, there exists an σ in G(L/F ) satisfying
σ(a) ∈ P1, a contradiction.

Case 2. L/F is possibly infinite.

This is left an exercise (use Zorn’s Lemma, since L is a union of finite normal exten-
sions). �

Corollary 93.18. Let A be a normal domain with quotient field F and K/F a finite field
extension. Then ai : Spec(AK) → Spec(A) has finite fibers, where i is the inclusion map
of A in AK, i.e., (ai)−1(p) is a finite set for all prime ideals p in A.

A ring homomorphism whose associated map has finite fibers is called quasi-finite.

Proof. Let L/F be a normal closure of K/F . Then L/F is a finite normal extension,
hence G(L/F ) is finite. Let p be a prime ideal in A. By Lying Over, there exists a
prime ideal P in AL lying over p. We have (aiL)−1(p) = {σ(P) | σ ∈ G(L/F )} where
iL : A→ AL is the inclusion map. By Lying Over, if Q is a prime ideal in AK , then there
exists a prime ideal P′ in AL lying over Q as AL/AK is integral. Hence

|(ai)−1(p)| ≤ |(aiL)−1(p)| ≤ |G(L/F )| <∞
where i : A→ AK is the inclusion. �

Definition 93.19. A commutative ring R with finitely many maximal ideals is called
semi-local ring.

Corollary 93.20. Let A be a semi-local normal domain with quotient field F and K/F
a finite field extension. Then AK is semi-local.
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Proof. As AK/A is integral, ai|Max(A)K : Max(AK) → Max(A), where i is the inclu-
sion of A in AK . As ai has finite fibers, the result follows. �

Proposition 93.21. Let A be a normal domain with quotient field F and K/F a finite
field extension. Suppose that P, a prime ideal in AK, lies over the prime ideal p in A. Let
F denote the quotient field of A/p. Then for all α ∈ AK/P, we have [F (α) : F ] ≤ [K : F ].

Proof. Let : A[t] → (A/p)[t] ⊂ F [t] be the canonical epimorphism and x ∈ AK
an element satisfying α = x+ P in AK/P. Then the minimal polynomial mF (x) of x in

AF [t] = A[t] is monic and mF (x)|t=α = 0, so

[F (α) : F ] ≤ degF mF (α) ≤ degF mF (x) ≤ [K : F ]. �

Corollary 93.22. Let A be a normal domain with quotient field F and K/F a finite
field extension. Suppose that there exists an element x in AK satisfying AK = A[x]. Let
P be a prime ideal in AK lying over the prime ideal p in A. Set K = qf(AK/P) and
F = qf(A/p). Then [K : F ] ≤ [K : F ].

Proof. K = qf(A/p)[x+ P]. �

The Cohen-Seidenberg Theorem showed that if B/A is integral, then dimA = dimB.
We are also interested in the heights of primes, as we wish to determine the codimension
of irreducible subvarieties. This is more delicate and needs stronger hypotheses. We can
now determine one such result.

Theorem 93.23. (Going Down Theorem) Let B/A be integral with A a normal domain
and B a domain. Let p1 ⊂ p2 be prime ideals in A and P2 a prime ideal in B lying over
p2. Then there exists a prime ideal P1 lying over p1 satisfying P1 ⊂ P2. In particular, if
P is a prime ideal in B, then htP = ht(P ∩ A).

⊂ P2

(Picture) | |
p1 ⊂ p2

Proof. Let F be the quotient field of A and K the quotient field of B. Since B/A
is integral, K/F is algebraic. Let L/K be a normal closure of K/F . As AL/A is integral
and B ⊂ AL, we have AL/B is also integral. Let Q1 ∈ Spec(AL) lie over p1. By Going
Up, there exists a prime ideal Q2 ∈ V (Q1) lying over p2. By Lying Over there exists
a prime ideal Q′2 in AL lying over P2 hence over p2. Therefore, there exists an element
σ ∈ G(L/F ) satisfying σ(Q2) = Q′2. We also have σ(Q1) ∩ A = p1 = Q1 ∩ A. It follows
that P1 = σ(Q1) ∩B works for the first statement.

Let
P1 < · · · < Pn = P

be a chain of prime ideals in B and p = P ∩ A. By Incomparability, we have

P1 ∩ A < · · · < Pn ∩ A = P ∩ A = p

a chain of prime ideals in A. Therefore, ht(P ∩ A) ≥ htP. If

p1 < · · · < pn = p = P ∩ A
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is a chain of prime ideals in A, then, by Going Down, there exists a chain of prime ideals

P1 < · · · < Pn = P

in B, so htP ≥ ht(P ∩ A), and the result follows. �

Corollary 93.24. Let B/A be integral with A a normal domain and B a domain. Let p
be a prime ideal in A and P a prime ideal in B lying over p. Then ht p = 1 if and only
if htP = 1,

Remark 93.25. The Going Down Theorem 93.23 can be strengthened. In the notation
of Theorem 93.23, we can weaken the hypothesis on B to the condition that B be A-
torsion-free. Indeed, let

S = (A \ {0})(B \P2) ⊂ B.

Then S is a multiplicative set excluding (0), since A-torsion-free. Hence there exists a
prime ideal P in B excluding S. It follows that P satisfies P ⊂ P2 and P ∩A = (0). As
B/A induces a ring monomorphism A/(P ∩ A) → B/P, which we view as an inclusion,
we are in the situation of the Going Down Theorem. In particular, there exists a prime
P1 containing P such that P1/P lies over p1 and P1/P ⊂ P2/P. Therefore, P1 works.

Exercises 93.26.

1. Prove the assertions in Remarks 93.3.

2. Prove the assertions in Remarks 93.4.

3. Let ϕ : A → B be an integral homomorphism. Show that the associated map aϕ :
Spec(B)→ Spec(A) is a closed map.

4. Prove Corollary 93.12.

5. Let (R,m) be a local ring. Show that any finitely generated R-projective module (cf.
Exercise 39.12(126.1) and exercises that follow) is a free R-module.

6. Suppose that p1, . . . , pn are prime ideals in R and P = ∩ipi. Show if P is a prime
ideal, then there exists an i with P = pi.

7. Prove Case 2 of Theorem 93.17.

8. (Cayley-Hamilton Theorem) Let R be a commutative ring, A < R an ideal, and M an
R-module that can be generated by n elements. If ϕ ∈ EndR(M) satisfies, ϕ(M) ⊂
AM , then there exists a monic polynomial f = tn + an−1t

n−1 + · · · + a0 in R[t] with
coefficients a0, . . . , an−1 ∈ A, such that the R-endomorphism on M , f(ϕ) = ϕn +
an−1ϕ

n−1 + · · ·+ a01M = 0.
[The characterization of integral elements (as well as Nakayama’s Lemma 93.10) easy
follow from this.]

9. Let A be an ideal in R[t] and : R[t]→ R[t]/A, the canonical epimorphism. Set x = t
and A = F [t]/A. Prove the following:

(i) As an R-module A is generated by at most n elements if and only if there exists
a monic polynomial f ∈ A of degree at most n. If this is the case, then A =∑n−1

i=0 Rxi, for some x0, . . . , xn−1. In particular, A is a finitely generated R-module
if and only if A contains a monic polynomial.
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(ii) A is a free R-module if and only if A = (f) for some monic polynomial f ∈ R[t].
If this is the case, say rankA = n. Then there exists an x ∈ A such that
B = {1, x, . . . , xn−1} is a basis for A.

10. Under the conditions of Remark 93.25, show if p is a prime ideal in A and i : A → B
is the inclusion map, then

(ai)−1(p) = {P ∈ Spec(B) | P ∈ V (pB) is minimal}.

11. Let R be a subring of a commutative ring A. Show that the Going Down Theorem
holds for A/R if ai : Spec(A)→ Spec(R) is an open map. [The converse of this is true
if R is a Noetherian ring.]

94. Primary Decomposition

As throughout this chapter, R will denote a commutative ring.

In this section, we investigate the generalization of unique factorization of ideals that
Dedekind domains satisfy called the Lasker-Noether Theorem. As unique factorization
of ideals into a product of prime ideals characterize Dedekind domains, the appropriate
generalization is, as one would expect, weaker. Multiplication of ideals is replaced by
intersections, powers of primes by primary ideals, and not all primary ideals are unique.
However, this generalization will apply to any Noetherian ring, not just a Noetherian
domain.

We shall need the following lemma whose proof we leave as an exercise:
Recall that the radical of an ideal A in R is defined to be

√
A := {x ∈ R | xn ∈ A for some n ∈ Z+}.

Lemma 94.1. Let A1, . . . ,An be ideals in R. Then√√√√ n⋂
i=1

Ai =
n⋂
i=1

√
Ai =

√
A1 · · ·An.

Recall that an ideal Q < R is is called a primary ideal if it satisfies one of the following
equivalent conditions:

(i) If xy lies in Q then either x lies in Q or there exists a positive integer n with yn ∈ Q.

(ii) If xy lies in Q then either x lies in Q or y ∈
√
Q.

(iii) The set of zero divisors zd(R/A) of R/A lies in the nilradical nil(R/Q) of R/A.

Lemma 94.2. Let Q be a primary ideal in R. Then
√
Q is a prime ideal in R and is the

smallest prime ideal in R containing Q.

Proof. Suppose that xy lies in Q. Then there exists a positive integer n such that
xnyn lies in Q. Hence either xn ∈ Q or ynm ∈ Q i.e., either x ∈

√
Q or y ∈

√
Q. It follows

that
√
Q is a prime ideal in R. As Q ⊂

√
Q and if Q lies in a prime ideal p so does

√
Q,

the second statement also follows. �

Definition 94.3. If Q be a primary ideal in R and p is the prime ideal
√
Q, we say that

Q is a p-primary ideal.
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A useful example is given by the following result:

Lemma 94.4. Let A < R be an ideal satisfying
√
A is a maximal ideal in R. Then A is a√

A-primary ideal. In particular, if m is a maximal ideal in R, then mn is an m-primary
ideal for each positive integer n.

Proof. Let m =
√
A. Then m =

⋂
V (A) p, hence m ⊂ P for every prime ideal in

V (A). Since m is maximal, V (A) = {m}. It follows that R/A is a primary ring, i.e.,
| Spec(R/A)| = 1. In particular, we have zd(R/A) = nil(R/A), so A is m-primary. �

Examples 94.5. 1. Each prime ideal in R is a primary ideal in R.

2. The ideal (n) in Z is primary if and only if n = 0 or n is a power of a prime.

3. Let F be a field and x, y, z indeterminants over F . Then (xy − z2) is a prime ideal in
the the UFD F [x, y, z]. Set R = F [x, y, z]/(xy− z2) and : F [x, y, z]→ R = F [x, y, z]
the canonical epimorphism. Then p = (z) is a prime ideal in the domain R. We have

xy = z2 ∈ p2 := pp, but x2 /∈ p2 and y /∈
√
p2 = p.

Therefore, p2 is not a primary ideal in R. So, in general, a power of a prime ideal may
not be a primary ideal.

4. Let F be a field, x, y indeterminants over F and R = F [x, y]. Then Q = (x, y2) is
an (x, y)-primary ideal in R as R/Q = F [y]/(y2) satisfies zd(R/Q) ⊂ nil(R/Q). Let
p = (x, y), then (x2, xy, y2) = p2 < Q ⊂ p. It follows that Q 6= pn for any integer n,
i.e., a primary ideal may not be a power of a prime ideal.

5. Suppose that Qi, i = 1, . . . , r, are all p-primary ideals. Then so is Q1 ∩ · · · ∩Qr:

We know that
√⋂

Qi =
⋂√

Qi = p. If xy ∈
⋂
Qi with y /∈

⋂
Qi, then there exists

a j with y /∈ Qj. As xy ∈ Qj, we have xn lies in Qj for some n, hence x lies in√
Qj = p =

√⋂
Qi, so

⋂
Qi is p-primary.

Definition 94.6. Let A and B be two ideals in R. Set

(A : B) := {y ∈ R | yB ⊂ A} ⊂ R,

an ideal in R called the colon ideal.

If B = (x), we write (A : x) for
(
A : (x)

)
. If A = 0, then (0 : x) = {y ∈ R | yx = 0} is

the annihilator annR(x) of x in R.

Note the following:

Remarks 94.7. We have:

1. zd(R) =
⋃
x 6=0

√
annR(x) =

⋃
x 6=0

√
(0 : x).

2. If Ai ⊂ R are ideals for i = 1, . . . , n, then

(
n⋂
i=1

Ai : x) =
n⋂
i=1

(Ai : x).

Computation 94.8. Let Q be a p-primary ideal in R and x ∈ R. Then we have:

(i) If x ∈ Q, then (Q : x) = R.
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(ii) If x /∈ Q, then (Q : x) is p-primary. In particular,
√

(Q : x) = p.

(iii) If x /∈ p, then (Q : x) = Q.

Proof. (i) is immediate.

(iii): If x /∈ p and y ∈ (Q : x), then xy ∈ Q, hence y ∈ Q by definition.

(ii): Let y ∈ (Q : x). As x /∈ p and xy ∈ Q, we have y ∈
√
Q = p. Hence Q ⊂ (Q : x) ⊂ p,

so
p =
√
Q ⊂

√
(Q : x) ⊂

√
p = p.

Next let y, z ∈ R with yz ∈ (Q : x) and y /∈
√
Q = p. Then yzx ∈ Q implies that xz ∈ Q,

hence z ∈ (Q : x) showing that (Q : x) is p-primary. �

With the above definitions, we can now define the type of decomposition of ideals in
which we shall be interested.

Definition 94.9. Let A < R be an ideal. A primary decomposition of A is an equation

(*) A = Q1 ∩ · · · ∩Qn with Qi primary for i = 1, . . . n.

We say that (*) is irredundant if, in addition,

(i)
√
Q1, . . . ,

√
Qn are all distinct.

(ii)
⋂
j 6=iQj 6⊂ Qi for each i = 1, . . . , n.

Remark 94.10. Suppose that an ideal A has a primary decomposition (*). By Example
94.5(5), if Qi1 , . . . ,Qis have the same radical, then Qi1 ∩ · · · ∩ Qis is

√
Qi1-primary, so

any primary decomposition (*) can be made to satisfy (i). Throwing out those Qi’s not
satisfying (ii), then shows that any A having a primary decomposition has an irredundant
primary decomposition.

We show our first uniqueness statement for irredundant primary decompositions.

Theorem 94.11. Suppose that A < R is an ideal that has an irredundant primary de-
composition

A = Q1 ∩ · · · ∩Qn with pi =
√

Qi for i = 1, . . . , n.

Then
{p1, . . . , pn} = {

√
(A : x) | x ∈ R} ∩ Spec(R)

and is independent of the irredundant primary decomposition, i.e., the radicals of the
primary ideals giving any irredundant primary decomposition of A are unique.

Proof. Let x ∈ R. We have (A : x) = (
⋂

Qi : x) =
⋂

(Qi : x), so by the Computation
94.8, √

(A : x) =
⋂√

(Qi : x) =
⋂
x/∈Qi

pi.

If
√

(A : x) is a prime ideal, it follows that there exists a Qi with x /∈ Qi such that√
(A : x) = pi by Exercise 93.26(6).
Conversely, since our primary decomposition is irredundant, for all i and all xi satis-

fying xi ∈
⋂
j 6=iQj \Qi, we have

√
(A : xi) = pi by Computation 94.8. �

The proof of the above theorem and Computation 94.8 show
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Corollary 94.12. If A < R is an ideal having an irredundant primary decomposition
A = Q1 ∩ · · · ∩Qn with pi =

√
Qi for i = 1, . . . , n, then there exists an element xi in Qi

such that (A : xi) is pi-primary.

Definition 94.13. Let A = Q1 ∩ · · · ∩Qn be an irredundant primary decomposition of
A in R with pi =

√
Qi for i = 1, . . . , n. We set

AssR V (A) := {p1, . . . , pn},

the set of associated prime ideals of A [actually of R/A in modern language]. We partially
order AssR V (A) by set inclusion ⊂. Elements that are minimal in AssR V (A) under this
partial order are called isolated prime ideals of A. The others (if any) are called embedded
prime ideals of A.

Isolated prime ideals in AssR V (A) are, in fact, precisely the prime ideals minimally
containing A in R, which we shall show next. In the sequel we shall write p ∈ V (A) is
minimal for such a prime ideal.

Proposition 94.14. Suppose that the ideal A has an irredundant primary decomposition.
Then a prime ideal p in R is an isolated prime of A if and only if p ∈ V (A) is minimal
if and only if p/A ∈ Min(R/A).

Proof. Let A = Q1 ∩ · · · ∩Qn be an irredundant primary decomposition of A in R
with pi =

√
Qi for i = 1, . . . , n. Suppose that p lies in V (A). Then

p =
√
p ⊃
√
A =

⋂√
Qi =

⋂
pi.

Hence there exists an i such that pi ⊂ p, i.e., p contains an isolated prime of A. �

Because of the proposition, isolated primes are also called minimal primes of A.

Proposition 94.15. Suppose that the ideal A in R has an irredundant primary decom-
position A = Q1 ∩ · · · ∩Qn with pi =

√
Qi for i = 1, . . . , n. Then⋃

pi = {x ∈ R | (A : x) > A}.

In particular, if A = (0), then

zd(R) =
⋃

AssR(0)

p.

Proof. Let : R→ R/A be the canonical epimorphism.

Check. (0) = Q1 ∩ · · · ∩Qn is an irredundant primary decomposition in R. So it suffices
to prove zd(R) =

⋃
AssR(0) p.

By the proof of Theorem 94.11, each pj =
√

(0 : x) for some x ∈ R. The result follows. �
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So we now know if (0) has an irredundant primary decomposition, then we have

zd(R) =
⋃

AssR(0)

p

nil(R) =
⋂

Spec(R)

p =
⋂

Min(R)

p

Min(R) ⊂ AssR V (0).

Remark 94.16. If they exist, irredundant primary decompositions are not necessarily
unique. An example is given as follows: Let R = F [x, y] with F a field and x, y indeter-
minants. Then

(x) ∩ (x, y)2 = (x2, xy) = (x) ∩ (x2, y)

are two irredundant primary decompositions for (x2, xy).

We shall obtain a ‘weaker’ uniqueness statement. We leave the proof of the following
as an exercise.

Lemma 94.17. Primary ideals satisfy:

(1) Let S be a multiplicative set in R and ϕR : R→ S−1R the canonical ring homo-
morphism given by r 7→ r/1. Then ϕR induces a bijection:

{Q | Q < R primary with Q ∩ S = ∅}
−→ {Q | Q < S−1R primary}

via Q 7→ S−1Q.
(2) If ψ : A → B is a ring homomorphism of commutative rings, Q < B a primary

ideal, then ψ−1(Q) ⊂ A is a primary ideal.

Proposition 94.18. Suppose that the ideal A in R has an irredundant primary decom-
position A = Q1 ∩ · · · ∩Qn with pi =

√
Qi for i = 1, . . . , n and S is a multiplicative set

in R satisfying S ∩Qi = ∅ for 1 ≤ i ≤ m, and S ∩Qi 6= ∅ for i > m. Then

S−1A = S−1Q1 ∩ · · · ∩ S−1Qm

is an irredundant primary decomposition for S−1A.

Proof. We have

S−1A = S−1(
n⋂
i=1

Qi) =
n⋂
i=1

S−1Qi =
m⋂
i=1

S−1Qi

with S−1Qi being S−1pi-primary, i = 1, . . . ,m and the S−1p1, . . . , S
−1pm distinct. It

follows that S−1A =
⋂m
i=1 S

−1Qi is an irredundant primary decomposition. �

Remark 94.19. In the above, if ϕR : R → S−1R is the canonical ring homomorphism
r 7→ r/1, then

(ϕR)−1(S−1A) = (ϕR)−1(
m⋂
i=1

S−1Qi) =
m⋂
i=1

(ϕR)−1(S−1Qi) =
m⋂
i=1

Qi.
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Definition 94.20. Let A < R be an ideal with an irredundant primary decomposition.
A subset I ⊂ AssR V (A) is called isolated if whenever p, p′ lie in AssR V (A) and satisfy
p ⊂ p′, then p′ ∈ I implies p ∈ I, i.e., all descending chains of prime ideals lying in
AssR V (A) beginning with an element of I have all elements in the chain lying in I.

Remark 94.21. Let I ⊂ AssR V (A) be an isolated set where A has an irredundant
primary decomposition. Let S = R \

⋃
I p. Then S is a saturated multiplicative set.

Moreover, if p′ ∈ AssR V (A), then we have:

(i) If p′ ∈ I, then p′ ∩ S = ∅.
(ii) If p′ /∈ I, then p′ 6⊂

⋃
I p (by the Prime Avoidance Lemma 93.16), hence p′ ∩ S 6= ∅.

In particular, we obtain our second uniqueness result:

Theorem 94.22. Suppose that the ideal A in R has an irredundant primary decomposition
A = Q1 ∩ · · · ∩Qn with pi =

√
Qi for i = 1, . . . , n and I = {pi1 , . . . , pim} ⊂ AssR V (A) an

isolated subset. Then
⋂m
j=1 Qij is independent of an irredundant primary decomposition

for A. In particular, the Qi with pi ∈ V (A) minimal are uniquely determined by A, i.e.,
the isolated primes determine unique primary ideals.

Proof. Let S = R \
⋃m
j=1 pij . Then by the above remark,

Qi1 ∩ · · · ∩Qim = ϕ−1
R (S−1A)

where ϕR : R→ S−1R is the canonical ring homomorphism r 7→ r/1. �

Example 94.23. Let A < R be a radical ideal, i.e., A =
√
A. Suppose that |Min(R/A)|

is finite. Then A has an irredundant primary decomposition and AssR V (A) = {p ∈
V (A) | p minimal}, i.e., there are no embedded primes:

We have

A =
√
A =

⋂
V (A)

p =
⋂

p∈V (A) minimal

p

with the right hand side an irredundant primary decomposition of A.

If R is Noetherian, we have established in Corollary 92.27 and will establish again below
that |Min(R/A)| is always finite.

We wish to show that every ideal in a Noetherian ring has an irredundant primary
decomposition. To do this we shall use Exercise 30.22(21) which asked to show

Lemma 94.24. An ideal C in a commutative ring R is called irreducible if whenever
C = A ∩ B for some ideals A and B in R, then either C = A or C = B. If R is
Noetherian, then every ideal A < R is a finite intersection of irreducible ideals of R, i.e.,
A = C1 ∩ · · · ∩ Cn, for some irreducible ideals Ci in R. We call such a decomposition an
irreducible decomposition of A.

This is what is needed as:

Lemma 94.25. Let R be Noetherian ring and A < R an irreducible ideal. Then A is a
primary ideal.
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Proof. Since R/A is also Noetherian, by the Correspondence Theorem, it suffices to
show that if (0) is irreducible, then it is primary. So suppose that (0) is irreducible and
xy = 0, x, y ∈ R, with y 6= 0. By the ascending chain condition,

(0 : x) ⊂ (0 : x2) ⊂ · · · ⊂ (0 : xn) ⊂ · · ·
stabilizes, say (0 : xN) = (0 : xN+i) for all i ≥ 1.

Claim. (0) = (y) ∩ (xN).

If we prove the claim, the result will follow as (0) being irreducible implies xN = 0, since
(y) 6= 0. To show the claim, let z ∈ (y) ∩ (xN). As z ∈ (y), we have xz = 0 and
as z ∈ (xN), we have z = axN for some a ∈ R. Consequently, 0 = xz = axN+1, so
a ∈ (0 : xN+1) = (0 : xN). Therefore, z = axN = 0 as needed. �

Putting all of what we have done together establishes:

Theorem 94.26. (Lasker-Noether Theorem) Let R be a commutative Noetherian ring
and A < R an ideal. Then A has an irredundant primary decomposition, say

A = Q1 ∩ · · · ∩Qn with pi =
√

Qi for i = 1, . . . , n.

Moreover,

(1) p1, . . . , pn are unique.
(2) Qi is unique if pi is isolated.

In particular, |Min(R/A)| ≤ |AssRA| is finite.

We derive some consequences.

Corollary 94.27. Let R be a Noetherian ring. Then Min(R) is finite.

Lemma 94.28. Let R be a Noetherian ring and A < R an ideal. Then there exists a
positive integer n satisfying (

√
A)n ⊂ A.

Proof. Since ideals in a Noetherian ring are finitely generated, A = (a1, . . . , an) for

some ai ∈
√
A. It follows that there exists a positive integer N such that aNi ∈ A for all

i, so (
√
A)N ⊂ A. �

Corollary 94.29. Let R be a Noetherian ring. Then nil(R) is nilpotent, i.e., there exists

a positive integer N such that
(

nil(R)
)N

= 0.

Corollary 94.30. Let R be a Noetherian ring, m ∈ Max(R), and Q < R an ideal. Then
the following are equivalent:

(1) Q is m-primary.
(2)
√
Q = m.

(3) There exists a positive integer n such that mn ⊂ Q ⊂ m.

Proof. We have shown all but the implication (3) ⇒ (2) which follows from m =√
mn =

√
Q =

√
m = m. �

Proposition 94.31. Let R be a Noetherian ring and A < R an ideal. Then

AssR V (A) = {(A : x) | x ∈ R} ∩ Spec(R)
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Proof. Replacing R with R/A, we may assume that A = 0. Let A = Q1 ∩ · · · ∩
Qn be an irredundant primary decomposition with pi =

√
Qi for i = 1, . . . , n. As the

decomposition is irredundant, Ai =
⋂
j 6=iQj > 0. By the proof of Theorem 94.11, pi =√

(0 : x) for all nonzero x in Ai, since Ai ∩Qi = 0. Hence

(0 : x) = annR x ⊂ pi for all nonzero x ∈ Ai.

As Qi is pi-primary, there exists a positive integer m satisfying pmi ⊂ Qi by Lemma 94.28.
Consequently, Aip

m
i ⊂ Ai ∩ pmi ⊂ Ai ∩Qi = 0.

Choose m > 0 minimal with Ai ∩ pmi = 0. If x ∈ Aip
m−1
i ⊂ Ai, then xpi = 0, so we

conclude that pi ⊂ annR x = (0 : x) if x is nonzero.

Conversely, if p = (0 : x) is a prime ideal, then
√

(0 : x) =
√

annR x = p, and
p ∈ AssR V (0). �

Exercises 94.32.

1. Prove Lemma 94.1

2. Prove Lemma 94.4

3. Show that the colon ideal (A : B) of the ideals A and B in R is an ideal in R and the
largest ideal C in R satisfying BC ⊂ A.

4. Prove Remark 94.7

5. Prove Lemma 94.17

95. Addendum: Associated Primes of Modules

In the Section §94, we gave the best generalization of the Fundamental Theorem
of Algebra, thereby concluding this part of our investigations into analogues of unique
factorization domains. Some of the constructions and ideas in that section have become
more important than primary decomposition itself. Many are easier to develop than in
that section, so we generalize the approach and get alternative proofs of some of the
results in Section 94. In particular, if A is an ideal in a commutative ring R, then the
set of associated primes of A were denoted AssR V (A). In this section, this will become
AssR(R/A) as we shall define the associated primes of an R-module. Throughout this
section R is a commutative ring.

Definition 95.1. Let R be a commutative ring and M an R-module. A prime ideal p in
R is called an associated prime of M if there exists a nonzero element m in M such that
p = annRm. Let

AssR(M) := {p ∈ SpecR | p is an associated prime of M}.

Remarks 95.2. Let M be an R-module and p a prime ideal in R.

1. The prime ideal p lies in AssR(M) if and only if there exists an R-monomorphism
R/p ↪→M , since R/ annRm ∼= Rm for all m in M .

2. R/p is a domain, so p = annR(r + p) for all r ∈ R \ p, hence

AssR(R/p) = {p}.
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Lemma 95.3. Let R be a commutative ring and

0→M ′ →M →M ′′ → 0

be an exact sequence of R-modules. Then

AssR(M ′) ⊂ AssR(M) ⊂ AssR(M ′) ∪ AssR(M ′′).

Proof. In the exact sequence, we may assume that M ′ ⊂ M , M ′′ = M/M ′, and
: M →M/M ′ is the canonical R-homomorphism.

If p ∈ AssR(M ′), there exists an R-monomorphism R/p ↪→M ′ ⊂M , so p ∈ AssR(M).

Suppose that p ∈ AssR(M). Let N be the image of the R-monomorphism R/p ↪→ M .
If N ∩M ′ = 0, then the restriction of : M → M/M ′ to N gives an R-monomorphism
N ↪→ M/M ′, so p ∈ AssR(M/M ′). If 0 6= N ∩M ′ ⊂ N , since p = annR n for all nonzero
n in N , we have p ∈ AssR(N ∩M ′) ⊂ AssR(M ′). �

We shall see that the second set inclusion in the lemma can be proper. [The first set
inclusion can easily seen to be proper in general.]

The generalization of Proposition 94.31 is easy to prove.

Proposition 95.4. Let R be a commutative ring and M be a nonzero R-module. Suppose
that

A ∈ {annRm | 0 6= m ∈M} is maximal relative to ⊂.
Then A ∈ AssR(M). In particular if R is Noetherian and N is an R-module, then

AssR(N) = ∅ if and only if N = 0.j

Proof. Suppose that there exist a and b in R with b /∈ A but ab ∈ A. By definition
A = annRm for some nonzero element m in M . As bm 6= 0, we have annRm ⊂ annR bm <
R. By maximality, annRm = annR bm, so abm = 0 implies that a ∈ annR bm ⊂ annRm =
A. Therefore, A ∈ Spec(R). Furthermore, if R is Noetherian and N is nonzero, then
{annR n | 0 6= n ∈ N} has a maximal element. �

Definition 95.5. Let R be a ring and M a nonzero R-module. We call r ∈ R a zero
divisor on M if there exists a nonzero element m ∈ M such that rm = 0. We let zd(M)
denote the set of zero divisors on M .

Using the proposition, we get a simple proof to the generalization of the conclusion of
Proposition 94.15.

Corollary 95.6. Let R be a Noetherian ring and M a nonzero R-module. Then zd(M) =⋃
AssR(M) p.

Proposition 95.7. Let R be a Noetherian ring and M a nonzero finitely generated R-
module. Then there exists a chain of R-modules

0 = M0 < M1 < · · · < Mn = M

for some n satisfying

Mi/Mi−1
∼= R/pi for some prime ideals pi, i = 1, . . . , n.
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Proof. Let

S = {N | 0 < N ⊂M R-modules with N satisfying the Proposition}.

Since M 6= 0, there exists a prime ideal p ∈ AssR(M) and an R-monomorphism ϕ :
R/p ↪→ M . Therefore, imϕ lies in S, i.e., S is nonempty. As R is Noetherian and M is
finitely generated, M is a a Noetherian R-module. Hence there there exists a maximal
element N ∈ S (relative to ⊂). Suppose that N < M . Then there exists a prime ideal in
AssR(M/N). Consequently, there exists an R-module N ′ satisfying N < N ′ ⊂M and an
R-isomorphism R/p → N ′/N . As N ∈ S and N ′/N ∼= R/p, we have N ′ ∈ S by Lemma
95.3, contradicting the maximality of N . Therefore, N = M . �

Corollary 95.8. Let R be a Noetherian ring and M a nonzero finitely generated R-
module. Then AssR(M) is a finite set.

Proof. By Proposition 95.7, there exists a chain of R-modules 0 = M0 < M1 < · · · <
Mn = M satisfying Mi/Mi−1

∼= R/pi with pi a prime ideal and AssR(Mi/Mi−1) = {pi}
for i = 1, . . . , n. By Lemma 95.3, we have AssR(Mi) ⊂ AssR(Mi−1) ∪ AssR(Mi/Mi−1), it
follows that

AssR(M) ⊂ AssR(M1) ∪ AssR(M2/M1) ∪ · · · ∪ AssR(Mn/Mn−1)

= {p1, . . . , pn}.(*)

�

Remark 95.9. In (*) in the above proof, it is possible that

AssRM < {p1, . . . , pn}.

For example, let M = R be a Noetherian domain. Then AssR(R) = {0}. Let p be a
nonzero prime ideal in R. Then 0 < p < R is a sequence of R-modules. If p is a principal
prime ideal in R, then p is R-free. In particular, p/(0) = p ∼= R is R-free, giving such an
example, e.g., if R is a UFD (not a field).

Kaplansky believed the following corollary is one of the most useful facts.

Corollary 95.10. Let R be a Noetherian ring, M a nonzero finitely generated R- module,
and S a subrng of R in zd(M). Then there exists an associated prime p of M satisfying
S ⊂ p. In particular, there exists a nonzero element m in M such that Sm = 0.

Proof. We have S ⊂ zd(M) =
⋃

AssR(M) p and |AssR(M)| < ∞, so there exists

a prime ideal p ∈ AssR(M) with S ⊂ p by the Prime Avoidance Lemma 93.16. If
p = annRm, then Sm = 0. �

Definition 95.11. Let M be a nonzero R-module and p an associated prime of M .
We say that p is a minimal prime or isolated prime if p is minimal in AssR(M) and an
embedded prime otherwise.

We shall characterize minimal associated primes of a finitely generated module over
a Noetherian ring below. Embedded associated primes are more mysterious. We identify
one type of embedded associated primes (when they exist) in the following:
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Corollary 95.12. Let R be a Noetherian ring and M a nonzero finitely generated R-
module. Then the following sets are identical:

(1) {p | p ∈ AssR(M) is maximal}.
(2) {p ∈ Spec(R) | p ⊂ zd(M) is maximal}.
(3) {A < R an ideal | A ⊂ zd(M) is maximal}.

Proof. If A ⊂ zd(M) is a ideal, then there exists a prime ideal p ∈ AssR(M) satis-
fying A ⊂ p by Lemma 95.10. The result now follows easily. �

We need three lemmas to characterize minimal elements in AssR(M) when M is a
finitely generated module over a Noetherian ring. We leave a proof of the first lemma as
an exercise.

Lemma 95.13. Let M be a finitely generated R module and S a multiplicative set in R.
Then annS−1R(S−1M) = S−1

(
annR(M)

)
.

Lemma 95.14. Let M be a finitely generated R module over a Noetherian ring R and S
a multiplicative set in R. Then

AssS−1R(S−1M) = {S−1p | p ∈ AssRM with p ∩ S = ∅}.

Proof. (⊃): We know that

Spec
(
S−1(R)

)
= {S−1p | p ∈ SpecR(M), p ∩ S = ∅}

and that annS−1R

(m
1

)
= S−1(annRm) for all m in M by Lemma 95.13, so ⊃ follows.

(⊂): Let P ∈ AssS−1R(S−1M), say P = annS−1R

(m
s

)
for some m ∈ M and s ∈ S. Let

p ∈ Spec(R) satisfy S−1p = P with p ∩ S = ∅.
Claim. p ∈ AssR(M) (hence we are done).

Since R is Noetherian, p is finitely generated, say p =
(
a1, . . . , an). By assumption,

ai
1

m

s
= 0 in S−1M, so there exist si ∈ S with siaimi = 0

for i = 1, . . . , n. Let s̃ = s1 · · · sn, so s̃aim = 0 = ais̃m for i = 1, . . . , n. Therefore,
p = (a1, . . . , an) ⊂ annR(s̃ m). Let ϕ : R → S−1R be the natural ring homomorphism

given by r 7→ r

1
. Since

s

1
and

s̃

1
lie in (S−1R)×, we have annS−1R (

s̃ m

1
) = annS−1R(

m

s
).

Using Lemma 95.13, we see that

ϕ−1
(
S−1(annR s̃m)

)
= ϕ−1

(
annS−1R

s̃m

1

)
= ϕ−1

(
annS−1R

m

s

)
= ϕ−1(P) = p.

Therefore, annR s̃ m ⊂ ϕ−1
(
S−1(annR s̃ m)

)
⊂ p. Consequently, p = annR s̃ m. �

Definition 95.15. Let M be an R-module. Then the support of M is defined to be the
set Supp(M) := {p ∈ SpecR |Mp 6= 0}.

Lemma 95.16. Let R be a commutative ring and M and R-module. Then

(1) M = 0 if and only if Supp(M) = ∅.
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(2) If 0→M ′ →M →M ′′ → 0 is an exact sequence of R-modules, then

SuppR(M) = SuppR(M ′) ∪ SuppR(M ′′).

(3) If M is finitely generated, then Supp(M) = V
(

annR(M)
)
.

Proof. (1) and (2) follow by Exercise 92.31(7).

(3): Let p ∈ V
(

annR(M)
)

and S = R \ p. Suppose that p /∈ Supp(M), then Mp = 0;
so for all m ∈ M there exists an element sm ∈ S satisfying smm = 0. Since M is
finitely generated, there exists an s ∈ S satisfying sM = 0, hence s ∈ annR(M) ⊂ p, a
contradiction. Therefore, V

(
annR(M)

)
⊂ Supp(M)

Suppose that p ∈ Supp(M) and S = R \ p. Then there exists an m ∈ M satisfying
m

s
is nonzero in Mp for some s ∈ S. It follows that s̃ m 6= 0 in M for all s̃ ∈ S. Therefore,
S ∩ annR(m) = ∅, i.e., annR(m) ⊂ p. �

Theorem 95.17. Let R be a commutative ring and M a nonzero R-module. Then
AssR(M) ⊂ Supp(M). If, in addition, R is Noetherian and M is a finitely generated
R-module, then the following sets are identical:

(1) {p | p ∈ AssR(M) is minimal}.
(2) {p | p ∈ SuppR(M) is minimal}.
(3) {p | p ∈ V

(
annR(M)

)
is minimal}.

Proof. Let p ∈ AssR(M), say p = annRm for some nonzero m in M . Then Rm ⊂M
and, as Rm is finitely generated, by Lemma 95.16,

p ∈ V
(

annR(Rm)
)

= Supp(Rm) ⊂ Supp(M).

So AssR(M) ⊂ Supp(M) as needed.

Now assume that R is Noetherian and M is finitely generated. Then by Lemma 95.16,
the set of elements in (2) and (3) are equal. We must show that the set of elements in (1)
and (2) are equal. Since AssR(M) ⊂ Supp(M), it suffices to show:

Claim. If p ∈ Supp(M) is minimal, then p ∈ AssR(M).

By Lemma 95.14, it suffices to show that S−1p ∈ AssS−1RMp. As p ∈ Supp(M) is
minimal, clearly S−1p ∈ SuppS−1R(Mp) is also minimal. Therefore, we may assume that
R is a local ring with maximal ideal of p. Then M = Mp is nonzero and p in Supp(M) is
minimal, we must have Supp(M) = {p}. Since R is Noetherian, we have ∅ 6= AssR(M) ⊂
Supp(M) = {p} by Proposition 95.4, so AssR((M) = {p} as needed. �

Corollary 95.18. Let R be a Noetherian ring, A < R and ideal. Then p ∈ AssR(R/A)
is minimal if and only if p ∈ V (A) is minimal. In particular, Min(R) ⊂ AssR(R) and are
the minimal elements of AssR(R).

Proof. This is immediate as annR(R/A) = A �

Note that this gives another proof that Min(R) is finite if R is Noetherian. (Cf. Corollary
92.27.)

Corollary 95.19. Let R be a Noetherian ring and M a finitely generated R-module. Then
Supp(M) =

⋃
AssR(M) V (p).
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Proof. Minimal elements in Supp(M) and AssR(M) coincide. �

Remark 95.20. The Primary Decomposition Theorem when M = R is a Noetherian ring
and N = A < R an ideal can now be generalized as follows — we leave the verification of
the details to the reader: Let R be a commutative ring, M a finitely generated R-module,
and N < M a submodule. If p ∈ Spec(R), we say N is p-primary if AssR(M/N) = {p}.
If p ∈ Spec(R) and M is an R-module that is the intersection of p-primary submodules
of M , then M is also p-primary. A decomposition of N as an intersection

(*) N = Q1 ∩ · · · ∩Qn

with each Qi ⊂M a pi-primary submodule, i = 1, . . . , n, is called a primary decomposition
of N in M . Such a primary decomposition is called irredundant if no Qi can be omitted
and pi 6= pj for i, j = 1, . . . , n.

The Primary Decompositon Theorem generalize to: If R is a Noetherian ring, M a finitely
generated R-module and N < M a submodule, then N has an irredundant primary de-
composition in M . Moreover, AssR(M/N) = {p1, . . . , pn}, with the pi-primary submodule
Qi unique if pi ∈ AssR(M/N) is minimal, i.e., pi ∈

(
V (annr(M/N)

)
is minimal.

Exercises 95.21.

1. Show if A is an ideal in R, then AssR
(
V (A)

)
= AssR(R/A).

2. Prove Lemma 95.13.

3. Prove the assertions in Remark 95.20.

4. Let R be a Noetherian domain and M be a finitely generated free R-module. Show
that AssR(M) = {0} but if M is R-torsion-free but not R-free, then the set of primes
ideals appearing in the filtration of M Proposition 95.9 for M is AssR(M).

96. Akizuki and Krull-Akizuki Theorems

As is true in this chapter, all rings are commutative, although straight-forward modi-
fications of the beginning of this chapter can be shown to be true if R is arbitrary.

Recall that a commutative ring is called Artinian ring if it satisfies the descending
chain condition. Similarly, a left R-module is called Artinian if submodules of it satisfies
the descending chain condition. We wish first with to prove a theorem of Akizuki that
characterizes Artinian commutative rings as those that are Noetherian of dimension zero.
We have previously noted that the analogue of the Jordan-Hölder Theorem for vector
spaces holds and used it to show that dimension was a well defined invariant for finite
dimensional vector spaces. We expand on these observations.

Definition 96.1. Let R be a commutative ring. An R-module M is said to have a
composition series if the exists a finite filtration of submodules of M

(*) M = M0 > M1 > · · · > Mn = 0

with each quotient Mi/Mi+1 irreducible (or simple), i.e., has no proper submodules. We
say that a module having a composition series has finite length . The composition series
in (*) is called a series of length n, i.e., the number of links in (*).

Just as in the group theoretical case, we have:
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Theorem 96.2. (Jordan-Hölder Theorem) Suppose that an R-module M has a compo-
sition of length n. Then every composition series of M is of length n. Moreover, if M
has a composition series, any proper chain (i.e, all links proper) of M can be refined to a
composition series with unique quotients up to order an isomorphism.

We omit the proof which is similar, but easier than the group theoretic case.
If M is an R-module having a composition series, the common length of a composition

series for M is called the length of R and denoted by l(M). We set the length of the
zero module as zero. If a module M has no composition series, for convenience, we let
l(M) =∞ (with ∞+ n =∞ for any integer n). An immediate consequence is:

Corollary 96.3. Let M be an R-module having a composition series and N a submodule
of M , Then l(N) ≤ l(M) with equality if and only if N = M .

More generally,

Corollary 96.4. Let
0→M ′ →M →M ′′ → 0

be an exact sequence of R-modules. Then l is additive, i.e.,

l(M) = l(M ′) + l(M ′′),

whose proof we leave as an exercise. For a module to have finite length is a very strong
condition. Indeed:

Lemma 96.5. Let M be an R-module. Then M has finite length if and only if it is both
Noetherian and Artinian.

Proof. If M has finite length, all proper chains of submodules of M have length
bounded by the length of M by the Jordan-Hölder Theorem. Conversely, suppose that M
is both Noetherian and Artinian. Since it is Noetherian, there exists a maximal proper
submodule M1 < M , i.e., M/M1 is irreducible by the Correspondence Principle. Since
M is Noetherian so is M1. Continuing gives a descending chain of modules M = M0 >
M1 > M2 > · · · with Mi/Mi+1 irreducible. This must stop, since M is also Artinian. �

An easy consequence of this (that is left as an exercise) is:

Proposition 96.6. Let V be a vector space over a field K. Then the following are
equivalent:

(1) V is finite dimensional.
(2) V has finite length.
(3) V is Noetherian.
(4) V is Artinian.

Moreover, the dimension of V is just its length.

Corollary 96.7. Suppose m1, ...,mn are maximal ideals in R (not necessarily distinct)
and further that m1 · · ·mn = 0. Then R is Noetherian if and only if R is Artinian.

Proof. Each m1 · · ·mi/m1 · · ·mi+1 is an (R/mi+1)-vector space so is Artinian if and
only if it is Noetherian. We know that m1 · · ·mi is Noetherian (resp., Artinian) if and



96. AKIZUKI AND KRULL-AKIZUKI THEOREMS 559

only if both of the ideals m1 · · ·mi+1 and m1 · · ·mi/m1 · · ·mi+1 are. [Cf. Proposition 40.5
and Exercise 40.12(4).] The result now follows, since

R ⊃ m1 ⊃ m1m2 ⊃ · · · ⊃ m1 · · ·mn = 0. �

Proposition 96.8. Let R be a nonzero commutative Artinian ring. Then R is semi-local
of dimension zero. In particular, rad(R) = nil(R).

Proof. Let p be a prime ideal of R. Then R/p is an Artinian domain. Thus to show
that dimR is zero, i.e., Spec(R) = Max(R), we need only show that any Artinian domain
is a field. But if R is an Artinian domain and x nonzero in R, then the descending chain

Rx ⊃ Rx2 ⊃ Rx3 ⊃ · · ·
must stabilize. Hence Rxn = Rxn+1 for some n. In particular, yxn+1 = xn for some y in
the domain R. Thus yx = 1 and R is a field.

Now suppose that R is an arbitrary Artinian ring. By the Minimal Principle, there
exists a minimal element in the set of finite intersections of maximal ideals,

{m1 ∩ · · · ∩mn | m1, . . . ,mm ∈ Max(R), some m}.
Let m1∩ · · · ∩mn be such a minimal element. If m is a maximal ideal, then by minimality

m1 ∩ · · · ∩mn = m ∩m1 ∩ · · · ∩mn ⊂ m.

It follows that m = mi, for some i, hence Max(R) = {m1, . . . ,mn}. �

Theorem 96.9. (Akizuki) Let R be a nonzero commutative ring. Then the following are
equivalent.

(1) R is Artinian.
(2) R is Noetherian of dimension zero.
(3) Every finitely generated R-module has finite length.

Proof. Every module over an Artinian (resp., Noetherian) ring R is Artinian (resp.,
Noetherian), since it is a quotient of Rn for some n. Thus by the above, we know that
R satisfies both (1) and (2) if and only if R satisfies (3). So we need only show that R
satisfies (1) if and only if R satisfies (2).

Suppose that (1) holds, i.e., that R is Artinian. Then R is semi-local of dimension zero.
Let Max(R) = {m1, ...,mn}. By the corollary above, it suffices to show that 0 =

∏n
1=1 m

k
i

for some k. But
∏n

i=1 mi ⊂
⋂n

1=1 mi = rad(R) = nil(R) by the proposition. So it suffices
to prove the following:

Claim 96.10. If R is Artinian, then nil(R) is nilpotent:

By the descending chain condition,
(

nil(R)
)k

=
(

nil(R)
)k+i

for some k and all i. Let

A :=
(

nil(R)
)k

. We must show that A = 0. Suppose not. Let

S = {B < R |B an ideal of R with AB 6= 0}.
Since A ∈ S and R is Artinian, there exists an ideal B that is minimal in S. In particular,
there exists an x in B such that xA 6= 0. By minimality, B = Rx. Since (xA)A = xA2 =
xA 6= 0, we also have xA = B by minimality. Choose y ∈ A such that x = xy. Then
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x = xyN for all positive integers N . But y ∈ A ⊂ nil(R), so yN = 0 for some N and hence
x = 0 also. This is a contradiction. Thus A = 0 and the Claim is established.

Now suppose that R is Noetherian of dimension zero. By the corollary above, it suffices
to show that there exist maximal ideals m1, ...,mn in R, not necessarily distinct, so that
0 = m1 · · ·mn. Since R is Noetherian the zero ideal contains a finite product of prime
ideals. (Cf. Exercise 30.22(20).) Since dimR = 0, these prime ideals are maximal. The
result follows. �

Corollary 96.11. Let R be a domain. Then the following are equivalent:

(1) R is Noetherian of dimension at most one.
(2) If 0 < A < R is a ideal then R/A has finite length.
(3) If 0 < A < R is a ideal then R/A is Artinian.

Proof. If (1) holds and 0 < A < R is a ideal then R/A is Noetherian of dimension
zero so (2) holds. Clearly, (2) implies (3), so we need only show that (3) implies (1).

If (3) holds then R/A is a Noetherian ring of dimension zero for any ideal 0 < A < R.
In particular, if x ∈ A is nonzero, then A/Rx is a finitely generated ideal in R/Rx. It
follows that A is finitely generated as an ideal in R, i.e., R is Noetherian. If 0 < p1 ⊂ p2

is a chain of primes in R then p2/p1 = 0 in the Artinian domain, hence field, R/p1. Thus
R has dimension at most one. �

Lemma 96.12. Let M be a nontrivial R-module and p a prime ideal in R containing
annR(M) and a minimal such prime ideal, i.e., no prime ideal containing annR(M) prop-
erly lies in p. Then p consists of zero divisors of M . In particular,⋃

Min(R)

p ⊂ zd(R).

[There is no Noetherian condition or finite generation condition.]

Proof. Let S be the multiplicative set in R defined by

S := {ab | a ∈ R \ p and b ∈ R \ zd(M)}.

Claim 96.13. S ∩ annR(M) = ∅.

Suppose not. Then there exists an a in R \ p and b in R \ zd(M) satisfying abM = 0.
Since b is not a zero divisor on M , we have aM = 0, and hence a ∈ annR(M) ⊂ p, a
contradiction. This establishes the Claim.

Thus there exists a prime P containing annR(M) such that P excludes S and is maximal
with respect to this property. Since 1 lies in R but not in p or zd(M) and S =

(
R \

zd(M)
)
· (R \ p), we have

S ⊃
(
R \ zd(M)

)
and S ⊃ (R \ p).

Therefore,
P ⊂ zd(M) ∩ p ⊂ p.

The minimality condition on p implies that p = P, so p ⊂ zd(M) as desired. For the

last statement, let M = R. Then every prime contains 0 = annR(R). It follows from the
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first part that if p is a minimal prime ideal in R, then p consists of zero divisors of R as
annR(R) = 0. �

We need the lemma in the following special case.

Corollary 96.14. If dimR = 0 then R× = R \ zd(R).

Proof. We have

(*) zd(R) ⊃
⋃

Min(R)

p =
⋃

Spec(R)

p =
⋃

Max(R)

m.

Since R× = R \
⋃

Max(R) m, in the above (*) is an equality. �

Lemma 96.15. Let R be a Noetherian domain of dimension one. Let a and c be non-zero
elements of R. Let

A =
∞⋃
n=0

(Rc : Ran) := {x ∈ R | xan ∈ Rc for some integer n}.

Then
A +Ra = R.

Proof. Let Ak = (Rc : Rak) := {x ∈ R |xak ∈ Rc}. Since Ak ⊂ Ak+1, for all k,
we know that A is an ideal. Since R is Noetherian, there exists an integer n such that
An = An+i = A for all positive integers i. As c lies in Ak for all k, we have c ∈ A. In
particular, A is not trivial.

Let : R → R/A be the canonical epimorphism. Since A > 0 and R is a domain, it is
clear that dimR/A = 0. [We do not need Akizuki’s Theorem.] By the corollary above, it
suffices to establish the following:

Claim 96.16. a is not a zero divisor in R/A:

If this were false, then there would exist a y in R \A satisfying ay = 0, i.e., ay ∈ A = An.
We would then have (ay)an ∈ Rc and that would imply that y ∈ An+1 = An = A, a
contradiction. This establishes the Claim. �

Theorem 96.17. (Krull-Akizuki Theorem) Let A be a Noetherian domain of dimension
one. Let F be the quotient field of A and let K/F be a finite field extension. Let B be a
ring such that A ⊂ B ⊂ K. Then B is a Noetherian domain of dimension at most one
and if B is a nontrivial ideal of B, then B/B is a finitely generated

(
A/(B∩A)

)
-module

of finite length.

Proof. We first make two reductions.

Reduction 1. We may assume that F = K:

Certainly, we may assume that K is the quotient field of B and, in fact, K = F (x1, . . . , xn)
for some xi ∈ B. Choose 0 6= c ∈ A such that each cxi is integral over A. Let C =
A[cx1, ..., cxn]. Then C is integral over A and a finitely generated A-module. Thus C is a
Noetherian domain of dimension one with quotient field K and contained in B. If C is an
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ideal in C then C/C is integral over A/(C∩A) and a finitely generated
(
A/(C∩A)

)
-module.

So C/C and A/(C ∩A) are Noetherian rings of the same dimension. In particular, one is
Artinian if and only if the other is. Consequently, if B is a nontrivial ideal in B then by
clearing denominators and multiplying by an appropriate power of c, we see that B∩C is a
nontrivial ideal in C. In particular, B/B is a finitely generated

(
A/(B∩A)

)
-module if it is

a finitely generated
(
C/(B∩C)

)
-module and has finite length as an

(
A/(B∩A)

)
-module

if it has finite length as a
(
C/(B ∩ C)

)
-module. This completes the reduction.

Reduction 2. It suffices to show that the (A/Aa)-module B/Ba is finitely generated for
any 0 6= a ∈ A:

To show that B is Noetherian of dimension at most one, it suffices, by Corollary 96.11
to Akizuki’s Theorem, to show that B/B is Artinian for any nonzero ideal B of B. Let
0 < B be an ideal of B. We must also show that B/B has finite length over A/(B ∩A).

Claim. 0 < B ∩ A:

Let B′ be any nontrivial finitely generated A-submodule of B. Then there exists 0 6= c ∈ A
such that cB′ lies in the domain A by the first reduction. This establishes the Claim.

Let 0 6= a lie in B∩A. Then A/Aa is Artinian by Corollary 96.11 to Akizuki’s Theorem.
By assumption, B/Ba is a finitely generated (A/Aa)-module. Since B/B is a cyclic
(B/Ba)-module, it is also finitely generated as an (A/Aa)-module, hence has finite length
over the Artinian ring A/Aa so also over the Artinian ring A/(B ∩A). This also implies
that B/B is Artinian.

So to finish we are in the following situation. We have 0 6= a ∈ A is fixed, and we must
show that B/Ba is finitely generated as an (A/Aa)-module. We do this in a number of
steps. Note, as before, that A/Aa is an Artinian ring.

Step 1. Let x ∈ B (⊂ F ). Then there exists a positive integer n such that x ∈ Aa−n+Ba:

Write x =
b

c
with b, c ∈ A and c 6= 0. Set

B =
∞⋃
n=0

(Ac : Aan) := {y ∈ A | yan ∈ Ac, some n}.

By Lemma 96.15, we have B + Aa = A so 1 = y + za, some y ∈ B and z ∈ A.
Consequently, x = yx + zax. Since y ∈ B, by definition, there exists an integer n such
that yan ∈ Ac, so

x = yx+ zax =
yan

an
b

c
+ zax lies in Aa−n +Ba

as needed.

Step 2. Let An := (Ban ∩A) +Aa, an ideal of A. Then there exists a positive integer m
such that Am = Am+i for all positive integers i:

Each An contains a so is nontrivial. Moreover, it is clear that the An form a descending
chain of ideals. Since A/Aa is Artinian, the descending chain of ideals

· · · ⊃ An/Aa ⊃ An+1/Aa ⊃ · · ·
stabilizes, hence so does the corresponding chain of An’s.
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Step 3. Let m be the integer in Step 2. Then B ⊂ Aa−m +Ba:

Let x ∈ B be fixed. Then by Step 1, there exists a minimal positive integer n so that
x ∈ Aa−n +Ba. If we show that m ≥ n then am ∈ Aan and Aa−n ⊂ Aa−m as needed. So
we may assume that n > m. Write x = ra−n + ba, with r ∈ A and b ∈ B. Then

r = an(x− ba) ∈ Ban ∩ A ⊂ (Ban ∩ A) + Aa = An

and An = An+1 = Am. Hence r = b1a
n+1 + r1a, for some r1 ∈ A and b1 ∈ B so

x = ra−n + ba = (b1a
n+1 + r1a)a−n + ba lies in Aa−n+1 + Ba. This contradicts the

minimality of n, so completes the step.

Step 4. B/Ba is a finitely generated (A/Aa)-module (and hence we are done):

By Step 3, we know that B/Ba ⊂ (Aa−m + Ba)/Ba. Moreover, we know that the A-
module (Aa−m +Ba)/Ba ∼= Aa−m/(Aa−m∩Ba) is cyclic, hence Noetherian. Thus B/Ba
is a finitely generated A-module as needed. �

Corollary 96.18. Let A be a Dedekind domain with quotient field F . If K/F is a finite
field extension then AK is also a Dedekind domain.

Remarks 96.19. 1. If K = F in the theorem then clearly F is the only field between A
and F , i.e., the only such B with dimB = 0 is F .

2. If B is zero and B = F then F is not a finitely generated A-module when A < F .

Exercises 96.20.

1. Prove Corollary 96.4

2. Prove Proposition 96.6

3. Let R be a commutative Artinian ring and M a finitely generated free R-module. Let
N be a submodule of M that is also R-free. Show that rankN ≤ rankM .

4. Let R be a commutative ring and M a finitely generated free R-module. Let N be a
submodule of M that is also R-free. Show that rankN ≤ rankM .

5. Why does it suffice to prove Claim 96.16.

6. Let A be a domain with quotient field F . Suppose that every ring B with A ⊂ B ⊂ F
is Noetherian. Show that dimA = 1.

97. Affine Algebras

Throughout this section F will denote a field and R a commutative ring.

Recall a finitely generated commutative F -algebra, with F a field, is called an affine
F -algebra . By the Hilbert Basis Theorem, such an algebra is a Noetherian ring. We
wish to investigate the dimension theory attached to such algebras. We know that an
integral extension of rings preserves dimension. As an affine F algebra A is isomorphic to
a quotient of a polynomial ring F [t1, . . . , tn] for some n, it seems reasonable to assume that
if A is also a domain, then the transcendence degree of qf(A)/F should play a crucial role
in such an investigation. A fundamental theorem (whose proof we give is due to Nagata)
about affine F -algebras bringing together these two observations is the following:



564 XVII. INTRODUCTION TO COMMUTATIVE ALGEBRA

Theorem 97.1. (Noether Normalization Theorem) Let F be a field and A = F [x1, . . . , xn]
an affine F -algebra that is also a domain. Let r = tr degF qfA. Then there exist y1, . . . , yr
in A algebraically independent over F satisfying A/F [y1, . . . , yr] is integral. In particular,
A is a finitely generated F [y1, . . . , yr]-module. Let ϕ : F [t1, . . . , tr]→ A be the evaluation
map given by ti 7→ yi. Then

(1) ϕ is an F -algebra monomorphism.
(2) aϕ : Spec(A)→ Spec(F [t1, . . . , tr]) is surjective and has finite fibers.
(3) dimA = dimF [y1, . . . , yr] = dimF [t1, . . . , tr].

Proof. Let A = F [t1, . . . , tn]. If qf(A)/F is a finite field extension, then it is integral.
Consequently, we may assume that qf(A)/F is not algebraic. Relabeling, we may also
assume that x1 is transcendental over F . In addition, we may assume that x1, . . . , xn are
algebraically dependent over F .

Let (j) := (j1, . . . , jn) with ji non-negative integers for i = 1, . . . , n. As the xi are
algebraically dependent, we have an equation

(*)
∑
(j)

a(j)x
j1
1 · · ·xjnn = 0

for some a(j) = aj1,...,jn ∈ F not all zero. Let m2, . . . ,mn be positive integers (to be chosen)
and set

yi = xi − xmi1 for i = 2, . . . n

and m1 = 1. Define
(j) · (m) := j1 + j2m2 + · · ·+ jnmn.

Plugging xi = yi + xmi1 , i = 2, . . . , n, into (*) yields an equation

(**)
∑

a(j)x
(j)·(m)
1 + f(x1, y2, . . . , yn) = 0

with f ∈ F [x1, y2, . . . yn] and having no monomial solely in x1. In addition, if there is

no cancellation in the term
∑
a(j)x

(j)·(m)
1 , then then degree in x1 of the equation in (**)

satisfies.

(†) degx1 f < degx1
(∑

a(j)x
(j)·(m)
1

)
.

Choose d > max{ji | a(j) 6= 0}. and set

(m) = (1, d, . . . , dn−1), i.e., mi = di−1 for i = 0, . . . , n− 1.

As the (j)’s are distinct n-tuples, the (j) · (m)’s are all distinct, since they are the d-
adic expansions of the (j) · (m) and x1 is transcendental over F . Thus (†) holds, so
(**) produces an integral equation for x1 over F [y2, . . . , yr], as the leading coefficient
of (**) in x1 say a(j) is a unit in F . Since xi − (xmi1 + yi) = 0 for i = 2, . . . , n by
definition, xi is integral over F [x1, y2, . . . , yn] for i > 1, hence over F [y2, . . . , yn]. Conse-
quently, F [x1, x2, . . . , xn]/F [y2, . . . , yn] is integral and F [x1, x2, . . . , xn] is a finitely gener-
ated F [y2, . . . , yn]-module.

If y2, . . . , yn are algebraically independent over F , we are done. If not we can repeat the
process to finish this part of the theorem (as being integral and being a finitely generated
module persists in towers).
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The other statements in the theorem follow from the above and our previous work, e.g., us-
ing Lying Over, as qf

(
A/F (y1, . . . , yr)

)
is a finite algebraic extension and F [y1, . . . , yr] ∼=

F [t1, . . . , tr] is a normal domain. �

Remark 97.2. Using the Hilbert Nullstellensatz (cf. the discussion following Lemma
41.14 or another proof of it in 97.10 below), a geometric picture for the Noether Nor-
malization Theorem for a curve when F = C is given by the following picture, where
f(x, y) = 0 is the curve in C2 given by f = y2 − x2(x + 1) in C[x, y] with x, y variables
the nodal cubic and A is the affine C-algebra C[x, y]/(f):

Max(A) A = C[x, y]/(f)

C[t]Spec(C[t]) \ {(0)}

Corollary 97.3. Let F be a field. Then

dimF [t1, . . . , tn] = n = tr degFF (t1, . . . , tn).

Proof. Since (0) < (t1) < · · · < (t1, . . . , tn) is a chain of prime ideals in F [t1, . . . , tn],
we have dimF [t1, . . . , tn] ≥ n. Suppose that (0) < p1 < · · · < pm is a chain of prime ideals
in F [t1, . . . , tn] and A = F [t1, . . . , tn]/p1, an affine F -domain, with : F [t1, . . . , tn] → A
the canonical epimorphism, so A = F [t1, . . . , tn]. By Noether Normalization, there exist
y1, . . . , yr in A, algebraically independent over F satisfying A/F [y1, . . . , yr] is integral.
Since 0 < p1, we must have t1, . . . , tn are algebraically dependent over F , i.e., r < n. By
induction, we have

dimA = dimF [y1, . . . , yr] = dimF [t1, . . . , tr]

= r = dimF [t1, . . . , tn]/p1 ≥ m− 1,

since p1 < · · · < pm is a chain of prime ideals in A. Consequently, n ≥ m, and the result
follows. �

Notation 97.4. Let A be an affine F -algebra that is also a domain and K = qf(A).
Then there exists a transcendence basis of K over F in A by clearing denominators (or
using Noether Normalization). We shall set

tr degFA := tr degFK.

Corollary 97.5. Let A be an affine F -algebra that is also a domain. Then dimA =
tr degFA.
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Proof. Let r′ = tr degFA. By Noether Normalization there exist y1, . . . , yr in A alge-
braically independent over F withA/F [y1, . . . , yr] integral. Therefore, qf(A)/F (y1, . . . , yr)
is finite algebraic, so r = r′, and we have

dimA = dimF [y1, . . . , yr] = tr degFF [y1, . . . yr] = r = tr degFA.

�

Corollary 97.6. Let A be an affine F -algebra and p a prime ideal in A. Then dimV (p) =
tr degFA/p.

Proof. dimV (p) = dimA/p. �

As a consequence of Noether Normalization, we also obtain another proof of Zariski’s
Lemma.

Corollary 97.7. (Zariski’s Lemma) Let A be an affine F -algebra. If A is a field, then
A/F is a finite field extension.

Proof. We have 0 = dimA = tr degFA, so the finitely generated field extension A/F
is algebraic, hence finite. �

Corollary 97.8. Let ϕ : A → B be an F -algebra homomorphism of affine F -algebras.
Then the restriction of aϕ to Max(B) satisfies

aϕ|Max(B) : Max(B)→ Max(A).

Proof. Let m be a maximal ideal in B. Then p = aϕ(m) is a prime ideal in A and
ϕ induces a ring monomorphism A/p → B/m. As the quotient of a affine F -algebra is
an affine F -algebra, B/m is a finite field extension of F by by Zariski’s Lemma. Thus
F ⊂ A/p ⊂ B/m which implies that A/p is a field. Therefore, p a maximal ideal in A. �

Recall from §36, if A = F [t1, . . . , tn] and A ⊂ A is an ideal, the affine variety of A in
F n is defined by

ZF (A) = {a = (a1, . . . , an) ∈ F n | f(a) = 0 for all f ∈ A},
the collection of all such forms a system of closed sets for the geometric Zariski topology
of F n. We have seen in Section 41, how Zariski’s Lemma implies the (Weak) Hilbert
Nullstellensatz:

Theorem 97.9. (Hilbert Nullstellensatz) (Weak Form) Suppose that F is an algebraically
closed field, A = F [t1, . . . , tn], and A = (f1, . . . , fr) is an ideal in A. Then ZF (A) is the
empty set if and only if A is the unit ideal. In particular, if A < R, then there exists a
point a ∈ F n satisfying f1(a) = 0, . . . , fr(a) = 0.

and using the Rabinowitch Trick, how this implies the (Strong) Hilbert Nullstellensatz):

Theorem 97.10. (Hilbert Nullstellensatz) (Strong Form) Suppose that F is an alge-
braically closed field and A = F [t1, . . . , tn]. Let f, f1, ..., fr be elements in A and A =
(f1, ..., fr) ⊂ R. Suppose that f(a) = 0 for all a ∈ ZF (A). Then there exists an integer m

such that fm ∈ A, i.e., f ∈
√
A. In particular, if A is a prime ideal, then f ∈ A.

We give another proof of Strong Form of the Hilbert Nullstellensatz. We begin this
proof by reducing it to another form of the theorem.
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Proof. Let A = F [t1, . . . , , tn] and Max(A) ⊂ Spec(A) have the induced topology.
The Weak Form of the Hilbert Nullstellensatz implies that the map

F n → Max(A) given by a = (a1, . . . , an) 7→ ma := (t1 − a1, . . . , tn − an)

is a homeomorphism. Let A < A be an ideal. Recall that I(V ) :=
⋂
V p if V ⊂ Spec(A),

so
√
A = I

(
V (A)

)
=
⋂
V (A) p. Therefore, it suffices to prove that

√
A =

⋂
V (A)

p =
⋂

V (A)∩Max(A)

m

in the above.
In fact, this is independent of the fact that F be algebraically closed and is an algebraic

version of the Strong Form of the Hilbert Nullstellensatz that we shall now state and prove.

Theorem 97.11. (Hilbert Nullstellensatz) (Algebraic Form) Let A be an affine F -algebra
and A < A an ideal. Then √

A =
⋂

V (A)∩Max(A)

m,

i.e., the closed points in Spec(A) determines the variety V (A).

Proof. Let B =
⋂
V (A)∩Max(A) m. Therefore,

√
A ⊂ B. Suppose that

√
A < B. Let

b ∈ B \
√
A and S = {bn | n ≥ 0}. Then S

⋂√
A = ∅. Let ϕ : A → S−1A be the

canonical homomorphism given by a 7→ a
1
. Since S−1A = A[b−1], it is also an affine F -

algebra, hence ϕ is an F -algebra homomorphism of affine F -algebras, so aϕ takes maximal
ideals to maximal ideals. By choice, S−1A < S−1A, so there exists a maximal ideal n in
V (S−1A) ∩Max(S−1A). Since ϕ(b) is a unit in S−1A, we know that ϕ(b) /∈ n. We also
have A = ϕ−1(S−1A) ⊂ ϕ−1(n) = aϕ(n), so aϕ(n) lies in V (A) ∩Max(A). Therefore, we
have

b ∈ B =
⋂

V (A)∩Max(A)

m ⊂ aϕ(n),

hence ϕ(b) ∈ n, a contradiction. �

A ring satisfying the conclusion of this form of the Nullstellensatz is called a Jacobson
(or Hilbert) ring.

Corollary 97.12. Let A be an affine F -algebra. Then Max(A) is a dense subset of
Spec(A).

Proof. Let A < A be an ideal and U = Spec(A) \ V (A). If Max(A) ⊂ V (A), then
we have

nil(A) =
⋂

Spec(A)

p =
⋂

Max(A)

m =
⋂

Max(A)∩V (A)

m =
√
A

by the Algebraic Form of the Hilbert Nullstellensatz, so Spec(A) = V (
√
A) = V (A) and

U is empty. The result follows. �
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Let A be an affine F -algebra. Then A ∼= F [t1, . . . , tN ]/A for some N and ideal A <
F [t1, . . . , tN ]. As V (A) ∼= Spec(F [t1, . . . , tN ]/A) ∼= Spec(A) and A is a a Noetherian ring
by the Hilbert Basis Theorem, Spec(A) is a Noetherian space. Therefore, it decomposes
into finitely many indecomposable components, i.e., the irreducible varieties V (p) with
p in the finite set Min(A). Of course, each prime ideal (respectively, minimal prime
ideal, maximal prime ideal) p in Spec(A) is isomorphic to P/A for some prime ideal
P (and respectively, minimal, maximal) in V (A). If p ∈ Min(A), then dimV (p) =
tr degFA/p. Different minimal primes can result in different dimensions. Of course, one
is interested in determining when all irreducible components have the same dimension,
a subject that we shall not pursue. Suppose that P is a prime ideal in A. We define
codimSpec(A) V (P) := dimA−dimV (P), the codimension of V (P) in Spec(A) and if p ⊂ P
is another prime ideal, hence V (P) ⊂ V (p), we define codimV (p) V (P) := dimV (p) −
dimV (P), the codimension of V (P) in V (p). We wish to show in all cases that

(97.13) ht p = codimV (p) V (P) = tr degFA/p− tr degFA/P.

In particular,

dimA/P + htP = dimA = dimV (P) + htP.

Of course, if height is to be codimension, we would also want if p ⊂ P are prime ideals in
A that

htP = ht p + htP/p.

Intuitively, still more should be expected. If B = (f1, . . . , fn) is an ideal in A, geometri-
cally, we would want to view the fi as hypersurfaces in V (B), e.g., if A = F [t1, . . . , tN ],
then the fi are polynomials in F [t1, . . . , tN ], and we can view this as the hypersurface
fi = 0 in FN . Taking our cue from linear algebra, we would then expect if V (p) is an
irreducible component of V (B) that

(97.14) dimV (p) ≥ dimA− n,

i.e., codimSpec(A) V (p) ≤ n or if height is the same as codimension that

ht p ≤ n.

We shall, in fact, show all of this to be true for an affine F -algebra. Note that if F
is algebraically closed, the above still will hold with Z(A) replacing V (A), etc. It will
therefore follow that the algebraic notions of Krull dimension and height translate into
the correct geometric notions.

Most of the above will follow by our next theorem. We first make the following
definition:

Definition 97.15. A chain of prime ideals

p0 < p1 < · · · < pm = p

in a commutative ring is called saturated if no further new primes can be added to this
chain.

We establish equation (97.13).
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Theorem 97.16. Let F be a field and A be an affine F -algebra that is a domain, p a
prime ideal in A, and

0 < p1 < · · · < pm = p

a saturated chain of prime ideals in A. Then

(1) ht p = m.
(2) dimA = dimA/p + ht p.

Moreover, ht p = codimSpec(A) V (p) and all maximal saturated chains of prime ideals in
p (hence starting from 0 and ending at p) have the same number of links. In particular,
dimA = htm for all maximal ideals in A.

Proof. Clearly, we need only prove (1) and (2). Let n = dimA, finite by Noether

Normalization, and A = F [x1, . . . , xr].

Case 1. If m = 1, then (1) and (2) hold.

As 0 < p is a saturate chain of prime ideals, ht p = 1, so (1) holds.

Subcase 1. n = r.

Since dimA = tr degFA, the elements x1, . . . , xn are algebraically independent over F .
Therefore, A ∼= F [t1, . . . , tn] is a UFD. In particular, p must contain a prime element f ,
so we must have ht p = 1 and p = (f). Since f is nonzero, there exists an i such that
xi occurs nontrivially in f , say i = n. Let : A → A/p be the canonical epimorphism,

so f(x1, . . . , xn) = f(x1, . . . , xn) = 0 in the domain A = F [x1, . . . , xn], i.e., x1, . . . , xn are
algebraically dependent over F . Therefore, tr degFA = tr degF [x1, . . . , xn] < n. If g ∈ A
satisfies g = g(x1, . . . , xn) = 0, then g ∈ ker = (f), so f | g in A. In particular, g = 0 or
xn occurs nontrivially in g. In particular, if h ∈ F [x1, . . . , xn−1] ∼= F [t1, . . . , tn−1] satisfies
h(x1, . . . , xn−1) = 0, then h = 0. It follows that x1, . . . , xn−1 are algebraically independent
over F , so dimA = tr degFA = n− 1 and dimA = dimA+ 1 = dimA+ ht p.

Subcase 2. n 6= r.

By Noether Normalization there exist y1, . . . , yn in A algebraically independent over F
satisfying A/F [y1, . . . , yn] is integral. Let R = F [y1, . . . , yn] and p′ = p∩R, a prime ideal
in R. We have

dimA = dimR and ht p = ht p′,

the second equality by Going Down as R is a normal domain. We also have the monomor-
phism R/p′ → A/p is integral, hence dimR/p′ = dimA/p. By Subcase 1 applied to R,
we have

dimA = dimR = dimR/p′ + ht p′ = dimA/p + ht p = dim(A/p) + 1,

which is (2).

Case 2. Suppose that p is a maximal ideal in A. Then ht p = m = dimA.

We have a saturated chain
0 < p1 < · · · < pm = p.

We show that m = ht p = dimA by induction on dimA. If dimA = 1, the result is
immediate, so we may assume that dimA > 1. By Noether Normalization, there exist
y1, . . . , yn in A algebraically independent over F satisfying A/F [y1, . . . , yn] is integral.
Let R = F [y1, . . . , yn], a normal domain, so by Going Down, we have ht p = ht(p ∩ R).
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Moreover, the inclusion R ↪→ A is an integral map, so p ∩ R is a maximal ideal in R.
Since dimA = dimR and

0 < p1 ∩R < · · · < pm ∩R = p ∩R
by Comparability, it suffices to show that m = n in the case that A = R. So assume that
A = R. We know, by the definition of dimA, that

m ≤ dimA = tr degFA = n.

By the argument in Case 1, Subcase 1, we have

n− 1 = dimA/p1 = tr degFA− 1.

Let : A→ A/p1, the canonical epimorphism. Then we have

0 = p1 < · · · < pm = p

with p a maximal ideal in A by the Correspondence Principle. By induction on n, we
have m− 1 = n− 1, so m = n. This establishes Case 2.

Case 3. For any prime ideal p in A, (1) and (2) hold.

Let m ∈ V (p) ∩ Max(A). By Case 2, every saturated chain of prime ideals in m has
n = htm = dimA links. Extend the saturated chain

0 < p1 < · · · < pm = p

in A to a saturated chain of prime ideals

0 < p1 < · · · < pm < · · · < pn = m

in A using the fact that A is Noetherian. Since m/pm is a maximal ideal in A/pm, by
Case 2, we have

htm/pm = dimA/pm = n−m.
Clearly,

dimA ≥ dimA/pm + ht pm and ht pm ≥ m,

so

dimA ≥ dimA/pm + ht pm

= (n−m) + ht pm ≥ (n−m) +m = n = dimA,

hence
dimA = dimA/p + ht p and ht p = m

as needed. �

A Noetherian ring R is called catenary if all prime ideals p < P in R and saturated
chains of prime ideals beginning at p and ending at P have the same finite number of
links and is called universally catenary if every finitely generated commutative R-algebra
is catenary. It is easy to show the following:

Lemma 97.17. If R is a catenary ring and A < R an ideal, then R/A is a catenary ring.

As every affine F -algebra that is also a domain, e.g., F [t1, . . . , tn], is catenary by the
theorem, by the lemma, we conclude that:

Corollary 97.18. Every field is universally catenary.
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We turn to the last fact that we wish to prove, viz., if A = (f1, . . . , fn) is an ideal in
an affine F -algebra, then ht p ≤ n. We prove this in greater generality. This result, due
to Krull, is one of the foundational theorems in commutative algebra.
Recall if A < R is an ideal, the height of A is

htA := inf{ht p | p ∈ V (A)} = inf{ht p | p ∈ V (A) minimal}.

Theorem 97.19. (Principal Ideal Theorem) Let R be a commutative Noetherian ring,
A < R an ideal and p ∈ V (A) minimal. If A = (x1, . . . , xn), then ht p ≤ n. In particular,
htA ≤ n.

Proof. The crucial result is the case that n = 1, hence the theorem’s name.

Case 1: A = (x) is principal.

If x = 0 or even nilpotent, then p ∈ Min(R) and ht p = 0. So we may assume that x is
nonzero. Suppose that the result is false, i.e., ht p > 1. Then we have a chain of prime
ideals in R,

p0 < p1 < p with p0, p1 /∈ V (A),

since p ∈ V (A) is minimal. We make some reductions. By the Correspondence Principle,

we have p/p0 ∈ V
((

(x) + p0

)
/p0

)
is minimal and ht p/p0 ≥ 2. Replacing R by R/p0, we

may assume that R is a domain and p0 = 0. Next let S = R\p. Then Rp = S−1R satisfies
S−1p ∈ V (Rpx) is minimal and 0 < S−1p1 < S−1p. So replacing R by Rp and changing
notation (considerably), we are reduced to R satisfying the following conditions:

(1) R is a Noetherian domain
(2) (R,m) is a local ring.
(3) htm ≥ 2, so there exists a chain of prime ideals 0 < P < m in R.
(4) The element x ∈ m satisfies V (x) = {m}. In particular, x /∈ P.

Let Ai = (PRP)i ∩R < R a finitely generated ideal in R for every non-negative integer i.
Note that (RP,PRP) is a Noetherian local domain with R ⊂ RP ⊂ qf(R).

We have a descending chain of ideals in R:

P = A1 ⊃ A2 ⊃ · · · ⊃ Ai ⊃ · · · .

As m ∈ V (x) is minimal, Spec
(
R/(x)

)
= {m/(x)}, hence R/(x) is a Noetherian ring of

dimension zero. By Akizuki’s Theorem 96.9, R/(x) is an Artinian ring. Therefore, the
descending chain of ideals(

A1 + (x)
)
/(x) ⊃ · · · ⊃

(
Ai + (x)

)
/(x) ⊃ · · ·

in R/(x) stabilizes, say
(
Aj + (x)

)
/(x) =

(
Aj+n + (x)

)
/(x) for all n ≥ 0. By the Corre-

spondence Theorem,
(
Aj + (x)

)
=
(
Aj+n + (x)

)
. Let a ∈ Aj. Then

a = b+ rx, for some b ∈ Aj+1, and r ∈ R.

In particular, rx = a − b ⊂ Aj ⊂ (PRP)j ⊂ RP. As x /∈ P, it must be a unit in RP,
consequently, r ∈ (PRP)j. It follows that r ∈ (PRP)j ∩R = Aj, i.e.,

Aj = Aj+1 + Ajx ⊂ Aj+1 + Ajm ⊂ Aj.
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Therefore, Aj = Aj+1 + Ajm in the local ring (R,m) with Aj finitely generated. By
alternate form of Nakayama’s Lemma, Corollary 93.11, this implies that we have Aj =
Aj+1. Thus,

(PRP)j = AjRP = Aj+1RP = (PRP)j+1

in the local Noetherian ring (RP,PRP). Hence (PRP)j = 0 in the domain RP, so
PRP = 0 and P = 0, a contradiction. This proves Case 1.

Case 2. General case (the proof is due to Akizuki).

Let A = (a1, . . . , an) < R be an ideal with p ∈ V (A) minimal. Suppose that ht p > n.
Choose a prime ideal p1 in R with p1 < p, and ht p1 ≥ n. Replacing R by Rp if necessary,
we may assume that (R,m) is a local ring with m = p, so V (A) = {m}. As R is Noetherian,
we may assume that p1 < m is saturated, i.e., there exists no prime ideal q in R with
p1 < q < m. (Why?) Since p1 /∈ V (A), there exists an i such that ai /∈ p1. We may
assume that a1 /∈ p1. Therefore, we have

p1 < p1 + (a1) ⊂ p = m.

Hence V
(
p1 + (a1)

)
= {m}, as p1 < m is saturated. Consequently, we have

(*)
√
p1 + (a1) =

⋂
V
(
p1+(a1)

)P = m.

Since m is finitely generated, there exists a positive integer k satisfying mk ⊂ p1 + (a1)
by (*) (and the definition of the radical). As we also have A ⊂ m, we conclude that
Ak ⊂ mk ⊂ p1 + (a1). Therefore, we have equations

aki = bi + cia1 for some bi ∈ pi and ci ∈ R, i = 2, . . . , n.

Let B = (b2, . . . , bn) ⊂ p1, so p1 ∈ V (B). As ht p1 ≥ n, by induction, we conclude that
there exists a prime ideal q ∈ V (B) minimal with B ⊂ q < p1. However, ak1, . . . , a

k
n all lie

in B + (a1) ⊂ q + (a1), so

{m} = V (A) = V (a1, . . . , an) = V (ak1, . . . a
k
n) ⊃ V

(
q + (a1)

)
.

Therefore, V
(
q+ (a1)

)
= {m} and m/q ∈ V

(
(q+ (a1)

)
/q) is minimal (working in the ring

R/q). By Case 1, we know that htm/q ≤ 1, which contradicts the existence of the chain
of primes 0 = q/q < p1/q < m/q in R/q. �

The Principal Ideal Theorem allows up to show equation (97.14) is valid.

Corollary 97.20. Let F be a field and A be an affine F -algebra that is a domain of
dimension n. If f1, . . . fm ∈ A with m < n, then dimV (f1, . . . , fn) ≥ n−m > 0.

Proof. Let p a minimal prime in (f1, . . . , fm). Then ht p ≤ m by the Principal Ideal
Theorem. The result follows by Theorem 97.16. �

Since ideals in a Noetherian ring are finitely generated, we have:

Corollary 97.21. Let R be a Noetherian ring and p a prime ideal in R. Then ht p is
finite. In particular, the set of prime ideals in R satisfies the descending chain condition.

Corollary 97.22. Every local Noetherian ring has finite dimension.



97. AFFINE ALGEBRAS 573

Corollary 97.23. Let R be a Noetherian domain. Then R is a UFD if and only if every
height one prime in R is principal if and only if the set of height one primes is equal to
the set of nonzero principal prime ideals.

Proof. We know by Kaplansky’s Theorem 31.1 that R is a UFD if and only if every
nonzero prime ideal in R contains a prime element. As every nonzero prime ideal in R
contains a prime ideal of height one by Corollary 97.21, the result follows. �

We shall also need a further generalization of the Principal Ideal Theorem.

Theorem 97.24. Let R be a Noetherian ring, A < R an ideal generated by n elements,
and p ∈ V (A) a prime satisfying htR/A p/A = m. Then

htR p ≤ m+ n = hR/A p/A + n.

Proof. We induct on m (and all n simultaneously).
m = 0: As p ∈ V (A) is minimal, this follows from the Principal Ideal Theorem.

m > 1: As R is Noetherian, there exist finitely prime ideals minimal over A, say
p1, , . . . , pr. As p is not minimal, p 6⊂

⋂r
i=1 pi by the Prime Avoidance Lemma 93.16.

Let a ∈ p \
⋂r
i=1 pi and set B = A + Ra. Then pi /∈ V (B) for i = 1, . . . , r, so there

exist no chain of prime ideals in V (B) starting at a pi and ending in p. It follows that
htR/B p ≤ m− 1, since V (B) ⊂ V (A). By induction, we have

ht p ≤ htR/B p/B + (n+ 1) ≤ n+m. �

Corollary 97.25. Let R be a Noetherian ring and p a prime ideal in R of height m.
Suppose that x is an element in p.

(1) We have m− 1 ≤ htR/(x) p/(x) ≤ m.
(2) Suppose that x does not lie in any minimal prime of R. Then htR/(x) p/(x) =

m− 1.
(3) If x is not a zero divisor in R, then htR/(x) p/(x) = m− 1.

Proof. Let s = htR/(x) p/(x) with p ∈ V (x). By the Principal Ideal Theorem 97.19,
m = ht p ≤ s + 1, and it is immediate that s = htR/(x) p/(x) ≤ ht p = m. Therefore, (1)
follows. Suppose that the set Min(R) ∩ V (x) is empty. Then htR/(x) p/(x) < ht p, so (2)
follows. Finally, as

⋃
Min(R) p ⊂ zd(R) by Proposition 94.15, we have (2) implies (3). �

Remarks 97.26. Let R be a Noetherian ring.

1. Let A = (a1, . . . , an) < R be of height n. Then there exist a minimal prime ideal
p ∈ V (A) satisfying ht p = htA = n and A cannot be generated by a fewer number of
elements.

2. It is possible for an ideal A < R to have p1, p2 ∈ V (A) both minimal but of different
heights. For example, let R = F [X, Y ] with F a field and X, Y indeterminants. Set
A =

(
X(X − 1), XY

)
. Then

A = (X) ∪ (X − 1, Y ), (X), (X − 1, Y ) ∈ V (A)

where (X) and (X−1, Y ) are minimal primes of A of heights 1 and 2 respectively, and
V (A) = V (X)∪ V (X − 1, Y ), i.e., V (A) is the union of the Y -axis and the point (1, 0)
in F 2.
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The next result can be viewed as a converse to the Principal Ideal Theorem.

Corollary 97.27. Let R be a Noetherian ring, A < R an ideal, and p < R a prime ideal.

(1) If htA = n ≥ 1, then there exist a1, . . . , an ∈ A satisfying ht(a1, . . . , ai) = i for
i = 1, . . . , n.

(2) If ht p = n ≥ 1, then there exist a1, . . . , an ∈ p satisfying p ∈ V (a1, . . . , an) is
minimal and ht(a1, . . . , ai) = i for i = 1, . . . , n.

Proof. (1): As htA ≥ 1 and Min(R) is finite, there exists an element a1 ∈ A \⋃
Min(R) p by the Prime Avoidance Lemma. Therefore, p /∈ V (a1) for all primes p in

Min(R), so ht(a1) > 0. By the Principal Ideal Theorem, ht(a1) ≤ 1, hence ht(a1) = 1.
By induction, there exists a1, . . . , ai in A satisfying ht(a1, . . . , ai) = i < n. Let p ∈
V (a1, . . . , ai) be minimal. By the Principal Ideal Theorem, ht p ≤ i and hence ht p = i.
As {P | P ∈ V (a1, . . . , ai) minimal} is a finite set, there exists an element

ai+1 ∈ A \
⋃

P∈V (a1,...ai)
minimal

P

by the Prime Avoidance Lemma. Let B = (a1, . . . , ai+1) and Q ∈ V (B) ⊂ V (a1, . . . , ai).
Then there exists a prime ideal P in V (a1, . . . , ai) minimal satisfying P ⊂ Q. Conse-
quently, htQ > htP = i. By the Principal Ideal Theorem, htB ≤ i+1, hence htB = i+1
and (1) follows by induction.

(2): Choose ai as in (1) applied to A = p. Since p ∈ V (A1, . . . , an) satisfies ht p =
ht(a1, . . . , an), we have p ∈ V (a1, . . . , an) is minimal. �

Corollary 97.28. Let R be an affine F -domain of dimension n and P a prime ideal
in R of height m ≥ 1. Then there exist a1, . . . , am in R such that P is minimal over
(a1, . . . , am). In particular, if p ∈ V (a1, . . . , am) is minimal, then dimR/p ≥ n−m with
equality if p = (a1, . . . , am).

Proof. The result follows first applying Theorem 97.16 then by localizing at p and
applying Corollary 97.27. �

The last corollary implies if F a field over an algebraically closed field (respectively
any field) and Z is a irreducible affine variety (respectively, abstract irreducible variety) of
codimension r in F n, then Z is an irreducible component of an affine variety (respectively
abstract variety) defined as the intersection of r hypersurfaces in F n.

Exercises 97.29.

1. Prove the following generalization of the Normalization Theorem 97.1: Let F be a field
and A an affine F -algebra (not necessarily a domain). If

A1 < · · · < Am < A

is a chain of ideals in A, then there exists a non-negative integer n and elements
y1, . . . , yn in A algebraically independent over F and integers

0 ≤ h1 ≤ · · · ≤ hm ≤ n

satisfying the following:
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(a) F [y1, . . . , yn] is integral in A.
(b) A is a finitely generated F [y1, . . . , yn]-module.
(c) Ai ∩ F [y1, . . . , yn] = (y1, . . . , yhi) for i = 1, . . .m.

2. Prove Lemma 97.17.

3. Let R be a catenary ring and S a multiplicative set in R. Then S−1R is catenary.
[Note. If A is an affine F -algebra, this says that localizations of it are catenary. Such
a localization may not be an affine F -algebra.]

4. Let R be a Noetherian ring of dimension greater than one. Prove that Spec(R) is
infinite.

98. Regular Local Rings

In geometry, the notion of a simple (or non-singular) point of an algebraic variety
is a fundamental notion. It depends on the Jacobian matrix at the point being of the
maximal rank (cf. Remark 98.31 below). Indeed one of the interesting aspects of algebraic
geometry is that all points need not be simple. Unfortunately, the algebraic analogue does
not have all the properties that such geometric points have. We shall study the analogue
in this section. In geometry, if a point is simple then the ring of germs at the point (i.e.,
the functions defined in a neighborhood of the point with two such being identified if they
agree in some neighborhood of the point) is a UFD. [If all points are simple, this leads to
the theory of Weil divisors.] This is also true of the algebraic analogue. Unfortunately,
the general proof depends on developing sufficient homological algebra, which we do not
do. Instead we shall only prove the algebraic case corresponding to the geometric case.

Recall if R is a local ring with maximal ideal m, we write this as (R,m) is a local ring.

Definition 98.1. Let (R,m) be a Noetherian local ring of dimension n. By Corollary
97.27, there exist elements x1, . . . , xn in m satisfying ht(x1, . . . , xn) = htm. Hence m ∈
V (x1, . . . , xn) is minimal. We say that the elements x1, . . . , xn form a system of parameters
for R. As V (x1, . . . , xn) = {m}, the ideal m/(x1, . . . , xn) in R/(x1, . . . , xn) is nilpotent.
Therefore, we have mk ⊂ (x1, . . . , xn) ⊂ m for some integer k, since m is finitely generated.
If there exists a system of parameters that generate m, such a system of parameters is
called a regular system of parameters for R and R is called a regular local ring..

Define

V- dimR := dimR/mm/m2.

By Corollary 93.12 of Nakayama’s Lemma, a minimal generating set for m is precisely
one whose images give a basis for the R/m-vector space m/m2. Therefore, V- dimR is the
size of a minimal generating set for m. By the Principal Ideal Theorem 97.19,

dimR = htm ≤ V- dimR.

Therefore, R is a regular local ring if and only if a minimal generating set for m consists of
dimR elements if and only if there exists a regular system of parameters for m. Regular
local rings will be the analogue of a simple point (more exactly, the germs of functions at
a simple point).
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Example 98.2. 1. Let F be a field and R = F [[t1, . . . , tn]], the formal power series in
t1, . . . , tn. Then R is a local ring with maximal ideal m = (t1, . . . , tn) by Exercise
37.11(2) and is Noetherian by Example 30.13(2). Therefore, it is a regular local ring
by Exercise 37.11(2). By Theorem 37.9, the regular local ring R = F [[t1, . . . , tn]] is a
UFD.

We shall use this to prove that a regular local ring arising from a simple point of an
affine variety in the geometric case is a UFD. More specifically, we shall show if (R,m)
is a regular local ring of dimension n containing a copy of the field F = R/m, then R
embeds into F [[t1, . . . , tn]]. Using the fact that F [[t1, . . . , tn]] is a UFD, we shall show
that R is also a UFD.

2. Let K be field and R = K[t]/(t2). R is called the ring of dual numbers over K. The
ring R is the image of the ring epimorphism : K[t] → R by t2 7→ 0. The ideal
m = Rt is the unique prime ideal in R. Therefore, R is a Noetherian local ring with
dimR = 0 and K = R/m. As m2 = 0 and m = Rt is one dimensional as a K-vector
space, R is not a regular local ring. Note that R is not a domain.

Our first goal is to show that a regular local ring is a domain. To do so we need
another (important) theorem of Krull. [This is another form of the Krull Intersection
Theorem, Exercise 40.12(5).] Recall that a nonzero polynomial f ∈ R[t1, . . . , tn] over a
commutative ring R is called homogeneous if every monomial in f has the same total
degree. We say it is homogeneous of degree d if every monomial in F is of total degree d,
e.g., t21 t

3
3 t4 + t32 t

3
4 is homogeneous of degree 6. [We also will say the zero polynomial is

homogeneous.]

Theorem 98.3. (Krull) Let R be a Noetherian ring and A an ideal in R. Suppose that
1 + A consists of nonzero divisors. Then

⋂∞
k=0 A

k = 0.

Proof. Let A = (a1, . . . , an) and x an element of
⋂∞
k=0 A

k. Let a = (a1, . . . , an) ∈ Rn

and ea : R[t1, . . . , tn] → R the evaluation at a. Clearly, for each k > 0, there exists a
homogeneous element fk in R[t1, . . . , tn] of degree k satisfying x = fk(a). Let B be the
ideal in R[t1, . . . , tn] generated by the fk, k > 0. Since R[t1, . . . , tn] is a Noetherian ring by
the Hilbert Basis Theorem 41.1, it satisfies ACC, so there exist f1, . . . , fm and x = fi(a)
for i = 1, . . . ,m generating B. In particular,

fm+1 = g1f1 + · · ·+ gmfm,

with gi ∈ R[t1, . . . , tn] homogeneous of degree m + 1− i ≥ 1. It follows that gi(a) lies in
Am+1−i ⊂ A for i = 1, . . . ,m, and

x = fm+1(a) =
m∑
i=1

gi(a)fi(a) = (
m∑
i=1

gi(a))x.

Set y =
∑m

i=1 gi(a). Then (1− y)x = 0, and by hypothesis, x = 0. �

Corollary 98.4. Let R be a Noetherian domain and A < R an ideal. Then
⋂∞
k=0 A

k = 0.

Corollary 98.5. Let R be a Noetherian ring and A < R an ideal lying in the Jacobson
radical rad(R) of R. Then for every ideal B ⊂ R, we have

⋂∞
k=0(B + Ak) = B.
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Proof. Let : R → R/B be the canonical ring epimorphism. Then A
k

= (Ak +
B)/B. For all a ∈ A ⊂ rad(R), so 1 + a ∈ R× by Exercise 28.19(12). Therefore, 1 + a in
a nonzero divisor in R for all a ∈ A. Hence

∞⋂
k=0

A
k

=
∞⋂
k=0

(B + Ak

B

)
= 0.

The result follows. �

Corollary 98.6. Let R be a local Noetherian ring with maximal ideal m. Then
⋂∞
k=0 m

k =
0.

We need the corollary to prove the following lemma:

Lemma 98.7. Let R be a local Noetherian ring. Suppose that R is not a domain and
p = (p) is a prime ideal. Then p is a minimal prime of R.

Proof. By Corollary 98.6, we have
⋂∞
k=0 p

k = 0. As R is not a domain, it suffices
to show if q is a prime ideal in R satisfying q < p, then q ⊂

⋂∞
k=0 p

k. But if q ∈ q, then
q = pq1 in p. As p /∈ q, q1 ∈ q. Iterating this shows that q ∈

⋂∞
k=0 p

k. �

Lemma 98.8. Let R be a regular local ring of dimension n with maximal ideal m. Let
x ∈ m \m2. Then R/(x) is a regular local ring of dimension n− 1.

Proof. Let : R→ R/(x) be the canonical epimorphism. Let x1, . . . , xm lie in m be
chosen such that x1, . . . , xm is a minimal generating set for m.

We show that x, x1, . . . , xm is a minimal generating set for m. Certainly they generate,
so suppose that we have a R-linear combination ax + r1x1 + · · · + rmxm that lies in m2.
We must show each coefficient lies in m. As r1 x1 + · · ·+ rm xm lies in m2, each ri lies in
m by the minimality of x1, . . . , xm (cf. Corollary 93.12 of Nakayama’s Lemma). It follows
that r1, . . . , rm all lie in m, hence ax ∈ m2. Since x /∈ m2, a ∈ m. Thus x, x1, . . . , xm is a
minimal generating set. This means that V- dimR = m+ 1.

So to finish, we must show that htm = n− 1. We know that

dimR/(x) ≤ (V- dimR)− 1 = (dimR)− 1 ≤ dimR/(x),

and the result follows by Corollary 97.25. �

Corollary 98.9. Let (R,m) be a Noetherian local ring with x ∈ m \ m2 and lying in no
minimal prime ideal of R. Then R is a regular local ring if and only if R/(x) is a regular
local ring.

Proof. By the Lemma, we need only show if R/(x) is regular, then R is. But this
follows from Corollary 97.25. �

We can now attain our goal.

Theorem 98.10. Let R be a regular local ring. Then R is a domain.

Proof. Let R be of dimension n. If n = 0, then R is a field so a domain, so we
may assume that n > 0. Let m be the maximal ideal of R and nonzero. By Nakayama’s
Lemma, m 6= m2. Let x ∈ m \m2. Then R/(x) is a regular local ring of dimension n− 1
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by Lemma 98.8, so a domain by induction. Suppose that R is not a domain. Then by
Lemma 98.7, (x) is a minimal prime ideal. Since this is true for all x ∈ m \ m2, we have
m \ m2 ⊂

⋃
Min(R) p. Since Min(R) is a finite set as R is Noetherian, m ⊂ p, for some

p ∈ Min(R) by the Prime Avoidence Lemma 93.16. But this means R is of dimension 0,
a contradiction. �

Corollary 98.11. Let R be a regular local ring and x ∈ m \ m2. Then (x) is a prime
ideal in R. In particular, if x1, . . . , xn is a regular system of parameters for R, then
R/(x1, . . . , xi) is a regular local ring of dimension n− i and (x1, . . . , xi) is a prime ideal
of height i for i = 0, . . . , n.

Remark 98.12. It is a fact that if R is a regular local ring and p a prime ideal in R that
Rp is a regular local ring. The proof uses homological algebra methods used to prove that
R is shown to be a UFD for an arbitrary regular local ring.

Remark 98.13. We have seen that R is a regular local ring if and only if its maximal
ideal is generated by a system of parameters. We comment on the generalization of this
property. We omit proofs. Let R be a Noetherian ring. In 95.6, we have seen that
if M is an R-module, then zd(M) =

⋃
AssR(M) p and understand the minimal primes in

AssR(M). The embedded primes do have an effect. Suppose that R is also a local ring. We
constructed a system of parameters x1, . . . , xn for R based on the condition that xi is not
in any minimal prime containing (x1, · · · , xi−1) for i = 1, . . . , n. This does not involve all
of the associated primes of (x1, . . . , xn), i.e., all the zero divisors of R/(x1, . . . , xn). It turns
out that all the zero divisors, i.e., all elements of the associated primes of R/(x1, . . . , xn)
are important.

A more general approach would be the following: Let R be a commutative ring and
M an R-module. An R-sequence on M is an ordered sequence x1, . . . , xn of elements in
R satisfying:

1. The ideal (x1, . . . , xn)M < M .
2. The image of xi in zd

(
M/(x1, . . . , xi−1)M

)
under the natural epimorphism is not a

zero divisor for i = 1, . . . , n.

If M = R, we call an R-sequence x1, . . . , xn on R just an R-sequence. The first condition
is included so that all the quotients M/(x1, . . . , xi)M are not zero. As an example, if R0

is a commutative ring, then t1, . . . , tn is an R-sequence in R = R0[t1, . . . , tn].
In general, if M is an R-module and x1, . . . , xn is an R-sequence on M , then a permu-

tation of this sequence may not be an R-sequence on M . If R is a Noetherian ring and
M a nonzero finitely generated R-module, then it can be shown that any permutation of
x1, . . . , xn is still an R-sequence on M if x1, . . . , xn lie in the Jacobson radical of R. [In gen-
eral, the problem will arise if the image of xi is a zero divisor in zd

(
M/(x1, . . . , xi−1)M

)
for some i.] In particular, if R is a local Noetherian ring and M a nonzero finitely gen-
erated R-module, then any permutation of an R-sequence on M is an R-sequence on M ;
and it can also be shown that, in this case, all maximal R-sequences on M have the same
length. In particular, in this case the maximal length of an R-sequence M is well-defined
and called the depth of M . For example, if M = R the depth of R, written depthR, exists
and is the independent of a maximal R-sequence in R. [In general, if R is any Noetherian
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ring with A an ideal in R and M a finitely generated module with M 6= AM , then one can
show that any two maximal R-sequences on M lying in A have the same finite length.]

For example, suppose that R is a regular local ring and x1, . . . , xn is a regular system
of parameters. Then R/(x1, . . . , xi) is a domain for i = 1, . . . , n. It follows that x1, . . . , xn
is an R-sequence. In particular, depthR = dimR. In general, depthR ≤ dimR. A
Noetherian local ring is called a Cohen-Macaulay ring if depthR = dimR. [A Noetherian
ring is called a Cohen-Macaulay ring if Rm is Cohen-Macaulay ring for every maximal
ideal m ∈ Spec(R).] Being a Cohen-Macaulay ring is weaker than being a regular local
ring. In fact, for a local domain to be a Cohen-Macaulay ring is weaker than being a
normal domain. For example, the ring C[X, Y ]/

(
Y −X2(X + 1)

)
giving the nodal curve

of Remark 97.2 localized at (X, Y )/(Y −X2(X + 1) (the ring at the origin of the curve
in C2) can be shown to be Cohen-Macaulay but not normal, as the images of X, Y is
checked to give a regular sequence. One can also show that a Noetherian local ring is a
Cohen-Macaulay if and only if every system of parameters is an R-sequence. The notion
of being Cohen-Macaulay is quite useful in algebraic geometry as well as in commutative
algebra.

We next turn to another useful characterization of a regular local ring. We shall use
dehomogenization of a homogeneous polynomial, e.g., substitute t/t, t1/t, . . . , tn/t for the
variables in such an f thereby obtaining a polynomial in n variables. Note if R is a
domain, f ∈ R[t, t1, . . . , tn] a homogeneous of degree d, and f(x, x1, . . . , xn) = 0 with
x, x1, . . . xn ∈ R nonzero if and only if xNf(1, x1/x, . . . xn/x) = 0 in R for all N ≥ d. We
use this to prove the following lemma:

Lemma 98.14. Let (R,m) be a Noetherian local domain of dimension n+1. Suppose that
m ∈ V (x, x1, . . . , xn) is minimal (e.g., R is a regular local ring) and f ∈ R[t, t1, . . . , tn] is
a homogeneous polynomial. If f(x, x1, . . . , xn) = 0, then all coefficients of f lie in m.

Proof. Set P = mR[t1, . . . , tn], the extension of m to R[t1, . . . , tn]. We know that
R[t1, . . . , tn]/P ∼= (R/m)[t1, . . . , tn], hence it is a domain and P is a prime ideal in
R[t1, . . . , tn] and minimal in VR[t1,...,tn](x, x1, . . . , xn). In particular, htP ≤ n + 1 by
the Principal Ideal Theorem 97.19. As any proper chain of primes for m gives a proper
chain of primes for P, we have htP = htm = dimR = n+ 1.

let ϕ : R[t1, . . . , tn] → R[x1/x, . . . , xn/x] be the R-algebra epimorphism determined
by ti 7→ xi/x, which lies in the quotient field of R. To prove the result, it suffices to show
kerϕ ⊂ P.

Let A = (xt1 − x1, . . . , xtn − xn) ⊂ P. Since htP = htm, P ∈ V (A) cannot be
minimal. Let p ⊂ P with p ∈ V (A) minimal.

We show that x /∈ p. If x ∈ p, then x, x1, . . . , xn ∈ p, and we have (x, x1, . . . , xn) ⊂
p ∩R. Thus p ∩R = m and P ⊂ p, a contradiction. Therefore, x /∈ p.

Now suppose that g ∈ kerϕ. In particular, if k >> 0, then xkg(x1, . . . , xn) = 0. Let
Rx denote the domain obtained by localizing R at S = {xn | n ≥ 0}. Applying the

Remainder Theorem (of the Division Algorithm) to the monic polynomials ti −
xi
x

to g

sequentially, we get polynomials hi in Rx[ti, . . . , tn], for i = 1, . . . , n, and equations in



580 XVII. INTRODUCTION TO COMMUTATIVE ALGEBRA

Rx[t1, . . . , tn]:

g = (t1 −
x1

x
)h1 + g(

x1

x
, t2, . . . , tn)

...

g(
x1

x
, . . . ,

xi−1

x
, ti, . . . , tn) = (ti −

xi
x

)hi + g(
x1

x
, . . . ,

xi
x
, ti+1, . . . , tn)

...

g(
x1

x
, . . . ,

xn−1

x
, tn) = (tn −

xn
x

)hn + g(
x1

x
, . . . ,

xn
x

).

Lifting these equations back to R[t1, . . . , tn], i.e., clearing all denominators of all these
polynomials, we see that there exits k > 0 such that xkg ∈ P. Therefore, kerϕ ⊂ P as
needed. �

Definition 98.15. A commutative ring R will be called a graded ring (on index set
N = {i ∈ Z | i ≥ 0}) if R =

⊕∞
i=0Ri as additive groups with multiplication satisfying

RiRj ⊂ Ri+j for all i, j ≥ 0. (Note in this case, R0 is a commutative ring.) An element
r in Rd is called a homogeneous element of degree d. A homomorphism of graded rings is
a ring homomorphism ϕ :

⊕
i≥0Ri →

⊕
i≥0 Si that preserves degree, i.e., ϕ(Ri) ⊂ Si for

all i ≥ 0 and, a graded ring isomorphism if, in addition, ϕ is also a ring isomorphism.

Examples 98.16. Let R0 be a commutative ring.

1. The polynomial ring R = R0[t1, . . . , tn] is a graded ring with Rd the group generated
by the monomials of total degree d.

2. R = R0[[t1, . . . , tn]] is a graded ring with Rd the group generated by the monomials of
total degree d. Note that the natural map R0[t1, . . . , tn] → R0[[t1, . . . , tn]] induced by
ti 7→ ti is an injective graded ring homomorphism.

3. Let R be a commutative ring and A an ideal in R. The graded ring of R determined
by A, called the associated graded ring relative to A, is defined to be

GA(R) =
∞⊕
i=0

Ai/Ai+1

where A0 = R and the multiplication is induced by

(x+ Ai+1)(y + Aj+1) := xy + Ai+j+1 for all x ∈ Ai, y ∈ Aj.

The elements in Ad/Ad+1 are the homogeneous elements of GA(R) of degree d.

Using Lemma 98.14, we have the following characterization of regular local rings.

Theorem 98.17. Let (R,m) be a Noetherian local ring of dimension n. Then the follow-
ing are equivalent.

(1) The ring (R,m) is a regular local ring.
(2) The rings (R/m)[t1, . . . , tn] and Gm(R) are isomorphic graded rings.
(3) The vector space m/m2 over the field R/m is n-dimensional.
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Proof. (1)⇒ (2): As R is a regular local ring, m = (x1, . . . , xn) for some x1, . . . , xn.
The canonical ring epimorphism : R → R/m induces the natural graded ring epimor-
phismR[t1, . . . , tn]→ (R/m)[t1, . . . , tn] and the graded ring epimorphism ϕ : (R/m)[t1, . . . , tn]→
Gm(R) induced by ti 7→ xi + m2. Then ϕ is injective by Lemma 98.14.

(2)⇒ (3): This is clear.

(3)⇒ (1): By (3), a minimal generating set for m consists of n = dimR elements, so is a
regular system of parameters. Therefore, R is regular.

�

We next turn to our main goal, to show that a regular local ring in the geometric case
is a UFD. The algebraic condition we need is the following:

Definition 98.18. Let (R,m) be a Noetherian local ring. We say that R is equicharac-
teristic if R contains an isomorphic copy of the field R/m. For convenience of notation,
we shall assume that F = R/m lies in R if this is the case.

We wish to show that under the hypothesis of an equicharacteristic Noetherian local
ring, we can assign a power series to each element of R. In general, such an assignment
will not be unique. However, for a regular local ring, it shall be as we shall see.

The idea is the following: We have defined a graded ring isomorphism Gm(R) →
(R/m)[t1, . . . , tn] extending the canonical map R → R/m and sending xi + m2 7→ ti. In
particular, this defines an R/m-isomorphism md/md+1 → (R/m)[t1, . . . , tn]d. Since F ⊂ R,
this map fixes F . We also have the natural graded ring monomorphism (R/m)[t1, . . . , tn]→
F [[t1, . . . , tn]]. As power series can be truncated to give polynomials of various degrees, we
wish to mimic the construction of Taylor series as in calculus. We then will show that the
construction is unique when R is a regular local ring. For example, if R is of dimension
one and x ∈ m then we would expect that the inverse of the unit 1−x should be assigned
the power series

∑∞
i=0 t

i corresponding to (1, 1 +m, 1 + m2, . . . ) with truncations lying in
Gm(R). We first do the construction.

Construction 98.19. Let (R,m) be an equicharacteristic local Noetherian ring with
F = R/m and : R → F the canonical epimorphism. We assume that F also lies in R
and fixes F . Suppose that m = (u1, . . . , um).

Let x ∈ R. Define a power series in F [[t1, . . . , tm]] associated to x as follows. Write

x = α0 + x1, with α0 ∈ F, x1 ∈ m and set x = α0.

Then we have

x1 =
m∑
i=1

αiui + x2 with αi ∈ F, x2 ∈ m2.

Similarly, define

x2 =
m∑

i,j=1

αijuiuj + x3 with αij ∈ F, x3 ∈ m3.
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Continuing in this way we see that for each r, we can find homogeneous polynomials
fi ∈ F [t1, . . . , tm] of degree i, i = 0, . . . , r, satisfying

x =
r∑
i=0

fi(u1, . . . , um) + xr+1 with xr+1 ∈ mr+1.

Thus we can assign to x a formal power series

Φ(x) = f0 + f2 + f3 + · · · in F [[t1, . . . , tm]].

Definition 98.20. Let (R,m) be an equicharacteristic local Noetherian ring with maximal
ideal m = (u1, . . . , um). If x ∈ R, then a formal power series Φ(x) = f0 + f1 + · · · ∈
F [[t1, . . . , tm]] is called a (formal) Taylor series of x relative to u1, . . . , um if for all r ≥ 0,

x−
r∑
i=0

fi(u1, . . . , um) lies in mr+1.

Example 98.21. Let F be a field and R = F [t](t), so m = (t). Let f = p/q with
p, q ∈ F [t] and q(0) 6= 0. Then f ∈ R. The Taylor series relative to t is a formal power
series

∑∞
i=0 αit

i such that (p/q) −
∑r

i=0 αit
i ≡ 0 mod tr+1 for all r ≥ 0. For example,

1/(1− t) has a Taylor series
∑∞

i=0 t
i, since

1

1− t
−

r∑
i=0

ti =
tr+1

1− t
≡ 0 mod tr+1 for all r ≥ 0.

Proposition 98.22. Let (R,m) be an equicharacteristic regular local ring with x1, . . . , xn
a regular system of parameters. Then for all x in R, there exist a unique Taylor series
for x relative to x1, . . . , xn.

Proof. If Φ(x) = f0 + f1 + · · · and Φ′(x) = f ′0 + f ′1 + · · · are two Tayler series for x,
x ∈ R, then 0 is a Taylor series for Φ(x)− Φ′(x). So it suffices to show if 0 has a Taylor
series Φ = f0 + f1 + · · · , then Φ = 0.

Suppose that fr is the first nonzero homogenous term in Φ. Then fr(x1, . . . , xn) lies in
mr+1. As a regular local ring is a domain, all coefficients of fr lie in m by Lemma 98.14,
so fr(x1, . . . , xn) = 0. �

The proposition implies:

Corollary 98.23. Let (R,m) be an equicharacteristic regular local ring of dimension n
with F = R/m. If m = (x1, . . . , xn), then there exists an F -algebra monomorphism
R→ F [[t1, . . . , tn]].

We now turn to proving that an equicharacteristic regular local ring is a UFD, We
need some preliminaries. It is useful to set up the following notation.

Notation 98.24. Let (R,m) be an equicharacteristic regular local ring of dimension n
with F = R/m. As before we view F ⊂ R and as constructed before, we have an F -
algebra monomorphism R → F [[t, . . . , tn]] by x 7→ Φ(x). We shall view this map as an
inclusion. In particular, we shall identify

x ∈ R with its Taylor series, Φ(x) =
∞∑
i=0

fi in F [[t1, . . . , tn]],
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where fi ∈ F [t1, . . . , tn]] is homogeneous of degree i relative to t1, . . . , tn. We set R̂ =

F [[t1, . . . , tn]] and if m = (x1. . . . , xn), we identify xi in R with ti in R̂. We shall also write
x = (x1, . . . , xn) when viewed as a point in (R/m)n = F n.

We know that R̂ is a regular local ring with maximal ideal m̂ = (t1, . . . , tn) and R and R̂
are domains.

We begin by looking at a relationship between ideals in R and R̂.

Lemma 98.25. In the Notation 98.24, for every i ≥ 1, we have m̂i ∩R = mi.

Proof. Certainly, for every i ≥ 1, we have mi ⊂ m̂i ∩ R, so we need only show that
m̂i ∩R ⊂ mi. Let x ∈ R have Taylor series relative to x1, . . . , xn given by Φ(x) =

∑∞
i=0 fi

with each fj = 0 for j < i. Then by definition,

x−
i−1∑
j=0

fj(x) ≡ 0 mod mi.

as needed. �

Lemma 98.26. In the Notation 98.24, if A ⊂ R is an ideal, then we have R̂A ∩R = A.

Proof. Again it suffices to show R̂A∩R ⊂ A. As A is Noetherian, A = (a1, . . . , am)

for some a1, . . . , am ∈ A. Let x ∈ R̂A ∩R. We can write

x = g(1)(x)a1 + · · ·+ g(m)(x)am with g(i) ∈ R̂
and

g(i) = g
(i)
0 + · · ·+ g(i)

n + · · · the corresponding power series.

Each g
(i)
n (x) can be approximated up to an element in m̂n+1 for each n, so we can find

h
(i)
n in F [t1, . . . , tm] with h

(i)
n (x) ∈ R and

h(i)
n (x) = g

(i)
0 (x) + · · ·+ g(i)

n (x) mod m̂n+1.

Therefore, we have
m∑
i=1

g(i)(x)ai =
m∑
i=1

(
h(i)
n (x) + g(i)(x)− h(i)

n (x))
)
ai

=
m∑
i=1

h(i)
n (x)ai +

m∑
i=1

(
g(i)(x)− h(i)

n (x)
)
ai

with
∑m

i=1

(
g(i)(x)−h(i)(x)

)
ai lying in m̂n+1∩R = mn+1 by the last lemma. Consequently,∑m

i=1 g
(i)(x)ai lies in A + mn+1 for every n ≥ 1. Since

⋂∞
i=0(A + mn) = A by Corollary

98.5, the lemma is proven. �

To prove that an equicharacteristic regular local ring R is a UFD, we only need to
show that every irreducible element in R is a prime element, as R is Noetherian. We

want to use the fact that R̂ is a UFD that we showed in Theorem 37.9. To do so we must
analyze division in R and how it relates to division in R̂. But Lemma 98.26 above has
this as a consequence.
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Corollary 98.27. In the Notation 98.24, suppose that a, b ∈ R satisfies b | a in R̂. Then
b | a in R.

Proof. If b | a in R̂, i.e., R̂ a ⊂ R̂ b, then R̂ a ∩ R ⊂ R̂ b ∩ R. Hence Ra ⊂ Rb by
Lemma 98.26, i.e., b | a in R. �

We use this to see that if x, y in our equicharacteristic regular local ring R are non-

associates in R̂, then they are non-associates in R. This is the key to what we need to
finish our goal that a equicharacteristic regular local ring is a UFD.

Proposition 98.28. In the Notation 98.24, suppose that x, y ∈ R have a nonunit factor

in R̂. Then x and y have a nonunit factor in R.

Proof. Since R̂ is a UFD, x and y have a greatest common divisor d̂ in R̂ with

d̂ /∈ R̂×. Let
x = d̂ â and y = d̂ b̂ with â, b̂ ∈ R̂ relatively prime.

We can approximate

â by {an} ⊂ R with â ≡ an mod m̂n+1

b̂ by {bn} ⊂ R with b̂ ≡ bn mod m̂n+1

for every n ≥ 1. So we have

0 = xb̂− yâ = x(̂b− bn + bn)− y(â− an + an),

hence

(∗) xbn − yan = y(â− an)− x(̂b− bn).

Let A = xmn+1 + ymn+1. The right hand side of (∗) lies in R̂A ∩ R = A, using Lemma
98.26. Therefore, we have an equation

xbn − yan = −xrn + ysn with rn, sn ∈ mn+1.

Consequently,
x(bn + rn) = y(an + sn) in R.

Therefore we see that in R̂, after cancelling d̂, we have

(∗∗) â(bn + rn) = b̂(an + sn) in R̂.

Since â and b̂ are relatively prime in the UFD R̂, we must have â divides every an + sn,
i.e.,

(†) an + sn = â û some û ∈ R̂.
Reading the equation (†) modulo m̂n+1, we have â ≡ â û mod m̂n+1, since sn ∈ mn+1. We

cannot have û ∈ m̂, lest 1− û ∈ R̂×. Therefore, û ∈ R̂×. Fix n >> 0 satisfying â /∈ m̂n+1.

Then an + sn is nonzero in the domain R̂, hence equation (†) implies that

â = û−1(an + sn) and b̂ = û−1(bn + rn).

Therefore,

x = d̂ â = (an + sn)û−1d̂ and y = d̂ b̂ = (bn + rn)û−1d̂.
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Since (an + sn) | x in R̂, we conclude that (an + sn) | x in R by Corollary 98.27. It follows

by (∗∗) that d := û−1d̂ in R and so is a common factor of x and y in R. If d ∈ R×, then

d̂ = ûd ∈ R̂×, which is impossible. This proves the proposition. �

Theorem 98.29. Let (R,m) be an equicharacteristic regular local ring. Then R is a
UFD.

Proof. As R is a Noetherian domain, by Euclid’s Argument (Proposition 30.9), it
suffices to show if x ∈ R is irreducible, then it is a prime element. So assume that x | yz
with y, z ∈ R and x irreducible in R.

Case 1. Suppose that x and y have a nonunit common factor in R̂:

By Proposition 98.28 above, x and y have a nonunit common factor in R. As x is
irreducible in R, we have x | y in R.

Case 2. Suppose that x and y have no nonunit common factor in R̂:

Since R̂ is a UFD and x and y are relatively prime in R̂, we know that x | z in R̂.
Therefore, x | z in R by Corollary 98.27. �

As a UFD is normal, we have:

Corollary 98.30. Let (R,m) be an equicharacteristic regular local ring. Then R is a
normal domain.

Remark 98.31. Being a regular local ring is much stronger than just being normal. Let

F be a field and f1, . . . , fm ∈ F [t1, . . . , tn] with m ≥ n. Suppose that F̃ is an algebraic

closure of F . Set R̃ = F̃ [t1, . . . , tn]/(f1, . . . , fm). A point x ∈ ZF̃ (f1, . . . , fm) is called
a simple point of ZF̃ (f1, . . . , fm) if the rank of the Jacobian matrix of x, i.e., the m × n
matrix

(
∂fi/∂tj(x)

)
, is n. Let mx be the maximal ideal defined by x. Then it is a fact that

R̃mx is a regular local ring if and only if x is a simple point. Suppose that F is a perfect
field. Then the localization at any maximal ideal m of R = F [t1, . . . , tn]/(f1, . . . , fm) is a
regular local ring if m = R ∩ mx when x is a simple point in ZF̃ (f1, . . . , fm). In general,
this is not true for inseparable extensions.

Exercises 98.32.

1. Show if R is a Noetherian ring and A is an ideal of R, then GA(R) is also Noetherian.

2. Show every discrete valuation ring is a regular local ring.

3. Let R be an equicharacteristic local ring with a, b nonzero elements in R. Let R̂ be as

in Notation 98.24. Show that a gcd of a and b in R and in R̂ are associates in R̂.

4. Let R be a commutative ring and A < R an ideal. For each pair of non-negative
integers i ≤ j let θi,j : R/Aj → R/Ai be the natural ring epimorphism. Show that

there exist a ring R̂ and for each i a ring homomorphism ψi : R̂→ R/Ai such that for
all non-negative i ≤ j
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R/Ai

R̂

ψi
88

ψj &&

R/Aj

θij

OO

commutes, and if there exist ring homomorphisms θi : S → R/Ai such that for all
non-negative i ≤ j

R/Ai

S

ϕi
77

ϕj
''

R/Aj

θij

OO

commutes, then there exists a unique ring homomorphism µ : S → R̂ such that

(98.33) R/Ai

S
µ

//

ϕi

44

ϕj
**

R̂

ψi

88

ψj

&&

R/Aj

θij

OO

commutes for all i ≤ j. Such a R̂ is unique up to a unique isomorphism and is called
the completion of R relative to the ideal A.

5. Let R be a Noetherian ring, A < R an ideal. Let R̂ be the completion of R relative

to A. Show that there exists ring homomorphism ϕ : R → R̂ such that the diagram
in 98.33 is valid with ϕi : R → R/Ai the canonical surjections and that this map is a
monomorphism if R is either a domain or a local ring.

6. In the notation of Exercise 5, show that R̂ is the subring of
∏∞

i=0R/A
i (a ring with

componentwise operations) consisting of all sequences

(. . . , xn . . . , x1, x0 | ϕ(xn+1 + An+1) = xn + An for all n ≥ 1}

(a subring with component-wise operations).

7. Let R be a Noetherian ring, A < R an ideal. Define a topology on R, called the A-adic

topology by {r+An | r ∈ R, n ≥ 0} is a base of open sets for the topology of R. Let R̂
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be the completion of R relative to A and Â = R̂A. Show that every Cauchy sequence

in the Â-adic topology of R̂ converges, i.e., R̂ is topologically complete.

8. Let F be a field. Show the completion of F [t1, . . . , tn] is the power series ring F [[t1, . . . , tn]].

9. Let p be a prime in Z, then Ẑ, the completion of Z relative to the ideal (p) is called

the p-adic integers [and is historically denoted by Zp.] Let ψi : Ẑ → Z/(pi) be the
canonical surjections for each positive i. Show all of the following:

(i) Ẑ is a domain.

(ii) For each n > 0

0→ Ẑ
pn−→ Ẑ

ψn−→ Z/(pn)→ 0.

is an exact sequence of additive groups where the map pn is multiplication by pn.

In particular, Ẑ/pnẐ ∼= Z/(pn) (and are usually identified).

(iii) If x ∈ Z/
(
pn), then x unit in Z/

(
pn) and only if p 6 | x.

(iv) An element x ∈ Ẑ is a unit if and only if p 6 | x.

(v) Every element in Ẑ is of the form pru for some u ∈ Ẑ× and r ≥ 0. In particular,

Ẑ is a regular local ring.

(vi) Every element in Ẑ can be uniquely written as a power series
∑∞

i=1 aip
i with

ai ∈ {0, 1, . . . , p− 1} for all i.

99. Addendum: Fibers

One of the first memorable theorems in linear algebra is given vector spaces V and
W over a field F with V finite dimensional and a linear transformation T : V → W ,
then dimV = dim imT + dim kerT . As kerT = T−1(0), the fiber of the zero of W is a
subspace of V and imT a subspace of W , this makes sense as a theorem about vector
spaces. We wish to generalize the analogous result to maps of irreducible abstract F -affine
varieties. One problem is that the image of an an affine variety need not be a variety,
although its closure is. We write this generalization as a theorem about F -affine domains
and afterward translate this to the result that we really want.

Theorem 99.1. Let ϕ : A → B be an injective F -algebra homomorphism of F -affine
domains A and B of dimensions m and n respectively. Then

(1) For each m ∈ Max(A), each irreducible component of V
(
ϕ(m)

)
has dimension

greater than or equal to n−m.
(2) There exists an open set U of Spec(A) such that for all m in U ∩Max(A), every

irreducible component of V
(
ϕ(m)

)
is of dimension n−m.

Proof. (1): There exist a1, . . . , am in m such that m is minimal over (a1, . . . , am) by
Corollary 97.28. Then every irreducible component of the variety VB

(
ϕ(a1), . . . , ϕ(am)

)
has dimension greater than or equal to n−m by Theorem 97.16 and the Principal Ideal
Theorem 97.19.

(2): We may view A ⊂ B hence qf(A) ⊂ qf(B). The transcendence degree of qf(B) over
qf(A) is n−m. Let B = F [b1, . . . , bN ] with b1, . . . , bn−m a transcendence basis of qf(B)
over qf(A) and A = F [a1, . . . , aM ]. Hence m of the ai’s are algebraically independent
over F and the others polynomials in them (after appropriate clearing of denominators).
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Fix i, i = n −m + 1, . . . , N . Since bi is algebraically dependent on b1, . . . , bn−m over
qf(A), there exist fi ∈ F (a1, . . . , aM , b1, . . . , bn−m)[ti] satisfying

(*) fi(a1, . . . , aM , b1, . . . , bn−m, bi) = 0

We may assume that fi lies in F [a1, . . . aM , b1, . . . , bn−m, ti]. This allows us to view as
F [a1, . . . aM ][ti, b1, . . . , bn−m] by clearing denominators. Let gi(a1, . . . , aM) ∈ F [a1, . . . , aM ]
be the coefficient of fi of maximal total degree and maximal in the lexicographic order
of ti, b1, . . . , bn−m (of nontrivial monomials of fi). Then VA(gi) < Spec(A) is closed.

Therefore, V =
⋃N
i=n−m+1 VA(gi) < Spec(A) is also closed. In particular, U = Spec(A)\V

is a nonempty open subset. Let P ∈ U and X = VB(p) be an irreducible component of
VB
(
ϕ(P)

)
. Let : B → B/ϕ(P) by bi 7→ bi for i = 1, . . . , N and ˜ : B/ϕ(P)→ B/p by

bi 7→ b̃i for i = 1, . . . , N . By equation (*), each b̃i, i = n−m + 1, . . . , N , is algebraically

dependent on b̃1, . . . , b̃n−m over F . It follows that dimA V (p) = tr degqf(A)B/p ≤ n −m
and hence by (1), we have equality. �

Remark 99.2. We translate the above theorem in terms of irreducible abstract F -affine
varieties. If ϕ : X → Y is a dominant map of irreducible abstract F -affine varieties (i.e.,
the associative map of an F -affine monomorphism of F -affine domains), then for all closed
points y ∈ Y and irreducible components Z of ϕ−1(y) := {x ∈ X | ϕ(x) = y}, we have

dimX ≤ dimY + dimZ

and there exists an nonempty open set U ⊂ X such that

dimX = dimY + dimZ

for all y ∈ U . For F -affine varieties over an algebraically closed field, we get the analogous
result with the closed points being elements in FM (in the notation of the proof of the
theorem) by the Hilbert Nullstellensatz.

Remark 99.3. Let X be a topological space and Y ⊂ X. We say that Y is locally closed
in X if Y is open in a closed subset of X. (Equivalently, Y is the intersection of an open
and a closed subset of X.) We say that Y is constructible if Y is a finite union of locally
closed subsets of X. Then it is a fact that if ϕ : A → B is an F -algebra homomorphism
of affine F -algebras, it is always a constructible subset of Spec(A) although im aϕ may
not be an affine F -algebra.

Exercises 99.4.

1. Let ϕ : A → B be an algebra homomorphism of domains. Using tensor products (cf.
Exercises 39.12(15) and (23)), one defines the scheme theoretic fiber of a aϕ : Spec(B)→
Spec(A) over p in Spec(A) to be Spec

(
B ⊗A qf(A/p)

)
. Show that B ⊗A qf(A/p) =

Bp ⊗A A/p = Bp/pBp.

2. In the previous exercise, show that the map

(aϕ)−1(P)→ Spec(B)⊗A qf(A/p) by P 7→ PBp/p

is a homeomorphism of topological spaces.
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100. Addendum: Japanese Rings

Let A be a Noetherian domain with quotient field F . We say that A is a Japanese
ring if whenever K/F is a finite extension of fields, the integral closure AK of A is a
finitely generated A-module. We saw in Theorem 80.5 that if A is a Noetherian normal
domain with quotient field F and K/F a finite separable extension, then the integral
closure AK of A in K is a finitely generated A-module. In particular, if char(F ) = 0
a normal domain A is Japanese. The hypothesis that K/F is separable is a nontrivial
condition if char(F ) = p > 0. Indeed in the positive characteristic case, A may not be
Japanese, even if A is normal. In fact, Schmidt-Nagata showed if F is satisfies [F : F p] is
infinite and

S := {Fα | F p ⊂ Fα ⊂ F are fields with Fα/F
p a finite extension}

partially ordered by ⊂ with Γ = {α | Fα ∈ S} and Aα = Fα[[t]], the formal power series
ring with coefficients in Aα. then Aα is a DVR with maximal ideal Aα. Further let
A :=

⋃
ΓAα, a ring with the obvious structure. Then it can be shown that A is a discrete

valuation ring but is not Japanese, i.e., the result, in general, is false for dimension one
noetherian rings. Of course fields are Japanese. We show even more is true. To investigate
inseparable extensions, we need to use properties of purely inseparable extensions (cf.
Exercise 53.10(14)). We begin with the following.

Lemma 100.1. Let A be a Noetherian domain with quotient field F . Suppose that for all
finite, purely inseparable field extensions E of F that AE is a finitely generated A-module.
Then A is Japanese.

Proof. Let K/F be a finite field extension and L/K a normal closure of K/F . As
AK ⊂ AL and A is a Noetherian ring, it suffices to show that AL is a finitely generated
A-module by Theorem 40.7. So we may assume that K/F is a normal extension. Let E =
KG(K/F ). Then E/F is Galois, so separable and E/F is purely inseparable by Exercise
53.10(14). As AE is a finitely generated A-module by hypothesis, it is a Noetherian normal
domain, so AK is a finitely generated AE-module by Theorem 80.5. It follows that AK is
a finitely generated A-module. �

A Noetherian domain A is called universally Japanese if every domain B that is a
finitely generated A-algebra B is Japanese.

Theorem 100.2. Every field is universally Japanese.

Proof. Let A be an affine F -algebra that is also a domain with quotient field K
and L/K a finite field extension. We must show that AL is a finitely generated A-
module. By the Noether Normalization Theorem 97.1, there exist x1, . . . , xn in A alge-
braically independent over F with F [x1, . . . , xn] ⊂ A integral. As K/F (x1, . . . , xn) is a
finite field extension. so is L/F (x1, . . . , xn). Therefore, it suffices to show that AL is
a finitely generated F [x1, . . . , xn]-module, i.e., we may assume that A = F [x1, . . . , xn].
Since F [x1, . . . , xn] ∼= F [t1, . . . , tn], we can assume further that A = F [t1, . . . , tn] and
K = F (t1, . . . , tn). Moreover, by Lemma 100.1, we may assume that L/K is purely insep-
arable. As A is a normal Noetherian domain, we may also assume that char(F ) = p > 0.
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Since L/K is finite and purely inseparable, there exists a positive integer m satisfying
Lp

m ⊂ K = qf(A). Let

C := the set of the pmth roots

of all the coefficients of all the fi, gi

and

L = K(a1, . . . , an) with

ap
m

i =
fi
gi

with fi, gi,∈ A, gi 6= 0 for all i

F̃ = F (C) = F [C]

E = F̃ (t
1
pm

1 , . . . , t
1
pm

n ).

We have K ⊂ L ⊂ E, using the Children’s Binomial Theorem. As A is a Noetherian ring,
it suffices to show that AE is a finitely generated A-module. Let

B = F̃ [t
1
pm

1 , . . . , t
1
pm

n ] = F [C, t
1
pm

1 , . . . , t
1
pm

n ].

Each of the finitely many elements, c ∈ C, t
1
pm

1 , . . . , t
1
pm

n , is integral over A, so B is a
finitely generated A-module. We also have that B ⊂ AE with qf(B) = E and B =

F̃ [t
1
pm

1 , . . . , t
1
pm

n ] a UFD, hence normal. Thus AE = B and the result follows �

Corollary 100.3. Let F be a field and A an affine F -algebra that is also a domain
with K = qf(A). If L/F be a finite field extension, then AL is an affine F -algebra. In
particular, the integral closure of A is a affine F -algebra.

A noetherian ring A is called a Nagata ring if A/p is Japanese for every prime ideal
p in Spec(A). It is a deep theorem that a noetherian domain A is a Nagata ring (a
property internal to A) if and only if it is universally Japanese. In particular, if A is a
Dedekind domain of characteristic zero, then A is a Nagata ring as it is Japanese and
its quotients determined by maximal ideals are finite fields. Hence any Dedekind domain
of characteristic zero is univerally Japanese. This is important in arithmetic algebraic
geometry.

101. Cn-fields

We saw that over a finite field, every homogeneous polynomial of degree d in more than
d variables has a nontrivial zero. We generalize this result, to classes of fields satisfying
every homogeneous polynomial of degree d over the field in more than dn variables for a
fixed n has a nontrivial zero. Examples of fields satisfying this are fields of transcendence
degree n over algebraically closed fields. This result will be applicable to the study of
non-commutative F -algebras to be studied. We do give one example of this in this section,
viz., an application to the generalization the Hamiltonian quaternions. Except for using
the Principal Ideal Theorem to begin the first case of an induction proof, this section
would have fit in the field theory part of the text.



101. Cn-FIELDS 591

Definition 101.1. Let f ∈ F [t1, . . . , tn] be a homogeneous form of degree d. We say that
f is normic if f has only the trivial zero.

Example 101.2. Let K/F be a finite extensions of fields with B = {x1, . . . , xn} an F -
basis. The Norm Form ofNK/F is defined to be the homogeneous polynomialNK/F (t1, . . . , tn) ∈
F [t1, . . . , tn) of degree n satisfying (a1, . . . , an) 7→ NK/F (a1x1 + · · ·+anxn) for a1, . . . , an ∈
F relative to the basis B. If x = a1x1 + · · ·+ anxn is not zero, then NK/F (x) is not zero,
so NK/F is normic.

[If charF = p > 0 and K/F is not separable, let K/E/F with E the maximal separable

extension of F in K, then NK/F (x) is defined to be
(
NE/F (x)

)[K:E]
.]

Lemma 101.3. Let F be a field that is not algebraically closed. Then there exist normic
forms over F of arbitrary large degree.

Proof. Let K/F be of degree n > 1. By the example, there exists a normic form of
degree n. Let s > 1, and suppose that fs is a normic form of degree ns. Then

fs+1(t1, . . . , tn2) :=

fs
(
fs(t1, . . . , tn), fs(f(tn+1, . . . , t2n), . . . , (fs(tn2−n+1, . . . .t

2
n)
)

is a homogeneous form of degree ns+1 and is a normic form, since any zero of fs+1 would
give a zero of fs. �

Definition 101.4. A field F is called a Cn-field if for every positive integer d and every
homogeneous polynomial f of degree d in more than dn variables has a nontrivial zero,
i.e., we have |ZF (f)| > 1. [A C1-field is also called a quasi-algebraically closed field.]

Example 101.5. Let F be a field.

(1) F is algebraically closed field it is clearly a C0-field and conversely no non-
algebraically closed field is a C0-field by Example 101.2.

(2) If F is finite, then it is a C1-field by Chevalley-Warning Theorem 67.5.

We give a simple application for C1-fields.

Proposition 101.6. Let F be a C1-field and K/F a finite field extension. Then NK/F :
K× → L× is surjective.

Proof. Suppose that [K : F ] = n with B = {x1, . . . , xn} an F -basis. LetNK/F (t1, . . . , tn) ∈
F [t1, . . . , tn) denote the norm form based on B. Let 0 6= x ∈ F and f = N(t1, . . . , tn, t)−
xtn ∈ F [t1, . . . , tn, t], a homogeneous form of degree n in n+ 1 variables, so has a solution
(a1, . . . , an, a) ∈ F n+1. As the norm form is normic, we cannot have a = 0. Let bi = ai/a
for i = 1, . . . , n. Then N(b1x1 + · · ·+ bnxn) = NK/F (b1, . . . , bn) = x. �

The definition of Cn-fields arose in Lang’s thesis. One can also define Cn(d)-fields,
i.e., fields for which all homogeneous polynomials over F of fixed degree d in greater than
dn-variables have a nontrivial zero. Let F be a local field, i.e., a field with a complete
under a discrete valuation with finite residue class field. This includes all p-adic fields
arising from completions of number fields under the p-adic completion, e.g., the field of
p-adic numbers Qp, the quotient field of the p-adic integers (cf. Exercise 98.32(9)). Then
F is a C2(2)-field. In fact, if K is a number field in which −1 is a sum of squares, it
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is a C2(2)-field (by the theorem of Hasse-Minkowski). Artin, who was Lang’s advisor,
conjectured that p-adic fields were C2-fields. It was shown that they were C2(3)-fields,
but Terjanian showed Artin’s conjecture to be false. However, using model theory, Ax
and Kochen, showed that that for a fixed d only finitely many Qp were not C2(d)-fields.

In this section, we show that if F is an algebraically closed field, any field of transcen-
dence degree n over F is a Cn-field. We apply this theorem to establish a special case of
Tsen’s theorem about algebraic extensions of F (t) with F an algebraically closed field.
The general case of Tsen’s Theorem will be proven in Section 106.

Theorem 101.7. (Lang-Nagata) Let F be a Cn-field and f1, . . . , fr ∈ F [t1, . . . , tn] be
homogeneous forms of degree d. If N > rdn, then |Z(f1, . . . , fr)| > 0.

Proof. If n = 0, then F is algebraically closed. By Corollary 97.20 to the Principal
Ideal Theorem, dimZ(f1, . . . , fr) ≥ N − r > 0, so the result follows. Therefore, we may
assume that F is not algebraically closed, i.e., F is not a C0−field so n > 0. In particular,
by the lemma, there exists a normic form ϕ of degree s > r. Define

ϕ1 :=

ϕ
(
f1(t1, . . . , tN), · · · , fr(t1, . . . , tN), f1(tN+1, t2N), . . . , fr(tN+1, t2N),

. . . f1(tkN+1, t(k+1)N), . . . , fr(tkN+1, t(k+1)N), 0, . . . , 0
)

where rk ≤ s < r(k + 1). Let [x] denote the largest integer in x ∈ R. So ϕ1 is a

homogeneous form in N
[s
r

]
variables of degree ds ≤ dr(

[s
r

]
+ 1) variables. If n = 1, i.e.,

F is a C1-field, then ϕ1 has a nontrivial zero if

(*) N
[s
r

]
> dr(

[s
r

]
+ 1) ≥ ds.

Since N − dr > 0, equation (*) will hold if s is chosen sufficiently large. As ϕ is normic,
a nontrivial zero for ϕ1 gives an element in Z(f1 . . . , fr). If n > 1, we can iterate the
above process, defining ϕ1, . . . , ϕm, . . . . We must show that there exists an integer m
satisfying |Z(ϕm)| > 1. Indeed, suppose such an m exists. Choose a minimal such m. As
ϕm−1 is normic by the choice of m, a nontrivial zero for ϕm gives a nontrivial element in
Z(f1 . . . , fr).
Consequently, we need only show that there exists a nonzero m satisfying |Z(ϕm)| > 1.
Let

Dm = degϕm = dms (= total degree)

Nm = the number of variables of ϕm =
[Nm−1

r

]
N.

Claim. If m >> 0, then Nm > (Dm)n:

If we prove the claim, then we are done by the definition of being a Cn-field. We shall, in
fact, prove that NmD

−n
m →∞ as m→∞.

[If we ignore [ ], we roughly have Nm ≈
Nm−1

r
N ≈ Nm

rm
s, so

NmD
−n ≈ Nmr

−ms1−md−mn ≥ rmdnmr−ms1−md−mn +m+ 1
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which goes to infinity as m→∞. Hence the above is plausible.]

We have

Nm+1 =
[Nm

r

]
N >

Nm

r
N >

(Nm

r
− 1
)
N = Nm

N

r
−N.

Iterating this inequality yields

Nm+1 >
(
Nm−1

N

r
−N

)N
r

= Nm−1
N2

r2
−N

(
1 +

N

r

)
> · · · > N1

(N
r

)m
−N

(
1 +

N

r
+
N2

r2
+ · · ·+ Nm−1

rm−1

)
= N1

(N
r

)m
−N

((N/r)m − 1)

(N/r)− 1

)
=
(
N1 −

Nr

N − r

)(N
r

)m
+

Nr

N − r

>
(
N1 −

Nr

N − r

)(N
r

)m
.

As N1 = N [
s

r
], we may choose s >> 0 to satisfying N1 > Nr/(N − r). Hence if we set

C = N1 −Nr/(N − r), we have

Nm+1

Dn
m+1

>
C(N/r)m

Dn
m+1

=
C(N/r)m

dm+1)nsn
=

C

(ds)n

( N
rdn

)m
→∞

as m→∞, since N > rdn. �

Theorem 101.8. Lang) Let F be a Cn-field and K/F a field extension.

(1) If K/F is algebraic, then so is K.
(2) F (t) is a Cn+1-field.

In particular, if m = tr degFK, then K is a Cn+m-field.

Proof. (1): Let f ∈ K[t1, . . . , tN ] be a homogeneous form of degree d and N > dn.
Then there exists a field extension K/E/F with E/F finite and f ∈ E[t1, . . . , tN ]. Let
B = {x1, . . . , xm}, be an F -basis for E. Let tij, 1 ≤ i ≤ N and 1 ≤ j ≤ m, be
the algebraically independent elements over F satisfying ti = ti1x1 + · · · + timxm for
i = 1, . . . N . Substituting these into f and writing the coefficients of F in the basis B
yields

f(t1, . . . , tN) = f1(t11, . . . , tNm)x1 + · · ·+ fm(t11, . . . , tNm)xm

with fi ∈ F [t1, . . . , tN) ∈ F (t)[t11, . . . , tMm] homogeneous forms of degree d, j = 1, . . . ,m.
Since Nm > mdn, the fi’s have a common nontrivial zero by the Lang-Nagata Theorem
101.7. This gives a nontrivial zero for f over K.

(2): Let f ∈ F (t)[t1, . . . , tN ] be a homogeneous form of degree d with N > dn+1. Clearing
denominators does not change the condition that f has or does not have a nontrivial zero,
so we may assume that f ∈ F [t][t1, . . . , tN ]. Let r = degt f , the degree of f in t. Let
m > 0, to be chosen later. Let tij, 1 ≤ i ≤ N , 0 ≤ j ≤ m be the algebraically independent



594 XVII. INTRODUCTION TO COMMUTATIVE ALGEBRA

over F satisfying ti = ti0 + ti1t + · · · + timt
m for i = 1, . . . N . Substituting these into f

yields
f(t1, . . . , tN) = f0(ti0, . . . , tNm)t0 + · · ·+ fm(t10, . . . , tNm)tdm+r.

Each fi is a homogeneous form of degree d in N(m+1) variables. Since N > dn+1, we can
choose m >> 0 to satisfy N(m+ 1) > dn(dm+ r+ 1), i.e., (N − dn+1)m > dn(r+ 1)−N .
With this choice of m, the fi have a nontrivial common zero that yields one for f over
F (t). �

Corollary 101.9. Let F be an algebraically closed field and K/F satisfying tr degFK =
n. Then K is a Cn-field.

We give an application, which we shall generalize later. To do so, we generalize the
definition of Hamiltonian quaternions, which in itself, is of mathematical interest.

Construction 101.10. We follow the steps in our construction of the Hamiltonian
quaternions. Let F be a field of characteristic different than two (leaving some verifi-
cations to the reader). ([f the characteristic of F is two, a different generalization holds.]
Let a, b ∈ F×. Let A be a four dimensional vector space over F on basis {1, i, j, k} where
1 = 1F ∈ V . One checks that A becomes a (non-commutative) ring by linearly extending

(101.11) i2 = a, j2 = b, k = ij = −ji
(so k2 = −ab) with 0A = 0F and 1A = 1F , called a generalized quaternion algebra .

A is an F -algebra, i.e., rx = xr for all r ∈ F, x ∈ A with center F (check). We denote

this F -algebra by
(a, b
F

)
. We also assume when this is written, that it comes with a basis

{1, i, j, k} satisfying equation (101.11). So the Hamiltonian quaternions can be written

H =
(−1,−1

F

)
. Check that

(b, a
F

)
∼=
(a, b
F

)
as F -algebras.

Let A =
(a, b
F

)
. Define : A→ A by

x = x01 + x1i+ x2j + x3k 7→ x = x01− x1i− x2j − x3k, with the xi ∈ F.
This map is an anti-isomorphism (just as for the Hamiltonian quaternions) and an invo-
lution.

We also have a norm map N : A→ F defined by

z 7→ zz = x2
0 − ax2

1 − bx2
2 + abx2

3

for all z = x01 + x1i+ x2j + x3k in A. It satisfies for all x, y ∈ A:

1. 1 = 1.
2. x+ y = x+ y.
3. xy = y x.
4. N(xy) = N(x)N(y)(= N(y)N(x)).

If A is a generalized quaternion algebra and N(x) 6= 0 for x ∈ A, then x has an
inverse, viz., x/N(x), hence is a division ring if N(x) 6= 0 for all nonzero x ∈ A. The
difference between the Hamiltonian quaternions and generalized quaternions, is that it is
now possible that N(x) = 0 with x nonzero which means that A may not be a division
ring.
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Lemma 101.12. Let F be a field of characteristic different from two. If a, b, x, y ∈ F×,
then (a, b

F

)
∼=
(ax2, by2

F

)
:

Proof. Let {1, i, j, k} and {1, i′, j′, k′} be the defining F -bases for
(a, b
F

)
∼=
(ax2, by2

F

)
,

respectively. As (xi)(yj) = xy(ij) = −(yj)(xi), we see that the F -linear map

ϕ :
(ax2, by2

F

)
→
(a, b
F

)
defined by i′ 7→ xi, j′ 7→ yj′, and k′ 7→ xyk

is an F -linear isomorphism and is checked to be a ring isomorphism (hence an F -algebra
isomorphism). �

Corollary 101.13. Let F be a field of characteristic different from two. Then
(1, b

F

)
∼=

M2(F ).

Proof. If {1, i, j, k} is the F -basis for
(1, b

F

)
, then

i 7→
(

1 0
0 −1

)
and j 7→

(
0 b
1 0

)
defines an F -algebra isomorphism. �

Examples 101.14. 1. Over the complex numbers, every generalized quaternion C-algebra
is isomorphic to Mn(C).

2. Over the real numbers, if a, b ∈ R×,(a, b
R

)
∼=

{
H, if a < 0 and b < 0

M2(R), otherwise.

More generally, we have

Proposition 101.15. Let F be a field of characteristic different from two and A =
(a, b
F

)
.

Then the following are equivalent:

(1) A is isomorphic to M2(F ).
(2) A is not a division ring.
(3) There exists a nonzero element in A with zero norm.
(4) The element b is a norm from the field extension F (

√
a)/F .

Proof. We need only prove (3)⇒ (4) and (4)⇒ (1). If a is a square, both implica-
tions follow, so we may assume not.

(3)⇒ (4): F (
√
a)/F is a quadratic extension. If x = x01 + x1i+ x2j + x3k in A satisfies

N(x) = 0, we have

NF (
√
a)/F (x2 +

√
ax3)b = (x2

2 − ax2
3)b = x2

0 − ax2
1.

If x2
2 − ax2

3 is zero, this equation implies that a is a square, so it is not zero. Hence

b = NF (
√
a)/F (x0 +

√
ax1)NF (

√
a)/F (x2 +

√
ax3)−1
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and (4) follows.

(4) ⇒ (1): As b is a norm from F (
√
a), so is b−1. Let b = y2 − az2, with y, z ∈ F .

Set j′ = yj + zij. Then (j′)2 = by2 − abz2 = 1. Check that j′i = −ij′. Let i′ :=
(1 + a)i+ (1− a)j′i. Check that i′j′ = −j′i′ and (i′)2 = (1 + a)2a− (1− a2)a = 4a2. Then

the map A →
(1, 4a2

F

)
defined by i 7→ i′, j 7→ j′, k 7→ k′ = i′j′ defines an F -algebra

isomorphism. Since we know that
(1, 4a2

F

)
∼= M2(F ), the result follows; �

Corollary 101.16. Let F be a field of characteristic not two. A generalized quaternion
F -algebra is either a division F -algebra or isomorphic to M2(F ). In particular, it is an
F -algebra with center F that is simple as ring and four dimensional as an F -vector space.

We now give our application to the principal subject of this section. The generalization
of this result is called Tsen’s Theorem, which we shall come back to when we study
noncommutative algebra.

Corollary 101.17. Let F be a field of transcendence degree one over an algebraically
closed field. The every generalized quaternion algebra over F is isomorphic to M2(F ).

Proof. Let A =
(a, b
F

)
be a generalized quaternion F -algebra on basis {i, j, k}.

Define NA/F ) ∈ F [t1, . . . , t4] by NA/F (x0, x1, x3, x4) = N(x0 + x1i + x2j + x3k). Then
NA/F is a homogeneous polynomial of degree four. As F is a C1-field, it has a nontrivial
zero. The result follows. �

Exercises 101.18.

1. Fill in the details in Construction 101.10.

2. Fill in the details of Proposition 101.15

3. Show that the generalized quaternion algebra
(a, b
F

)
is isomorphic to

(a,−ab
F

)
. In

particular,
(a, a
F

)
∼=
(a,−1

F

)
.

4. Show if A =
(a, b
F

)
is a generalized quaternion algebra, then A is not a division F -

algebra if and only if the quadratic polynomial at21 + bt22 = 1 has a nontrivial solution.

In particular if a 6= 0 or 1, then
(a, 1− a

F

)
is not a division F -algebra.
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CHAPTER XVIII

Division and Semisimple Rings

In this chapter, we study the simplest non-commutative rings, viz., division rings.
More generally, we study matrix rings over division rings. In the first section, we show
that simple left Artinian rings are up to isomorphism matrix rings over division rings
and uniquely so. We then study products of such rings. This is important as it is the
foundation of the theory of finite group representations that we shall study in the next
chapter. We then investigate another way of obtaining division rings important in number
theory. Finally, we generalize Wedderburn’s Theorem that finite division rings are fields
to a theorem of Jacobson, showing that a ring is commutative if for every element x in
the ring, there exists an integer n satisfying xn = x.

102. Wedderburn Theory

Modules over a division ring are just vector spaces with a line in a vector space a
‘simple’ module. As vector spaces are direct sums of lines, a module over a division ring
is a direct sum of ‘simple’ submodules. modules over division rings, i.e., vector spaces are
direct sums of lines. In this section, we shall generalizes this to a module over a simple
left Artinian ring, i.e., any such is a direct sum of ‘simple’ submodules. We shall also
prove Wedderburn’s Theorem that any simple Artinian ring is, in fact, isomorphic to a
matrix ring over a division ring. We begin with properties of modules.

Definition 102.1. Let R a nonzero ring. We say

1. A nonzero (left) R-module is irreducible (or simple) if it contains no proper submodules.
An irreducible left ideal in R is also called a minimal left ideal.

2. A (left) R-module is called completely reducible if every submodule of it is a direct
summand of it.

3. The ring R is (left) semisimple if it is a completely reducible module over itself.

Of course, we have the analogous definitions for right R-modules. When we wish to
consider right modules we shall write the word right.

Examples 102.2. 1. Over a division ring, every vector space is completely reducible,
since every vector space is free on a basis.

2. Let D be a division ring. Then the kth column space of Mn(D),

Mk := {A = (aij) ∈ Mn(D) | aij = 0 if j 6= k},
is a minimal left ideal of R and is an n-dimension vector space over D. Moreover, as
Mn(D)-modules, we have

Mn(D) = M1 ⊕ · · · ⊕Mn and Mi
∼= Mj for all i, j.

599
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Lemma 102.3. Let M̃ be a nonzero R-module and Mi irreducible submodules of M̃ for i
in I (not necessarily non-isomorphic). Let M be the R-module

∑
IMi. Then there exists

a subset J of I satisfying M is the direct sum
⊕

JMj.

Proof. Using Zorn’s Lemma, we see that there exists a subset J of I maximal such
that N =

∑
JMj =

⊕
JMj. Let io be an element in I \ J . Then the R-module Mio is

irreducible and contains the submodule N ∩Mio , so either N ∩Mio = Mio , i.e., Mio ⊂ N
or N ∩Mio = 0, i.e.,

∑
J∪{io}Mj =

⊕
J∪{io}Mj. By maximality, this second case does not

occur, so M = N . �

Proposition 102.4. Let M be a nonzero R-module. Then the following are equivalent:

(1) M is a sum of irreducible R-submodules.
(2) M is a direct sum of irreducible R-modules.
(3) M is a completely reducible R-module.

Proof. (1)⇒ (2) follows from the lemma.

(2)⇒ (3): Let N be a submodule of M and M =
⊕

IMi with every Mi, i ∈ I, irreducible.
Using Zorn’s Lemma, there exists a maximal subset J of I such that N +

⊕
JMj =

N ⊕
⊕

JMj. By the argument in the proof of the lemma, this must be M .

(3)⇒ (1): We prove the following:

Claim 102.5. If M is a completely reducible R-module and M0 a nonzero submodule of
M , then there exists an irreducible submodule of M0:

Let m be a nonzero element of M0. Then we have an R-epimorphism

ρm : R→ Rm given by r 7→ rm.

As the the annihilator annRm is a left ideal in R, the map ρm induces an R-isomorphism

ρm : M/ annRm→ Rm.

Using Zorn’s Lemma, we know that there is a maximal left ideal m in R with annRm ⊂ m.
By the Correspondence Principle, mm < Rm is maximal, hence Rm/mm is irreducible.
By hypothesis, M is completely reducible, so M = M ′ ⊕ mm for some submodule M ′ of
M . Let x be an element of Rm. Then there exists an r ∈ m and an m′ ∈M ′ satisfying

x = m′ + rm so m′ = x− rm lies in M ′ ∩Rm.

It follows that

Rm = (M ′ ∩Rm)⊕mm ⊂M0 and M ′ ∩Rm ∼= Rm/mm is irreducible.

This establishes the claim. Now let M0 be the sum of all the irreducible submodules of M .
By the claim M0 6= 0. As M is completely reducible, M = M0 ⊕M1 for some submodule
M1. If M1 6= 0, then applying the claim again shows that M1 contains an irreducible
submodule of M . This contradicts the choice of M0. �

Corollary 102.6. Let D be a division ring. Then Mn(D) is semisimple.
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Remark 102.7. No nonzero ideal in Z is irreducible, so Z is not semisimple. If p > 0
is a prime in Z, then Z/pZ is semisimple as it is a field. More generally, Z/nZ with
n > 0 a product of distinct primes is semisimple. Note that Z/nZ, n > 0 a product of
distinct primes, satisfies the descending chain condition, i.e., is an Artinian ring, and has
no nonzero nilpotent (left) ideals A, i.e., (left) ideals A such that An = 0 for some positive
integer n. Note also that Z/nZ with n > 1 not square free is Artinian but has nonzero
nilpotent elements and is not semi-simple. (Cf. Exercise 103.7(4) below.)

Corollary 102.8. Let Mi, i ∈ I, be completely reducible R-modules. Then
∐

IMi is
completely reducible.

Corollary 102.9. Let M be a completely reducible R-module, and N a submodule of M .
Then N and M/N are completely reducible.

Proof. We may assume that N 6= 0. By Claim 102.5, there exists a submodule N0 of
N that is the sum of all the irreducible submodules of N . As M is completely reducible,
M = N0 ⊕ N1 for some submodule N1. As in the proof of the proposition, we see that
N = N0 ⊕ (N1 ∩ N). By Claim 102.5, we must have N1 ∩ N = 0, so N = N0 and N is
completely reducible. As M = N ⊕ N ′ for some submodule N ′ of M , N ′ is completely
reducible by what we have just shown, hence so is M/N ∼= N ′. �

Definition 102.10. Let R be a ring. An element e in R is called an idempotent if e2 = e.
If e1, . . . , en are idempotents, they are called orthogonal if eiej = δijei for all i and j.

Examples 102.11. Let R be a ring.

1. The elements 0 and 1 of R are idempotents. They are called the trivial idempotents
and are orthogonal.

2. If e is an idempotent so is 1− e, and then e, 1− e are orthogonal idempotents.

3. The sum of any orthogonal idempotents is an idempotent.

4. Let M = M1⊕M2 and pi : M →M be the projection m1 +m2 7→ mi, where mi ∈Mi,
for i = 1, 2. Then p1, p2 are orthogonal idempotents in the ring EndR(M).

5. Let S = Mn(R) and eij the matrix with 1 in the ijth entry, zero elsewhere. Then
e11, . . . , enn are orthogonal idempotents in S. We also note that

eiiSeii ∼= R as rings.

Proposition 102.12. Let R be a nonzero ring. Then the following are equivalent:

(1) Every R-module is completely reducible.
(2) Every short exact sequence in R-modules splits.
(3) The ring R is semisimple.
(4) R =

⊕n
i=1 Ai for some n and some left ideals Ai with each Ai, i = 1, . . . , n,

a minimal left ideal; and, furthermore, Ai = Rei, i = 1, . . . , n, with e1, . . . , en
orthogonal idempotents. Moreover if A is a minimal left ideal, then A = Ai for
some i. [The Ai need not be mutually non-isomorphic.]

Proof. The equivalence of (1) and (2) follows from the corollaries above and (4)⇒
(3) from the proposition. So we need only show (3)⇒ (4).
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As R is completely reducible, R =
⊕

I Ai for some minimal left ideals Ai. There exist
nonzero ei1 , . . . , ein in R for some n with eij ∈ Aij and 1 = ei1 + · · ·+ ein . It follows that
R ⊂ Ai1⊕· · ·⊕Ain , hence we must have equality. Changing notation, we may assume that
R = A1⊕· · ·⊕An, with ei ∈ Ai for each i and 1 = e1 + · · ·+en. It follows that ej =

∑
eiej

in A1⊕ · · · ⊕An, hence e1, . . . , ej are orthogonal idempotents. As 0 < Rej ⊂ Aj, we have
Rej = Aj, since Aj is irreducible for each j. Finally, if A is a minimal left ideal in R, then
A ∩ Aj > 0 for some j, so A = Aj. �

Remark 102.13. The proposition says that R is a semi-simple ring if and only if every
R-module is R-projective (cf. Exercises 39.12(12), (12)) if and only if every R-module is
R-injective (cf. Exercises 38.18(19), (21)).

Let D be a division ring and R = Mn(D). Then R is a simple ring, i.e., the only 2-sided
ideals in R are 0 and R and R is left and right semisimple, left and right Noetherian (i.e,
ACC on left and right ideals), left and right Artinian (i.e., DCC on left and right ideals),
since R is a finite dimensional D-vector space. More generally, if D1, . . . , Dr are division
rings and A = Mn1(D1)× · · · ×Mnr(Dr) then A is left and right semisimple, left and right
Noetherian, and left and right Artinian.

One problem that arises when working with vector spaces over noncommutative divi-
sion rings is that the composition of linear operators and the multiplication of their matrix
representations (relative to some fixed bases) of these operators does not correspond, in
fact, is reversed. One way around this is to have linear operators and scalars operate on
vectors on different sides. Another way is indicated by the following lemma.

Lemma 102.14. Let M be an R-module. Then the rings EndR(
∐n

i=1M) and Mn

(
EndR(M)

)
are isomorphic.

Proof. Let N =
∐n

i=1Mi with M = Mi for all i. Then we have the usual maps

ιi : Mi → N given by m 7→ (0, . . . , m︸︷︷︸
i

, . . . , 0)

and

πj : N →Mj given by (m1, . . . ,mn) 7→ mj

are an R-monomorphism and R-epimorphism, respectively, satisfying

πjιi = δij1Mi
and

n∑
j=1

ιjπj = 1N .

Let f ∈ EndR(N) and fij := πifιj in EndR(M). Define

ϕ : EndR(N)→ Mn

(
EndR(M)

)
by f 7→ (fij).

This map is clearly additive and it is a ring homomorphism, for if f, g lie in EndR(N), we
have

(fij)(glk) = (πifιj)(πlgιk) = (πifgιk) and 1 7→ (πlιj) = I.

Now define

ψ : Mn

(
EndR(M)

)
→ EndR(N) by (fij) 7→

n∑
i=1

n∑
j=1

ιifijπj,
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an additive map that is a ring homomorphism, for if (fij), (gij) lie in Mn

(
EndR(M)

)
, we

have ψ
(
diag(1M , . . . 1M)

)
= 1N and

ψ
(
(fil)(gkj)

)
= ψ

(
(
n∑
l=1

filglj)
)

=
n∑
i=1

n∑
j=1

n∑
l=1

ιifilgljπj

=
n∑
i=1

n∑
j=1

n∑
l=1

ιifilπlιlgljπj = ψ
(
(fil)

)
ψ
(
(gkj)

)
.

Clearly, ϕ◦ψ = 1
Mn
(

EndR(M)
) and ψ ◦ϕ = 1EndR(N), so ϕ and ψ are inverse isomorphisms.

�

For the next lemma, we do write endomorphisms and scalars on different sides.

Lemma 102.15. Let e be an idempotent in the ring R and define

ρ : eRe→ EndR(Re) by eae 7→ ρeae : xe 7→ xe · eae.
View Re as a right

(
EndR(Re)

)
-module. Then ρ is an isomorphism of rings.

Proof. Check that ρeae is an R-homomorphism of Re when we write endomorphisms
on the right, i.e., (re)ρeae = r(eρeae). [Notice when we write it in this way it looks like
the associative law.] It is also easily checked that ρ is a ring homomorphism.

ρ is a 1− 1: If 0 = re · eae = reae for all r in R, then, setting r = e, shows that eae = 0.

ρ is onto: Let f lie in EndR(Re). Then there exists an element a in R satisfying (e)f = ae
in Re ⊂ R. Therefore, for all r in R, we have

(re)f = (re · e)f = re
(
(e)f

)
= reae = re · eae = (re)ρeae,

so f = ρeae. �

The following is essentially an immediate observation, but of great use.

Lemma 102.16. (Schur’s Lemma) Let M be an irreducible R-module. Then EndR(M)
is a division ring.

Proof. Let f in EndR(M) be nonzero. Then ker f < M and 0 < im f ⊂ M . As M
is irreducible, ker f = 0 and im f = M , hence f is an R-isomorphism. �

We can now classify nonzero simple, left Artinian rings.

Theorem 102.17. (Wedderburn’s Theorem) Let R be a nonzero ring. Then the following
are equivalent:

(1) R is simple and left Artinian.
(2) R is simple and semisimple.
(3) There exists a division ring D and a positive integer n such that R ∼= Mn(D).

Suppose that R satisfies (3). Then in (3), D is unique up to a ring isomorphism and n
is unique. More precisely, if R satisfies (2) and e is a nonzero idempotent in R, then the
following are true:

(i) All minimal left ideals in R are isomorphic.
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(ii) If A is a minimal left ideal in R and D = EndR(A), then eRe ∼= Mm(D) for some
positive integer m.

(iii) In (ii), the ring D is a division ring and the center Z(eRe) of eRe is isomorphic
to Z(D), the center of D.

(iv) If D and E are division rings and Mm(D) ∼= Mn(E), with m,n positive integers,
then D ∼= E and m = n.

Proof. We have already shown that (3)⇒ (1) and (3)⇒ (2).

(1) ⇒ (2): As R is left Artinian, there exists minimal left ideal A of R by the Minimal
Principle. Let

0 < B :=
∑
r∈R

Ar ⊂ R,

a (2-sided) ideal. As R is simple,
∑

r∈RAr = B = R. Let ρr : A → Ar be the R-
epimorphism defined by a 7→ ar. Since A is irreducible, either ρr = 0 or ρr is an R-
isomorphism, i.e., either Ar = 0 or Ar ∼= A. It follows that R is completely reducible.

(2) ⇒ (3): It suffices to show that (2) ⇒ (i) — (iv), since 1 is an idempotent and
1R1 ∼= R. The argument to prove (1)⇒ (2) shows:

R =
∑

r∈RAr with A a minimal left ideal in R and

A ∼= Ar for all r in R satisfying Ar 6= 0,

as semisimple rings contain minimal left ideals. We now show conditions (i) — (iv) are
satisfied.

(i): As argued before, we see that

There exists a minimal left ideal A in R.

R = Ar1 ⊕ · · · ⊕ Arn for some r1, . . . , rn in R.

Every minimal left ideal in R is Ari for some i, hence is isomorphic to A.

(ii). As R is completely reducible, there exists a nonzero idempotent e in R. As 0 <
Re ⊂ R, Re is also a completely reducible R-module. By Claim 102.5, Re contains an
irreducible submodule, hence a minimal left ideal of R. Using the notation in the proof
of (i), we have

Re =
m⊕
j=1

(Arij ∩Re) ∼=
m∐
j=1

A,

where the ij, 1 ≤ j ≤ m, are those integers satisfying Arij ∩ Re 6= 0. By Lemmas 102.14
and 102.15 (with e = 1 as a special case), we have

eRe ∼= EndR(Re) ∼= EndR(
m∐
j=1

A) ∼= Mm

(
EndR(A)

)
.

This establishes (ii).

(iii) follows by Schur’s Lemma 102.16 and Exercise 102.21(4).

(iv): Let A = Mm(D), B = Mn(E), and e11 = (δ1iδ1j) in Mm(D). We have Ae11 ⊂ Mm(D)
is a minimal left ideal. It is unique up to isomorphism by (i). Similarly, if e′11 = (δ1iδ1j)
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in Mn(E), then Be′11 is a minimal left ideal in B, unique up to isomorphism. By Lemma
102.15 and Example 102.11(5), we have

D ∼= e11Ae11
∼= EndA(Ae11)

E ∼= e′11Be
′
11
∼= EndB(Be′11).

As A ∼= B, their unique minimal left ideals (up to isomorphism) must correspond, so
D ∼= E by the above. It follows that

m2 = dimD A = dimE B = n2,

so m = n also. �

Corollary 102.18. Let R be a simple ring. then R is left Artinian if and only if R is
right Artinian if and only if R is left semisimple if and only if R is right semisimple.

Proof. This is true for Mn(D) with D a division ring. �

Corollary 102.19. Let R be a simple, left Artinian ring. Then the following are equiva-
lent:

(1) R is a division ring.
(2) The only zero divisor of R is zero.
(3) The only idempotents of R are 0 and 1.
(4) The only nilpotent element in R is zero.

Let F be a field. Recall that a nonzero ring A is called an F -algebra if there exists a ring
homomorphism F → Z(A) where Z(A) is the center of A. This must be a monomorphism
and we usually identify F with F1A. This ring homomorphism makes A into an F -module,
i.e., a vector space over F . We say that the F -algebra A is a finite dimensional F -algebra
if dimF A is finite.

Corollary 102.20. Let F be a field and A a finite dimensional F -algebra. Suppose that
A is also a simple ring. Then A ∼= Mn(D) for some division ring D containing F in its
center. The division ring D is a finite dimensional F -algebra, unique up to isomorphism
and n is unique.

Proof. The ring A is left Artinian since a finite dimensional vector space over F . �

Let F be a field and A a finite dimensional F -algebra. If A is also simple and central,
i.e., Z(A) = F , then A is called a central simple F -algebra. By Wedderburn Theorem,
A ∼= Mm(D) for some division ring D. More over Z(D) = F and D is a finite dimensional
vector space over F . If D = F , we say that A is split. If A and B are central simple
F -algebras, we say that A and B are similar if A ∼= Mm(D) and B ∼= Mn(E) with D and
E isomorphic division rings. This is an equivalence relation by Wedderburn’s Theorem.
The classes of central simple F -algebras under this equivalence relation can be given an
abelian group structure and form what is called the Brauer group of F , an important
group in algebra and number theory. The Brauer group of R is isomorphic to Z/2Z and
the Brauer group of C is trivial, i.e., every central simple algebra over C splits. This
follows from the results in Section 104. A theorem of Tsen shows that the Brauer group
of a field of transcendence degree one over C is also trivial. This is harder to prove. The
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determination of the Brauer group of a number field is one of the crowning achievements
of twentieth century number theory.

Exercises 102.21.

1. Let V be a nonzero finite dimensional vector space over a field (or division ring) F .
Then V is is an EndF (V )-module via evaluation, i.e., fv := f(cv) for all f in EndF (V )
and v in V . Show that V is EndF (V )-irreducible.

2. Let R be a commutative ring with ideals Ai, i = 1, 2. Set

Vi := {p | p a prime ideal with Ai ⊂ p}.

Suppose that V1 ∩ V2 = ∅ and every prime ideal in R lies in V1 or V2, i.e., the set
of prime ideals is the disjoint union of V1 and V2. Show that R contains a nontrivial
idempotent.

3. Up to isomorphism, show that exists a unique irreducible R-module if R is simple and
left Artinian.

4. Show if R is a ring, the map R → Mn(R) given by r 7→ rI defines an isomorphism
between the center Z(R) of R and the center Z

(
Mn(R)

)
of Mn(R).

103. The Artin-Wedderburn Theorem

In the last section, we classified simple semisimple rings. In this section, we classify
semisimple rings. The prototype for the simple case was a matrix ring over a division ring.
The prototype for the general case is is a finite product of matrix rings over division rings.
This generalization is quite useful, as it gives a foundation for that part of the Theory of
Group Representations devoted to finite groups over fields of characteristic zero.

If we have a finitely generated completely reducible module over a ring R, then we
would expect a nice decomposition for it. Indeed, if we look at the case of a finite
dimensional vector space then it has a composition series. The analogue gives us the
following:

Lemma 103.1. Let M1, . . . ,Mr and N1, . . . , Ns be two finite collections of non-isomorphic
irreducible R-modules. If

Mm1
1

∐
· · ·
∐

Mmr
r
∼= Nn1

1

∐
· · ·
∐

Nns
s

for some positive integers m1, . . . ,mr, n1, . . . , ns, then r = s and there exists a permuta-
tion σ ∈ Sr such that Mi

∼= Nσ(i) for all i. In particular, if M = N , then Mi = Nσ(i) for
all i.

Proof. Let M = Mm1
1

∐
· · ·
∐
Mmr

r , N = Nn1
1

∐
· · ·
∐
Nns
s , and ϕ : M → N an

R-isomorphism. Clearly, ϕ and ϕ−1 sets up a bijection

{M1, . . . ,Mr} ←→ {N1, . . . , Ns},

so r = s. Changing notation, we may assume that Mi
∼= Ni for all i and we are reduced

to showing the following

Claim. If N is an irreducible R-module and Nm ∼= Nn, then m = n:
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Since D = EndR(N) is a division ring by Schur’s Lemma, and

Mm

(
EndR(N)

) ∼= EndR(Nm) ∼= EndR(Nn) ∼= Mn

(
EndR(N)

)
by Lemma 102.14, we have m = n by Wedderburn’s Theorem 102.17. The last statement
is immediate using ϕ = 1M �

An important generalization of this lemma, the Krull-Schmidt Theorem, occurs when
we replace the word irreducible by the word indecomposable, where an R-module is called
indecomposable if it cannot be written as a nontrivial direct sum of two submodules. We
shall not prove this generalization.

Lemma 103.2. Let R be a semisimple ring. Then R is left Artinian. More precisely, if
B is a nontrivial left ideal of R, then there exist unique minimal left ideals A1, . . . ,Am

in R satisfying B = A1 ⊕ · · · ⊕ Am.

Proof. We have shown that R = A1⊕ · · · ⊕An for minimal left ideals Ai and if A is
a minimal left ideal, then A = Ai for some i. It follows, as before, that

B =
m⊕
i=1

(Aji ∩B) with the ji satisfying Aji ∩B 6= 0.

The last lemma says that this is unique. As any submodule of B is a direct sum of some
of the Aj1 , . . . ,Ajm , the result follows. �

Our first formulation of the generalization of Wedderburn’s Theorem is the next result.
However, in the proof we shall show much more. Since notation will be used in the proof,
we shall postpone this more precise statement until after the proof.

Theorem 103.3. (Artin-Wedderburn Theorem) Let R be a semisimple ring. Then R
is an (internal) direct sum of finitely many simple left Artinian rings, all unique (up to
order). In particular, any semisimple right is both left and right Artinian (and left and
right semisimple).

Proof. We prove this in a number of steps.

Step 1. Let A be a minimal left ideal in R. Set

SA := {B | B ⊂ R a minimal left ideal with B ∼= A}

BA :=
∑
SA

B.

Then the following are true:

(i) BA ⊂ R is a 2-sided ideal.

(ii) If A′ is a minimal left ideal in R, then

A ∼= A′ if and only if BABA′ is not zero:

(i): Let B ∈ SA and x ∈ R. As ρx : B → Bx by y 7→ yx is an R-epimorphism, Bx = 0
or Bx ∼= B ∼= A. In either case, Bx ⊂ BA, so BA is a 2-sided ideal.

(ii): (⇒): We know that A = Re > 0 with e an idempotent. Then

0 6= e2 = e · e ∈ BABA = BABA′ .
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(⇐): Suppose that BABA′ is not zero. Then there exist a B ∈ SA and a nonzero b′ in
B′ ∈ SA′ with Bb′ 6= 0. As B is irreducible, B → Bb′ by x 7→ xb′ is an R-isomorphism.
As 0 < Bb′ ⊂ B′ with B′ irreducible, we have

A ∼= B ∼= Bb′ ∼= B′ ∼= A′.

Step 2. Let R = A1⊕· · ·⊕Aq with Ai, i = 1, . . . , q, the minimal left ideals in R, arranged
such that A1, . . . ,Am, m ≤ q, are all the mutually non-isomorphic ones. [So if i > m,
there exists a j ≤ m with Ai

∼= Aj and every minimal left ideal in A is isomorphic to
some Ai with i ≤ m.] Set Bi = BAi for 1 ≤ i ≤ m. Then R =

∑m
i=1 Bi and BiBj = 0 if

i 6= j (by Step 1). Moreover,

(i) R =
⊕m

i=1Bi.

(ii) If B is a nonzero 2-sided ideal in R, then B = Bi1 ⊕ · · · ⊕Bin , some ij, 1 ≤ ij ≤ m:

(i): Let C := Bi ∩
∑

i 6=j Bj. Then

BiBj = 0 so CBj = 0 = BjC as C ⊂ Bi,

BjBi = 0 so CBi = 0 = BiC as C ⊂
∑
j 6=i

Bj,

so C = RC = 0.

(ii): As R is completely reducible, there exists a minimal left ideal A in R contained
in B, and, in fact, B is completely reducible so a sum of minimal left ideals of R. As
A1, . . . ,Am are all the minimal left ideals of R up to isomorphism, we may assume that
A ∼= Ai lies in B and need only show

Claim. Bi ⊂ B:

Write A = Re with e a nonzero idempotent. We must show if A′ ∈ SA, then A′ ⊂ B.
Let a ∈ A = Re = Re · e = Ae. Therefore, there exists an element b in A such that
a = be = be · e = a · e, i.e., if a ∈ A then a = ae. Let ϕ : A → A′ be an R-isomorphism.
Then for every a in A, we have ϕ(a) = ϕ(ae) = aϕ(e) in A′. Since B is a 2-sided ideal,
A′ = Aϕ(e) ⊂ B, proving the claim.

Step 3. Let Bi be as in Step 2. Then Bi is a simple, left Artinian ring:

We know R = B1 ⊕ · · · ⊕Bm, so 1 = f1 + · · ·+ fm for some fi ∈ Bi.

Claim. The elements f1, . . . , fm are central orthogonal idempotents, i.e., in addition to
the fi being orthogonal idempotents, they lie in the center of R:

We know that f1, . . . , fm are orthogonal idempotents, so we need only show that they are
central. Let x be an element of R. Then we have x =

∑
i xi for some xi ∈ Bi for each i.

As 1Rx = x = x1R, we must have fixi = xi = xifi for all i and fjxi = 0 = xifj for all
j 6= i. It follows that fix = xfi as needed.

It follows by the claim that Bi is a ring with 1Bi = fi. Let B be a 2-sided ideal in Bi.
Since BiBj = 0 = BjBi for all j 6= i, we have

B = BiB = (
∑
j

Bj)BiB =
∑
j

BjB = RB,

and similarly B = BR. Therefore, B is a nonzero 2-sided ideal in R. By Step 2, B is a
sum of some of the Bj’s, hence must be Bi, so Bi is simple. As R is completely reducible,
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there exists a minimal left ideal A of R lying in Bi. If A′ < A is a left ideal in Bi, then
BjA

′ ⊂ BjBi = 0 for all j 6= i, so A′ is a left ideal in R, hence A′ = 0. Therefore, A is a
minimal left ideal in Bi. It follows easily that Bi is semisimple, hence left Artinian.

Step 4. Suppose that R =
⊕m

i=1Bi =
⊕n

j=1 Cj with the Bi’s as in Step 2 and each Cj a
2-sided ideal in R that is also a simple, left Artinian ring. Then m = n and there exists
a permutation σ ∈ Sm such that Bi = Cσ(i) for every i. The B1, . . . , Bm are called the
simple components of R and the decomposition R = B1⊕· · ·⊕Bm is called a Wedderburn
decomposition of R:

Each Bi ∩ Cj is a 2-sided ideal in both simple rings Bi and Cj. Therefore, for each i,
there exists a k with Bi ∩ Ck nonzero, hence Bi = Ck. Similarly, for each j, there exists
an l such that Bl ∩ Cj is nonzero, hence Bl = Cj. The result follows.

Step 5. Finish:

Each Bi is a simple, left Artinian ring, hence also right Artinian (and right semisimple).
It follows easily that R is also right Artinian. �

The proof of the theorem also shows the following:

Theorem 103.4. (Artin-Wedderburn) Let R be a nonzero ring. Then the following are
equivalent:

(1) R is semisimple.
(2) R is a finite direct product of simple, left Artinian rings.
(3) There exist (possibly isomorphic) division rings D1, . . . , Dm, some m, unique up

to isomorphism (and order), and unique positive integers n1, . . . , nm and a ring
isomorphism

R ∼= Mn1(D1)× · · · × Mnm(Dm) up to order.

If R is a semisimple ring and A1, . . . ,Am are all the non-isomorphic minimal left ideals
in R, then {A1, . . . ,Am} is called a basic set for R.

We leave the proof of the following two corollaries as exercises:

Corollary 103.5. Let R be a semisimple ring and {A1, . . . ,Am} a basic set. If M is an
irreducible R-module then M ∼= Ai for some i. In particular, if R is also simple, then, up
to isomorphism, there exists a unique irreducible R-module.

Corollary 103.6. Let R be a semisimple ring and {A1. . . . ,Am} a basic sets for R. Let
Bi =

∑
SAi

A for i = 1, . . . , r and M a nonzero R-module. Then BiM is a submodule of M

and is a sum of irreducible submodules each isomorphic to Ai. Further, M =
⊕m

i=1BiM .

Exercises 103.7.

1. If R is a semisimple ring and M a nontrivial R-module, then M is a direct sum of
irreducible modules, unique up to isomorphism and order.

2. Prove Corollary 103.5.

3. Prove Corollary 103.6.

4. Show that a ring is semisimple if and only if it is left artinian and has no nonzero
nilpotent left ideals.
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104. Finite Dimensional Real Division Algebras

We have seen that the (Hamiltonian) quaternion algebra H, the four dimensional real
vector space with basis {1, i, j, k}, made into a ring by defining a multiplication on this
basis by

i2 = −1, j2 = −1, ij = −ji = k

and extending this linearly to the whole space defines a division ring. The center {z ∈ H |
yz = zy for all y in H} of H is R. Frobenius solved the problem of finding all division
algebras D that are finite dimensional real vector spaces with R in its center, i.e.,

R = {x | xy = yx for all y in D}.
We call such algebras finite dimensional real division algebras. If D is such a division
algebra, then R → D given by r 7→ r1D is a ring monomorphism that we view as an
inclusion. The result is the following:

Theorem 104.1. (Frobenius) Let D be a finite dimensional real division algebra. Then
D is isomorphic to R, C, or H.

Proof. We may assume that R < D. As D is a finite dimensional real vector space,
for any element x in D, we must have x is a root of a nonzero polynomial in R[t] and
R[x] is a commutative ring. As R[x] ⊂ D with D a division ring, R[x] must be a domain.
It follows, just as in the proof of Theorem 48.13, that R[x] = R(x) is a field and a finite
extension of R. (Cf. Exercise 48.25(1).) By the Fundamental Theorem of Algebra, we
must have dimR R(x) ≤ 2 and if x is not a real number, {1, x} is a real basis for R(x)
and R(x) ∼= C. In particular, there exists an i in D such that i2 = −1. Then R(i) ∼= C,
so we can identify R(i) and C, which we do, i.e., we may view R ⊂ C ⊂ D. Therefore,
D is a (left) finite dimensional complex vector space. Let T : D → D be the C-linear
transformation given by x 7→ xi. Then T satisfies T 2 = −1D, so the minimal polynomial
qT of T satisfies qT | t2 + 1 in C[t]. It follows that the only possible eigenvalues of T are
±i and at least one of them most be an eigenvalue. Let ET (α) = {v ∈ D | Tv = αv}
for α in C, so either ET (i) 6= 0 or ET (−i) 6= 0. Since ET (i) ∩ ET (−i) = 0, we have
ET (i)⊕ ET (−i) ⊂ D. Let x be an element in D. Then we have

T (x− ixi) = xi+ ix = i(x− ixi), so x− ixi lies in ET (i)

T (x+ ixi) = xi− ix = −i(x− ixi), so x+ ixi lies in ET (−i).
As

x =
1

2
(x− ixi) +

1

2
(x+ ixi) lies in ET (i) + ET (−i),

we have D = ET (i)⊕ ET (−i) as a complex vector space.
If x ∈ ET (i) = {x ∈ D | ix = xi}, then C[x] is a commutative division ring, i.e., a

field. Therefore, by the Fundamental Theorem of Algebra, ET (i) = C, so dimC ET (i) = 1.
Consequently, if ET (−i) = 0, we must have D = C. So we may assume that ET (−i) is
nonzero. If x and y lie in ET (−i), then

(*) xyi = x(−i)y = ixy,

so xy lies in ET (i). Let y be a nonzero element in ET (−i). Define a C-linear transformation

ρy : D → D by x 7→ xy.



105. CYCLIC ALGEBRAS 611

As D is a division ring, ρy must be a monomorphism (why?). By (*), we have

ρy|ET (−i) : ET (−i)→ ET (i).

As the linear transformation ρy|ET (−i) is injective and dimC ET (i) = 1, we must also have
dimC ET (−i) = 1.

Claim: If x is a nonzero vector in ET (−i), then x2 is real and x2 < 0:

We know that x2 ∈ R(x) ∩ ET (i) = R(x) ∩ C by (*). As R[x] is a two dimensional real
vector space on basis {1, x} with x not lying in C, if a + bx, a, b real, lies in C, we must
have b = 0. It follows that x2 is real. If x2 > 0, then x2 = θ2 for some real number θ.
This means that ±θ, x would be three distinct roots of t2−x2 in R[t], which is impossible.
Therefore, x2 < 0 and the claim is established.

Now let j = x/
√
|x2|. Then j2 = −1. Set k = ij, Then {j, k} is a real basis for

the vector space ET (−i) — check — and {1, i, j, k} is a basis for the real vector space D
satisfying i2 = −1 = −j2 and k = ij = −ji. If follows that D ∼= H. �

105. Cyclic Algebras

Wedderburn’s Theorem shows that any central simple algebra is a matrix ring over
a division ring. However, it does not give any indication on how to find division rings.
Wedderburn was also interested in discovering new division rings. The simplest construc-
tion of new central simple algebras became important in Number Theory. In this section,
we introduce this construction. Behind its foundation is Hilbert’s Theorem 90 (and its
cohomological formulation that we shall not discuss).

We begin with the construction of new rings.

Definition 105.1. Let R be any nonzero ring and σ a ring automorphism of R. Define
the twisted polynomial ring R[t, σ] to be the ring with the usual addition of polynomials
with multiplication given by

(
∑
i

ait
i)(
∑
j

bjt
j) :=

∑
i,j

aiσ
i(bj)t

i+j

where the ai, bj lie in R. So, in general, t does not commute with elements in R, rather
we have tb = σ(b)t for all b in R.

Remarks 105.2. Let R be a nonzero ring and σ a ring automorphism of R.

1. If for any a and b in R, satisfying ab = 0, we have a = 0 or b = 0, i.e., R is a
non-commutative domain, then so is the twisted polynomial ring R[t, σ].

2. Let R = K be a field. Then the left division algorithm holds in K[t, σ]. In particular,
every left ideal is principal (i.e., K[t, σ] is a left PID). If F ⊂ K〈σ〉 is a subfield and f
is a polynomial in F [t], then K[t, σ]f is a two sided ideal, so K[t, σ]/K[t, σ]f is a ring.

Definition 105.3. Let K/F be a (finite) cyclic field extension of degree n, i.e., Galois
with cyclic Galois group, with G(K/F ) = 〈σ〉 and f = tn − a a polynomial in F [t] with
a nonzero. Then (K/F, σ, a) := K[t, σ]/K[t, σ]f is called a cyclic algebra of degree n over
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F . Equivalently, using the canonical epimorphism : K[t, σ]→ K[t, σ]/K[t, σ]f , we have
(K/F, σ, a) is a vector space over K on basis {1, x, . . . , xn−1} with x = t and satisfying

xn = a and xβ = σ(β)x for all β in K.

It is convenient to use both of these formulations, so we switch between them with this
notation without further comment.

Note that a cyclic algebra (K/F, σ, a) of degree n over F is a finite dimensional F -algebra
of F -dimension n2.

Examples 105.4. 1. The Hamiltonian quaternions H is the cyclic algebra (C/R, ,−1)
over R of degree 2. Indeed, viewing C = R(

√
−1), then j is the unique element in H

satisfying jαj−1 = α for all, i.e., jα = αj for all α ∈ C (as it is true for i) and j2 = −1.

2. More generally, the generalized quaternions in Construction 101.10 are cyclic algebras
over a field F of characteristic different from two (and in characteristic two, a differ-
ent construction produces an F -algebra of generalized quaternions which we have not

constructed). Indeed, let A =
(a, b
F

)
be a generalized quaternion algebra with a not

a square in F with F -basis {1, i, j, k}. Let K = F (
√
a) = F (i) and G(K/F ) = 〈σ〉.

Then j ∈ A× satisfies jαj−1 = α for all α ∈ K, i.e., jα = αj, just as above, with
j2 = b.

3. We now generalize the construction of generalized quaternions. Let F be a field of
characteristic zero or of prime degree not dividing n and containing a primitive nth
root of unity. Suppose that K/F is a cyclic extension of degree n with G(K/F ) = 〈σ〉.
Then K = F (α) with irreducible mF (α) = tn − a in F [t], so αn = a and σ(α) = ζα
for some primitive nth root of unity ζ by Theorem 60.20 and its proof. Let A be an
F -algebra of dimension n2 on basis {αiβj | 0 ≤ i, j ≤ n− 1} with K ⊂ A satisfying

A =
n−1∐
i,j=0

Fαiβj

yz = ζzy

αn = a, βn = b

Then βθβ−1 = σ(θ), i.e., βθ = σ(θ)β, for all θ ∈ K, so A is a cyclic F -algebra.
Conversely, if A is a cyclic F -algebra with K ⊂ A, then we shall see in Section 106
that the Skolem-Noether Theorem 106.18 will imply that there exists β ∈ A satisfying
β−1θβ−1 = σ(θ), i.e., βθ = σ(θ)β, for all θ ∈ K. In particular, βn = b, for some b ∈ F ,

and A = (K/F, σ, a). This cyclic algebra is usually written
( a, b
F, ζ

)
.

We shall also see that if F has a cyclic extension of degree n, then Mn(F ) is also an
example of a cyclic algebra. To do this, we show that cyclic algebras are central simple
algebras.

Proposition 105.5. Let R = (K/F, σ, a) be a cyclic algebra over F of degree n. Then
R is a central simple algebra over F . Moreover, the centralizer ZR(K) := {x ∈ R | xb =
bx for all b ∈ K} is K and the only field L satisfying K ⊂ L ⊂ R is K.
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Proof. We first show that R is simple. Write

R = K1R ⊕ · · · ⊕Kxn−1

xn = a with a ∈ F and xα = σ(α)x for all α ∈ K.
Let 0 < A ⊂ R be a 2-sided ideal. Choose a nonzero element z ∈ A satisfying

z = αi1x
i1 + · · ·+ αirx

ir with αi1 , . . . , αir ∈ K×, 0 ≤ i1 < · · · < ir < n

and r minimal. If r = 1, then z is a unit in R as αi1 , x
i1 are units, so we may assume that

r > 1. As σi1 6= σir , there exists and element β in K satisfying σi1(β) 6= σir(β). In the
ideal A, we have

(1) zβ = (αi1x
i1 + · · ·+ αirx

ir)β

= αi1σ
i1(β)xi1 + · · ·+ αirσ

ir(β)xir

(2) σi1(β)z = αi1σ
i1(β)xi1 + · · ·+ αirσ

i1(β)xir .

Subtracting (2) from (1) yields the nonzero element

zβ − σ(β)z = αi2
(
σi2(β)− σi1

(
β)
)
xi2 + · · ·+ αir

(
σir(β)− σi1(β)

)
xir ,

contradicting the minimality of r. Therefore, R is simple.

Suppose that z =
∑n−1

i=0 αix
i is nonzero in R and commutes with all β in K. Then

αiσ(β)xi = αiβx
i for i = 0, . . . , n−1. If β does not lie in F , then αi = 0 for i = 1, . . . , n−1

and β must lie in K. If K ⊂ L ⊂ R is a subfield, then L ⊂ ZR(K) = K.

Finally, if z ∈ Z(R), then z ∈ ZR(K) = K. As zβ = σ(β)z for all β ∈ K, we have
z ∈ K〈σ〉 = F . �

A field L lying in the cyclic algebra R = (K/F, σ, a) not properly contained in any
larger in R is called a maximal subfield of R. So K is one such. There can be many
non-isomorphic ones.

The proposition allows us to show:

Computation 105.6. Let K/F be a cyclic extension of fields of degree n with Galois
group 〈σ〉 and R = (K/F, σ, 1). We show that R ∼= Mn(F ):

Since tn − 1 = (t − 1)(tn−1 + · · · + t + 1) in K[t, σ] and R = K[t, σ]/(tn − 1), we have
tn − 1 lies in the principal ideal R(t− 1), a maximal left ideal in R by Remark 105.2(2).
It follows that M := K[t, σ]/K[t, σ](t − 1) ∼= K is a simple R-module of F -dimension
n. Since R is a simple ring, the F -algebra homomorphism ρ : R → EndF (M) defined
by r 7→ ρr : m 7→ mr must be a monomorphism. Since dimF R = dimF EndF (M) and
Mn(F ) ∼= EndF (M), the result is established.

Corollary 105.7. Let R = (K/F, σ, a) be a cyclic algebra over F of prime degree p. Then
R is either a division ring or R ∼= Mp(F ).

Recall that a central simple F algebra is called split if it is isomorphic to a matrix ring
over F .

Proof. By Wedderburn’s Theorem 102.17, R ∼= Mr(D) for some division ring D, so
p2 = r2 dimF (D). As p is a prime number, p = r and dimF (D) = 1 splits, (i.e., R splits)
or R is a division algebra (i.e., r = 1 and R = D). �
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Theorem 105.8. Let R = (K/F, σ, a) be a cyclic algebra of degree n over F . Then
R ∼= Mn(F ) if and only if a ∈ NK/F (K×).

Proof. (⇐): Suppose that a ∈ NK/F (K×). Then there exists an α ∈ K× such that
aNK/F (α) = 1. Let y = αx where x is the image of t in K[t, σ] under the canonical
epimorphism. Set y = αx in R. As xα = σ(α)x and xn = a, we have

yn = (αx)n = σn−1(α) · · ·σ(α)αxn = NK/F (α)a = 1,

so, if β ∈ K,
yβ = αxβ = ασ(β)x = σ(β)αx = σ(β)y.

The F -algebra map R→ (K/F, σ, 1) sending x to y and fixing K is therefore an isomor-
phism. It follows by the computation that R ∼= Mn(F ).

(⇒): Suppose that R ∼= Mn(F ). Then R has a simple left R-module M of dimension n
over F . As K[t, σ] is a left PID, we have M ∼= K[t, σ]/K[t, σ]f for some f ∈ K[t, σ] with
K[t, σ]f ⊃ K[t, σ](tn − a). Since

n = dimKM = (dimF K)(deg f),

we must have deg f = 1, i.e., f = t− c for some c in K. As K[t, σ]f ⊃ K[t, σ](tn − a),

tn − a = (bn−1t
n−1 + · · · b1t+ b0)(t− c),

for some b0, . . . , bn−1 in K. Multiplying out and comparing coefficients yields

bn−1 = 1

bn−2 = σn−1(c)

bn−3 = σn−1(c)σn−2(c)

...

b0 = σn−1(c) · · ·σ(c).

So a = b0c = σn−1(c) · · ·σ(c)c = NK/F (c) as needed. [Cf. this proof with that of Hilbert
Theorem 90.] �

Let K/F be a cyclic Galois field extension of degree n with Galois group 〈σ〉 and
: F× → F×/NK/F (F×) be the canonical map. Wedderburn showed that (K/F, σ, a)

is a division ring if a has order n in F×/NK/F (K×). This generalizes Corollary 105.7.
A deep theorem in Algebraic Number Theory shows that every division algebra over a
number field is a cyclic algebra. This is not true in general.

There is a more general construction for an arbitrary finite Galois extension K/F
called a crossed product algebra that also produces central simple algebras that we shall
study in §107. It is constructed as follows. Let K/F be a finite Galois extension of fields.
Let R be a vector space over K of dimension [K : F ] on basis B := {uσ | σ ∈ G(K/F )}.
We define multiplication on R as follows: Let σ, τ, η be arbitrary elements in G(K/F )
and set

(105.9)

uσβ = σ(β)uσ for all β ∈ K
uσuτ = ασ,τuστ for some ασ,τ ∈ K

ασ,ταστ,η = σ(ατ,η)ασ,τη .
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The last relation is to guarantee associativity. It also shows that α1.σ = α1,1 and ασ,1 =
σ(α1,1) so the one of R is α−1

1,1u1. One also checks that R is an F -algebra, i.e., a(αβ) =
(aα)β = α(aβ) for all a ∈ F and α, β ∈ R. It is a fact that, although every equivalence
class of central simple algebras contains a crossed product algebra, not every central
simple algebra is one. So the theory is still not finished.

Exercises 105.10.

1. Let R be a ring and σ a ring automorphism of R. Define the twisted power series ring
R[[t, σ]] over R, to be the ring with the usual addition of (formal) power series and
multiplication induced by tx = σ(x)t for all x in F . Show if R is a non-commutative
domain, so is R[[t, σ]].

2. Let R be a field and σ a ring automorphism of R. Define the twisted Laurent series
ring

R((t, σ)) := {
∞∑
−∞

ait
i | ai ∈ R with ai = 0 for almost all negative i}

over R, to be the ring with the usual addition of (formal) Laurent series (i.e.,
∑∞
−∞ ait

i+∑∞
−∞ bit

i =
∑∞
−∞ aibit

i) and multiplication induced by tx = σ(x)t for all x in R. If R
is a division ring, show that R((t, σ)) is also a division ring and never a field if σ is not
the identity.

3. Let R be a field and σ a ring automorphism of R of finite order n. Show that the center
of R((t, σ)) is R((tn))[= R((tn, 1R))]. In particular, R((t, σ)) is not finite dimensional
over its center.

4. Let F be a field of characteristic zero of of positive degree not dividing n containing a
primitive nth root of unity. Suppose that K/F is a cyclic extension of degree n and

tn − a and tn − b are irreducible polynomials in F [t]. Show that
( b, a

F, ζ−1

)
∼=
( a, b
F, ζ

)
5. Show equations (105.9( define a ring.

6. Show the ring defined by equations (107.7) is a central simple F -algebra.

106. Central Simple Algebras

In this section we shall study simple F -algebras more carefully, with F a field, under
the restriction that the center Z(A) := {x ∈ A | yx = xy for all y ∈ A} ⊂ A of A is F
and, furthermore, that A is a finite dimensional F -algebra (as an F -vector space) that
we studied in §90. As such an A is left Artinian over F , Wedderburn’s Theorem 102.17
applies, so A ∼= Mn(D) for some unique integer n and division F -algebra D, unique up to
isomorphism. We use this to study the collection of such algebras and see that it gives an
appropriate generalization of algebraic field theory

In this section we shall need to use the definition and properties of tensor products of
modules and algebras. Some of these were given as exercises in Exercises 39.12(15)–(23).
A full discussion can be found later in the book in Section 119 below. In particular,
let A be an R-algebra with R a commutative ring (every ring is an algebra over some
commutative ring) and M,N (left) A-modules. Then the tensor product M ⊗R N is a



616 XVIII. DIVISION AND SEMISIMPLE RINGS

(left) R-module generated by {x ⊗ y | x ∈ A, y ∈ B} with the R-action induced by
r(x⊗y) = rx⊗y = x⊗ry for all x ∈M , y ∈ N , and r ∈ A. If M is a left A-module, then
A⊗RM is canonically isomorphic to M as a left A-module and M ⊗RN is an A-module.
In particular, if B is another R-algebra, then the R-module B⊗RM becomes a B-module
by b(b1⊗m) = bb1⊗m for all b, b1 ∈ B, m ∈M . In addition, B⊗RA is an R-algebra with
multiplication induced by (b1⊗a1)(b2⊗a2) = b1b2⊗a1a2 for all a1, a2 ∈ A, b1, b2 ∈ B. For
example, if K/F is an extension of fields an F -vector space V induces a K-vector space
K ⊗F V (extension of scalars).

Let A be an R-algebra. Define the opposite algebra Aop of A as follows: Let Aop :=
{aop | a ∈ A} and ( )op : A → Aop be the bijection given by a 7→ aop. Then Aop is an
R-algebra with the same addition and R-action as A and with multiplication given by
(xy)op = yopxop. In particular, if M is an left A-module and a right B-module then M is
a left A⊗F Bop-module via (a⊗bop)m := amb with r(amb) = r(a⊗bop)m = (ra⊗bop)m =
(a⊗ rbop)m = a(rm)b, for all r ∈ R, a ∈ A, b ∈ B, and m ∈M .

We also make the observation that if A is a simple R-algebra, then the center of
Z(A) := {x ∈ A | yx = xy for all y ∈ A} is a field as Ax = xA = AxA = A, for all
nonzero x ∈ Z(A).

Throughout this section F will denote a field.

Definition 106.1. Let F be a field and A a simple F -algebra. We say F is a central F -
algebra if F = Z(A). We say A is a finite dimensional F -algebra if it is a finite dimensional
F -vector space.

As mentioned above, the study of finite dimensional central simple F -algebras is bound
to the study of finite dimensional central simple division F -algebras by Wedderburns’s
Theorem 102.17. For example, we used this to investigate cyclic F -algebras, which are
finite dimensional central simple F -algebras. We will also be interested when we extend
the field F . If K/F is a field extension and A an F -algebra, then the K-algebra K ⊗F A
will be denoted by AK . So if A is a finite dimensional F -algebra, dimK A

K = dimF A.
We begin with the following:

Proposition 106.2. Let F be a field, A and B two F -algebras. Then

(1) Z(A⊗F B) = Z(A)⊗F Z(B).
(2) If A is also central and simple and B is simple, then A⊗FB is a simple F -algebra.
(3) If both A and B are central and simple F -algebras, then so is A⊗F B
(4) If K/F is a field extension and A is a finite dimensional central simple F -algebra,

then so is AK.

Proof. (1): Certainly Z(A)⊗F Z(B) ⊂ Z(A⊗F B). Conversely, let 0 6= z ∈ Z(A)⊗F
Z(B). Write

(*) z =
r∑
i=1

ai ⊗ bi with ai ∈ A, bi ∈ B

and A = {a1, . . . , ar}, B = {b1, . . . , br}.
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We may assume that B is F -linearly independent. In particular, if x ∈ A, then

(x⊗ 1)z − z(x⊗ 1) =
r∑
i=1

(xai − aix)⊗ bi.

So xai = aix for all x ∈ B, since B is linearly independent. Hence, z ∈ Z(A)⊗B.
We may now assume in (*) that we have chosen the ai ∈ Z(A) and bi ∈ B with A an

F -linearly independent set. The same argument then shows that all the bi lie in Z(B).

(2): Let 0 6= A ⊂ A⊗F B be an ideal. Choose

0 6= x =
r∑
i=1

ai ⊗ bi ∈ A, with ai ∈ A, bi ∈ B and r minimal.

It follows that A = {a1, . . . , ar} and B = {b1, . . . , br} are F -linearly independent. Since
A is simple, A = Aa1A, so there exists an equation 1 =

∑s
j=1 cja1dj for some cj, dj ∈ A

and s. Set a′i =
∑s

j=1 cjaidj for i = 2, . . . , r. Then

x1 :=
s∑
j=1

cjxdj = 1⊗ b1 +
r∑
i=2

a′i ⊗ bi lies in A.

Since B is linearly independent, x1 is not zero. Applying the same argument to Bb1B
produces b′i with b′1 = 1 and

x2 := 1⊗ 1 +
r∑
i=2

a′i ⊗ b′i lies in A,

By the minimality of r, A′ = {a′1, . . . , a′r} and B′ = {b′1, . . . , b′r} are F -linearly indepen-
dent. But if a ∈ A,

ax2 − x2a =
r∑
i=2

(aa′i − a′ia)⊗ b′i lies in A.

It follows that aa′i = a′ia for all a ∈ A by the minimallity of r. In particular, a ∈ Z(A).
As A is linearly independent, we must have r = 1.

Statements (3) and (4) follow from (1) and (2). �

Notation 106.3. It is convenient to extend our notation [K : F ] = dimF K for field
extensions K/F . In particular, if A is a finite dimensional central F -algebra and F ⊂
D ⊂ A a subalgebra with D a division F -algebra, let [A : D] := dimD A, the D-dimension
of the (left) D-vector space A. Of course, we have [A : F ] = [A : D][D : F ].

Proposition 106.4. Let D be a finite dimensional central division F -algebra. Then
[D : F ] is a square.

Proof. Let F̃ be an algebraic closure of F . Then DF̃ is a finite dimensional central

F̃ -algebra by Proposition 106.2. Since F̃ is algebraically closed, F̃ is the only finite

dimensional division F̃ -algebra. Hence DF̃ ∼= Mn(F̃ ), some n by Wedderburn’s Theorem

102.17. Thus [D : F ] = [DF̃ : F̃ ] = n2 �
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Corollary 106.5. Let A be a finite dimensional central simple F -algebra. Then [A : F ]
is a square.

Proof. By Wedderburn’s Theorem 102.17, A ∼= Mn(D) for some finite dimensional
division F -algebra D. So [A : D] is a square. As Z

(
Mn(D)

)
= Z(D), we must have

Z(D) = F , i.e., D is central. Since [A : D] is a square by the previous result and
[A : F ] = [A : D][D : F ], the result follows. �

The corollary allows us to define an important invariant of finite dimensional central
simple F -algebras.

Definition 106.6. Let A be a finite dimensional central simple F -algebra, so [A : F ] is

a square. The degree of A is defined by degA :=
√

[A : F ].

Definition 106.7. Let A be an R-algebra and B ⊂ A a subalgebra. We let ZA(B) :=
{x ∈ A | xb = bx for all b ∈ B}, the centralizer of B in A. This is an R-algebra.

We can now prove the following basic theorem:

Theorem 106.8. (Double Centralizer Theorem) Let A be a finite dimensional central
simple F -algebra and B a simple subalgebra of A. Then the following are true:

(1) ZA(B) is simple.
(2) B = ZA

(
ZA(B)

)
.

(3) [A : F ] = [B : F ][ZA(B) : F ].
(4) If B is a finite dimensional central simple F -algebra, then ZA(B) is a finite

dimensional central simple F -algebra and A = B ⊗F ZA(B).

Proof. Let C = ZA(B) and T = B ⊗F Aop. By Proposition 106.2, T is a simple
algebra, as Aop is clearly one. Let A be a minimal left ideal of T and D = EndT (A),
a division ring by Schur’s Lemma 102.16. The F -algebra A becomes a T -module by
(b⊗ aop)x = bxa for all a, x ∈ A, b ∈ B. We determine EndT (A). If c ∈ C = ZA(B), then
λc : A→ A given by a 7→ ca is F -linear as

λc
(
(b⊗ aop)(x)

)
= cbxa = bcxa = (b⊗ aop)(cx) = (b⊗ aop)λc(x),

so lies in EndT (A). Next suppose that f ∈ EndT (A). Then

(*) f(a) = f((1⊗ aop)(1) = (1⊗ aop)f(1) = λf(1)(a).

It follows that EndT (A) = {λf(1) | f ∈ EndT (A)}. Let f ∈ EndT (A). We show f(1) ∈ C.
Let b ∈ B. As B ⊂ A, we have

bf(1) = (b⊗ 1op)f(1) = f
(
(b⊗ 1op)1

)
= f(b) = f(1)b.

Therefore, f(1) ∈ ZA(B) = C, and EndT (A) = {λc | c ∈ C}.
Now A is a finite dimensional F -algebra, so A is a finitely generated T -module. As T

is a simple algebra, A ∼= An for some n as a T -module, hence

C ∼= EndT (A) ∼= EndT (An) ∼= Mn(D)

is simple. This proves (1).
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We also have that T ∼= Ar some r, so T ∼= Mr(D) and A ⊂ T corresponds to a column
space of Mr(D), i.e., [A : D] = r. Thus

[A : F ] = [A : D][D : F ] = nr[D : F ]

[A : F ][B : F ] = [T : F ] = [Mr(D) : F ] = r2[D : F ]

[C : F ] = n2[D : F ].

Therefore,

[A : F ] =
(nr[D : F ])2

nr[D : F ]
=

[A : F ][B : F ][C : F ]

[A : F ]
= [B : F ][C : F ].

Statement (3) now follows.

Finally, we show (4). Clearly, B ⊂ ZA
(
ZA(B)

)
= ZA(C). By (1), C is simple, so

applying (3) to C ⊂ A yields

[A : F ] = [C : F ][ZA(C) : F ] = [C : F ][B : F ].

So [ZA(C) : F ] = [B : F ]. It follows that B = ZA(C). If B is a finite dimensional central
simple F -algebra, then B ⊗F C is simple by Proposition 106.2 and [B ⊗F C : F ] = [B :
F ][C : F ] = [A : F ], so the map B ⊗F A → A induced by b ⊗ c 7→ bc is an F -algebra
isomorphism with

F = Z(A) ∼= Z(B ⊗F C) = Z(B)⊗F Z(C) = F ⊗R Z(C) ∼= Z(C).

Statement (4) now follows. �

We leave as an easy exercise:

Remarks 106.9. Let A be an R-algebra. Then we have R-algebra isomorphisms:

1. Mn(R)⊗R A ∼= Mn(A) ∼= A⊗ Mn(R).

2.
(
Mn(A)

)op ∼= Mn(Aop).

3. Mn(R)⊗R Mm(R) ∼= Mnm(R).

Corollary 106.10. Let A be a finite dimensional central simple F -algebra and B ⊂ A a
simple subalgebra. Then

(1) B ⊗F Aop ∼= Ms

(
ZA(B)

)
with s = [B : F ].

(2) A⊗F Aop ∼= Mm(F ) with m = [A : F ].

Proof. In the notation set up in the proof of the Double Centralizer Theorem, we
have

T = B ⊗R Aop ∼= Mr(D) and ZA(B) ∼= Mn(D).

We also know that [A : F ] = [B : F ][ZA(B) : F ]. so if s = [B : F ], we have

r2[D : F ] = [T : F ] = [B : F ][A : F ]

= [B : F ]2[ZA(B) : F ] = s2n2[D : F ].

If follows that r = sn and

B ⊗R Aop ∼= Mr(D) ∼= Msn(D) ∼= Ms(F )⊗F Mn(F )⊗F D
∼= Ms(F )⊗F Mn(D) ∼= Ms(F )⊗F ZA(B) ∼= Ms

(
ZA(B)

)
.
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This establishes (1) and (2) follows from (1). �

We next turn to subfields in a division F -algebra. We begin with some definitions.

Definition 106.11. Let A be an F -algebra and K/F a field extension. We say

(1) We say that A is split over F if A ∼= Mn(F ) some integer n.
(2) We say that A is K-split or splits over K if AK is split. If this is the case, we

call K a splitting field for A.
(3) We say K is a maximal subfield of A if K ⊂ A and is a maximal such.
(4) If A ∼= Mn(D), with D a finite dimensional division F -algebra, we let indA :=

degD =
√

[D : K] called the (Schur) index of A.

We now show that there exist subfields of a finite dimensional division F -algebra that
split A. We first note the following:

Remarks 106.12. 1. Let A be a finite dimensional central simple F -algebra. Then
indA | degA.

2. If A ∼= Mn(D) with D a finite dimensional division F -algebra and K/F a field extension,
then K splits A if and only if it splits D.

Corollary 106.13. Let D be a finite dimensional division F -algebra and K ⊂ D be a
maximal subfield. Then [K : F ] = [D : K] = degD.

Proof. Since K is simple, [D : F ] = [K : F ][ZD(K) : F ] by the Double Centralizer
Theorem. We observe that the maximal subfield K ⊂ D must satisfy K = ZD(K). For
if not, there exists an a ∈ ZD(K) \ K with K < K(a) a subfield of D, a contradiction.
Therefore, [K : F ][K : F ] = [D : F ] = [D : K][K : F ], by Proposition 106.4. The result
follows. �

Corollary 106.14. Let A be a finite dimensional central simple F -algebra. If A ∼= Mn(D),
D a division F -algebra, K a maximal subfield of D, then indA = [K : F ].

If A is a finite dimensional central simple F -algebra, it is possible for a maximal
subfield K ⊂ A to satisfy degA > [K : F ].

Corollary 106.15. Every maximal subfield K of a finite dimensional division F -algebra
D splits D.

Proof. We know that ZD(K) = K, so for a unique integer s, K ⊗F Dop ∼= Ms(K)
some s by Corollary 106.10. Hence

K ⊗F D = (K ⊗F Dop)op ∼=
(
Ms(K)

)op ∼= Ms(K)

as needed. �

In order to use Galois Theory in the study of finite dimensional central simple F -
algebras, we need the following crucial proposition.

Proposition 106.16. Let D be a finite dimensional division F -algebra. Then D con-
tains a maximal subfield that is finite and separable over F . In particular, D contains a
separable splitting field.
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Proof. We may assume that charF = p > 0. We induct on n = indD = degD =√
[D : F ]. We may assume that n > 1.

Claim. There exists F < E ⊂ D with E/F a separable field extension:

Suppose that this is false. We first show that every element x ∈ D is purely inseparable
over F , i.e., xp

e
lies in F some integer e. Indeed if x ∈ D, then the minimal polynomial

mF (x) = f(tp
e
) in F [t] for some separable polynomial f ∈ F [t]. Our assumption implies

that f splits over F , hence xp
e

lies in F , and every element in D is purely inseparable
over F . In particular, by Proposition 106.4, this means that for all x ∈ D \ F , we have
n2 = [D : F ] = [D : F (x)][F (x) : F ]. Hence p | n.

Let K be a maximal subfield of D. By the last corollary, K splits D, so there exists a
K-algebra isomorphism ϕ : K⊗F D → Mn(K). Let x ∈ D \F . As x is purely inseparable
over F , a = xp

e
lies in F for some e. In particular,

ϕ
(
1⊗ x)

)pe
= ϕ(1⊗ xpe) = ϕ(1⊗ a) = aI,

(where I is the identity matrix). Let K̃ be an algebraic closure of K. Then
(
ϕ(1⊗ x)−

a1/peI
)pe

= 0. In particular, all the eigenvalues of ϕ(1⊗x) must be equal. Since p | n, the

trace tr
(
ϕ(1⊗ x)

)
= 0 in K (since in K̃). But the set {α ∈ Mn(K) | tr(α) = 0} cannot

span Mn(K) as the trace is K-linear. This is a contradiction and establishes the claim.

Let F < E ⊂ D with E/F separable and D′ = ZD(E) the subdivision F -algebra of D.
We next show that E = Z(D′). By the Double Centralizer Theorem 106.8, E = ZD(D′),
so Z(D′) ⊂ E. Conversely, if x ∈ E, then D′ = ZD(E) means that xd′ = d′x for all
d′ ∈ D′. Thus E = ZD(D′). It follows that D is a finite dimensional division E-algebra.
By the Double Centralizer Theorem 106.8, we have

[D : F ] = [D′ : F ][ZD(D′) : F ] = [D′ : F ][E : F ]

= [D′ : E][E : F ]2 > [D′ : E]

by the claim. Hence by induction, there exists a maximal subfield L of D′ with L/E
separable. In particular, L/F is also separable. To finish it suffices to show that L is a
maximal subfield ofD. If this is not the case, then L < ZD(L). But ZD(L) ⊂ ZD(E) = D′.
This contradicts the maximality of L. �

Corollary 106.17. Let A be a finite dimensional central simple F -algebra. Then A has
a separable splitting field finite over F . In particular, A also has a Galois splitting field
finite over F .

Proof. Let A ∼= Mn(D) with D a finite dimensional division F -algebra. Then D
contains a maximimal subfield K that is separable over F . Thus K splits D, hence A.
Let L/K be the normal closure of K/F . Then L/F is Galois and L splits A. �

Perhaps the most important basic theorem is the following:

Theorem 106.18. (Skolem-Noether Theorem) Let A be a simple, left Artinian central
F -algebra and B ⊂ A a finite dimensional simple F -subalgebra. If f, g : B → A are
F -algebra maps, then there exists a unit u ∈ A× satisfying

f(b) = u−1g(b)u for all b ∈ B.
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Proof. By Proposition 106.2, C = B ⊗F Aop is a simple F -algebra, and by Wed-
derburn’s Theorem 102.17, there exists a division F -algebra D such that A ∼= Mn(D) for
some n. Then

C ∼= B ⊗F
(
Mn(D)

)op ∼= B ⊗F Mn(Dop) ∼= Mn(B ⊗F Dop)

is left Artinian, since it is a finite dimensional Dop-algebra with Dop a division ring. Let
M be an irreducible C-module, so unique up to isomorphism with C-action induced by
(b ⊗ aop)(m) = bma for all b ∈ B, all a ∈ A, and all m ∈ M . Define C-modules A1 and
A2 as follows: A1 = A with C-action induced by

(b⊗ aop)(x) = f(b)xa for all b ∈ B and all a, x ∈ A1

and A2 = A with C-action induced by

(b⊗ aop)(x) = g(b)xa for all b ∈ B and all a, x ∈ A2.

Then there exist unique integers ni such that Ai ∼= Mni as C-modules, since Ai is a finitely
generated C-module for i = 1, 2. Since A is a left D-vector space, M is a right D-vector
space. Therefore,

n1 =
[A : D]

[M : D]
= n2

as [Ai] = [A : D] for i = 1, 2. It follows that A1
∼= A2 as C-modules. Let ϕ : A1 → A2

be a C-isomorphism. Then we have ϕ
(
(b⊗ aop)

)
(x) = (b⊗op)ϕ(x) for all b ∈ B, a, x ∈ A,

i.e.,

(*) ϕ
(
(f(b)xa

)
= g(b)ϕ(x)a for all a, x ∈ A, b ∈ B.

Let u = ϕ(1). Setting b = 1 = x in (*) shows that f(1) = 1 = g(1). Consequently,
ϕ(x) = ϕ(1)x = ux for all x ∈ A. As ϕ is surjective, there exists a v ∈ A satisfying
uv = 1. Since A ∼= Mn(D), we have u ∈ A×. Setting x = 1 = a in (*), we see that
uf(b) = ϕ

(
1 · f(b)

)
= ϕ

(
f(b) · 1

)
= g(b)u for all b ∈ B as f(b) ∈ A and ϕ is C-linear. The

result follows. �

Corollary 106.19. Let A be a finite dimensional central simple F -algebra. Then every
F -algebra endomorphism of A is an inner A-automorphism.

Proof. Any A-algebra homomorphism takes 1A to 1A, so is not trivial. �

Corollary 106.20. Let A be a finite dimensional central simple F -algebra. They any
two isomorphic simple subalgebras of A are conjugate and, in particular, have conjugate
centralizers.

As an application of Skolem-Noether, we give an alternative proof of Wedderburn’s
Theorem about the commutativity of finite division rings.

Lemma 106.21. Let D be a finite dimensional division F -algebra with K a maximal
subfield of D. Then all maximal subfields of D are isomorphic to K as F -algebras if and
only if K/F is separable and D =

⋃
x∈D× x

−1Kx.
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Proof. (⇒): By Proposition 106.16, D contains a separable maximal subfield. As
all maximal subfields are isomorphic by assumption, all maximal subfields are separable
over F . Since every x ∈ D lies in some maximal subfield E and E ∼= K as F -algebras, we
have E = x−1Kx for some x ∈ D× by the Skolem-Noether Theorem. The result follows.

(⇐): Let y ∈ D. By hypothesis, there exists an element x ∈ D× such that y ∈ x−1Kx.
Thus y is separable over F for all y ∈ D×, hence all maximal subfields in D are separable.
If L is a maximal subfield of D, then L = F (y) for some y ∈ D× by the Primitive
Element Theorem 57.9 and y ∈ x−1Kx, for some x ∈ D×. Thus L = F (y) = x−1Kx by
maximality. �

Theorem 106.22. (Wedderburn) Every finite division ring D is a field.

Proof. Let F = Z(D), so D is a finite dimensional central division F -algebra, say of
degree n. Then all maximal subfields of D have |F |n elements, and there is precisely one
up to isomorphism, say K. By the lemma, D× =

⋃
x∈D× x

−1K×x. If D× 6= E×, then the
number of conjugates x−1K×x of K×, x ∈ D×, is at most [D× : F×]. Since 1 ∈ x−1K×x,
for all x ∈ D×, we have |{x−1hx | x ∈ D×, h ∈ K×}| < D×, a contradiction. So D = K,
hence D = F �

We saw in Section 101 that generalized quaternion algebras have norms attached to
them and are useful in deciding whether they were division rings or matrix rings. Using
the Skolem-Noether Theorem, we can define a norm called the reduced norm on any finite
dimensional central simple F -algebra. We now construct it.

Construction 106.23. Let A be a finite dimensional central simple F -algebra. We
know by Corollary 106.17 that A has a separable splitting field K, finite over F . Let
degA = n and ϕ : AK → Mn(K) be an K-algebra isomorphism. If α ∈ Mn(F ), let
fα := det(tI − α) denote the characteristic polynomial of α in K[t]. If a ∈ A, define the
reduced characteristic polynomial of a by fϕ(a) ∈ K[t] over K. This is independent of the
isomorphism ϕ by the Skolem-Noether Theorem 106.18. If fϕ(a) = tn + cn−1t

n + · · ·+ c0 ∈
K[t], define the reduced norm of a ∈ A over K by Nrd(a) := (−1)nc0 and the reduced
trace of a over K by Trd(a) := −c0 over K.

We want to show that the reduced norm of a finite dimensional central simple F -
algebra is independent of the separable splitting field K and takes values in F . We begin
by looking at the reduced characteristic polynomial.

Lemma 106.24. Let A be a finite dimensional central simple F -algebra of degree n. Then
the reduced characteristic polynomial of an element in A is independent of the finite sepa-
rable splitting field of A over F . In particular, we can evaluate the reduced characteristic
polynomial of any element using a finite Galois extension of F that splits A.

Proof. The algebra A has a separable splitting field K, finite over F . Let F̃ be an
algebraic closure of F containing K. If L is another separable splitting field of A over

F in F̃ , then we have E = L(K) = K(L) is also a finite separable splitting field of A.
It follows that the reduced characteristic polynomials of α ∈ A over K and over L are

the same as they are the same over F̃ , since Mn(E) ⊂ Mn(F̃ ) for all intermediate fields

F̃ /E/F . Therefore, the reduced characteristic polynomial of a is independent of separable
splitting field. In particular, we may assume that L/F is finite Galois with L/K/F . �
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We now look at the action of a finite Galois group of a Galois splitting field on a finite
dimensional central simple F -algebra.

Proposition 106.25. Let A be a finite dimensional central simple F -algebra of degree n.
Then fϕ(a) ∈ F [t] for all a ∈ A.

Proof. Let K/F be a finite separable field extension with A split over K. Let
L/K/F be a finite field extension with L/F is Galois. For all σ ∈ G(L/F ), the map
σ ⊗ 1A : AL → AL induced by x ⊗ a 7→ σ(x) ⊗ a for x ∈ L, and a ∈ A is a K-algebra
isomorphism. Let the map Mn(L) → Mn(L) be defined by taking the matrix

(
xij
)

to(
σ(xij)

)
. Denote this map by σ also. We have a commutative diagram

AL
σ⊗1A−−−→ AL

ϕ

y yψ
Mn(L)

σ−−−→ Mn(L).

with ψ = σϕ(σ ⊗ 1A)−1, a ring isomorphism. Since

ψ(x⊗ 1) = σϕ
(
σ−1(x)⊗ 1

)
=

x . . .
x


for all x ∈ L, it follows that ψ is an L-isomorphism. If a ∈ A, we have

ψ(1⊗ a) = σϕ
(
(σ ⊗ 1A

)−1)
(1⊗ a

)
= σ

(
ϕ(1⊗ a)

)
.

By the Skolem-Noether Theorem 106.18, ϕ(1⊗a) and ψ(1⊗a) have the same characteristic
polynomials, so its coefficients lie in F . The result follows. �

Corollary 106.26. Let A be a finite dimensional central simple F -algebra of degree n.
Then for all a, b ∈ A and all x ∈ F , we have

1. The reduced norm of A satisfies Nrd : A → F . Moreover, Nrd(ab) = Nrd(a) Nrd(b)
and Nrd(xa) = xn Nrd(a).

2. An element a ∈ A is a unit if and only if Nrd(a) is nonzero. In particular, Nrd : A× →
F× is a group homomorphism.

3. The reduced trace of A satisfies Trd : A→ F is F -linear. Moreover, satisfies Trd(ab) =
Trd(ba).

Proof. By the proposition, all the coefficients of fa, a ∈ A lie in F . In particular,
Nrd(a) and Trd(a) lie in F for all a ∈ A. The other statements follow as the same
properties hold for the corresponding properties for the determinant and trace of matrices.

�

Remarks 106.27. Let A be a finite dimensional central simple F -algebra of degree n
and K/F a finite separable field extension with A split over K. Let B = {a1, . . . an2} be

a basis for A and ϕ : AK → Mn(K) an F -algebra isomorphism. Then Nrd(
∑n2

i=1 xiai) =

det
(∑n2

i=1 xiϕ(ai)
)

defines a polynomial NrdA ∈ F [t1, . . . , n
2]. As we are taking a deter-

minant, this is a homogeneous polynomial of degree n.
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We arrive at the result that we sought:

Theorem 106.28. (Tsen) Let F be a field of transcendence degree one over an alge-
braically closed field. Then every finite dimensional central simple F -algebra is isomorphic
to a matrix ring over F .

Proof. If A is a finite dimensional central simple F -algebra of degree n, then the
norm form NrdA is a homogeneous polynomial of degree n. As F is a C1-field by Corol-
lary 101.17, it has a nontrival zero if n > 1, hence cannot be a matrix ring over a
noncommutative division F -algebra. �

Exercises 106.29.
F is a field in all the exercises.

1. Let A be a finite dimensional F -algebra and K/F a finite field extension. Prove that A
is a finite dimensional central simple F -algebra if and only if AK is a finite dimensional
central simple F -algebra.

2. Let A be a finite dimensional F -algebra. Show that A is a finite dimensional central
simple F -algebra if and only if there exists a finite extension K/F such that A splits
over K.

3. Let A be a nonzero left ideal in a finite dimensional simple F -algebra A. Set D =
EndA(A). Show the map λF : A → EndD(A) defined by a 7→ λa : x 7→ ax is an ring
isomorphism.

4. The F -subalgebras in Mn(F ) that are isomorphic to F n are conjugate to the subalgebra
of diagonal matrices.

5. Show a finite dimensional central simple F -algebra A of degree n is split if and only if
it contains a F -subalgebra isomorphic to the direct product F n = F × · · · × F .

6. Let D be a central division F -algebra. If a, b ∈ D are algebraic over F with the same
minimal polynomial over F , show that b = xax−1 for some x ∈ D×.

7. Let D be a central division F -algebra with charF = p > 0. Let a ∈ D \ F satisfy
ap

n
= a for some positive integer n. Show that there exists an element x ∈ D×

satisfying xax−1 = ai 6= a for some i.

8. Let A be an F -algebra. An F -derivation δ : A → A is an F -linear map satisfying
δ(ab) = aδ(b) + δ(a)b. Suppose that A is a central simple F -algebra and δ : A→ A is
an F -derivation. Show the following:
(a) The subalgebras

B = {
(
a δ(a)
0 a

)
| a ∈ A} and B = {

(
a 0)
0 a

)
| a ∈ A}

of M2(A) are isomorphic F -algebras.

(b) δ : A → A is an F -inner derivation., i.e., there exists an element c ∈ A such that
δ(x) = xc− cx for every x in A.

9. Let D be a finite dimensional central division F -algebra with F a C2-field. Show
Nrd : D → F is surjective.
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107. The Brauer Group

To further study the theory of finite dimensional central simple F -algebras, it is useful
to give a structure arising from the set of isomorphism classes of such algebras. We shall
show that the tensor product of finite dimensional central simple F -algebras is also a
finite dimensional central simple F -algebra. Since any finite dimensional central simple
F -algebra is a matrix ring over a central division F -algebra, unique up to isomorphism,
the question arises about the underlying division ring in the tensor product of two such
central simple algebras. We construct a group called the Brauer group of F group whose
group structure is induced by the tensor of such algebras. This group is a torsion group
and is an important invariant in the study of fields. Historically, it was crucial in the
interpretation of parts of number theory (class field theory).

Construction 107.1. Let Ai be a finite dimensional central simple F -algebra with Ai ∼=
Mni(Di), Di a central division F -algebra for i = 1, 2. We say that A1 is (Brauer) equivalent
to A2 if D1

∼= D2 as F -algebras. Let [Ai] denote the (Brauer) equivalence class of A1.
Since A1⊗F A2 is a finite dimensional central simple F -algebra and A1⊗F Aop

1
∼= Mn2

1
(F ),

we have

Br(F ) := {[A] | A is a finite dimensional central simple F -algebra}
is an abelian group via [F ] = 1, [A1][A2] := [A1 ⊗F A2], and [A1]−1 = [Aop

1 ], called the
Brauer Group of F . Let K/F be a field extension. Then

(A1 ⊗F A2)K = K ⊗F A1 ⊗F A2
∼= (K ⊗F A1)⊗K (K ⊗F A2) ∼= AK1 ⊗F AK2

and

(A1)K
op

= (K ⊗F A1)op ∼= K ⊗F Aop
1 = (Aop

1 )K .

Therefore, we have a group homomorphism ϕ : Br(F ) → Br(K) given by [A] 7→ [AK ].
Let

Br(K/F ) := kerϕ = {[A] | A is a finite dimensional central simple

F -algebra with AK split}.

Let F̃ be a fixed algebraic closure of F and Fsep denote the separable closure of F in F̃ , i.e.,

the maximal separable extension of F in F̃ . The Galois group of G(F̃ /F ) = G(Fsep/F )
called the absolute Galois group of F . Since every finite dimensional central simple F -
algebra has a finite separable splitting field, we saw that it has a finite Galois splitting
field. It follows that

Br(F ) =
⋃
K/F

finite separable

Br(K/F ) =
⋃
L/F

finite Galois

Br(L/F )

and Br(F ) = Br(Fsep/F ).

Proposition 107.2. Let D be a finite dimensional central division F -algebra with degD =
q and K/F a finite field extension. Then

(1) If D splits over K, then q | [K : F ].
(2) There exists a smallest positive integer r such that K can be embedded in Mr(F ).
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(3) Let r be as in (2). Then D splits over K if and only if K is a maximal subfield
of Mr(D).

(4) Let r be as in (2) and E = ZMr(D)(K). Then E is a division F -algebra. Moreover,
K is a maximal subfield of Mr(D) if and only if E = K.

Proof. Let A = DK , a finite dimensional central simple F -algebra, and M an irre-
ducible A-module. Then M is a D-vector space by dm = (1⊗ d)m for all d ∈ D, m ∈M .
Let r = [M : D]. We have

(k ⊗ 1)(1⊗ d) = k ⊗ d = (1⊗ d)(k ⊗ 1) for all k ∈ K, d ∈ D.

It follows that λk : M →M determined by m 7→ (k⊗1)m is D-linear for all k ∈ K, hence
K = K ⊗F F ⊂ EndD(M) = Mr(D), where we view M as a right EndD(M)-module. [We
do this so that we do not get Mr(D

op).]

Claim 1. The above r satisfies (2):

Suppose that K ⊂ Ms(D). Choose N a D-vector space of dimension s such that K ⊂
EndD(N) ∼= Ms(D), where we write linear operators on the right, matrices as usual. Let
N be an A-module via (k ⊗ d)v := dvλk for all k ∈ K, d ∈ D, and v ∈ N . Since A is
a finite dimensional central simple F -algebra, M is irreducible, so N ∼= Mn for some n,
hence

EndD(N) ∼= EndD(Mn) ∼= Mrn(D), i.e., r | s.

This proves Claim 1.
Let B = EndB(M) and E = ZB(K), so [B : D] = r2.

Claim 2. E = EndA(M):

Let k ∈ D, m ∈M , and f ∈ EndA(M). Then

mfλk = (d⊗ 1)(mf) =
(
k ⊗ 1)m

)
f = mλkf,

so f ∈ E. Conversely, if f ∈ E, then for all k ∈ K, m ∈M , and d ∈M ,(
(k ⊗ d)m

)
f =

(
(k ⊗ 1)(1⊗ d

)
f =

(
(1⊗ d)mλk

)
f

= (1⊗ d)(mf)λk = (k ⊗ 1)(1⊗ d)(mf) = (k ⊗ d)(mf),

so f ∈ EndA(M) and Claim (2) is established.

We next show (4) holds. By Schur’s Lemma, E is a division algebra. Suppose that
K = E. If K ⊂ L ⊂ B, with L a field, then L ⊂ ZB(K) = E = K. Therefore, K is a
maximal subfield of B. Conversely, if K < E, then there exits an element x ∈ E \K, so
K < K(x) ⊂ B. But K(x) is a field, so K is not a maximal subfield of B, a contradiction.
This establishes (4).

We have q = degD =
√

[D : F ] and [B : F ] = [B : D][D : F ]. So by the Double
Centralizer Theorem 106.8

(*) [K : F ][E : F ] = [B : F ] = r2q2.
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We now show (1). suppose that K splits D, hence A = DK = Mq(K) and A ∼= M q as an
A-module (as M corresponds to a column space of Mq(K). Therefore,

[A : F ] = [A : D][D : F ] = q[M : D][D : F ] = q2r

=[A : K][K : F ] = [DK : K][K : F ] = [D : F ][K : F ].

Therefore,

(†) qr = [A : D] = [K : F ].

which is (1).

Lastly, we prove (3).

(⇒): We have K ⊂ E and by (†), qr = [K : F ]. Therefore, by (*), we have [E : F ] = qr.
It follows that E = K.

(⇐): Suppose that K is a maximal subfield of B. We must show that D splits over K.
We know that K = E = ZB(K) by (4). By Corollary 106.10 of the Double Centralizer
Theorem 106.8, we know that

K ⊗K Bop ∼= Ms

(
ZB(K)

)
= Ms(E) = Ms(K)

with s = [K : F ]. Hence K ⊗ B ∼= Ms(K) also. Consequently, B splits over K, hence so
does D. �

Remark 107.3. Let D be a finite dimensional division F -algebra and K/F a finite field
extension. Suppose that D splits over K. Then the proposition above shows that there
exists a finite dimensional central simple R-algebra B such that [B] = [D] in the Brauer
group Br(F ) satisfying

1. K ⊂ B is a maximal subfield.
2. [K : F ]2 = [B : F ].
3. K = ZB(K).

We call such a K a self centralizing maximal subfield of B. [If B is not a division F -algebra,
a maximal subfield L of B may not satisfy ZB(L) = L.]

Corollary 107.4. Let K/F be a field extension and A a finite dimensional central simple
F -algebra satisfying [K : F ]2 = [A : F ]. Suppose that A splits over K. Then there exists
an embedding of F -algebras K ↪→ A of F -algebras with (the image of) K a self centralizing
maximal subfield of A.

Proof. By the Remark, there exists a finite dimension central simple F -algebra B
satisfying [B] = [A] in Br(F ) and K is a self centralizing maximal subfield of B. Therefore,
[B : F ] = [K : F ]2 = [A : F ]. It follows that A ∼= B as F -algebras. �

Corollary 107.5. Let A be a finite dimensional central simple F -algebra. Then there
exists a finite Galois extension L/F such that L splits A and L is a self centralizing max-
imal subfield of a finite dimensional central simple F -algebra B with B Brauer equivalent
to A.

Proof. We know that there exists a finite Galois extension L/F such that A splits
over L. Consequently, L splits D if A ∼= M;(D), D a division F -algebra. The Remark
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shows that L is a self centralizing maximal subfield of a finite dimensional central simple
F -algebra B satisfying B is Brauer equivalent to D in Br(F ). The result follows. �

We now investigate a group isomorphic to the Brauer group. We begin by generalizing
our construction of the cyclic F -algebras in Section 105 that we mentioned in that section.
We use the following

Notation 107.6. If a (multiplicative) group acts on a field L, we shall denote σ(x) by
σx for x ∈ L and σ ∈ G when convenient.

Let L/F be a finite Galois extension. We now look (again) at the F -algebra called
a crossed product algebra A mentioned in Section 105. We leave many details left to the
reader.

Construction 107.7. Let L/F be a finite Galois extension and A be a vector space over
L of dimension [L : F ] on basis B := {uσ | σ ∈ G(L/F )}. So A =

∐
σ∈G(L/F ) uσ. We

define multiplication on A as follows: Let σ, τ, η be arbitrary elements in G(L/F ) and set

1. uσx = σ(x)uσ = σxuσ for all x ∈ L defines an L-action on A.
2. uσuτ = f(σ, τ)uστ for some f(σ, τ) ∈ L×.

In particular, f : G(L/F )×G(L/F )→ L× and f commutes with all elements in F . We
define multiplication in A by( ∑

σ∈G(L/F )

xσuσ
)( ∑

τ∈G(L/F )

yτuτ
)

=
∑

σ,τ∈G(L/F )

xσ
σyτf(σ, τ)uστ .

In order for A to be associative, we must have

uρ(uσuτ ) = (uρuσ)uτ

for all ρ, σ, τ ∈ G(L/F ).
As

uρ(uσuτ ) = uρf(σ, τ)uστ

= ρf(σ, τ)uρuστ = ρf(σ, τ)f(ρ, στ)uρστ .

and

(uρuσ)uτ = f(ρ, σ)uρσuτ = f(ρ, σ)f(ρσ, τ)uρστ

for all ρ, σ, τ ∈ G(L/F ), the map f must satisfy

(107.8) ρf(σ, τ)f(ρ, στ) = f(ρ, σ)f(ρσ, τ)

for all ρ, σ, τ ∈ G(L/F ). Check that under these conditions that A is an F -algebra.

Definition 107.9. Let L/F be a finite Galois extension. Call a map f : G(L/F ) ×
G(L/F )→ L× satisfying equation (107.8) a factor set. The algebra A in the construction
above is called a crossed product algebra on f , and is denoted (L/F, f). We also call
{uσ | σ ∈ G(: L/F )} a canonical basis for (L/F, f)

Example 107.10. Every cyclic F -algebra is a crossed product algebra. [Cf. the special
case in Example 105.4(3).]
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Construction 107.11. Let f, g := G(L/F ) × G(L/F ) → L× with L/F a finite Galois
extension. Define fg : G(L/F )×G(L/F )→ L× by

(fg)(σ, τ) := f(σ, τ)g(σ, τ) for all σ, τ ∈ G(L/F ).

The set

Z2
(
G(L/F ), L×

)
:= {f : G(L/F )×G(L/F )→ L× | f a factor set}

is an abelian group with identity the trivial factor set 1 defined by 1(σ, τ) = 1 for all
σ, τ ∈ G(L/K).

Let c : G(K/F )→ L×. Define

δc : G(K/F )×G(K/F )→ L× by (δc)(σ, τ) := c(σ) σc(τ) c(στ)−1.

Check. δc lies in Z2
(
G(L/F ), L×

)
.

It is called a Principal Factor Set. Set

B2
(
G(L/F ), L×

)
:= {δc | c : G(L/F )→ L×},

a subgroup of Z2
(
G(L/F ), L×

)
.

The quotient group

H2
(
G(L/F ), L×

)
:= Z2

(
G(L/F ), L×

)
/B2

(
G(L/F ), L×

)
is called the 2nd cohomology group of G(L/F ) with coefficients in L×. Denote the class
of f ∈ Z2

(
G(L/F ), L×

)
in this quotient by [f ]. If [f ] = [g] with f, g ∈ Z2

(
G(L/F ), L×

)
,

write f ∼ g.

Check. If f ∼ g, then (L/F, f) → (L/F,
(
(δc)f

)
given by c(σ)uσ 7→ vσ, where {uσ |

σ ∈ G(L/F )} and {vσ | σ ∈ G(L/F )} are invariant bases for (L/F, f) and
(
L/F, (δc)f

)
,

respectively, is an F -algebra isomorphism.

Let L/F be a finite Galois extension. We say f ∈ Z2
(
G(L/F ), L×

)
is a normalized factor

set if f(σ, 1) = 1 = f(1, σ) for all σ ∈ G(L/F ).

Lemma 107.12. Let L/F be a finite Galois extension and f an element in Z2
(
G(L/F ), L×

)
.

Then there exists a normalized factor set g ∈ Z2
(
G(L/F ), L×

)
satisfying f ∼ g. In par-

ticular, (L/F, f) ∼= (L/F, g) as F -algebras.

Proof. Define c : G(L/F )→ L× by

c(σ) =

{
f(1, 1)−1 if σ = 1

1 if σ 6= 1.

Then (δ(c)(σ, 1) = σc(1) for all σ in G(L/F ). Check if g = (δc)f , then g is a normalized
factor set. �

Now suppose that A = (L/K, f) with f a normalized factor set, {uσ | σ ∈ G(L/F )}
a canonical basis. Then we have uσ ∈ A× for all σ ∈ G(L/F ) and identifying L and Lu1

that u1 = 1A. [If f is not normalized, we still have uσ ∈ A× for all σ ∈ G(L/F ).]
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Proposition 107.13. Let L/F be a finite Galois extension and f an element in Z2
(
G(L/F ), L×

)
a normalized factor set. Let A = (L/F, f). Then A is a finite dimensional central simple
F -algebra and L is a self centralizing maximal subfield of A.

Proof. Let {uσ | σ ∈ G(L/F )} be a canonical basis for f , so u1 = 1. We know that
F ⊂ Z(A), i.e., A is an F -algebra. Let z =

∑
G(L/F ) aσuσ ∈ ZA(L) with all aσ ∈ L. Then

for all x ∈ L, we have∑
G(L/F )

xaσuσ = xz = zx =
∑

G(L/F )

aσuσx =
∑

G(L/F )

aσσ(x)uσ.

Therefore, xaσ = σ(x)aσ for all σ ∈ G(L/F ) and all x ∈ L. Since F = LG(L/F ), we
must have aσ = 0 for all σ 6= 1 in L. Hence z = a1u1 ∈ L, so L = ZA(L) and we
must have L ⊂ A is a maximal subfield. Moreover, [A : L] = |G(L/F )| = [L : F ], so
[A : L] = [L : F ]2. In particular, if we show A is a central simple F -algebra, then L is a
self centralizing maximal subfield.

We first show that A is central. Let z ∈ Z(A) ⊂ ZA(L) = L. Then zuσ = uσz =
σ(z)uσ for all σ ∈ G(L/F ). As uσ ∈ A× for all σ ∈ G(L/F ), we have z = σ(z) for all
σ ∈ G(L/F ). Therefore, z ∈ F , i.e., F = Z(A), and A is F -central. Finally, we show
that A is simple. If A is a nonzero ideal in A, choose 0 6= s =

∑r
i=1 aσiuσi in A with r

minimal. Suppose that r > 1. Choose b ∈ L to satisfy σ1(b) 6= σ2(b). Then we have

0 6= s− σ1(b)−1sb =
r∑
i=2

(
aσi − σ1(b)−1aσiσi(b)

)
uσi

lies in A, contradicting the choice of r. Consequently, r = 1 and 0 6= s = aσ1uσ1 lies in
A×. Therefore, A = A. In particular, A is simple. �

Corollary 107.14. L/F be a finite Galois extension and f an element in Z2
(
G(L/F ), L×

)
.

Let A = (L/F, f). Then A is a finite dimensional central simple F -algebra and L is a
centralizing maximal subfield of A.

Proof. A is isomorphic to a crossed product algebra defined by a normalized factor
set. �

Proposition 107.15. Let L/F be a finite Galois extension and f, g ∈ Z2
(
G(L/F ), L×

)
.

Then [f ] = [g] in H2
(
G(L/F ), L×

)
if and only if (L/F, f) ∼= (L/F, g) as F -algebras.

Proof. (⇒) has been done.

(⇐): We may assume that both f and g are normalized factor sets with {uσ | σ ∈
G(L/F )} a canonical basis for A := (L/F, f) and {vσ | σ ∈ G(L/F )} a canonical basis
for B := (L/F, g). In particular, w1 = 1A and v1 = 1B. Let ϕ : A → B be an F -algebra
isomorphism. We must have ϕ(u1) = v1, so ϕ(Lu1) = L′vi with L′ ∼= L as F -algebras. Let
u′σ = ϕ(uσ) for all σ ∈ G(L/K), so ϕ(Luσ) = L′u′σ. Therefore, we have B =

∐
G(L/F ) L

′u′σ
and equations

(107.16)
u′σϕ(x) = ϕ(σx)u′σ

u′σu
′
τ = ϕ

(
f(σ, τ)

)
uστ
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for all σ, τ ∈ G(L/F ). Since Lv1
∼= L′v1 are both simple subalgebras of B, by the

Skolem-Noether Theorem 106.18, there exists an inner automorphism θ of B satisfying
θ
(
ϕ(x)

)
= x for all x ∈ L. Define wσ = θ(u′σ) for all σ ∈ G(L/F ). Then applying the

map θ to the equations (107.16) yields

B =
∐

G(L/F )

Lwσ

wσx = σ(x)wσ

wσwτ = f(σ, τ)wστ

for all σ, τ ∈ G(L/F ) and x ∈ L. As vσvσ−1 = g(σ, σ−1)v1 = g(σ, σ−1), we have v−1
σ =

g(σ, σ−1)−1vσ−1 for all σ ∈ G(L/F ). Hence for all x ∈ L, we see that

wσv
−1
σ x = wσg(σ, σ−1)−1x = wσg(σ, σ−1)−1σ−1(x)vσ−1

= xwσg(σ, σ−1)−1vσ−1 = xwσvσ−1 .

It follows that wσv
−1
σ lies in ZB(L) = L and wσvσ

−1 6= 0. Consequently, there exists a
map c : G(L/F )→ L× satisfying wσ = c(σ)vσ for all σ ∈ G(L/F ) and

f(σ, τ)wστ = wσwτ = c(σ)vσc(τ)vτ = c(σ) σc(τ)vσvτ

= c(σ)σc(τ)g(σ, τ)vστ =
(
(δc)g)

)
(σ, τ)wστ

for all σ, τ ∈ G(L/F ). Therefore, f = (δc)g as needed. �

Corollary 107.17. Let L/F be a finite Galois extension of degree n and f ∈ Z2
(
G(L/F )/L×

)
.

Then (L/F, f) ∼= Mn(F ) if and only if [f ] = 1 in H2
(
G(L/F ), L×

)
.

Proof. By Proposition 107.15, we need only show that (L/F, 1) ∼= Mn(F ). Let
(L/F, 1) have canonical basis {uσ | σ ∈ G(L/F )} and λ : L → EndF (L) be defined by
x 7→ λx : a 7→ xa. The map (L/F, 1) → EndF (L) defined by xuσ 7→ λxσ is an F -algebra
homomorphism. Both are finite dimensional central simple F algebras of F -dimension
n2, so the map is an isomorphism. �

Remark 107.18. If A is a finite dimensional central simple F -algebra and M is a finitely
generated A-module, the the A-isomorphism type of M is completely determined by
[M : F ]. Indeed if N is an irreducible A-module, then there exists a unique integer n such
that M ∼= Nn as A-modules and [M : F ] = n[N : F ].

Proposition 107.19. Let L/F be a finite Galois extension and f, g ∈ Z2
(
G(L/F ), L×

)
.

Then (L/F, f)⊗F (L/f, g) ∼ (L/F, fg).

Proof. (Chase) Let h = fg. Set

A = (L/K, f) with canonical basis {uσ | σ ∈ G(L/F )},
B = (L/K, g) with canonical basis {vσ | σ ∈ G(L/F )}, and
C = (L/K, h) with canonical basis {wσ | σ ∈ G(L/F )}.

LetM = A⊗̃LB be the tensor product ofA andB as L-vector spaces, i.e., αa⊗̃Lb = a⊗̃Lαb
for all α ∈ L. We give M the structure of a right A⊗F B- module by

(a⊗̃Lb)(a′ ⊗ b′) := aa′⊗̃Lbb′ for all a, a′ ∈ A, b, b′ ∈ B.
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Claim. M is a (left) C-module by

(cwσ)(a⊗̃Lb) = (cuσa⊗̃Lvσb)
for all a ∈ A, b ∈ B, c ∈ C, and σ ∈ G(L/F ):

The only thing that is not straight-forward is associativity, i.e., (λλ′)m = λ(λ′m) for all
λ, λ′ ∈ C, m ∈M which we show, leaving the rest as an exercise. To show this, it suffice
to assume that λ = cwσ, λ′ = c′wτ , and m = a⊗̃Lb, for c, c′ ∈ L, σ, τ ∈ G(L/F ), a ∈ A,
and b ∈ B. But

(λλ′)m = c σc′h(σ, τ)wστ (a⊗̃Lb)
= c σc′f(σ, τ)uστa⊗̃Lg(σ, τ)vστb = c σc′uσuτa⊗̃Lvσvτb
= λ(c′uτa⊗̃Lvστb) = λ(λ′m)

as needed, and the Claim is established.

It follows that M is a C − (A⊗F B)-bimodule. This means that the map ρ : A⊗F B →
EndC(M) by a ⊗ b 7→ ρa⊗b, i.e,, right multiplication by a ⊗ b, for all a ∈ A, b ∈ B is an
F -algebra homomorphism.

Let n = [L : F ] = [A : L] = [B : L][C : L]. Then

[M : F ] = [M : L][L : F ] = n3 = n[C : F ].

Since C is a finite dimensional central simple F -algebra, M ∼= Cn as C-modules by
Remark 107.18, hence EndC(M) ∼= Mn(C). It follows that [Mn(C) : F ] = n2[C : F ] = n4 =
[A⊗F B : F ]. Therefore, the F -algebra homomorphism ρ must be an isomorphism. �

Theorem 107.20. Let L/F be a finite Galois extension. Then

ΦL/F : H2
(
G(L/F ), L×

)
→ Br(L/F ) defined by [f ] 7→ (L/F, f)

is a group isomorphism.

Proof. By Proposition 107.19, Φ is a group homomorphism, hence by Corollary
107.17, it injective. So we need only show that it is onto. Let A be a finite dimensional
central simple F -algebra split by L. Replacing A by a (Brauer) equivalent algebra, we
may assume that L ⊂ A is a simple subalgebra. By the Skolem-Noether Theorem 106.18,
for each σ ∈ G(L/F ), there exists an element uσ ∈ A× satisfying σ(x) = uσxu

−1
σ for all

x ∈ L., i.e., we have
uσ = σxuσ for all σ ∈ G, all x ∈ L.

Claim. A =
∐

G(L/F ) Luσ as an L-vector space:

If we show
∐

G(L/F ) Luσ =
∑

G(L/F ) Luσ, then this is true, since we know that [A : F ] =

[L : F ]2 and
∐

G(L/F ) Luσ ⊂ A. Suppose that B = {uσ | σ ∈ G(L/F )} is L-linearly

dependent. Let w =
∑r

i=1 aσiuσi = 0 with uσi ∈ B, aσi ∈ L be chosen with r minimal.
Each uσ ∈ A× for σ ∈ G(L/F ), r > 1. Choose b ∈ L satisfying σ1(b) 6= σ2(b). Then

0 = σ1(b)w − wb =
r∑
i=2

(
σ1(b)− σi(b)

)
aσiuσi ,
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contracts the minimality of r. This establishes the Claim.

Equation (*) implies that uσuτu
−1
στ lies in ZA(L) = L. Hence there exist f(σ, τ) in L×

satisfying uσuτ = f(σ, τ)uστ for all σ, τ ∈ G(L/K). The associativity for A now implies
that f ∈ Z2

(
G(L/F ), L×

)
. �

Remark 107.21. Amitsur has shown that there exist finite dimensional central division
F -algebras that are not isomorphic to cross product algebras.

Proposition 107.22. Let A be a finite dimensional central simple F -algebra of index n.
Then [An] = 1 in Br(F ).

Proof. By Theorem 107.20 and Corollary 107.14, we may assume that A = (L/F, f)
with L/F a finite Galois extension say of degree m and L a self centralizing maximal
subfield of A with canonical basis {uσ | σ ∈ G(L/F )} for A. In particular, we have
uσx = σ(x)uσ for all x ∈ L. We have A ∼= Mm(D) for some central division F -algebra and
indA | degA. We also have degA = [L : F ] = mn. Let M be a simple A-module, so M
is a D-vector of dimension m (as isomorphic to a column of Mn(D)). Then

mn dimLM = [L : F ] dimLM = dimF M = dimDM dimF D = mn2,

so dimLM = n. Let {v1, . . . , vn} be an L-basis for M . For each x ∈ A, define C(x) ∈
Mm(D) by

xvj =
m∑
i=1

C(x)ijvi.

We have

(1) uσuτvj = f(σ, τ)uστvj = f(σ, τ)
m∑
i=1

C(uστ )ijvi

and

uσuτvj = uσ
( m∑
k=1

C(uτ )kjvk
)

=
( m∑
k=1

σ
(
C(uτ )kj

)
uσvk

=
m∑

i,k=1

σ
(
C(uτ )kj

)(
C(uσ)ikvi

)
.

Let σ(C) =
(
σ(Cij)

)
in Mm(F ), i.e., the matrix in which σ acts on every entry of C. So

we have

(2) uσuτvj =
m∑
i=1

σ
(
C(uτ )ij

)
vi.

Comparing (1) and (2) yields

f(σ, τ)C(uστ ) = C(uσ)σ
(
C(uτ )

)
in Mm(L). Setting cσ = det

(
C(uσ)

)
for all σ ∈ G(L/F ), we deduce that

f(σ, τ)mcστ = cσσ(cτ )

for all σ, τ ∈ G(L/F ). It follows that f(σ, τ)m = cσσ(cτ )c
−1
στ is the trivial factor set. �
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Corollary 107.23. The Brauer group of a field is a torsion group.

Proof. Br(F ) =
⋃
L/F

finite Galois

Br(L/F ) �

Definition 107.24. Let A be a a finite dimensional central simple F -algebra. The order
of [A] in the Brauer group of F is called the exponent or period of A. and is denoted
expA.

Corollary 107.25. Let A be a a finite dimensional central simple F -algebra. Then expA,
the exponent of A, divides indA, the index of A.

Remark 107.26. If A is a a finite dimensional central simple F -algebra, then the expA
and indA have the same prime divisors. We leave this as an exercise.

Remark 107.27. We indicate (with few details) how one can put together all the
H2(G(L/F ), L×) with L/F a finite Galois extension to get a 2nd cohomology group
isomorphic to the Brauer group Br(F ).

Let F̃ be an algebraic closure of F and Γ = G(Fsep/F ), the (absolute) Galois group of

F , where Fsep is the separable closure of F in F̃ . We saw that ΓF has a topology, the
profinite topology. Let F×sep have the discrete topology, and define

Z2
cont(ΓF , F

×
sep) := {f ∈ Z2(ΓF , F

×
sep) | f continuous},

B2
cont(ΓF , F

×
sep) := {f ∈ B2(ΓF , F

×
sep) | f continuous},

H2
cont(ΓF , F

×
sep) := Z2

cont(ΓF , F
×
sep)/B

2
cont(ΓF , F

×
sep).

Let E/L/F be finite extensions in ΓF with L/F and E/F Galois extensions. One
shows that the group inclusion iE/F : Br(L/F ) → Br(E/F ) and the group epimorphism
G(E/F )→ G(L/F ) given by σ 7→ σ|L (so G(E/F )/G(E/L) ∼= G(L/F )) of Galois theory
induce a group monomorphism

inf
E/L

: H2
(
G(L/F ), L×

)
→ H2

(
G(E/F ), E×

)
such that

Br(L/F )

ΦL/F
��

iE/L
// Br(E/F )

ΦE/F
��

H2
(
G(L/F ), L×

) infE/L
// H2
(
G(E/F ), E×

)
.

commutes. One then can show that H2
cont(ΓF , F

×
sep) is built from the H2

(
G(L/F ), L×

)
as L runs over the finite Galois extensions L/F . More specifically, H2

cont(ΓF , F
×
sep) =

lim
→
H2
(
G(L/F ), L×

)
, the direct limit over infL/F where the L/F run over finite Galois

extensions in F̃ . (Cf. Exercise 107.30(7) for the definition of direct limit.) We then obtain
a group isomorphism ΦF : Br(F )→ H2

cont(ΓF , F
×
sep) compatible with all ΦL/F .

We end this section with remarks amplifying comments made about cyclic algebras in
Section 105. We omit the proofs, since we shall not develop cohomology theory.
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Remark 107.28. Let L/F be a cyclic field extension of degree n with G(L/F ) = 〈σ〉
and A = (L/F, σ, a) a cyclic F -algebra. Then the following can be shown:

1. Suppose that L/K/F is an intermediate field with [K : F ] = m. Then (L/F, σ|K , a) ∼=
(L/K, σ, a

m
n ). In particular, A is a division F -algebra if a has order n in F×/NL/F (L×).

The last statement follows as we have n = expA = degA in this case (cf. the exercises
for this section).

2. There is a group isomorphism F×/NL/F (L×)→ H2
(
G(L/F ), L×

)
mapping xNL/F (L×) 7→

(L/F, σ, x). [This arises from the periodicity of Tate cohomology for finite cyclic
groups.]

3. A is a central division F -algebra if [A] has order n in Br(L/F ).

Remark 107.29. Historically, much of our study of finite dimensional centeral simple
algebras reached a high point in algebraic number theory, where the classification of finite
dimensional central division F -algebras with F/Q is a finite extension was determined
in a joint paper of Brauer, Hasse, and Noether (some of the results were independently
proven by Albert). Brauer had defined cross product algebras (and the Brauer group)
which was simplified by Noether, generalizing cyclic algebras over arbitrary fields. Recall
if F/Q is a finite extension (an algebraic number field), then

ZF := {x ∈ K | f(x) = 0, for some monic polynomial f ∈ Z[t]}
is the ring of algebraic integers in F . If p is a prime ideal in ZF , let (ZF )p denote its com-
pletion (cf. Exercise 98.32(4)) at p and Fp the quotient field of (ZF )p. All central simple
Fp-algebras were known to be cyclic, in fact, one central division ring for each integer n
(up to isomorphism). Let K/F be a finite extension. Then pZK factors into a product of
primes in ZK . If P is one such, we write p | P and we get a field extension KP/Fp. Let
X(F ) = Max ZK ∪X∞(ZK) where X∞(ZK) := {f : ZF → C | f a field homomorphism}.
So each f ∈ X∞(ZK) has image in R, with completion R, called a real infinite prime or
not, called a complex infinite prime, with completion C. We then extend our notation to
all elements in X(F ). Let L/F be a cyclic extension. Hasse proved that x ∈ F satisfies
x ∈ NL/F (L) if and only if x ∈ NLP/Fp(LP) for all p ∈ X(F ) and all P ∈ X(L) with
P | p. One says that x is a norm if and only if x is a norm locally for all primes (finite
and infinite). As cyclic F -algebras split under a norm condition, this local-global principle
applies to cyclic F -algebras. They then showed every crossed product F -algebra was a
cyclic F -algebra and every central simple F -algebra was a cyclic algebra.

Exercises 107.30.

1. Let A and B be finite dimensional central simple F -algebras. Show the following:

(a) Let K/F is a finite field extension with indA relatively prime to [K : F ]. Then
indAK | indA. In particular, if in addition, A is a division algebra, so is AK .

(b) We have ind(A⊗F B) divides (indA)(indB).

(c) We have ind (A⊗F · · · ⊗F A)︸ ︷︷ ︸
m

divides indA for all m ≥ 1.

2. Let D be a central division F -algebra and K/F a finite field extension with [K : F ] a
prime dividing degD. Prove that the following are equivalent:



107. THE BRAUER GROUP 637

(a) K is isomorphic to a subfield of D.
(b) DK is not a division algebra.
(c) degD = [K : F ] indDK .

3. Let A be a finite dimensional central simple F -algebra with indA = pem, p a prime
not dividing m and e ≥ 1. Prove that there exists a finite separable extension K/F
satisfying p 6 | [K : F ] and indAK = pe.

4. Show Example 107.10 is a cross product algebra.

5. Let A and B be finite dimensional central simple F -algebras and K/F a finite field
extension. Show the following:

(a) Every prime divisor of indA divides expA.
(b) We have expAK | expA.
(c) If indA and [K : F ] are relatively prime, then expAK = expA.
(d) We have exp(A⊗F B) divides the least common multiple of expA and expB.
(e) We have exp(A⊗F · · · ⊗F A)︸ ︷︷ ︸

m

= (expA)/d where d is the gcd of expA and [K : F ].

(f) If indA and indB are relatively prime, then (ind(A ⊗F B) = (indA)(indB) and
(exp(A⊗F B) = (expA)(expB). In particular, if in addition, A and B are division
algebras, so is A⊗F B.

6. Let D be a central division F -algebra with degD = pe11 · · · perr its standard factorization.
Then there exists an F -algebra isomorphism D = D1 ⊗F · · · ⊗F Dr with Di a central
F -division algebra with degDi = pei for all i = 1, . . . , r, unique up to isomorphism.

7. Let I be a partially ordered set under ≤ that also satisfies for all i, j ∈ I, there exists
a k ∈ I such that i ≤ k and j ≤ k; and {Mi}I be a collection of R-modules. Suppose
for all i ≤ j in I, there exist R-homomorphisms θi,j : Mi →Mj with θi,i = 1Mi

and

Mi

θik

''
θij

��

Mk

Mj

θjk

88

commutes whenever i ≤ j ≤ k. Show that there exists an R-module M and for each
i ∈ I an R-homomorphism ψi : Mi → M satisfying the following universal property:
For all non-negative i ≤ j in I,

Mi

ψi

''
θij

��

M

Mj

ψj

88
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commutes, and if there exist R-homomorphisms θi : Mi → M satisfying for all i ≤ j
in I,

Mi

ϕi

''
θij

��

M ′

Mj

ϕj

77

commutes, then there exists a unique R-homomorphism µ : Mi →M ′ satisfying

Mi

θij

��

ψi
''

ϕi

++M
µ

// M ′

Mj

ψj

88

ϕj

33

commutes for all i ≤ j in I. Such a M is unique up to a unique isomorphism and is
called the direct limit of the Mi and denoted by lim

→
Mi.

8. Show reversing all the arrows in Exercise 7 still gives a valid result and the unique
R-module M up to isomorphism is called the inverse or projective limit of the Mi and
denoted by lim

←
Mi.

[Remark: For example, If ΓF is absolute Galois group of a field F (in some fixed
algebraic closure), then ΓF = lim

←
G(L/F ), where the inverse limit is over all finite

Galois extensions L/F . We know that G(L/F ) = ΓF/ΓL for all Galois extension L/F ,
and we have

H2
cont(ΓF , F

×
sep) = lim

→
H2(G(L/F ), L×) = H2(lim

←
G(L/F ), L×)

where L/F runs over all finite Galois extensions of F .]

108. Polynomial Rings over a Division Algebra

When we investigated polynomial rings over a commutative ring, we noted that the
analogous theory broke down if the ring was not commutative. As an example, we showed
that the polynomial t2−1 over the division ring of Hamiltonion quaternions had infinitely
many roots. (Cf. Remark 34.10(2).) A major reason for this is that if R is a ring that is
not commutative and x an element in R, then the evaluation map ex : R[t]→ R given by∑n

i=0 ait
i 7→

∑n
i=0 aix

i is not necessarily a ring homomorphism, although it is an additive
homomorphism. For example, if with ab 6= ba and f = (t− a)(t− b) in R[t], then

f = t2 − (a+ b)t+ ab, hence f(a) = −ba+ ab 6= 0,

but ea(t − a)ea(t − b) = 0. The problem arises as t is central in R[t], i.e., at = ta for all
a ∈ R. One useful result, still holding in R[t], is the division algorithm as the usual proof
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works, i.e., if f ∈ R[t] is monic (or leading term a unit), for any g ∈ R[t], there exists
h, r ∈ R[t] satisfying

g = hf + r with r = 0 or deg r < deg f.

As mentioned in the special case in Appendix D, Lemma D.5, there are in fact two such
algorithms, i.e., left and right, so there exist h′, r′ in R[t] with g = fh′ + r′ with r′ =
0 or deg r′ < deg f . We shall concentrate on the first, which we call right division by f .
As in Appendix D, the special case when f is linear, say f = t− x, is of interest, i.e.,

g = h · (t− x) + r with r ∈ R.

We call x a right root of g ∈ R[t] if g(x) = 0 in the above, i.e., if g =
∑n

i=0 ait
i, then∑n

i=0 aix
i = 0. (So a left root of g would be

∑n
i=0 x

iai = 0.) Since we are interested
in the map ea : R[t] → R by plugging a into t on the right in this section, we shall let
g(a) := ea(g) to be this evaluation on the right. In particular, if x is a right root of g,
then g ∈ R[t](t− x). Our analogy to the commutative case is

Lemma 108.1. Let R be a ring, 0 6= g ∈ R[t]. Then x in R is a right root of f if and
only if t− x is a right divisor of g. In particular,

{h ∈ R[t] | x is a right root of h} = R[t](t− x).

Proof. Let

f = (
n∑
i=0

ait
i)(t− x) =

n∑
i=0

ait
i+1 −

n∑
i=0

aixt
i.

Then x is a right root of f , as
∑n

i=0 aix
i+1 −

∑n
i=0 aixx

i = 0. �

A very useful observation, is the following observation:

Proposition 108.2. Let D be a division ring. Suppose we have an equation f = gh of
polynomials in D[t] with x in D satisfying r = h(x) is nonzero (so a unit in D). Then

f(x) = g(rxr−1)h(x).

In particular, if x is a right root of f but not of h, then rxr−1 is a right root of g.

Proof. Let g =
∑n

i=0 ait
i, hence f =

∑n
i=0 aih(t)ti. Therefore,

f(x) =
n∑
i=0

aih(x)xi =
n∑
i=0

airx
i

=
n∑
i=0

ai(rxr
−1)ir = g(rxr−1)h(x). �

This results in an analogue of the number of roots for a polynomial over a field, an
analogue that often comes up in the study. If x is a nonzero element in a division ring D,
we shall let C(x) := {rxr−1 | r ∈ D×} be the conjugacy class of x in D× and call {0} the
conjugacy class of 0 in D. We shall call any of these conjugacy classes in D.
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Theorem 108.3. Let D be a division ring and f a polynomial in D[t] of degree d. Then
the right roots of f lie in at most n conjugacy classes in D (not necessarily distinct). In
particular, if f = (t− a1) · · · (t− an) with a1, . . . , an ∈ D and d is a right root of f , then
d is conjugate to ai for some i, i = 1, . . . , n.

Proof. The result is immediate if n = 1, so assume that n ≥ 2. Let x ∈ D be a right
root of f . Then f = g · (t − x) with g ∈ D[t] of degree less than n. If y is another root
of f different from x, then by Propositon 108.2, a conjugate of y is a root of g, and the
first statement follows by induction. If g = (t − b1) · · · (t − bn−1), the second statement
also follows by Proposition 108.2 and induction. �

Just as in field theory, we are interested in the analogue of algebraic elements. If D
is a division ring, its center F is a field, and we can look at elements x in D algebraic
over F . Of course, F (x) is also a subfield of D, and if x is algebraic it has an irreducible
polynomial. But if x is algebraic over F , then every conjugate of x is also algebraic over
F , since x a right root of g ∈ D[t] implies that rxr−1 is a a right root of rg(t)r−1 for all
nonzero r in D.

Definition 108.4. Let D be a division ring with center F . Let x in D and C be the
conjugacy class of x in D. We say that C is algebraic over F if x is algebraic over F
(if and only if every element of C is algebraic over F ). Suppose that x in D is algebraic
over F with mF (x) ∈ F [t] its minimal polynomial. Then mF (x) = mF (rxr−1) for every
nonzero element r in D, We call this polynomial the minimal polynomial of C and denote
it by mF (C).

The analogue of the field case now becomes:

Lemma 108.5. Let D be a division ring with center F and C a conjugacy class in D
algebraic over F . Suppose that h is a nonzero polynomial in D[t] satisfying h(c) = 0 for
all c in C. Then deg h ≥ degmF (C).

Proof. Suppose the result is false. Among all counterexamples choose one h in D[t]
of minimal degree m with m < degmF (C). Let h =

∑m
i=0 ait

i. We may assume that
am = 1, i.e., that h is monic. By the commutative case, we may also assume that not
all the ai lie in F , say aj /∈ F . Choose b in D satisfying ajb 6= baj. Let c ∈ C, so by
assumption

∑m
i=0 aic

i = 0. Hence

0 = b
( m∑
i=0

aic
i
)
b−1 =

m∑
i=0

(baib
−1)(bcib−1) with aj 6= bajb

−1.

Then the polynomial h1 =
∑m−1

i=0 (ai− baib−1)ti vanishes on b C b−1 = C, contradicting the
minimality of m. �

This lemma implies:

Proposition 108.6. Let D be a division ring with center F and C a conjugacy class in
D algebraic over F . If h ∈ D[t], then h vanishes on C if and only if h ∈ D[t]mF (C).

Proof. Set f = mF (C). By Lemma 108.1, for all x ∈ D, we have f ∈ D[t] · (t − x).
It follows that if h ∈ D[t]f , then h(x) = 0 for all x in C. Conversely, suppose that
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h(x) = 0 for all x ∈ C. By the (right) division algorithm, h = qf + g in D[t] with g = 0
or deg g < deg f . Since h(x) = 0 = f(x) for all x ∈ C, we also have g(x) = 0 for all x ∈ C.
By Lemma 108.5, we must have g = 0, so h ∈ D[t]f . �

Corollary 108.7. Let D be an infinite division ring. Then no nonzero polynomial in
D[t] vanishes on D.

Proof. We may assume that D is not a field. Suppose the corollary is false and that
h = tm + am−1t

m−1 + · · ·+ a1t + a0 in D[t] vanishes on all of D. In particular, h(0) = 0,
so a0 = 0. We may also assume that we have chosen h with m minimal. Let F be the
center of D. By the proof of Lemma 108.5, we see that we must have ai ∈ F for all i, i.e.,
h ∈ F [t]. It follows that F must be a finite field. Let x ∈ D. Then x is a root of h, so is
algebraic over F . In particular, the subfield F [x] of D is a finite extension of F , so also
a finite field. Hence there exists an integer n = n(x) satisfying xn = x. By Proposition
108.5, D is a field, a contradiction. �

Lemma 108.8. Let D be a division ring with center F and f ∈ F [t]. Suppose that there
exist polynomials g1, g2 ∈ D[t] satisfying f = g1g2. Then f = g2g1.

Proof. As f ∈ F [t] ⊂ Z(D[t]) (check), g1g = gg1 = g1g2g1. Since D[t] is a non-
commutative domain (obvious definition), g = g2g1. �

We now show that the minimal polynomial of an algebraic conjugacy class in a division
ring D splits in D[t].

Theorem 108.9. (Wedderburn) Let D be a division ring with center F and C a conjugacy
class in D algebraic over F . Suppose that degmF (C) = n. Then there exist a1, . . . , an in
D satisfying

(∗) mF (C) = (t− a1) · · · (t− an).

Moreover, a1 in C can be arbitrarily chosen and then any cyclic permutation of (∗) is still
mF (C).

Proof. Let f = mF (C). Fix any element a1 ∈ C. Then f ∈ D[t](t − a1) by Lemma
108.1. Write f = g · (t − ar) · · · (t − a1) in D[t] with a1, . . . , ar ∈ C and r maximal. Let
h = (t− ar) · · · (t− a1). We show h vanishes on C. If not then there exist an x ∈ C with
h(x) 6= 0. By Proposition 108.2, there exists an ar+1 ∈ C, a conjugate of x satisfying
g(ar+1) = 0. It follows that f = h · (t − ar+1) · · · (t − a1) for some h ∈ D[t] by Lemma
108.1. This contradicts the maximality of r. Thus h vanishes on C, hence lies in D[t]f by
Proposition 108.6. It follows that r = n and f = (t − an) · · · (t − a1) in D[t] by Lemma
108.5. The last statement in the theorem follows by Lemma 108.8. �

Definition 108.10. A division ring D is called right algebraically closed (respectively,
left algebraically closed) if every non-constant polynomial in D[t] has a right (respectively,
left) root.

We note that Frobenius’s Theorem for division rings over the reals 104.1 holds over any
real closed field using the same proof. In particular, the Hamiltonian quaternions H are
defined over any real closed field F . We use the same notation as in Construction 33.1. In
particular, we have the map : H → H given by x0+x1i+x2j+x3k 7→ x0−x1i−x2j−x3k
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is an antiautomorphism fixing F . This antiautomorphism induces an antiisomorphism
: H[t]→ H[t] given by

∑n
i=0 ait

i 7→
∑n

i=0 ait
i. In particular, if f ∈ H[t], then ff lies in

F [t].

Proposition 108.11. Let F be a real closed field. Then the Hamiltonian quaternions H
over F is right and left algebraically closed.

Proof. Let f =
∑n

i=0 ait
i be a non-constant polynomial in H[t]. We show that f

has a right root. This is certainly true if n = 1, so we may assume that n > 1. As the
element i ∈ H satisfies, F (i) is algebraically closed and ff lies in F [t], it has a (right)
root α. If α is a right root of f , we are done, so we may assume not. Then a conjugate

β of α is a right root of f by Proposition 108.2. As
∑n

i=0 β
i
ai =

∑n
i=0 aiβ

i = 0, we have

β is a left root of f . By the left analogue of Proposition 108.2, f = (t − β)g for some
g ∈ D[t]. Since deg g = n − 1, the polynomial g has a right root in H, hence so does f .
Consequently, H is right algebraically closed. The proof that H is left algebraically closed
is analogous. �

Using the Artin-Schreier Theorem 77.2, we can now prove:

Theorem 108.12. (Baer) Let D be a non-commutative division ring with center F .
Suppose that D is finite over F , i.e., dimF D <∞, and every nonzero polynomial in F [t]
has a right root in D, e.g., D is right algebraically closed. Then F is real closed and
D = H.

Proof. Let n = dimF D. Let f be a non-constant polynomial in F [t]. Then f has a
right root α in D. In particular, degmF (α) ≤ n by Lemma 108.5.

Claim. F is perfect.

We may assume that F has positive characteristic p. Let L be an algebraic closure of F
and α be an element of L. Let α1/pm be the unique pmth root of α in L. We must show
α1/p lies in F . Since F ⊂ F (α1/p) ⊂ · · · ⊂ F (α1/pm) ⊂ · · · and [F (α1/pm) : F ] ≤ n, there

exists an m such that α1/pm+1
lies in F (α1/pm), hence α1/p lies in F pm(α) ⊂ F , as needed.

Now let E be a intermediate field satisfying L/E/F chosen with E a simple extension of
F (i.e., is E = F (x) some x) of maximal degree. Since E/F is separable, E is determined
by a separable polynomial f in F [t] and has a root in D. Therefore, [E : F ] ≤ n. In
particular, L/F must be a finite extension. Since D is not commutative, F < L. By the
Artin-Schreier Theorem 77.2, F is real closed and hence D = H by Frobenius’s Theorem
104.1. �

Lemma 108.13. Let D be a division ring, V a left vector space over F , and M a subset
of V closed under addition and containing at least two linear independent elements in V .
Suppose that ϕ : M → V is an additive map such that for all x ∈ M , ϕ(x) = λxx for
some λx ∈ F . Then there exists an element λ ∈ F satisfying ϕ(x) = λx for all x ∈M ,

Proof. Let x be a nonzero element in M . By assumption M 6⊂ Fx. Let y be any
element in M \ (M ∩ Fx). Then

(∗) λxx+ λyy = ϕ(x) + ϕ(y) = ϕ(x+ y) = λx+y(x+ y) = λx+yx+ λx+yy.



108. POLYNOMIAL RINGS OVER A DIVISION ALGEBRA 643

As x, y are linearly independent, it follows that λx = λx+y = λy. In particular, if z is a
nonzero element of M not in Fx, we have λx = λz. If z ∈ Fx ⊂ M , then replacing x by
z in (∗) shows λz = λy = λx. The result follows. �

Theorem 108.14. (Cartan-Brauer-Hua) Let K ⊂ D be division rings and M ⊂ D be
closed under addition and containing 1. Suppose that xK ⊂ Kx for all x in M . Then
either M ⊂ K or M ⊂ ZD(K), the centralizer of K in D. In particular, if xKx−1 ⊂ K
for all x in D, then either K = D or K lies in the center of D.

Proof. Suppose that M 6⊂ K. Then M contains at least two linearly independent
vectors in the right vector space D over K. Let k ∈ K. If x ∈ M , then xk ∈ xK ⊂ Kx,
hence xk = λxx for some λx in K. Applying the lemma to the map ρk : M →M given by
x 7→ xk yields an element λ ∈ K satisfying xk = λx for all x in M . Setting x = 1 shows
λ = k. It follows that kx = xk for all x in M and k ∈ K. This gives the first statement.
Applying the first statement with M = D yields the second statement. �

Theorem 108.15. Let D be a division ring and x an element of D having only finitely
many conjugates in D. Then x has only one conjugate, i.e., lies in the center of D.

Proof. Let ZD(x) := ZD×(x) ∪ {0} = {d ∈ D | xd = dx}, a division ring lying in
D. Then the hypothesis means that [D× : ZD×(x)] is finite. Each conjugate axa−1 of x
gives rise to a division algebra ZD(axa−1) with ZD×(axa−1) of finite index in D and there
are finitely many such. Let K be the intersection of these finitely many division rings.
Then K is a division ring satisfying [D× : K×] is finite by Poincaré’s Lemma (Exercise
10.16(7)). Moreover, K× /D×. It follows by the Cartan-Brauer-Hua Theorem above that
either K = D or K ⊂ Z(D). If x ∈ Z(D), we are done. So suppose that K ⊂ Z(D)).
Then we must have [D× : Z(D×)] ≤ [D× : ZD×(K×)] < ∞. In particular, if Z(D) is a
finite field, then D is a finite division ring, hence commutative by Proposition 108.5. So
we may assume that Z(D) is infinite. Let y1, y2, . . . be an infinite number of elements in
Z(D) and x0 = x, x1 = x+ y1, x2 = x+ y2, . . . . Since [D× : Z(D×)] is finite, there exist
yi 6= yj with xi and xj lying in the same coset of Z(D×). Therefore, x + yi = z(x + yj)
for some z ∈ Z(D×). As yi 6= yj, we have z 6= 1. Consequently, (1− z)x = zyj − yi lies in
Z(D) with 1 − z nonzero, hence invertible. Therefore, x is an element in Z(D) and the
result is proven. �

Lemma 108.16. Let D be a division ring with center F and C a conjugacy class in D
such that mF (C) is quadratic in F [t]. Suppose f ∈ D[t] has two right roots in C. Then
f ∈ D[t]mF (C) and f(C) = 0.

We leave the proof of this as an exercise.

Proposition 108.17. Let F be a real closed field and H the Hamilton quaternions over
F . Let f ∈ H[t] be nonzero. Then the following are equivalent:

(1) The polynomial f has infinitely many roots in D.
(2) There exist elements a and b in F with b nonzero satisfying f(a + bi) = 0 =

f(a− bi).
(3) The polynomial f has a right factor q(t) in D[t] with q ∈ F [t] a quadratic irre-

ducible.
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If these conditions hold, then f vanishes on the conjugacy class of a+ bi

Proof. (1) ⇒ (3): By Proposition 108.11, f has two roots in some conjugacy class
C in H. Then mF (C) lies in F [t] and is an irreducible quadratic. By Lemma 108.16, we
have f lies in H[t]mF (C) (and mF (C) vanishes on C).
(3) ⇒ (1): Let c be a root of mF (C) in F (i). Then by Theorem 108.15, x has infinitely
many conjugates in H. Each of these is a root of mF (C) hence of f .

(3)⇒ (2) is clear and (2)⇒ (3) follows from Lemma 108.1 and Proposition 108.2. �

Exercises 108.18.

1. Let D be a division ring with center F and a, b in D both algebraic over F . Then a
and b are conjugate in D if and only if mF (a) = mF (b).

2. Prove Lemma 108.16.

3. Let R be a real closed field and H the Hamilton quaternions over F . Suppose that
f =

∑n
i=0 in H[t] with a0 ∈ H\F and a1, . . . an ∈ F . Show that f has at most n roots

in H. In particular, show tn−a0 has exactly n solutions in D, and they all lie in F (a0).



CHAPTER XIX

Introduction to Representation Theory

In this chapter, we give applications of the Artin-Wedderburn Theorem to finite group
theory. In particular, we study group homomorphisms ϕ : G → GLn(F ) with G a finite
group and F a field, especially the case that the characteristic of F is zero. We give two
important applications, the first a famous theorem of Hurwitz on the products of sums of
squares, and the second the theorem of Burnside showing that groups of order paqb are
solvable where p and q are primes and a, b non-negative integers. To prove the second
we introduce and study characters of representations, i.e., the trace of a representation
ϕ : G→ GLn(F ).

Throughout this chapter F will denote a field and G a group.

109. Representations

Throughout this section R will denote a nonzero commutative ring.

Definition 109.1. Let R be a commutative ring and G a group (respectively monoid)
(usually written multiplicatively) . The group ring (respectively, monoid ring) R[G] of G
over R is the free R-module on basis G = {g | g ∈ G} made into a ring by the following
multiplication:

(
∑
G

agg)(
∑
G

bhh) =
∑
G

ckk with ah, bh ∈ G almost all zero where

ck =
∑
gh=k

agbh.

We have 1R[G] = 1ReG where eG is the unity of G.

The map ϕR[G] : R → R[G] given by r 7→ r1R[G] is a ring monomorphism, so we view
R ⊂ R[G]. As R ⊂ Z(R[G]), the center of R[G], the ring R[G] is an R-algebra.

Examples 109.2. Let R be a commutative ring and G a group.

1. If H = {ti | i ≥ 0}, then R[H] = R[t].

2. If H = Nn with N = Z+ ∪ {0}, (an additive monoid), then R[H] ∼= R[t1, . . . , tn].

3. R[Z] ∼= R[t, t−1].

4. R[Zn] ∼= R[t1, t
−1
1 , . . . , tn, t

−1
n ].

5. R[G] is commutative if and only if G is abelian.

6. G ⊂ R[G]×.

7. If G is cyclic of order n, then R[G] ∼= R[t]/(tn − 1).

645
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Remarks 109.3. Let R be a commutative ring, G a (multiplicative) group, M an R[G]-
module, and N an R-module.

1. The map λ : G → AutR(M) given by g 7→ λg = λ(g) : m 7→ gm, is a group homomo-
morphism. (The inverse of λg is λg−1 .)

2. A group homomorphism ϕ : G → AutRN is called a representation of G. Such a ϕ
makes N into an R[G]-module via

g · x := ϕ(g)(x) for all g ∈ G, x ∈ N.

Conclusion. A representation ϕ : G→ AutRN is equivalent to an R[G]-structure on
N . We say that ϕ is irreducible if N is an irreducible R[G]-module (via ϕ).

3. If τ : G′ → G is a group homomorphism, then any representation of G induces a
representation of G′ by composition.

4. As G is an R-basis for the R-free module R[G], any representation ϕ : G → AutRN
can be extended to an R-algebra homomorphism which we also write as ϕ : R[G] →
EndRN and also call a representation. Conversely, any R-algebra homomorphism
ϕ : R[G]→ EndRN restricts to a representation ϕ : G→ AutRN .

Conclusion. A representation ϕ : G → AutRN is equivalent to an R-algebra homo-
morphism ϕ : R[G]→ EndRN .

5. Let λ : G →
∑

(G) be the left regular representation, i.e., x 7→ λx : g 7→ xg. Then λ
induces a representation λ : R[G]→ EndR(R[G]) called the (left) regular representation
of G (relative to R). It is faithful , i.e., kerλ = 0.

6. Suppose that N is a finitely generated free R-module of rank n on (an ordered) basis
B. Then N ∼= Rn and we have a group isomorphism ψ−1 : GLn(R)→ AutR(N) where
ψ(T ) = [T ]B, the matrix representation of T relative to the basis B. If ϕ : G→ AutRN
is a representation, we get a group representation ϕ̃ = ψϕ : G → GLn(R) called an
R-representation of degree n. We say that ϕ̃ affords N or ϕ affords N if B is clear.
[It is also common to write GL(N) for AutR(N).] Hence fixing a basis B for a finitely
generated free R-module N gives rise to a representation ϕ̃ : G→ GLn(R) where n is
the rank of N , hence an R[G]-module structure to Rn. One often writes ϕ̃(n), n ∈ N ,
for ϕ(g)(n) if we know N .

7. Suppose that N and N ′ are two free R-modules of the same rank n with ϕ : G →
AutR(N) and ψ : R → AutR(N ′) affording N and N ′, respectively. We say ϕ and ψ
are equivalent and write ϕ ∼ ψ, if there exists an R-isomorphism T : N → N ′ satisfying

N
T
//

ϕ(g)
��

N ′

ψ(g)
��

N
T
// N ′.

commutes for all g in G, i.e., if N is an R[G]-module via ϕ and N ′ is an R[G]-module
via ψ in the above, then T : N → N ′ is an R[G]-isomorphism. If N = Rn = N ′, of
course, we write GLn(R) for AutRN .

Conclusion. We have ϕ ∼ ψ in the above if and only if N ∼= N ′ as R[G]-modules.
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8. We say the R[G]-module M is G-trivial if gm = m for all m in M and all g in G.

9. Define

MG := {m ∈M | gm = m for all g ∈ G},
a submodule of M called the set of G-fixed points of M .

10. Let ϕ : G → GLn(R) afford the finitely generated free R-module N . Then N is G-
trivial via ϕ if and only if ϕ is the trivial map, i.e., g 7→ I for all g in G. We call this
the trivial representation of G. If n = 1, it is irreducible.

11. Suppose both M , N , and P are R[G]-modules. Then HomR(M,N) is an R[G]-module
defined by

(σf)(m) := σ
(
f
(
σ−1(m)

))
for all σ ∈ G, m ∈M , and f ∈ HomR(M,N).

Check. If f ∈ HomR(M,N), g ∈ HomR(N,P ), then σ(g ◦ f) = (σg) ◦ (σf) and

HomR[G](M,N) =
(

HomR(M,N)
)G
.

12. We view R as a trivial R[G]-module. If M is an R[G]-mmodule, then the isomorphism
of R[G]-modules HomR(R,M) → M given by f 7→ f(1) induces an isomorphism
HomR[G](R,M) ∼= MG.

13. Suppose that G is a finite group. Define the norm of G by

NG :=
∑
G

g in R[G].

As σNG = NG = NGσ for all σ in G, we have NG lies in R[G]G and NGx lies in MG

for all x in M , i.e., NG : M → MG given by x 7→ NG x is an R[G]-homomorphism,
so NGM ⊂ MG. The quotient MG/NGM is an object of study in algebraic number
theory. Of course, this also says that NG lies in the center of R[G]. More generally, if
H is a normal subgroup of G, then NH lies in the center of R[G].

14. Suppose that G is a finite group and both M and N are R[G]-modules. Let f : M → N
be an R-homomorphism. Define the trace of f to be the R[G]-homomorphism

TrG f := NGf =
∑
G

σf : M →M.

In particular, if f is an R[G]-homomorphism, then TrG f = |G|f .

Lemma 109.4. Let R be a commutative ring and G a finite group. Suppose that M , M ′,
N , N ′ are R[G]-modules and f : M → N an R-homomorphism. If ϕ : M ′ → M and
ψ : N → N ′ are R[G]-homomorphisms, then TrG(ψfϕ) = ψ ◦ TrG f ◦ ϕ.

Proof. By definition, (σf)(m) = σ
(
f(σ−1m)

)
, so

TrG(ψfϕ) =
∑
G

σ ◦ (ψfϕ) =
∑
G

(σ ◦ ψ) ◦ (σ ◦ f) ◦ (σ ◦ ϕ)

= ψ ◦ (
∑
G

σf) ◦ ϕ = ψ ◦ TrG f ◦ ϕ. �
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Theorem 109.5. (Maschke’s Theorem) Let F be a field and G a finite group. Suppose
that either charF = 0 or charF 6 | |G|. Then F [G] is semisimple.

Proof. Let V be an F [G]-module and W an F [G]-submodule. We must show that W
is a direct summand of V as an F [G]-module. Let iW : W → V denote the inclusion map.
We must show that this is a split F [G]-monomorphism by Exercise 38.18(12). Write
V = W ⊕ W ′ as F -vector spaces. [Of course, W ′ need not be an F [G]-module.] Let
πW : V → W be the vector space projection of V onto W . By assumption, 1/|G| ∈ F×,
so we can define the ‘average’

ϕ :=
1

|G|
TrG πW : V → W.

The map ϕ is an F [G]-homomorphism and, by the lemma, we have

TrG(iWπW iW ) = iW ◦ TrG πW ◦ iW = |G| iW ◦ ϕ ◦ iW .
Since

TrG(iWπW iW ) = TrG
(
iW (πW iW )

)
= TrG(iW1W ) = TrG iW = |G| iW ,

we conclude that iW ◦ (ϕ ◦ iW ) = iW = iW1W as |G| is a unit in F [G]. As iW is a
monomorphism, we have ϕ ◦ iW = 1W , i.e., iW is a split F [G]-monomorphism as desired.

�

Maschke’s Theorem allows us to apply the Artin-Wedderburn Theorem to F [G] when
G is a finite group and charF = 0 or charF does not divide |G|. We also get one further
piece of useful information, as we can compute the dimension of the center of F [G], which
we now do.

Definition 109.6. Let R be a commutative ring and G a group. If g is an element of G
and the conjugacy class C(g) of g in G finite, we let Cg :=

∑
C(g) h called the class sum of

g in R[G].

Lemma 109.7. Let R be a commutative ring and G a finite group. If Cg1 , . . . , Cgr are
the distinct class sums of G in R[G], then the center Z(R[G]) is a free R-module on
basis B := {Cg1 , . . . , Cgr}. In particular, the rank of Z(R[G]) is equal to the number of
conjugacy classes of G.

Proof. Let σ be an element of G. Then for all g in G, we have σCgσ
−1 = Cg, so

Cg lies in Z(R[G]). Since G =
∨
C(gi) is an R-basis for R[G], the set B is R-linearly

independent. Thus we need only show that B spans Z(R[G]). Let y =
∑

G agg lie in
Z(R[G]). Then for each σ in G, we have y = σyσ−1 =

∑
G agσgσ

−1. As G is an R-basis
for R[G], we have ag = aσgσ−1 for all σ in G, and the result follows. �

We now apply the Artin-Wedderburn Theorem to the case that F is an algebraically
closed field and G is a finite group with charF = 0 or charF 6 | |G|, i.e., Maschke’s Theorem
holds, e.g., F = C, to conclude the following:

Theorem 109.8. Let G be a finite group and F an algebraically closed field of character-
istic zero or positive characteristic not dividing the order of G. Let A1, . . . ,Ar be a basic
set for F [G] and ni = dimF Ai, i = 1, . . . , r. Then
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1. F [G] ∼=
∐r

i=1 A
ni
i as F [G] modules.

2. F [G] ∼=�
r
i=1Mni(F ) as rings.

3. r is the number of conjugacy classes of G.

4. |G| =
∑r

i=1 n
2
i and at least one of the ni is one.

Proof. There are no finite dimensional F -division rings over F except for F , as
any such would contain an element x not in F , but then F (x) would be a commutative
division ring distinct from F . It also follows that if Bi is the Wedderburn component
corresponding to Mni(F ), we have dimF Bi = ni is the dimension of a column space of
Mni(F ). Therefore, we have (1), (2), and (3). Finally, Z

(
Mni(F )

)
= F , so

G = dimC C[G] = dimC

(
�

r
i=1Mni(C)

)
=

r∑
i=1

n2
i ,

and the trivial representation of G into GL1(F ) = F× is irreducible of degree one giving
(4). �

We can weaken the hypothesis of the theorem that F be algebraically close to having
all the Wedderburn components matrix rings over F . We shall investigate this in the next
section.

Remarks 109.9. Let G be a finite group and F a field of characteristic zero or of positive
characteristic not dividing |G|.
1. A representation ϕ : G→ GL1(F ), i.e., of degree one is called a linear representation).

By Maschke’s Theorem, it must be irreducible.

2. As a special case of (1), suppose that G is an elementary 2-group, i.e., G ∼= (Z/2Z)n

for some n and F is a field of characteristic different from two. Then Maschke’s
Theorem holds. There exist at least 2n linear inequivalent representations of G given
by the trivial representation and the 2n− 1 representations each defined by taking one
nonzero element of G to −1 and all other elements if G to 1. Since dimF F [G] = 2n

and F [G] is semisimple, these must be all the irreducible representations of G.

3. Let Gab = G/[G,G]. Then any representation of Gab gives rise to a representation of
G of the same degree via composition with the canonical epimorphism : G→ Gab.

4. If F is algebraically closed, then any irreducible representation ϕ : Gab → Mn(F ) must
be of degree one.

Example 109.10. Let G be a finite group of order n. We give some examples of complex
representations, i.e., representations ϕ : G→ GLn(C).

1. We interpret Theorem 109.8 in the case of complex representations. Let A1, . . . ,Ar

be a basic set for C[G] and ni = dimC Ai, i = 1, . . . , r. Let ϕi be the irreducible
representation afforded by Ai. Then the regular representation λ : G → GLn(C) is
similar to
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ϕA1 · · ·
. . .

ϕA1

...
. . .

ϕAr

. . .
ϕAr





n1

nr

2. Let G = 〈x〉 be a cyclic group of order n and ω a primitive root of unity in C. Then
ρi : G → C× = GL1(C) determined by x → ωi for i = 1, . . . n are all the inequivalent
irreducible representations of G.

3. Let G be the dihedral group D3 with G = {a, b | a3 = 1 = b2, bab−1 = a−1}. We know
the trivial representation is of degree one, and there are three conjugacy classes in
D3. Therefore, there is another a linear character and one of degree 2. The nontrivial
linear character Gab ∼= Z/2Z induces the irreducible character G → C× determined
by a 7→ 1 and b 7→ −1. Let ω be a primitive cube root of unity. The representation
ϕ : G→ GLn(C) determined by

a 7→
(
ω 0
0 ω−1

)
and b 7→

(
0 1
1 0

)
is the third irreducible representation.

Exercises 109.11.

1. Let F be an algebraically closed field of characteristic zero, G be a finite group and
ϕ : G→ GLn(F ) a representation. Show that ϕ is irreducible if and only if for each x
in G, there exists an element λ in F such that λ(x) = λI.

2. Let F be an algebraically closed field of characteristic zero, G be a finite group, and z
an element of the center of F [G]. Show if V is an irreducible F [G]-module, then there
exists an element λ in F satisfying zv = λv for all v ∈ V .

3. Let F be an algebraically closed field of characteristic zero and G be a finite group.
Show if there exists a faithful irreducible F [G]-module M (i.e., irreducible and gm = m
for all m ∈M , then g = eG), then the center of G is cyclic.

4. Determine all complex representations of a finite abelian group.

5. Let G = 〈x〉 be a cyclic group of order n and ω a primitive root of unity in C. In the
notation of Example 109.10(2) determine the C[G]-submodule of C[G] determined by
ρ1, by ρi.

6. Let G be the dihedral group D3 and ω a primitive root of unity in C. In the notation
of Example 109.10(2) determine the irreducible C[G]-submodules of C[G].

7. Find all complex irreducible representations of the dihedral group D4.

8. Find all complex irreducible representations of the quaternion group Q3.

9. Find all real irreducible representations of the quaternion group Q3.
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110. Split Group Rings

The purpose of this section is to extend theorems about of group rings over fields with
the group finite and Maschke’s Theorem holds when the underlying field is algebraically
closed to the case that the underlying division rings in the Wedderburn decomposition of
a group ring are always the base field. This is useful in the general theory.

Definition 110.1. Let D be a division ring and M a (left) D-vector space. If A is a
subring of EndD(M), we say that A act densely on M if given any D-linear independent
vectors v1, . . . , vm in M , m > 0, and vectors v′1, . . . , v

′
n in M , then there exists a T ∈ A

satisfying Tvi = v′i for i = 1, . . . , n.

Theorem 110.2. (Jacobson Density Theorem) Let R be a nonzero commutative ring, M
an irreducible R-module, and D = EndR(M) (a division ring by Schur’s Lemma). Then

λ : R→ EndD(M) by a 7→ λa : m 7→ am

is a ring homomorphism. Set

LR(M) := imλ ⊂ EndD(M).

Then LR(M) acts densely on M as a D-vector space. In particular, if dimDM is finite,
then λ is a ring epimorphism.

Proof. Let a be an element on R and f an element of EndD(M). Then for all m in
M , we have

λaf(m) = af(m) = f(am) = fλa(m),

so λa lies in EndD(M) for all a in R, and clearly, λ is a ring homomorphism. Let v1, . . . , vm
in M be D-linearly independent with m ≥ 1 and v′1, . . . , v

′
n in M . As M is R-irreducible,

M = Rvi for every i = 1, . . . , n. Thus the result is trivial if m = 1. So assume that
m > 1. We are finished if we can establish the following:

Claim: It suffices to produce sm ∈ R satisfying

smvi =

{
0, if i < m.

6= 0, if i = m.

Indeed, suppose that such an sm exists. As smvm 6= 0, we have M = Rsmvm by irre-
ducibility. Write v′m = rsmvm with r ∈ R and let bm = rsm. In an analogous way, there
exist bj ∈ R satisfying bjvj = δijv

′
j, with δij the Kronecker delta. Then b = b1 + · · ·+ bm

works. This establishes the claim.

Now assume that the result is false. This means, we have

(*) If a ∈ R satisfies avi = 0, 1 ≤ i ≤ m− 1, then avm = 0.

By induction, Mm−1 = {(av1, . . . , avm−1) | a ∈ R}, so (*) implies if a, b ∈ R, then

(av1, . . . , avm−1) = (bv1, . . . , bvm−1) ⇒ avm = bvm.

This means that

µ : Mm−1 →M given by (av1, . . . , avm−1) 7→ avm
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is a well-defined R-homomorphism. Let ιj : M → Mm−1 be the R-homomorphism given
by m 7→ (0, . . . , m︸︷︷︸

j

, 0, . . . , 0) as usual, and set ϕj = µ ιj in D = EndR(M). Then

vm = µ(av1, . . . , avm−1) =
m−1∑
j=1

µ(0, . . . , m︸︷︷︸
j

, 0, . . . , 0) =
m−1∑
j=1

ϕj(vj),

contradicting v1, . . . , vm are D-linearly independent. �

Remark 110.3. Let F be a field and A a finite dimensional F -algebra (i.e., dimF A <∞).
Let M be a finitely generated A-module, hence a finite dimensional F -vector space. Then
EndA(M) ⊂ EndF (M) is a subring. By definition F ⊂ Z(A), the center of A, so

λ : A→ EndF (M) by a 7→ λa : m 7→ am

is a ring homomorphism. Set

LA(M) := imλ ∼= A/ kerλ = A/annRM.

We view
F ⊂ EndA(M) ⊂ EndF (M)

as subrings via a 7→ a1M .

Theorem 110.4. (Burnside) Let F be a field, A an F -algebra (not necessarily finitely
generated), and M an irreducible A-module that is also a finite-dimensional vector space
over F (so cyclic as finitely generated).

(1) If F is algebraically closed, then F = EndA(M).
(2) If F = EndA(M), then LA(M) = EndF (M).

Proof. EndA(M) is a finite dimensional vector space over F as M is. By Schur’s
Lemma 102.16, D = EndA(M) is a division ring.

(1): Let x ∈ D. Then F ⊂ Z(D), so F (x) ⊂ D is a commutative division ring, i.e., F (x)
is a field. As [F (x) : F ] ≤ dimF D < ∞, the field extension F (x)/F is algebraic, hence
F (x) = F , as F is algebraically closed.

(2): As dimR(M) is finite, this follows from the Jacobson Density Theorem 110.2. �

Definition 110.5. Let A be a semi-simple ring and a finite dimensional F -algebra with
F a field. Suppose that A = B1⊕ · · · ⊕Bm is a Wedderburn decomposition. We say that
A is F -split if Bi is a matrix ring over F for every i = 1, . . . ,m.

We leave the following as an exercise:

Proposition 110.6. Let F be a field, A a semi-simple finite dimensional F -algebra.
Then A is F -split if and only if F ∼= EndA(M) for every irreducible A-module M . In
particularly, if F is algebraically closed, then A is F -split.

Remark 110.7. Suppose that F is a field, G a finite group not divisible by the charac-
teristic of F . Then F [G] is semi-simple. Suppose, in addition, that F [G] is F -split and
M1, . . . ,Mr a complete set of representatives for the isomorphism classes of irreducible
F [G]-modules. Then Z(F [G]) =

∏r
i=1 F and r is the number of conjugacy classes of G

by Lemma 109.7.
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Using the Artin-Wedderburn Theorem, Maschke’s Theorem, Burnside’s Lemma, and
the above, we now have the following generalization of Theorem 109.8:

Summary 110.8. Let F be a field, G a finite group such that charF 6 | |G| (so F [G]
is semi-simple by Maschke’s Theorem). Suppose that F [G] is F -split, e.g., if F is alge-
braically closed. Let

M1, . . . ,Mr

be a complete set of representatives for the isomorphism classes of irreducible F [G]-
modules and ni = dimF Mi for 1 ≤ i ≤ r. Then

1. F [G] ∼=
∏r

1=1M
ni
i as F [G]-modules.

2. F [G] ∼=�
r
i=1Mni(F ) as rings.

3. r is the number of conjugacy classes of G.

4. |G| =
∑r

i=1 n
2
i .

5. LF [G](Mi) = EndF (Mi) for i = 1, . . . , r.

Exercises 110.9.

1. Let F be a field, A an F -algebra (not necessarily finitely generated), and M a com-
pletely reducibleA-module. Show if EndA(M) ∼= F , thenM is an irreducibleA-module.

2. Prove Proposition 110.6.

111. Addendum: Hurwitz’s Theorem

We shall give a nice application of the theory developed so far. If n ≥ 3, the general
quaternion group Qn is the group on n generators a1, . . . , an−1, ε subject to the relations

ε2 = 1

a2
i = ε for each i = 1, . . . , n− 1

aiaj = εajai for all i, j = 1, . . . , n− 1 satisfying i 6= j.

For example, Q3 is the usual quaternion group. We shall see below that this group has
order 2n.

Properties 111.1. Let Qn, n ≥ 3, be the general quaternion group.

1. The element ε lies in the center of Qn.

2. The element ε satisfies ε = aiaja
−1
i a−1

j for all i 6= j. In particular, ε lies in [Qn, Qn].

3. [Qn, Qn] = 〈ε〉 = {1, ε} (as Qn/〈ε〉 is abelian and ε ∈ [Qn, Qn]). In particular, Qn/〈ε〉
is an elementary 2-group on the image of the generators a1, . . . , an−1. Hence |Qn/〈ε〉| =
2n−1 and |Qn| = 2n.

4. There exist (at least) 2n−1-linear representations of Qn over any field of characteristic
different from two by Remark 109.9(2).

5. If n is odd, then the center Z(Qn) of Qn, is 〈ε〉:
It suffices to show that z = a1 · · · al for 1 ≤ l ≤ n is not central. But if such a z lies in
Z(Qn), then

ala1 · · · al = a1 · · · alal = εl−1ala1 · · · al,
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so l − 1 is even, hence l is odd and l < n− 1. But

an−1a1 · · · al = a1 · · · alan−1 = εlan−1a1 · · · al,

so l is even, a contradiction.

6. If n is even, then Z(Qn) = 〈ε, a1 · · · an−1〉:
This is similar to the previous argument, using a1 · · · an is central as n− 1 is odd, so

a1 · · · an−1aj = εn−2aja1 · an−1 = aja1 · · · an−1,

since aj occurs once in a1 · · · an−1.

7. If g in Qn is not central, then its conjugacy class C(g) = {g, εg}:
As g /∈ Z(Qn), we have |C(g)| > 1. Let : Qn → Qn/〈ε〉 be the canonical surjection.
As Qn is abelian, go ∈ {g, εg} if go = xgx−1 with x ∈ Qn.

We next look at the degrees of the irreducible representations of the general quaternion
group over an algebraically closed field of characteristic different from two.

Calculation 111.2. Let Qn, n ≥ 3, be the general quaternion group and r the num-
ber of conjugacy classes of Qn. Let F be a algebraically closed field of characteristic
different from two. As Qn is a 2-group, we know that r is the number of irreducible
F -representations of Qn and there exist 2n−1 linear F -representations by the properties
of established above. Therefore, using the properties above, we have

2n = |G| =
r∑
i=1

d2
i with di = 1 for 1 ≤ i ≤ 2n−1.

Case 1. n is odd:

We have

r = |Z(Qn)|+ |Qn| − |Z(Qn)|
2

= 2 +
2n − 2

2
= 2n−1 + 1.

So there exists one further irreducible F -representation and it is of degree dr. Since

2n = 1 · 2n−1 + d2
r, we have dr = 2

n−1
2 .

Case 2. n is even:

We have

r = |Z(Qn)|+ |Qn| − |Z(Qn)|
2

= 4 +
2n − 4

2
= 2n−1 + 2,

so there exist two further irreducible F -representations of degrees dr−1 and dr and these
satisfy 2n = 1 · 2n−1 + d2

r−1 + d2
r, hence 2n−1 = d2

r−1 + d2
r. Write dr−1 = 2kf1 and dr = 2lf2

with f1, f2 odd. It follows that k = l, hence

2n−2k−1 = f 2
1 + f 2

2 ≡ 2 mod 4.

If either f1 or f2 is greater than one, we would have 4 | f 2
1 + f 2

2 , which is impossible.

Consequently, dr−1 = dr = 2
n−2
2 .
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We shall use the calculation above to solve a very nice problem in field theory. Let
x1, . . . , xn and y1, . . . , yn be variables over a field F . We wish to know when there exists
a formula

(*) z2
1 + · · ·+ z2

n = (x2
1 + · · ·+ x2

n)(y2
1 + · · ·+ y2

n)

over F [x1, . . . , xn, y1, . . . yn] with the zi bilinear in the xi’s and yj’s, i.e., bilinear when
plugging in any values in F for the variables. We know that there are such formulae in
certain cases, e.g.,

If n = 1. (This is trivial.)
If n = 2. (Cf. with the norm from C to R.)
If n = 4. (Cf. with the norm form of a quaternion algebra.)
If n = 8. (Cf. with the norm form Cayley’s octonion algebra — a non-associate
algebra, i.e., satisfies all properties of an algebra except associativity, and in addition
all nonzero elements have inverses.)

Theorem 111.3. (Hurwitz) Let F be a field of characteristic not two. Then (*) exists if
and only if n = 1, 2, 4, or 8.

Proof. (Eckmann) If n = 1, 2, 4, 8, such a formula exists. We have written it down
except for the case of n = 8, which we leave to the reader to look up. Let X = (x1, . . . , xn)
and suppose that (*) holds. Let zi =

∑n
j=1 aij(X)yj for i = 1, . . . , n. Each of the aij(X)

must be linear in the xi’s. We have
n∑
i=1

z2
i =

n∑
i=1

( n∑
j=1

aij(X)yj
)2

=
n∑

i,j=1

aij(X)2y2
j + 2

n∑
i=1

∑
1≤j<k≤n

aij(X)aik(X)yjyk.

Using (*) and comparing coefficients, we see that
n∑
i=1

x2
i =

n∑
i=1

aij(X)2 for j = 1, . . . , n.

n∑
i=1

aij(X)aik(X) = 0 for all j 6= k.

Let A =
(
aij(X)

)
in Mn

(
F [x1, . . . , xn, y1, . . . , yn]

)
. We have

(†) AtA =
( n∑
i=1

x2
i

)
I.

Write
A = A1x1 + · · ·+ Anxn with Ai ∈ Mn(F ).

Substitute this into (†) and multiply out. Comparing coefficients yields equations:

(1) AtiAj + AtjAi = 0 for all i, j = 1, . . . , n and i 6= j.

(2) AtiAi = I for all i = 1, . . . , n.
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In particular, the Ai are orthogonal matrices. We next normalize these equations by
setting

Bi = AiA
t
n for 1 ≤ i ≤ n, hence Bn = AnA

t
n = I.

The Bi’s then satisfy:

(1′) Bt
iBj +Bt

jBi = 0 for all i, j = 1, . . . , n− 1 and i 6= j.

(2′) Bt
iBi = I for all i = 1, . . . , n.

As Bn = I, we have Bt
iBn +Bt

nBi = 0 for 1 ≤ i < n, hence

Bt
i = −Bi for i = 1, . . . , n− 1,

so (1′) and (2′) become

(1′′) BiBj +BjBi = 0 for all i, j = 1, . . . , n− 1 and i 6= j.

(2′′) B2
i = −I for all i = 1, . . . , n.

Let F̃ be an algebraic closure of F and ρ : Qn → GLn(F̃ ) be the representation induced
by ai 7→ Bi, for i = 1, . . . , n− 1 and ε 7→ −I. Each linear representation of Qn must take
ε 7→ 1 as aiaj = εajai for i 6= j and F is commutative. Since charF 6= 2, ρ is a direct
sum of irreducible representations of degree greater than one using Exercise 103.7(1). In
particular,

If n is odd, then 2
n−1
2 | n, hence n = 1.

If n is even, then 2
n−2
2 | n.

Since 2(n−2)/2 > n for n ≥ 10, we have n ≤ 8 and we check:

If n = 8, then 2
8−2
2 | 8.

If n = 6, then 2
6−2
2 6 | 6.

If n = 2, 4, then 2
n−2
2 | n. �

A more general theorem (that we do not prove) is

Theorem 111.4. (Hurwitz-Radon Theorem) Let x1, . . . , xl and y1, . . . , yn be variables
over a field F of characteristic not two. Then there exists a formula

z2
1 + · · ·+ z2

n = (x2
1 + · · ·+ x2

l )(y
2
1 + · · ·+ y2

n)

over F [x1, . . . , xl, y1, . . . yn] with the zi bilinear in the xi’s and yj’s if and only if n = 24α+β

with l ≤ 8α + 2β.

If one does not insist on the zi being bilinear in the xi’s and yi’s and works in
F (x1, . . . , xn, y1, . . . yn), then Pfister showed that the product of two sums of 2n squares
is a sum of 2n squares.

Exercise 111.5. Find all complex irreducible representations of the general quaternion
group Qn, n ≥ 3.
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112. Characters

Throughout this section F will be a field and G a group.

Definition 112.1. Let ϕ : G → GLn(F ) be a representation. The map χϕ : G → F =
M1(F ) defined by

χϕ(x) := traceϕ(x) for all x ∈ G
is called the character of the representation ϕ. The degree of the representation ϕ is also
called the degree of χϕ , so it is the integer χϕ(eG) which we shall denoted by χϕ(1),
i.e., write eG as 1. In particular, χϕ is not a group homomorphism in general. We say
that χϕ is an irreducible character if ϕ is an irreducible representation. For example,
the character associated to the trivial representation called the trivial character is an
irreducible character of degree one.

Remarks 112.2. Let V be an F [G]-module of dimension n as a vector space over F and
ϕ = ϕV : G→ GLn(F ) a representation affording V ∼= F n relative to some fixed basis. If
ψ : G → GLn(F ) affords V relative to another basis, then ϕ(x) and ψ(x) are conjugate
for all x in V , hence χϕ(x) = χψ(x) for all v in V . Therefore, χϕ depends only on the
equivalence class of ϕ. We often write χV for χϕ. As F [G] is F -free on basis G, the
character χϕ induces an F -linear functional F [G]→ F that we also denote by χϕ.

Proposition 112.3. Let V , V ′, and V ′′ be F [G]-modules, finite dimensional over F .
Then

(1) χV (σxσ−1) = χV (x) for all σ in G.
(2) If

0→ V ′ → V → V ′′ → 0

is an exact sequence of finite dimensional F [G]-modules, then

χV = χV ′ + χV ′′ .

Proof. We already showed (1). As for (2), we may assume that V ′ ⊂ V with B′ a
basis for V ′ extended to a basis to a basis B for V . If ϕV : G → GLn(F ), then with the
obvious notation,

ϕV (x) =

(
ϕV ′(x) ∗

0 ϕV ′′(x)

)
,

and the result follows. �

Example 112.4. Let G be a finite group with charF not dividing |G|, so F [G] is semi-
simple by Maschke’s Theorem 109.5. Let

λ : G→ AutF
(
F [G]

)
be given by x 7→ λx : y 7→ xy.

Extend this representation linearly to an F -algebra homomorphism λ : F [G]→ EndF
(
F [G]

)
.

This is just the (left) regular representation. Let {A1, . . . ,Ar} be the basic set for F [G].

Suppose that F [G] is F -split, e.g., if F is algebraically closed, and ϕA1 , . . . , ϕAr are all
the irreducible representations of G afforded by the Ai with the χAi the corresponding
characters. Set ni = degχAi = χAi(1). Then we have

χF [G] = χλ =
r∑
i=1

niχAi =
r∑
i=1

χAi(1)χAi .
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Note: λx with x not eG in G permutes G without fixed points and G is a basis for F [G],
so

traceϕλ(x) = χλ(x) = 0 for all x 6= eG.

More generally, if ϕ : G → GLn(F ) is a representation affording a finite dimensional
F -vector space V , then there exist unique integers mi ≥ 0 satisfying

1. V ∼=
∏

Ami
i as F [G]-modules.

2. χV =
∑
miχAi .

3. χV (1) = dimF V .

We now show that if F is a field of characteristic zero, then the equivalence class of a
representation of a finite group G → GLn(F ) is completely determined by its character.
This is false if F has positive characteristic dividing the order of G.

Theorem 112.5. Let F be a field of characteristic zero, G a finite group, and V , V ′ two
finitely generated F [G]-modules. Then

V ∼= V ′ if and only if χV = χV ′ .

Proof. (⇒) is trivial.

(⇐): We know that the F -algebra homomorphism λ : F [G] → EndF (V ) induced by
x 7→ λx : v → xv affords V and that F [G] is semi-simple by Maschke’s Theorem. Let
{A1, . . . ,Ar} be a basic set and Bi = BAi , 1 ≤ i ≤ r the simple components, so F [G] =
B1 ⊕ · · · ⊕ Br is the Wedderburn decomposition. Let ei = 1Bi , 1 ≤ i ≤ r, so e1, . . . , er
are central orthogonal idempotents. V is a finitely generated F [G]-module, so there exist
unique mi ≥ 0 satisfying V ∼=

∐
Ami
i as F [G]-modules, which we view as an equality.

To prove the theorem, we need to show that the F -linear functional χV : F [G] → F
determines all the mi. Fix a j, 1 ≤ j ≤ r, and let dj = dimF Aj 6= 0. [Note: We are
not assuming F [G] is F -split, so the value dj is not so clear.] As ej is central, for each
i, the map λej : Ai → Aj given by a 7→ eja is an F [G]-homomorphism. Viewing Ai as
a Bi-module, we have λej = δij1Bj . Thus we can view λej : V → V by v 7→ ejv as an

F [G]-homomorphism and conclude that imλej = λej(V ) = A
mj
j . Let Bkj be an (ordered)

F -basis for the kth component of A
mj
j . Then Bj = B1j ∪ · · · ∪ Bmjj is an F -basis for A

mj
j

and B =
⋃
Bj is an F -basis for V . We then have [λej ]B is the matrix

0

. . .

I

. . .

I

. . .

0





mj

with I the dj × dj identity matrix. Consequently,

χV (ej) = trace[λej ]B = djmj,
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so

mj =
χV (ej)

dj
=

χV (ej)

dimF Aj

in F

is determined by χV . �

Exercise 112.6. Let G be a finite p-group and F be a field of positive characteristic p
dividing |G|. Suppose that ϕ : G → GLn(F ) is an irreducible representation, show that
ϕ is the trivial representation, hence χϕ = n1F . In particular, if V and V ′ are finitely
generated F [G]-modules (hence finite dimensional vector spaces over F ), then χV = χV ′
if dimV ≡ dimV ′ mod p.

113. Orthogonality Relations

Throughout this section, we shall let F̃ denote an algebraic closure of the field F .

Definition 113.1. A group G is called a torsion group if every element of G has finite
order. (G may be infinite.)

Proposition 113.2. Let G be a torsion group, V an n-dimension vector space over F ,
V an F [G]-module. Let x be an element of G and N the order of the cyclic subgroup 〈x〉
in G. Then χV (x) is a sum of n terms in which each term is an N th root of unity in an

algebraic closure F̃ of F .

Proof. Let N = dimF V and ϕ : G→ GLN(F ) afford V . Set α = ϕ(x) and n = |〈x〉|.
Taking a Jordan canonical form of α in GLN(F̃ ) we see that traceα is a sum of N elements
each of which is an eigenvalue of α (counted with multiplicity). So it suffices to show that

every eigenvalue of α is an nth root of unity in F̃ . If v ∈ V is a nonzero eigenvector of α
with eigenvalue ε, then xn = eG implies that αn = 1, so v = αnv = εnv. Consequently,
1 = εn as needed. �

Recall that the integral closure of Z in K, K/Q a field extension, is denoted by ZK .
Then the proposition implies:

Corollary 113.3. Let G be a torsion group and n a positive integer satisfying xn = e
for every element x in G. Suppose that F is an algebraically closed field of characteristic
zero and ω a primitive nth root of unity in F . If ϕ : G → GLN(F ) is a representation,
then χϕ : G→ ZQ(ω).

Definition 113.4. Let χ : G → F be a character. The kernel of χ is defined to be the
set

kerχ := χ−1
(
χ(1)

)
= {x ∈ G | χ(x) = χ(1)}.

Proposition 113.5. Let G be a finite group, F a field of characteristic zero, and ϕ :
G → GLn(F ) a representation. Then kerχϕ = kerϕ. In particular, kerχϕ is a normal
subgroup of G.

Proof. Certainly, kerϕ ⊂ kerχϕ, so we need only show the reverse inclusion. So
suppose that χϕ(x) = χϕ(1). By the proposition, we have

n = χϕ(1) = ε1 + · · ·+ εn
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with each ε an |G|th root of unity over F hence over Q (and viewed in C). So n ≤
|ε1|+ · · ·+ |εn| ≤ n. Check if |ε1 + · · ·+ εn| = |ε1|+ · · ·+ |εn|, then εi = εj for all i, j. It
follows that n = ε1 + · · ·+εn = nε1, hence εi = ε1 for all i. Since the εi are the eigenvalues
of ϕ(x) in an algebraic closure of F by the previous proof, we must have the characteristic
polynomial of ϕ(x) is fϕ(x) = (t − 1)n. Since ϕ(y) is a root of t|G| − 1 for all y ∈ G, i.e,

ϕ(y)|G|− 1 = 0, the matrix ϕ(x) is a root of the gcd of (t− 1)n and of t|G|− 1. The latter
polynomial cannot have multiple roots, as we are working in characteristic zero, so this
gcd is t− 1. It follows that ϕ(x) = I and x lies in kerϕ. �

Theorem 113.6. Let G be a finite group and ϕ : G → GLn(F ) and ϕ′ : G → GLm(F )
two irreducible representations. Let

aij, a
′
kl : G→ F satisfy ϕ(x) =

(
aij(x)

)
, ϕ′(x) =

(
a′kl(x)

)
for all x in G, i.e., aij, a

′
kl are the coordinate functions of ϕ, ϕ′, respectively. Then:

(1) If ϕ and ϕ′ are not equivalent, then∑
G

aij(x)a′kl(x
−1) = 0 for all i, j, k, l.

(2) Suppose that charF is zero or does not divide the order of G and F [G] is F -split.
Then n is nonzero in F and∑

G

aij(x)akl(x
−1) = δij δjk

|G|
n
.

Proof. Let V with (ordered) basis B = {v1, . . . , vn} be afforded by ϕ and V ′ with
(ordered) basis B′ = {v′1, . . . , v′m} be afforded by ϕ′. Check if f : V → V ′ is an F -linear
transformation, then Tf : V → V ′ given by

Tf =
∑
G

ϕ′(x−1) ◦ f ◦ ϕ(x),

i.e.,
Tf
(
ϕ(σ)v

)
= Tf

(
σ(v)

)
= σTf(v) = ϕ′(σ)Tf(v)

for all v in V and for all σ in G, is an F [G]-homomorphism. (Cf. TrG.) For fixed i and l,
define an F -linear transformation fo by

fo : V → V ′ given by

{
vi 7→ vl
vj 7→ 0 if j 6= i.

(1): By assumption V 6∼= V ′ as F [G]-modules. Since V and V ′ are irreducible F [G]-
modules, we must have fo = 0. As [fo]B,B′ =

(
(δrlδsi)rs

)
=
(
(fo)rs

)
and

(*)

(Tfo)kj =
∑
G

∑
r,s

(
ϕ′(x−1)

)
kr

(fo)rs
(
ϕ(x)

)
sj

=
∑
G

∑
r,s

a′kr(x
−1)δrlδsiasj(x)

=
∑
G

a′kl(x
−1)aij(x),
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we have proven (1) as Tfo = 0.

(2): As V is F [G]-irreducible and F -split, we have F = EndF [G](V ). Let B′ = B and v′i =
vi for all vi, then Tfo = λ(fo)I for some λ(fo) in F . Consequently, trace(Tfo) = nλ(fo).
However, we also have

trace(Tfo) = trace
(∑

G

ϕ(x−1)[fo]Bϕ(x)
)

=
∑
G

trace
(
ϕ(x−1)[fo]Bϕ(x)

)
= |G| trace([fo]B) = |G| δil.

Hence n is nonzero in F and

Tfo = λ(fo)I =
|G|
n
δil I.

Plugging this into (*) yields

|G|
n
δilδkj = (Tfo)kj =

∑
G

akl(x
−1)aij(x). �

Corollary 113.7. (Frobenius-Schur Theorem) Let G be a finite group and F a field of
characteristic zero or with char(F )6 | |G|. Suppose that F [G] is F -split and ϕ(k) : G →
GLnk(F ), k = 1, . . . , s, is a full set of inequivalent irreducible representations of G. If
ϕ(k)(g) =

(
αkij(g)

)
for all g ∈ G and k = 1, . . . , s, then we have:

(1) B := {a(k)
ij | i, j = 1, . . . , nk, k = 1, . . . , s} is a linearly independent set.

(2) s = r, the number of conjugacy classes of G.
(3) |B| = |G|2.
(4) B is a basis for for the dual space of F [G], HomF (F [G], F ).

Proof. Statement (1) follows from Theorem 113.6, (2) and (3) by Summary 110.8,
and (4) from (1), (2), and (3). �

Of course, we call two characters χ, χ′ : G→ F inequivalent if they are not equivalent.

Theorem 113.8. (Orthogonal Relations) Let G be a finite group and χ, χ′ two inequiv-
alent characters.

(1) If both χ and χ′ are irreducible, then∑
G

χ(x)χ′(x−1) = 0.

(2) Suppose that charF is zero or does not divide the order of G and F [G] is F -split.
If χ is irreducible of degree n, then χ(1) = n 6= 0 in F and

1

|G|
∑
G

χ(x)χ(x−1) = 1.

(3) If charF = 0, then
(a)

∑
G χ(x)χ(x−1) is an integer.
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(b) |G| divides
∑

G χ(x)χ(x−1) in Z.

(c) If |G| =
∑

G χ(x)χ(x−1), then χ is irreducible.

Proof. Let χ = χϕ and χ′ = χϕ′ with ϕ = (aij) and ϕ′ = (a′ij) the representations
giving χ and χ′ respectively.

(1): By the theorem,∑
G

χ(x)χ′(x−1) =
∑
G

((∑
i

aii(x)
)(∑

j

ajj(x
−1)
))

=
∑
i,j

∑
G

aii(x)a′jj(x
−1) = 0.

(2): If n = χ(1), we know n is nonzero in F by the theorem and∑
G

χ(x)χ(x−1) =
∑
G

((∑
i

aii(x)
)(∑

j

ajj(x
−1)
))

=
∑
i,j

∑
G

aii(x)a′jj(x
−1) =

∑
ij

|G|
n

= n
|G|
n

= |G|.

(3): If F̃ is an algebraic closure of F , then we can view χ as a character χ : G → F̃ .

Let χ1, . . . , χr be all the irreducible characters G → F̃ . Then χ =
∑
miχi for some

non-negative integers mi. We see that

(*)

∑
G

χ(x)χ(x−1) =
∑
G

(∑
i

miχi(x)
)(∑

j

mjχj(x
−1)
)

= |G|
∑
i

m2
i

by (1) and (2). Since
∑
m2
i is an integer and characteristic of F is zero, we have∑

G χ(x)χ(x−1) and |G| dividing
∑

G χ(x)χ(x−1).

Finally suppose that |G| =
∑

G χ(x)χ(x−1). Then by (*), we have 1 =
∑
m2
i , so there

exists a i such that mi = 1 and mj = 0 for all j 6= i, i.e., χ is irreducible as a character

when viewed as χ : G→ F̃ .

Claim. χ : G→ F is an irreducible:

Let V be the F -vector space with basis B afforded by ϕ (recall χ = χϕ) and W a nonzero

F [G]-submodule of V with F -basis C. Let W̃ ⊂ Ṽ be the F̃ -vector spaces with bases C
and B, respectively. Both are F̃ [G]-modules with W̃ a submodule of Ṽ . As χ : G→ F̃ is

afforded by Ṽ and is irreducible, we see that W̃ = Ṽ . So

dimF W = dimF̃ W̃ = dimF̃ Ṽ = dimF V <∞.

It follows that W = V and χ : G→ F is irreducible. �

Theorem 113.9. Let G be a finite group. Suppose that charF is zero or does not divide
the order of G and F [G] is F -split. If χ1, . . . , χr are all the irreducible characters of G
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and x, y lie in G, then

r∑
i=1

χi(x)χi(y
−1) =

{
0, if y /∈ C(x).

|ZG(x)|, if y ∈ C(x).

Proof. Let x1, . . . xr′ be a system of representatives for the conjugacy classes of G.
As F [G] is F -split, r = r′. Let C = (cij) with cij = χi(xj)

(
independent of the choice of

x ∈ C(xj)
)
. This matrix is called the character table of G. Let D = (dij) with

dij =
|C(xi)|
|G|

χj(x
−1
i ) =

1

|ZG(xi)|
χj(x

−1
i ).

Check that

(CD)ij =
∑
k

|C(xk)|
|G|

χi(xk)χj(x
−1
k )

=
1

|G|
∑
G

χi(x)χj(x
−1)

=
1

|G|
|G|δij = δij.

Thus CD = I, hence DC = I and

(DC)ij =
r∑

k=1

1

|ZG(xi)|
χk(x

−1
i )χk(xj).

Let x ∈ C(xi) and y ∈ C(xj). If i 6= j, we see that (DC)ij = 0 leads to
∑r

k=1 χk(x)χk(y
−1) =

0 and if i = j, then (DC)ii = 1 leads to

|ZG(xi)| =
|G|
|C(x)|

=
r∑

k=1

χk(x)χk(x
−1) =

r∑
k=1

χk(x)χk(y
−1). �

Conclusion 113.10. We have shown if charF is zero or does not divide the order of G
with F [G] being F -split, χ1, . . . , χr being all the irreducible characters of G, and x1, . . . , xr
being a system of representatives of the conjugacy classes of G, then for all i, j = 1, . . . , r,
and x ∈ G, we have ∑

g∈G

χi(x)χj(x
−1) = |G|δij

r∑
k=1

χk(xi)χk(x
−1
j ) = |ZG(xi)|δij.

Definition 113.11. Let F be a field and G a finite group. A function f : G→ F is called
a class function on G if f(g) = f(xgx−1) for all x ∈ G. For example, every character of
G is a class function on G. Let classF (G) denote the set of class functions G→ F . This
is clearly an F -vector space. Moreover, classF (G) is an r-dimensional F -vector space.
Indeed if {C1, . . . , Cr} is the set conjugacy classes of G, then the characteristic functions
fi ∈ classF (G), i = 1, . . . , r, i.e., fi(x) = δij for x ∈ Cj, form a basis for classF (G).
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Corollary 113.12. Let G be a finite group. Suppose that charF is zero or does not divide
the order of G and F [G] is F -split. Let χ1, . . . , χs be all the irreducible characters of G.
Then {χ1, . . . , χs} is a basis for classF (G).

Proof. The irreducible characters χ1, . . . , χs are linearly independent by the Orthog-
onality Relations (Theorem 113.8). As s is the number of conjugacy classes by Summary
110.8, the result follows. �

Remark 113.13. Let G be a finite group. We look at complex characters for G. Define
an inner product on (C[G])∗ = HomC(C[G],C), the dual space of C[G], by

〈 , 〉 = 〈 , 〉C : (C[G])∗ × (C[G])∗ → C

given by

〈f, h〉 = 〈f, h〉C =
1

|G|
∑
G

f(x)h(x)

where h is defined by h(x) := h(x) for x in C[G]. Since χ(x) is a sum of roots of unity for

a character χ of G and χ(x−1) = χ(x), we have

〈χ, χ′〉 =
1

|G|
∑
G

χ(x)χ′(x) =
1

|G|
∑
G

χ(x)χ′(x−1)

for characters χ, χ′ of G, where we restrict 〈 , 〉 to the subspace spanned by the charac-
ters. We also have

χ : G→ C given by χ(x) := χ(x−1)

is a character. Moreover, χ is irreducible if and only if χ is. So complex characters come
in two flavors, real, i.e., those have values in R and complex pairs χ, χ. i.e., those complex
characters arising with non-real values.
Let B = {χ1, . . . , χr} be the set of all irreducible complex characters of G . By Conclusion
113.12 and the Orthogonal Relations (Theorem 113.8), B is an orthonormal basis for
the complex inner product space C[G]∗ via 〈 , 〉 and if χ is a complex character of G,
then χ =

∑r
i=1 aiχi for some non-negative integers ai = 〈χ, χi〉, i = 1, . . . , r. Therefore,

〈χ, χ〉 =
∑r

i=1 a
2
i = |G|2. It follows by Summary 110.8, if W and W ′ are finite dimensional

C[G]-modules, then
dimC

(
HomC[G](W,W

′)
)

= 〈χW , χ′W 〉C.

Examples 113.14. 1. Let G be the cyclic group 〈a〉 of order 3 and ω a cube root of
unity. Then the character table over the complex numbers is:
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1 a a2

χ1 1 1 1
χ2 1 ω ω2

χ3 1 ω2 ω

2. Let G be the dihedral group D3 = 〈a, b | a3 = 1 = b2, bab−1 = a−1〉 with 1, a, b a
system of representatives of the conjugacy classes. Then the character table over the
complex numbers is:

1 a b

χ1 1 1 1
χ2 −1 1 −1
χ3 2 −1 0

Exercises 113.15.

1. (Idempotent Theorem) Let G be a finite group. Suppose that charF is zero or does
not divide the order of G and F [G] is F -split. Let A be an irreducible F [G]-module
and BA the simple component corresponding to A. Then show the unit f = 1BA

of BA

satisfies

f =
χA(1)

|G|
∑
G

χA(x−1)x.

2. Let G be a finite group and V a finite dimensional C[G]-module affording ϕ : G →
GL(V ). Show if g ∈ G, then

(i) ϕ(g) is diagonalizable.
(ii) ϕ(g) is equal to the sum (counted with multiplicity) of the eigenvalues of ϕ(g) all

of which are χV (1) nth roots of unity.
(iii) |χV (g)| ≤ χV (1).

3. Show the complex character χC[G] of the regular representation of a finite group G
(called the regular character of G) satisfies

χC[G](x) =

{
|G| if x = 1

0 if x 6= 1.

Show if χV is an irreducible complex character of G, then 〈χV , χC[G]〉 = degχV .
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4. Let G be a finite group and N a normal subgroup of G. Let ϕ : G → G/N be the
canonical epimorphism. Let χ be a complex character on G/N . Show that χ̃ = χ ◦ ϕ
is a complex character on G and irreducible if and only if χ is irreducible. In addition,
show that χ̃C[G/N ] =

∑
χ(1)χ where the sum is taken over all irreducible complex

characters on G satisfying N ⊂ kerχ and χC[G/N ] is the regular character of G/N . (Cf.
the previous exercise) .

5. Let G be the dihedral group D4 = 〈a, b | a4 = 1 = b2, bab−1 = a−1〉 with 1, a2, a, b,
ab a system of representatives of the conjugacy classes. Show the character table over
the complex numbers is

1 a2 a b ab

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

6. Fill in the details to Remark 113.13

114. Burnside’s paqb Theorem

Throughout this section, we let F̃ denote an algebraic closure of the field F . Recall
that if K is an algebraically closed field of characteristic zero, we shall view an algebraic
closure of Q in K to lie in C by taking an appropriate isomorphic image.

Theorem 114.1. (Arithmetic Lemma) (Frobenius) Let F be a field of characteristic zero

with algebraic closure F̃ and G a finite group such that F [G] is F -split. If χ : G→ F is
an irreducible character and x an element in G, then

|C(x)|
χ(1)

χ(x) is an algebraic integer, i.e., lies in ZQ̃,

where Q̃ is the algebraic closure of Q in F̃ .

Proof. Let χ = χV with V the irreducible F [G]-module afforded by ϕ : F [G] →
EndF (V ) and C = Cx =

∑
C(x) y, the class sum of x in F [G]. We know that C lies in

the center Z
(
F [G]

)
by Lemma 109.7. By definition, if z ∈ Z

(
F [G]

)
, then ϕ(y)ϕ(z) =

ϕ(z)ϕ(y) for all y ∈ F [G] means that ϕ(z) lies in EndF [G](V ). As F [G] is F -split,
EndF [G](V ) = F1V by Burnside’s Theorem 110.4. Therefore, ϕ(z) lies in F1V for all

z ∈ Z
(
F [G]

)
. In particular, ϕ(C) = λ1v for some λ in F . Let n = χ(1) = dimV and B a

(ordered) basis for V . We know that χ(x) lies in ZQ̃ with Q̃ an algebraic closure of Q by
Lemma 113.3, so

χ(1)λ = nλ = trace
(
[ϕ(C)

]
B) = trace

(
[ϕ
(∑
C(x)

(y)
)
]B
)

= |C(x)|χ(x)
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lies in ZQ̃, hence

λ =
|C(x)|
χ(1)

χ(x) lies in Q̃.

We must show that λ lies in ZQ̃.

We restrict the map ϕ to a ring homomorphism (hence a Z-algebra homomorphism)

ϕ = ϕ|Z[G] : Z[G]→ EndF (V ).

Since C =
∑
C(x) 1 · z lies in Z(G), it must lie in Z

(
Z[G]

)
. Further restrict ϕ to a ring

homomorphism
ϕ = ϕ|Z(Z[G]) : Z(Z[G])→ EndF (V ).

As above, we have ϕ
(
Z
(
Z[G]

))
⊂ EndF [G](V ) = F1V , i.e., this restriction means ϕ :

Z(Z[G]) → F1V = EndF [G](V ) and C lies in Z
(
Z[G]

)
. Since G is a finite group, Z[G]

is a finitely generated abelian group, hence so is the subring ϕ
(
Z
(
Z[G]

))
– using either

Z
(
Z[G]

)
is generated by class sums or Z is noetherian. In particular, every element of

ϕ
(
Z
(
Z[G]

))
is integral over Z by Claim 79.4. So ϕ(C) = λ1V implies that λ lies in

Q̃ ∩ ZF ⊂ Q̃ ∩ ZF̃ = ZQ̃, where F̃ is an algebraic closure of F . �

Theorem 114.2. Let F be a field of characteristic zero and G a finite group such that
F [G] is F -split. If χ : G→ F is an irreducible character, then χ(1) | |G| in Z.

Proof. Let x1, . . . , xr be a system of representatives for the conjugacy classes of G

and Q̃ an algebraic closure of Q. Then
|C(xi)|
χ(1)

χ(xi) and χ(x−1) lie in ZQ̃, hence

|G|
χ(1)

=
∑
G

1

χ(1)
χ(x)χ(x−1) =

r∑
i=1

C(xi)
χ(1)

χ(x)χ(x−1)

lies in ZQ̃ ∩ Q = Z. �

Schur proved a stronger result, viz., under the hypothesis of the theorem, χ(1) | [G :
Z(G)] in Z. We shall prove this in the Addendum 115.

Corollary 114.3. Let F be a field of characteristic zero and G a finite group such that
F [G] is F -split, say F [G] ∼=�

r
i=1Mni(F ). Then

(1) r is the number of conjugacy classes of G.
(2) |G| =

∑r
i=1 n

2
i .

(3) There exists an i, 1 ≤ i ≤ r satisfying n1 = 1.
(4) ni | |G| for i = 1, . . . , r.

Proof. We have previously shown (1) — (3) and (4) follows from the theorem. �

Lemma 114.4. (Burnside’s Lemma) Let F be an algebraically closed field of characteristic
zero, G a finite group, and ϕ : G → GLn(F ) an irreducible representation. If x in G
satisfies |C(x)| is relatively prime to n = χϕ(1), then either χϕ(x) = 0 or ϕ(x) = λI for

some λ in ZQ̃, with Q̃ the algebraic closure of Q.
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Proof. Let χ = χϕ and m = |C(x)|, so m and n are relatively prime. We can write
1 = am+ bn for some integers a, b; hence

λ :=
χ(x)

n
= a

m

n
χ(b) + bχ(x)

lies in ZQ̃, with Q̃ an algebraic closure of Q by the Arithmetic Lemma. By Proposition

113.2 and the proof of Proposition 113.5, we know that χ(x) = ε1 + · · · + εn for some

|G|th roots of unity εi in Q̃ that are also the eigenvalues of ϕ(x) and satisfy

(*) |λ| = 1

n
|χ(x)| = 1

n
|ε1 + · · ·+ εn| ≤

1

n

n∑
i=1

|εi|

with equality if and only if εi = εj for all i, j.

Case 1. Not all the εi are equal:

By (*), we have |λ| < 1. Let ω be a primitive |G|th root of unity over Q and L = Q(ω).
Then λ lies in ZQ̃ ∩L = ZL and εk lies in ZL for all k. Suppose that εi 6= εj. Since L/Q is

a finite Galois extension (even abelian), σ(εi) 6= σ(εj) for all σ in G(L/Q). Hence by (*),
we have |σ(λ)| < 1 for all σ in G(L/Q). It follows that NL/Q(λ)| =

∏
G(L/Q) |σ(λ)| < 1 and

NL/Q(λ) lies in ZL∩Q = Z, so NL/Q(λ) = 0. Therefore, λ = 0 and χϕ(x) = χ(x) = λn = 0.

Case 2. All the εi are equal, say ε = εi:

We have λ = 1
n

∑n
i=1 εi = ε and ε is the only eigenvalue of ϕ(x), so the characteristic

polynomial of ϕ(x) is fϕ(x) = (t − ε)n in L[t]. As x|G| = 1, the matrix ϕ(x) is a root of

t|G| − 1. Hence ϕ(x) also a root of the gcd of (t− ε)n and t|G| − 1 which is t− ε in L[t],
since t|G| − 1 has no multiple roots. Therefore, ϕ(x) = εI = λI. �

Theorem 114.5. (Burnside) Let G be a finite group and p a prime. If there exists an
element x in G satisfying C(x) = pe > 1, then G is not a simple group.

Proof. Let χ1, . . . , χr : G → C be all the distinct irreducible complex characters.
One of these must be the trivial character, say it is χ1. Let ni = χi(1), so n1 = 1 (and
χ1(x) = 1). Since C(x) 6= {x}, we know that x 6= 1, hence 1 /∈ C(x). Therefore, we have

0 =
r∑
i=1

χi(x)χi(1
−1) =

r∑
i=1

χi(1)χi(x) = 1 +
r∑
i=2

niχi(x).

Case 1. There exists an integer 1 < j ≤ r such that p 6 | nj and χj(x) 6= 0:

By assumption, χj(1) and |C(x)| are relatively prime. Since χj(x) 6= 0, by Burnside’s
Lemma, there exists a complex number λ satisfying ϕj(x) = λI, where χj = χϕj . In

particular, ϕj(x) lies in Z
(
Mnj(C)

)
, so ϕj(x)ϕj(y) = ϕj(y)ϕj(x) for all y ∈ G. As |C(x)| >

1, x /∈ Z(G), so there exists a y ∈ G satisfying 1 6= xyx−1y−1 lying in kerϕj. As j > 1, χj is
not the trivial character, so 1 < kerϕj = kerχj < G by Proposition 113.5. Consequently,
G is not simple.

Case 2. For all 1 < j ≤ r, we have χj(x) = 0 whenever p 6 | nj:
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In this case, we have

(*) 0 = 1 +
r∑
i=2

njχj(x) = 1 + p
∑
p>1
p|nj

nj
p
χj(x).

As nj/p is an integer when p|nj, we have 1/p lies in ZC ∩ Q = Z by (*), a contradiction.
Thus Case 2 cannot occur. �

Theorem 114.6. (Burnside’s paqb-Theorem) Let G be a finite group of order paqb with
p, q distinct primes and a, b non-negative integers. Then G is a solvable group.

Proof. By our previous work and induction, it suffices to show that G is not simple
if a and b are both positive. Let Q be a Sylow q-subgroup of G and eG 6= x an element
in Z(Q). Then Q ⊂ ZG(x), hence |C(x)| = [G : ZG(x)] = pn for some integer n ≥ 0. If
n = 0, then ZG(x) = G, so 1 < Z(G) /G as x 6= eG, and the result follows. If n > 0, then
G is not simple by Burnside’s Theorem. �

When Burnside wrote the first edition of his historic book on finite group theory, he
decided not discuss representation theory as it was not intrinsic to the theory of groups.
After he proved the paqb-Theorem in 1904, he realized that representation theory was
now an essential tool in studying group theory, so he included it in a revised edition of
his book. A proof of his theorem was proven avoiding representation in the 1970’s. It is
much more difficult than the one using representation theory.

115. Addendum: Schur’s Theorem

In this section, we establish the improvement to Theorem 114.2 mentioned in §114.
To do so, we assume the reader is conversant with tensor products. (Cf. §119.)

Definition 115.1. Let F be a field and G a group. Suppose that V is an irreducible
F [G]-module that is finite dimensional as an F -vector space. We say that V is absolutely

irreducible if F̃ ⊗F V is an irreducible F̃ [G]-module with F̃ an algebraic closure of F .

Check 115.2. An F [G]-module V , finite dimensional as an F -vector space, is absolutely
irreducible if and only if EndF [G](V ) = F .

Lemma 115.3. Let G, G′ be (arbitrary) groups. Suppose that V is an absolutely irre-
ducible F [G]-module and V ′ is an absolutely irreducible F [G′]-module. Let V ⊗F V ′ be the
F [G×G′]-module induced by the G-action (g, g′)(v⊗v′) = gv⊗g′v′ for all g ∈ G, g′ ∈ G′,
v ∈ V , and v′ ∈ V ′. Then V ⊗F V ′ is an absolutely irreducible F [G×G′]-module.

Proof. Let ϕ : F [G] → EndF (V ) and ϕ′ : G′ → EndF (V ′) afford V and V ′, respec-
tively. By (the modified form Proposition 110.6 of) Burnside’s Theorem 110.4, we know
both ϕ and ϕ′ are surjective. Consider the following commutative diagram:

F [G×G′]

f

��

ρ
// EndF (V ⊗F V ′)

F [G]⊗F F [G′]
h
// EndF (V ⊗F V ′),

g

OO
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where

ρ : (g, g′) 7→ (v ⊗ v′ 7→ gv ⊗ g′v′)
f : (g, g′) 7→ g ⊗ g′

g : h⊗ h′ 7→
(
v ⊗ v′ 7→ h(v)⊗ h′(v′)

)
,

for all v ∈ V , v′ ∈ V ′, g ∈ G, g′ ∈ G′, h ∈ EndF (V ), and h′ ∈ EndF (V ′), induce the
F -algebra homomorphisms in the diagram. By dimension count, the F -algebra homomor-
phism g is an isomorphism (as it is F -linear). The map f is clearly a surjection. As the
map F [G]⊗F F [G′]→ F [G×G′] induced by g⊗ g′ 7→ (g, g′) determines the inverse to f ,
we conclude that f is also an F -algebra isomorphism. Since ϕ⊗ϕ′ is surjective, it follows
that ρ is also surjective. Taking the fixed points of the action of G×G′ on V ⊗F V ′, we
see that

EndF [G×G′](V ⊗F V ′) =
(

EndF (V ⊗ V ′)
)G×G′

= F.

Therefore, by Check 115.2, V ⊗F V ′ is an absolutely irreducible F [G×G′]-module. �

Theorem 115.4. ( Schur) Let F be a field of characteristic zero and G a finite group.
Suppose that F [G] is F -split and χ : G→ F is an irreducible character. Then χ(1) | [G :
Z(G)].

Proof. (Tate). Let χ = χV . By Check 115.2, V is absolutely irreducible as EndF (V ) =
F . Let n ∈ Z+. Then V ⊗n := V ⊗F · · · ⊗F︸ ︷︷ ︸

n

V is an absolutely irreducible F [G× · · · × V ]-

module by Lemma 115.3. Let the map ϕ : G→ AutF (V ) afford V . Since EndF [G](V ) = F

and ϕ
(
Z(G)

)
⊂ EndF [G](V ), as ϕ

(
Z(G)

)
commutes with ϕ(G), we conclude that ϕ|Z(G) :

Z(G)→ F×. Set

H = {(g1, . . . , gn) | gi ∈ Z(G), g1 · · · gn = 1} ⊂ G× · · · ×G,
a subgroup. For all (g1, . . . , gn) ∈ H and v1, . . . , vn ∈ V , we have

(g1, . . . , gn)(v1 ⊗ · · · ⊗ vn) = g1v1 ⊗ · · · ⊗ gnvn
= ϕ(g1)v1 ⊗ · · · ⊗ ϕ(gn)vn = ϕ(g1) · · ·ϕ(gn)v1 ⊗ · · · ⊗ vn
= ϕ(g1 · · · gn)(v1 ⊗ · · · ⊗ vn) = v1 ⊗ · · · ⊗ vn,

as ϕ(gi) lies in EndF (V ) = F for all gi ∈ Z(G), i = 1, . . . , n. Since the v1 ⊗ · · · ⊗ vn
generate V ⊗n, it follows that H acts trivially on V ⊗n.

Since H ⊂ Z[G×· · ·×G], we have H / G×· · ·×G. By the above, the H-action on V ⊗n

is trivial. Consequently, we may view V ⊗n as an irreducible F [(G× · · · ×G)/H]-module.
By Theorem 114.2, we see that

(115.5) χ(1)n
∣∣∣ |(G× · · · ×G)/H| = |G|

n

|H|
.

Let g1, . . . , gn−1 ∈ Z(G). If gn ∈ G, then g1 . . . gn−1gn ∈ H if and only if gn =
(g1 · · · gn−1)−1. Therefore,

χ(1)n
∣∣∣ |G|n

|Z(G)|n−1
.
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Hence, there exists an element e = e(m) ∈ Z satisfying |G|n/|Z(G)|n−1 = eχ(1)n. It
follows that ( [G : Z(G)]

|Z(G)|

)n
=
( |G|
|Z(G)|

)n
lies in

1

|Z(G)|
Z

for all n ∈ Z+. Since [G : Z(G)]/χ(1) lies in Q, it follows that we have [G : Z(G)]/χ(1)
lies in Z, i.e., χ(1) | [G : Z(G)]. �

Exercises 115.6.

1. Prove Check 115.2.

2.
3. Show an F [G]-module V , finite dimensional as an F -vector space, is absolutely irre-

ducible if and only if K ⊗F V is irreducible for all field extensions K/F .

4. Verify equation (115.5).

116. Induced Representations

In this section, we shall study how subgroups of a finite group induce representations
of the full group as well as the induced character theory. In this section we shall assume
familiarity of tensor products of modules over an arbitrary ring. (Cf. Section 119.)

Definition 116.1. Let F be a field and G a finite group. If V is a finite dimensional
F [G]-module and H ⊂ G a subgroup, then restriction of scalars to F [H] induces an F [H]-
module structure of V called the restriction of V to H and denoted by resGH(V ). If V is a
finite dimensional F -vector space and affords the representation σV : G → GL(V ), then
we write resGH(σV ) for the representation afforded by resGH(V ) and resGH χ for the character
of this representation. If W is an F [H]-module, then define the induced F [G]-module
by indGH(W ) := F[G] ⊗F [H] W . For example by properties of ⊗, we have indGH(F [H]) =
F [G]⊗F [H] F [H] which is identified with F [G]. Since F [G] is an (F [G], F [H])-bimodule,

we have indGH(W ) = {
∑

gi∈G gi ⊗ wi | gi ∈ G, w ∈ W} becomes an F [G]-module via the

G-action g(
∑

gi∈G⊗w) =
∑

gi∈G ggi ⊗w. If W is a finite dimensional F -vector space and

affords σW : H → GL(W ), let indGH(χW ) denote the character induced by indGH(W ).

Construction 116.2. Let F be a field, G a finite group and H ⊂ G is a subgroup.
Suppose that g1, . . . , gn is a left transversal of H in G with g1 = eG = 1F [G] = 1. So we
have F [G] =

⊕m
i=1 giF [H]. Therefore, if W is an F [H]-module,

indGH(W ) = F [G]⊗F [H] W =
n⊕
i=1

(giF [H]⊗F [H] W ) =
n⊕
i=1

gi ⊗F [H] W

as
⊕

and
⊗

commute and
⊗

F [H] is F [H]-balanced. We have g1 ⊗F [H] W = 1 ⊗F [H] W

an F [H]-submodule of resGH
(

indGH(W )
)
. So w 7→ 1 ⊗ w for w ∈ W induces an F [H]-

monomorphism W → indGH(W ). We also have that the direct summand gi(1 ⊗F [H] W )

of indGH(W ) can be expressed as gi(1 ⊗F [H] W ). Therefore, we have gi(1 ⊗F [H] W ) ∼=
gi ⊗F [H] W as vector spaces over F . For each i, i = 1, . . . , n, and g ∈ G, there exists
a unique j, 1 ≤ j ≤ n, satisfying ggi ∈ gjH. So for each i, there also exists a unique
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hi in H satisfying ggi = gjhi. It follows that g permutes the {gi ⊗F [H] W} with action
g(gi ⊗ w) = gjhi ⊗ w = gj ⊗ hiw for all w ∈ W .

Now suppose that W is a finite dimensional F -vector space. Let σW : H → GL(W )
afford W and {w1, . . . , wm} be an F -basis for W . Then for all h ∈ H, we have hwj =∑m

i=1 αij(h)wi with all αij(h) ∈ F . It follows that B := {gi ⊗ wj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
is an F -basis for indGH(W ) as

⊕
and

⊗
commute. With this notation, we have

g(gi ⊗ ws) = gjhi ⊗ ws = gj ⊗ hiws =
m∑
r=1

αrs(hi)(gj ⊗ wr) for all 1 ≤ s ≤ m.

Since ggi = gjhi above means that hi = g−1
j ggi, we can extend the maps αij : H → F to

maps α̇ij : G→ F defined by

α̇ij(g) =

{
αij(g) if g ∈ H
0 if g /∈ H.

Then the action of g in G on the F -basis B for indGH(W ) is given by

g(gi ⊗ ws) =
m∑
r=1

αrs(hi)(gj ⊗ wr) =
n∑
j=1

m∑
r=1

α̇rs(g
−1
j ggi)(gj ⊗ wr).

Now extend σW to an F [G]-module by σ̇W (g) =
(
α̇ij(g)

)
. Relative to the F -basis C =

{g1 ⊗ w1, . . . , g1 ⊗ wm, g2 ⊗ w1, . . . , gn ⊗ wm}, the matrix representation of indGH(W ) is

g 7→ σindGH(W )(g) =

σ̇(g−1
1 gg1) · · · σ̇(g−1

1 ggm)
...

...
σ̇(g−1

n gg1) · · · σ̇(g−1
n ggm)

 .

It follows that indGH(χW ) is defined by

(116.3) indGH(χW )(g) =
n∑
i=1

χ̇W (g−1
i ggi)

where

(116.4) χ̇W (g) =

{
χ(g) if g ∈ H
0 if g 6∈ H.

Now suppose that |H| ∈ F×, e.g., char(F ) = 0. Then equation (116.3) becomes

(116.5) indGH(χW )(g) =
1

|H|
∑
x∈G

χ̇W (x−1gx),

independent of the transversal of H in G. Moreover, in this case, we have

deg
(

indGH(χW )
)

= deg
(

indGH(χW )(1)
)

= [G : H]χW (1).
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Example 116.6. Let F be a field, G a finite group and H a subgroup of G of index n.
Let 1H be the trivial representation of H and W = Fw afford 1W . So hw = w for all
h ∈ H. In the notation of the construction above, the G-action of g ∈ G on the summand
F (gi⊗w) that affords indGH(1W ) is g(gi⊗w) = gj ⊗w with ggi ∈ gjH. It follows that the
G-set of F -subspaces {F (gi ⊗ w)} of indGH(χW ) with this G-action is isomorphic to the
G-set of left cosets G/H with action left translation on the basis D = {wi | i = 1, . . . , n}
with the wi corresponding to gi ⊗ w. In particular, 1GH is equivalent to the permutation
representation of G afforded by the G-set G/H by choosing an F -basis D defined by
gwi = wj if ggiH = gjH for i = 1, . . . , n. In particular, the left regular representation
F [G] is isomorphic to indGH(1H) when H = 1.

Proposition 116.7. Let F be a field and G a finite group, H ⊂ G a subgroup of index n.
Let V be an F [G]-module so that resGH(V ) contains an F [H]-submodule W that satisfies
V =

⊕n
i=1 giW , where {g1, . . . , gn} is an transversal of H in G. Then V = indGH(χW ) as

an F [H]-module.

Proof. The map F [G]×W → V is checked to be balanced, so induces a surjective F -
linear transformation ϕ : F [G]⊗F [H]W → V satisfying ϕ(gi⊗F [H]W ) = giW , i = 1, . . . , n.

As V =
⊕n

i=1 giW , we have a linear transformation V → indGH(χW ) inverse to ϕ, so
ϕ is an F -isomorphism. This map is, in fact, an F [G]-homomorphism, so an F [G]-
isomorphism. �

We leave the following as an exercise.

Proposition 116.8. Let F be a field, G a finite group and H0 ⊂ H subgroups of G.

(1) If W1 and W2 are F [H]-modules, then

indGH(W1 ⊕W2) ∼= indGH(W1)⊕ indGH(W2).

(2) If W0 is an F [H0]-module, then

indGH
(

indHH0
(W0)

) ∼= indGH0
(W0).

(3) If W0 is a finite dimensional F [H0]-module, then

indGH
(

indHH0
(χW0)

) ∼= indGH0
(χW0).

Theorem 116.9. (Frobenius Reciprocity – Module Form) Let F be a field and G a finite
group, H ⊂ G a subgroup. If V is an F [G]- module and W is an F [H]-module, then

HomF [H]

(
W, resGH(V )

) ∼= HomF [G]

(
indGH(W ), V

)
.

Proof. By the Adjoint Associativity Theorem 129.9 (to be proven), we have a group
isomorphism

HomF [H]

(
W,HomF [G](F [G], V )

) ∼= HomF [G]

(
indGH(W ), V

)
that is easy to see is an isomorphism of F -vector spaces. Therefore, it suffices to show
that HomF [G](F [G], V ) ∼= resGH(V ) as F [H]-modules where HomF [G](F [G], V ) is an F [H]-
module by (af)(x) := f(ax) for all f ∈ HomF [G](F [G], V ), x ∈ F [G], and a ∈ F [H]. Let
θ : HomF [G](F [G], V ) → V be the linear transformation defined by f 7→ f(1). It is easy
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to see that this is an F -vector space isomorphism. Then for all x ∈ F [G], a ∈ F [H],
f ∈ HomF [G](F [G], V ), we have

θ(af) = (af)(1) = f(a) = a
(
f(1)

)
= aθ(f).

It follows that θ is an F [H]-isomorphism. �

Remark 116.10. Let G be a finite group and F a subfield of C. Suppose that F [G] is
F -split. Of course, G is C-split also. Let K be the field composite of F and C in some
larger field (with fixed embeddings). Then G is also K-split by extension of scalars. The
basic sets of irreducible F [G]-modules and basic sets of irreducible C[G]-modules yield
isomorphic basic sets of irreducible K[G]-modules. Moreover the characters viewed as
class functions on each are then all the same. Therefore, we can identify the irreducible
characters on F and C. In particular, Remark 113.13 holds for any such F in C.

Therefore, by Remarks 113.13 and 116.10 we have:

Corollary 116.11. Let F be a subfield of the complex numbers and G a finite group,
H ⊂ G a subgroup. Suppose that both F [G] and F [H] are F -split. If V is a finite
dimensional F [G]-module and W is a finite dimensional F [H]-module, then

(1) dimF

(
HomF [H](W, resGH(V )

))
= 〈χW , resGH(χV )〉H .

(2) dimF

(
HomF [G]

(
indGH(W ), V

))
= 〈indGH(χW ), χV 〉G.

In particular,

〈χW , resGH(χV )〉H = 〈indGH(χW ), χV 〉G.

Recall the F -vector space classF (G) of a finite groupG has as an F -basis the irreducible
characters under the conditions that charF = 0 or char 6 | |G| and F [G] is F -split by
Corollary 113.12. We generalize the character form of Frobenius Reciprocity without
using the previous module form.

Theorem 116.12. (Frobenius Reciprocity – Class Function Case) Let F be a subfield of
the complex numbers, G a finite group, and H a subgroup of G. Let λ ∈ classF (H) and
µ ∈ classF (G). Define indGH(λ) : G→ H by

indGH(λ) :=
1

|H|
∑
x∈G

λ̇(x−1gx),

where λ̇ is the function λ extended to G (analogous to equation (116.4)). Then indGH(λ) ∈
classF (G) and

〈indGH(λ), µ〉G = 〈λ, resGH(µ)〉H .

Proof. The first statement is clear. As for the equation, since µ is a class function
and for each y ∈ G, there exist |G| x’s satisfying y = x−1gx. Therefore, we have, using



116. INDUCED REPRESENTATIONS 675

Remark 113.13 and equation (116.5),

〈indGH(λ), µ〉G =
1

|G|
1

|H|
∑
g∈G

∑
x∈G

λ̇(x−1gx)µ(g)

=
1

|G|
1

|H|
∑
g∈G

∑
x∈G

λ̇(x−1gx)µ(x−1gx)

=
1

|H|
∑
y∈G

λ̇(y)µ(y) =
∑
y∈H

λ̇(y)µ(y)

= 〈λ, resGH(µ)〉H . �

Examples 116.13. 1. Let G be a finite group and H ⊂ G a finite subgroup. Suppose
that λ is a character of H over C. Then the class function indGH(λ) is character of G
over C if and only if 〈indGH(λ), χ〉G = 〈λ, resGH(χ)〉H is a non-negative integer for all
irreducible characters χ of G over C as resGH(χ) is a character of H over C.

2. Let Dm be the dihedral group of order 2m with the presentation 〈a, b | am = b2 =
(ab)2 = 1〉. Let A = 〈a〉 and λ : A → C be a linear character(hence irreducible). Let
ζ be a primitive mth root of unity. So λ(a) = ζ i for some i. Then indDmA (λ)(x) =

λ̇(x) + λ̇(bxb−1) for x ∈ A satisfying bxb−1 = x−1 by equation (116.4). Therefore,

resDmA
(

indDmA (λ̇)
)

= λ+ λ. By Frobenius Reciprocity, we have

〈indDmA (λ), indDmA (λ)〉Dm = 〈λ, resDmA
(

indDmA (λ)
)
〉A = 〈λ, λ+ λ〉.

By Orthogonal Relations (Theorem 113.8), indDmA (λ) is irreducible if and only if
〈indDmA (λ), indDmA (λ)〉 = 1. It follows that indDmA (λ) is irreducible if and only if λ 6= λ.
If µ : A→ C is a character with indDmA (λ) and indDmA (µ) both irreducible, then

〈indDmA (λ), indDmA (µ)〉Dm = 〈λ, µ+ µ〉A =

{
0 if λ 6= µ and λ 6= µ

1 if λ = µ or λ = µ.

There are two possible cases.

Case 1. m is odd:

In this case, there are two linear characters of Dm over C as the commutator of Dm

has index two and 1
2
(m− 1) distinct characters of the form indDmA (λ) by the argument

above. Therefore, these irreducible characters constitute 12 + 12 + 22
(

1
2
(m − 1)

)
=

2 + 2(m− 1) = 2m in the sum of squares giving |Dm|. It follows that these must be all
the irreducible characters.

Case 2. m is even:

In this case, there are four linear characters of Dm over C and 1
2
(m− 2) distinct irre-

ducible characters of degree two. So these irreducible characters constitute 4+22(1
2
(m−

2) = 4 + 2(m− 2) = 2m in the sum of squares giving |Dm|. It follows that these must
be all the irreducible characters.

Exercises 116.14. 1. Let F be a subfield of C and G a finite group such that F [G] is
F -split. Let V and W be finite dimensional F [G]-modules. Show all of the following:
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(i) χV⊗FW = χV χW where V ⊗F W is an F [G]-module with G-action induced by
g(v ⊗ w) = gv ⊗ gw, for all g ∈ G, v ∈ V , and w ∈ W .

(ii) χV ∗ = χV .
(iii) χHom(V,W ) = χV χW .

2. Let F be a subfield of C and G a finite group such that F [G] is F -split. Show the
characters of G over F form a ring with multiplication given by the previous exercise.

3. Let F be a subfield of C and G a finite group such that FG is F -split. Suppose that
H is a subgroup of G and χ an F -character of H. Show if x ∈ G, then

indGH(χ)(x) =
|ZG(x)|
|H|

∑
y∈C(x)∩H

χ(y)

where C(x) is the conjugacy class of x in G.

4. Let F be a subfield of C and G a finite group such that F [G] is F -split. Suppose that H
is a subgroup of G, ψ ∈ classF (H) and ψ′ ∈ classF (G). Show if 〈ψ′, λ〉 = 〈ψ, resGH(λ)〉
for all λ ∈ classF (G), then ψ′ = indGH(ψ).

5. Let F be a subfield of C and G a finite group such that F [G] is F -split. Suppose that
N is a normal subgroup of G. Then using the notation of Exercise113.15(4), show that
1GN = χ̃F [G/N ] (where χF [G/N ] is the regular character of G/N).

6. Prove Proposition 116.8.

7. Let F be a field, G a finite group with H ⊂ G a subgroup. Let V be an F [G]-module
and W an F [H]-module. Then there exists and isomorphism HomF [G]

(
V, indGH(W )

) ∼=
HomF [H]

(
resGH(V ),W ).

117. Torsion Linear Groups

In this section, we introduce further work of Burnside that focuses on the problem of
conditions that force a group G to be finite. Of course, one would need that the group
is a torsion group, i.e., every element has finite order. Burnside looked at the stronger
condition on a group G, viz., one in which there exist a positive integer n such that xn = e
for every element in the group G. Since the group �

∞
i=1Z/nZ satisfies this condition yet

is an infinite group, other conditions are necessary. Burnside showed if, in addition, such
a group G was also a subgroup of GLn(F ), with F a field of characteristic zero, then G
is a finite group. This is the principal result that we prove in this section. This led to a
long research project on attempts to generalize it.

We begin with the following lemma:

Lemma 117.1. (Frobenius-Schur) Let F be an algebraically closed field and G a (not
necessarily finite) group, ϕ : G→ GLn(F ) an irreducible representation, and aij : G→ F ,
1 ≤ i, j ≤ n, the coordinate functions of ϕ, i.e., ϕ =

(
aij
)
. Then

(1) Mn(F ) = 〈ϕ(x) | x ∈ G〉.
(2) B = {aij | 1 ≤ i, j ≤ n} is a set of F -linearly independent functions.

Proof. (1): Extending ϕ to the F -algebra map ϕ : F [G] → Mn(F ) yields (1) by
Burnside’s Theorem 110.4.
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(2): If B is F -linearly dependent, then it is F -linearly dependent as a set of F -functionals
F [G]→ F , say

0 =
∑
i,j

bijaij, bij ∈ F not all zero.

Suppose that bi0j0 6= 0. Let ei0j0 be the i0j0th matrix unit. By (1), there exists an x in
F [G] such that ϕ(x) = eiojo . Therefore, we have

0 =
∑
i,j

bijaij(x) =
∑
i,j

bijδii0δjj0 = bi0j0 ,

a contradiction. Hence B is F -linearly independent in HomF (F [G], F ). �

Corollary 117.2. Let F be an algebraically closed field and G a group. Suppose that ϕ :
G→ GLn(F ) is an irreducible representation and ϕ =

(
aij
)
, 1 ≤ i, j ≤ n, the coordinate

functions of G. Then there exist x1, . . . , xn2 elements in G such that {x1, . . . , xn2} is

an F -basis for Mn(F ). Moreover, if vk = ϕ(xl), 1 ≤ k ≤ n2, is viewed in F n2
, then

{v1, . . . , vn2} is a basis for F n2
.

Definition 117.3. Let G be a group. We say that G is of bounded period if there exists
a positive integer N such that xN = e for all elements x in G.

Theorem 117.4. (Burnside’s Theorem on Linear Groups of Bounded Period) Let F be
a field of characteristic zero and G a subgroup of GLn(F ) (i.e., there exists a faithful
representation of G of degree n). Suppose that G has bounded period N . Then G is a

finite group. In fact, |G| ≤ Nn3
.

Proof. We may assume that F is algebraically closed, the inclusion ι : G ⊂ GLn(F )
affords the F [G]-module V = F n, and ι =

(
aij
)

with the aij the coordinate functions of
ι. Let χ = χV .

Case 1. V is an irreducible F [G]-module.

By Corollary 117.2, there exists {x1, . . . , xn2} ⊂ G, an F -basis for Mn(F ) with vk =(
aij(xk)

)
, k = 1, . . . n2, (viewed in F n2

) giving a basis B = {v1, . . . , vn2} for F n2
. As ι is

a group homomorphism.

(*) χ(xkx) =
n∑
i=1

aii(xkx) =
n∑
i=1

n∑
j=1

aij(xk)aji(x), k = 1, . . . , n2

are n2-linear equations in the unknowns aji(x). As every χ(x), x ∈ G, is a sum of n roots
of unity in µN , we have

s :=
∣∣{χ(x) | x ∈ G}

∣∣ ≤ Nn <∞.

Since B is linearly independent in F n2
, the matrix of coefficients of the system (*) is

invertible, hence by Cramer’s Rule each system (*) has a unique solution. It follows that

|G| =
∣∣{aij(x) | x ∈ G}

∣∣ ≤ sn
2 ≤ Nn3

.

Case 2. V is not an irreducible F [G]-module.
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As V is reducible, n > 1. Since G cannot act transitively on a basis for V , there exist
representations ϕi : G→ GLni(F ) with 1 = 1, 2 each of degree less than n, satisfying

ι(x) =

(
ϕ1(x) ∗

0 ϕ2(x)

)
=

(
ϕ1(x) U(x)

0 ϕ2(x)

)
with U : G→ F n1n2 . Set Gi = {ϕi(x) | x ∈ G}, i = 1, 2. Then Gi is a group of bounded

period N of degree ni < n, so finite with |Gi| ≤ Nn3
i for i = 1, 2 by induction. Set

Hi = kerϕi, then Gi
∼= G/Hi and [G : Hi] < ∞ for i = 1, 2. By Poincaré’s Lemma(

Exercise 10.16(7)
)
, we have [G : H1 ∩H2] <∞. Let x ∈ H1 ∩H2, then

ι(x) =

(
I U(x)
0 I

)
and 0 = ι(x)N =

(
I NU(x)
0 I

)
.

Consequently, NU(x) = 0 and U(x) = 0 as F is a field of characteristic zero. Therefore,
H1 ∩H2 = 1, hence G is a finite group and the representation ψ : G→ G1 ×G2 given by
x 7→

(
ϕ1(x), ϕ2(x)

)
is a monomorphism. It follows that

|G| ≤ |G1||G2| ≤ Nn1Nn2 ≤ Nn3

. �

Remark 117.5. In the above proof we did not needed that F be a field of characteristic
zero in Case 1; and in Case 2, we only needed that char(F )6 | N . In particular, the lemma
holds if V is irreducible or if V is reducible and char(F )6 | N .

Using the proof above, we obtain another theorem of Burnside.

Theorem 117.6. (Burnside) Let F be an arbitrary field and G a subgroup of GLn(F ).
Then G is finite if and only if G has finitely many conjugacy classes.

Proof. Certainly if G is finite, then it has finitely many conjugacy classes, so we need
only show the converse. We use the notation as in the proof of the previous theorem. So
ι is the inclusion map. If the character χ associated to ι is irreducible then the proof of
Case 1 for Theorem 117.4 still works as {χ(x) | x ∈ G} is a finite set, which implies that
G is a finite group. So we may assume that ι is not irreducible. As in the notation of
Case 2 in the previous proof, we may assume that

ι(x) =

(
ϕ1(x) U(x)

0 ϕ2(x)

)
where Gi = {ϕi(x) | x ∈ G}, a representation of degree ni < n, ϕ : Gi → GLni(F ) and
U : G→ F n1n2 , i = 1, 2. Let ψ : G→ G1 ×G2 be given by x 7→

(
ϕ1(x), ϕ2(x)

)
as before,

and set H = kerψ /G. Then H ⊂ kerϕ1 ∩ kerϕ2. Suppose that
(
I U(h)
0 I

)
and

(
I U(h′)
0 I

)
lie

in H, then

ι(x) =

(
I U(h)
0 I

)(
I U(h′)
0 I

)
=

(
I U(h+ h′))
0 I

)
=

(
I U(h′)
0 I

)(
I U(h)
0 I

)
.
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In particular, H is abelian and H ⊂ ZG

( (
I U(h)
0 I

) )
. It follows that the conjugacy class

C
((

I U(h)
0 I

))
satisfies

∣∣∣C((I U(h)
0 I

))∣∣∣ =
[
G : ZG

((
I U(h)
0 I

))]
≤ [G : H].

As G has finitely many conjugacy classes, so do G1 and G2, hence both are finite by
induction. Therefore, [G : H] ≤ |G1| |G2| <∞. As G has finitely many conjugacy classes
and H is an abelian subgroup of G, we have H is also finite. It follows that G is a finite
group. �

As mentioned in the introduction to this section, �
∞
i=1Z/pZ is an infinite group of

bounded period p, so certainly not finitely generated. Burnside conjectured in 1902 that
any finitely generated torsion group G was finite. This is called the Burnside Conjecture.
[Torsion groups are also called periodic groups.] We next improve the Burnside’s theorems
in the linear group case.

We need two lemmas.

Lemma 117.7. Let G be a finitely generated torsion group. Suppose that G contains an
abelian subgroup H of finite index. Then G is a finite group.

Proof. Let G =
∨m

1=1 giH be a coset decomposition. As G is finitely generated, there
exists a finite subset

S = {g1, . . . , gm, gm+1, . . . , gn} ⊂ G

generating G and closed under taking inverses. For each ordered pair (i, j), 1 ≤ i, j ≤ n,
there exists an integer r = r(i, j), 1 ≤ r ≤ m, satisfying

(*) gigj = grhij, hij ∈ H.

Set

H0 = 〈hij | hij occurring as in (*)〉.
Therefore, H0 is a finitely generated group. As H0 is a subgroup of the abelian torsion
subgroup H, it is finite. Suppose that (i, j, r) is as in (*) and let 1 ≤ s ≤ n. Then for
each m = 1, . . . ,m, there exists a positive integer v = v(r, s) satisfying

gsgigj = gsgrhij = gvhsrhij lies in the coset gvH0.

It follows by induction that the group

〈g1, . . . , . . . , gn〉 = {words in the gi}

lies in
⋃m
i=1 giH0, hence G ⊂

⋃m
i=1 giH0, so is finite. �

You should compare this proof with the proof of Theorem 16.3. We can use the lemma
in the linear group case to see

Lemma 117.8. Let F be a field and G a finitely generated torsion subgroup of GLn(F ).
Then G has bounded period. In particular, if char(F ) = 0, then G is finite.
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Proof. Let ∆ be the prime subfield of F . We may assume that ∆ = Q or ∆ = Z/pZ,
depending on the characteristic of F . Since G is finitely generated, we may assume that
F/∆ is a finitely generated field extension. In particular, there exists an intermediate field
F/F0/∆ with F0/∆ a finitely generated purely transcendental field extension and F/F0

a finite field extension. Let r = [F : F0]. The subgroup G of GLn(F ) acts faithfully on
F n, so viewing F n as F nr

0 , we have G acts faithfully on the finite dimensional F0-vector
space F nr

0 . In particular, we may assume that F = F0 is a finitely generated purely
transcendental extension.

If x ∈ G ⊂ GLn(F ), let qx be the minimal polynomial of x in F [t]. In particular,
deg qx ≤ deg fx = n, where fx is the characteristic polynomial of x in Mn(F ).

Case 1. ∆ = Q.

As x in G has finite order, the roots of qx are roots of unity, so the coefficients of qx lie in

ZQ̃ ∩ F , where Q̃ is the algebraic closure of Q in C and ZQ̃ is the integral closure of Z in

Q̃ by Remarks 79.14. Since F/Q is purely transcendental, ZQ̃ ∩ F = ZQ̃ ∩ Q = Z as Z is

an integrally closed domain. It follows that qx lies in Z[t] (as each irreducible factor of qx
does) by Proposition 80.4. The coefficients of qx are elementary symmetric functions in
the roots of qx and these roots are roots of unity, hence the coefficients for each qx must
have bounded absolute value. So there can only be finitely many qx with roots in a finite
set of roots of unity.

Let ω be a root of qx. Then mQ(ω) | qx | fx, where mQ(ω) is the minimal polynomial of
ω in C. It follows that degmQ(ω) ≤ n by the Cayley-Hamilton Theorem. As a primitive
mth root of unity ε in Q satisfies degmQ(ε) = φ(m) and φ(m)→∞ as m→∞, there can
only be finitely many ω that are roots of the qx, all uniformly bounded, i.e., {qx | x ∈ G}
is a finite set. Therefore, there exists a positive integer N such that xN = 1 for all x in G.
In particular, the subgroup G of GLn(F ) has bounded period. By Burnside’s Theorem
117.4, G is a finite group.

Case 2. ∆ = Z/pZ with p > 0.

As in Case 1, we have qx ∈ (Z/pZ)[t] satisfies deg qx ≤ n, so there exist finitely many such
qx, x ∈ G. The result follows by an analogous argument as in Case 1. �

Theorem 117.9. (Schur) Let F be a field and G a finitely generated torsion subgroup of
GLn(F ). Then G is a finite group.

Proof. By Lemma 117.8, G has bounded period, so by Lemma 117.7, it suffices to
show that G contains an abelian subgroup of finite index. By Remark 117.5, the only
part of the proof of Burnside’s Theorem on Linear Groups of Bounded Period 117.4 in
the characteristic zero case that must be modified is the case that the inclusion ι : G →
GLn(F ) is not irreducible. But the proof of Burnside’s Theorem 117.6 produces an abelian
subgroup of finite index. �

In 1964, Golod-Shafarevich produced an infinite group on three generators in which
every element has order a power of a prime, so the Burnside Conjecture is false. A
modification of this conjecture was made to the conjecture that any finitely generated
torsion group of bounded period is finite. Adrian-Novikov proved this too was false in
1968 (although Novikov claimed to have proven it in 1959). It was modified again to



117. TORSION LINEAR GROUPS 681

the so-called Restricted Burnside Problem which said: There exist only finitely many
m-generator groups G of bounded period n. In particular, there exists an integer N =
N(m,n) such that |G| < N for all such G. This was proven by Zelmanov in 1994 for
which he won a Fields Medal.

Exercise 117.10. Complete the proof of Case 2 of Theorem 117.9.
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Homological Algebra and Category Theory





CHAPTER XX

Universal Properties and Multilinear Algebra

Given an algebraic object, it is usually very difficult to define a homomorphism from
that object to another. Even if we have a well-defined set map, to show that it preserves
the structure, i.e., is a homomorphism, we have to show that it preserves all the relations
of that object under the map. We saw that free modules were those modules defined by the
universal property that a homomorphism from a free module on a basis B was completely
determined by where the basis B went. This meant that free modules had no nontrivial
relations. Many structures in algebra can be defined by such universal properties, we
shall call such definitions categorical definitions. For example, we also showed that the
quotient field of a domain was defined by one (cf. Theorem 27.14). An algebraic object A
is defined by a universal property (P ) if it satisfies property (P ) together with a map (or
maps) and if C satisfies property (P ), then there is a unique homomorphism(s) A → C
(or C → A) together with a commutative diagram (or commutative diagrams) respecting
the given map(s). For example, F is a free R-module on a set B if there is a fixed set map
i : B → F and if M is an R-module and j : B → M set map, then there exists a unique
R-homomorphism f : F →M satisfying

B
i
//

j   

F

f
��

M

commutes. This also means that if F ′ is another free R-module on B with i′ : B → F ′

the given map, then there exists a unique R-isomorphism f : F → F ′. Thus the module
F together with the set map i satisfies: there is a canonical bijection

Homsets(B, N)→ HomR(F,N)

relative to i : B → F , where the left hand side are set maps and canonical means the the
map given uniquely by the commutative diagram.

In this chapter, we shall investigate other universal properties. Many of the details
will be left to the reader. As an application we shall define the determinant of an R-
homomorphism when R is a commutative ring and satisfying those properties of determi-
nants of matrices that you know.

118. Some Universal Properties of Modules

Let R be a ring. Given an R-homomorphism f : M → N of R-modules, we know
that we should determine its kernel and image. We also saw that cokernels existed. The
kernel was a submodule of M on which f vanished. Of course, f can vanish on other

685
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submodules. Does ker f satisfy a universal property? The answer is yes. Formally we
may define the kernel of an R-homomorphism as follows:

Definition 118.1. Let f : A→ B be an R-homomorphism of R-modules. A kernel of f
is an R-module K together with a R-homomorphism i : K → A satisfying

K

i
�� ��

0

  

A
f
// B

commutes (where 0 is the zero map), and satisfies the following universal property: If

M

g
����

0

  

A
f
// B

is a commutative diagram ofR-modules andR-homomorphisms, then there exists a unique
R-homomorphism h : M → K satisfying

K
i
// A

f
// B

M
h

``

0

>>

g

OO

commutes. Moreover, if the kernel exists, it is unique up to a unique isomorphism.

Our original definition of kernel satisfies the above with K = ker f and i the inclusion
map. We have just made a choice of a representation of a kernel object. Since it is
unique relative to the inclusion map, there can be no other one. Note also that f is a
monomorphism if and only if the kernel is the zero module (of which there is only one).

We can define a cokernel of an R-homomorphism f : A → B by reversing arrows
(called duality), i.e.,

Definition 118.2. Let f : A→ B be an R-homomorphism of R-modules. A cokernel of
f is an R-module C together with a R-homomorphism j : B → C satisfying

A
f
//

0 ��

B

j
��

C

commutes, and satisfying the following universal property: If

A
f
//

0   

B

g
��

N
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is a commutative diagram ofR-modules andR-homomorphisms, then there exists a unique
R-homomorphism h : C → N satisfying

A
f
//

0   

B
j
//

g
��

C

h~~

N

commutes. Moreover, if the cokernel exists, it is unique up to a unique isomorphism.

Then our definition of cokernel is the unique quotient object B/ im f relative to the
canonical epimorphism. One problem here is that we want to define the image by a
universal property, and it will depend on the definition of cokernel. Note that it is
automatic that the map to a cokernel is surjective, so isomorphic to a quotient of B by
some submodule. We define the image of an R-homomorphism as follows:

Definition 118.3. Let f : A → B be an R-homomorphism of R-modules. An image of
f is kernel of j : B → C, where C is a cokernel.

Remarks 118.4. By choice of nomenclature, a cokernel of a kernel of anR-homomorphism
f : A→ B, should be called a coimage of f : A→ B. Therefore, A/ ker f is the coimage
of f . By the First Isomorphism Theorem, the quotient A/ ker f is (canonically) isomor-
phic to the image of f , i.e., we can view the First Isomorphism Theorem as saying the
coimage of f and the image of f are canonically isomorphic. These notions are important
in category theory when they hold.

When we gave examples of modules, two that arose were the direct product and direct
sum of modules. We now define these by categorical definitions.

Definition 118.5. Let A and B be R-modules. Then a product of A and B is an
R-module P together with R-homomorphisms

P
πA
//

πB
��

A

B

satisfying the following universal property: If

X
f
//

g
��

A

B
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are R-homomorphisms, then there exists a unique R-homomorphism h : X → P such
that

X
h

&&

f

))

g

��

P πA
//

πB
��

A

B

commutes. Moreover, if the product exists, it is unique up to a unique isomorphism and
denoted by A

∏
B.

Of course, this product is the external direct product previously defined via the projection
maps.

The coproduct Y of two R-modules A and B is the dual notion of product defined by
reversing arrows, i.e., it is a diagram

A
ιA
// Y

B

ιB

OO

satisfying the obvious universal property. It is unique up to a unique isomorphism and
denoted by A

∐
B. Of course, this coproduct is the external direct sum previously defined

via the inclusion maps of coordinates.
One defines a product and a coproduct of an arbitrary collection {Mi}I of R-modules

in the obvious way and denotes it by
∏

IMi and
∐

IMi respectively. For all j, they come
equipped with both epimorphisms πj :

∏
IMi → Mj and monomorphisms ιj : Mj →∐

IMi respectively which we identify as the ones that previously arose. If I is finite these
are isomorphic and are identified as before.

As an example of how to use universal properties, we show:

Lemma 118.6. An R-module A is a coproduct of the R-submodules A1, . . . , An if and
only if there exist R-homomorphisms ιj : Aj → A and πj : A → Aj for j, k = 1, . . . , n
satisfying πkιj = δkj1Aj and

∑
j ιjπj = 1A.

Proof. (⇒): The definition of coproduct gives rise to the ιj’s. For a fixed k and and
each j, we have a diagram

Aj

ιj
��

δkj1Aj
// Ak

A

.



118. SOME UNIVERSAL PROPERTIES OF MODULES 689

By the universal property of coproduct, there exists a unique R-homomorphism πk : A→
Ak such that

Aj
δkj1Aj

//

ιj
��

Ak

A

πk

>>

commutes. By distributivity, (ι1π1 + · · ·+ ιnπn)ιj = ιj. Then

Aj

ιj
��

ιj
// A

1A
��

A

and
Aj

ιj
��

ιj
// A

ι1π1+···+ιnπn
��

A

both commute for each j. Uniqueness gives 1A = ι1π1 + · · ·+ ιnπn.

(⇐): If fj : Aj → B is an R-homomorphisms for each j, then defining f : A → B by
f =

∑
i fiπi works. �

Suppose that we have R-homomorphisms of R-modules

A
f−→ B

h−→ D and A
g−→ C

j−→ D,

then by the universal properties of product and coproduct, there exist uniqueR-homomorphisms

A
(f,g)−−→ B

∐
C

h
∐
j−−−→ D

given by

(f, g) := ιBf + ιCg

h
∐
j := hπB + jπC ,

i.e., as we are identifying A
∏
B and A

∐
B, i.e., we have a diagram

B

ιB

��

h

""

A

f

==

(f,g)
//

g

!!

B
∐
C

πB

OO

h
∐
j

// D.

C

ιC

OO

πC

��

j

<<

In particular, we have

(h
∐
g)(f, g) = hf + jg.
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An interesting example of this is when A = B = C and f = g = 1A. Set ∆ = (1A, 1A) :
A→ A

∐
A, called the diagonal map. Then the above shows

A
h+j

//

∆ ""

D

A
∐
A

h
∐
j

<<

commutes. Note that this commutative diagram categorically determines addition in
HomR(A,D).

Exercises 118.7.

1. Define a free group, i.e., a group satisfying the obvious definition. Do you know of any
examples of such an item.

2. Define the product and coproduct of a collection of R-modules {Mi | i ∈ I} and show
that these are the external direct product and external direct sum of R-modules.

3. Define the product and coproduct of two groups. Can you identify them?

4. Let f : M → N be an R-homomorphism of R-modules. Show that there exists a
natural R-homomorphism coim f → im f arising from universal properties without
using the First Isomorphism Theorem. Then show that it is an R-isomorphism.

5. Let R be a commutative ring, S ⊂ R a multiplicative set, and M an R-module. Let
S−1M := {m

s
| m ∈M, s ∈ S}. Define an addition and R-action on S−1M making it an

R-module and an S−1R-module. This is called the localization of M at S. Determine
the universal property that such a module satisfies.

119. Tensor Products

Let V be a vector space over F . If v and w are vectors in V , in general, there is no
way to define a product of v and w in V . We want to rectify this, by creating a vector
space in which a ‘product’ of v and w makes sense, called the tensor product. We shall
do this in generality based upon a universal property. For vector spaces, as they are free
modules, what we get is what one desires, but in general, unexpected results can occur.

Let M1, . . . ,Mn, and N be R-modules and M1×· · ·×Mn the cartesian product of the
Mi. A map

f : M1 × · · · ×Mn → N

is called (R-) n-linear or (R-) n-multilinear if f is linear in each variable, i.e.,

f(x1, . . . , rxi + x′i, . . . , xn) = rf(x1, . . . , xi, . . . , xn) + f(x1, . . . , x
′
i, . . . , xn)

for all xj ∈Mj, xi′ ∈Mi, and r ∈ R. If n = 2 an n-linear form is called an R-bilinear form.
If R is a commutative ring we would like to convert bilinear maps into R-homomorphisms.
This is done as follows:

Definition 119.1. Let R be a commutative ring and M,N two R-modules. An R-module
T is called a tensor product of M and N if there exists an R-bilinear map ι : M ×N → T
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satisfying the following universal property: If A is an R-module and j : M ×N → A an
R-bilinear map, then there exists a unique R-homomorphism f : T → A such that

M ×N

j
##

ι
// T

f
��

A

commutes. If a tensor product ι : M × N → T exists, it is unique up to a unique
isomorphism and T is denoted by M ⊗R N .

Lemma 119.2. Let R be a commutative ring and M,N two R-modules. Then a tensor
product of M and N exists.

Proof. Let P be the free R-module on basis B = M ×N . Let W be the submodule
of P generated by the following:

(m+m′, n)− (m,n)− (m′, n)

(m,n+ n′)− (m,n)− (m,n′)

(rm, n)− r(m,n)

(m, rn)− r(m,n)

for all m,m′ in M , n, n′ in N , and r in R. Let : P → P/W by x 7→ x = x+W be the be

the canonical R-epimorphism. Then the composition ι of the maps M×N inc−→ P −→ P/W
is R-bilinear. Set T = P/W and M ×N → T . We denote ι(m,n) by m⊗ n. Then every
element in T is a finite sum∑

finite

ri(mi ⊗ ni) =
∑
finite

(rimi)⊗ ni =
∑
finite

mi ⊗ (rini),

for appropriate elements mi in M , ni in N , and ri in R, as r(m⊗n) = (rm)⊗n = m⊗(rn)
for all m in M , n in N , and r in R. Suppose that j : M ×N → A is R-bilinear. Define
f : T → A as follows: By the universal property of freeness on basis M ×N , there exists
a unique R-homomorphism g : P → A satisfying

M ×N

j
##

ι
// P

g

��

A

commutes. Now, with : P → P/W the canonical R-epimorphism,

M ×N

j
##

// P

g

��

// P/W

A
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and clearly, g|ker = 0, i.e., g|W = 0 as j is R-bilinear. Hence

0 // W
inc
//

0
��

P

g

��

// P/W

A

is exact. But P/W is the cokernel of the inclusion map inc : W → P , so there exists a
unique R-homomorphism g : P/W → A satisfying

P

g

��

// P/W

g
||

A

commutes. As
M ×N

j
%%

ι
// P/W

g

��

A

commutes and g is unique, we have established existence.
[If you do not like using the universal property of cokernels, you can prove this directly, i.e.,
if A is a submodule of an R-module B and f : B → C is an R-homomorphism satisfying
A ⊂ kerϕ, then there exists a unique R-homomorphism ϕ : B/A→ C satisfying

B

��

// C.

B/A

==

commutes.] We leave the proof of uniqueness to the reader. �

We adopt the notation above, i.e., elements of M ⊗RN are finite sums
∑
ri(mi⊗ni),

etc.

Remark 119.3. Let R be a commutative ring.

1. If M,N, and A are R-modules, by the universal property of tensor products, the module
structure of M ⊗R N → A is determined by a R-bilinear map M ×N → A (hence on
generators (m,n) in M × N). In particular, an R-homomorphism ϕ : M ⊗R N → A,
is completely determined by the ϕ(m⊗ n).

2. Let Mi, Ni be R-modules, and ϕi : Mi → Ni an R-homomorphism for i = 1, 2. By the
universal property of tensor products, there exists a unique R-homomorphism ϕ1⊗ϕ2 :
M1⊗RM2 → N1⊗RN2 induced by m1⊗m2 7→ ϕ(m1)⊗ϕ(m2) as M1×M2 → N1⊗RN2

given by (m1,m2) 7→ ϕ(m1)⊗ ϕ(m2) is R-bilinear.

If R is a commutative ring, then the lemma shows that there exists a bijection of sets

{f : M ×N → A | f an R-bilinear map}
→ {f : M ⊗R N → A | f an R-homomorphism}
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i.e., ⊗R converts R-bilinear maps to R-linear maps, i.e., R-homomorphisms, as desired.

Properties 119.4. Let R be a commutative ring and P,M,N R-modules.

1. 0⊗ 0 = m⊗ 0 = 0⊗ n is the zero of M ⊗R N for any m in M , any n in N .

2. The map ιM : R⊗RM →M induced by r⊗m 7→ rm is a canonical R-homomorphism,
where canonical means if f : M → N is an R-homomorphism, then we have commu-
tative diagram

R⊗RM
1R⊗ϕ

��

ιM
// M

ϕ

��

R⊗R N
ιN
// N.

[Why is it well defined?] Check that M → R⊗RM given by m 7→ 1⊗m is the inverse.

3. Let Mi, i ∈ I, N be R-homomorphisms. Then there exists a canonical R-isomorphism∐
I

(Mi ⊗R N)→ (
∐
I

Mi)⊗R N,

i.e,
∏

I and ⊗R commute. (Similarly, on the other side.):

Since the map

(
∐
I

Mi)×N →
∐
I

(Mi ⊗R Ni) given by {{mi}I , n} 7→ {mi ⊗ n}I

isR-bilinear, the universal property of the tensor products induces a uniqueR-homomorphism
f : (

∐
IMi) ⊗R N →

∐
I(Mi ⊗R Ni). For each j ∈ I, we have an R-bilinear map

Mj × N → (
∐

IMi) ⊗R N given by (m,n) 7→ {δijmi} ⊗ n, inducing a unique R-
homomorphism Mj⊗RN → (

∐
IMi)⊗RN by the universal property of tensor products.

Hence, by the universal property of coproducts, there exists a unique R-homomorphism
g :
∐

I(Mi ⊗R N)→ (
∐

IMi)⊗R N . Check that f and g are inverses of each other.

4. M⊗RN is canonically isomorphic to N⊗RM induced by the R-bilinear map M×N →
N ⊗RM given by (m,n) 7→ n⊗m.

5. (M ⊗R N)⊗R P is canonically isomorphic to M ⊗R (N ⊗R P )

6. (
∐

I R)⊗RM ∼=
∐

I(R⊗RM) ∼=
∐

IM with all R-isomorphisms canonical.
7. Suppose that M is a free R-module on basis B and N is a free R-module on basis C.

Then M ⊗R N is a free R-module on basis {b⊗ c | b ∈ B, c ∈ C}. In particular,

rankR(M ⊗R N) = rankRM rankRN :

As R ∼= Rx for all x in B or C, we have M ∼=
∐
B R and N ∼=

∐
C R. Therefore,

M ⊗R N ∼= (
∐
B

R)⊗R (
∐
C

R) ∼=
∐
B

(
R⊗R (

∐
C

R)
) ∼= ∐

B

∐
C

R.

8. If M , N are not free R-modules, bad things can occur. For example, the abelian group
Z/2Z ⊗Z /3Z = 0. For if [a]n is the congruence class of the integer a modulo n, then
[1]2 ⊗ [1]3 = [1]2 ⊗ 4[1]3 = 4[1]2 ⊗ [1]3 = 0. Similarly, [1]2 ⊗ [−1]3 = 0.



694 XX. UNIVERSAL PROPERTIES AND MULTILINEAR ALGEBRA

9. (Base Extension) Let ϕ : R→ T be a ring homomorphism of commutative rings. We
know that any T -module B becomes an R-module via the pullback, i.e., rx := ϕ(r)x
for all r ∈ R, x ∈ B, i.e., via ϕ. In particular, T becomes an R-module, hence so does
T ⊗RM . We can now make T ⊗RM into a T -module by defining

α(β ⊗m) := (αβ)⊗m,
for all α and β in T and m in M . We call the T -module T ⊗RM the base extension of
the R-module M to a T -module (via ϕ).

Examples 119.5. Let K/F be a field extension. Then K is an F -vector space, say on
basis C. Let V be an F -vector space on basis B. The K ⊗F V is an F -vector space on
basis {c⊗ b | c ∈ C, b ∈ B}, so dimF K⊗F V = dimF K dimF V and K⊗F V is a K-vector
space on basis {1 ⊗ b | b ∈ B}. For example, C ⊗R C is a four dimensional real vector
space and a 2-dimensional complex vector space.

Question 119.6. Can you make C ⊗R C into a ring? If so, is it a field?, a domain?,
commutative?

Proposition 119.7. Let V and W be finite dimensional F -vector spaces, V ∗ = HomF (V, F ),
the dual space of V (or finitely generated R-free modules with R commutative). Then the
natural map

ϕ : V ∗ ⊗F W → HomF (V,W )

induced by f ⊗ w 7→ (v 7→ f(v)w) is an F -linear isomorphism.

Proof. Although the map in the proposition is independent of any basis, we use
bases to prove it. Let B = {v1, . . . , vn} be an F -basis for V and B∗ = {f1, . . . , fn} the
dual F -basis for V ∗, i.e., fi(vj) = δij, so fi is the coordinate function on vi. Therefore, if
v is an element of V , v =

∑
i fi(v)vi. Define

ψ : HomF (V,W )→ V ∗ ⊗F W by T 7→
∑
i

fi ⊗ Tvi.

Check: ϕ and ψ are both F -linear.
Then we have

ϕψT (v) = ϕ(
∑

fi ⊗ Tvi)(v) =
∑

fi(v)Tvi =
∑

(T (fi(v)vi) = T (v),

so ϕψ = 1HomF (V,W ). Hence ϕ is an epimorphism. As

dimF (V ∗ ⊗F W ) = dimF HomF (V,W ) <∞,
ϕ is an F -isomorphism (as both are finite dimensional F -vector spaces). [If V and W
are only assumed to be finitely generated free R-modules, one must show that ψϕ =
1V ∗⊗RW .] �

Remarks 119.8. We look at a interesting special case of the proposition above. Let V =
W and B,B∗ as in the proposition. Then the proposition gives an F -linear transformation

ϕ : V ∗ ⊗F V → EndF (V ).

Moreover, the inverse map ψ satisfies ψ(1EndF (V )) =
∑
fi ⊗ vi. Let

EndF (V )
ψ−→ V ∗ ⊗F V

ρ−→ F,



119. TENSOR PRODUCTS 695

where ρ is induced by f ⊗ v 7→ f(v). It follows that for T ∈ EndF (V ), we have

ρψ(T ) = ρ(
∑

fi ⊗ Tvi) =
∑

fi(Tvi).

In particular, if Tvi =
∑
αjivj, then

ρψ(T ) =
∑
i

fi(
∑
j

αjivj) =
∑
i,j

αjifi(vj)

=
∑
i

αii = trace [T ]B.

Since ϕ is defined independently of B and ψ is its inverse, ψ is also independent of B.
therefore, ρψ(T ) is independent of B, i.e., the trace of T defined by

traceT := ρψ(T ) = trace [T ]B

is independent of B. Since ψ(1EndF (V )) =
∑
fi ⊗ vi, we have ϕ(fi ⊗ vi) = 1EndF (V ). The

element
∑
fi ⊗ vi is called the Casimir element. It too is independent of B and B∗

Exercises 119.9.

1. Prove that the tensor product of two modules over a commutative ring is unique up to
a unique isomorphism.

2. Show 0⊗ 0 = m⊗ 0 = 0⊗ n is the zero of M ⊗R N for any m in M , any n in N .

3. Prove Property 119.4(5).

4. Let m and n be positive integer and d the greatest common divisor of m and n. Then
Z/mZ⊗Z Z/nZ ∼= Z/dZ (but not canonically).

5. In the proof of Proposition 119.7, show that ψϕ = 1V ∗⊗RW if V and W are finitely
generated free R-modules.

6. Let R be a commutative ring, M an R-module, and

0→ A
f−→ B

g−→ C → 0

a short exact sequence of R-modules. Show that

A⊗RM
f⊗1M−−−→ B ⊗RM

g⊗1M−−−→ C ⊗RM → 0

and

M ⊗R A
1M⊗f−−−→M ⊗R B

1M⊗g−−−→M ⊗R C → 0

are exact.

7. Let R be a commutative ring, S ⊂ R a multiplicative set, and M an R-module. Show
that there exists a natural S−1R-isomorphism S−1M → S−1R ⊗R M . (Cf. Exercise
118.7(5).) Show further that if

0→M ′ f−→M
g−→M ′′ → 0

is a short exact sequence of R-modules, then so is

0→ S−1R⊗RM ′ 1⊗f−−→ S−1R⊗RM
1⊗g−−→ S−1R⊗RM ′′ → 0.
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8. Let R be a commutative ring and N an R-module. We say that N is a flat R-module
if whenever

0→M ′ f−→M
g−→M ′′ → 0

is exact, so is

0→M ′ ⊗R N
f⊗1N−−−→M ⊗R N

g⊗1N−−−→M ′′ ⊗R N → 0.

Show that if N is a projective R-module, then it is R-flat.

9. Let R be a commutative ring and V and W be finitely generated free R-modules
with ordered R-bases B = {v1, . . . , vn} and C = {w1, . . . , wm} respectively. Let D =
{v1 ⊗ w1, . . . , v1 ⊗ wm, v2 ⊗ w1, . . . , vn ⊗ wm}, an ordered R-basis for V ⊗R W . Let
T ∈ EndR(V ) and S ∈ EndR(W ). Write A = [T ]B and B = [S]C. Show that the
matrix representation [T ◦ S]D is the Kronecker productA11B · · · A1mB

...
. . .

...
An1B · · · AnmB


i.e., (

[T ◦ S]D
)
n(i−1)+r,m(j−1)+s

=
(
[T ]B)

)
ij

(
[S]C

)
rs
.

120. Tensor, Symmetric, and Exterior Algebras

In the last section, we defined the tensor product of modules over a commutative ring.
In this section, we show how to construct algebras from given algebras and given modules.

First let us recall a ring A over a commutative ring R is called an R-algebra if there
exists a ring homomorphism ϕA : R → Z(A) (where Z(A) is the center of A) and an R-
algebra homomorphism of R-algebras is a ring homomorphism ψ : A → B of R-algebras
such that

A
ψ

// B

R

ϕA

__

ϕB

??

commutes. The algebra structure on A makes A into a left and right R-module. For
example, every ring is a Z-algebra. If R is a field F and A a nonzero F -algebra, we often
identify F and F1A, i.e., view ϕA as an inclusion as before. An R-algebra A is called a
graded R-algebra if A =

∐∞
i=0 Ai as an additive group with ϕA(R) ⊂ A0 and AiAj ⊂ Ai+j

for all i, j. In particular, A0 is a ring. Elements in Ai are called homogeneous elements
of degree i. We write deg(a) = i if a ∈ Ai. If B =

∐
i≥0Bi is another graded R-algebra,

an R-algebra homomorphism ψ : A → B is called graded if ϕ(Ai) ⊂ Bi for all i ≥ 0. We
want to construct some graded R-algebras.

Let R be a commutative ring and S a set. Then the free commutative R-algebra on S
is the R-algebra satisfying the appropriate universal property — what is it? It exists and
is unique up to a unique isomorphism, i.e., if two R-algebras satisfy the universal property
there is a unique R-algebra isomorphism between them. Indeed, R[ts]S, the polynomial
ring on |S|-variables, works.
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Construction 120.1. Let R be a commutative ring and A, B two R-algebras. If (a, b) ∈
A×B, then

ma,b : A×B → A⊗R B given by (a′, b′) 7→ aa′ ⊗ bb′

is R-bilinear, so induces a unique R-homomorphism

µa,b : A⊗R B → A⊗R B given by a′ ⊗ b′ 7→ aa′ ⊗ bb′

and hence

(A⊗R B)× (A⊗R B)→ A⊗R B given by (a⊗ b, a′ ⊗ b′) 7→ aa′ ⊗ bb′

is a well defined map that makes A⊗RB into a ring and into an R-algebra by R→ A⊗RB
by r 7→ r⊗1, where r⊗1 = r1A⊗1B = 1A⊗r1B = 1⊗r = ϕA(r)1A⊗1B = 1A⊗ϕB(r)1B
for all r in R. We also call this algebra the tensor product of A and B.

Definition 120.2. Let R be a commutative ring and M , N be R-modules. For each
positive integer n, let T n(M) be the R-module M ⊗R · · · ⊗RM︸ ︷︷ ︸

n

. Then T n(M) is generated

bym1⊗· · ·⊗mn withmi ∈M . Define T 0(M) := R. If f : M → N is anR-homomorphism,
then there exists a unique R-homomorphism T nf : T n(M)→ T n(N) induced by the (R-
)n-linear map M1 × · · · ×Mn → T n(N) given by (m1, · · · ,mn) 7→ f(m1) ⊗ · · · ⊗ f(mn)
(why?).

Example 120.3. Let n be a positive integer, V an m-dimensional F -vector space on
basis B = {v1, . . . , vm}. Then T n(V ) is an F -vector space basis {vi1 ⊗ · · · ⊗ vin | 1 ≤
ij ≤ m} (repetitions are allowed), a vector space of dimension mn. [The same is true if
we have M a free R-module of on a basis B with R a commutative ring.] We also define
T−n(V ) := T n(V ∗), with V ∗ the dual space HomF (V, F ).

Construction 120.4. Let R be a commutative ring and M an R-module. Associativity
of the tensor products implies that

Tm(M)× T n(M)→ Tm+n(M) given by (x, y) 7→ x⊗ y

is R-bilinear, so induces a (non-commutative) ring structure on the R-module

T (M) :=
∞∐
i=0

T n(M)

called the tensor algebra of M . If x, y ∈ T (M), we write xy for the product. Hence if
x ∈ Tm(M) and y ∈ T n(M), then xy = x⊗ y. Under this ring structure, we have

0T (M) :=
∞∐
n=0

0Tn(M)

1T (M) := 1R

R := T 0(M), a subring of T (M)

T (M) is a R-module

T (M) is an R-algebra.
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The R-algebra T (M) also satisfies the following universal property: If ϕ : M → A is
a R-homomorphism of R-algebras, then there exists a unique R-algebra homomorphism
Φ : T (M)→ A satisfying Φ|M = ϕ.

Let R be a commutative ring and M an R-module. As the tensor algebra T (M) is
a ring, it has ideals, hence quotient rings. We use this to construct other algebras. But
T (M) has an additional structure, it is a graded R-algebra by T (M) =

∐
T n(M) as

the ring multiplication on T (M) satisfies Tm(M) × T n(M) → Tm+n(M). We want to
construct graded R-algebras from T (M). The first is the symmetric algebra.

Construction 120.5. Let R be a commutative ring and M an R-module. For each
positive integer n, let An be the submodule of T n(M) generated by all elements m1 ⊗
· · · ⊗mn −mσ(1) ⊗ · · · ⊗mσ(n) with m1, . . . ,mn in M and σ in Sn. Define A0 = 0. Let

A :=
∐
i≥0

An

Sn(M) := T n(M)/An

S(M) :=
∐
i≥0

Sn(M) =
∐
i≥0

T n(M)/An.

Check that A is a ideal in T (M) and S(M) = T (M)/A is a graded R-algebra, i.e., the
ring multiplication on the algebra S(M) satisfies Sm(M) × Sn(M) → Sm+n(M) for all
m,n ≥ 0. The R-algebra S(M) is a commutative algebra called the symmetric algebra

of M and we have ring homomorphisms R
ϕT (M)−−−→ T (M) −→ S(M) with the canonical

epimorphism.

Example 120.6. Let V be an n-dimensional F -vector space. Then S(V ) ∼= F [t1, . . . , tn]
(An analogous statement holds if V is an R-free module of rank n with R commutative):

Let B = {v1, . . . , vn} be an F -basis for V and : Tm(V ) → Sm(V ) the canonical R-
module epimorphism. Then

{vi1 ⊗ · · · ⊗ vim | 1 ≤ i1 ≤ · · · ≤ im ≤ n}

is an F -basis for Sm(V ). In particular,

dimF S
m(V ) =

(
m+ n− 1

n− 1

)
=

(
m+ n− 1

m

)
,

the number of (homogeneous) monic monomials of total degree m in t1, . . . , tn. (Why?)
In particular, dimF S(V ) =∞.

In the construction above, the ideal A :=
∐

n≥0 An satisfies

A ∩ T n(M) = An and AmAn ⊂ Amn for all m,n ≥ 0.

We say A =
∐

n≥0 An is a graded or homogeneous ideal in the graded ring T (M).

We want universal properties for Sn(M) and S(M). Call a map f : X × · · · ×X︸ ︷︷ ︸
n

→ Y

of R-modules symmetric if f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) for all σ ∈ Sn.
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Let R be a commutative ring and M an R-module. Then we have a canonical n-linear
map f : M × · · · ×M︸ ︷︷ ︸

n

→ Sn(M) given by the composition M × · · · ×M︸ ︷︷ ︸
n

→ T n(M) →

T n(M)/An. Then Sr(M) satisfies the following universal property:

Let g : M × · · · ×M → N be an n-linear and symmetric map of R-modules. Then there
exists a unique R-homomorphism ϕ : Sn(M)→ N such that

(120.7) M × · · · ×M f
//

g

))

Sn(M)

ϕ

��

N

commutes and the commutative R-algebra S(M) satisfies the following universal property:

If A is a commutative R-algebra and ϕ : M → A is an R-homomorphism, then there
exists a unique R-algebra homomorphism

(120.8) Φ : S(M)→ A satisfying Φ|M = ϕ.

We next construct another quotient of the tensor algebra, this time a non-commutative
algebra.

Construction 120.9. Let R be a commutative ring andM an R-module. Define Bn to be
the submodule of T n(M) generated by allm1⊗· · ·⊗mn withm1, . . . ,mn inM andmi = mj

for some i 6= j. Set
∧n(M) := T n(M)/Bn. The map f : M × · · · ×M︸ ︷︷ ︸

n

→
∧n(M) defined

by the composition M × · · · ×M︸ ︷︷ ︸
n

→ T n(M) −→ T n(M)/Bn is n-linear and alternating,

i.e., satisfies f(x1, . . . , xn) = 0 if there exists an i 6= j such that xi = xj. It satisfies the
following universal property:

If N is an R-module and g : M × · · · ×M → N is n-linear and alternating, then there
exists a unique R-homomorphism ϕ :

∧n(M)→ N such that

M × · · · ×M f
//

g

))

∧n(M)

ϕ

��

N

commutes. This follows as there exists a unique R-homomorphism ψ : T n(M)→ N such
that

M × · · · ×M f ′
//

g

))

T n(M)

ψ
��

N
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commutes. Then

0 // Bn
h

//

0
((

T n(M)

ψ
��

//
∧n(M) // 0

N

is exact and commutes, so ϕ exists and is unique by the universal property of the cokernel.

We denote the image of (m1, . . . ,mn) in
∧n(M) by m1 ∧ · · · ∧mn.

If ϕ : M → N is an R-homomorphism, then

M × · · · ×M︸ ︷︷ ︸
n

→
∧n

(N)

defined by m1, . . . ,mn 7→ ϕ(m1) ∧ · · · ∧ ϕ(mn) is n-linear and alternating, so induces a
unique R-homomorphism ∧nϕ :

∧n(M) →
∧n(N). Set

∧0(M) := R,
∧1(M) = M and∧

(M) :=
∐

n≥0

∧n(M).

Check. B :=
∐

n≥0 Bn is a graded ideal in T (M) by using

Tm(M)×Bn and Bm × T n(M) lie in Bm+n,

so induces an R-bilinear map
∧n(M)×

∧m(M)→
∧m+n(M) and (as we have associativ-

ity) an R-homomorphism ∧m
(M)⊗R

∧n
(M)→

∧m+n
(M).

This defines a graded R-algebra structure
∧

(M) with multiplication
∧

(M) ×
∧

(M) →∧
(M) defined by

(x1 ∧ · · · ∧ xm) · (y1 ∧ · · · ∧ yn) := x1 ∧ · · · ∧ xm ∧ y1 ∧ · · · ∧ yn.
[Why does it suffice to define multiplication on generators?] This R-algebra is called the
exterior algebra of M .

Remark 120.10. Let R be a commutative ring and M an R-module.

1.
∧

(M) can be defined to be the R-algebra generated by M with defining relations

m ∧m = 0 for all m ∈M :

If m,n are elements of M , then

mn+ nm = (n+m)2 − n2 −m2 in T (M),

so
m ∧ n = −n ∧m in

∧
(M)

and it follows that the graded ideal B is generated in the algebra T (M) by m2, m ∈M .

2. Using (1), one checks
∧

(M) satisfies the following universal property: If A is an R-
algebra and ϕ : M → A an R-homomorphism satisfying ϕ(m)2 = 0 for all m ∈M , then
there exists a unique R-algebra homomorphism Φ :

∧
(M)→ A satisfying Φ|M = ϕ. In

particular, any R-homomorphism ϕ : M → N extends to a unique graded R-algebra
homomorphism ∧ϕ :

∧
(M) →

∧
(N), i.e., ∧ϕ

(∧n(M)
)
⊂
∧n(N). For example,

ϕ(1M) = 1∧
(M).
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3. If ϕ : M → N and ψ : N → P are R-homomorphisms, then ∧(ψϕ) = ∧ψ ◦ ∧ϕ.

In the next section, we shall show how the exterior algebra on a finitely generated
free R-module V leads to the determinant of a R-homomorphism f : V → V when R is
a commutative ring. We end this section, with an example of an exterior algebra that is
useful in commutative algebra. We shall leave details and proofs as exercises.

Recall that a sequence

(*) · · · di+1−−→Mi
di−→Mi−1

di−1−−→ · · ·
of R-modules is called a chain complex if it is a zero sequence, i.e., didi+1 = 0 for all i. The
maps di are called differentials of degree −1 and (*) is denoted by (M,d) with M = {Mi}
and d = {di}. We let Zi(M) := ker di, the abelian group of i-cycles and Bi(M) := im di+1,
the abelian group of i-boundaries which is a subgroup of Zi(M). The quotient Hi(M) is
called the ith homology group of M . If R is a commutative ring, these are all R-modules
(proof?). We also denote Z∗(M), B∗(M), and H∗(M) for {Zi(M)}, {Bi(M)}, {H∗(M)},
respectively.

Construction 120.11. Let R be a commutative ring, V a free R-module of rank n and
f : L→ V an R-homomorphism. Then for all x1, . . . , xn ∈ L,

(x1, . . . , xn) 7→
n∑
i=1

f(xi)x1 ∧ · · · ∧ x̂i ∧ · · · xn,

where ̂ means omit, defines an alternating R-module homomorphism Ln →
∧n−1 L. By

the universal property of
∧n, this induces a homomorphism

d
(n)
f :

∧n
L→

∧n−1
L

by

d
(n)
f (x1 ∧ · · · ∧ xn) =

n∑
i=1

(−1)i+1f(xi)x1 ∧ · · · x̂i ∧ xn

for all x1, . . . xn ∈ L. This in turn induces a graded R-homomorphism df :
∧
L→

∧
L (of

degree -1), with df = {d(n)
f }. In particular, we have a chain complex (

∧
L, df ) satisfying

df (x ∧ y) = df (x) ∧ y + (−1)deg xx ∧ df (y)

for all homogeneous elements x, y ∈
∧
L. The map df is called an anti-derivation of

degree −1. This complex is called the Koszul complex of f and denoted by K∗(f). If M
is an R-module, we define K∗(f,M) := K∗(f) ⊗R M . This complex is called the Koszul
complex with coefficients in M . The differential of this complex is denoted by df,M .

We leave the proofs of the following two propositions as exercises.

Proposition 120.12. Let R be a commutative ring, L an R-module and f : L → R an
R-homomorphism. Then

(1) K∗(f) is a graded alternating algebra.
(2) df is an anti-derivation of degree −1.
(3) If M is an R-module, then K∗(f,M) is a K∗(f)-module (in a natural way).
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(4) If M is an R-module, then df,M(x, y) = df (x) · y + (−1)deg xx · df,M(y) for all
homogeneous elements x ∈ K∗(f) and all elements y ∈ K∗(f,M).

As K∗(f) ∼= K∗(f,R) (naturally), Z∗(f) is a graded subalgebra of K∗(f) and B∗(f) ⊂
Z∗(f) is a graded 2-sided ideal. If M is an R-module, Z∗(f,M) is a graded subalgebra
of K∗(f,M) and B∗(f,M) ⊂ Z(f,M) is a graded 2-sided ideal. In particular, H∗(f) :=
H∗(Z∗(R)) and H∗(f,M) := H∗(Z∗(M)) are graded R-algebras. The algebras H∗(f)
H∗(f,M) is called the Koszul homologies, respectively.

Proposition 120.13. Let R be a commutative ring, L an R-module, f : L → R an
R-homomorphism.

(1) The Koszul homology H∗(f) is a graded alternating algebra induced by K∗(f).
(2) If M is an R-module, then H∗(f,M) is an H∗(f)-module (in the natural way).
(3) H∗(f,M) is an (R/ im f)-module.
(4) H0(f) = R/ im f and if M is an R-module H0(f,M) = M/(ker(f)M).

This proposition is quite useful. For example, one can show that if (R,m) is a nonzero
local Noetherian ring, M a finitely generated R-module, then an M -sequence of length
n (cf. Remark 98.13) exists if and only if Hi(M ⊗ R/m) = 0 for r = 1, . . . , n − 1. This
allows the use of homology to study the integer depth introduced in Remark 98.13, a very
important integer in studies of commutative algebra and algebraic geometry.

Exercises 120.14.

1. Let V be an n-dimensional F -vector space. Show

dimF S
m(V ) =

(
m+ n− 1

n− 1

)
=

(
m+ n− 1

m

)
.

2. Let R be a commutative ring. Define the free commutative R-algebra on a set S and
show it is a polynomial ring on |S| variables.

3. Let R be a commutative ring. Define the free R-algebra on a set S and show it exists.

4. Let R be a commutative ring and A and B commutative R-algebras. Show that
A ⊗R B is the coproduct of A and B as R-algebras [definition?]. [If A and B are not
commutative, this is not true.]

5. Let Ki/F be (arbitrary) field extensions for i = 1, 2. A composite of K1, K2 over F
is a field L such that there exist (field) homomorphisms ϕi : Ki → L fixing F , i.e.,
F -homomorphisms, such that L is generated by ϕ1(K1)ϕ2(K2). Show that there is a
bijection between Spec(K1⊗F K2) and F -isomorphism classes of composites of K1 and
K2 over F .

6. If R is a commutative ring and M an R-module, prove that the tensor algebra T (M)
satisfies the universal property in Construction 120.4.

7. Fill in the details needed to justify the construction of the symmetric algebra in Con-
struction 120.5.

8. Prove Sr(M) satisfies the universal property (120.7).

9. Prove S(M) satisfies the universal property (120.8).

10. Prove
∧

(M) satisfies the universal property in Remark 120.10(2).
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11. Let ϕ : R→ S be a homomorphism of commutative rings and M an R-module. Show
that ϕ induces a natural isomorphism (

∧
M)⊗RS →

∧
(M⊗RS) of graded S-modules.

12. Let R be a commutative ring and M, N R-modules. Define multiplication on (
∧
M⊗R

(
∧
N) as follows: For any homogeneous elements x, x′ ∈M , y, y′ ∈ N , let

(*) (x⊗ y)(x′ ⊗ y′) = (−1)(deg y)(deg x′)(x ∧ x′)⊗ (y ∧ y′)
Show that (

∧
M) ⊗R (

∧
N) is an alternating graded R-algebra via (*) with first ho-

mogeneous component (M ⊗R)⊗R (R⊗N) ∼= M ⊗R N .
13. Let V be an n-dimensional F -vector space. If y1, . . . , yn are elements in V , show
{y1, . . . , yn} is linearly dependent if and only if y1 ∧ · · · ∧ yn = 0.

14. Let R be a commutative ring and

0→M ′ →M →M ′′ → 0

an exact sequence of free R-modules of ranks r, n, s, respectively. Show that there
exists a natural isomorphism

ϕ :
∧r

(M ′)⊗R
∧s

(M ′′)→
∧n

(M).

15. Let M = M⊕M ′′ be a direct sum of free R-modules of finite rank. Then for all positive
integers n, show that ∧n

(M) ∼=
∐
r+s=n

∧r
(M ′)⊗R

∧s
(M ′′).

16. Let R be a commutative ring and A an R-algebra. A derivation δ : A → A is an
R-homomorphism satisfying δ(ab) = δ(a)b+ aδ(b) for all a, b ∈ A. (E.g., the derivative
on rings of real differentiable functions.) Show that if M is an R-module, then any
R-homomorphism ϕ : M → S(M) extends to a derivation S(M)→ S(M).

17. Fill in the details in Construction 120.11.

18. Prove Proposition 120.12.

19. Prove Proposition 120.13.

121. The Determinant

In this section, we show that the determinant exists for matrices over a commutative
ring using the exterior algebra of a finitely generated free module M . We construct the
determinant of an R-endomorphism of M that gives rise to the determinant of its matrix
representations, so is more intrinsic than the more elementary matrix proof. Recall over
a commutative ring all bases for a finitely generated free module have have the same
number of elements (the rank of the module). Unlike the tensor algebra over a finitely
free module that has infinite rank, the exterior algebra has finite rank. More precisely,
we have the following:

Theorem 121.1. Let R be a commutative ring and M a free R-module of rank n on basis
{x1, . . . , xn}. Then

∧
(M) is a free R-module of rank 2n. More precisely,

Br := {xi1 ∧ · · · ∧ xir | 1 ≤ i1 < · · · < ir ≤ n}
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is a basis for
∧r(M) for r ≤ n. In particular,

rank
∧r

(M) =

{(
n
r

)
if r ≤ n

0 otherwise.

To prove this we need a preliminary idea and its development in the case of exterior
algebras.

Construction 121.2. Let R be a commutative ring, M an R-module, and A =
∐

i≥0Ai
a graded R-algebra.

For each i ≥ 0, define an R-homomorphism σ : Ai → Ai by z 7→ (−1)iz. Then σ induces
a graded R-algebra homomorphism σ : A → A, since (−1)i(−1)j = (−1)i+j. Note that
σ2 = 1A.

An R-homomorphism δ : A→ A is called an anti-derivation if

δ(ab) = δ(a)b+ σ(a)δ(b) for all a, b ∈ A.

If A is T (M), S(M), or
∧

(M), then M generates A as an R-algebra, hence δ is determined
by what it does to A1 = M .

Case. A = T (M):

Let ϕ̃ : M → T (M) be an R-homomorphism. Then M ×M → T (M) defined by

(*) (a, b) 7→ ϕ̃(a)b− aϕ̃(b) = ϕ̃(a)b+ σ(a)ϕ̃(b)

is R-bilinear, so induces an R-homomorphism T 2(M) → T (M). Inductively, we obtain
R-homomorphisms T n(M) → T (M), i.e., ϕ̃ induces an anti-derivation T (M) → T (M).
We also call this map ϕ̃.

Case. A =
∧

(M):

Let ϕ be the composition

T (M)
ϕ̃−→ T (M) −→

∧
(M),

with ϕ̃ the anti-derivation of the previous case.

Claim. If ϕ satisfies

(121.3) ϕ(x) ∧ x− x ∧ ϕ(x) = 0 for all x ∈M,

then ϕ induces an anti-derivation
∧

(M)→
∧

(M) that we shall also call ϕ:

As ϕ̃ : T (M) → T (M) is an anti-derivation, to show that ϕ induces an anti-derivation∧
(M)→

∧
(M), it suffices to show that

ϕ̃(B) ⊂ B = ker
(

: T (M)→
∧

(M)
)
.

Let x ∈M . By (*), we have

(†) ϕ̃(x2) = ϕ̃(x · x) = ϕ̃(x)x+ σ(x)ϕ̃(x) = ϕ̃(x)x− xϕ̃(x).
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Applying the map to equation (†), shows that ϕ̃(x2) lies in B. Let a and b lie in T (M)
and x in M . Then

ϕ̃(ax2b) = ϕ̃(a)x2b+ σ(a)ϕ̃(x2b)

= ϕ̃(a)x2b+ σ(a)ϕ̃(x2)b+ σ(a)σ(x2)ϕ̃(b)

= ϕ̃(a)x2b+ σ(a)ϕ̃(x2)b+ σ(a)σ(x)2ϕ̃(b).

Since x2, σ(x)2 lie in B and ϕ̃(x2) lies in B by (†) with B a 2-sided ideal in T (M), we
conclude that ϕ̃(ax2b) lies in B for all a, b in T (M) and for all x in M . Since B is
generated by x2, x ∈M , by Remark 120.10(1), we have

B = 〈ax2b | a, b ∈ T (M), x ∈M〉.

Therefore, ϕ̃(B) ⊂ B, and the claim is established.

Examples 121.4. Let R be a commutative ring and M an R-module. Suppose that we
are in the case A =

∧
(M) above together with its notation.

1. If ϕ(x) lies in M for all x in M , then equation (121.3) becomes

2ϕ(x) ∧ x = 0 for all x ∈M.

2. If ϕ(x) lies in R for all x in M , then equation (121.3) always holds. In particular, as
R =

∧0(M) ⊂
∧

(M), if ϕ lies in M∗ = HomR(M,R), then ϕ induces an anti-derivation∧
(M)→

∧
(M) that we also call ϕ.

3. Suppose that M is R-free on basis B = {x1, . . . , xn} and B∗ = {f1, . . . , fn}, the dual
basis for M∗ = HomR(M,R). Then each fi defines an anti-derivation fi :

∧
(M) →∧

(M).

We now proceed to the proof of Theorem 121.1.

Proof. We use the notation of Example 121.4(3). As

xσ(i1) ∧ · · · ∧ xσ(xir ) = ±xi1 ∧ · · · ∧ xir , for all σ ∈ Sr,

we have

Br = {xi1 ∧ · · · ∧ xir | 1 ≤ i1 < · · · < ir ≤ n}
generates

∧r(M). As
∧

(M) =
∐

r≥0

∧r(M) is graded, it suffices to show that Br is R-
linearly independent. Suppose this is false. Since B = B1 is linearly independent, there
exists a mimimal r such that Br is linearly dependent. Let

(*)
∑

1≤i1<···<ir≤n

ai1,...,ir xi1 ∧ · · · ∧ xir = 0 in
∧r

(M),

not all ai1,...,ir zero. Changing notation, we may assume that a1,j2,...jr is nonzero with
1 < j2 < · · · < jr ≤ n. Applying the anti-derivation arising from f1 in B∗ to (*), we get∑

1≤i2<···<ir≤n

a1,i2,...,irxi2 ∧ · · · ∧ xir = 0,

since f1(xi) = δi1. This implies that Br−1 is linearly dependent, a contradiction. �
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Corollary 121.5. The sign map sgn : Sn → {±1} given by

sgnσ =

{
1 if σ is a product of an even number of transpositions

−1 otherwise.

is a well-defined group homomorphism.

Proof. Let R be a commutative ring and M a free R-module on basis {x1, . . . , xn},
then

∧n(M) is R-free on basis {x1 ∧ · · · ∧ xn}. Hence if σ ∈ Sn. there exists a unique
sgn(σ) in {±1} satisfying

(121.6) xσ(1) ∧ · · · ∧ xσ(n) = sgn(σ)x1 ∧ · · · ∧ xn.
It is easily checked that sgn is a group homomorphism. �

Construction 121.7. Let R be a commutative ring and M an R-free module on basis
{x1, . . . , xn}. Let f : M →M be an R-homomorphism. Write

f(xi) =
n∑
j=1

αjixj for i = 1, . . . , n

and A = (αij) = [f ]B, the matrix representation of f relative to the (ordered) basis B.
Then f induces a unique graded R-algebra homomorphism ∧f :

∧
(M) →

∧
(M). Since

{x1 ∧ · · · ∧ xn} is a basis for
∧n(M), there exists a unique element λ in R satisfying

∧nf = λ1∧n(M), where ∧f |∧n(M) = ∧nf . In particular, λ is an eigenvalue of ∧nf on the
rank one free R-module

∧n(M). Using equation (121.6) and the alternating property, we
see that

λ1∧n(M) = ∧nf(x1 ∧ · · · ∧ xn)

= f(x1) ∧ · · · ∧ f(xn) =
n∑
j=1

αj1xj ∧ · · · ∧
n∑
j=1

αjnxj

=
∑
Sn

sgn(σ)ασ(1)1 · · ·ασ(n)nx1 ∧ · · · ∧ xn.

The element

λ =
∑
Sn

sgn(σ)ασ(1)1 · · ·ασ(n)n

is called the determinant of f and denoted det f . As det f is an eigenvalue for ∧nf on a
rank one free R-module, it is unique and independent of B. The map det : EndR(M)→ R
defined by det f = ∧nf is n-multilinear, alternating and satisfies det 1V = 1R. It is called
the determinant (function).

Remark 121.8. The above shows the existence and uniqueness of the usual determinant
(function) on matrices Mn(R) over a commutative ring R, i.e., it is the unique alternating,
n-multilinear function D : Mn(R) → R on columns (or rows) of n × n matrices over R
satisfying D(I) = 1. Indeed, if S is the standard basis for Rn, then D(A) = det(A),
viewing A as a linear transformation on Rn. In particular, det(A) = 0 if and only if A is
not a unit in Mn(R).
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Next let g : M →M be another R-homomorphism and B = [g]B. Then

∧n(fg) = ∧nf ◦ ∧ng so det fg = det f det g , i .e., det AB = det A det B .

More generally, f, g induce ∧rf,∧rg :
∧r(M) →

∧r(M) for each r = 1, . . . , n. Set
A(r) = [∧rf ]Br and B(r) = [∧rg]Br in M(nr)

(R). Then

(AB)(r) = A(r)B(r)

which gives identities of degree r in the entries of A and B called the Binet-Cauchy
Equations. Note that A(r) is an

((
n
r

)
×
(
n
r

))
-matrix whose entries are the rth order minors

of A, etc.

To get additional formulae, let A = (aij) be an n× n-matrix over a commutative ring
R. Then we view A as the matrix representation of the appropriate f : Rn → Rn in the
standard basis {e1, . . . , en}. Set S = {1, . . . , n}. If H is a subset of S consisting of r
elements, let H be the ordered r-tuple (i1, . . . , ir) where 1 ≤ i1 < · · · < ir ≤ n with all
ij ∈ H. and eH = ei1 ∧ · · · ∧ eir . If K is another subset of S, then

(121.9) eH ∧ eK =

{
εH,KeH∪K if H ∩K = ∅
0 if H ∩K 6= ∅,

where εH,K = (−1)m, if H ∩K = ∅ and m is the number of transpositions modulo two
to get H ∪K from H ∪K. If H is a subset of S, we denote by H ′ the complement of H
in S. Fix r, 1 ≤ r ≤ n, and let S(r) = {I | I ∈ P (S) with |I| = r}, where P (S) is the
power set of S. i.e., the set of subsets of S. Let AI,H denote the submatrix of A with
rows of A associated to I, I ∈ S(r), and columns of A associated to H i.e, detAI,H is the
r-order minor associated to I ′ and H ′.

Fix H ∈ S(r). Then check we have

(121.10) ∧r (f)(eH) =
∑
I∈S(r)

det(AI,H) eI .

Therefore, for such a fixed H, we have

(detA · εH,H′) eS =
(
∧r (f)

)
(eH) ∧

(
∧n−r (f)

)
(eH′)

=
∑
I∈S(r)

∑
J∈S(n−r)

det(AI,H) det(AJ,H′) eI ∧ eJ(†)

=
∑
I∈S(r)

∑
J∈S(n−r)

det(AI,H) det(AJ,H′) εI, JeS

=
∑
I∈S(r)

εI, I′ det(AI,H) det(AI′, H′) eS

by (121.9). In particular,

detA =
∑
I∈S(r)

εH,H′εI, I′ det(AI,H) det(AI′, H′).
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This is called the Laplace expansion of detA. For r = 1, this is the well-known expansion
by minors along rows. By symmetry, we have an analogous result on columns by using
right modules. If we let A(i, j) be the (n − 1)-order minor of A, i.e., the determinant of
the submatrix of A by deleting the ith row and jth column, then (−1)i+jA(i, j) is called
the (i, j)th cofactor of A. Define the classical adjoint adj(A) of A to be the transpose of
the matrix of cofactors of A, i.e., the (i, j) entry of adj(A) is (−1)i+jA(j, i). By Laplace
expansion, we check that

n∑
i=1

ai1(−1)i+1A(j, 1) + · · ·+ ain(−1)i+1A(j, n)

is the expansion of a determinant whose jth row equals the ith row of A while the other
rows are as in A. If i 6= j this means this matrix has two rows the same so is zero, hence
is zero off the main diagonal. It follows that

A · adj(A) = detA · I

with I the n× n identity matrix. Similarly, adj(A) · A = detA · I.

Let M =
∑n

i=1Rxi be an R-module. If we have a system of equations
∑n

j=1 ajixj = 0 for

i = 1, . . . , n, then we must have det(A)M = 0. In particular, detA is in the annihilator
of M . It follows that if annR(M) = 0 and M 6= 0, then detA = 0. Next suppose that A
is invertible, i.e., detA is a unit (respectively, R is a domain and M = R) and we want
to solve a system of equations

∑n
j=1 ajixj = bi for i = 1, . . . , n in M (respectively the

quotient field of R), i.e., if x = (x1 · · ·xn)t and b = (b1 · · · bn)t column matrices, then we
want to solve the matrix equation Ax = b. Then the solution is x = (detA)−1adj(A)b.
This is called Cramer’s Rule.

Exercises 121.11.

1. Show equation (121.10) holds.

2. Show equation (†) holds (in the equation right after equation (121.10)).

3. Check that Cramer’s Rule in the text is the usual one.

4. Let R be a commutative ring and A ∈ Mn(R). Let (A(i|j) ∈ Mn−1(R) be the matrix
deleting the ith row and jth column of A and CiJ = (−1)i+j det(A(i|j), the (i, j)th
cofactor of A. Show

∑n
i=1 AikCij = δjk detA.

5. Let R be a commutative ring, A ∈ Rm×n, and B ∈ Rn×m with m ≤ n. Set S =
{1, . . . , n} and S(m) = {I | I ∈ P (S) with |I| = m}. Let M be the ordered tuple
(1, 2, . . . ,m) where M = {1, . . . ,m} ⊂ S. For each I ∈ S(m), let AM, I denote the
m×m matrix formed from A using the columns I of A and BI,M ∈ Mm(R) denote the
m×m matrix formed from B using the rows I of B. Prove

det(AB) =
∑

I∈S(m)

det(AM, I) det(BI,M).

This is also called the Binet-Cauchy Equation.
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6. Let V be a finite dimensional real inner product space with inner product 〈 , 〉. Show
that if v = (v1, . . . , vn) and w = (wi, . . . , wn) are elements of V , then∑

1≤i<j≤n

det
(
vi vj
wi wj

)2

= det
(〈v, v〉2 〈v, w〉
〈v, w〉 〈w,w〉2

)
.

In particular, the Cauchy-Schwarz Inequality holds.

7. Let R be a commutative ring. Suppose that E ∈Mn(R) has the form

E =
(
A B
C D

)
with A ∈ GLr(R), B ∈ Rr×(n−r), C ∈ R(n−r)×r, and D ∈ Mn−r(R).
Let D′ = D−CA−1B ∈ Mn−r(R), called the Schur complement of A in E and denoted
by E/A. Show that

detE = detA det(E/A).

In particular, if C = 0, then detE = detA detD.

8. Let R be a commutative ring, A ∈ Rm×n and B ∈ Rn×m. Show that det(Im + AB) =
det(In +BA), where Im and In are the appropriate identity matrices.

9. Let R be a commutative ring, M ∈ Rn×(n−r), and a1, . . . , a2r ∈ Rn×1. Show∑
σ

(−1)k1+···+kr det
(
M{1,...,r},{ak1 ,...,akr}

)
det
(
M{akr+1

,··· ,ak2r}, {1,...,r}
)

= 0,

where k1, · · · , k2r is a permutation of {1, 2, . . . , 2r} and σ ∈ S2r is the permutation
with 1 ≤ k1 < · · · < kr ≤ 2r and kr+1 < · · · < k2r.





CHAPTER XXI

Introduction to Homological Algebra

Homology and cohomology are groups that are essential in measuring algebraic prop-
erties of groups, rings, and modules. It is also used in geometry and topology. In this
chapter, we set up the basics of this theory working in the special case of modules. [The
proper setting is abelian categories.] Since our rings are not necessarily commutative, as
usual R-module will mean left R-module. Obvious definitions and results for right R-
modules will be left to the reader. In addition, many results have “dual” statements, i.e.,
reversing all maps give the analogous results, and if so, the proofs will be omitted. There
are a lot of definitions and many of the proofs follow via diagram chasing as you learned
if you proved the Five Lemma, so some details will be left to the reader. In addition,
there is a lot of notation involved. We will also introduce collection of modules that are
very useful. These are the injective modules that arise from abelian divisible groups and
whose generalization itself is crucial in algebraic geometry, projective modules that gen-
eralize free modules (and are dual to injective modules) that generalize to vector bundles,
and flat modules that generalize projective modules and are important when extending
a base ring. Reading this chapter can be omitted unless needed, since there will be little
application outside of the theory itself.

122. Homology

Often a chain complex of R-modules, i.e., a zero sequence of R-modules and R-
homomorphisms, is written as

· · · dn+2−−−→ An+1
dn+1−−−→ An

dn−→ An−1
dn−2−−−→ · · ·

and the R-homomorphisms di are called differentials. One usually denotes such a chain
complex by (A∗, d∗). If (A∗, d∗) is a chain complex, then we define the quotient of R-
modules

Hn(A) := ker dn/ im dn+1

and call it the nth homology of (A∗, d∗). If (A∗, d∗) is a chain complex, the set An is
called the set of n-chains. We call

Zn(A) := ker dn the set of n-cycles of An

Bn(A) := im dn+1 the set of n-boundaries of An.

So Hn(A) = Zn(A)/Bn(A) and every element in Hn(A), called a homology class, is repre-
sented by an n-cycle. This agrees with its historical topological interpretation.

If we write the indices of the A∗ and the dn to go up, i.e.,

· · · dn−2−−−→ An−1
dn−1−−−→ An

dn−→ An+1
dn+1−−−→ · · · ,

711
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then (A∗, d∗) is called a cochain complex with the differentials written as dn. We use
the notation (A∗, d∗) for a cochain complex. Analogously, the elements in An are called
n-cochains and

Zn(A) := ker dn is called the set of n-cocycles of An

Bn(A) := im dn−1 is called the set of n-coboundaries of An

and

Hn(A) := ker dn/ im dn−1 = Zn(A)/Bn(A)

called the nth-cohomology of An with elements called cohomology classes.
Therefore, a (co)chain complex is exact, i.e., acyclic, if and only if its (co)homology is

trivial, i.e., (co)homology measures the obstruction from a chain complex to be exact.
A chain homomorphism (or chain homomorphism of degree zero) of chain complexes

f∗ : (A∗, d∗)→ (A′∗, d
′
∗) consists of R-modules and R-homomorphisms is fn : An → A′n for

all n satisfying

An+1

dn+1

��

fn+1
// A′n+1

d′n+1

��

An
fn

// A′n

commutes for all n.
Let 0 denote the trivial chain complex (0∗, 0∗). A sequence of chain complexes and

chain homomorphisms

0→ (A∗, dA)
f∗−→ (B∗, dB)

g∗−→ (C∗, dC)→ 0

is called an exact sequence of chain complexes of R-modules if, writing out the chain
complexes vertically and horizontally, we have a commutative diagram with exact rows.

The obvious definitions are given for cochain homomorphisms.

The study of (co)homology, in its general context, is a major subject in mathematics.
We begin with a fundamental lemma that will be used to turn a chain complex into exact
sequence of their corresponding homology groups. As mentioned above some details will
be left to the reader.

Lemma 122.1. (Snake Lemma) Let

A
f−−−→ B

g−−−→ C −−−→ 0

α

y β

y γ

y
0 −−−→ A′

f ′−−−→ B′
g′−−−→ C ′

be a commutative diagram of R-modules and R-homomorphisms with exact rows. Then
there exists an R-homomorphism ∂ : ker γ → cokerα so that the following sequence is
exact:

kerα
f |kerα

// ker β
g|ker β

// ker γ
∂
// cokerα

f
′
// coker β

g′
// coker γ,
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with f
′

and g′ the induced maps. Moreover, in this diagram, we have f |kerα is a monomor-
phism if f is a monomorphism and g is an epimorphism if g is an epimorphism.

Proof. Except for the definition of ∂, the exactness at all the positions is easily
checked by diagram chasing. So we shall only indicate what the map ∂ is. Although the
inverse of a map is not a function, one checks that if x ∈ ker γ ⊂ C, that

∂ : ker γ → cokerα by x 7→ f ′−1βg−1(x) + imα

is well-defined, i.e., independent of the choices of the preimages. �

The snake lemma implies:

Corollary 122.2. If

0→ (A∗, dA)
f∗−→ (B∗, dB)

g∗−→ (C∗, dC)→ 0

is an exact sequence of chain complexes of R-modules, then for all n the following are
exact:

0→ ker(dA)n−1

(fn−1)|ker dA−−−−−−−→ ker(dB)n−1

(gn−1)|ker dB−−−−−−−→ ker(dC)n−1

and

coker(dA)n+1

fn+1−−−→ coker(dB)n+1

gn+1−−−→ coker(dC)n+1 → 0

are exact.

Corollary 122.3. Let

0→ (A∗, dA)
f∗−→ (B∗, dB)

g∗−→ (C∗, dC)→ 0

be an exact sequence of chain complexes of R-modules. Then the following diagram is
commutative and has exact rows:

coker(dA)n+1

fn+1−−−→ coker(dB)n+1

gn+1−−−→ coker(dC)n+1 → 0

dA

y dB

y dC

y
0→ ker(dA)n−1

fn−1−−−→ ker(dB)n−1
gn−1−−−→ ker(dC)n−1

where the maps f , g, dA, dB, dC are the induced maps and the bottom maps are restrictions
to the appropriate kernels.
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Proof. By the Snake Lemma, for all n, we have a commutative diagram with exact
rows:

0 −−−→ ker(dA)n
fn−−−→ ker(dB)n

gn−−−→ ker(dC)ny y y
0 −−−→ An

fn−−−→ Bn
gn−−−→ Cn −−−→ 0

(dA)n

y (dB)n

y (dC)n

y
0 −−−→ → An−1

fn−1−−−→ Bn−1
gn−1−−−→ Cn−1 −−−→ 0y y y

An−1

im(dA)n

fn−1−−−→ Bn−1

im(dB)n

gn−1−−−→ Cn−1

im(dC)n
−−−→ 0

where the maps on the top row are restricted to the kernels. It follows that the induced
maps given by the Isomorphism Theorem produces a commutative diagram with exact
rows

An−1

im(dA)n

fn−1−−−→ Bn−1

im(dB)n

gn−1−−−→ Cn−1

im(dC)n
−−−→ 0

(dA)n−1

y (dB)n−1

y (dC)n−1

y
0 −−−→ ker(dA)n−2

fn−1−−−→ ker(dB)n−2
gn−1−−−→ ker(dC)n−2

with the bottom horizontal row with maps restricted to the appropriate kernels. By the
previous corollary, the rows are exact. The result follows by the Snake Lemma. �

Theorem 122.4. (The Long Exact Sequence in Homology) Let

0→ (A∗, dA)
f∗−→ (B∗, dB)

g∗−→ (C∗, dC)→ 0

be a an exact sequence of chain complexes of R-modules. Then there exists an R-homomorphism
∂n+1 : Hn+1(C) → Hn(A) for all n called the connecting homomorphism of the sequence
such that we have a long exact sequence in homology

· · · → Hn+1(C)
∂n+1−−−→ Hn(A)

fn−→ Hn(B)
gn−→ Hn(C)

∂n−→ Hn−1(A)→ · · ·

where fn and gn are the induced maps for all n.

Proof. The proceeding corollary gives a diagram that satisfies the hypothesis of the
Snake Lemma. Let D∗ = A∗, B∗, or C∗. So ker(dD)n = Zn(D) and im(dD)n+1 are the
n-boundaries. It follows that the induced maps imply that

Hn(D) = ker
(
Dn/ im(dD)n+1 → Zn−1(D)

)
Hn−1(D) = coker

(
Dn−1/ im(dD)n → Zn−1(D)

)
.
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Therefore, applying the Snake Lemma to the diagram in the conclusion of the last corol-
lary, we have

Hn(A)
fn−→ Hn(B)

gn−→ Hn(C)
∂n−→ Hn−1(A)

fn−→ Hn−1(B)
gn−→ Hn−1(C)

where ∂n is the connecting homomorphism. Glueing these sequences together produces
the desired result.

�

Remark 122.5. It is common to write the long exact sequence in homology as

H∗(A)
f∗

// H∗(B)
g∗

zz

H∗(C)

∂∗

dd

called the exact triangle in homology.

Computation 122.6. The construction of the connecting homomorphism in the above
theorem can be explicitly defined as follows: Suppose that z ∈ Hn(C). Choose a cycle
in c ∈ Zn(C) whose homology class is z. By hypothesis, there exists an element b ∈ Bn

satisfying gn(b) = c and (dB)n(b) ∈ Bn−1. As (dB)n−1(dB)n(b) = 0, there exists a ∈
Zn−1(A) satisfying fn−1(a) = (dB)n(b). Then ∂n(z) is equal to the homology class of a in
Hn−1(A).

We must also show any R-homomorphisms between short exact sequences of chain
complexes induces a homomorphism of exact triangles in homology.

Theorem 122.7. (Naturality of the Long Exact Sequence in Homology) Let

0 −−−→ (A∗, dA)
f−−−→ (B∗, dB)

g−−−→ (C∗, dC) −−−→ 0

α∗

y β∗

y γ∗

y
0 −−−→ (A′∗, dA′)

f ′−−−→ (B′∗, dB′)
g′−−−→ C ′∗, dC′) −−−→ 0

be a commutative diagram of chain complexes of R-modules. Then there exists a commu-
tative diagram with exact rows

· · · → Hn(A)
fn−−−→ Hn(B)

gn−−−→ Hn(C)
∂n−−−→ Hn−1(A)→ · · ·

αn

y βn

y γn

y αn−1

y
· · · → Hn(A′)

f ′n−−−→ Hn(B′)
g′n−−−→ Hn(C ′)

∂′n−−−→ Hn−1(A′)→ · · · ,
where ∂n and ∂′n are the corresponding connecting homomorphisms and fn, gn αn, βn,
and γn the induced maps for all n.

Proof. Viewing the construction of the homology sequence (excluding the connecting
homomorphisms) for each exact sequences of chains and the maps connecting them as well
as the ones induced by the construction show the first two squares commute. (We do not
write down the three dimensional diagram.) The commutativity of the last square is a
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somewhat more complicated diagram chase. Let z ∈ Hn(C) and choose c ∈ Cn with z
as its homology class. Let z′ = γn(z) and choose c′ ∈ C ′n with z′ as its homology class.
Now choose b′ ∈ B′n such that b′ 7→ c′. Then the image of b′ of b ∈ B′n maps to c′ by
commutativity. By Computation 122.6, we have ∂n(z′) ∈ Hn−1(A′) is the homology class
of a′ ∈ Zn−1(A′) such that a′ = (dB′)n, i.e., by the image of a representative of ∂′n(z′).
Consequently, ∂′n(z) 7→ ∂n(z′) �

The term naturality roughly means that when we have a commutative diagram and
act on it, say by HomR, take quotients, etc, the induced diagram is still commutative.

Next, we wish to see when two short exact sequences of chains of R-modules give rise
to the same homology. We first need a definition (arising from topology).

Definition 122.8. Let (A∗, d) and (A′∗, d
′) be chain complexes of R-modules. A map

s∗ : (A∗, d)→ (A′∗, d
′) is called a chain map of degree i if for all n we have a commutative

diagram

An
fn−−−→ A′n+i

dn

y yd′n+i
An−1 −−−→

fn+1

A′n−1+i

of R-modules and R-homomorphisms. So a chain map is a chain map of degree 0. Let
f∗, g∗ : (A∗, dA)→ (B∗, dB) be chain maps of chain complexes of R-modules. We say that
f and g are chain homotopic if there exists a chain map s∗ : (A∗, dA)→ (B∗, dB) of degree
+1 that satisfies

fn − gn = dBn+1sn + sn−1dAn ,

i.e., we have a commutative diagram

// An+1

(dA)n+1
//

gn+1

��

An
(dA)n

//

gn

��

sn

}}

An−1
//

gn−1

��

sn−1

}}

// Bn+1
(dB)n+1

//

��

fn+1

Bn

��

fn

(dB)n

// Bn−1

��

fn−1

// .

for all n (viewing the vertical maps as fn − gn).

Chain homotopies are useful because of the following observation:

Lemma 122.9. Let f∗, g∗ : (A∗, dA)→ (B∗, dB) be chain maps of chain complexes of R-
modules. If f∗ and g∗ are chain homotopic, then the maps f ∗ and g∗ induced in homology
are equal, i.e.,

fn = gn : Hn(A)→ Hn(B)

for all n. In particular, (A∗, dA) is acyclic if there a chain homotopy between 1A∗ :
(A∗, d∗)→ (A∗, d∗) and the zero map on (A∗, d∗).

Proof. By definition, im(fn − gn) are boundaries. �
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In later sections, we will be given an R-module M and will have a method for constructing
a chain complex for M that we shall want to be independent of the construction up to
chain homotopy. This will lead to homology groups that will be independent of the
construction.

Of course, analogous results of all the above hold for cochains and cohomology. We
leave it to the reader to write the obvious results down. It is also a good exercise to prove
these results (at least to see if you can keep the notation and maps correct).

Exercises 122.10. 1. Fill in the details of the proof of the Snake Lemma 122.1.

2. (Nine Lemma) Suppose the following diagram is commutative and all its columns are
exact.

0 0 0y y y
0 −−−→ A′

f ′−−−→ B′
g′−−−→ C ′ −−−→ 0

α′

y β′

y γ′

y
0 −−−→ A

f−−−→ B
g−−−→ C −−−→ 0

α

y β

y γ

y
0 −−−→ A′′

f ′′−−−→ B′′
g′′−−−→ C ′′ −−−→ 0y y y

0 0 0
Show all of the following:

(i) If the bottom two rows are exact, then so is the top row.

(ii) If the top two rows are exact, so is the bottom row.

(iii) If the top and bottom rows are exact, and the middle sequence is a zero sequence,
then the middle row is exact.

3. Let

0→ (A∗, dA)
f∗−→ (B∗, dB)

g∗−→ (C∗, dC)→ 0

be a short exact sequence of chain complexes. Show if two of the chain complexes are
exact, then so is the third.

4. Verify Computation 122.6.

123. Hom

We want to define homology that arises in the study of R-modules. To do so, we first
look at the set of homomorphisms from one R-module to another.

Let R be a ring andM,N be R-modules. [The case for right R-modules has the obvious
notational modifications.] Then HomR(M,N) is an abelian group. If R is commutative,
then it is an R-module by Example 38.6(9).
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We view at HomR( , ) as a “function” of two variables (called a functor in category
theory). We start with HomR(M, ), i.e., fix the first variable.

Let h : A→ B be an R-homomorphism of R-modules. For each R-module M , define

h∗ : HomR(M,A)→ HomR(M,B) by f 7→ h ◦ f.
Then h∗ is an abelian group homomorphism and anR-homomorphism ifR is commutative.

We have the following ‘naturality” of Hom that we leave as an easy exercise.

Lemma 123.1. (Naturality of Hom) Let

A
f−−−→ B

g

y yh
A′ −−−→

f ′
B′

be a commutative diagram of R-modules and R-homomorphisms. Then for all R-modules
M ,

HomR(M,A)
f∗−−−→ HomR(M,B))

g∗

y yh∗
HomR(M,A′) −−−→

f ′∗
HomR(M,B′)

is a commutative diagram of abelian groups (and of R-modules if R is commutative).

A key fact about Hom is the following:

Proposition 123.2. Let

0→ A
f−→ B

g−→ C → 0

be a short exact sequence of R-modules and R-homomorphisms, then

0→ HomR(M,A)
f∗−→ HomR(M,B)

g∗−→ HomR(M,C)

is an exact sequence of abelian groups (R-modules if R is commutative).

Note the missing 0 on the right.

Proof. Certainly, g∗f∗ = (gf)∗, so the sequence is a zero sequence. Suppose that
h ∈ HomR(M,A) satisfies f∗(h) = 0. Then f

(
h(x)

)
= 0 for all x ∈ M . As f is monic,

h(x) = 0 for all x ∈M , i.e., h = 0 and f∗ is monic.
We show exactness at HomR(M,B), i.e., ker g∗ ⊂ im f∗. Let h ∈ ker g∗. Then gh(y) =

0, i.e., h(y) ∈ ker g. Hence for each y ∈ M , there exists an x ∈ A satisfying f(x) = h(y)
by exactness. Since f is monic, x is unique. So this defines a function k : M → A such
that k(x) = h(y). Since h and f are R-homomorphisms so is k. Hence f∗(k) = h. �

Remark 123.3. The proof above shows that the result holds even if we do not assume
that g is onto.

We say that HomR(M, ) is left exact (for all R-modules M).
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Proposition 123.4. Let M and Ai, i ∈ I, be R-modules. Denote the projections maps
of
∏

I Ai by πj :
∏

I Ai → Aj, j ∈ I. Then the map

ϕI : HomR(M,
∏
I

Ai)→
∏
I

HomR(M,Ai)

given by h 7→ (πih)I is an isomorphism of abelian groups (and R-modules if R is commu-
tative).

Proof. By the Universal Property of Direct Products (cf. Exercise 38.18(10)), given
hi : M → Ai, for all i ∈ I, there exists a unique map h : M →

∏
I Ai such that

h(m) =
(
hi(m)

)
I
. In particular ϕI is a well-defined surjection. It is easily checked that

ϕI is an abelian group homomorphism (and R-homomorphism if R is commutative). That
ϕ is injective follows since ϕI(h) = ϕI(h

′) if and only if πih(m) = πih
′(m) for all m ∈M .

Hence ϕI is an isomorphism. �

We also have a “naturality” result, viz., the commutative diagram given by the next
result.

Proposition 123.5. Let Ai, i ∈ I, and Bj, j ∈ J be R-modules. Suppose for each i ∈ I,
there exist a j ∈ J and an R-homomorphism fij : Ai → Bj. Then for all R-modules M ,
we have a commutative diagram of abelian groups

HomR(M,
∏
I

Ai)
f∗−−−→ HomR(M,

∏
J

Bj)

ϕI

y yϕJ∏
I

HomR(M,Ai) −−−→
f̃

∏
J

HomR(M,Bj)

(of R-modules if R is commutative), where ϕI and ϕJ are the isomorphism in Proposition

123.4, f :
∏

I Ai →
∏

J Bj by (ai)I 7→
(
fij(ai)

)
J

and f̃ : (hi)I 7→ (fijhi)J .

Proof. Let πi :
∏

I Ak → Ai, i ∈ I, and π′j :
∏

J Bk → Bj, j ∈ J, be the projections.
For all h ∈ HomR(M,

∏
I Ai), we have

ϕJf∗(h) = (π′jfh)J and f̃ϕI(h) = f̃(πih)I

Let m ∈M and h(m) = (ai)I . Then πih(m) = ai. Consequently,

π′jh(m) = fijh(m) = fij(ai) and π′j(f̃h)(m) = π′j(fijh)J(m) = fijai.

�

Next, we turn to HomR( , N). Let h : A→ B is an R-homomorphism of R-modules.
For each R-module N , define

h∗ : HomR(B,N)→ HomR(A,N) by f 7→ f ◦ h.
Then h∗ is an abelian group homomorphism and anR-homomorphism ifR is commutative.

Note if A
f−→ B

g−→ C is a sequence of R-modules that (gf)∗ = f ∗g∗. This reverses arrows
in the following analogues above and whose proofs we leave as exercises.
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Lemma 123.6. (Naturality of Hom) Let

A
f−−−→ B

g

y yh
A′ −−−→

f ′
B′

be a commutative diagram of R-modules and R-homomorphisms. Then for all R-modules
N ,

HomR(B,N)
f∗−−−→ HomR(A,N))

h∗

x xg∗
HomR(B′, N) −−−→

f ′∗
HomR(A′, N)

is a commutative diagram of abelian groups (and of R-modules if R is commutative).

Proposition 123.7. Let

0→ A
f−→ B

g−→ C → 0

be a short exact sequence of R-modules and R-homomorphisms, then

0→ HomR(C,N)
g∗−→ HomR(B,N)

f∗−→ HomR(A,N)

is an exact sequence of abelian groups (R-modules if R is commutative).

Note the missing 0 on the right.

We say that that HomR( , N) is left exact.

Proposition 123.8. Let Ai, i ∈ I, and N be R-modules. Denote the injection maps into∐
I Ai by ιj : Aj →

∐
I Ai for all j ∈ I. Then

ψI : HomR(
∐
I

Ai, N)→
∏
I

HomR(Ai, N)

by h 7→ (hιi)I is an isomorphism of abelian groups (and R-modules if R is commutative).

[Recall that if I is finite, then the coproduct and product are equal.]

As before, we have a “naturality” result.

Proposition 123.9. Let Ai, i ∈ I, and Bj, j ∈ J , be R-modules. Suppose for each j ∈ J ,
there exist an R-homomorphism fji : Bj → Ai. Then for all R-modules N , we have a
commutative diagram of abelian groups

HomR(
∐
J

Bj, N)
g∗←−−− HomR(

∐
I

Ai, N)

ψJ

y yψI∏
J

HomR(Bj, N) ←−−−
g̃

∏
I

HomR(Ai, N)



124. INJECTIVE MODULES 721

(of R-modules if R is commutative), where ψI , ψJ are the isomorphisms given by Propo-
sition 123.8, g :

∐
J Bj →

∐
I Ai by (bj)J 7→ (gjibj)I and g̃ : (hj)J 7→ (hjgij)I .

Exercises 123.10. 1. Prove Lemma 123.1

2. Prove Lemma 123.6

3. Prove Proposition 123.7.

4. Prove Proposition 123.8.

5. Prove Proposition 123.9.

6. Let M and N be R-modules. Show that HomR(M, ) and HomR( , N) take split exact
sequences to split exact sequences.

124. Injective Modules

We now apply our homological constructions to a chain complex that arises in Module
Theory and whose generalization is very useful in algebraic geometry. Therefore, instead
of generalizing the concept of free modules (that we shall do Section §126), we use a type
of module that arises from the notion of divisible groups that we studied before and will
be applicable to studying HomR( , N) of the last section.

Free modules have the property that given any R-module M , there is a free R-module
F mapping epimorphically onto it. We are interested in a “dual” notion of this property
of R-free modules, i.e., to find a collection of R-modules Q such that any R-module M
embeds into one of them. We also want this collection to satisfy the property that for

such a Q, any short exact sequence 0 → Q
f−→ B

g−→ C → 0 of R-modules splits, i.e.,
there exists an R-epimorphism h : B → Q satisfying hg = 1Q. This property is one
shared by a direct summand of a module (and is the true dual of what we want). This
will lead to a long exact sequence in cohomology associated to short exact sequences
0 → M ′ → M → M ′′ → 0 of R-modules. One difficulty of doing this case first is that
we have no easy examples of this type of module. But as we shall see, they they do arise
from the study of divisible abelian groups.

Definition 124.1. AnR-moduleQ is called an injectiveR-module if for anyR-monomorphism
f : A→ B and R-homomorphism g : A→ Q, there exists an R-homomorphism h : B →
Q such that the diagram

(124.2) A
f
//

g

��

B

h��

Q

commutes.

An easy consequence of the definition is the following:

Lemma 124.3. Let Q be an R-module. Then Q is an R-injective if and only if, whenever

0→ A
f−→ B

k−→ C → 0
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is a short exact sequence of R-modules and R-homomorphisms, then

0→ HomR(C,Q)
k∗−→ HomR(B,Q)

f∗−→ HomR(A,Q)→ 0

is exact.

Proof. By Proposition 123.7, HomR( , Q) is left exact for all R-modules Q, so it
suffices to show that f ∗ is a surjective. If g ∈ HomR(A,Q), then by equation (124.2),
f ∗(h) = hf = g if and only if one of the conditions holds. �

We say that HomR( , N) is exact if HomR( , N) takes short exact sequences to short
exact sequences by “HomR”ing them. So the lemma says HomR( , N) is exact if and
only if N is an injective R-module.

Corollary 124.4. Let A be an injective R-module. Then any short exact sequence of

R-modules 0 → A
f−→ B

g−→ C → 0 splits. In particular, if A is a submodule of M , then
there exists an submodule M ′ of M such that M = A⊕M ′.

Proof. If A is injective, then given the exact sequence

0 −−−→ A
f−−−→ B

g−−−→ C −−−→ 0

1A

y
A,

there exists an R-homomorphism h : B → A with hf = 1A showing that f is a split
monomorphism. So the sequence splits by Exercise 38.18(11). �

Lemma 124.5. Let Qi, i ∈ I, be R-modules. Then
∏

I Qi is R-injective if and only Qi

is R-injective for all i ∈ I. In particular, if I is finite, then
∐

I Qi is R-injective if and
only Qi is R-injective for all i ∈ I (since then the coproduct and product of the QI ’s are
the same).

Proof. Let Q =
∏

I Qi. Set πi : Q→ Qi to be the projection map and ιi : Qi →
∐
Qi

the (natural) injection into a direct sum for all i ∈ I. So πiιi = 1Qi for all i ∈ I. Suppose
that Q is an injective R-module. Consider the diagram

0 // A
f
//

g

��

B

hi~~

h
��

Qi ιi
// Q

with f monic. The R-homomorphism h : A → Q such that hf = ιig exists as Q is
injective. Let hi = πih : B → Qi. We have g = 1Qg = πiιig = πihf = hif . Therefore, Qi

is an injective R-module for all i ∈ I.
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Suppose that Qi is an injective R-module for all i ∈ I. Consider the diagram

0 // A
f
//

g

��

B

h~~

hi
��

Q πi
// Qi

for all i ∈ I with f monic. The R-homomorphism hi = πig : B → Qi exists for all i ∈ I,
as Qi is an injective R-module. By the Universal Property of Direct Products (Exercise
38.18(9)), there exists an R-homomorphism h : B → Q such that hf = g. This shows
that Q is an injective R-module. �

Corollary 124.6. Let Q be an injective R-module. Then any direct summand of Q is an
injective R-module.

We next prove a necessary and sufficient condition for an R-module to be R-injective.
The proof is similar to that we gave for Proposition 28.10, the case of divisible abelian
groups.

Theorem 124.7. (Baer Criterion) Let Q be an R-module. Then Q is an injective R-
module if and only if given any left ideal A in R and an R-homomorphism p : A → Q,
there exists an R-homomorphism q : R→ Q such that the diagram

A �
� inc

//

p

��

R

q
��

Q

commutes where inc is the inclusion.

Proof. Given a diagram

(124.8) 0 // A
f
//

g

��

B

h��

Q

with exact row, we must construct h so that the diagram commutes. Let

S = {(A′, g′) |A ⊂ A′ ⊂ B, g′ : A′ → Q an R-homomorphism

with gA′ |A = g}.
Partially order S by

(A′, g′) ≤ (A′′, g′′) if A′ ⊂ A′′ is a submodule and g′′|A′ = g′.

The set S is not empty, since (A, g) ∈ S. Let C be a chain in S and set A0 =
⋃

(A′,g′)∈C

A′. Define

g̃ : A0 → Q by x 7→ g′(x) if x ∈ A′. Since C is a chain, g̃ is well-defined. Therefore, C has
an upper bound in S. By Zorn’s Lemma, there exist a maximal element (A0, g0) ∈ S.

Claim. A0 = B:
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Suppose the claim does not hold. Then there exists an x ∈ B \ A0. Let A′ = A0 + Rx
and set A = {r ∈ R | rx ∈ A0}, a left ideal in R. Define an R-homomorphism p : A→ Q
by p(r) = g0(rx) ∈ Q for all r ∈ A. By assumption, this extends to an R-homomorphism
q : R → Q. Define g′ : A′ → Q by g′(a + sx) = g0(a) + sq(1) for all a ∈ A0 and s ∈ R.
We must show that g′ is well-defined. Suppose that a+ sx = a′ + s′x with a, a′ ∈ A0 and
s, s′ ∈ R. Then we have (s− s′)x = a′ − a lies in A0, so s− s′ ∈ A. We then have

g0(a′)− g0(a) =g0

(
(s− s′)x

)
= q(s− s′)

q
(
(s− s′)1)

)
= (s− s′)q(1),

as q is an R-homomorphism. Therefore, g′ well-defined and extends g0. So (A′, g′) ∈ S.
As (A0, g0) < (A′, g′), this is a contradiction. �

A ring R is called left Noetherian (respectively, right Noetherian) if every left (respec-
tively, right) ideal in R is finitely generated. The usual properties in the commutative
case hold. In particular, every finitely generated R-module over a left Noetherian ring is
a Noetherian R-module.

Corollary 124.9. Let R be a left Noetherian ring and {Qi}I a set of injective R-modules.
The

∐
I Qi is an injective R-module.

Proof. By the Baer Criterion, it suffices to show that given any left ideal A in R
and R-homomorphism p : A→ Q, there exists an R-homomorphism q : R→ Q such that
the diagram

A �
� inc

//

p

��

R

q
||∐

I Qi

commutes. Since A is finitely generated, there exists J ⊂ I with J finite and p(A) ⊂∐
J Qj ⊂

∐
I Qi. Since

∐
J Qj =

∏
J Qj, p extends to q : R →

∐
J Qj by Lemma 124.5.

The result follows. �

The converse of this corollary is also true as we shall prove in Corollary 124.14 below.
We now show that any R-module can be embedded into an injective R-module. This

is the key reason that injective R-modules are important. This will take a few steps. This
is where we use our knowledge of (abelian) divisible groups. The statement of Proposition
28.10 in this new language says:

Lemma 124.10. A divisible abelian group is an injective Z-module.

We will need the following remark to prove the next lemma.

Remark 124.11. Let R be a ring and D an abelian group. Then HomZ(R,D) is a (left)
R-module with R-action given by

(rf)(x) = f(xr) for all f ∈ HomZ(R,D) and r, x ∈ R.

Lemma 124.12. Let D be a divisible abelian group. Then HomZ(R,D) is an injective
R-module.
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Proof. By the Baer Criterion 124.7, it suffices to show given

A �
� inc

//

p

��

R

HomR(R,D)

with A a left ideal in R that p extends to a group homomorphism h : R → HomR(R,D)
such that the resulting diagram commutes. Write pr = p(r) for r ∈ R.

Let g : A → D be defined by g(a) = pa(1R) for a ∈ A. It is a group homomorphism.
Since D is a divisible group, it is an injective Z-module. In particular, there exists a group
homomorphism g̃ : R→ D such that g̃|A = g.

Define h : R→ HomZ(R,D) by r 7→ hr, where hr(x) = g̃(xr) for x ∈ R. (Check that
hr is a group homomorphism.) It follows easily that h is a group homomorphism. We
show that h is an R-homomorphism. If s, r, x lie in R, we have

hsr(x) = g̃
(
x(sr)

)
= g̃
(
(xs)r

)
= hr(xs),

and, by the R-structure on HomZ(R,D),

hr(xs) = shr(x) for all r, s, x ∈ R.
It follows that h is an R-homomorphism. Now suppose that r ∈ A and x ∈ R. Then
xr ∈ A, so

hr(x) = g̃(xr) = g(xr) = pxr(1R)

Since HomZ(R,D) is an R-module, we have

pxr(1R) = xpr(1R) = pr(1Rx) = pr(x).

Consequently, hr = pr for all r ∈ A, hence h extends p as needed. �

Proposition 124.13. Let A be an R-module. Then there exists an injective R-module Q
and an R-monomorphism ε : A→ Q.

Proof. As A is an abelian group, we know by Theorem 15.17 that there exists a
divisible group D and a group monomorphism g : A → D. We know that HomZ(R,D)
is an injective R-module by Lemma 124.12. We have g∗ : HomZ(R,A) → HomZ(R,D)
is an R-monomorphism by Proposition 123.2 and HomR(R,A) ⊂ HomZ(R,A) is an R-
submodule. Let ρ : A → HomR(R,A) be given by a 7→ ρa where ρa(r) = ra. Then ρ is
not only a Z-monomorphism but also an R-monomorphism (in fact, an R-isomorphism),
as

ρsa(r) = r(sa) = (rs)(a) = ρa(rs) = sρa(r)

for all r, s ∈ R, a ∈ A, using the module structure on HomZ(R,A). The composition

A
ρ−→ HomR(R,A)

inc−→ HomZ(R,A)
g∗−→ HomZ(R,D)

is an R-monomorphism. This proves the Proposition. �

We can now prove the converse of Corollary 124.9.

Corollary 124.14. Let R be a ring in which every coproduct of injective R-modules is
an injective R-module. Then R is a left Noetherian ring.
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Proof. Suppose that R is not left Noetherian. Then there exists an infinite chain
of left ideals A1 < A2 < · · · . Let A = ∪∞i=1Ai. Then A < R. For each i, there exists
an injective R-module Qi satisfying A/Ai ⊂ Qi by Proposition 124.13. By hypothesis,
Q =

∐∞
i=1Qi is an injective R-module. Let fi : A→ A/Ai be the canonical epimorphism

and f : A →
∏∞

i=1Qi (the map defined by the Universal Property of Direct Products
(Exercise 38.18(9)). For all a ∈ A, there exists an i such that a ∈ Ai, hence fn(a) = 0
for all n ≥ i. Therefore, im f ⊂

∐∞
i=1 Qi = Q and we may view f : A → Q. Since Q is

an injective R-module, there exists an extension of f to g : R→ Q by the Baer Criterion
124.7. Let g(1) = (x1, x2, . . . ). Then there exists an N such that xi = 0 for all i ≥ N .
If a ∈ A, we have g(a) = ag(1) = (ax1, ax2, . . . ) with gN(a) = 0. But if a ∈ AN+1 \ AN ,
then gN(a) 6= 0, a contradiction. The result follows. �

We can now also prove the converse of Corollary 124.4

Corollary 124.15. Let A be an R-module. Then A is an injective R-module if and only

if any short exact sequence of R-modules 0→ A
f−→ B

g−→ C → 0 splits.

Proof. If 0 → A
f−→ B

g−→ C → 0 splits for any such exact sequence, then it does so
for some injective R-module B by Proposition 124.13. But this means that B ∼= A

∐
C.

It follows that A is an injective R-module by Lemma 124.5. �

Exercises 124.16. 1. Let Q be an injective R-module and (A∗, d∗) an acyclic chain com-
plex of R-modules. Show that the chain complex

(
HomR

(
(Ai, Q), (d∗)∗

))
is acyclic.

2. Let R be a domain with K its quotient field. Use the Baer Criterion to show that K
is R-injective. In particular, Q is Z-injective.

3. Let R be a domain. Show every vector space over qf(R) is an injective R-module.

4. Let R be a domain and M and R-module. We say that x ∈ M is divisible by r ∈ R if
there exists a y ∈M satisfying x = ry. We say that M is a divisible R-module if every
x ∈M is divisible by every 0 6= r ∈ R. Show all of the following:

(i) qf(R) is a divisible R-module.
(ii) The direct sum and direct product of divisible R-modules are divisible. In par-

ticular, every vector space over qf(F ) is a divisible R-module
(iii) Every quotient of a divisible R-module is divisible. In particular, every direct

summand of a divisible R-module is divisible.
5. If R is a domain, show that every injective R module is a divisible R-module.
6. Let R be a domain and M an R-torsion-free R-module, i.e., if rm = 0, with r ∈ R and

0 6= m ∈ M , then r = 0, (equivalently, λr : M → M given by m 7→ rm is injective for
all nonzero R ∈ R. Show that an R-torsion-free R-module is a divisible R-module if
and only if it is an injective R-module.

7. Let R be a PID and M an R-module. Show that M is an injective R-module if and
only if it is divisible R-module. In particular, if R is a PID, then whenever M is a
injective R-module, so is any quotient of M .

125. Ext

We now turn to developing a cohomology theory arising from short exact sequences
of R-modules.
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A cochain complex (A∗, d∗) is called positive if An = 0 for all n < 0. Let R be a ring
and N an R-module. Let (A∗, d∗) be a positive cochain complex of R-modules. If there
exists an R-monomorphism ε : N → A0 and

0→ N
ε−→ A0 d0−→ A1 d1−→ · · ·

is exact, we call this an acyclic resolution of of N with augmentation ε. We write this as
0 → N

ε−→ A∗ is an acyclic resolution of N . If, in addition, Ai, is an injective R-module
for all i ≥ 0, we call the acyclic resolution 0→ N

ε−→ A∗ an injective resolution of N .
Let 0 → N

ε−→ A∗ be an injective resolution of N . We shall develop and investigate
the cohomology of the cochain complex HomR(M,A∗) for M an R-module. Note that
d0 : A0 → A1 is not a monomorphism. But also note that this will induce an injective

resolution of coker ε given by 0 → coker ε
ε1−→ A1 d1−→ A2 d2−→ · · · for the induced map ε1.

This will allow us to use induction.

Lemma 125.1. Let M be an R-module. Then an injective resolution of M exists.

Proof. There exists an injective R-module I0 and a R-monomorphism ε : M → I0

by Proposition 124.13. Let I1 be an injective R-module such that the induced map
ε1 : coker ε → I1 is an R-monomorphism and I2 be an injective R-module such that the
induced map ε2 : coker ε1 → I2 is an R-monomorphism. Then we have a commutative
diagram

0 // M
ε

// I0

##

d0
// I1

$$

d1
// I2

coker(ε)
ε1

::

$$

coker(ε1)
ε2

::

$$
0

;;

0 0

::

0

with the canonical R-epimorphisms and where d0, d1 are defined to be the obvious
compositions. This yields an exact sequence. Continuing by induction, gives an injective
resolution of M . �

We want to use injective resolutions of modules to obtain a cohomology theory after
we apply HomR(M, ) in an appropriate way. For such a theory to be useful, we need
it to be independent of the injective resolution that we take. The key reason that this is
true will follow from the the next result.

Theorem 125.2. (Comparison Theorem) Let f : M →M ′ be an R-homomorphism and

0 −−−→ M ′ ϕ−−−→ X∗

f

y
0 −−−→ M

ε−−−→ I∗

be a diagram of positive cochain complexes with the top complex exact and each In injective
in the bottom complex. Then there exists a cochain homomorphism

f ∗ : (X∗, d∗X)→ (I∗, d∗I)
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such that the diagram

0 −−−→ M ′ ϕ−−−→ X∗

f

y f∗
y

0 −−−→ M
ε−−−→ I∗

commutes. Moreover, the cochain map f ∗ is unique up to cochain homotopy.

Proof. The map f 0 exists by the definition of I0 being an injective R-module. We
proceed by induction. Given the diagram

Xn−1
dn−1
X−−−→ Xn

dnX−−−→ Xn+1

fn−1

y fn
y

In−1
dn−1
I−−−→ In

dnI−−−→ In+1,

we have dnI f
ndn−1

X = dnI d
n−1
I fn−1 = 0 by the commutativity of the diagram. Since ker dnX =

im dn−1
X , restricting fn to coker dn−1

X , we can extend fn to fn+1 as In+1 is an injective R-
module.

Next we have to show if we if we are given another cochain map that satisfies the
theorem, i.e., a cochain homomorphism g∗ : (X∗, d∗X)→ (I∗, d∗I) such that

0 −−−→ M ′ ϕ′−−−→ X∗

f

y g∗
y

0 −−−→ M
ε−−−→ I∗

commutes, then f ∗ and g∗ are cochain homotopic. Therefore,we must construct an R-
homomorphism s∗ : (X∗, d∗X)→ (I∗, d∗I) satisfying sn+1dnX + dn−1

I sn = fn − gn.

Let d−2
I = 0 = d−2

X , d−1
I = ε, and d−1

X = ϕ′. Now let f−1 = f = g−1 and s−1 = 0. Then in
the diagram

0
d−2
X

// M ′ d−1
X

//

f

��

s−1

��

X0
d0X

//

s0

~~

g0

��

X1
dX1

//

s1

~~

0
d−2
I

// M
d−1
I

// I0

d0I

//

��

f0

I1

d1I

// ,

set s0 = 0. Consequently, f−1− g−1 = f − f = 0 = d−2
I s−1 + s0d−1

X . To finish, we proceed
by induction. Consider the diagram
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X n−2
dn−2
X

//

gn−2

��

Xn−1
dn−1
X

//

gn−1

��

sn−1

||

Xn
dnX

//

sn

}}

gn

��

Xn+1

sn+1

}}

In−2

dn−2
I

//

��

fn−2

In−1

dn−1
I

//

��

fn−1

In
dnI

//

��

fn

In+1 .

We must define sn+1. We have

(fn − gn−dn−1
I sn)dn−1

X = fndn−1
X − gndn−1

X − dn−1
I sndn−1

X

= fndn−1
X − gndn−1

X − dn−1
I sndn−1

X − dn−1
I dn−2

I sn−1

= (fn − gn)dn−1
X − dn−1

I (fn−1 − gn−1) = 0

by the given commutativity of the diagram and induction. Therefore, fn−gn−dn−1
I sn−1 :

Xn−1 → In vanishes on im dn−1
X = ker dnX . So we have a factorization

Xn
dn−1
X

//

$$

Xn/ ker(dnX)

fn−gn−dnI s
n

��

� � // Xn+1

In

As In+1 is an injective R-module, we get an extension sn+1 : Xn+1 → In satisfying
sn+1dnX + dn−1

I sn = fn − gn as needed. �

ho

Construction 125.3. Let M be an R-module and N an R module with a given injective
resolution 0 → N

ε−→ I∗N . [If N = 0, then 0 → N
ε−→ 0∗ is an injective resolution of

N .] Apply HomR(M, ) to the cochain (I∗N , d
∗
IN

) (that is not usually exact at the 0th

term.) to get a cochain complex
(

HomR(M, I∗N), d∗N
)

of abelian groups (of R-modules if
R is commutative) with dnN = dnI∗N for all n. In general, this new cochain complex is not

exact, so we take its cohomology Hn(HomR(M, I∗N). If 0→ N
ϕ−→ I ′N

∗ is another injective
resolution, then applying the Companion Theorem 125.2 to the map 1N : N → N , we get
two chain maps

f ∗ : (I∗N , d
∗
IN

)→ (I∗N , d
∗
I′N

) and g∗ : (I ′N
∗, d∗I′N )→ (I∗N , d

∗
IN

)

whose compositions are cochain homotopy to the identity. This means when we do the
above construction that they induce maps

(f ∗)∗ :
(

HomR(M, I∗N), d
∗
IN

)
→
(

HomR(M, I ′N
∗), d

∗
I′N

)
(g∗)∗ :

(
HomR(M, I ′N

∗), d
∗
I′N

)
→
(

HomR(M, I∗N), d
∗
IN

)
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Notation 125.4. Since maps between cochains always have upper indices, but maps of
Hom’s have lower and upper indices depending on the variable fixes, we shall always write
upper stars for maps in cohomology.

We see that these maps in turn induce maps

f
n

:Hn
(

HomR(M, I∗N)
)
→ Hn

(
HomR(M, I ′N

∗)
)

gn :Hn
(

HomR(M, I ′N
∗)
)
→ Hn

(
HomR(M, I∗N)

)
.

And to simplify notation, we shall write these induced maps simply as fn and gn when
no confusion arises.

Since the original maps where inverse to each other up to cochain homotopy, these maps
are inverse group isomorphisms of abelian groups (of R-isomorphisms if R is commuta-
tive) in cohomology. Also note that in cohomology, the isomorphism is “natural”, i.e.,
dependent only on N . We set

ExtnR(M,N) := Hn(HomR(M, I∗N).

Properties 125.5. of ExtnR( , ). Let M and N be R-modules. Then we have

1. ExtnR(M,N) is independent of an injective resolution 0→ N
ε−→ I∗N .

2. Ext0
R(M,N) = HomR(M,N).

3. Suppose that f : N → N ′ is an R-homomorphism. Then f induces an abelian group
homomorphism (R-homomorphisms if R is commutative)

fn : ExtnR(M,N)→ ExtnR(M,N ′)

depending only on f .

4. Let Ai, i ∈ I, and Bj, j ∈ J be R-modules. Suppose for each i ∈ I, there exist an
R-homomorphism fij : Ai → Bj. Then for all R-modules M , we have a commutative
diagram of abelian groups (R-homomorphisms if R is commutative)

ExtnR(M,
∏
I

Ai)
f∗−−−→ ExtnR(M,

∏
J

Bj)

ϕI

y yϕJ∏
I

ExtnR(M,Ai) −−−→
f̃

∏
J

ExtnR(M,Bj).

where the maps are induced by the maps in Proposition 123.5.

5. Suppose that g : M → M ′ is an R-homomorphism. Then g induces an abelian group
homomorphism (R-homomorphism if R is commutative)

gn : ExtnR(M ′, N)→ ExtnR(M,N)

depending only on g.

6. Let Ai, i ∈ I, and Bj, j ∈ J , be R-modules. Suppose for each j ∈ J , there exist an
R-homomorphism fji : Bj → Ai. Then for all R-modules N , we have a commutative
diagram of abelian groups (R-homomorphisms if R is commutative)
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ExtnR(
∐
J

Bj, N)
g∗←−−− ExtnR(

∐
I

Ai, N)

ψJ

y yψI∏
J

ExtnR(Bj, N) ←−−−
g̃

∏
I

ExtnR(Ai, N).

where the maps are induced by from the maps in Proposition 123.9. [If I is finite, we
the coproduct and product are the same.]

Next we want to construct a long exact sequence for Ext given a short exact sequence
of R-modules. There are two possibilities, depending on which variable that we fix when
we apply Hom. The case when the second variable is fixed is the harder case. We start
with it. We need to construct compatible injective resolutions for the modules given in a
short exact sequence. This is the content of the next result.

Lemma 125.6. (Horseshoe Lemma) Let

0 −−−→ M ′ f−−−→ M
g−−−→ M ′′ −−−→ 0

be a short exact sequence of R-modules and

0 −−−→ M ′ ε′−−−→ I∗M ′ and 0 −−−→ M ′′ ε′′−−−→ I∗M ′′

injective resolutions. Then there exist an injective resolution

0 −−−→ M
ε−−−→ I∗M

such that

0 −−−→ I∗M ′
f∗−−−→ I∗M

g∗−−−→ I∗M ′′ −−−→ 0

is a split exact sequence of injective cochain complexes, i.e., the diagram

. 0 0 0y y y
0 −−−→ M ′ f−−−→ M

g−−−→ M ′′ −−−→ 0

ε′

y ε

y ε′′

y
0 −−−→ I0

M ′
f0−−−→ I0

M ′
g0−−−→ I0

M ′′ −−−→ 0

d0
M′

y d0M

y d0
M′′

y
0 −−−→ I1

M ′
f1−−−→ I1

M

g1−−−→ I1
M ′′ −−−→ 0

...
...

...
commutes and has exact columns and split exact rows for all i ≥ 0 (i.e., except for the
top row).
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Proof. Let I0
M = I0

M ′
∏
I0
M ′′ = I0

M ′
∐
I0
M ′′ , an injective R-module by Lemma 124.5.

Let

0

��

0

��

0

��

0 // M ′

ε′

��

f
// M

ε

��

g
//

hM′

~~

hM′′

  

M ′′ //

ε′′

��

0

0 // I0
M ′

ι0IM′

// I0
M

π0
IM′′

// I0
M ′′

// 0

be the diagram where the bottom sequence is a split exact sequence of injective R-modules,
f 0 = ι0IM′ the R-monomorphism and g0 = π0

IM′′
the R-projection given by the splitting.

The map hM ′ is the lift of ε′ that exists since f is a monomorphism and I0
M is injective and

the map hM ′′ is the composition ε′′g. Now define ε : M → I0
M by ε(x) =

(
hM ′(x), hM ′′(x)

)
.

By the Snake Lemma 122.1, the map ε is a monomorphism. The Snake Lemma also leads
to a commutative diagram

0 0 0y y y
0 −−−→ M ′ f−−−→ M

g−−−→ M ′′ −−−→ 0

ε′

y ε

y ε′′

y
0 −−−→ I0

M ′
f0−−−→ I0

M

g0−−−→ I0
M ′′ −−−→ 0y y y

0 −−−→ coker(d0
M ′)

f
0

−−−→ coker(d0
M)

g0−−−→ coker(d0
M ′′) −−−→ 0y y y

0 0 0.

with exact columns and with the top two rows are exact (with the usual induced maps).
Therefore, the bottom row is also exact by the Nine Lemma (Exercise 122.10(2)). As we
also have the commutative diagram
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0 0 0y y y
0 −−−→ coker(d0

M ′)
f
0

−−−→ coker(d0
M)

g0−−−→ coker(d0
M ′′) −−−→ 0

d1
M′

y d1
M′′

y
0 −−−→ I1

M ′ −−−→
ι1IM′

I1
M −−−→

π1
IM′′

I1
M ′′ −−−→ 0

with I1
M = I1

M ′
∐
I1
M ′′ , we can repeat the argument. Continuing gives the result. �

Theorem 125.7. Let N be an R-module and

0→ A
f−→ B

g−→ C → 0

a short exact sequence of R-modules and R-homomorphisms. Then the exact sequence

0→ HomR(M,A)
f∗−→ HomR(M,B)

g∗−→ HomR(M,C)

extends to a long exact sequence in cohomology

· · · → Extn−1
R (M,C)

∂n−1

−−−→ExtnR(M,A)
f
n

−→ ExtnR(M,B)

gn−→ ExtnR(M,C)
∂n−→ Extn+1

R (M,A)→ · · ·

Proof. By the Horseshoe Lemma 125.6, we have a commutative exact diagram

0 0 0y y y
0 −−−→ A

f−−−→ B
g−−−→ C −−−→ 0

ε′

y ε

y ε′′

y
0 −−−→ I∗A

f∗−−−→ I∗B
g∗−−−→ I∗C −−−→ 0

with the columns injective resolutions. We know that

0 −−−→ I∗A
f∗−−−→ I∗B

g∗−−−→ I∗C −−−→ 0

is split exact as the I iA are injective. Since HomR(M, ) takes split exact sequences to
split exact sequences, we get an exact sequence of cochains

0→ HomR(M, IA∗)
g∗∗−−→ HomR(M, IB∗)

f∗∗−−→ HomR(M, IC∗)→ 0.

Taking the long exact sequence of this short exact sequence of cochain complexes yields
the result by Theorem 122.4 �

By Theorem 125.7 and Theorem 122.7, we also have the following:
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Theorem 125.8. Let M be an R-module and

0 −−−→ A
f−−−→ B

g−−−→ C −−−→ 0

α

y β∗

y γ

y
0 −−−→ A′

f−−−→ B
g−−−→ C ′′ −−−→ 0

an exact sequence of R-modules. Then there exists a commutative diagram

ExtnR(M,C)
∂n−−−→ Extn+1

R (M,A)

γn

y yαn+1

ExtnR(M,C ′)
∂′n−−−→ Extn+1

R (M,A′).

We also have a long exact sequence in the second variable and the naturality using
HomR( , I i) is exact when 0 → N → I∗ is an injective resolution. The details are left
to the reader.

Theorem 125.9. Let N be an R-module. If

0→ A
f−→ B

g−→ C → 0

is a short exact sequence of R-modules and R-homomorphisms. Then the exact sequence

0→ HomR(C,N)
g∗−→ HomR(B,N)

f∗−→ HomR(A,N)

extends to a long exact sequence in cohomology

· · · → Extn−1
R (A,N)

∂n−1

−−−→ExtnR(C,N)
gn−→ ExtnR(B,N)

f
n

−→ ExtnR(A,N)
∂n−→ Extn+1

R (C,N)→ · · ·

Corollary 125.10. Let N be an injective R-module. Then ExtnR(M,N) = 0 for all R-
modules M and all n > 0.

Proof. The exact sequence 0→ N
1N−→ N → 0 is an an injective resolution of N . �

Theorem 125.11. Let N be an R-module and

0 −−−→ A
f−−−→ B

g−−−→ C −−−→ 0

α∗

y β∗
y γ∗

y
0 −−−→ A′

f−−−→ B′
g−−−→ C ′ −−−→ 0

an exact sequence of R-modules Then there exists a commutative diagram

ExtnR(A,N)
∂n−−−→ Extn+1

R (C,N)

αn

y yγn+1

ExtnR(A′, N)
∂′n−−−→ Extn+1

R (C ′, N).
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We will now show how to “shift dimension” of the cohomology. To do this, we wish
to show that if two R-modules N and N ′ satisfy ExtnR(M,N) ∼= ExtnR(M,N ′) for all
n > 0 (i.e., have the same cohomology for all n > 0) if they are injective equivalent, i.e.,
there exist injective R-modules I and J satisfying N

∐
I ∼= N ′

∐
J . This is clearly an

equivalence relation on the collection of R-modules. (Unfortunately, this collection is not
a set.) Let [N ] denote the injective equivalence class of N in the collection of R-modules.
So we have [N ] = [0] if and only if N is an injective R-module. The equivalence classes
{[N ] | N an R-module} looks like a semi-group with identity [0] with addition defined by
[M ] + [N ] := [M

∐
N ].

It is convenient to define the module analog of a free product of groups with amalga-
mation.

Definition 125.12. Suppose that we are given a diagram ofR-modules andR-homomorphisms

(*)

M
f1−−−→ N1

f2

y
N2

Then (X, g1, g2), with X an R-module and gi an R homomorphism for i = 1, 2, is called
the pushout or cofiber product of (*) if we have a commutative diagram

(†)

M
f1−−−→ N1

f2

y yg1
N2 −−−→

g2
X.

and if (Y, h1, h2) is another such triple satisfying (†), then there exists anR-homomorphism
α : X → Y , unique up to isomorphism, satisfying the following commutative diagram

M

f2
��

f1
// N1

g1
��

h1

��

N2
g2
//

h2
**

X
α

&&
Y.

We leave it as an exercise to show the pushout exists.

The key is the following lemma.

Lemma 125.13. (Schanuel’s Lemma) Suppose that

0→M
f1−→ I1

g1−→ N1 → 0 and 0→M
f2−→ I2

g2−→ N2 → 0

are two short exact sequences of R-modules with I1 and I2 injective R-modules. Then
N1

∐
I2
∼= N2

∐
I1, In particular, [N1] = [N2].
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Proof. Let I = I1

∐
I2 = I2

∏
I2 and ii : Ii → I be the map x→ (x, 0) for i = 1, 2.

Let

X = {(x1, x2) | xi ∈ Ii, i = 1, 2, with f1(x) = f2(x)} ⊂ I.

Then

(125.14)

M
f1−−−→ I1

f2

y yι1
I2 −−−→

ι2
X

is the pushout of

M
f1−−−→ I1

f2

y
I2.

We have coker ι1 = {(x1, x2) ∈ X | f2(x2) = 0} ⊂ I2. Therefore, coker ι1 ∼= N2. Similarly,
coker ι2 ∼= N1. The two short exact sequences

0→ I1 → X → coker ι2 → 0

0→ I2 → X → coker ι1 → 0.

split, as Ii is an injective R-module for i = 1, 2. The result follows. �

Definition 125.15. Define the injective shift operator I on the collection of R-modules
by I(M) := [N ] if there exists an exact sequence

0→M
f−→ I

g−→ N → 0

with I an injective R-module. This is well-defined by Schanuel’s Lemma and I(M) only
depends on [M ]. In addition, I(M1

∐
M2) = I(M1) + I(M2). Let I0(M) = [0] and In =

I(In−1). In particular, if 0→M → I∗ is an injective resolution, then In(M) = [coker(dn)].

Lemma 125.16. Let N be an R-module. then the following are equivalent:

(1) N is an injective R-module.
(2) ExtnR(M,N) = 0 for all n ≥ 1 and all R-modules M .
(3) Ext1

R(M,N) = 0 for all R-modules M .
(4) Ext1

R(M,N) = 0 for all cyclic R-modules M .

Proof. (1) ⇒ (2): Let I0 = N and In = 0 for n > 0. Then the sequence 0 →
N

1N−→ N → 0 → 0 · · · is an injective resolution. Therefore, 0 → HomR(M, I0) →
HomR(M, I1) → HomR(M, I2) → · · · is just 0 → HomR(M, I0) → 0 → 0 → · · · which
has Hn(M,N) = 0 for n > 0.

(2)⇒ (3)⇒ (4) are immediate.

(4) ⇒ (1): We show N is an injective R-module using the Baer Criterion 124.7. Let

0 → A
inc−→ R

f−→ M → 0 be an exact sequence of R-modules. Then M is a cyclic R-
module. Taking the long exact sequence in the first variable Theorem 125.7 yields the
result in view of Theorem 125.16

0→ HomR(M,N)→ HomR(R,N)
f∗−→ HomR(A, N)→ Ext1

R(M,N).

As Ext1
R(M,N) = 0 by hypothesis, HomR(R,N)

f∗−→ HomR(A, N) is surjective as needed.
�
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Corollary 125.17. Let M and N be R-modules. Then ExtnR(M,N) depends only on [N ]
for n ≥ 1.

Proof. If I is an injective R-module, then ExtnR(M,N
∐
I) = ExtnR(M,N) �

Abusing notation, we shall write
(

ExtnR(M, I(N)
)

for ExtnR(M,N ′) if I(N) = [N ′].

Theorem 125.18. (Dimension Shifting) Suppose that M and N are R-modules. Then
ExtnR

(
M, I(N)

)
= Extn+1

R (M,N) for all n ≥ 1. In particular, we have Extn+1
R (M,N) =

Ext1
R

(
M, In(N)

)
for all n ≥ 1.

Proof. Let 0→ N
ε−→ I∗ be an injective resolution. Then we have exact sequences

0→ coker ε→ I0 → coker d0 → 0

and
0→ coker dn → In+1 → coker dn+1 → 0

for n > 0. Taking the long exact sequences in Theorem 125.9 of these yields the result in
view of Lemma 125.16 and Corollary 125.17. �

Looking at lengths of injective resolutions leads to the study of a cohomological di-
mension of a ring. Schanual’s Theorem allows us to inductively compute the shortest
length of an injective R-resolution of an R-module. We indicate this.

Definition 125.19. If M is an R-module, define the left injective dimension of M by

lidR(M) = min{n | In(M) = 0}
(or infinity if no minimum exists) and the left global injective dimension of R to be

lgl inj dim(R) = max{lidR(M) |M an R-module}
(or infinity if no maximum exists).

Of course, we also have right injective dimension of right R-modules and right global
injective dimension rid(R). For non commutative rings lgl inj dimR) and rgl inj dim(R)
may be different.

Corollary 125.20. Let N an R-module. Then the following are equivalent:

(1) lidR(N) ≤ n.
(2) In(N) is an injective R-module.
(3) Ext1

(
M, I(N)

)
= 0 for all R-modules M .

(4) Extn+1
R (M,N) = 0 for all i > 0 and all R-modules M .

Corollary 125.21. The following are equivalent:

(1) lgl inj dim(R) ≤ n.
(2) Extn+1

R (M,N) = 0 for all R-modules M and N .
(3) Extn+i

R (M,N) = 0 for all i > 0 and R-modules M and N .
(4) lgl inj dim(R) = sup{idR(N) |N a cyclic R-module}.

Exercises 125.22. 1. Prove the properties in Properties 125.5.

2. Prove Theorem 125.7
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3. Prove Theorem 128.9.

4. Prove that if

0→ A
f−→ B

g−→ C → 0

is a split exact sequence of R-modules, then

0→ ExtnR(M,A)
f
n

−→ ExtnR(M,B)
gn−→ ExtnR(M,C)→ 0

is exact for all n.

5. Prove that if

0→ A
f−→ B

g−→ C → 0

is a split exact sequence of R-modules, then

0→ ExtnR(C,N)
gn−→ ExtnR(B,N)

f
n

−→ ExtnR(A,N)→ 0

is exact for all n.

6. Prove that the pushout in Definition 125.12 exists.

7. Establish equation (125.14).

8. Let R be a commutative Noetherian ring and M an R-module. For every prime ideal
p in R, suppose that Ext1

R(R/p,M) = 0 . Prove that M is an injective R-module.

126. Projective Modules

We now generalize the notion of free modules. This will result in in many statements
that are dual to those that we did for injective R-modules, i.e., by reversing the arrows.
Therefore, we shall not prove results where that is all that is necessary.

Definition 126.1. Let P be an R-module. We call P a projective R-module or R-
projective if given any R-epimorphism f : B → C and an R-homomorphism g : P → C,
then there exists an R-homomorphism h : P → B such that the diagram

P
h

��

g
��

B
f
// C

commutes.

Example 126.2. Every free R-module P is projective:

Let B be a basis for P and

P
h

��

g
��

B
f
// C

a diagram with f surjective. Let ai ∈ B satisfy g(ai) = f(xi) for each xi ∈ B. By the
Universal Property of Free Modules 39.3, there exists an h : P → B such that h(xi) = ai
for all xi ∈ B. So P is R-projective.
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Lemma 126.3. A direct summand of an R-free module is projective and a direct sum of
R-modules is projective if and only if each direct summand of it is R-projective.

Example 126.4. The Z/6Z-module Z/2Z is a Z/6Z projective but not is not Z/6Z-free.

Lemma 126.5. Let P be an R-module. Then P is a projective R-module if and only if,
whenever

(*) 0→ A
f−→ B

g−→ C → 0

is a short exact sequence of R-modules and R-homomorphisms, then

0→ HomR(P,A)
f∗−→ HomR(P,B)

g∗−→ HomR(P,C)→ 0

is exact. In particular, if C is R-projective, then (*) is split exact.

Corollary 126.6. Let C be an R-module. Then C is R-projective if and only if any short
exact sequence of R-modules of the form

0→ A
f−→ B

g−→ C → 0

splits.

Proof. The proof of the converse of splitting in the projective case is easier than
the injective case as any direct summand of a free module is projective. The rest is as
before. �

Example 126.7. Let K be field and R = K[t]/(t2), the ring of dual numbers over
K. The ring R is the image of the ring epimorphism : K[t] → R by t2 7→ 0. The
ideal m = Rt is the unique prime ideal in R, so R is a Noetherian local ring. K is
a field, but as an R-module it is not even R-projective, since the short exact sequence
0 → Rt → R → K → 0 of R-modules does not split. It also follows that the submodule
Rt of R is not R-projective, as the exact sequence 0→ K → R→ Rt→ 0 does not split.
In particular, a submodule of a projective module need not be projective. A special case
of this is K = Z/2Z.

Although projective modules are not necessarily free, they do satisfy a weaker version
of the existence of a basis. In particular, they have a generating set that gives rise to
coordinate functions just as in the free case.

Proposition 126.8. (Projective Basis) Let M be an R-module. Then M is R-projective
if and only if there exist sets

(1) {mi | mi ∈M, i ∈ I}
(2) {fi : M → R | fi an R-homomorphism, i ∈ I}

satisfying for each m ∈ M , fi(m) = 0 for almost all i ∈ I and m =
∑

I fi(m)mi. In
particular, if this is the case, then {mi | i ∈ I} generates M .

Proof. (⇒): Let F be a free R-module with basis B = {xi}I such that g : F → P
is an R-epimorphism and f : P → F a splitting of g given by Corollary 126.6. We have
f(m) =

∑
I fi(m)xi for unique fi(m) for all i ∈ I. As B is a basis for F , we must have
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fi(m) = 0 for almost all i ∈ I and each fi : P → R is R-linear. Since gf = 1P , we also
have m =

∑
I fi(m)g(xi) for all i. Define mi = g(xi) for each i ∈ I. Then this works.

(⇐): Suppose that we are given the fi and mi, i ∈ I. Then P =
∑

I Rmi. Let
F =

∐
I Rxi be a free R-module with basis B = {xi}I and set g : F → P to be the

unique R-epimorphism defined by xi 7→ mi for all i ∈ I. Let f : P → F be defined
by f(m) =

∑
I fi(m)xi. This makes sense as almost all fi(m) = 0. The map f is an

R-homomorphism, since all the fi are. Moreover, fg(m) =
∑

I fi(m)g(xi) =
∑

I fi(m)mi

for all m ∈ P . Thus f splits and P is isomorphic to a direct summand of the R-free
module F , hence is R-projective. �

If P is a projective R-module, the {mi | i ∈ I} with {fi | i ∈ I} given by the
proposition is called a projective basis for P .

We also have a test for the projectivity of R-modules that uses injective R-modules.

Proposition 126.9. Let P be an R-module. Then P is a projective R-module if and only
whenever we have a diagram

P
f

��

g

��

Q
h
// C

with Q an injective R-module and h an R-epimorphism, there exists an R-homomorphism
f : P → Q, such the diagram commutes.

Proof. Suppose that we have a diagram

P

g
��

B
h
// C // 0.

with h an R-epimorphism. Let K = kerh and assume that C = B/K. We know that
there exists an injective R-module Q and an R-monomorphism B → Q by Proposition
124.13, which we may view as an inclusion as well as C ⊂ Q/K. So we have a commutative
diagram

P

g

��

��

B //

inc

��

B/K

inc
��

// 0

Q π
// Q/K // 0

with π the canonical R-epimorphism. By assumption, there exists an R-homomorphism
f : P → Q making the diagram commute. Let x ∈ P . By commutativity of the resulting
diagram, f(x)+K ∈ im(inc ◦g). Since g(x) ∈ C, we have im f ⊂ im(inc : B → Q) by the
commutativity of this diagram. Therefore, f : P → B and the diagram commutes. �
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We turn to those rings that satisfy the strong condition that any submodule of a
projective module is projective. This special case is interesting for it includes the collection
of Dedekind domain studied in Chapter XV. Indeed, we shall see here the beginnings of
a generalization of the Fundamental Theorem of Finitely Generated Modules Over a PID
and which we shall prove in the next section.

Definition 126.10. Let R be a ring. Then R is called left hereditary if every left ideal
in R is a projective R-module.

A key result is the following theorem, which in the case of Dedekind domains helps
generalize the decomposition of finitely generated modules over a Dedekind domain.

Theorem 126.11. (Kaplansky) Let R be a left hereditary ring. If P is a submodule of a
free R-module F , then P is isomorphic to a direct sum of left ideals. In particular, P is
projective.

Proof. Let B = {xi | i ∈ I} be a basis for F . Using the Well-Ordering Principle
(which is equivalent to Zorn’s Lemma by Appendix A), we may assume that I is well-
ordered. Let F0 = 0 and for each i ∈ I, set

Fi :=
⊕
j<i

Rxj and F i :=
⊕
j≤i

Rxj = Fxj ⊕Rxi.

Fix i ∈ I. Suppose that m ∈ P ∩ F i. Then m = m′ + rxi for some m′ ∈ P ∩ Fi and
r ∈ R. Since the restriction fi : P ∩ F i → R by m 7→ r of the coordinate map is an
R-homomorphism, r = fi(m). Let Ai = im fi, a left ideal of R. By assumption Ai is
R-projective. In particular, the exact sequence

0→ P ∩ Fi → P ∩ F i → Ai → 0

splits with P ∩ F i = (P ∩ Fi)⊕Ni and Ni
∼= Ai. In particular, Fi ∩Ni = 0.

Claim. P =
⊕

I Ni.

Clearly,
∑

I Ni ⊂ P . We first show that
∑

I Ni =
⊕

I Ni. Suppose that we have an
equation yi1 + · · · + yin = 0 with yij ∈ Nij and i1 < · · · < in. Since Fin ∩ Nin = 0, and
yin ∈ Nin , we must have yni = 0. By induction yij = 0 for all j = 1, . . . , n. Therefore,∑

I Ni =
⊕

I Ni. So we need only show that P =
∑

I Ni. Assume this is not true. By

well-ordering, there exists a least such i say j such that (P ∩ F j) \
∑

I Ni is nonempty.

Let 0 6= y ∈ (P ∩ F j) \
∑

I Ni. As P ∩ F j = (P ∩ Fj)
⊕

Nj, there exist y = y′ + y′′ with
y′ ∈ P ∩ Fj and y′′ ∈ Nj. Since y′ ∈ Fj, it must have coordinate zero on all but finitely
many xk ∈ B with k < j. Let k0 be the maximum of these. Then k0 < j. Therefore,
y′ ∈ P ∩ F k0 . Consequently, we have y′ ∈

∑
I Ni. Hence y ∈

∑
I Ni, a contradiction. �

Corollary 126.12. Let R be a PID. Then any submodule of a free R-module is free.

Proof. Ideals in a PID are free of rank one. �

Corollary 126.13. Let R be a PID. If M is an R-module generated by n elements then
any submodule Of M can be generated by n elements.

Using Proposition 126.9, we establish a nice characterization of hereditary rings.
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Theorem 126.14. Let R be a ring. Then the following are equivalent:

(1) R is left hereditary
(2) Every quotient of an injective R-module is injective.
(3) Every submodule of a projective R-module is projective.

Proof. Statements (1) and (3) are equivalent by Kaplansky’s Theorem 126.11 as
every projective R-module is a direct summand of a free R-module.

(2)⇒ (3): Suppose that we have the following diagram with exact rows (with the dashed
arrows to be defined) of R-modules and R-homomorphisms:

P

α

��

h

��

P ′

��

f
oo 0oo

I g
// I ′ // 0

We must fill in the dashed arrows and obtain a commutative diagram. By Proposition
126.9, we may assume that I is an injective R-module. Therefore, by assumption I ′ is
also an injective R-module. In particular, α : P → I ′ exists. Since P is R-projective,
h : P → I ′ exists. Therefore, the composition hf : P ′ → I shows that P ′ is R-projective.

(3) ⇒ (2): Using the Baer Criterion 124.7, we use the similar proof as above except
reversing arrows, i.e., we fill in the diagram

0 // A

��

// R

����

0 I ′oo Ioo

As A is R-projective, we have an R-homomorphism A → I such that the diagram com-
mutes. As I is an injective R-module, this defines R → I. The result now easily follows
by the the Baer Criterion 124.7. �

Corollary 126.15. If R is a left hereditary ring, an R-module is projective if and only
if it can be embedded into a free R-module.

Exercises 126.16. 1. Show if e ∈ R is an idempotent, i.e., e2 = 1, then Re is a projective
R-module.

2. Show that Q is not Z-projective.

3. Show Example 126.4 does produce a non-free projective module.

4. Show that the sequence in Example 126.7 does not split.

5. Let K be a field and R = K[t1, t2]. Show that the ideal Rt1 + Rt2 ⊂ R is not R-
projective.
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6. Let F be an R-free module on basis B and K a submodule of F generated by X ⊂ K.
We say that an R-module M is generated by B with relations X if M ∼= F/K. This
is called a presentation of M (cf. with the case of groups). An R-module M is called
finitely presented if there exists an exact sequence

Rm → Rn →M → 0

of R-modules and R-homomorphisms. Show that an R-module M is finitely presented
if and only if M has a presentation with a finite generating set with and finite generated
set of relations.

7. Show the following:
(i) If R is left Noetherian, then any finitely generated R-module is finitely presented.

(ii) If P is a finitely generated projective R-module, then P is finitely presented.

8. Let M be an R-module and M∗ = HomR(M,R) the dual R-module of M . Show that
M∗ is a right R-module and the map M → M∗∗ by x 7→ ex with ex(f) = f(x), the
evaluation map, is a R-homomorphism.

9. if P is a nonzero projective R-module show that P ∗ is nonzero.

10. Let P be projective R-module. Show that the canonical map P → P ∗∗ is an R-
monomorphism and an isomorphism if P is finitely generated.

11. (Eilenberg Swindle) Let P be a projective R-module. Then there exists a free R-module
F such that F

∐
P is R-free.

127. Projective Modules over Commutative Rings

We turn to the case that R is a commutative. We shall show that if R is a local ring,
then any finitely generated projective R-module is in fact, free in Lemma 127.2 below.
(The result is in fact true without the finitely generated hypothesis.) This is very useful in
commutative algebra as we can use localization techniques since the localization of exact
sequences of modules over a commutative ring is exact and localization takes split exact
sequences to split exact sequence (cf. Exercise 92.31(6)). In particular, localization takes
projective module to projective modules. In particular, if p is a prime ideal in commutative
R and M is an R-module, we can look at the Rp module Mp = {rm | r ∈ Rp, m ∈M}, the
localization of M at p. It will follow that if M is R-projective, then Mp is Rp-projective,
hence Rp-free. Moreover, we shall show in Theorem 127.4 that if R is a commutative
Noetherian ring and M a finitely generated R-module, then M is a projective R-module
if and only if Mm is a free Rm-module for all maximal ideals m in R (using Exercise
92.31(7)). In differential geometry, one studies vector bundles. This means that finitely
generated projective modules are the algebraic analog of vector bundles on the euclidean
pieces that glue to define the differential manifold with the prime ideals corresponding in
the points on the euclidean pieces.

To prove this result, we need a few lemmas. The first (and its proof) was mentioned
above.

Lemma 127.1. Let R be a commutative ring and S ⊂ R a multiplicative set with 0 /∈ S.
Suppose that P is a projective R-module. Then S−1P is a projective S−1R-module.
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Lemma 127.2. Let (R,m) be a local ring. Then every finitely generated R-projective
module is R-free.

Proof. Let P be a finitely generated freeR-module. By Corollary 93.12 of Nakayama’s
Lemma, we may assume P is generated by n elements with n the minimal number of gen-
erators for P . Let f : Rn → P be the R-epimorphism taking a basis of Rn to these n
generators. As P is projective, f is a split R-epimorphism, say with splitting g. In par-
ticular, Rn = ker f ⊕ g(P ) with g(P ) ∼= P . The induced surjection Rn/mRn → P/mP of
R/m-vector spaces must be an isomorphism as they have the same dimension. It follows
that Rn = g(P ) + mRn. By Corollary 93.11 of Nakayama’s Lemma, Rn = g(P )) ∼= P .

This induces a commutative diagram of R/m-vector spaces

g(P )/mg(P )

inc

��

f |g(P )

&&

P/mP

Rn/mRn.
f

88

We have g(P )/mg(P ) → P/m(P ) an isomorphism, as both are R/mR-vector spaces of
the same rank n. Therefore, Rn/mRn → P/m(P ) is an isomorphism. It follows that
Rn = g(P ) + mRn. By Nakayama’s Lemma 93.10, Rn = g(P )) ∼= P . �

In fact, it can be shown that the lemma holds without the condition that the module
be finitely generated.

Lemma 127.3. Let R be a commutative Noetherian ring and S ⊂ R a multiplicative
set. Suppose that M a finitely generated R-module and N is an arbitrary R-module such
that there exists an S−1R-homomorphism ϕ : S−1M → S−1N . Then there exists an
R-homomorphism f : M → N and an element s ∈ S satisfying

ϕ
(x

1

)
=
f(x)

s
for all x ∈M .

Proof. Let M =
∑m

j=1Rxj, so S−1M =
∑m

j=1 S
−1R

(xj
1

)
. Choose yj ∈ N such that

ϕ(
xj
1

) =
yj
s′

for j = 1, . . . ,m and s′ ∈ S.

(We can take a uniform s′ as S is a multiplicative set.) As R is Noetherian and M
finitely generated, there exists an R-epimorphism h : Rm → M induced by ej 7→ xj
with {e1, . . . , em} the standard basis for Rm and satisfying kerh is finitely generated. In
particular, there exists aij ∈ R for 1 ≤ i ≤ n, some n ≥ 1, and 1 ≤ j ≤ m, such that kerh
is generated by {

∑n
j=1 aijej | i = 1, . . . , n}. As h induces an isomorphism Rm/ kerh→M

and localization is exact, we have
m∑
j=1

(aij
1

)(xj
1

)
=
(∑m

j=1 aijxj

1

)
= 0
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in S−1M for i = 1, . . . , n. Taking ϕ of this equation yields
m∑
j=1

(aij
1

)(yj
s′
)

= 0

in S−1N for i = 1, . . . , n. Hence there exists s′′ ∈ S with

s′′
m∑
j1

aijyj = 0 in N for all i = 1, . . . , n.

Suppose that we have an equation
∑m

j=1 bjmj = 0 in M with bi ∈ R, j = 1, . . . ,m. Then

there exist c1, . . . , cm in R satisfying bj =
∑n

i=i ciaij. It follows that f : M → N by
mj 7→ s′′yj, j = 1, . . . ,m, is a well-defined R-homomorphism. Moreover, we have

ϕ(
xj
1

) =
yj
s′

=
f(xj)

s′s′′
.

Setting s = s′s′′ shows that

ϕ
(m

1

)
=
f(m)

s
as needed. �

Theorem 127.4. Let R be a commutative Noetherian ring and M a finitely generated
R-module. Then M is a projective R-module if and only if Mm is a free Rm-module for
all maximal ideals m ⊂ R.

Proof. By Lemma 127.1, we know if M is a projective R-module so are all its
localizations, hence Rm-free by Lemma 127.2. Therefore, we need only show the converse.

Let m be a fixed maximal ideal in R. Then there exists a free R-module F and an exact
sequence F

g−→M → 0. This induces a split exact sequence 0→ ker gm → Fm
gm−→Mm → 0

by Exercise 92.31(6). Let ϕ split gm, so gmϕ = 1Mm . By Lemma 127.3, there exists an
R-homomorphism f : M → F (depending on m) and an element s ∈ R \m satisfying

ϕ
(m

1

)
=
f(m)

s

for all m ∈M . In particular,
gf(m)

1
=
m

1
for every m ∈M . Let M =

∑n
i=1 Rxi. For each

xi, i = 1, . . . , n, there exists a ci ∈ R \m satisfying cigf(xi) = cisxi. Setting c = c1 · · · cn.
we have c ∈ R \m and cgf(xi) = csxi for i = 1, . . . , n. Therefore, we have

(*) cgf(m) = csm for all m ∈M and cs /∈ m.

If r ∈ R, let λr : M → M be the R-homomorphism m 7→ rm and A the set of elements
a ∈ R satisfying

(+) M
h

~~

λa
��

F g
// M
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commutes for some h : M → F . In particular, such an r exists with r = cs for the
above f , so A 6= ∅. Clearly, A is an ideal in R and by (*), A ∩ (R \ m) 6= ∅. Since this
holds for each maximal ideal m in R, we conclude that 1 ∈ A. Therefore there exists a
splitting σ : M → F , i.e., gσ = 1M . In particular, σ(M) is a direct summand of F , hence
R-projective. As M ∼= σ(M), M is R-projective as needed. �

Corollary 127.5. Every Dedekind domain is a hereditary ring.

Proof. If R is a Dedekind domain and p a nonzero prime ideal, then Rp is a local
Dedekind domain. Therefore, Rp is a PID by Lemma 87.6 so ideals in Rp are Rp-free.
The result follows by Theorem 127.4. �

We have generalized this corollary in Proposition 87.8. For convenience, we repeat it
here with a different proof.

Theorem 127.6. Let R be a domain with quotient field K. Then R is a hereditary ring
if and only if every fractional ideal in R is invertible. In particular, if this is the case,
then R is a Noetherian ring.

Proof. (⇐): If A is invertible, i.e., AA−1 = R, then there exists finitely many
ai ∈ A and qi ∈ A−1, i = 1, . . . , n, some n, satisfying 1 =

∑n
i=1 qiai. with qiai ∈ R for

i = 1, . . . ,m. In particular, if a ∈ A, then a =
∑n

i=1(qiai)a =
∑r

i=1 a(qiai). Consequently,
A is a finitely generated R-module, so R is a Noetherian ring. Let fi = λqi : A → R
be the R-homomorphism given by a 7→ qia. Then a =

∑n
i=1 fi(a)ai for all a ∈ A. In

particular, {f1, . . . , fn}, {a1, . . . , an} form a projective basis for A by Proposition 126.8,
i.e., A is R-projective.

(⇒): Suppose that A is a projective R-module. By Proposition 126.8, there exists a
projective basis {fi}I , {ai}I for A. In particular, the R-homomorphisms fi : A → R
satisfy a =

∑
I fi(a)ai for all a ∈ A with fi(a) = 0 for almost all i ∈ I. For each i ∈ I,

let qi = fi(a)/a in K for 0 6= a ∈ A. The qi’s are independent of a. Indeed if 0 6= a′ ∈ A,
then

a′fi(a) = fi(a
′a) = afi(a

′).

Therefore, fi = λqi for i ∈ I. In particular, qiA ⊂ R, hence qi ∈ A−1 for all i ∈ I. Since
a =

∑
I(qia)ai in R for all a ∈ A, we have 1 =

∑
I qiai in K hence in R. Therefore,

AA−1 = R and A is invertible. �

Corollary 127.7. Let R be a domain, not a field. Then R is a hereditary ring if and
only if R is a Dedekind domain.

Proof. We have seen that Dedekind domains are hereditary, so we may assume that
R is hereditary. By Theorem 127.6 this is equivalent to every fractional ideal in R is
invertible and, in particular, that R is Noetherian. Since R is a domain, R =

⋂
Max(R) Rm

by Exercise 29.4(8). Let m ∈ Max(R). Then every fractional ideal in Rm is invertible.
As the intersection of integrally closed domains is integrally closed (if A =

⋂
iBi, x ∈ Bi

integral for domains A, Bi, then x ∈ x(∩Bi) = ∩Bi = A) and all fractional ideals in
Rm are invertible, for every m ∈ Max(R), it suffices to show that Rm is a local Dedekind
domain, i.e., a discrete valuation ring. In particular, we may assume that R = (R,m) is a
local ring. Since R is hereditary, all ideals in R are R-projective, hence R-free by Lemma
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127.2 as R is local. But a free submodule of R must be of rank 0 or 1 (as xy − yx = 0 in
R for all x, y ∈ R). It follows that R must be a local PID (i.e., a discrete valuation ring)
hence integrally closed. The result follows. �

We turn to finitely generated modules over a Dedekind domain. We want to generalize
the Fundamental Theorem of Finitely Generated Modules over a PID to the Dedekind
case. In the PID case, we decomposed a finitely generated module into a direct sum of a
free module and torsion module. In the case of a PID, a finitely generated free module
was the same as a torsion-free module. This is not the true in general in the Dedekind
case. We first shall show that it suffices to show that finitely generated R module over a
Dedekind domain is a direct sum of torsion R-module and torsion-free R-modules. This
allows us to study the torsion and torsion-free cases separately.

Lemma 127.8. Let R be a Dedekind domain and A ⊂ R an ideal. Then every ideal in
R/A is principal.

Proof. If A = pe11 . . . perr , then S = R \
⋃
I pi is a multiplicative set. This domain

S−1R is a Dedekind domain that is semi-local with maximal ideals {S−1p1, . . . , S
−1pr}.

In particular, S−1R is a PID by Lemma 87.6. Since the ring homomorphism R/A →
S−1(R/A) has S ∩R = ∅, the result follows. �

Corollary 127.9. Let R be a Dedekind domain with quotient field K and A a fractional
ideal of R. If B ⊂ R is an ideal, then there exists 0 6= y ∈ K that satisfies R = yA + B.

Proof. Let 0 6= c ∈ K satisfy cA ⊂ R. Then cA/cAB is an ideal in R/cAB. By
the lemma, it is a principal ideal, say cA = Rx+ cAB, x ∈ R. It follows that

R = (cA)−1(cA) = (cA)−1x+ B.

Set y = c−1x. Then replace A by A−1 in the above. The result follows. �

Corollary 127.10. Every ideal in a Dedekind domain can be generated by two elements
and one of the generators can be chosen to be any nonzero element in A. Moreover, this
generator a may be chosen such that (a) is relatively prime to any given principal ideal
relatively prime to A.

Proof. Let a ∈ A Then A/(a) is a principal ideal. If A/(a) = bA/(a), and A = (a, b),
Moreover, if (c) is relatively prime to A, then there exists an equation cx + a = 1, for
some x ∈ R, a ∈ A and we can start with this a. �

This result does not generalize to Prüfer domain. This generalization of Dedekind
domains in which every localization at a finitely generated prime ideal is a valuation
ring is equivalent to domains that are semi-hereditary, i.e., every finitely generated ideal
is projective. But there exist Prüfer domains having ideals minimally generated by n
elements for any n ≥ 1, although it has been shown that every finitely generated maximal
ideal in a Prüfer domain can be generated by two elements.

Every ideal in a PID is free. This is not true in general. We can only say that every
ideal in a domain R is R-torsion-free. The key result to the decomposition of finitely
generated modules over a Dedekind domain is the following result (that is not true in
general) is that the converse of Kaplansky’s Theorem 126.11 is also true for Dedekind
domains.
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Proposition 127.11. Let R be a Dedekind domain and M a finitely generated R-module.
Then M is R-torsion-free if and only if M is a projective R-module.

Proof. Let K be the quotient field of R. If M is projective, then it is a submodule of a
free R-module. By Kaplansky’s Theorem 126.11 and Corollary 127.7, M is R-torsion-free.
So we need only prove the converse.

Suppose that M is a finitely generated R-torsion-free R-module. Let ϕ : M → K⊗RM
be defined by x 7→ 1⊗x. As K⊗RM is a finite dimensional K-vector space, it is isomorphic
to Kr, some r. Let B = {e1, . . . , er} be a basis for K ⊗RM and M =

∑n
i=1Rui. Then

ϕ(ui) =
∑
i,j

aij
bij
ei with aij, bij ∈ R, bij 6= 0 for all i, j.

Set 0 6= b =
∏

i,j bij in R. Then bM ⊂ Rr is a submodule, so R-projective as R is
hereditary by Corollary 127.7. It follows that M is also R-projective. �

Corollary 127.12. Let R be a Dedekind domain and M a finitely generated R-module.
Then M ∼= Mt

∐
M/Mt.

Proof. M/Mt is R-projective as it is R-torsion-free. Therefore, the canonical map
: M →M/Mt splits. �

This shows that we can study the R-torsion-free and the R-torsion cases separately.
We look at the R-torsion case.

Theorem 127.13. Let R be a Dedekind domain and M a finitely generated torsion R-
module. Then there exist ideals A1 ⊃ A2 ⊃ · · · ⊃ An unique up to isomorphism such
that

M ∼= R/A1

∐
· · ·
∐

R/An.

Proof. Let M =
∑n

i=1 Rui and Ai = annR ui for i = 1, . . . n. Set A = A1 · · ·An.
We have A = annR(M). Let A = pe11 · · · perr be a factorization of A into prime ideals and
S = R \ ∪ri=1pi, a multiplicative set in R. It follows if x ∈ S, then (x) + A = R by the
definition of the greatest common divisor of ideals in a Dedekind domain. In particular,
there exists r ∈ R and a ∈ A satisfying rx + a = 1. Therefore, for all m ∈ M , we
have m = rxm + am = rxm, i.e., the R-homomorphism λx : M → M by m 7→ xm
is an R-automorphism with inverse λr. Since S−1R is a semi-local with maximal ideals
S−1p1, . . . , S

−1pr, it is a PID by Lemma 87.6. Therefore, by the Fundamental Theorem
of Finitely Generated Modules over a PID, S−1M ∼=

∐r
i=1 S

−1/(ai) for some a1 | · · · | ar
unique up to isomorphism. This lifts to a decomposition for M as desired. �

If R is a Dedekind domain and p a prime ideal, let

M(p) := {x ∈M | pnx = 0 for some n > 0}

called the p-primary part of M . An analogous proof of the Primary Decomposition The-
orem (essentially the Chinese Remainder Theorem in the finitely generated case) yields:

Proposition 127.14. If R is a Dedekind domain and M a torsion R-module, then M =⊕
p a primeM(p). If M is finitely generated, then M(p) = 0 for almost all prime ideals p.
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Therefore, we can also decompose a R-torsion module over a commutative ring in this
way also. In particular, in the Dedekind case for finitely generated R-torsion modules.
We turn to the R-torsion-free case. We first need a general result.

Lemma 127.15. Let R be a domain with quotient field K and A, B fractional ideals of
R. If f : A → B is an R-homomorphism, then there exists an element c ∈ K such that
f(x) = cx for all x ∈ A. In particular, f is either the zero map or is a monomorphism.

Proof. Let x ∈ A. Then for all all a ∈ A, we have the equation

(xf)(a) = f(xa) = af(x).

Fix a 6= 0 in A and set c = a−1f(a) in K. Then f(x) = cx for all x ∈ A. �

Corollary 127.16. Let R be a domain with quotient field K and A, B fractional ideals
of R. Then A ∼= B if and only if there exists an element c ∈ K satisfying A = cB.

Theorem 127.17. Let R be a Dedekind domain and M a finitely generated R-torsion-free
module. Then M ∼= Rr

∐
A for some ideal A ⊂ R and r ≥ 0 with

Rr
∐

A ∼= Rs
∐

B if and only if r = s and A ∼= B.

In particular, if A1, . . . ,Am and B1, . . . ,Bn are fractional ideals of R, then

(127.18)
A1

∐
· · ·
∐

Am
∼= B1

∐
· · ·
∐

Bn if and only if

r = s and A1 · · · . . .Am
∼= B1 · · ·Bn.

Proof. We know thatM is a direct sum of ideals inR by Kaplansky’s Theorem 126.11
and Corollary 127.7. To finish, we need only show statement 127.18 holds. Suppose that
we have an K-isomorphism f : A1

∐
· · ·
∐

Am → B1

∐
· · ·
∐

Bn. This isomorphism f
can be viewed as a matrix C =

(
cij
)
∈ Rn×m(K) such that Bi = cijAj. Then f an

isomorphism if and only if C is invertible. In particular, this shows that m = n. We next
show that

(*) B1 · · ·Bm = det(C)A1 · · ·Am.

Let aj ∈ Aj. Then cijaj ∈ Bj, hence det(C)A1 · · ·Am ⊂ B1 · · ·Bm. By symmetry we
have the reverse inclusion. This shows (*). [Note that this argument only used that R
was a domain.]

For the converse, we shall show that

A1

∐
· · ·
∐

Am
∼= Rm−1

∐
A1 · · ·Am.

Suppose that m = 2. We need to show if A
∐

B ∼= R
∐

AB. Multiplying by a suitable
nonzero element in K, we may assume the fractional ideal B is an ideal in R. Con-
sequently, by Corollary 127.9, we have yA + B = R for some nonzero y ∈ K. Hence
the fractional ideal yA is also an ideal in R and the ideals yA and B are comaximal.
By the Chinese Remainder Theorem, yA ∩ B = yAB. Let g : yA

∐
B → R be the

R-homomorphism given by (ya, b) 7→ ya− b. We have ker g = yA∩B = yAB. Since the

exact sequence 0 → kerg → yA
∐

B
g−→ R → 0 splits and yA ∼= A, equation (127.18) is

established for the n = 2 case. By induction,

A1

∐
· · ·
∐

Am
∼= R

∐
A1A2

∐
A3

∐
· · ·
∐

Am
∼= Rm−1A1 · · ·Am.
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�

Corollary 127.19. Let R be a Dedekind domain and M a nonzero finitely generated R-
projective module. Then there exist ideals A1, · · · ,Am in R such that M ∼= A1

∐
· · ·
∐

Am

with m ≥ 1 unique and the class of A1 · · ·Am in the ideal class group of R unique.

Exercises 127.20. 1. Let (R,m) be a local ring and M a finitely presented R-module.
Show the following are equivalent:

(i) M is R-free.
(ii) There exists a projective R-module P and an exact sequence of R-modules 0 →

N
f−→ P

g−→ M → 0 such that the induced map f : N/mN → P/mP is a
monomorphism.

2. Let R be a commutative ring and M a finitely generated R-module. Show that M is
R-projective if and only if M is finitely presented and Mp is R-free for all prime ideals
p in R.

3. Let R be a commutative ring and P a finitely generated projective R-module. If p is
a prime ideal in R, define the rank of P at p to be dimR/p Pp. Show if the rank of Pp

is r, then there exists an element f ∈ R, such that the rank of PP is r for all P in the
open set D(f) := {P | f /∈ P} in SpecR.

4. Prove that Lemma 127.3 holds only assuming that R a commutative ring. and M is a
finitely presented R-module. (Cf. Exercise 126.16(6).)

5. Prove that Theorem 127.4 holds only assuming that R a commutative ring and M is
a finitely presented R-module. (Cf. Exercise 126.16(6.)

6. Let R be a domain with quotient field K and A an invertible fractional ideal of R.
Show all of the following:

(i) Let B be a fractional ideal of R. Then the canonical map A ⊗R B → AB is an
R-isomorphism.

(ii) A ∼= HomR(A, R).
(iii) A is R-free if and only if A is principal.

7. Let R be a UFD. Then an R-projective ideal in R is R-free if and only if it is principal.

8. Prove that a domain is a Dedekind domain if and only if every divisible R-module (cf.
Exercise 124.16(4)) is an injective R-module.

9. A ring is called left semi-hereditary if every finitely generated left ideal is projective.
Prove that any Prüfer domain is left hereditary.

128. Ext II

Let R be a ring and M an R-module and (A∗, d∗) be a positive chain complex of
R-modules. Let ε : A0 →M be an R-epimomorphism such that

· · · d1−→ A1
d0−→ A0

ε−→M → 0

is exact. We call this an acyclic resolution of of M with augmentation ε. We write this as
A∗

ε−→ M → 0 is an acyclic resolution of M . If (A∗, d∗) consists of projective R-modules,
then we call such an acyclic resolution a projective resolution of M .
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Lemma 128.1. Let M be an R-module. Then a projective resolution of M exists.

Proof. We know that there exists a free module P and an R-epimorphism P →M .
The result now follows as in the injective resolution case. �

The theorems about injective resolutions and cohomology have analogues for projec-
tive resolutions. The proofs that are the same if amounting to reversing arrows and
substituting projective modules for injective modules will be omitted.

Theorem 128.2. (Comparison Theorem) Let f : M →M ′ be an R-homomorphism and

P∗
ε−−−→ M −−−→ 0

f

y
X∗

ϕ−−−→ M ′ −−−→ 0

be a diagram of positive chain complexes with the bottom complex exact and each Pi
projective in the top complex. Then there exists a chain homomorphism f∗ : (P∗, dP ∗)→
(X∗, dX∗) such that

The diagram

P∗
ε−−−→ M −−−→ 0

f∗

y f

y
X∗

ϕ−−−→ M ′ −−−→ 0

commutes. Moreover, the chain map f∗ is unique up to chain homotopy.

Theorem 128.3. Let M be an R-module and PM ∗
ε−→M → 0 an R-projective resolution.

If N is an R-module, then the cohomology of the chain complex
(

HomR(PM ∗, N), dHomR(PM∗,N)

)
is independent of the projective resolution of M and is denoted Ext∗R(M,N).

We continue to use Notation 125.4 when talking about cohomology groups.

Properties 128.4. of ExtnR( , ). Let M and N be R-modules. Then we have

1. ExtnR(M,N) is independent of a projective resolution PM ∗
ε−→M → 0.

2. Ext0
R(M,N) = HomR(M,N).

3. Suppose that f : N → N ′ is an R-homomorphism. Then f induces an abelian group
homomorphism (R-homomorphisms if R is commutative)

fn : ExtnR(M,N)→ ExtnR(M,N ′)

depending only on f .

4. Let Ai, i ∈ I, and Bj, j ∈ J be R-modules. Suppose for each i ∈ I, there exist an
R-homomorphism fij : Ai → Bj. Then for all R-modules M , we have a commutative
diagram of abelian groups (R-homomorphisms if R is commutative)
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ExtnR(M,
∏
I

Ai)
f∗−−−→ ExtnR(M,

∏
J

Bj)

ϕI

y yϕJ∏
I

ExtnR(M,Ai) −−−→
f̃

∏
J

ExtnR(M,Bj).

where the maps are induced by from the maps in Proposition 123.5.

5. Suppose that g : M → M ′ is an R-homomorphism. Then g induces an abelian group
homomorphism (R-homomorphism if R is commutative)

gn : ExtnR(M ′, N)→ ExtnR(M,N)

depending only on g.

6. Let Ai, i ∈ I, and Bj, j ∈ J , be R-modules. Suppose for each j ∈ J , there exist an
R-homomorphism fji : Bj → Ai. Then for all R-modules N , we have a commutative
diagram of abelian groups (R-homomorphisms if R is commutative)

ExtnR(
∐
J

Bj, N)
g∗←−−− ExtnR(

∐
I

Ai, N)

ψJ

y yψI∏
J

ExtnR(Bj, N) ←−−−
g̃

∏
I

ExtnR(Ai, N).

where the maps are induced by from the maps in Proposition 123.9.

Lemma 128.5. (Horseshoe Lemma) Let

0 −−−→ M ′ f−−−→ M
g−−−→ M ′′ −−−→ 0

be a short exact sequence of R-modules and

P∗
′ ε′−−−→ M ′ −−−→ 0 and P∗

′′ ε′−−−→ M ′′ −−−→ 0

projective resolutions. Then there exist an R-projective resolution

P∗
ε−−−→ M −−−→ 0

such that

0 −−−→ P∗
′ f∗−−−→ P∗

g∗−−−→ P∗
′′ −−−→ 0

is a split exact sequence of projective chain complexes, i.e.,
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...
...

...

0 −−−→ P1
′ f1−−−→ P1

g1−−−→ P1
′′ −−−→ 0

(dP ′ )1

y (dP )1

y (dP ′′ )1

y
0 −−−→ P0

′ f0−−−→ P0
g0−−−→ P0

′′ −−−→ 0

ε′

y ε

y ε′′

y
0 −−−→ M ′ f−−−→ M

g−−−→ M ′′ −−−→ 0y y y
0 0 0

commutes and has exact columns and split exact rows (except for the bottom row).

Theorem 128.6. Let N be an R-module and

0→ A
f−→ B

g−→ C → 0

a short exact sequence of R-modules and R-homomorphisms. Then the exact sequence of
abelian groups (respectively, R-homomorphisms if R is commutative)

0→ HomR(C,N)
g∗−→ HomR(B,N)

f∗−→ HomR(A,N)

extends to a long exact sequence of abelian groups (respectively R-modules if R is commu-
tative) in cohomology

· · · → Extn−1
R (A,N)

∂n−1

−−−→ExtnR(C,N)
gn−→ ExtnR(B,N)

f
n

−→ ExtnR(A,N)
∂n−→ Extn+1

R (C,N)→ · · ·

Theorem 128.7. Let N be an R-module and

0 −−−→ (A∗, dA)
f−−−→ (B∗, dB)

g−−−→ (C∗, dC) −−−→ 0

α∗

y β∗

y γ∗

y
0 −−−→ (A′∗, dA′)

f ′−−−→ (B′∗, dB′)
g′−−−→ (C ′∗, dC′) −−−→ 0

an exact sequence of chain complexes. Then there exists a commutative diagram

ExtnR(A,N)
∂n−−−→ Extn+1

R (C,N)

αn

y yγn+1

ExtnR(A′, N)
∂′n−−−→ Extn+1

R (C ′, N).
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Theorem 128.8. Let M be an R-module. If

0→ A
f−→ B

g−→ C → 0

is a short exact sequence of R-modules and R-homomorphisms. Then the exact sequence

0→ HomR(M,A)
f∗−→ HomR(M,B)

g∗−→ HomR(M,C)

extends to a long exact sequence in cohomology

· · · → Extn−1
R (M,C)

∂n−1

−−−→ExtnR(M,A)
gn−→ ExtnR(M,B)

f
n

−→ ExtnR(M,C)
∂n−→ Extn+1

R (M,A)→ · · ·

Theorem 128.9. Let M be an R-module and

0 −−−→ (A∗, dA)
f−−−→ (B∗, dB)

g−−−→ (C∗, dC) −−−→ 0

α∗

y β∗

y γ∗

y
0 −−−→ (A′∗, dA′)

f ′−−−→ (B′∗, dB′)
g′−−−→ (C ′∗, dC′) −−−→ 0

an exact sequence of chain complexes. Then there exists a commutative diagram

ExtnR(M,C)
∂n−−−→ Extn+1

R (M,A)

γn

y yαn+1

ExtnR(M,C ′)
∂′n−−−→ Extn+1

R (M,A′).

Corollary 128.10. Let M be a projective R-module. Then ExtnR(M,N) = 0 for all
R-modules N and all n > 0.

The “dual” of the pushout is the following:

Definition 128.11. Suppose that we are given a diagram ofR-modules andR-homomorphisms

(*)

N1yf1
N2 −−−→

f2
M.

Then (X, g1, g2), with X an R-module and gi an R-homomorphism for i = 1, 2, is called
the fiber product or pullback of (*) if we have a commutative diagram

(†)

X
g1−−−→ N1

g2

y yf1
N2 −−−→

f2
M.

and if (Y, h1, h2) is another such triple satisfying (†), then there exists anR-homomorphism
α : Y → X, unique up to isomorphism, satisfying the following commutative diagram
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Y

h2

��

α

��

h1

""

X

g2
��

g1
// N1

f1
��

N2
f2
// M.

Lemma 128.12. (Schanuel’s Lemma) Let A and M be R-modules. Suppose that

0→ N
f1−→ P

g1−→M → 0 and 0→ N ′
f2−→ P ′

g2−→M → 0

are short exact sequences of R-modules with P and P ′ projective R-modules. Then
M
∐
P ′ ∼= M ′∐P .

In the analogous proof to Schanuel’s Lemma for injectives, if P = P1

∏
P2 and

X = {(x1, x2) | xi ∈ P1

∏
P2 | xi ∈ Pi i = 1, 2, with f1(x1) = f2(x2)},

then (X, π1, π2), with πi, i = 1, 2, the restrictions of the projections into P , is the pullback
of

P1yf1
P2 −−−→

f2
M.

(Cf. equation (125.14).)

Definition 128.13. Define the projective shift operator P on the collection of R-modules
by P(M) := [N ] if there exists an exact sequence

0→ N
f−→ P

g−→M → 0

with P a projective R-module. This is well-defined by Schanuel’s Lemma and P(M)
only depends on [M ]. In addition, P(M1

∐
M2) = P(M1) + P(M2). Let P0(M) = [0]

and Pn = P(Pn−1). In particular, if P∗ → M → 0 is an projective resolution, then
Pn(M) = [ker dn)]. A representative of Pn(M) is called an nth zyzygy of M .

Lemma 128.14. Let M be an R-module. Then the following are equivalent:

(1) M is a projective R-module.
(2) ExtnR(M,N) = 0 for all n ≥ 1 and all R-modules N .
(3) Ext1

R(M,N) = 0 for all R-modules N .

Corollary 128.15. Let M and N be R-modules. Then ExtnR(M,N) depends only on [M ].

Abusing notation, we write ExtnR(P(M), N) for M ′ if P(M) = [M ′] and have
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Theorem 128.16. (Dimension Shift) Suppose that M and N are R-modules. Then
Extn+1

R (M,N) = ExtnR
(
P(M), N

)
for all n ≥ 1. In particular, we have Extn+1

R (M,N) =

Ext1
R

(
Pn(M), N

)
for all n ≥ 1.

Lemma 128.17. Let Mi, N be R-modules with i ∈ I. Then

Ext∗R(
∐
I

Mi, N) ∼=
∏
I

Ext∗R(Mi, N).

Note if I is finite, then Ext∗R(
∐

IMi, N) ∼=
∐

I Ext∗R(Mi, N).

Definition 128.18. If M is an R-module, define the projective dimension of M by

lpdR(M) = min{n | Pn(M) = 0}
(or infinity if no minimum exists) and the left global projective dimension of R to be

lgl proj dim(R) = max{lpdR(M) | Pn(M) = 0}
(or infinity if no maximum exists).

Of course, we also have right projective dimension of right R modules and right global
projective dimension rgl proj dim(R). For non-commutative rings lgl proj dim(R) and rgl
proj dim(R) may be different.

Corollary 128.19. Let N be an R-module. Then the following are equivalent:

(1) lpdR(N) ≤ n.
(2) Pn(N) is an projective R-module.
(3) Ext1

(
P(M), N

)
= 0 for all R-modules N .

(4) Extn+1
R (M,N) = 0 for all n > 0 and all R-modules N .

We can also tie injective modules into our computations of EndR as Lemma 125.16 is
also valid for EndR.

Proposition 128.20. Let N be an R-module. Then the following are equivalent:

(1) N is an injective R-module.
(2) ExtnR(M,N) = 0 for all n ≥ 1 and all R-modules M .
(3) Ext1

R(M,N) = 0 for all R-modules M .
(4) Ext1

R(M,N) = 0 for all cyclic R-modules M .

Proof. (1) ⇒ (2): Let P∗ → M → 0 be a projective resolution. In particular, P∗ is
exact (i.e., P0 → P1 → P2 → · · · is exact.) As Q is an injective R-module, Hom

(
, N
)

is exact, by Exercise 124.16(1), i.e.,

HomR(P0, Q)→ HomR(P1, Q)→ HomR(P2, Q)→ · · · .
is exact. Therefore, its cohomology EndnR(M,Q) = 0 for all n ≥ 1

(2)⇒ (3)⇒ (4) are immediate.

(4) ⇒ (1): We show N is an injective R-module using the Baer Criterion 124.7. Let

0 → A
inc−→ R

f−→ M → 0 be an exact sequence of R-modules. Then M is a cyclic
R-module. Taking the long exact sequence in the first variable Theorem 125.9 yields

0→ HomR(M,N)→ HomR(R,N)
f∗−→ HomR(A, N)→ Ext1

R(M,N).



128. EXT II 757

As Ext1
R(M,N) = 0 by hypothesis, HomR(R,N)

f∗−→ HomR(A, N) is surjective as needed.
�

By Lemma 125.16 and Proposition 128.20, we have

Corollary 128.21. Let N be an R-modules. Then N is an injective R-module if and
only if ExtnR(M,N) = ExtnR(M,N) = 0 for all n ≥ 1 and all R-modules M .

Analogously to our previous argument, Proposition 128.20 implies that we have

Corollary 128.22. Let M and N be R-modules. Then EndR(M,N) depends only on the
injective equivalence class of N .

We can now show the following:

Theorem 128.23. Let M and N be R-modules. Then ExtnR(M,A) ∼= ExtnR(M,A) for
all n ≥ 1. We write them both as ExtnR(A,B). In particular, ExtR( , ) commutes with
finite direct sums in both variables.

Proof. Let 0→ N
ε−→ I∗ be an injective resolution ofN . We know that End0

R(M,N) =
HomR(M,N) = End0

R(M,N). Let K1 = coker ε and Kn = coker(dn−1 : In → In+1) for all
n > 1. taking the long exact sequence on the short exact sequence 0 → N → I0 → K1

for both ExtR and ExtR gives a commutative diagram with exact rows

HomR(M, I0) −−−→ HomR(M,K1)
δ−−−→ Ext1

R(M,N) −−−→ Ext1
R(M, I0)

|| ||
y

HomR(M, I0) −−−→ HomR(M,K1)
δ−−−→ Ext1

R(M,N) −−−→ Ext1
R(M, I0).

Since ExtnR(M, I) = 0 = ExtnR((M, I) for any injective R-module I by Lemma 125.16 and
Proposition 128.20 for any n ≥ 1, we see that see that the result holds for n = 1. As

0→ Kn−1 → In−1 → In · · ·
is an injective resolution of Kn−1. By induction, we may assume that

EndnR(M,N) ∼= EndnR
(
M, In−1(N)

) ∼= End1
R(M,Kn−1).

It follows that Ext1
R(M,Kn−1) is the cohomology of

0→ HomR(M, In−1)→ HomR(M, In)→ HomR(M, In+1)→ · · ·
at HomR(M, In) which is precisely EndnR(M,N). �

Identifying ExtR and ExtR, we see that we still have dimension shifting for projective
R-modules.

Corollary 128.24. Let M and N be R-modules. Then

ExtnR(P(M), N) = Extn+1
R (M,N) = ExtRn (M, I(N))

for all n > 1.

Hence by Corollary 125.21, we have

Corollary 128.25. The following are equivalent:



758 XXI. INTRODUCTION TO HOMOLOGICAL ALGEBRA

(1) lgl proj dim(R) ≤ n.
(2) Extn+1

R (M,N) = 0 for all R-modules M and N .
(3) Extn+i

R (M,N) = 0 for all i > 0 and R-modules M and N .
(4) lid(R) = sup{N |N a cyclic R-module}.

In particular,

Corollary 128.26. Let N be an R-module. Then the following are equivalent:

(1) M is a projective R-module.
(2) ExtnR(M,N) = 0 for all n ≥ 1 and all R-modules N .
(3) Ext1

R(M,N) = 0 for all R-modules N .
(4) Ext1

R(M,N) = 0 for all cyclic R-modules N .

Putting this together gives us the following theorem:

Theorem 128.27. (Auslander) Let R be a ring. Then

lgl inj dim(R) = lgl proj dim(R).

We write lgl dim(R) for it. Moreover,

lgl dim(R) = sup{lpd(M) |M a cyclic R-module}.

Proof. We may assume that lgl dim(R) is finite. Let

n = sup{lpd(M) |M a cyclic R-module}.
It suffices to show that lgl inj dim(R) = lgl proj dim(R) < n. This follows from Ext1

R(M,N) =
Ext1

R(Pn(M), N) = 0, since Pn(M) is projective by Corollary 128.26. �

Corollary 128.28. Let R be a ring. Then the following are equivalent:

(1) lgl dim(R) = 0
(2) Every R-module is projective.
(3) Every R-module is injective.
(4) Every short exact sequence of R-modules and R-homomorphisms splits.

Corollary 128.29. A ring R is left hereditary if and only lgl dim(R) ≤ 1.

Proof. This follows from Theorem 126.14 �

Exercises 128.30. 1. Let 0 → A → B → C → 0 be an exact sequence of R-modules.
Show if two of lpdA, lpd(B), lpd(C) are finite so is the third.

2. Let 0 → A → B → C → 0 be an exact sequence of R-modules. Show all of the
following:

(i) If lpd(A) < lpd(B), then lpd(C) = lpd(A).
(ii) If lpd(A) > lpd(B), then lpd(C) = lpd(A) + 1.

(iii) If lpd(A) = lpd(B), then lpd(C) ≤ lpd(A) + 1.

3. Let 0 → A → B → C → 0 be an exact sequence of R-modules. Show all of the
following:

(i) If lpd(B) < lpd(A), then lpd(C) = lpd(A).
(ii) If lpd(B) > lpd(A), then lpd(C) = lpd(B) + 1.
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(iii) If lpd(B) = lpd(A), then lpd(C) ≤ lpd(B) + 1.

4. Let 0 → A → B → C → 0 be an exact sequence of R-modules. Show all of the
following:

(i) If lpd(A) = n and lpd(C) ≤ n, then lpd(B) ≤ n.
(ii) lpd(B) ≤ max(lpd(A), lpd(C)).

(iii) In (ii), we have inequality if the sequence does not split.

5. Let 0 → A → B → C → 0 be an exact sequence of R-modules. Show all of the
following:

(i) lpd(C) ≤ max(lpd(A), lpd(B)).
(ii) If B is projective, then either all three are projective or lpd(C) = 1 + lpd(A).

6. Let R be the ring

(
Z Q
0 Q

)
. Show rgd(R) = 1 and lgd(R) > 1.

7. Let (R,m) be a Noetherian local ring and M a nonzero finitely generated R-module.
Suppose that a maximalR-sequence onM has lengthm. Then all maximalR-sequences
on M have length m. Moreover, m is the smallest integer n satisfying ExtnR(R/m,M) 6=
0.

129. Tensor Product Revisited

We generalize the tensor product of modules over a commutative ring to the tensor
product of modules over an arbitrary ring, i.e., not necessarily commutative. We indicate
this, leaving the proofs as exercises. We first must replace the definition of a bilinear map.

Definition 129.1. Let R be a ring with M a right R-module, N a left R-module, and A
an abelian group. A map j : M ×N → A is called an R-balanced biadditive map, it it is
additive in each variable and is balanced, i.e., j(mr, n) = j(m, rn) for all r ∈ R, m ∈ M ,
and n ∈ N .

An abelian group T is then called a tensor product of M and N if there exists an
R-balanced biadditive group homomorphism ι : M ×N → T satisfying the following uni-
versal property: If A is an abelian group and j : M ×N → A an R-balanced biadditive
map, then there exists a unique group homomorphism f : T → A such that

M ×N

j
##

ι
// T

f
��

A

commutes.

Theorem 129.2. Let R be a ring with M a right R-module and N a left R-module. Then
a tensor product ι : M × N → T exists and is unique up to a unique isomorphism. We
denote it by M ⊗R N .

Remark 129.3. Let Z be the center of R and A the ideal in M ⊗Z N generated by
{r ∈ R | mr ⊗ n−m⊗ rn, m ∈M, n ∈ N, r ∈ R}. Then M ⊗R N ∼= (M ⊗Z N)/A.

As for the case of a commutative ring, we have (with similar proofs that we omit).
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Properties 129.4. Let R be a ring and M,M ′ be right R-modules and N,N ′ left R-
modules. [We leave to the reader the analogous statement by switching right and left in
the statement.]

1. 0⊗ 0 = m⊗ 0 = 0⊗ n is the zero of M ⊗R N for any m in M , any n in N .

2. Let f : M → M ′ and f ′ : M ′ → M be R-homomorphisms of right R-modules and
g : N → N ′ and g′ : N ′ → N ′′ R-homomorphisms of left R-modules. Then there
exists a unique group homomorphism f ⊗ g : M ⊗RM ′ → N ⊗RN ′ sending m⊗m′ 7→
f(m) ⊗ g(m′). Moreover, (f ′ ⊗ g′)(f ⊗ g) = f ′f ⊗ g′g using the universal property of
tensor product.

3. The canonical R-homomorphism ιN : R ⊗R N → N induced by r ⊗ n 7→ rn and
the universal property of tensor products is a Z-isomorphism and it is a natural Z-
homomorphism, , i.e., if ϕ : N → N ′ is an R-homomorphism, then we have commuta-
tive diagram

R⊗R N
1R⊗ϕ

��

ιN
// N

ϕ

��

R⊗R N ′
ιN′

// N ′.

4. Let Mi, i ∈ I, be right R-modules and N a left R-module. Then there exists a canonical
map

fN : (
∐
I

Mi)⊗R N →
∐
I

(Mi ⊗R N).

Moreover, the map is natural as above, i.e., if g : N → N ′ is an R-homomorphism
of left R-modules, then we have a commutative diagram

(
∐

IMi)⊗R N
fN⊗1N−−−−→

∐
I(Mi ⊗R N)

1M⊗g
y y1M⊗g

(
∐

IMi)⊗R N ′ −−−−−→
fN′⊗1N′

∐
I(Mi ⊗R N ′)

where M =
∐

IMi. (Similarly, we have the analogous result switching sides.)

5. Let Mi be right R-modules, i ∈ I, and Njbe left R-modules, j ∈ J . Then
∐

IMi ⊗R∐
J Nj

∼=
∐

I

∐
J(Mi ⊗R Nj). We say that ⊗R and

∐
commute.

Proposition 129.5. Let M be a left R-module (respectively, right R-module) and

0→ A
f−→ B

g−→ C → 0

a short exact sequence of left R-modules (respectively right R-modules). Then

A⊗RM
f⊗1M−−−→ B ⊗RM

g⊗1M−−−→ C ⊗RM → 0

(respectively,

M ⊗R A
1M⊗f−−−→M ⊗R B

1M⊗g−−−→M ⊗R C → 0 )

are exact.
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Proof. We show the first induced sequence is exact. It is easy to see that the sequence
is a zero sequence.

We first show exactness at B ⊗R M . Let D = im(1M ⊗ f) and π = : M ⊗R B →
(M⊗RB)/D be the canonical map. As D ⊂ ker(1M⊗g), the composition of the canonical
map and 1M ⊗ g induce g : (M ⊗RB)/D →M ⊗RC. We claim that g is an isomorphism.
If we do so, then we are done, as ker(1M ⊗ g) = ker gπ = kerπ = D = im(1M ⊗ g) as
needed.

Define h : M × C → (M ⊗R B)/D by h(m, c) = m⊗ b where g(b) = c. We show h
is well-defined. Since g is surjective, such a b exists. Suppose that g(b′) = c = g(b) for
some b′ ∈ B, then b′ − b lies in ker g = A. So there exists a ∈ A satisfying b− b′ = f(a).
Therefore,

m⊗ b′ −m⊗ b = m⊗ (b′ − b) = (1⊗ f)(m⊗ a)

which lies in im(1M ⊗ f). Therefore, h is well-defined. It is clearly R-biadditive as well

as R-balanced, hence induces a Z-homomorphism f̃ : M ⊗R C → (M ⊗R B)/D sending

m⊗ c 7→ m⊗ b with g(b) = c. Since f̃ is the inverse of g, we have g is an isomorphism.
To show 1M ⊗ g is surjective, let

∑
mi ⊗ ci lie in M ⊗R C. As g is surjective, there

exist bi in B such that g(bi) = ci for all i. Then (1 ⊗ g)(
∑
mi ⊗ ci) =

∑
mi ⊗ ci lies in

im(1M ⊗ g). �

We say that ⊗R is right exact in each variable. The proposition is still true if we do
not assume the first map f in the proposition is a monomorphism.

In general, ⊗r is not exact. For example, if M is a torsion abelian group, then M⊗Z
does not preserve the injectivity of the exact sequence 0→ Z→ Q→ Q/Z→ 0.

Definition 129.6. Let R and S be rings. An abelian group M is called an (R-S)-bimodule
if M is a left R-module and a right S-module satisfying r(ms) = (rm)s for all s ∈ S,
r ∈ R, and m ∈ M . We sometimes write M = RMS if M is an (R-S)-bimodule. It is
also sometimes convenient to write SN if N is a left S-module and NS if NS is a right
S-module.

For example, if S is an R-algebra (so R is commutative), then, by definition, S is an
(R-R)-bimodule (as well as an (S-S)-bimodule).

Remarks 129.7. Let R, S be rings. (We leave variations to the reader.)

1. Let M be a right R-module, N an (R-S)-bimodule, and P a left S-module. Then
(M ⊗R N)⊗S P ∼= M ⊗R (N ⊗S P ) (and the isomorphism is natural).

2. R is an (R-R)-bimodule. If N is a left R-module, then so is R ⊗R N with action
given by r(1 ⊗ n) = r ⊗ n. By the universal property of tensor products, we have
an R-homomorphism N → R ⊗R N determined by n 7→ 1 ⊗ n and it is a (natural)
isomorphism and often identified as an equality.

3. If M is an (R-S)-bimodule and N a left S-module, then M ⊗S N is a left R-module.

4. Suppose thatMi are (R-R)-bimodules for i ∈ I andN a leftR-module, then (
∐

IMi)⊗R N
∼=
∐

I(Mi ⊗R N) as left R-modules.

5. If N is a free left R-module on basis B, then R⊗RN is free on basis {1⊗R x}{x∈B} and

isomorphic to R|B|. (Of course, Rm ∼= Rn is possible with m 6= n general).



762 XXI. INTRODUCTION TO HOMOLOGICAL ALGEBRA

We also need the structure on Hom-sets.

Remark 129.8. Let R and S be rings. If M and N are left R-modules then HomR(M,N)
is an abelian group. If, in addition, M = RMS is an (R-S)-bimodule, then we can make
HomR(M,N) into a left S-module as follows: For each s ∈ S and ϕ ∈ HomR(M,N),
define sϕ(m) = ϕ(ms) for all m ∈ M , s ∈ S. Then ϕ is a left R-homomorphism, hence
induces a left R-action on HomR(M,N). This S-action makes HomR(M,N) into a left
S-module as desired.

Theorem 129.9. (Adjoint Associativity Theorem) Let R and S be rings, A = AR a right
R-module, B = RBS an (R-S)-bimodule, and C = CS a right S-module. Then there is a
natural isomorphism of abelian groups,

HomS(A⊗R B,C) ∼= HomR

(
A,HomS(B,C)

)
.

We say that −⊗R B and HomS(B,−) are adjoints.

Proof. We have A⊗RS is a right S-module (by the variant of Remark 129.7(3)). Let
ϕ : A ⊗R B → C be an S-homomorphism. For each a ∈ A, define a map Φ(a) : B → C
by Φ(a)(b) = ϕ(a ⊗ b). Check that Φ(a) is S-homomorphism of right S-modules and
the map Φ : A → HomS(B,C) given by a 7→ ϕ(a) is an R-homomorphism of right R-
modules. Define f : HomS(A⊗R B,C)→ HomR

(
A,HomS(B,C)

)
by f(ϕ) = Φ. Now let

Ψ : A → HomS(B,C) be an R- homomorphism. The map ψ : A × B → C defined by
(a, c) 7→ Ψ(a)(c) is an R-bidadditive, R-balanced map, so induces a group homomorphism
ψ : A ⊗R B → C. Then g : HomR

(
A,HomS(B,C)

)
→ HomS(A ⊗R B,C) defined by

g(Ψ) = ψ is a group homomorphism and the inverse of f. We leave the proof that the
map is natural as an exercise. �

In a similar manner, we see the following:

Theorem 129.10. Let R and S be rings, A = RA a left R-module, B = SBR an (R-S)-
bimodule, and C = SC a left S-module. Then there is a natural isomorphism of abelian
groups,

HomS(B ⊗R A,C) ∼= HomR

(
A,HomS(B,C)

)
.

Exercises 129.11. 1. Let R be a commutative ring. Then the tensor product of two
projective R modules is projective.

2. Let A
f−→ B

g−→ C → 0 be a sequence of right R-modules. Suppose that for every left
R-module M , the sequence

)→ HomR(C,M)
g∗−→ HomR(B,M)

f∗−→ HomR(B,M)

is exact. Show the first sequence is exact. Also prove the “dual” statement.

3. Let M be a right R-module. Then B⊗R takes a sequence exact sequence A
f−→ B

g−→
C → 0 of abelian groups to an exact sequence of abelian groups.

4. Let A be a left R-module, B an (R-S)-bimodule, and C a right S-module. Show that
there is a natural isomorphism of abelian groups

HomR(A,HomS(C,B)) ∼= HomS

(
C,HomR(A,B)

)
.
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5. Let M be a left R-module and A an abelian group. Show that HomZ(M,A) ∼=
HomR(M,HomZ(R,A)).

6. Use the previous exercise to help give another proof that every R-module embeds into
an injective R-module.

130. Limits

We need a generalization of an infinite direct sum (and also give a generalization of
direct products). In this section we shall continue to label modules as either right or left
if R is an arbitrary ring.

Definition 130.1. Let I be a partially ordered ordered set under ≤ and {Mi}I be a
collection of left (respectively, right) R-modules. Suppose for all i ≤ j in I, there exist
R-homomorphisms θi,j : Mi →Mj with θi,i = 1Mi

and

Mi

θik

''
θij

��

Mk

Mj

θjk

88

commutes whenever i ≤ j ≤ k. We call (Mi, {θij | i ≤ j}J)I a directed system and
write it as (Mi, θij)I (or even simply (Mi)I if the θij are understood). Let (Mi, θij)I be
a directed system of left (respectively right) R-modules. Let M be a left (respectively,
right) R-module together with R-homomorphisms ψi : Mi →M for all i in I satisfying

Mi

ψi

''
θij

��

M

Mj

ψj

88

commutes for all i ≤ j in I. Then (M,ψi)I is called a direct limit of the (Mi, θij)I if it
satisfies the following universal property: If M ′ is a left (respectively, right) R-module
together with commutative diagrams of R-homomorphisms

Mi

ϕi

''
θij

��

M ′

Mj

ϕj

77
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for all i ≤ j in I, then there exists a unique R-homomorphism µ : Mi →M ′ satisfying

Mi

θij

��

ψi
''

ϕi

++M
µ

// M ′

Mj

ψj

88

ϕj

33

commutes for all i ≤ j in I. We denoted this direct limit by lim→
θ

Mi or lim−→ Mi if the θij

are clear. [We shall see that the ψi are essentially unique.]

Proposition 130.2. Let I be a partially ordered ordered set under ≤ and (Mi, θij)I a di-
rected system left (respectively, right) R-modules. Then there exists a direct limit (Mi, ψi)I
of (Mi, θij)I unique up to an R-isomorphism.

Proof. Let ιj : Mi →
∐

IMi be the injection map into the jth coordinate and
Sθ := S(Mi,θij)I be the left R-module generated by

{ιjθij(mi)− ιj(mi) | mi ∈Mi, i ≤ j in I}
and :

∐
Mi →

∐
IMi/Sθ be the canonical R-homomorphism. Set

ψj : Mj → (
∐
I

Mi)/Sθ by mj 7→ ιj(mj).

Then it is easily checked that lim−→Mi = (
∐

IMi)/Sθ. �

Examples 130.3. 1. Let Mi, i ∈ I, be a left (respectively, right) R-module for all i ∈ I
and M =

∐
IMi. Then M = lim−→Mi with no θij if i 6= j in I, by the Universal

Property of Direct Sums. In the language of the proof of the Proposition 130.2, a
better description is given by letting Sθ = 0 by setting θii = 1Mi

for all i ∈ I.

2. The pushout of a diagram of left (respectively, right) R-modules

M1
f2−−−→ N2

f3

y
N3

is the direct limit with I = {1, 2, 3} partially ordered by 1 < 2 and 1 < 3.

3. If M is a left (respectively, right) R-module, then it is the direct limit of its finitely
generated submodules.

Definition 130.4. A partially ordered set I is called directed under ≤ if for all i, j ∈ I,
there exists a k ∈ I satisfying i ≤ k and j ≤ k.

Example 130.5. Let Mi, i ∈ I, be a left (respectively, right) R-module for all i ∈ I and
M =

∐
IMi. If J = {j1, . . . , jn} is a finite subset of I, set MJ = Mj1

∐
· · ·
∐
Mjn and

let incJ : MJ → M be the inclusion map for all finite J ⊂ I. Let I := {J | J ⊂ I finite}
a partially ordered by inclusion. If I, J ∈ I, then I ⊂ I ∪ J and J ⊂ I ∪ J . So I
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is a directed partially ordered set. Define incIJ : MI → MJ if I ⊂ J in I to be the
inclusion map. Then (MI , incIJ)I is a directed system by a direct partially ordered set
and M = (MJ , incJ)I = lim−→MJ is the direct limit via the directed partially ordered set
I. We leave the verification as an exercise.

Definition 130.6. Let I be a directed partially order set and M = (Mi, θij)I and N =
(Ni, ρij)I be directed systems of left (respectively, right)R-modules. AnR-homomorphism
of directed systems M → N is a map f = (fi)I where fi : Mi → Ni is an R-homomorphism
for all i ∈ I and satisfies fjθij = ρijfj whenever i ≤ j in I. We call a sequence of directed
systems

0→ (M ′
i , θij)I

(fi)I−−→ (Mi, θ
′
ij)I

(gi)I−−→ (M ′′
i , θ

′′
ij)I → 0

an exact sequence of directed systems if 0→M ′
i

fi−→Mi
gi−→M ′′

i → 0 is exact for all i ∈ I.

For the rest of our discussion about direct limits, we shall need our partially ordered
sets to always be directed.

Construction 130.7. Let I be a directed partially ordered set and Mi, i ∈ I, be right
(respectively, left) R-modules. Suppose that M = (Mi, θij)I is a directed system with lim→

θ

its direct limit. As in the proof of Proposition 130.2, let Sθ = S(Mi,θij)I . Let (Mi, ρij)I be
the directed system with ρii = 1Mi

for all i ∈ I. So
∐

IMI is the direct limit of the directed
system (Mi, ρij)I with corresponding S(Mi,θij)I = 0. The map (Mi, θij)I → (Mi, ρij)I by
θij 7→ ρij is a R-homomorphism of directed systems and by definition gives an exact
sequence

0→ S(Mi,θij)I →
∐
I

Mi → lim→
θ

Mi → 0

of left (respectively, right) R-modules. If N = (Ni, τij)I is another directed system of left
(respectively, right) R-modules and fi : Mi → Ni is an R-homomorphism for all i ∈ I
satisfying f = (fi)I : M → N is an R-homomorphism of directed systems, then f induces
an R-homomorphism f0 : Sθ → Sτ such that the diagram

0 0y y
Sθ

f0−−−→ Sτy y∐
IMi

f−−−→
∐

I Niy y
lim→
θ

Mi
f̃−−−→ lim→

τ

Ni

commutes with f̃ the induced map and the columns exact. We leave the details of the
verification to the reader.
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In the notation of this construction, we have

Lemma 130.8. Let

0→ (M ′
i , θ
′
ij)I

(fi)I−−→ (Mi, θij)I
(gi)I−−→ (M ′′

i , θ
′′
ij)I → 0

be an exact sequence of directed systems of left (respectively, right) R-modules by a directed
partially ordering I. Then

0→ Sθ′
(fi)I−−→ Sθ

(gi)I−−→ Sθ′′ → 0

is exact.

We leave the proof as an exercise.

Proposition 130.9. Let

0→ (M ′
i , θ
′
ij)I

(fi)I−−→ (Mi, θij)I
(gi)I−−→ (M ′′

i , θ
′′
ij)I → 0

be an exact sequence of left (respectively, right) R-modules of directed systems by a directed
partially ordering I. Then

0→ lim→
θ′
M ′

i

f̃−→ lim→
θ

M
g̃−→ lim→

θ′′
M ′′

i → 0

is exact.

Proof. By Construction 130.7 and Lemma 130.8, we have a commutative diagram

0 0 0y y y
0 −−−→ Sθ′

(fi)I−−−→ Sθ
(gi)I−−−→ Sθ′′ −−−→ 0y y y

0 −−−→
∐

IM
′
i

(fi)I−−−→
∐

IMi
(gi)I−−−→

∐
IM

′′
i −−−→ 0y y y

0 −−−→ lim−→M ′
i

f̃−−−→ lim−→Mi
g̃−−−→ lim−→M ′′

i −−−→ 0

with exact columns and the top two rows are exact. The result follows by the Snake
Lemma 122.1. �

The proposition says that lim−→ is exact, i.e., it takes short exact sequences of directed
systems of left (respectively, right) R-modules by a directed partially ordered set to short
exact sequences.

Lemma 130.10. Let R be a ring and (Mi, θij)I a directed system of right R-modules over
a directed partially ordered set I. Then for any left R-module B, the R-homomorphism

fB : (lim−→Mi)⊗R B → lim−→(Mi ⊗R B)
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induced by (mi)I ⊗ b 7→ (mi ⊗ b)I is an isomorphism of abelian groups. Moreover, if
g : A → B is an R-homomorphism of left R-modules and M = lim−→Mi, then we have a
commutative diagram

(lim−→Mi)⊗R A
fA⊗1A−−−−→ lim−→ (Mi ⊗R A)

1M⊗g
y y1̃M⊗g

(lim−→Mi)⊗R B −−−−→
fB⊗1B

lim−→ (Mi ⊗R B)

of abelian groups where the right vertical is the homomorphism to the direct limit.
An analogous result holds for direct limits of left R-modules and right R-modules.

Proof. Exercise. �

Proposition 130.11. Let R be a ring and (Mi, θij)I a directed system of right R-modules
over a directed partially ordered set I. If

0→ A→ B → C → 0

is an exact sequence of left R-modules, then

0→ lim
→
Mi ⊗R A→ lim

→
Mi ⊗R B → lim

→
Mi ⊗R C → 0

is an exact sequence of abelian groups.
An analogous result holds for left and right R-modules.

Proof. This follows by Proposition 130.9, Lemma ??, and Lemma 130.10 �

Remark 130.12. If the Mi is an (S-R) bimodule, in the Lemma ?? and Lemma 130.10,
the isomorphisms are S-isomorphisms and in Proposition 130.11, the sequence is an exact
sequence of S-modules. (An analogous result for Mi are (R-S) on the other side.)

We define the dual of the direct limit. We leave the analogous proofs as exercises.

Definition 130.13. Let I be a partially ordered ordered set under ≤ and {Mi}I be a
collection of left (respectively, right) R-modules. Suppose for all i ≤ j in I, there exist
R-homomorphisms θij : Mj →Mi with θi,i = 1Mi

and

Mi

Mk

θjk
xx

θik

gg

Mj

θij

OO

commutes whenever i ≤ j ≤ k. We call (MI , θij)I = (Mi, {θij}J)I an inverse system.
Let (Mi, θij)I be such an inverse system and M be an left (respectively, right) R-module
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together with R-homomorphisms ψi : Mi →M for all i in I and commutative diagrams

Mi

M

ψi

gg

ψj
xx

Mj

θij

OO

for all i ≤ j in I. Then (M,ψi)I is called an inverse limit or projective limit of the
(Mi, {θij}I)I and denoted by lim

←
Mi if it satisfies the following universal property: If M ′

is a left R-module together with commutative diagrams of R-homomorphisms

Mi

M ′

ϕi

gg

ϕj
ww

Mj

θij

OO

for all i ≤ j in I, then there exists a unique R-homomorphism µ : M ′ →M satisfying

Mi

M
ψi

gg

ψj

xx

M ′µ
oo

ϕi

kk

ϕj
ss

Mj

θij

OO

commutes for all i ≤ j in I. Of course, we have an analogous definition for right R-
modules.

Proposition 130.14. Let I be a partially ordered ordered set under ≤ and (Mi, θij)I an
inverse system of left (respectively right) R-modules Then an inverse limit M of (Mi, ψi)I
exists and is unique up to an R-isomorphism.

Here we have lim
←
Mi, is the submodule Sθ of

∏
IMi generated by the set {α = (ai)I ∈∏

IMi | ai = θijaj if i ≤ j} with ψj : lim
←
Mi →Mj given by the restriction of the

projection map πj :
∏

IMi →Mj.

Examples 130.15. 1. M =
∏

IMi, the direct product of left (respectively, right) R-
modules, is the inverse limit when Sθ = 0 in the above, e.g., where θii = 1Mi

and
θij = 0 if i < j.
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2. The pushout of a diagram of R-modules

M1
f2−−−→ N2

f3

y
N3

When we try to reverse arrows in our proofs of direct limits, we run into a problem
about exactness. In general the inverse limit does not take exact sequences to exact
sequences of inverse systems under a directed partially ordered set. It is only left exact.
You will see this if you go through the proofs for direct limits when we invoked the Snake
Lemma. [In general, subobjects are harder to work with then quotient objects.] Inverse
limits are very important. In commutative algebra they give rise to completions, the
analog of completions in topology. For example, if R is a commutative ring and A an
ideal, then lim←−(R/Ai) is the completion of R in the Aadic topology, e.g., the completion
of R[t1, . . . , tn] is the ring of formal power series R[[t1, . . . , tn]]. One can also define the
inverse product for groups. For example, if K/F is a field extension with K the separable
closure of F , then the Galois group of K/F is the inverse limit of finite Galois extensions
of F .

Exercises 130.16. 1. Let (Mi, θij) be a directed system of left (resp, right) R-modules
over a directed partially order I. Let ψi : Mi → lim−→Mi. Show that every x ∈ lim−→Mi,
there exists an i ∈ I and an xi ∈ Mi satisfying x = ψi(xi). Show also that ψi(xi) = 0,
then there exists i ≤ j satisfying θij(xi) = 0.

2. Verify the assertions in Construction 130.7.

3. Prove Lemma 130.8

4. Prove Lemma ??.

5. Prove Lemma 130.10.

131. Flat Modules

Definition 131.1. Let R be a ring and N a left R-module. We say that N is a flat
R-module if whenever

0→M ′ f−→M
g−→M ′′ → 0

is exact sequence of right R-modules, so is

0→M ′ ⊗R N
f⊗1N−−−→M ⊗R N

g⊗1N−−−→M ′′ ⊗R N → 0.

An analogous result holds for right R-modules.

Example 131.2. Any free right (respectively, left) R-module is flat as tensor products
and direct sums commute (cf. Remark 129.4(5) and R⊗R ∼= M for any left R-module M .

Remark 131.3. Suppose that fi : N ′i → N is an R-homomorphism of left R-modules for
all i ∈ I. Then

∐
I fi :

∐
I N

′
i →

∐
I Ni an R-monomorphism if and only if fi, i ∈ I is an

R-monomorphism for all i ∈ I.

Proposition 131.4. Let Mi, i ∈ I, be right (respectively, left) R-modules and M =∐
IMi. Then M is flat if and only if every Mi, i ∈ I, is flat.
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Proof. We must show that M⊗R preserves R-monomorphisms if and only if Mi⊗R
does for all i ∈ I. Consider the following commutative diagram:

(
∐

IMi)⊗R N ′
1M⊗f−−−→ (

∐
IMi)⊗R Ny y

(
∐

IMi ⊗R N ′) −−−−−−→∐
(1Mi⊗f)

(
∐

IMi ⊗R N)

with the first vertical map is the isomorphism (
∑

I mi)⊗n 7→ (
∑

I mi⊗n) and the second
analogous. Then 1M ⊗ f is Z- monic if and only if 1Mi

⊗ f is Z-monic for all i ∈ I. �

Corollary 131.5. Every projective left (respectively, right) R-module is R-flat.

Let M be a right (respectively, left) R-module. An acyclic positive chain complex
F∗ →M → 0 is called a flat resolution of M if every Fi, i ≥ 0, is R-flat.

Corollary 131.6. Every right (respectively, left R-module) has a flat resolution.

Proposition 131.7. Let R be a ring and N a left (respectively, right) R-module. Then
N is R-flat if every finitely generated submodule of N is flat.

Proof. N is the direct limit of its finitely generated flat submodules. �

Definition 131.8. Let M be a right (respectively, left) R-module. We called M∗ :=
HomZ(M,Q/Z) the dual or character module of R. Recall that as Q is a divisible abelian
group, hence so is Q/Z by Observation 15.11(3). In particular, Q/Z is an injective abelian
group by Lemma 124.10. Moreover, the abelian group M∗ is a left (respectively, right)
R-module with R-action given by (rf)(m) = f(mr) (respectively, (fr)(m) = f(rm) for
all r ∈ R and m ∈M .

Lemma 131.9. A sequence 0 → A
f−→ B

g−→ C → 0 of right R-modules is exact if and

only if 0→ C∗
g∗−→ B∗

f8−→ A∗ → 0 is an exact sequence of left R-modules.

Proof. (⇒): As Q/Z is Z-injective, HomZ( ,Q/Z) takes exact R-sequences of to
exact sequences.

(⇐): It suffices to prove if C∗
g∗−→ B∗

f∗−→ A∗, so is A
f−→ B

g−→ C is exact. We first
show that it is a zero sequence. Suppose that a ∈ A. To show that gf(a) = 0. As
gf(a) ∈ C, by Exercise 15.18(15), it suffices to show that

(
σ(gf)

)
(a) = 0 for all σ ∈ C∗.

But σ(gf(a)) = (g∗σ)
(
f((a)

)
= f ∗

(
g∗(σ)

)
(a) = 0. To show exactness, suppose that

b ∈ B satisfies g(b) = 0. We must show that b ∈ im f . To show this, it suffices to show if
σ ∈ B∗ vanishes on im f , then it vanishes on b. But if 0 = σ(f(a)) = 0 for all a ∈ A, then
f ∗(σ)(a) = 0 for all a ∈ A, i.e., f ∗(σ) = 0 in A∗. Therefore, σ = g∗(τ) for some τ ∈ C∗
and σ(b) = (g∗τ)(b) = τ(g(b) = g(0) = 0. �

Theorem 131.10. (Lambek’s Theorem) Let R be a ring and M a right R-module. Then
M is R-flat if and only if M∗ is R-injective.
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Proof. (⇒): Suppose that M is R-flat. To show that M∗ is left injective. Sup-
pose that 0 → A → B is an R-monomorphism of right R-modules. Then we have a
commutative diagram

(*)

HomR(B,M∗) −−−→ HomR(A,M∗)y y
HomR(M ⊗R B,Q/Z) −−−→ HomR(M ⊗R A,Q/Z)

with the verticals the natural isomorphisms given by the Adjunct Associativity Theorem
129.9. Since M is right flat, 0 → M ⊗R B → M ⊗R A is a monomorphism. Therefore,
the bottom row of (*) is surjective as Q/Z is Z-injective. as needed

(⇐): Suppose that M∗ is a left injective R-module and 0 → A → B is an R-
monomorphism of left R-modules. We must show that 0 → M ⊗R A → M ⊗R B is
a monomorphism. To do so, it suffices to show (M ⊗RB)∗ → (M ⊗RA)∗ → 0 is exact by
Lemma 131.9. The commutative diagram

(M ⊗R B)∗ −−−→ (M ⊗R A)∗∥∥∥ ∥∥∥
HomR(M ⊗R B,Q/Z) −−−→ HomR(M ⊗R A,Q/Z)y y

HomR(B,M∗) −−−→ HomR(A,M∗)

with the vertical arrows isomorphisms as before has bottom row an epimorphism as M∗

is an injective R-module. �

The analogue of the Baer Criterion for injective modules is the following:

Corollary 131.11. A right R-module M is R-flat if and only if given any finitely gener-

ated left ideal A of R, we have M ⊗R A
1M⊗inc−−−−→M ⊗R R is an R-monomorphism.

Proof. We show that M is R-flat if it satisfies the criterion. The converse is im-
mediate. By Lambek’s Theorem, it suffices to show that M∗ is an injective left R-
module. By the Baer Criterion 124.7, it suffices to show the induced map HomR(R,M∗)→
HomR(A,M∗) is surjective whenever A is a left ideal in R. The Adjoint Associativity The-
orem 129.9 shows that we need only show HomR(M ⊗R R,Q/Z)→ HomR(M ⊗R A,Q/Z)
is surjective. But this is true since M ⊗R A→ M ⊗R R is a monomorphisms, since Q/Z
is Z-injective.

Since taking lim−→ takes exact sequences to exact sequences by Proposition 130.11 and every
ideal is the direct limit of its finitely generated subideals, we may assume that A is finitely
generated by Lemma 130.10.

�

Corollary 131.12. A right R-module M is flat if and only if M ⊗R A→M ⊗R R is an
R-monomorphism for all finitely generated left ideals of R, i.e., identifying M ⊗R R and
M , we have M ⊗R A→MA is a (natural) isomorphism.
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Proof. This follows from the commutative diagram

M ⊗R A −−−→ M ⊗R Ry ∥∥∥
MA −−−→ M

as the bottom map is a monomorphism. �

Proposition 131.13. Let F be a flat right R-module and 0 → K → F
f−→ B → 0 an

exact sequence of right R-modules. Then the following are equivalent:

1. B is flat.
2. K ∩ FA = KA for every left ideal A in R.
3. K ∩ FA = KA for every finitely generated left ideal A in R.

Proof. We have an exact sequence K⊗RA→ F⊗RA→ B⊗A→ 0. As F is flat, we
can identify FA and F ⊗R A. It follows that FA/KA ∼= B ⊗R A→ BA ∼= FA/K ∩ FA.

(1)⇒ (2): If B is flat, then B ⊗F A→ BA is an isomorphism, hence (1) implies (2).

(2)⇒ (3) is immediate.

(3)⇒ (1): If KA ∼= (K ∩ FA), then B ⊗R A→ BA is an isomorphism, hence (3) implies
(1) by Corollary 131.11. �

Corollary 131.14. Let r ∈ R not be a right zero divisor and M a flat right R-module.
Then r /∈ annR(M), i.e., λr : M →M by m 7→ rm is an R-monomorphism. In particular,
if R is a domain and M is R-flat, then M is R-torsion-free.

Proof. Let 0 → K → F
f−→ M → 0 be an exact sequence of right R-modules with

F a free R-module, hence flat. Suppose that mr = 0 for m ∈ M . Choose x ∈ F
such that g(x) = m. Therefore, xr ∈ K ∩ FA with A = Rr. By Proposition 131.13,
K ∩ FA = KA = KRr = Kr. So there exists k ∈ K satisfying xr = kr. Since r is not a
zero divisor in R, we have Kr is free of rank one. Writing kr and xr in a basis for F , we
see that x = k. Consequently, m = g(x) = g(k) = 0 �

Theorem 131.15. (Villamayor) Let F be a right free R-module and 0 → K → F
f−→

B → 0 be an exact sequence of right R-modules. Then the following are equivalent:

1. B is flat.
2. For all x ∈ K, there exists an R-homomorphism θ : F → K such that θ|K = 1K.
3. For all v1, . . . , vn ∈ K, let K0 =

∑n
i=1Rvi. Then there exists an R-homomorphism

θ : F → K such that θ|K0 = 1K

Proof. Let B be a basis for F .

(1) ⇒ (2): Assume that B is R-flat and v ∈ K. Then v =
∑s

i=1 xniai for some xni ∈
B and ai ∈ R for some s. Set A =

∑s
i=1Rai a left ideal in R. Since B is R-flat,

v ∈ K ∩ FA = KA. There exist finitely many kj, j = 1, . . . ,m, in K such that v =∑m
j=1 kjcj with cj ∈ A. Write each cj =

∑s
i=1 rjiai with rji ∈ R for all i, j. Then

v =
∑s

i=1(
∑m

j=1 kjrji)ai =
∑r

i=1 k
′
iai where k′i =

∑m
j=1 kjrji ∈ K. As F is R-free, there

exists an R-homomorphism θ : F → K satisfying xnj 7→ k′j, j = 1, . . . ,m, and x 7→ 0 for
all x ∈ B \ {xn1 , . . . , xnm}. By construction, θ(v) = v.
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(2) ⇒ (1): Let A be a left ideal in R. We want to show that K ∩ FA ⊂ KA (as
KA ⊂ K ∩ FA ⊂ KA is always true). Let v ∈ K ∩ FA. We can write v =

∑s
i=1 xniai for

some xni ∈ B and ai ∈ A for some s. By (2), there exists an R-homomorphism θ : F → K
satisfying v = θ(v) =

∑s
i=1 θ(xni)ai lies in KA, since θ(xni) ∈ K for all ni.

(3)⇒ (2) is immediate.

(2) ⇒ (3): We induct on n. Assume the case n − 1 is true. Let v′i = vi − θn in K,
i = 1, . . . , n, (so vn = 0) where θn satisfies (2). By induction, there exists θ′ : F → K
that fixes all the v′i. Define θ = 1F − (1F − θ′)(1F − θn), an endomorphism of F satisfying
θ(vn) = vn and θ(vi) = vi − (1F − θ′)(v′i) = 0 for i = 1, . . . , n− 1. To finish, we need only
show that θ(F ) ⊂ K. Since θ = −θ′θn + θ′ + θn and θ′(K) ⊂ K and θn(F ) ⊂ K, this
follows. �

Corollary 131.16. Let R be a right Noetherian ring and M be a finitely generated right
R-module. Then M is flat if and only if M is projective.

Proof. If M is a finitely generated right R-module, we have an exact sequence

0→ K → F →M → 0

with F a finitely generated free. Then K is finitely generated as R is right Noetherian.
We may assume that K → F is the inclusion. If K = Rv1 + · · ·+Rvn, then and M is flat,
there exists θ : F → K such that θ(vi) = vi for all i. Therefore, the inclusion is a split
monomorphism so a direct summand of F . Therefore, M is also isomorphic to a direct
summand of F , hence projective. �

Exercises 131.17. 1. If (Fi, θij)I is a directed system of flat right (respectively left) R-
modules over a directed partially ordered set I, show that lim−→Fi is flat.

2. Let B be an (R-S)-bimodule that is S-flat and C an injective left R-module. Show
that HomR(B,C) is an injective left R-module.

3. Let M be a finitely presented right (respectively, left) R-module. Then M is flat if and
only if M is projective.

132. Tor

Just as we developed a cohomology theory Ext∗R for HomR, we can define a homology
⊗R. Since the statements are similar as well as the proofs, we briefly discuss the common
results and let the reader fill in not only all the proofs but even most of the statements.

Let A be a right R-module and B a left R-module. Let PA → A→ 0 and PB → B → 0
be projective resolutions. Define TorR∗ (A,B) := H∗(PA⊗RB) and TorR∗ (A,B) := H∗(A⊗R
PB).

Just as for Ext∗R, we see that these abelian groups are independent of projective
resolutions, Ext0

R is (essentially) HomR, and lead to long exact sequences in homology
together with naturality between homomorphisms of short exact chain complexes and
their homology. We also know that TorRn (A,B) = 0 for n > 0 if A is projective and

TorRn (A,B) = 0 for n > 0 if B is projective, since if P is projective, then P
1P−→ P → 0

is a projective resolution of P . Moreover, the coproduct of right (respectively, left) R-
modules commutes with Tor∗n in the left (respectively, right) variable. What is missing is
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the determination of when all positive homology vanishes and to connect it to flatness.
Schanuel’s Lemma does not hold for flat modules, but the key to equality of Ext and
Ext was dimension shifting. Of course, if R is a commutative ring, the homologly groups
constructed are R-modules.

We need to show the following.

Theorem 132.1. Let F be a right R-module. Then the following are equivalent:

(1) F is R-flat.
(2) TorRn (F,B) = 0 for all n ≥ 1.
(3) TorR1 (F,B) = 0.
(4) TorR1 (F,B) = 0 for all cyclic left modules B.

We have an analogous equivalence for left R-modules.

Proof. (1) ⇒ (2): Let P∗
ε−→ B → 0 be a projective resolution of B. As F is

flat, F⊗R take exact sequences to exact sequences. In particular, · · · → F ⊗R P1 →
F ⊗R P0

1F⊗ε−−−→ F ⊗RB → 0 is exact. So we have Hn(F ⊗R Pi) = 0 for all i ≥ 0 and n ≥ 1.
Therefore, TorRn (F,B) = 0 for all n ≥ 1.

(2)⇒ (3) and (3)⇒ (4) are immediate

(4) ⇒ (1): We use the criterion given by Corollary 131.11 to establish flatness. Let

0 → A
inc−→ R → B → 0 be an exact sequence of left R-modules with A a finitely

generated left ideal. In particular,

TorR1 (F,B)→ F ⊗R A
1F⊗inc−−−−→ F ⊗R R.

is exact. By (4), 1F ⊗ inc is monic. Therefore, F is flat as tensoring is right exact. �

The theorem says that we can dimension shift using the long exact sequence in ho-
mology So from this we can deduce, as before the following:

Theorem 132.2. Let A be a right R-module and B a left R-module. Then TorRn (A,B) =
TorRn (A,B) for all n ≥ 0 with TorR0 (A,B) = A⊗R B.

Of course, we write TorRn (A,B) for both of these.

Corollary 132.3. Let F∗ → A→ 0 be a flat R resolution of the right R-module A. Then
TorRn (A,B) = Hn(F∗⊗RB) for all R-modules B and n ≥ 0. We also have if F ′∗ → B → 0
is a flat R resolution of the left R-module B. Then TorRn (A,B) = Hn(A ⊗R F ′∗) for all
R-modules B and n ≥ 0.

Proof. Showing dimension shifting only depended on projectivity was used only to
show the vanishing of TorR1 (P,B) when P was a projective right R-module. �

Dimension shifting also shows implies

Corollary 132.4. Let (FA)∗ → A → 0 be a flat R-resolution of the right R-module A
and FB∗ → B → 0 a flat R-resolution of the left R-module B. Then the following are
true:

(1) H∗(FA ⊗R B) ∼= TorR∗ (A,B) ∼= H∗(A⊗R FB).
(2) TorR∗ (A,B) is independent of flat resolutions of either A or B.
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In particular, Tor(A,B) can be computed using flat resolutions.

The therefore have a new homological dimension.

Definition 132.5. Define the right (respectively, left) flat dimension of a right R-module
M to be

rfdRM := max{n | TorRn (M,N) 6= 0 for all left R-modules N}
(or infinity if no minimum exists) and the right global weak dimension of R to be

rweak dim(R) = max{rfdR(M) |M a right R-module}
(or infinity if no maximum exists). Of course, we have the analogue on for left modules
and we denote these by lfd and lweak dim

As projective modules are flat, we have rweak dim(R) ≤ rgl proj dim(R) and lweak dim(R)
≤ lgl proj dim(R) = gl dim(R). Since TorR∗ is determined by flat modules, we can have
inequality. However, we do have, in view of Theorem 132.1, which holds for right and left
R-modules:

Lemma 132.6. For any ring R, we have lweak dim(R) = rweak dim(R).

We let weak dim(R) = lweak dim(R) = rweak dim(R) and call it the weak dimension
of R.

Theorem 132.7. Let R be a commutative Noetherian ring. Then weak dim(R) = gl dim(R).

Proof. If M is a finitely generated right R-module, then there exists a projective
resolution P∗ → M → 0 with all Pi finitely generated, since submodules of a finitely
generated submodule is finitely generated (i.e., all finitely generated modules are finitely
presented). As projective modules are flat, by Theorem 132.1 we have lfd(M) ≤ lpd(M).
Suppose that lfd(M) = n. Let N = ker(Pn−1 → Pn−2). Then N must be flat by
assumption. As it is finitely generated, it is a finitely generated flat R-module so projective
by Corollary 131.16. Therefore, lpd(M) ≤ lfd(M) also. �

It can be shown if K is field, then lgl dim(K[t1, . . . , tn]) = n. This is called the Hilbert
Syzygy Theorem. [If the nth kernel of Pn−1 → Pn−2) where P∗ → M → 0 is a projective
resolution of M is called an nth syzygy of M .]

Exercises 132.8. 1. Let R be a PID and M an R-module. Show M is flat if and only if
M is R-torsion-free..

2. Let M be a finitely presented right R-module. Show M is flat if and only if M is
projective.

3. Prove Corollary 132.4.

4. Let (Ai, θij)I be a directed system with I a directed partially order set of right R-
modules. Show that TorRn (lim−→Ai, B) ∼= lim−→TorRn (Ai, B) for every left R-module B. We
have an analogous result for left R-modules AiI

5. Let M be a right R-module. Show M is flat if and only if TorR1 ((M,R/A) = 0 for all
left ideals A in R.

6. Let R be a ring. Show that the following are equivalent:
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(i) All left ideals of R are flat.
(ii) All right ideals of R are flat.

(iii) weak dim(R) ≤ 1.
(iv) Tor2

R(M,N) = 0 for all right R-modules M and left R-modules N .

133. Regular Local Rings II

We wish to give an application of global dimension to ring theory. Our main motivation
is to prove that a regular local ring is a UFD without the characteristic assumption that
we made before. The proof of this showed the power of using homological algebra in
commutative algebra. Much of our development is also applicable to all rings, not just
commutative ones.

We know if ϕ : R → S be a ring homomorphism and N an S-module, then the pull
back via rm := ϕ(r)n for r ∈ R, n ∈ N , makes M into an R-module. We leave it as an
exercise to show that the pullback takes exact sequences of S-modules to exact sequences
of R-modules.

Theorem 133.1. (General Change of Rings Theorem) Let ϕ : R → S be a ring homo-
morphism and M an S-module. Then

lpdRM ≤ lpdR S + lpdSM.

Proof. We may assume that the right hand side is finite. Let n = lpdR S and
i = lpdSM . We induct on i.

i = 0: In this case we have M is S-projective, so there exists an S-module M ′ satisfying
M ′∐M is S-free. The projective dimension of a direct sum of modules is equal to the
supremum of the projective dimension of its direct summands (which we leave as any
exercise). In particular,

lpdRM ≤ lpdR(M ′
∐

M) = lpdR S = lpdR S + lpdSM.

i > 0: In this case we know that M is not S-projective. Choose a free S-module P
satisfying 0 → N → P → M → 0 is an exact sequence of S-modules. In particular,
the pullback of this sequence is an exact sequence of R-modules. Since P is S-free, and
M not S-projective, we know that lpdSM = lpdS N + 1 by Exercises 128.30(128.30) and
128.30(3). By induction lpdRN ≤ lpdR S+lpdS N = n+i−1. Since P is a free S-module,
it follows that lpdR P = lpdR S = n. We apply Exercises 128.30(128.30) and 128.30(3).

If lpdRN > lpdR P, then lpdRM = lpdRN + 1 ≤ n+ i

If lpdRN = lpdR P, then lpdRM ≤ lpdR P + 1 ≤ n+ 1 ≤ n+ i

If lpdRN < lpdR P, then lpdRM = lpdR P + 1 = n+ 1 ≤ n+ i.

The result follows. �

Examples 133.2. Let R be a ring.

1. R[t] is a R-module with t central. Therefore, any R[t]-module satisfies lpdRM ≤
lpdR[t] M be the theorem. But if M is an R-module, then as an R[t]-module, tm = 0 for
all m ∈M . It follows that lpdRM ≤ lpdR[t] M . In particular lgl dimR ≤ lgl dimR[t].
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2. Let x ∈ R be a central and not a zero divisor in R and : R→ R/(x) be the canonical
ring epimorphism where R/(x) = R/RxR. Then lpdRM ≤ lpdR +1.

Proof. We may assume that lpdRM = n <∞. By the General Change of Rings
Theorem 133.1, it suffices to show lpdRR ≤ 1. Since x is not a zero divisor, the

sequence 0→ R
x−→ (x)→ 0 of R-modules is exact, hence (x) ∼= R is R-free. Therefore,

the exact sequence 0→ (x)→ R→ R→ 0 of R-modules shows that lpdRR ≤ 1. �

3. Let (R,m) be a commutative local ring with 0 6= m = (x) satisfying xn = 0 but
xn−1 6= 0 for some n > 1. Then pdRR/m =∞. In particular, gl dimR =∞.

Proof. As m = (x), our hypothesis implies that annR(m) = (xn−1) and annR(xn−1) =
(x) = m. Therefore, we have exact sequences of R-modules:

0→ m→R −→ R/m→ 0

0→ (xn−1)→R x−→ R/m→ 0

0→ m→R xn−1

−−−→ R/(xn−1)→ 0.

Hence, we have P(R/m) = [m], P2(R/m) = [(xn−1)], P3(R/m) = [m], and Pn+2(R/m) =
Pn(R)/m) for all n. Since R is local, any finitely generated projective R-module is R-
free by Lemma 127.2. But (y) < R cannot be R-free if annR y > 0. So m and (xn−1)
are not free. It follows that the sequence R→ R/m→ 0 cannot be extended to a finite
projective resolution. �

Note: We shall see below that if x is also a non-unit in the above, that pdRR ≤ 1.

4. Let R be a discrete valuation ring that is not a field. Then m = (x) > 0. As m is R-free,
pdRR/m = 1. Let : R→ R/(x2). Then by the previous example, lgl dimR/m =∞.
So we can have inequality in Example 2.

Theorem 133.3. (First Change of Rings Theorem) Let R be a ring and x ∈ R a central
element that is not a zero-divisor. Let : R→ R/(x) be the canonical ring epimorphism
and 0 6= M an R-module (so x /∈ R×) satisfying lpdRM is finite. Then lpdRM =
1 + lpdRM .

Proof. By Example 133.2(2), we have lpdR ≤ 1 + lpdRM , so we need only show the
converse inequality. Let n = lpdRM . We prove the result by induction on n.

n = 0: We show that M cannot be R-projective, i.e., lpdRM = 1. In particular, this
establishes the Note in 133.2(2):

If x /∈ R×, then left multiplication λx : R → R by y 7→ xy in a monomorphism of R-
modules. It follows that λx : P → P by y 7→ xy is a monomorphism for all free R-modules
P and hence all projective R-modules P . We are given that the R-module M is not zero.
Since xM = 0, M cannot be R-projective.

n = 1: Suppose that lpdRM ≤ 1. Then we have an exact sequence of R-modules

0 → P → F
ϕ−→ M → 0 with F a free R-module and with P ⊂ F and P a projective

R-module. Since xM = 0, we have xP ⊂ F . In particular, ϕ induces a sequence

(*) 0→ P/xF → F/xF
ϕ−→M → 0
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of R-modules, hence of R-modules, as xF ⊂ xP . Moreover, the sequence (*) is exact,
since ϕ(z) ∈ xM = 0 if and only if z ∈ P . We know that R⊗R takes R-free (respectively,
R-projective) modules to R-free (respectively, R-projective) modules. Therefore, R⊗P =
P/xP is R-projective and F = F/xF is R-free. Since lpdRM = 1, P/xP must be R-
projective. As P ⊂ F implies xP ⊂ xF , the exact sequence

0→ F/xP → P/xP → P/xF → 0

must be a split exact sequence of R-modules. In particular, xF/xP must also be R-
projective. But we also have λx : F → F by y 7→ xy is a monomorphism of R-modules.
It follows that M ∼= F/P ∼= xF/xP is projective. This contradicts our hypothesis and
completes the n = 1 case.

n > 1: Choose a free R-module F and an exact sequence 0 → N → F → M → 0 of
R-modules. Then lpdRN = n− 1. By the n = 0 case, lpdR = 1. Hence lpdRN = n− 1
and lpdRM = lpdRN + 1 = n+ 1 by induction. �

Corollary 133.4. Let R be a ring. Then lgl dimR[t] ≥ lgl dimR + 1.

Proof. Apply the theorem to R[t]→ R[t]/(t) = R. �

Notation 133.5. Let M be an R-module. Set M [t] := R[t]⊗RM , an R[t]-module.

Lemma 133.6. Let M be an R-module. The lpdR[t] M [t] = lpdRM .

Proof. R[t] is R-free so R-flat. In particular, R[t]⊗R takes R-free modules to R[t]-
free modules, hence R-projective modules to R[t]-projective modules. Therefore, R[t]⊗R
takes projective resolutions of an R-module M to projective resolutions of R[t]-modules
M [t]. In particular, lpdRM ≥ lpdR[t] M [t]. Suppose that n < lpdRM . We must show if
P is the projection operator, then PnM [t] 6= 0 in R[t]. This is equivalent to showing that
M is a projective R-module if M [t] is a projective R[t]-module. So assume that M [t] is
R[t]-projective. Since R[t] is R-free. R[t] ∼= RJ for some J . Therefore, M [t] ∼= MJ as
R-modules. Since M [t] is a direct summand of R[t]I , some I, M is a direct some of RL,
for some L. Therefore, M is projective. �

Theorem 133.7. lgl dimR[t] = 1 + lgl dimR.

Proof. Let M be an R[t]-module. By Corollary 133.4, we need only show that
lpdR[t] M ≤ lgl dimR+ 1. To do this we construct the generalization of the characteristic
sequence done in ??, i.e., we construct an exact sequence

(*) 0→M [t]
ψ−→M [t]

ϕ−→M → 0.

If we show that (*) is exact then the lemma implies

lpdR[t] M ≤ 1 + lpdR[t]M [t] = 1 + lpdRM ≤ 1 + lgl dimR

and we would be done.

Define

ψ : M [t]→M [t] by ti ⊗m 7→ ti(1⊗ t− t⊗ 1)m

ϕ : M [t]→M by ti ⊗m 7→ tim.
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In particular,

ψ(
n∑
i=0

ti ⊗mi) = 1⊗ tm0 +
n∑
i=1

ti ⊗ (tmi −mi−1)− tn+1 ⊗mn.

Clearly, imψ ⊂ kerϕ. So suppose that ψ(
∑n

i=0 t
i ⊗mi) = 0. Since M [t] =

∐
Rti ⊗R M

as R-modules, we have

0 = −mn = tmn −mn−1 = · · · = tm1 −m0.

It follows that mi = 0 for all i and hence ψ is a monomorphism. To finish, we must show
that imψ = kerϕ. Let x ∈ kerϕ, say x =

∑
ti ⊗ vi, so

∑
tivi = ψ(x) = 0. Recursively

define mn−1, . . . ,m0 in M by

v0 := −tm0

v1 := tm1 −m0

...

vn1 := tmn1 −mn−2

vn := −mn−1.

Then ψ(
∑
ti ⊗mi) = x. �

Corollary 133.8. Let R be an Artinian semi-simple ring. Then lgl dimR[t1, . . . , tn] = n

Corollary 133.9. (Hilbert Syzygy Theorem (Weak Form)) Let K be a field. Then
gl dimK[t1, . . . , tn] = n.

The full Hilbert Syzygy Theorem says that any K[t1, . . . , tn]-module has an acyclic
resolution of length at most n by free R-modules.

Corollary 133.10. Let R be a PID that is not a field. Then gl dimR[t1, . . . tn] = n+ 1.

Proof. Every submodule of an R-free if free. �

Theorem 133.11. (Second Change of Rings Theorem) Let R be a ring and x ∈ R be a
central non-unit and not a zero-divisor. Let : R→ R/(x) be the canonical epimorphism
and M an R-module. If x is not a zero-divisor of M , then lpdRM/xM ≤ lpdRM .

Proof. We may assume that n = lpdRM <∞. We induct on n.

n = 0: We have M/xM = R⊗RM . Therefore, if M is R-free (respectively R-projective),
then so is M/xM .

n > 0: Choose an exact sequence of R-modules

(1) 0→ N ↪→ F
ϕ−→M → 0

with F R-free. Since R⊗R is right exact, we have a commutative exact diagram

R⊗R N −−−→ R⊗R F
1⊗ϕ−−−→ R⊗RM −−−→ 0

nat

y∼= nat

y∼= nat

y∼=
N/xN −−−→ F/xF −−−→

ϕ
M/xM −−−→ 0.
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As x is not a zero divisor in R, x is not a zero divisor in F . Hence x not a zero divisor in
N ⊂ F .

Claim. The sequence of R-modules

(2) 0→ N/xN → F/xF
ϕ−→M/xM → 0

is exact:

Since R⊗R is right exact, we need only show that N/xN → F/xF is monic. To do this
it suffices to show N ∩ xF = xN . It is clear that N ∩ xF ⊃ xN . We show the opposite
inclusion. Let y ∈ N ∩ xF . Then y = xf for some f ∈ F and 0 = ϕ(y) = xϕ(f). Since x
is not a zero divisor on M , ϕ(f) = 0, i.e., y ∈ xN . This proves the Claim.

If lpdRM = 1 equation (1) is a projective resolution of M . Therefore, by the n = 0 case,
equation (2) is a projective resolution for M/xM . So we may assume that n > 1. By
equation (1), lpdRN = n − 1. By induction, lpdRN/xN ≤ lpdRN = n − 1. Therefore,
by equation (2) we have lpdRM/xM ≤ lpdRN/xN + 1 ≤ n. �

Remark 133.12. In the above, lpdRR = 1. It follows that TorRi (R, M) = 0 for all
R-modules M and for all i > 1. This means that x is a zero divisor on an R-module M
if and only if TorR1 (R,M) = 0:

Proof. (⇒): This follows from the exactness of equation (1) implies the exactness
of equation (2).
(⇐): Applying the long exact sequence of Tor on the short exact sequence 0 → (x) →
R→ R→ 0 yields this. �

We need the analog of the Jacobson radical and Nakayama’s Lemma in the non-
commutative case. We leave the proofs as exercises.

Theorem 133.13. Let R be a ring and a ∈ R. Then the following are equivalent.

(1) If M is a simple R-module, then aM = 0.
(2) a belongs to every maximal left ideal of R.
(3) 1− ya has a left inverse for all y ∈ R.
(4) 1− xay has an inverse for all x, y ∈ R.

The right analogs of the above hold.

We let J(R) be the set of elements satisfying the theorem. It is called the Jacobson
radical of R.

Lemma 133.14. Let R be ring. Then J(R) is a two-sided ideal. Moreover, it is the
intersection of all left maximal ideals in R as well as the intersection of all right maximal
ideals in R.

The analogue of Nakayama’s Lemma also holds.

Lemma 133.15. (Nakayama’s Lemma) Let M be a nonzero finitely generated R-module.
Then J(R)M 6= M and if N ⊂ M is a submodule satisfying M = N + J(R)M , then
M = N .
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Theorem 133.16. (Third Change of Rings Theorem) Let R be a left Noetherian ring
and J(R) = ∩m, the intersection of all left maximal ideals in R. Suppose that x ∈ J(R)
is central (so not a unit) and not a zero divisor in R and : R → R/(x), the canonical
ring epimorphism. Let M be a nonzero finitely generated R module such that x is not a
zero divisor of M . Then lpdRM = lpdRM/xM .

Proof. By the Second Change of Rings Theorem 133.11, lpdRM ≥ lpdRM/xM , so
we need only show that lpdRM ≤ lpdRM/xM . We may assume that n = lpdRM/xM <
∞. Since x ∈ J(R), we know that xM < M by Nakayama’s Lemma 133.15. We induct
on n.

n = 0: We first show if M = M/xM is R-free, then M is R-free. Let : M →
M/xM . Choose v1, . . . , vm in M so that B = {v1, . . . , vm} is a basis for M . We show
that {v1, . . . , vm} is a basis for M . It spans by Nakayama’s Lemma 133.15. Suppose that∑m

i=0 ai1vi = 0 with ai1, . . . , am1 ∈ R. Since B is a basis for M , we have ai1 ∈ (x), i.e.,
ai1 = xai2 for some ai2 ∈ R, as x is central in R, for i = 1, . . . ,m. So x(

∑m
i=0 ai2vi) = 0.

As x is not a zero divisor on M , we must have
∑n

i=1 ai2vi = 0. Iterating this process, we
find ai3, ai4, . . . satisfying the ascending chain Rai1 ⊂ Rai2 ⊂ Rai3 ⊂ · · · for i = 1, . . . ,m.
As R is left Noetherian, this chain stabilizes. So here exists a j such that Raij = Rai,j+1

and by construction aij = xai,j+1 for i = 1, . . . ,m. Let ai,j+1 = yiaij for some yi ∈ R for
i = 1, . . . ,m. It follows that (1 − xyi)aij = 0 for i = 1, . . . ,m. Since x ∈ J(R), we have
1 − xyi ∈ R× by Theorem 133.13. It follows that aij = 0 for i = 1, . . . ,m. This shows
that if M is R-free, then M is R-free.
Next assume that M is R-projective. As in the proof of the Second Change of Rings
Theorem 133.11, we have exact sequences

(1) 0→ N ↪→ F
ϕ−→M → 0

(2) 0→ N/xN → F/xF
ϕ−→M/xM → 0

with F a finitely generated free R-module (as M is finitely generated) and x not a zero
divisor on N . Since R is left Noetherian, N is also finitely generated. Since M is R-
projective, equation (2) splits. Therefore, F/xF ∼= N/xN

∐
M/xM is R-free. Set A =

M
∐
N . Then A is a finitely generated R-module satisfying A/xA ∼= F/xF is R-free.

Therefore, by the first part of the proof, A is R-free. Hence P is R-projective as needed.

Suppose that n > 0. As above we get exact sequences (1) and (2). If n = 1, then N/xN
is R-projective, so N is R-projective by the n = 0 case, hence lpdRM ≤ 1. It n > 1, then
by induction n− 1 = lpdRN = lpdRN/xN . Hence lpdRM ≤M , as needed. �

Theorem 133.17. Let R be a left Noetherian ring, x ∈ R is central and not a zero-
divisor, and : R→ R/(x), the canonical ring epimorphism. Suppose that x ∈ J(R) and
lgl dimR = n <∞. Then lgl dimR = n+ 1.

Proof. Let A ⊂ R be a left ideal. It is finitely generated as R is left Noetherian. Since
x is not a zero divisor on R, it is not a zero divisor on A, so by the Third Change of Rings
Theorem 133.16, lpdRA = lpdRA/xA ≤ lgl dimR = n. As 0→ A→ R→ R/A→ 0 is an
exact sequence of R-modules, lpdRR/A ≤ 1+lpdRA ≤ n+1. Since the reverse inequality



782 XXI. INTRODUCTION TO HOMOLOGICAL ALGEBRA

holds by the First Change of Rings Theorem 133.3, the result follows by Auslander’s
Theorem ?? �

We now look at the case when R is a commutative ring, in particular the case of local
Noetherian rings. We use results that we proved in commutative algebra.

Definition 133.18. Let R be a commutative ring. An ordered sequence of elements
x1, . . . , xn in R is called an R-sequence of length n if (x1, . . . , xn) 6= R and xi+1 /∈
zd
(
R/(x1, . . . xr)

)
for all i < n. The depth of R is defined to be

depthR := max{n | x1, . . . , xn is an R-sequence in R}.

A Noetherian local ring (R,m) is called Cohen-Macaulay or a CM ring if depthR = dimR.
Note that if (R,m) is a local ring, then any R-sequence lies in m.

In general, the order of the elements in an R-sequence is crucial. However, it turns
out that for a local Noetherian ring it does not matter. We will not prove this, nor need
it.

Proposition 133.19. Let R be a commutative ring and P be a prime ideal in R. Suppose
that x1, . . . , xn is an R-sequence lying in P. Then htP ≥ n. In particular, dimR ≥
depthR.

Proof. Since x1 /∈ zd(R), x1 /∈ p for any p ∈ Min(R). In particular, htP ≥ 1. Let
: R → R/(x1) be the canonical epimorphism. Then x2, . . . , xn is an R-sequence by

the Third Isomorphism Theorem. By induction, htP ≥ n − 1. Hence htP ≥ n by the
Correspondence Principle. The result follows. �

Corollary 133.20. Let (R,m) be a Noetherian local ring. Then depthR ≤ dimR ≤
V- dimR.

Corollary 133.21. Let (R,m) be a Noetherian local ring. If m can be generated by an
R-sequence of length d, then R is a regular local ring (and Cohen-Macaulay) of dimension
d.

Proposition 133.22. Let (R,m) be a regular local ring. Then R is a Cohen-Macaulay
ring and any minimal generating set for m is an R-sequence.

Corollary 133.23. Let (R,m) be a regular local ring and x1, . . . , xd a minimal generating
set for m. Then R/(x1, . . . , xi) is a regular local ring of dimension d− i.

Theorem 133.24. Let (R,m) be a regular local ring. Then dimR = gl dimR

Proof. Let d = dimR. If d = 0, R is a field and the result follows. So suppose d > 0
and let x1, . . . , xd be a minimal generating set for m. Then R/(x1) is regular of dimension
d − 1 and x1 /∈ zd(R). Since x1 ∈ J(R) = m, gl dimR = (d − 1) + 1 = d by Theorem
133.17 and induction. �

We want to prove the converse of this theorem. This is a famous theorem of Serre.
We need two lemmas.
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Lemma 133.25. Let (R,m) be a Noetherian local ring and M a finitely generated R-
module with M = Rm1 + · · ·+Rmn and n minimal. Let F be an R-free module on basis
{v1, · · · , vn} and ϕ : F → M the R-homomorphism defined by vi 7→ mi for i = 1, . . . , n.
Then kerϕ ⊂ mF ∼=

∐n
i=1 m.

Proof. If the result is false then there exist ci ∈ R, i = 1, . . . , n, satisfying
∑n

i=1 civi ∈
kerϕ \mF , i.e., some ci /∈ m. But then ci ∈ R×, contradicting the minimality of n. �

Definition 133.26. Let R be a commutative ring M = Rm1 + · · ·+Rmn with n minimal,
F a free R-module of rank n. Then an exact sequence 0→ K → F →M → 0 is called a
minimal presentation of M .

Using the Primary Decomposition for ideals in a commutative Noetherian ring, we
establish the following lemma.

Lemma 133.27. Let (R,m) be a Noetherian local ring. Suppose that m ⊂ zd(R) and M
is a finitely generated R-module. Then either pdRM = 0 or pdRM =∞.

Proof. Suppose that there exists a finitely generated R-module M satisfying 0 <
pdRM <∞. By dimension shifting (Corollary 128.24), we may assume that there exists
a finitely generated R-module N such that pdRN = 1. Therefore, we may assume that
M = N . Let 0→ K → Rn →M → 0 be a minimal presentation of M (some n). Since
pdRM = 1 and 0 6= K, K must be R-projective. As R is a local Noetherian ring, K must

be R-free by Lemma 127.2. We know that m ⊂ zd(R) =
⋃

AssR(0)

p and |AssR(0)| < ∞ by

Proposition 94.15. Therefore, by the Prime Avoidance Lemma 93.16 and the maximality
of m ∈ AssR(0), we see that there exists a nonzero x ∈ R satisfying m = annR(x).
Consequently, xm = 0. By Lemma 133.25 above, K ⊂ mRn. So xK = 0. This contradicts
K is a nonzero free R-module. �

Theorem 133.28. (Serre) Let (R,m) be a Noetherian local ring that is not a field. Sup-
pose that pdRm = n < ∞. Then R is a regular local ring of dimR = gl dimR = n + 1.
In particular, R is regular if and only if gl dimR ≤ ∞.

Proof. We induct on n. We first show that R is a regular local ring.

n = 0: Since m is R-projective, it is R-free by by Lemma 127.2. But an ideal of R is
R-free if and only if it is a principal ideal. As R is not a field, m = (x) for some nonzero
x ∈ R and x is not a zero divisor in R. In particular, x is an R-sequence. It follows that
R is a regular local ring of dimension one.

n > 0: Let d = dimR <∞ (by Corollary 97.22 of the Principal Ideal Theorem 97.19). By
Lemma 133.27 above withM = m, 0 < m does not lie in zd(R). If d = 0, then m ∈ Min(R)
using Proposition 94.14. But this means that m ⊂ zd(R) which is impossible. Therefore,
we must have d > 0.

Claim. m \m2 6⊂ zd(R) =
⋃

AssR(0)

p:

Suppose the claim is false. By Nakayama’s Lemma 93.10, we have m2 < m. By Proposition

94.15, |AssR(0)| < ∞. Consequently, there exists a prime ideal m ⊂ p for some p ∈
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AssR(0) by the Prime Avoidance Lemma 93.16. Therefore, m = p ∈ AssR(0), so m ⊂
zd(R) which is a contradiction. This proves the claim.

Therefore, there exists x ∈ m \ m2 with x /∈ zd(R). Let : R → R/(x) be the canonical
epimorphism. As every minimal prime lies in zd(R) by Proposition 94.14, x lies in no
minimal prime. Therefore, dimR = htm = htm− 1 = dimR− 1 = d− 1. If R is a field,
then R is a regular local ring, hence a domain, of dimension one, so m = (x) is R-free
generated by an R-sequence. In particular, pdRm = 0 and gl dim R = 1, so we are done.
Therefore, we may assume that d > 1, or if d = 1, then R is not a field.

Claim. As R-modules, m/(x) is isomorphic to a direct summand of the R-module m/xm:

[To avoid confusion, we will not use .] Since x /∈ m2, there exists a minimal generating
set x, y1, . . . , yr for m. Set

S = xm + (y1, . . . , yr).

So m = S + (x) and clearly S ∩ (x) ⊃ xm. We shall show that S ∩ (x) = xm. Let
z ∈ S ∩ (x) and write

a = ax = b1y1 + · · · bryr + cx

with a, b1, . . . , br ∈ R and c ∈ m. Going modulo m2, we see that a− c, b1, . . . , br all lie in
m. Therefore, z = ax ∈ xm and S ∩ (x) = xm as needed. Thus we have

m

xm
=
S + (x)

S ∩ (x)
=

S

S ∩ (x)
+

(x)

S ∩ (x)

and (check)
S

S ∩ (x)
∩ (x)

S ∩ (x)
= 0.

So
m

xm
=

S

S ∩ (x)
⊕ (x)

S ∩ (x)
.

As
(S)

S ∩ (x)
=
S + (x)

(x)
=

m

(x)
,

the claim follows.

By the Third Change of Rings Theorem 133.16, we have pdRm/xm = pdRm = n. By the
Claim, pdRm/(x) ≤ pdRm/xm = n by Exercise ??(2). By induction on d, if m = m/(x),
then (R,m) is a regular local ring of dimension d−1, so d > 1, and pdRm = d−2. We know
that x is an R-sequence and m can be generated by the R-sequence y1, . . . yd−1, where
y1, . . . , yd−1 lie in m. It follows easily that x, y1, . . . , yd−1 is an R-sequence generating m.
Therefore, (R,m) is a regular local ring of dimension d.

To finish, we must show d = n + 1. Since R is a regular local ring, it is a domain by
Theorem 98.10. In particular (x) is R-free, so pdR(x) = 0. Since pdRm > 0, the exact
sequence

0→ (x)→ m→ m/(x)→ 0

implies that pdRm = pdRm where m = m/(x). By the First Change of Rings Theorem
133.3, pdRm = 1 + pdRm = d− 1. Therefore, pdRm = d− 1 as required. �
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Remark 133.29. Note that Serre’s Theorem says that a Noetherian local ring (R,m)
has finite global dimension if and only if pdRm is finite.

Corollary 133.30. ;f (Krull’s conjecture) Let (R,m) be a regular local ring and p a prime
ideal in R. Then (Rp, pp) is a regular local ring.

Proof. If gl dimR is finite, then gl dimRp is finite. In fact, we have gl dimRp ≤
gl dimR as Rp is R-flat and any Rp-module can be written as Rp⊗RN for some R-module
N . The result follows. �

Definition 133.31. A commutative Noetherian ring is called regular if Rm is a regular
local ring for all maximal ideals m in R.

By Krull’s Conjecture, we have

Corollary 133.32. R is regular ring if and only if Rp is a regular local ring for all
p ∈ Spec(R).

Corollary 133.33. Let R be a commutative Noetherian ring. Then R is a regular ring
if and only if every finitely generated R-module M satisfies pdRM <∞.

Proof. (⇐): If m is a maximal ideal in R, then pdRm
mm ≤ pdRm <∞ as htRm mm ≤

htRm <∞.

(⇒): As R is Noetherian and M is finitely generated, there exists a projective resolution
P∗ → M → 0 with each Pi a Noetherian R-module and all (syzygies) KiF = ker(Pi →
Pi−1) are finitely generated. For each p ∈ Spec(R), there exists an integer n = np

such that (Kn)p is a finitely generated free Rp module as Rp is a regular local ring..
Let { 1

s1
x1, . . . ,

1
sn
xn} be a basis for (Kn)p with si /∈ R \ p, 1 = 1, . . . , n. Let fp =

s1 · · · sn ∈ R \ p. Then D(fp) is an open set in Spec(R). As Spec(R) is quasi-compact
(cf. Proposition 92.7), Spec(R) has a finite open subcover of {D(fp) | p ∈ Spec(R)}, say
{D(fp1), . . . , D(fpm)}. Let N = max{npi | 1 ≤ i ≤ m}. Then KN is finitely generated
and locally free so projective. Therefore, 0 → KN → PN → · · · → P0 → M → 0 is a
projective resolution of M . �

Remark 133.34. There exist regular rings of infinite global dimension. Some authors
also call a commutative Noetherian ring regular if R also has finite global dimension.

Theorem 133.35. (Nagata) Let R be a Noetherian domain and Γ a set of prime elements
in R. Suppose that the localization S−1R is a UFD where S is the multiplicative group
generated by Γ. Then R is a UFD.

Proof. By Theorem 31.1, it suffices to show every prime ideal of height one is prin-
cipal. Let p be a prime ideal of height one in R. If p∩S 6= ∅, then there exist an x ∈ Γ∩p
as p is a prime ideal. Therefore, 0 < (x) ⊂ p. As (x) is a prime ideal, ht(p) > 1, a
contradiction. So we may assume that p ∩ S = ∅. By assumption, there exist an x ∈ p
such that S−1p = S−1(x). By Noetherian induction, there exists such an x in P with (x)
maximal. In particular, if π ∈ Γ, then π 6 | x. Let y ∈ p. Then sy = ax, for some s ∈ S
and a ∈ R. Write s = π1 · · · πn, π1, . . . πn in Γ. Since πi 6 | x, we must have πi | a for
i = 1, . . . , n. Induction on i shows that s | a in R. Therefore, y ∈ (x). Hence p = (x). �
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Lemma 133.36. Let R be a domain and A ⊂ R an ideal. Suppose that A
∐
Rn ∼= Rn+1

for some n. Then A is a principal ideal.

We give two proofs.

Proof. We may view A
∐
Rn = A⊕Rn ⊂ R⊕Rn = Rn+1. Let ϕ : Rn+1 → A⊕Rn

be an isomorphism. Let {e0, . . . , en} be a basis for Rn+1. Let {f0} be a basis for R
and {f1, . . . , fn} a basis for Rn, So {f0, . . . , fn} is a basis for R ⊕ Rn. Suppose that
ϕ(ei) =

∑n+1
j=1 ajifj. Set A to be the matrix (aij), d = detA, and di the (0, i)th cofactor

of A. Then by matrix theory,
∑n+1

i=1 ajidi = δ0j. Therefore, 0 6= d =
∑n

i=0 a0idi and

0 =
∑n

i=0 ajidi for j 6= 0. Let e′0 =
∑n+1

i=0 . So ϕ(e′0) = df0. Since ϕ is surjective, there
exist e′i ∈ Rn+1 such that ϕ(e′i) = fi for i = 1, . . . , n. Define the matrix C = (cij) by
e′j =

∑n
k=0 ckjek for j = 0, . . . , n In particular, ck0 = dk for k = 0, . . . , n by definition. As

As

AC =


d 0 . . . 0
0 1 . . . 0
...

...
... 0

0 0 . . . 1


by definition, detC = 1. Thus {e′0, . . . , e′n} is a basis for Rn+1. Hence Af0 = ϕ(Re′0) =
Rdf0, as ϕ(e′i) ⊂ 0⊕Rn. Consequently, fA = Rd (in the domain R) as needed. �

A less computational proof of the lemma which we now give uses the exterior algebra.
In particular, we use 121.11(15).

Proof. (Second Proof) The ideal A is projective and of rank one. Let p be a prime

in R. So Ap in the local ring, Rp is free of rank one. Hence (
∧iA)p =

∧i(Ap) = 0 for all

i > 0. Since
∧n+1Rn = 0, using Exercise 121.11(15) , we have

R ∼=
∧n+1

Rn+1 ∼=
∧n+1

(A
∐

Rn)

=
n+1∐
i=0

∧i
A⊗R

∧n+1−i
Rn = A⊗

∧n
Rn ∼= A.

So A is R-free hence principal. �

We now prove that regular local rings are UFDs without a characteristic assumption.
We need an elementary lemma.

Definition 133.37. Let R be a commutative ring andM a finitely genenerated R-module.
We say that M has a finite free resolution or FFR of length ≤ n if there exists an exact
sequence 0→ Fn → · · · → F1 →M → 0 with each Fi a finitely free R-module. We say
that M is stably free if there exists a finitely generated free R-module F such that M

∐
F

is free.
Even though a finitely generated projective R-module is a direct summand of a free R-
module, it may not be stably free.

Lemma 133.38. Let R be a commutative Noetherian ring and M a finitely generated
R-module. Then M has a finite free resolution if and only if M is stably free, i.e., there
exists a free R-module F such that F

∐
M is free.
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Proof. (⇒): Let

0→ Fn → · · · → F0
ε−→M → 0

be a finite free resolution of M and K0 = ker ε. As M is R-projective, the exact sequence

0→ K0 → F0
f−→M → 0 splits. Hence K0 is also projective and has a finite free resolution

0→ Fn → · · · → F1 → K0 → 0. By induction on n, K0 is stably free, hence so is M .

(⇐): There exists an exact sequence 0→ F1 → F0 →M → 0 with F0 and F1 finitely
generated free R-modules as M is stably free.
This proves the lemma. �

Theorem 133.39. (Auslander-Buchsbaum) Let (R,m) be a regular local ring. Then R
is a UFD.

Proof. We induct on d = dimR. If d = 0, then R is a field, and the result follows.
If m is generated by an R-sequence of length one, then m is principal. In particular,
Spec(R) = {0,m}, and the result follows. So we may assume that d > 0.

As before, choose x ∈ m \ m2. Then R/(x) is a regular local ring by Corollary 98.11,
hence a domain. Therefore, (x) ∈ Spec(R). By Nagata’s Theorem 133.35 about UFDs, it
suffices to show x = R[x−1] is a UFD.

Note that the localization Rx at {xn | n ≥ 0} satisfies R ⊂ Rx and dimRx < dimR, since
mx = Rx. Note also that Rx need not be a regular local ring.

Let P ∈ Spec(Rx) be a prime of height one. We must show that P is principal. Let p =
P∩R, so p ∈ Spec(R) and P = px. As glR is finite, and R local, so finitely generated R-
projective module is R-free, p has a FFR (as R is Noetherian). As localization takes exact
sequences to exact sequences (by Exercise 92.31(6)), P has an FFR by finitely generated
Rx-free modules. Let Q ∈ Spec(Rx). Then (Rx)Q = RQ∩R (check) is a regular local ring
of dimension less than d, hence a UFD by induction. Therefore, any height one prime in
(Rx)Q, Q ∈ Spec(Rx), is principal. In particular, PQ is principal. Consequently, we also
have PQ is (Rx)Q-free for all Q ∈ Spec(Rx). Since Rx is Noetherian, finitely generated P
is Rx-projective by Theorem 127.4. Moreover, the Rx-projective module P has an FFR.
To finish, we must show that P is principal. By Lemma 133.38, P

∐
Rn
x
∼= Rm

x for some
m and n. Localizing shows that n+ 1 = m. Hence P is principal by Lemma 133.36. �

Theorem 133.40. Let R be a commutative Noetherian domain. Suppose that every
finitely generated R-module M has an FFR. Then R is a UFD

Proof. Let p ∈ Spec(R). Then pRp has an FFR, so glRp < ∞. Therefore, Rp is a
regular local ring by Serre’s Theorem 133.28. If P ∈ Spec(R) is of height one, then Pp is
principal in the UFD Rp, hence Rp-free for all p ∈ Spec(R). Therefore, P is R-projective
and has an FFR, so is stably free by the Lemma 133.38. Therefore P is principal by the
argument at the end of the proof of Auslander-Buchsbaum Theorem 133.39. �

Remarks 133.41. 1. Z[
√
−1] is not a UFD, but every localization at a prime ideal is.

2. There exist Noetherian local rings that are UFD’s but not a regular local ring.
3. Let R be a Noetherian ring. We know that R[[t]] is Noetherian. However, it is false

that R[[t]] is a UFD when R is also regular. Samuel proved that if R is a both regular
and a UFD, then so is R.
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Exercises 133.42. 1. Let ϕ : R→ S be a ring homomorphism. Show that the pullback
of exact sequences of S-modules is an exact sequence of R-modules.

2. Let Mi be R-modules for i ∈ I. Show pdR(
∐
Mi) ≤ sup(pdR(Mi)i∈I .

3. Show pd(Z/4Z) =∞, so gl dim Z/4Z =∞ and gl dim Z/2Z = 0.

4. Let R be a commutative Noetherian ring and A a faithfully flat commutative R-algebra,
i.e., A is R-flat and if A ⊗R M = 0 for an R-module M , then M = 0. Let M be a
finitely generated R-module. Show that pdAA⊗RM = pdRM .

5. LetR be a commutative ring and x1, . . . , xr be anR-sequence. Prove pdR/(x1, . . . , xr) =
r.

6. Prove Theorem 133.13.

7. Prove that J(R) = ∩ annR(M), where M ranges over all the simple left R-modules. In
particular, J(R) is an ideal.

8. Prove Lemma 133.14.

9. Prove Lemma 133.15.

10. Show if R is a commutative ring and p a prime ideal in R and Mp an R-module, then
there exists an R-module N satisfying M = Rp ⊗R N .



CHAPTER XXII

Categories

Many of the basic ideas studied in the previous chapters can be formulated as special
cases of a general theory, called category theory which determines fundamental structure of
mathematical objects that occur in mathematics. In this chapter, we give an introduction
to it. We will begin with it in general form, but most of the results will be aimed at the
structures that we have studied. Previous chapters have given a glimpse of this theory,
and proofs that we have given still work in the proper context of category theory. Because
of this, we leave many proofs as exercises and those given may well be left less detailed
than in previous chapters. Not all connections between the various ideas that can be
identified will be made totally explicit.

134. Categories

We shall begin by defining the general notion of a category. In particular, we shall
not worry about set theory. (including axiom choice and the notion of a class) To make
this accurate we would need to assume certain axioms, e.g., existence of large cardinals
or a universe, which we shall not enumerate, that allows us to avoid versions of Russell’s
paradox. So instead of calling collections sets, classes, etc., we just use the word collection.
We will then begin to restrict our results to what are called locally small categories,
categories whose morphisms between objects form a set. Many of the results would still
generalize with the proper hypotheses, and many of our proofs can be modified to work
in more general situations. Our main interest, besides showing the language, is to show
much what we did for modules is much more general and is needed in other contexts, e.g.,
algebraic geometry.

Definition 134.1. A category C consists of all of the following:

1. A collection of objects Ob(C).
2. For each ordered pair (A,B) of objects, a collection of morphisms denoted by HomC(A,B).

If f lies in the collection HomC(A,B), we denote it by f : A → B or A
f−→ B in C.

We call A the domain of f and denote it by dom f and call B the codomain of f and
denoted it by cod f . [Morphisms are also called arrows. They need not be functions.]

3. For all objects A,B,C ∈ Ob(C), a binary operation

HomC(B,C)× HomC(A,B)→ HomC(A,C)

denoted by (f, g) 7→ fg (or f ◦g). We say that such f and g are composable. Moreover,
such composable morphisms satisfy:

789
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(i) If f ∈ HomC(A,B), g ∈ HomC(B,C), and h ∈ HomC(C,D), the associative law
holds, i.e.,

(hg)f = h(fg).

(ii) For every A ∈ Ob(C), there exists an identity morphism 1A ∈ HomC(A,A) that
satisfies for all f ∈ HomC(A,B) and g ∈ HomC(B,A)

f 1A = f and 1A g = g

for all B ∈ Ob(C).

Notation 134.2. If C is a category, we sometimes write A ∈ C for A ∈ Ob(C) and
morph(C) for the totality of morphisms of C.
It is often convenient to define a category C using the following notation:

C := ((objects in C, morphisms in C)).

Definition 134.3. Let C be a category. We say C is a locally small category if HomC(A,B)
is a set for all A,B ∈ Ob(C) and C is small if the totality of morphisms in C is a set.

Note that if C is a category, there exists a bijection between objects and identity morphisms
given by A 7→ 1A. In particular, it follows that Ob(C) is a set if C is small.

Examples 134.4. The following are categories:

1. Set := ((sets, maps)).

2. Group := ((groups, group homomorphisms)).

3. Ab := (( abelian groups, (abelian) group homomorphisms)).

4. Ring:= ((rings, ring homomorphisms)).

5. ComRing:= ((commutative rings, ring homomorphisms)).

6. RM := ((left R-modules, R-homomorphisms)).

7. MR := ((right R-modules, R-homomorphisms)).

8. RMS := (((R-S)-bimodules, (R-S)-homomorphisms)).

9. Field : = ((fields, field homomorphisms))

10. Let P be a poset under ≤. Then P can be viewed as a category with object P and
morphisms given by a unique f : a 7→ b if a ≤ b.
For example,

(i) 0 is the category with no objects and no morphisms.
(ii) 1 is the category with one object and one morphism.

(iii) 2 is the category with two objects and a single non-identity morphism between
them.

(iv) ω a category determined by 0→ 1→ 2→ 3 · · · .
11. Poset := ((posets, order-preserving morphisms)) where a morphism f : A→ B takes

x ≤ y in A to f(x) ≤ f(y) in B. In particular, if β is any ordinal, then the poset
{α < β} is a category.

12. Top := ((topological spaces, continuous maps)).
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13. Let ∗ be a distinguished element in a topological space, i.e., a basepoint. (Top)∗ :=
((topological spaces with basepoints, continuous maps preserving basepoints)).

14. Man:= ((manifolds, continuous maps).

15. Diff:= ((differentiable manifolds, differentiable maps)).

16. Anal:= ((analytic manifolds, analytic maps)).

17. Let G be a group. Then BG = (({∗}, Hom(∗, ∗) )), where {∗} is the set with one ele-
ment ∗, G = Hom(∗, ∗) via the group operation, i.e., the composition of morphisms on
∗ corresponds to the binary relation on the group. So in this category every morphism
is an isomorphism (in fact, an automorphism), where a morphism f : A → B in C is
called an isomorphism if there exist a morphism g : B → A satisfying gf = 1A and
fg = 1B.
Of course, this corresponds to our notions of isomorphisms in the above examples. We
have the obvious definitions for automorphisms endomorphisms, and automorphisms.
In particular, BG is an example of a groupoid, defined to be a category in which all
morphisms are isomorphisms.

[More generally, if M is a monoid, then (({∗},Hom(∗, ∗))) is a category with Hom(∗, ∗)
is the given monoid. Of course, in this case not every morphism is an isomorphism.]

18. If C is a category, then a subcategory B of C is a category whose objects is a subcollection
of Ob(C) with morphisms in B arising from C, i.e., those morphisms in C whose domain
and codomain lie in B and whose identity morphisms in B arise from those in C.

19. Let C be a category. Define a congruence relation R on C as follows: For each pair
of objects X, Y ∈ Ob(C), there is an equivalence relation RX,Y on Hom(X, Y ), such
that these equivalence relations respect composition of morphisms. That is, if f1, f2 :
X → Y are related in Hom(X, Y ) and g1, g2 : Y → Z are related in Hom(Y, Z), then
g1f1 and g2f2 are related in Hom(X,Z). Given such a congruence relation R on C,
define the quotient category C/R := ((Ob(C), equivalence classes of morph(C), i.e.,
HomC/R(X, Y ) = HomC(X, Y )/R. Composition of morphisms in C/R is well-defined,
since R is a congruence relation.

20. Let C be a category and C ∈ Ob(C). We construct two new categories from C and C.
The first C\C has objects that are morphisms f : C → X with dom f = C in C and
morphisms of objects f : C → X and g : C → Y in C\C to be a morphism h : X → Y
in C of the codomains in C so that

C
f

~~

g

��

X
h

// Y

commutes, i.e., g = hf . This category is called the slice category of C under C.
The second new category is C/C that consists of objects that are morphisms f : X → C
with cod f = C in C and morphisms of objects f : X → C and g : Y → C in C/C to
be a morphism h : X → Y in C with h a map of the domains in C so that
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X
h

//

f   

Y

g
��

C

commutes. This category is called the slice category of C over C

21. Let C be a category. The opposite category is defined to be the category Cop :=
((Ob(C),HomCop)), where the morphisms f op in Cop are in one-to-one correspondence
with the morphisms f in C with dom f op = cod f , cod f op = dom f , (fg)op = gopf op for
composable morphisms in C, and 1opA is the identity on each A ∈ Ob(C). In particular,
(Cop)op = C. This leads to the Principle of Duality: A statement in a category C based
on the axioms of the elementary theory of categories has an opposite statement true
in its dual category.

Remarks 134.5. Let C be a category.

1. An object I ∈ Ob(C) is called an initial object if for every A ∈ Ob(C), there exists a
unique morphism I → A. (Of course, a category may have no such object.) If I is an
initial object in C, then T = Iop exists in the dual category, and for all Aop in Ob(Cop),
there exists a unique morphism A→ T . Such a T is called a terminal object in Cop.
For example, in Set, the empty set is an initial object and any singleton set is a
terminal object and in the category RM, the zero R-module is both an initial and
terminal object. If a category has both an initial and a terminal object, it is unique
up to an isomorphism and is called a zero object.

2. A morphism f : A → B in C is called a monomorphism if whenever fg = fh with
g, h ∈ HomC(X,A), then g = h. We denote a monomorphism by f : A ↪→ B. Such a
monomorphism is called a split monomorphism if there exists a morphism g : B → A
such that fg = 1A. A morphism f : A→ B is called an an epimorphism. if f op in Cop
is a monomorphism, i.e., gf = hf with g, h ∈ HomC(B,X), then g = h. We denote an
epimorphism by f : A � B. An epimorphism f is called a split epimorphism if f op is
a split monomorphism.

3. In general, the definition of a morphism being a monomorphism or epimorphism above
differs from our notion of monomorphism and epimorphism defined before. In a cat-
egory whose objects are sets (possibly with additional structure), we have the usual
notion of injective and surjective maps. In the category Ring the inclusion map Z→ Q
is an epimorphism in Ring but is not a surjection homomorphism of rings. In fact, it
is also a monomorphism in Ring, but is not an isomorphism in Ring. In the category
((infinite groups, group homomorphisms)), the morphisms C× → C× in Ab given by
x 7→ xn, n > 1, are monomorphisms in Ab but not injections group homomorphisms.
It is true, however, that in the categories Set, Group (not so obvious), and RM,
monomorphisms are injective and epimorphisms are surjective homomorphisms.

Exercises 134.6. 1. Show that if a category has a zero object, it is unique up to an
isomorphism.

2. Prove that a morphism in Group is injective if and only if a monomorphism and is
surjective if and only if it is surjective.
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3. Show that the inclusion Z → Q in Ring is both a monomorphism and epimorphism,
but not an isomorphism.

4. Let C be a category and f : A→ B and g : B → C in C. show Show
(i) If f and g are monomorphisms ,so isgf is a mononmorphism.

(ii) If fg is a monomorphism, so is f .
(iii) If f and g are epimorphisms, so is gf .
(iv) If fg is an epimorphism, so is g.

135. Functors

When studying sets or sets with additional structure, one must study morphisms
between them to determine properties of the objects. In a category one must do the same
thing, i.e., study morphisms between categories. This leads to the concept of a functor
that we now investigate.

Definition 135.1. A functor (or covariant functor) F : A → B of categories associates:

1. To each A ∈ Ob(A), an object FA ∈ B (or written F (A) for clarity).

2. To each morphism f : A → B in A, a morphism Ff : FA → FB in B (or written
F (f) for clarity).

3. To each A ∈ Ob(A), we have F1A = 1FA.

4. If f ∈ HomA(A,B) and g ∈ HomA(B,C), then F (gf) = (Fg)(Ff).

We also write the functor as

A F−→ B
and use commutative diagrams to mean the obvious.
A contravariant functor or (cofunctor) is a functor F : Aop → B.
By duality, we often leave details of the contravariant case to the reader.

Two categories A and B are called isomorphic if there exists a functor F : A → B that is
an isomorphism, i.e., there exists a functor G : B → A satisfying GF = 1A and FG = 1B.

If A and B be categories, we let Funct(A,B) denote the functors from A to B.

Examples 135.2. 1. Let C be a category, then 1C : C → C given by 1C(C) = 1C for all
C ∈ Ob(C) is a functor.

2. Let A be a category. Then a functor U : A → B is called a forgetful functor if some
of the structure of A is ignored, e.g., U : RM → Ab by ignoring R-structure or
U : Ring→ Set by ignoring the algebraic structure of rings.

3. F : Set→ Group that gives the free group on a set S is a functor.

4. Let C be a category and R a congruence relation on C. Let : C → C/R sending each
morphism to its equivalence class. This is a functor, called the quotient functor. It is
bijective on objects and surjective on morph(C). Let F : C → D be a functor. Then
F determines a congruence relation ∼ on C by defining f ∼ g if F (f) = F (g) for
C,D ∈ Ob(C) and f, g ∈ HomC(C,D). Moreover, f factors through the associated
quotient functor : C → C/∼ in a unique manner, i.e., it induces a canonical functor
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F : C/RF → D so that that the diagram

C

��

F
// D

C/ ∼
F

==

commutes. This is the “First Isomorphism Theorem” for functors.

5. Let ComRing := ((commutative rings, ring homomorphisms)). Then we have a con-
travariant functor Spec : (ComRing)op → Top that takes a ring R to Spec(R) with
the Zariski topology.

6. Let C be a small category. Then a functor Cop → Set, i.e., a contravariant functor
C → Set, is called a presheaf on C with values in Set.
For example, let X be a topological space. Let U be the category with objects the open
sets in X and morphisms the partial order on open sets in X given by inclusion. Then
the presheaf Uop → Set is called presheaf over X with values in Set. The category Set
can be replaced by other categories, e.g., Group, ComRing, RM, or other algebraic,
geometric, and topological categories.

7. Let G be a group and C a category. A functor F : BG→ C gives a unique X ∈ Ob(C) in
the image of F together with an endomorphism λg : X → X for each g ∈ G satisfying
λgλh = λgh and λeG = 1X for all h ∈ G. This defines a G-action on C and is a functor.

8. Let A, B, and C be categories and F : A → C and G : B → C be functors. One usually

write this as A F−→ C G←− B. We create a new category (F ↓ G) called the comma
category of F and G as follows:

(i) Objects of (F ↓ G) are triples (A,B, h) with A ∈ A, B ∈ B, and h : F (A)→ G(B)
a morphism in C.

(ii) Morphisms (A,B, h)→ (A′, B′, h′) in (F ↓ G) are all pairs (f, g) with f : A→ A′

a morphism in A and g : B → B′ a morphism in B such that the following
diagram commutes

F (A)
F (f)−−−→ F (A′)

h

y yh′
G(B) −−−→

G(g)
G(B′).

commutes in C.
(iii) Morphisms are composed by (f ′, g′) ◦ (f, g) := (f ′ ◦ f, g′ ◦ g) whenever the left

hand side is defined. The identity morphism on the object (A,B, h) is (1A, 1B).

For example, the comma category A 1A−→ C G←− 1 is the case where if C = A, F = 1A
and B = 1 the category with one object and one morphism, i.e., G(∗) = A∗ for some
A∗ ∈ A. One writes this category as (A ↓ A∗). In this case, the object (A,B, h) is
usually written (A, πA) where ∗ is omitted and the morphism (f, h) = πA, In this case
a morphism (f, 1∗) : (A, πA)→ (A′, π′A) is written simply as f : A→ A′ such that the
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diagram

A
f

//

πi   

A′

π′i~~

A∗

commutes. This is just the slice category A/A∗ of A over A∗ and the comma category

1
1B−→ C G←− B is just the slice category B/B over B.

Construction/Definition 135.3. Let A and B be categories. Then the product category
A× B is the category with

Ob(A× B) := {(A,B) (ordered pair) | A ∈ A, B ∈ B}
and morphisms ordered pairs (f, g) : (A,B) → (A′, B′) with f : A 7→ A′ a morphism in
A and g : B 7→ B′ a morphism in B. We have 1A×B = (1A, 1B) and if f ′ : A′ → A′′ and
g′ : B′ → B′′, then (f ′, g′)(f, g) = (f ′f, g′g).

We have the projection functors PA : A×B → A given by PA(f, g) = f and PB : A×B → B
given by PB(f, g) = g.
Suppose that we have a category C together with functors

A G←− C H−→ B.
Then there exists a unique functor F : C → A × B satisfying G = PAF and H = PBF ,
i.e., we have a commutative diagram:

C
G

{{

F
��

H

##

A A× B
PA

oo

PB

// B.

Suppose that we have functors U : A → A′ and V : B → B′. Then there exists a unique
product functor U × V : A× B → A′ × B′ such that the diagram

A
U
��

A× BPA
oo

PB
//

U×B
��

B
V
��

A′ A′ × B′
PA′

oo

PB′
// B′

commutes.
Let E be a category whose objects are small categories and morphisms the functors

between the objects in E . This is a locally small category, but not small. In this case,
we would have a product functor × : E × E → E by (A,B) 7→ A × B. This is true for
E = Set, Group, Posets. The category of all small categories Cat contains each of
these special cases of E as proper subcategories, but none are objects in the category Cat
:= ((small categories, functors)).

We can also look at other functors G : A×B → C. We call such a functor G a bifunctor.
(on A and B). If we fix a variable, we get a functor in the other variable. The two such
functors so obtained then determine the bifunctor. Formally, we have
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Proposition 135.4. Let A,B, and C be categories and for all A ∈ Ob(A), B ∈ Ob(B),
and D ∈ Ob(D). Let

λA : B → D and ρB : A → D
be functors satisfying λA(B) = ρB(A) for all A and B. Then there exists a bifunctor
G : A×B → D satisfying G(A, ) = λA for all A and G( , B) = ρB for all B if and only
if given any pair of morphisms a : A→ A′ in B and b : B → B′ in B, we have

λA′b ◦ ρBa = ρB′a ◦ λAb
i.e., if G(A)(b) = λA(b), etc., then

G(A,B)
G(A,b)−−−−→ G(A,B′)

G(a,B)

y yG(a,B′)

G(A′, B) −−−−→
G(A′,b)

G(A′, B′).

commutes.

We leave the proof as an exercise. We shall leave simple results about bifunctors to
the reader.

Examples 135.5. 1. Let R be a ring, then ⊗R :MR × RM→ Group is a bifunctor.
If R is commutative ring, then ⊗R : RM× RM→ RM is a bifunctor.

2. We can create a bifunctor for a mix of functors and contravariant functors (but still
calling them bifunctors) by using the opposite category. For example, consider the
following two functors on locally small categories C and Cop respectively, and an X ∈
Ob(C):
Let HomC(X, ) : C → Set be the functor defined at each A ∈ Ob(C) by

HomC(X, )(A) = HomC(X,A)

and each morphism f : A→ B in C by

HomC(X, )(f) = Hom(X, f) : HomC(X,A)→ HomC(X,B)

So g : X → A in C, Hom(X, f)(g) = fg. We also denote Hom(X, f) by f∗.

Let HomC( , X) : Cop → Set be the contravariant functor defined at each A ∈ Ob(C)
by

HomC( , X)(A) = HomC(A,X)

and each morphism f : A→ B in C by

HomC( , X) Hom(f,X) : HomC(B,X)→ Hom(A,X).

So if g : A→ X in C, Hom(f,X)(g) = gf . We also denote Hom(f,X) by f ∗

Then the bifunctor HomC( , ) : Cop×C → Set is the functor that takes (X, Y ) ∈ Ob(C)
to HomC(X, Y ) and a pair of morphisms (f, g) with f : X → A and g : B → Y to
Hom(f, g)(h) = g ◦ h ◦ f .

3. If R is a ring, then HomR( , ) : RM×RM→ Group given byM×N 7→ HomR(M,N)
is a bifunctor. If R is a commutative ring, then HomR( , ) : RM× RM→ RM is a
bifunctor.
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Remarks 135.6. 1. An isomorphism of functors takes isomorphisms of morphisms to
isomorphisms.

2. The categories Set and Setop are not isomorphic as the first has a unique initial object
and the second does not.

3. If R is a ring, and Rop its opposite ring then ( )op : RM→MRop via rm 7→ mr is an
isomorphism of categories.

4. The definition of a product of two categories generalizes in the obvious way to a product
of finitely many categories. Similarly the notion of bifunctors generalizes to n-functors.

Definition 135.7. Let F : A → B be a functor of categories. We say:

(1) F is faithful if for all A,B ∈ Ob(A), the map HomC(A,B)→ HomB(FA, FB) is
faithful, i.e., if f1, f2 : A → A′ are morphisms in C satisfying Ff1 = Ff2 in B,
then f1 = f2.

(2) If F is a faithful functor, then F is called an embedding if it is also injective on
objects. This means that the F identifies A with a subcategory of B.

(3) F is full if for all A,B ∈ Ob(A), the map HomC(A,B) → HomB(FA, FB) is
surjective, i.e., if g ∈ HomB(FA, FA′), there exist f ∈ HomC(A,A

′) satisfying
Ff = g.

(4) F is called essentially surjective on objects if for every B ∈ Ob(B) there exists
A ∈ Ob(A) such that B is isomorphic to F (A).

(5) A subcategory of a category is called a full subcategory if the inclusion functor is
full.

(6) If F is full and faithful, it is also called a fully faithful functor. In this case, the
image F (A) is a full subcategory of B and we say that F is a full embedding.

(7) A category A is called a concrete category if there exists a faithful functor G :
A → Set.

Examples 135.8. 1. Ab is full subcategory of Group.

2. RMfg := ((finitely generated R-modules, R-homomorphisms)) is a full subcategory of

RM
3. Let F be a field and VectorF the category of F -vector spaces. Then (VectorF )fd :=

((finite dimensional F -vector spaces, linear transformations.)) is a full subcategory of
VectorF .

4. Let G be a group and H,H ′ subgroups. By Exercise 19.10(3), (4), (5), (6), we can
identify H with the left G-set of cosets G/H and G-equivariant maps ϕ : G/H → G/H ′

with ϕ = λx, xgH
′ = gxH ′ for an x ∈ G satisfying x−1Hx ⊂ H ′ for all g ∈ G. Let

OrbG := ((subgroups of G, G-equivariant maps)).

Let K/F be a finite Galois extension and Field := ((fields, field monomorphisms))
and FieldKF be the subcategory of the slice category F/Field of intermediate fields
K/E/F with morphisms field automorphisms fixing F . As usual G(K/E) is the group
of F -automorphisms of E.

Let G = G(K/F ) and Φ : OrbG → FieldKF be the functor that sends an object H ⊂ G
to KH and a morphism G/H → G/H ′ induced by λx, xgH

′ = gxH ′ for all g ∈ G to
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the field homomorphism y → yx takes and element y ∈ K fixed by E to an element
xy ∈ E fixed by H. Then the Fundamental Theorem of Galois Theory says that the
map Φ : OrbopG → FieldKF take E ∈ Ob(FieldKF ) to G(K/E). By the Fundamental
Theorem of Galois Theory, Φ is a bijection of objects. In fact, OrbopG

∼= FieldKF using
Galois theory which we leave as an exercise.

The notion of isomorphism of categories is too strong. We define a weaker equivalence
relation between categories. It is convenient to write morphisms, etc., using diagrams, as
we did the main part of the book.

Definition 135.9. Let F,G : A → B be functors of categories. A natural transformation
α : F → G associates:

1. To each A ∈ Ob(A) a morphism α(A) : FA→ GA in B.

2. If f : A→ A′ is a morphism in A, then we have a commutative diagram

FA
Ff−−−→ FA′

α(A)

y yα(A′)

G(A) −−−→
Gf

GA′),

i.e., Gf
(
α(A)

)
= α(A′)Ff . We call the collection α(A) (also written as αA) the

components of the natural transformation α.

A natural transformation α : F → G is called a natural isomorphism if for every A ∈
Ob(A), the component α(A) is an isomorphism. In this case, the α(A)−1 in B are the
components of a natural isomorphism α−1 : G→ F . If there exists a natural isomorphism
α : F → G, we write F ∼= G.
We call two categoriesA and B equivalent if there exist functors F : A → B andG : B → A
together with natural isomorphisms α : 1A → GF and β : FG → 1B. If this is the case,
we write A ' B.

We leave the following characterization of equivalence of categories as an exercise.

Theorem 135.10. A functor F : A → B defines an equivalence of categories if and only
if it is full, faithful, and essentially surjective on objects.

If C is a locally small category, we let Nat(F,G) denote the of natural transformations
F → G.

Examples 135.11. 1. If V ∈ VectorF , as usual let V ∗ = HomF (V, F ) be its dual space.
Let D : V → V ∗ be the duality functor, i.e., the functor sending objects V → V ∗ and
morphisms f : V → W to f ∗ : W ∗ → V ∗ where β 7→ βf . Let D2 = D ◦ D. Then
h : 1→ D2 by h(V ) 7→ V ∗∗ given by h(V ) : x 7→ Lx, where Lx(f) = f(x), is a natural
transformation and induces a natural isomorphism D2 : (VectorF )fd → (VectorF )fd.
This property of the double dual was the motivation for the beginning of category
theory.

2. Morita equivalence. There exists an equivalence of categories RM∼= Mn(R)M:
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Let A be an (R-Mn(R))-bimodule of row vectors of length n with entries in R and B
be an (Mn(R)-R)-bimodule of column vectors of length n with entries in R. Define
functors

F : RM→ Mn(R)M by F (M) = B ⊗RM and F (f) = 1B ⊗ f
for f ∈ HomR(M,M ′) with M,M ′ ∈ RM and

G : Mn(R)M→ RM by G(N) = A⊗Mn(R) N and G(g) = 1A ⊗ g
for g ∈ HomMn(R)(N,N

′) with N,N ′ ∈ RM. Since multiplication induces isomorphisms

A⊗Mn(R) B
∼−→ R and B ⊗R A

∼−→ Mn(R),

both G ◦ F and F ◦G are naturally isomorphic to identity functors.

Note that Morita equivalence is a generalization of the classification of simple left
Artinian rings by Wedderburn Theory 102.

Let F,G : A × B → D be bifunctors. Suppose for each A ∈ Ob(A), B ∈ Ob(B), we
have a morphism α(A,B) : F (A,B) → G(A,B) in D. We say α is natural in A, if for
each B ∈ Ob(B), the components of α(A,B) for all A define a natural transformation
α( , B) : F ( , B) → G( , B) of functors A → D. Similarly, we define α natural B. We
have

Proposition 135.12. Let F,G : A×B → D be bifunctors. Let α(A,B) : F (A,B)→ G(A,B)
in D be a morphism in D for every pair of objects A in A and B in B. Then α : F → G
is a natural transformation (of bifunctors) if and only if α(A,B) is natural in A for each
B ∈ Ob(B) and natural in B for each A ∈ Ob(A).

We leave the proof as an exercise.

Exercises 135.13. 1. Prove Proposition 135.4.

2. Prove the assertions in Examples 135.5.

3. Show in Example 135.8(4), we have an isomorphism of categories.

4. Prove Theorem 135.10.

5. Prove Proposition 135.12.

136. Yoneda’s Lemma

Definition 136.1. Let C andD be categories and Funct(C,D) be the collection of functors
C → D. Then

DC :=
((

Funct(C,D),Nat(Funct(C,D)
))

is called a functor category. The functor category DC is also denoted by Funct(C,D).
If we wish to deal with contravariant functors from C, we will use functors in DCop =
Funct(Cop,D). If both C and D are small, then so is DC. If C is small and D locally
small, then DC is locally small. In general, this is not the case, in particular, if we only
assume that C is locally small. One reason that we defined the concept of category instead
of only defining locally small categories is that one wishes to view a functor category as
a category.
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In this section, we shall be interested in the functor category Funct(C,Sets) when
C is locally small. We call such functors set valued functors and the set HomC(A,B) is
usually called a hom-set. An object in Funct(C,Sets) is called a representable functor.
We also call an object of Funct(Cop,Sets) when C is locally small a representable functor.

Notation 136.2. Since objects in our category C may not be sets, we must define the
analog of x ∈ S, when S is a set. We do this as follows: If T ∈ Ob(C), call an arbitrary
morphism α : T → A in C a variable element of A parametrized by T . When α is treated
as a variable element of A parametrized by T and f has domain A, we will write f(α) for
f ◦ α. For example, in this notation, f is a monomorphism if and only if for any variable
elements x, y : T → A, if x 6= y, then f(x) 6= f(y).

Let C be a locally small category. If X, Y ∈ Ob(C), then we define two functors. (Cf.
Example 135.5(2).) The first is

hX = HomC(X, ) : C → Set

with hX(B) = HomC(X,B) for B ∈ C and a morphism B
g−→ B′ in Ob(C) goes to

HomC(X,B)
hX(g)−−−→ HomC(X,B

′) by ϕ : 7→ gϕ.

We also write hX(g) as g∗(X) (or just g∗ if X is clear). Then hX is a functor in
Funct(C,Sets).

The second functor is
hY = HomC( , Y ) : Cop → Set

with hY (A) = HomC(A, Y ) for A ∈ O(C) and a morphism A′
f−→ A in C goes to

HomC(A
′, Y )

hY (f)−−−→ HomC(A, Y ) byϕ 7→ ϕf.

We also write hY (f) as f ∗(Y ) (or just f ∗ if Y is clear). This is a functor in Funct(Cop,Sets)
and can be viewed as a contravariant functor C → Set.

Note that for all X, Y ∈ Ob(C),
(136.3) hX(Y ) = hY (X).

Let B
g−→ B′ and A′

f−→ A be morphisms in C. If A
ϕ−→ B is also a morphism in C, then

(gϕ)f = g(ϕf). That is, we have a commutative diagram

(136.4)

hA(B)
g∗(A)−−−→ hA(B′)

f∗(B)

y yf∗(B′)
hA′(B) −−−→

g∗(A′)
hA′(B

′).

This means that we can define two natural transformations as follows:

Let X2
f−→ X1 in C. For all B ∈ C, define hf : hX1 → hX2 by

hf (B) = hX2(B)

on objects and

hX1(B)
hf (B)−−−→ hX2(B) by ϕ 7→ f ∗(B)ϕ = ϕf
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on morphisms. This is a natural transformation using X1 = A and X2 = A′ in Diagram
136.4. The natural transformation hf : hX → hX′ is called the induced natural trans-
formation corresponding to f . We also write the component of hf (B) of hf at B by
HomC(f,B). We also write hf by h(f) if we know that f is contravariant.

Let Y1
g−→ Y2 in C. For all A ∈ C, define hg : hY1 → hY2 by

hg(A) = hY2(A)

on objects, and

hY1(A)
hg(A)−−−→ hY2(A) by ϕ 7→ g∗(A)ϕ = gϕ

on morphisms. This is a natural transformation using Y1 = B and Y2 = B′ in Dia-
gram 136.4. The natural transformation hg : hY1 → hY2 is called the induced natural
transformation corresponding to g. We also write the component of hg(A) of hg at A by
HomC(A, g). We also write hg by h(g) if we know g is covariant.

In particular, if C is a locally small category, we have constructed a functor, called the
Yoneda functor,

h : Cop → Funt(C,Set)

that satisfies

(i) If X ∈ Ob(C), then h(X) = hX .
(ii) If f : X ′ → X in C and B ∈ Ob(C), then a component hf (B) of hf : hX → hX′ is

hf (B) = Hom(f,B) : HomC(X,B)→ HomC(X
′, B).

So in this notation, Diagram 136.4 is

HomC(X,B)
HomC(X,g)−−−−−−→ HomC(X,B

′)

hf (B)

y yhf (B′)

HomC(X
′, B) −−−−−−−→

HomC(X′,g)
HomC(X

′, B′)

commutes where X,X ′ ∈ Ob(C) and g : B → B′ in C.
Note that h(X) is a hom functor and hf (B) is a component of a contravariant hom

functor.

Theorem 136.5. (Yoneda Embedding) Let C be a locally small category. Then the func-
tor h : Cop → Funct(C,Set) is full and faithful.

Proof. h is faithful: Let f1, f2 : X ′ → X in C. Then the component h(fi)(X) :
hX(X)→ hX′(X) of the natural transformation h(fi) at X, takes 1X 7→ fi for i = 1, 2. If
f1 6= f2, then h(f1) 6= h(f2). So h is faithful.

h is full: Let α : hX → hX′ . Define f : X ′ → X by f = α(X)(1X). The component of α
at X is a function α(X) : HomC(X,X)→ HomC(X

′, X) in Set, so it is well-defined. We
must show, if k : X → A in C, then α(A)(k) = k ◦ f : X ′ → A.
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Consider the diagram

(*)

HomC(X,X)
hX(k)∗−−−−→ HomC(X,A)

α(X)

y yα(A)

HomC(X
′, X) −−−−→

hX′ (k)∗
HomC(X

′, A).

Starting at the top left hand corner evaluating at 1X gives 1X 7→ α(A)(k) going along the
top first and 1X 7→ k ◦ f going down first. This proves that (*) commutes, hence h is
full. �

Corollary 136.6. Let C be a locally small category. Then every natural transformation
hX → hX′ is given by composition with a unique morphism X ′ → X. Such a natural
transformation is an isomorphism if and only if the corresponding morphism X ′ → X is
an isomorphism. In particular, if F : C → Set is represented by both X and X ′, then
X ∼= X ′.

This corollary means that one can construct a morphism in a locally small category
by constructing a natural transformations of hom functors.

The dual statement to Corollary 136.6 also holds, i.e., if C is a locally small category,
there exists a Yoneda functor

h′ : C → Funct(Cop,Set)

that is full and faithful. If Y ∈ Ob(C), then h′(Y ) = hY , a contravariant functor. If
g : Y → Y ′ in C and A ∈ Ob(C), then the component h′(g)(A) : hY (A) → hY

′
(A) of the

natural transformation h′(g) : hY → hY
′

is Hom(A, g) : hY (A)→ hY
′
(A).

Since h′ is full and faithful, a morphism from Y → Y ′ in C can be uniquely defined
by a natural transformation α : hY → hY

′
. The components of α(X) : hY (X) → hY

′
(X)

for each X ∈ Ob(C) are just α(X) : HomC(X, Y ) → HomC(X, Y2). As C is locally small,
it follows that each morphism Y → Y ′ in C can be prescribed by a variable element Y ′

parametrized by X, in such a way that for each f : X ′ → X, the diagram

HomC(X, Y )
α(X)−−−→ HomC(X, Y )

hX(A)(f)∗

y yhB(f)∗

HomC(X
′, Y ) −−−→

α(X′)
HomC(C

′, Y ′)

commutes.
What we have shown is that any natural transformation α : hX → hX

′
is given by

a unique morphism X ′ → X in C. We shall now show that we have a more general
conclusion. Namely, we shall show that the same is true if we replace hX

′
by any set

functor F : C → Set.

Construction 136.7. Let C be a locally small category and F : C → Set a functor. Let
X ∈ Ob(C) and x an element of the set F (X). Then we want to show that x induces a
natural transformation τx : hX → F by the formula

(136.8) f 7→ F (f)(x).
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If f : X → X ′ is a morphism in C, i.e., an element in HomC(X,X
′), and F : C → Set is a

functor, we must have the induced morphism is a set map F (f) : F (X)→ F (X ′) and this
map can be evaluated at x ∈ F (X). So we want to show this is a natural transformation.

Proposition 136.9. Let C be a locally small category and F : C → Set a functor. Let
X ∈ Ob(C). Then each x ∈ F (X) determines a natural transformation τx : hX → F by
equation (136.8).

Proof. Let α(X ′) : hX(X ′) → F (X ′) take f 7→ F (f)(x) for x ∈ F (X). We must
show that for any g : X ′ → A in C, the diagram

HomC(X,X
′)

α(X′)−−−→ F (X ′)

hX(A)(g)∗

y yF (g)

HomC(X,A) −−−→
α(A)

F (A)

commutes. But if f : X → X ′ is a morphism in C, we have

α(A)
(
hX(g)

)
(f) = α(A)(gf) = F (gf)(x)

= F (g)(F (f)(x) = F (g)
(
α(X ′)

)
(f)

as required. �

Theorem 136.10. (Yoneda’s Lemma) Let C be a locally small category and F : C → Set
a functor. For each X ∈ Ob(C), let hX → F be the natural transformation induced by
f 7→ F (f)(x) for x ∈ F (X). Then this defines a bijection ψ : Nat(hX , F ) → F (X). In
particular, if F : C → Set is represented by both X and X ′, then X ∼= X ′. Moreover,
this bijection is natural in X and F when both sides of ψ are viewed as functors C ×
Funct(C,Set)→ Set.

Proof. If x1, x2 are distinct elements in F (X), then the natural transformation cor-
responding to xi takes 1X to xi for i = 1, 2. Therefore, the map is injective.
Suppose that α : hX → F is a natural transformation. Then we have α(X) : hX → F (X).
Let x = α(X)(1X) ∈ F (X). If f : X → X ′ is a morphism in C, then

α(X ′)
(
hX(f)

)
(1X) = F (f)

(
α(X)

)
(1X)

by the naturality of α. The left hand side is α(X ′)(f) and the right hand side is F (f)(x).
Therefore α is the natural transformation given by Proposition 136.9. It follows that the
map in Yoneda’s Lemma is surjective.

Naturality on functors asserts the following: Given a natural transformation β : F →
G of functors in C → Set, the element x ∈ G(X) representing the composite natural
transformation βα satisfies

(136.11)

Nat(hX , F )
ψ(F )−−−→ F (X)

β∗

y yβ(X)

Nat(hX , G)
ψ(G)−−−→ G(X)

commutes in Set where β(X) : F (X)→ G(X) is represented by α : hX → F .
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Let αβ be the composite natural transformation defined in Exercise 136.19(1). By defi-
nition ψG(βα) = (βα)(1X). This is just β(X)

(
α(X)(1X)

)
by the composition of natural

transformations in Exercise 136.19(1).

Naturality on objects asserts the following: Let A
f−→ X in C be the element in F (A)

representing the composite natural transformation hA
f∗−→ hX

α−→ F . Then it is the image
under Ff : F (X)→ F(A) of the element in F (X) representing α, i.e., the diagram

Nat(hX , F )
ψ(F )−−−→ F (X)

β∗

y yβ(X)

Nat(hA, F )
ψ(G)−−−→ G(A)

commutes in Set.

The image of α in the diagram starting along the top-right is Ff(αX(1X)
)
. The image

starting along the left vertical is (αf∗)A(1A). By definition of the composition of natural
transformations in Exercise 136.19(1),

hX(X)
f∗−→ hX(A)

αA−→ F (A) takes 1X 7→ f 7→ αA(f)

establishing the needed commutativity. Applying the Yoneda functor h gives the result.
�

Corollary 136.12. If C is a locally small category, then Funct(Cop,Set) is locally small.

Of course, the contravariant version Yoneda’s Lemma is also true.

Theorem 136.13. Let C be a locally small category. For each C ∈ Ob(C) and F : Cop →
Set, let hX → F be the natural transformation induced by f 7→ F (f)(x) for x ∈ F (X).
Then this defines a bijection φ : Nat(hX , F ) → F (X). In particular, if F : Cop → Set is
represented by both X and X ′, then X ∼= X ′. Moreover, this bijection is natural in X and
F when both sides of φ are viewed as functors Cop × Funct(Cop,Set)→ Set.

Examples 136.14. 1. (Cayley’s Theorem) Let G be a group. We view G as the category
BG. The Yoneda lemma 136.10, identifies the image h′ : BG → Funct

(
(BG)op,Set

)
of the Yoneda Embedding Theorem 136.5 as the right G-set G with G acting by right
multiplication. By the Yoneda embedding, the only G-invariant endomorphisms of the
right G-set are those maps defined by left multiplication by a fixed element of G. In
particular, any G-equivariant endomorphism of G must be an automorphism.
Therefore, we have an isomorphism between G and the automorphism group of the
right G-sets G. This automorphism group is an object in Funct

(
(BG)op,Set

)
. Com-

posing this with the faithful forgetful functor Funct
(
(BG)op,Set

)
→ Set, we obtain

an isomorphism between G and a subgroup of the automorphism group Σ(G) of the
set G.

2. Let R be a commutative ring. Let CalgR:= ((commutative R-algebras, R-algebra
homomorphisms)). The tensor product ⊗R is a coproduct in this category. In Exer-
cise 92.31(11), we defined an affine scheme (SpecR,R). If S is an R-algebra, We call
the affine scheme (SpecS, S) an R-scheme when S is viewed as an R-algebra. Then



136. YONEDA’S LEMMA 805

(CalgR)op is naturally equivalent to the category of ((affine R-schemes, scheme mor-
phisms)). In the category Funct(CalgR,Set), let RCalgR

be the full subcategory of
representable functors. Then it is naturally equivalent to the category of R-schemes in
algebraic geometry.

3. Let GCalgR be the full category in the category Funct(CalgR,Group) of representable
functors. Then GCalgR is naturally equivalent to the category of (affine) group schemes
over R. If hX ∈ Funct(CalgR,Set) and T ∈ CalgR, then hX(T ) is called the set of
T -valued points of h. This is quite useful when R is not an algebraically closed field.

As a specific example, let GL2 : CalgR → Group by T 7→ GL2(T ). If T
f−→ T ′ in

CalgR, let GL2 T → GL2T
′ be the obvious map. Let

A = R[t11, t12, t21, t22,
1

t11t222 − t12, t21

].

Then GL2
∼= hA is an (affine) group scheme.

Definition 136.15. Let C be a locally small category and F : C → Set. An element
x ∈ F (X), X ∈ Ob(C), is called a universal element of F if the natural transformation
α(X) : hX → F induced by x is an isomorphism.

If there exists a universal element for F , it is, of course, representable. By Yoneda’s
Lemma, every representable functor is induced by a unique element x ∈ F (X). Moreover,
α is an isomorphism if and only if x is a universal element. So the converse is also true.
To compute x, we use the following:

Proposition 136.16. Let C be a locally small category and α : hX → F a natural
isomorphism. Then the unique universal element x ∈ F (X) inducing α is α(X)(1X).

Proof. Let f : X → X ′ be a morphism in C. Then α(X ′)(f) = F (f)
(
α(X)(1X)

)
,

since the diagram

hX (X)
α(X)−−−→ F (X)

f(X)∗

y yf(X)∗

hX(X ′) −−−→
α(X′)

F (X ′).

commutes. Then α(X)(1X) is the required unique x �

An alternative way of describing a universal element is given by the following:

Proposition 136.17. Let C be a locally small category, F : C → Set a functor, X ∈
Ob(C), and x ∈ F (X). Then x is a universal element of F if and only if given any object
A ∈ Ob(C) and element a ∈ F (A), there exists a unique morphism f : X → A in C
satisfying a = (Ff)(x).

Proof. (⇒): If A ∼= X in Ob(C), then hA ∼= hX by Proposition 136.9. Therefore all
the components must be bijective. It follows that such an f exists and is unique.

(⇐): The uniqueness of f for each A ∈ Ob(C) and x ∈ F (A) determines a bijection

α(A) : hA → F (A) for every A that takes X
f−→ A to F (f)(x). By Proposition 136.9, this

determines a natural transformation, and it is then a natural isomorphism. �
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We leave the following uniqueness consequence as an exercise.

Corollary 136.18. Let C be a locally small category, F : C → Set a functor. If X,X ′ ∈
Ob(C) have universal elements x, x′, respectively, then there exists a unique isomorphism
f : X → X ′ satisfying F (f)(x) = x′

Exercise 136.19. 1. Let α : F → G and β : G→ H be natural transformations between
functors F,G,H : C → D. Then there is a natural transformation αβ : F → H
satisfying (αβ)(C) = β(C)α(C) for all C Ob(C), the components of β and α.

2. Prove Corollary 136.18.

3. Show how the covariant and contravariant Yoneda embeddings are really different in-
carnations of a common bifunctor Cop × C → Sets for any locally small category C.

4. Let A, B, and C be categories. Prove the following:
(i) Let G : C × B → A be a functor such that the functor

HomB
(
A,G(X, )

)
: B → Set

is representable for every object A ∈ Ob(A) and X ∈ Ob(C). Then there exists
a unique functor F : A× Cop → B satisfying

HomA
(
, G( , )

) ∼= HomB
(
F ( , ),

)
as functors Aop × C × B → Set.

(ii) Let F : A× Cop → B be a functor such that the functor

HomB
(
F ( , Y ), B,

)
: A → Set

is representable for every object B ∈ Ob(B) and Y ∈ Ob(C). Then there exists a
unique functor G : C × B → A satisfying

HomA
(
, G( , )

)
,∼= HomB

(
F ( , ),

)
as functors Aop × C × B → Set.

137. Adjoints

Let A and B be locally small categories and F : A → B and G : B → A two functors.
We say that F is a left adjoint of G and G is a right adjoint of F (or (F,G) is an adjoint
pair), if there exists a natural transformation of bifunctors

τ : HomB
(
F ( ),

)
→ HomA

(
, G( )

)
that is a natural isomorphism of bifunctors Aop × B → Set , i.e., for all A ∈ A and for
all B ∈ B,

τA,B : HomB
(
F (A), B

)
→ HomA

(
A,G(B)

)
is a bijection of sets and if A

f−→ A′ in A and B
g−→ B′, then we have a commutative

diagram:
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HomB(FA′, B)
(Ff)∗(B)−−−−−→ HomB(FA,B)

g∗(FA)−−−−→ HomB(FA,B′)

τA′,B

y τA,B

y τA,B′

y
HomC(A

′, GB)
f∗(GB)−−−−→ HomC(A,GB)

(Gg)∗(A)−−−−−→ HomC(A,GB
′).

In particular,

hFA′(B)
(Ff)∗(B)−−−−−→ hFA(B)

τA′,B

y yτA,B
hA′(GB)

f∗(GB)−−−−→ hA(GB),

and

hB(FA)
g∗(FA)−−−−→ hB

′
(FA)

τA,B

y yτA,B′
hGB(A)

(Gg)∗(A)−−−−−→ hGB
′
(A)

commute. The data (F,G, τ) is called an adjunction.

Notation 137.1. We shall write f ∗ for f ∗(X) and g∗ for g∗(Y ), etc.

Remark 137.2. One can define adjoints for arbitrary categories as follows: Let A and
B be categories. An adjunction consists of a pair of functors F : A → B and G : B → A
and an isomorphism

(*) HomB(FA,B) ∼= HomC(A,GB)

for each A ∈ Ob(A) and B ∈ Ob(B) that is natural in both variables. We call F the left
adjoint of G and G the right adjoint of F . The morphism

FA
f]−→ B ! B

f[−→ GB

correspond under the isomorphism (*) and are called adjuncts or transposes of each other.

However, as we are assuming that they are categories are locally small, we can use
Yoneda’s Lemma that the isomorphism τ(A,B)’s arising from the natural transforma-
tion τ above.

Examples 137.3. In the examples below, let R be a commutative ring and U the ap-
propriate forgetful functor. Then (F,U) is an adjoint pair if

1. F : Set→ Group by X 7→ the free group on X.

2. F : Set→ RM by X 7→ the free R-module on X (R need not be commutative).

3. F : Set → CalgR by X 7→ the free commutative R-algebra on X, i.e., R[X] = poly-
nomials on X.

4. F : RM→ CalgR by M 7→ S(M), the symmetric R-algebra on M .

5. F : Group→ Ab by G 7→ G/[G,G].

6. F : RM→ AM by m 7→ A⊗RM if A ∈ CalgR.
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Examples 137.4. In the examples below, let R be a commutative ring, M a fixed R-
module. Then (F,G) is an adjoint pair if

1. G : Ring → Group by S 7→ S× and F : Group → Ring by G 7→ Z[G], the group
ring on G.

2. G : RM→ RM by N 7→ hM(N) and F : RM→ RM by N 7→M ⊗R N .

More generally, suppose that R and S are arbitrary rings and that M ∈ Ob(RMS). If
G :MS → Ab by C 7→ hM(C) for C ∈ Ob(MS) and F :MS → Ab by A 7→ A⊗RM
for A ∈ Ob(MR), then (⊗RM,hM) is an adjoint pair, as

HomS(A⊗RM,C) ∼= HomR

(
A,HomS(M,C)

)
(naturally) as abelian groups by 129.9.

3. G : Ab→ RM by X 7→ HomZ(R,X) and F : RM→ Ab, the forgetful functor.

4. Let Dom = ((domains,monomorphisms)). Then F : Dom → Field taking R 7→
qf(R) and G the forgetful functor.

Construction 137.5. Let A and B be two locally small categories with F : A → B
and G : B → C functors. Suppose there exists a natural transformation η : 1C → GF
satisfying the following: For all A ∈ Ob(A), B ∈ Ob(B), and morphism f : A → GB,
there exists a unique morphism g : FA→ B satisfying

A
η(A)
//

f ""

GFA

Gg
��

GB

commutes. We wish to show this is equivalent to (F,G) being an adjoint pair. The
property of η in the above definition is called a universal mapping property. It says for
each object A ∈ A, the morphism η(A) is a universal element for HomA

(
A,G( )

)
. We

call such an η a unit for the pair (F,G).
Of course, we would also want this be equivalent to: Let A and B be two locally small

categories with F : A → B and G : B → C functors. Suppose there exists a natural
transformation ε : FG → 1B satisfy the following: For all A ∈ Ob(A), B ∈ Ob(B), and
morphism g : FA→ B, there exists a unique morphism g : A→ GB satisfying

FGB

ε(B)
��

FA g
//

Ff
;;

B

commutes. In this case ε is called a counit.

Theorem 137.6. Let A and B be locally small categories with F : A → B and G : B → C
functors. Then (F,G) is an adjoint pair if and only if there exists a natural transformation
η : 1A → GF a unit for the pair (F,G).

Proof. (⇐): Let A ∈ Ob(A) and B ∈ Ob(B). Define

τA,B : HomB(FA,B)→ HomA(A,GB) by τA,B(g) = Gg ◦ η(A)
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and define
σA,B : HomA(A,GB)→ HomB(FA,B)

by letting σA,B(f) be the unique morphism g that satisfies f = Gg ◦ η(A) given by the
definition of the unit η. Uniqueness then implies that σA,B

(
ηA,B(g)

)
= g. The definition

of ηA,B and σA,B then imply that ηA,B
(
σA,B(f)

)
= f . We leave the proof of naturality as

an exercise.
(⇒): Let

τA,B : HomB(FA,B)→ HomA(A,GB)

be the natural isomorphism giving the adjunction of (F,G). Let A ∈ Ob(A) and B ∈
Ob(B) such that B = FA. Therefore,

(*) HomB(FA, FA) ∼= HomA(A,GFA).

Let τ(A) ∈ HomA(A,GFA) be the morphism corresponding to 1FA. If f ∈ HomA(A,GB)
is a morphism, let g ∈ HomB(FA,B) corresponding to it via the isomorphism (*). Since
τ is a natural transformation, we have a commutative diagram

HomB(FA, FA)
τA,FA−−−→ HomB(A,GFA)

g∗(FA)

y yg∗(FA)

HomC(FA,B) −−−→
τA,B

HomC(A,GB).

As τ(A) corresponds to 1FA, we have 1FA 7→ τ(A) 7→ g∗(FA)(1FA). In the composition,
we see that 1FA 7→ g. As g corresponds under the isomorphism to f , we have f =
g∗(FA)(1FA) as needed. If h ∈ HomA(FA,B), also satisfies f = h∗(FA)(1FA), then both
g and h correspond to f , hence g = h. �

Corollary 137.7. Let G : B → A be a functor of locally small categories. If G has a left
adjoint, then it is unique up to a natural isomorphism.

For locally small categories, one sometimes build functors from objects. One such is
the following:

Theorem 137.8. (Pointwise Adjointness Theorem) Let G : B → A be a functor of locally
small categories. Suppose for each A ∈ Ob(A), there exists F (A) ∈ Ob(B) satisfying
HomB(FA, ) is naturally equivalent to HomA

(
A,G( )

)
. Then the definition of F on

objects can be extended on morphisms so that F becomes a functor and is a left adjoint
of G.

Proof. First define a function of objects F : Ob(A) × Ob(Set) → B to satisfy
HomA

(
A,G(X,B)

) ∼= HomB
(
F (A,X), B

)
for all A ∈ A, X ∈ Ob(Set), B ∈ Ob(B). We

want to extend this to a functor. Let f : A→ A′ in A and g : X ′ → X in Set. Then for
any B ∈ B, we have a diagram

(*)

HomA
(
A′, G(X ′, B)

) ∼−−−→ HomB
(
F (A′, X ′), B)

)
HomA(f,G(h,B))

y
HomA

(
A,G(X,B)

) ∼−−−→ HomB
(
F (A,X), B)

)
.
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There exists a unique morphism ϕ(f, g, B) : HomB
(
F (A′, X ′), B

)
→ HomB

(
F (A,X), B

)
so that placing this as the right hand vertical of (*) results in a commutative diagram.
As both of the horizontals in the diagram are isomorphisms and HomA

(
f,G(g,B)

)
are

natural with respect to B, the map ϕ(f, g, B) is also natural. It follows by Yoneda’s
Lemma 136.10 that there exists a unique morphism F (f, g) : F (A,X) → F (A′, X ′) sat-
isfying ϕ(f, g, B) = HomB

(
F (f, g), B

)
. If we have other morphisms f ′ : A′ → A′′ in C

and g′ : X ′′ → X ′ in Set, respectively, we can put these diagrams together to see that
F (f, g) ◦ F (f ′, g′) = G(f ◦ f ′, g′ ◦ g). We leave it as an exercise to show F preserves
identities. �

Corollary 137.9. Let G : B → A be a functor of locally small categories. If G has a left
adjoint, then it is unique up to a natural isomorphism.

Proposition 137.10. Let G : B → A be a functor of locally small categories. Then G
has a left adjoint if and only if for each A ∈ A, the functor HomA

(
A,G( )

)
: B → Set

has a universal element.

Proof. If b : A → GB is a universal element, then FA = B and b : A → G(B) =
GF (A) is the component of A of the natural transformation η : 1A → GF . �

Remark 137.11. Of course, the dual statements for the last five results are valid for a
functor F : A → B of locally small categories. We leave the statements to the reader.

We give further examples of adjoints. These are easier to check using the equivalent
definitions of adjoint pairs.

Examples 137.12. 1. Let S be a set, the set of subsets of S is a poset via inclusion.
This becomes a category Sub(S) as follows: If S0, S1 ⊂ S, then there exists precisely
one morphism S0 → S1 if and only if S0 ⊂ S1. Let f : S → T be a function of sets.
If T0 ⊂ T , we have the inverse image of T0 via f . As f−1(T0) ⊂ f−1(T1) if T0 ⊂ T1,
f−1 : Sub(T ) → Sub(T ) is a functor. This functor has a left adjoint f∗ defined by
f∗(S0) = {f(x) | x ∈ S0}, called the direct image functor. So f∗(S0) ⊂ T0 if and only
if S0 ⊂ f−1(T0). This says y ∈ f∗(S) if and only if some element of f−1(y) lies in S0.

2. Let f : S → T be a set map. Then f−1 has a right adjoint, the functor f! defined by
y ∈ f!(S0) if and only if f−1({y}) ⊂ S0, i.e., every element of the inverse image of y is
in S0.

Exercises 137.13. 1. Prove the naturality of σA,B in the proof of Theorem 137.6.

2. Prove Corollary 137.7.

3. Prove the naturality if Theorem 137.6

4. Fill in details of the proof of the Pointwise Adjointness Theorem 137.8.

5. Prove Corollary 137.9.

138. Limits

Let J be a small category and C a category. A functor F : J → C is called a diagram
of shape J . Let C ∈ Ob(C). Then C defines a functor |C| : J → C that sends every
object of J to C and every morphism of J to the identity morphism 1C . This functor is
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called the constant functor. Recall that we also denote the category Funct(J , C) by CJ .
We shall use this notation. The constant functor define an embedding ∆ : C → CJ called
the diagonal functor that sends an object C to the constant functor |C| : J → C and a
morphism f : C → C ′ to the constant natural transformation which on each component
is defined to be the morphism f .

Definition 138.1. Let F : J → C be a diagram of shape J and C ∈ Ob(C). We call
a natural transformation λ : C → F a cone over F with apex C whose domain is the
constant functor |C|. We write the components of λ by {λj : C → F}j∈J . Therefore,
λ is a collection of morphisms {λj}J satisfying for each morphism f : i → j in J , a
commutative diagram

(138.2)

C
λi

~~

λj

  

Fi
Ff

// Fj.

Proposition 138.3. Let F : J → C be a diagram of shape J and C ∈ Ob(C). Then the
following are equivalent:

1. λ : C → F is a cone over F with apex C.
2. λ : ∆(C)→ F is a natural transformation.
3. For each morphism f : i→ j in J , the diagram in equation (138.2) commutes.
4. (C, λ) is an object in the comma category (∆ ↓ F ).

We leave the proof as an exercise.

This proposition allows us to define a category of cones as the natural map between
∆(C) and ∆(C ′) correspond to morphisms between C and C ′, since the diagonal morphism
acts trivially on morphisms.

Definition 138.4. Let J be a small category and C a category and F : J → C a diagram
of shape J . Then the category of cones to F is defined to be the comma category (∆ ↓ F ).
We then view morphisms of cones in this category, with objects the cones with an apex.
In particular, a morphism of cones λ : C → F and λ′ : C ′ → F is a morphism f : C → C ′

such that

C

λi

��

λj

��

f
��

C ′

λ′i~~ λ′j !!

Fi
Ff

// Fj.

commutes for all i, j ∈ J .

We now turn to the the additional assumption that C is locally small, so that we can
use Yoneda’s Lemma. As J is small and C is locally small, CJ is locally small, so the
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collection of such cones is a set. In particular, for any diagram F : J → C there exists a
functor

cone( , F ) : Cop → Set

sending C ∈ C to the set of cones over F with apex C. This is a set as J is small. A limit
of F is a representation for cone( , F ). By Yoneda’s Lemma, a limit consists of an object
limF ∈ C together with a universal cone λ : limF → F , called the limit cone defining a
natural isomorphism hlimF ∼= cone( , F ). We often just write this as limJ F or just limF .

We relate limits to universal objects.

Theorem 138.5. Let J be a small category, C a locally small category, and F : J → C
a diagram of shape J . Then the following are equivalent:

(1) A limit for F exists.
(2) A terminal object cone(D) exists.
(3) A universal object for the functor cone( , F ) exists

Proof. We leave the proof as an exercise. �

If C = limF is a terminal object for a universal cone, then it comes with a natural
transformation τ : ∆(X) → F which is universal with respect to all natural transforma-
tions ν : ∆(X)→ F for all X ∈ Ob(C).
We now look at the dual of the above. Let J be a small category and functor F : J op →
Cop of shape J op with C ∈ Ob(C). A natural transformation λ : F → C is called a cocone
over F with apex C whose domain is the constant functor |C|. Since (CJ )op = (Cop)J op ,
we see that is equivalent to a diagram F : J → C a diagram of shape J with λ : F → C
whose components satisfy

Fi
Ff

//

λi   

Fj.

λj~~

C

So we call this cocone a cone with nadir C.
We also have the category of cocones. It is the dual of the category of cones, so by

the dual of Proposition 138.3, it is given by

Definition 138.6. Let J be a small category and C a category with J → C. Then the
category of cocones to F is defined to be the comma category (F ↓ ∆). We then view
morphisms of cocones in this category. In particular, analogous as before, a morphism of
cocones λ : C → F and λ′ : C ′ → F is a morphism f : C ′ → C such that

C

C ′

f

OO

Fi

λi

FF

λ′i

>>

Ff
// Fj.

λj

XX

λ′j

aa

commutes for all i, j ∈ J .
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Now, in addition, assume that C locally small (hence CJ is locally small), so the
collection of cones is a set. For any diagram F : J → C, there exists a functor cone(F, ) :
C → Set sending C ∈ C to the set of cones over F with nadir C. Therefore, Yoneda’s
Lemma 136.10 is applicable. A colimit of F is a representation for cone(F, ) : C → Set.
It consists of an object colimF ∈ Ob(C) together with a universal cone λ : F → colimF
called the colimit cone that defines the natural isomorphism hcolimF

∼= cone(F, ). We
often write colimF by colimJ F when J is unclear.

Definition 138.7. We say that J is a discrete category, i.e., the only morphisms in J
are the needed identity morphisms. A product is a limit of a diagram indexed by a discrete
category with only identity morphisms. A diagram in C indexed by a discrete category J
is simply a collection of objects Fj ∈ Ob(C) indexed by j ∈ J . A cone over this diagram
is just a family of morphisms (λi : C → Fi)J , some C ∈ Ob(C), with no other relations.
The limit is called the product of the diagram and denoted by

∏
J Fj with components

of the limit cone (πi :
∏
J Fj 7→ Fi)i∈J called projections. The universal property of limit

cones means for all C ∈ Ob(C), we have natural isomorphisms

HomC(C,
∏
j∈J

Fj)
(πk)∗−−−→∼=

∏
k∈J

HomC(C,Fk) = cone(C,F ).

Examples 138.8. Let J be a small category, C a locally small category.

1. If C is a category and f, g : A → B in C, we call f and g a parallel pair. Write such
a parallel pair of morphisms as f, g : A ⇒ B in C. Suppose that J is the category of
two elements and two non-identity morphisms. Then the shape of C indexed by J is
just parallel pair of morphisms f, g : A⇒ B in C. A cone over this diagram with apex
C is a pair of morphisms a : C → A and b : C → B satisfying fa = b and ga = b.
By naturality, this implies that fa = gb, hence b = fa. It follows that the cone over
the parallel pair f, g : A ⇒ B in C is represented by the single morphism a : C → A
such that fa = ga. We call the universal morphism h : E → A with this property, the
equalizer of f and g and denote the diagram of this by

E
h
// A

f
//

g
// B.

The universal property says if a : C → A satisfies fa = ga, then there exists a unique
morphism k : C → E such that

C

k
��

a

��

E
h
// A

f
//

g
// B

commutes. Moreover, if h′ : E ′ → A is also an equalizer, then there exists a unique
isomorphism i : E → E ′ satisfying h = h′i. We shall write h = equalizer(f, g)
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2. Suppose that C has a zero object 0. If g : 0 → A, it is unique, called it the zero map
0. Then the equalizer

E
h
// A

f
//

0
// B.

is called the kernel of f .

3. Let J be a poset category consisting of two non-identity morphisms, which we can
picture as • → • ← •, i.e., the two nonidentity morphisms have the same codomain.
Let C be a category with shape J . A limit of such a diagram is called a pullback. Write
f and g for the morphisms in C defining the image of a diagram of this shape in C.
Then a cone with apex E is a triple of morphisms, one for each object of J so that
both triangles in

(138.9)

E

b
��

a

��

c
// C

g
��

B
f
// A

commute by the naturality in the definition of cones. The component a says that gc and

fb have a common composite. We just will say this data of the cone over B
f−→ A

g←− C

is a pair of morphisms B
b←− E

c−→ C defining the commutative square (138.9).

The pullback is the universal cone over B
f−→ A

g←− C satisfying fh = gh and the
following universal property: Given any commutative diagram (138.9), there exists a
commutative diagram of the components

E

b

��

d
&&

c

))P

h
��

k
// C

g
��

B
f
// A

with hf = kg and d : E → P unique. The pullback P is also called the fiber product
and denoted by B ×A C.

In the above, let A ∈ Ob(C) and 1 ∈ Ob(C) with 1 representing a set functor
C → Set variable element parametrizing 1→ C by Yoneda’s Lemma 136.10. Then the
pullback

P

h
��

k
// C

g
��

1
f
// A

is called the fiber of g : C → A over f . For example, if C has a unique zero element
and f : 0→ A in C. Then ker g = equalizer(f, g) = 0×A C.
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4. Let J be a directed poset, i.e., a poset (viewed as a category) also satisfying the
condition that for all i, j ∈ Ob(J ), there exists a k ∈ Ob(J ) such that i ≤ k and
j ≤ k. Then the limit of the diagram F : J → C is called the inverse or projective
limit of F and denoted by lim←−Fj.
Of course, we have the dual of the notions of a diagram J → C → F above with

apex replaced with nadir and terminal object replaced by an initial object: C(F, ) :
Cop → Set sending cone(F, )→ Set sending C to the set of cones with nadir C, colimit,
coproduct coequalizer, cokernel, and direct limit (the dual of inverse limit). We leave the
accompanied diagrams to the reader.

Definition 138.10. Let J be a small category, C a locally small category, and {G :
J → C} a collection of diagrams. Suppose that F : C → D is a functor of locally small
categories. We say that

1. F preserves limits of the collection {G : J → C} if for any limit cone over G : J → C
in the collection, the image of this cone defines a limit cone over FG : J → D.

2. F reflects limits of the collection {G : J → C} if whenever a diagram a G : J → C in
the collection has image FG : J → D defines a limit cone over G : J → C.

3. F creates limits of the collection {G : J → C} if whenever FG : J → D has a limit,
there exists a a limit cone over FG that can be lifted to a limit cone over G and,
moreover, F reflects the limits in the collection {G : J → C}.
Of course, we have the dual notions for colimits. In particular, a fully faithful functor

preserves, reflects, and creates isomorphisms (whose proof we leave as an exercise).

Proposition 138.11. Let C and D be locally small categories and F : C → D a functor.
If F creates limits for a collection of diagrams in C and D has limits of those diagrams,
then C admits those limits and F preserves them.

Proof. Let G : J → C be a diagram in the collection. Then, by hypothesis, there
exists a limiting cone µ : D → FG in D. As F creates these limits, there must be a
limit cone λ : C → G in C whose image under F is isomorphic to µ by Proposition 138.5.
Therefore, C admits this collection of limits. To see that it preserves them, suppose that
λ′ : C ′ → G is another limit cone. Then by Proposition 138.5, they are isomorphic in C
and composing the isomorphisms, shows λ′ : FC ′ → FG is isomorphic to the limit cone
µ : D → FG. Therefore, Fλ′ : FC ′ → FG is isomorphic to the limit cone µ : D → FG.
Consequently, Fλ′ : FC ′ → FG is a limit cone and F preserves these limits. �

Definition 138.12. Let C be a locally small category. We say that C is complete if every
diagram F : J → C (with J small) has a limit. We say it is cocomplete if every such
diagram has a colimit.

Construction 138.13. Let F : J → Set. Then a limit is a representation HomSet(S, limF )
∼= cone(S, F ) of the functor that sends a set S to a set of cones over F with apex S. Let
1 ∈ Ob(Set) be a singleton set representing the identity functor Set → Set. Then
limF ∼= HomSet(1, limF ) = cone(1, F ), i.e., we may view limF as cone(1, F ). The com-
ponents of this limit cone cone(1, F ) are then functions λj : limF → Fj indexed by
objects in j ∈ Ob(J ) via taking a cone µ with summit 1 and the component µj to an
element in the set Fj defining the natural transformation µ : 1→ F via µj : 1→ Fj
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We leave as an exercise the following result.

Theorem 138.14. Let C be a locally small category. Then

1. All representable functors hX preserve all limits that exist in C.
2. The covariant Yoneda embedding h : C → SetC

op

both reserves and reflects limits, i.e.,
a cone over a diagram in C is a limit cone if and only if its image defines a limit cone
in SetC

op

.

The existence of limits is reflected by the notion of adjoints. In particular, the following
is true.

Theorem 138.15. Let C be a locally small category and J a set. Then

(1) All diagrams indexed by J have a have a limit if and only if the constant diagram
functor ∆ : C → CJ has a right adjoint.

(2) All diagrams indexed by J have a have a colimit if and only if the constant diagram
functor ∆ : C → CJ has a left adjoint.

Proof. It suffices to prove (1) by duality and the universal property of limits and of
colimits, respectively. Let C ∈ C and F ∈ CJ . As J is small HomCJ is the set (Nat∆, F ).
But this is the set of cones over F with apex C. Therefore, there exists limF ∈ Ob(C)
and an isomorphism HomC(∆(A), F ) ∼= HomC(A, limF ) with the isomorphism natural in
C ∈ C if and only if the limit exists by Theorem 137.8 and Theorem 138.14. �

The proof is essentially that given in

Theorem 138.16. The category Set is complete.

Proof. To show that Set is complete, we must show that given the components
defined in the Construction 138.13 defines a cone, i.e., given F : J → Set and : i→ j in
Ob(J ), then the diagram

limF
λi

||

λj

##

Fi
Ff

// Fj.

commutes. In the notation of Construction 138.13, as µ is the cone with apex 1, we have

Ff
(
λi(µ)

)
= Ff(λi) = µj = λk(µ).

where f : i → j in Ob(J ). Therefore the diagram commutes. It follows that {λj}J ∈ J
defines a cone over F .

We must show that λ : limF → F is the universal cone. Let S ∈ Set and ε : S → F
be a cone with apex S. We must show that there exists a unique function g : S → limF
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such that

(*)

S

εi

��

εj

��

g
��

limF

λi|| λj ##

Fi
Ff

// Fj.

Viewing s ∈ S as the variable element parametrized by the function 1 → S (1 = ? for
some fixed element ?), we see that there is a cone εs : 1 → F defined by restricting the
cone ε along the variable element s. Define g(s) ∈ limF = cone(1, F ) to be the cone εs.
By the definition of the components of the limit cone λ, we have

λj
(
(g(x)

)
= λj(εs) = (εs)j = εj(s).

Therefore, (*) commutes. Moreover, the definition of g(s) = εx is necessary, so the
map is unique. The result that Set is complete follows. �

Examples 138.17. Let J be a small. In this notation, Examples 138.8(1),(2) follow in
the following way (whose proofs we leave as exercises):

1. The product of sets (Aj) indexed by the objects in a small category J is the set of
cones over this collection of sets with summit 1 with J discrete. The object in the
category of Set is the usual product of sets in Set.

2. Given a parallel pair of morphisms x ⇒ y in J their equalizer is the set of maps
x : 1 → X satisfying f(x) = g(x) for all x ∈ X. So the equalizer of f and g is
{x ∈ X | f(x) = g(x)}. If F : J → Sets is a functor, we have an equalizer diagram

limJ F
� � //

∏
j∈Ob(J )

Fj

g
//

h
//

∏
f∈morph(J )

F (cod f).

Theorem 138.18. C admits all limits of diagrams indexed by a small category J if and
only if the constant functor ∆ : C → CJ admits a right adjoint. If J → Set is a diagram,
then there exists an equalizer diagram

(138.19) limJ F
� � //

∏
j∈Ob(J )

Fj

g
//

h
//

∏
f∈morph,(J )

F (cod f).

In particular, any limit in Set can be expressed as an equalizer as in equation (138.19).

Proof. In Construction 138.13, let F : J → Set be a diagram corresponding to
cones with apex 1 with components {λj}J with each cone λj corresponding to the set Fj.
So for each f : i→ j in J , we have

1
λdomf

zz

codf

##

F (domf)
Ff

// F (codf)
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commutes, i.e., Ff(λdomf ) = λcodf . This describes the domain of the equalizer in equation
(138.19) for the product

∏
j∈Ob(J ) Fj and the conditions about the codomain and the

parallel pair in
∏

f∈J F (codf).

So we need to define the parallel pair g and h. View {λj}J as the components
∏
J Fj,

i.e., of a cone with apex 1 over F with c maps to (λcodf )f∈J ∈
∏

f∈morphJ F (fcodf ).

CHECK The equalizer is the subset of
∏

j∈Ob(J ) Fj whose elements are equal to the set

of (λj : 1 → Fj)j ∈ Ob(j) that satisfy the compatibility conditions of the cones. Since
this, together with the explicit Examples 138.17 shows that limJF is the equalizer of g
and h. �

Theorem 138.20. Let U : Group :→ Set be the forgetful functor. Then U creates
limits.

Proof. Let G : J → Group be a diagram with J small. As Set is complete, we
can define the product of two cones σ, τ in the cone cone(1, UG) via the components
(αβ)j = αjβj and (α−1)j = α−1

j in the group Hj. This defines a group structure on
cone(1, UG). Moreover, each component of τ : cone(1, UG) → UG is a group homomor-
phism. Conversely, if each component of λ : cone(1, UG) → UG, α → αj, is a group
homomorphism, then the product σ, τ ∈ cone(1, UG) must be given by this formula.

Let H is a group and λ : H → G a cone in Group with components λj : H → Gj

a group homomorphism. If limUH = cone(1, UH) (identifying the isomorphism as an
identity as before), then Uλ : UH → UG is a cone in Set. By universality, Uλ = (Uτ))h
for a unique function f : UH → cone(1, UH). If h1, h2 ∈ H, then we have(

f(h1h2)
)

= λj(h1h2) = (λjh1)(λjh2) =
(
(λjh1)(λjh2)

)
j
,

as λ is a homomorphism of groups. Therefore, f is also a homomorphism of groups and
limUH is a limit in Group. �

As Set is complete, and using the analogue of of Theorem 138.20 for the categories
Ring, Ab, RM, we have

Corollary 138.21. Ring, Ab, RM are complete.

Theorem 138.22. The category Set is cocomplete.

We leave the proof that Set is cocomplete as an exercise. The proof is essentially for-
malizing the proof that we gave for modules RM in Proposition 130.2 but using quotients
arising from epimorphisms of sets and coproducts as disjoint unions of sets which gives
us the coequalizer version of Theorem 138.18 for the explicit case, i.e,

As the analogue of Theorem 138.20 holds for colimits, we have

Corollary 138.23. Ring, Ab, RM are cocomplete.

The analogue of Theorem 138.18 a

Theorem 138.24. C admits all colimits of diagrams indexed by a small category J if
and only if the constant functor ∆ : C → CJ admits a right adjoint. If J → Set is a
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diagram, then there exists an equalizer diagram

(138.25)
∐

f∈morph(J )

F (domf)
g

//

h
//

∐
J

Fj // // colimJ F

In particular, any colimit in Set can be expressed as a coequalizer as in equation (138.25).

also holds.
We further relate limits and adjoints in the following:

Theorem 138.26. Let C and D be locally small categories. Suppose that F : C → D be
the left adjoint to G : B → C. Then G preserves limits and F preserves colimits.

Proof. We give a sketch of the full proof. Let J → C → D be the functor by
cone( , D) : Cop → Set with apex C ∈ C with C locally small) with limit given by a cone
V → D. Then we have equivalences of contravariant functors whose proof we leave as an
exercise.

cone( , GD) ∼= cone(F ( ), D ∼= Hom(F ( ), V ) ∼= Hom(( ), GV ).

It follows that G preserves limits. We leave the proof that F preserves colimits as an
exercise. �

Example 138.27. Let X be a topological space. Let O be the poset of open subsets of
X ordered by inclusion indexed by J . So if U ⊂ U ′, there exists a unique morphism ιU,U ′
in O giving the inclusion U ↪→ U ′. A family (Ui)J of open subsets of an open set U in X
is called a cover of U if the totality of diagrams comprising the cover of the set U and the
associated inclusion maps ιUj ,U : Uj → U of pairwise intersections Uij = Ui ∩Uj (ordered)
has U as a colimit. Suppose this is true. As before, a presheaf of sets on X is a functor
F : O(X)op → Set. If U ⊂ U ′, let ρU,U ′ = F (ιU.U ′). A presheaf F : O(X)op → Set, is
called a sheaf if it preserves these colimits, sending them to limits in Sets, i.e., for any
open cover (Ui)J of an open set U in X, we have an equalizer diagram

F (U) //
ρ
//
∏

i∈J F (Ui)
ρ1

//

ρ2
//

∏
i,j∈J F (Ui ∩ Uj)

in Set, where ρ =
∏

i∈J ρU,Ui , ρ1 =
∏

i∈J ρUi,Uij , and ρ2 =
∏

i∈J ρUi,Uji . If Set is re-
placed by Group, respectively, ComRing, RM, etc., then F is called a sheaf of groups
respectively, of rings, modules, etc.

If X is a topological space and F is a sheaf of rings on X which is written by OX
(different from the poset above), then the pair (X,OX) is called a ringed space. This
includes manifolds (X,OX) where, e.g., O(U) is the real-valued functions U → R and U
is an open euclidean subspace of X. In algebra, if R is a a commutative ring, X = Spec(R)
has a sheaf of rings determined by O

(
D(f)

)
= Rf , the localization at {p ∈ X | f /∈ D(f)}

for all f ∈ R. The ringed space (X,OX) is called an affine scheme. (Cf. Exercise
92.31(11).) To get a category of ringed spaces, we must define morphisms. Let f : X → Y
be a continuous map of topological spaces. Let F be a sheaf on X. For all V ⊂ Y open,
let V 7→ F

(
f−1(V )

)
defines a sheaf f∗F on X. Then a morphism of ringed spaces is

(f, f#) : (X,OX) → (Y,OY ) with f : X → Y a continuous map and f# : OY → f∗OX .
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Now for modules and rings, we can also use limits and colimits. In particular, if x ∈ U ,
then Fx := lim−→

x∈U
F (U) is defined for any sheaf F and called the stalk of F at x. For the sheaf

O, we write OX,x := (OX)x. Let (f, f#) : (X,OX) → (y,OY ) be a morphism of ringed
spaces and G a sheaf on Y . Then lim−→

f(U)⊂V
G(V ) is a presheaf on X and the sheafification lies

in the reflective sheaf category SheafX . (Cf. Exercise 138.29(12).) It is written as f−1(G).
Then the stalk (f−1G)x = Gf(x) := lim−→

f(x)∈V
G(V ) for every x ∈ X. So f#−1(mx) = mf(x)

where mx is the germ at x. Therefore, the induced map OY,f(x) := (OX)x is a local
ring homomorphism for all x ∈ X. We call these ringed spaces satisfying this additional
property local ring spaces. It forms a full subcategory of the category of ring spaces.

Examples 138.28. 1. ADD some examples

Exercises 138.29. 1. Prove Theorem 138.3 (Think of cones as natural tranformations,
then they are just morphisms in CJ with domain (or codomain) a constant functor.)

2. Prove Theorem 138.5.

3. Let C be a locally small category. Call a monomorphism f : A → B in C regular if it
is an equalizer. Prove that every monomorphism in Set is regular. Show if f : A→ B
is a regular equalizer and also an epimorphism, then f is an isomorphism.

4. Let f, g : A→ B in RM. Show the the equalizer

E
h
// A

f
//

g
// B

is ker(f − g).

5. Prove Theorem 138.14.

6. Show Example 138.17 is valid.

7. Prove Theorem 138.26.

8. Let F : C → D be a full and faithful functor. Prove that F reflects any limits and
colimits that are present in its codomains.

9. Any equivalence of categories preserves, reflects, and creates any limits and colimits
that are present in its domain or codomain.

10. Prove he category Set is cocomplete.

11. Let J be a small category and C a locally small category. Prove that there exists a
natural isomorphism hX(limJ F ) ∼= limJ hX(F ).

12. C be a locally small category. A full subcategory D ↪→ C is called reflective: if the
inclusion functor admits a left adjoint called a reflector or localization. In Example
138.27, show that sheaves on X define a reflexive category SheafX of the category
PresheafX . The reflector is called sheafication.

13. Use Remark 137.2 for the general definition of adjoints to prove the following: Let J
be a small category, C, D arbitrary categories. If G : C → D is a functor having a left
adjoint and T : J → A has a limiting cone τ : C → T in C, then GT has the limiting
cone Gτ : GA→ GT in D.
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139. Additive and Abelian Categories

In this section, we generalize material that we did in our studies of modules and
homological algebra. Many of the results have been shown in the particular case of
modules, so even more results are just stated with proofs left to the reader (who can look
at the the corresponding proofs done before). In addition, proofs about new elementary
statements also left as exercises.

Definition 139.1. A category C is called a preadditve category if for all objects A,B,C ∈
Ob(C), we have

1. HomC(A,B) is a abelian group with the identity morphism called the 0-morphism and
written 0.

2. HomC(A,B)× HomC(B,C)→ HomC(A,C) satisfies the distributive laws, i.e., is biad-
ditive.

Remarks 139.2. Let C be a preadditive category.

1. C is locally small.

2. The 0-morphism has the usual properties, i.e.,

B
g

��

A
0

//

0
??

C

is a commutative diagram of morphisms in C.
3. Group is not preadditive.

4. If Ob(C) = {A}, then C is the “same thing” as a ring, with 1A the one.

5. If A ∈ Ob(C) satisfies |HomC(A,A)| = 1, then A has a zero object, which is unique up
to isomorphism.

6. RM is a preadditive category with 0 the same as the zero object in Ab.

Definition 139.3. A preadditive category C is called an additive category if it has a
unique zero object, written 0, and a coproduct.
[Of course, having a coproduct means that it has finite coproducts.]

We leave the proofs of the next four results as exercises.

Lemma 139.4. Let C be an additive category, A1, . . . , An ∈ Ob(C). Then A is a coproduct

of A1, . . . , An if and only if there exist morphisms Aj
ιj−→ A and A

πj−→ Aj in C for
j = 1, . . . n satisfying for all j, k = 1, . . . , n

πkιj = δkj1Aj and
∑
j

ιjπj = 1A.

Proposition 139.5. Let C be an additive category. Then C has a product. Moreover, in
an additive category, we can identify the product and the coproduct.

Of course, an additive category may be neither cocomplete nor complete as it may
not have infinite products or coproducts.
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Examples 139.6. 1. If C is a preadditive category with a unique 0 object and a product,
then C is additive. In particular, C is additive if and only if Cop is additive.

2. If C is additive category, then a morphism A
f−→ B in C is a monomorphism if and only

if whenever C
g−→ B is a morphism satisfying fg = 0, then g = 0. The analogous result

holds for epimorphisms.

Proposition 139.7. If C is additive and we have morphisms

A
f−→ B

h−→ D and A
g−→ C

j−→ D

in C, then there exists unique morphisms

A
(f,g)−−→ B

∐
C

h
∐
j−−−→ D

satisfying

(i) (f, g) = ιBf + ιCg.
(ii) h

∐
j = jπB + jπC.

We give an interesting special case of Proposition 139.7. Let ∆ = (1A, 1A) : A →
A
∐
A be the diagonal morphism. If A = B = C and f = g = 1A, we have the following:

Proposition 139.8. Let C be an additive category. Then

A
h+j

//

∆ ""

D

h
∐
j||

A
∐
A

is a commutative diagram of morphisms in C. In particular, addition in HomC(A,D) is
determined by C.

Definition 139.9. A functor F : A → B of additive categories is called additive if for
all morphisms f, g : A → B in A, we have F (f + g) = Ff + Fg. In particular, such a
functor F must take the 0-morphism to the 0-morphism.

We leave as an exercise a proof of the following (which of course has an obvious analog
for contravariant functors):

Proposition 139.10. Let F : A → B be a functor of additive categories. Then F is an
additive functor if and only if F preserves coproducts (equivalently, products).

Definition 139.11. Let C be a locally small category. Then

1. If a morphism α : X → A in C is a monomorphism, then (X,α) is called a subobject
of A. Two subobjects (X,α) and (X ′, α′) of A are called equivalent if there exists a
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commutative diagram

X
α

  
∼=

��

A

X ′
α′

>>

2. If a morphism β : A → X in C is an epimorphism, then (X, β) is called a quotient
object of A. Two quotient objects (X, β) and (X ′, β′) of A are called equivalent if they
are equivalent subobjects in Cop.

So we see if C is an additive category (or has a zero object and 0 morphism) and
α : X → Y is a morphism in C, then, as before, (kerα, γ) is the kernel of the equalizer
(α, 0)

kerα
γ
// X

α
//

0
// Y

unique up to a unique isomorphism. So it is the largest subobject of (X,α) of X mapping
to zero by α (and unique up to a unique isomorphism). We say (X,α) kills α. We write
kerα for it (if it exists) for this subobject of (X,α) or kerα → X in C. Similarly, the
cokernel is the coequalizer(α, 0). It is unique up to a unique isomorphism and written
cokerα and is a quotient object (Y, α) of Y (if it exists). It is the smallest quotient
object (Y, α) of Y killed by Y (unique up to a unique isomorphism). and also written as
Y → cokerα.

Definition 139.12. Let C be an additive category and α : X → Y a morphism in C.
1. If kerα exists, then the coimage of α, if it exists, is coker(kerα) and written coimα.

So it is a quotient object of X.
2. If cokerα exists, then the image of α, if it exists, is ker(cokerα) and written imα. So

it is a subobject of X.

Construction 139.13. Let C be an additive category and α : X → Y in C. Suppose
that kerα, cokerα, coimα, and imα all exist. Then we have a commutative diagram

kerα // X

��

α
// Y // cokerα

coimα

δ

::

α′
// imα

OO

with the dotted arrows to be defined. We first show the existence of the morphism δ.
Since coimα is the largest quotient of X that kills kerα and α kerα = 0. We see that δ
exists and we have a commutative diagram

X

��

α
// Y

coimα.

δ

;;
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Next we show that α′ exists. By the commutativity and definition, we have cokerα ◦
δ ◦ coimα = cokerα ◦ α = 0. Since coimα = coker(kerα) is an epimorphism, we have
cokerα ◦ δ = 0. Since imα is the largest suboject of y killed by cokerα, there exists a
unique α′ : coimα→ imα in C such that

X

��

α
// Y

coimα
δ

;;

and hence
X

��

α
// Y

coimα
α′
// imα

OO

commutes. If we started the above construction with imα instead of coimα, we would
have constructed another morphism α′′ : coimα→ imα in C making

X

��

α
// Y

coimα
α′′
// imα

OO

commute. But

imα ◦ α′ ◦ coimα = imα = imα ◦ α′′ ◦ coimα,

with coimα an epimorphism and imα a monomorphism. It follows that α′ = α′′.

Definition 139.14. An additive category A is called an abelian category if it satisfies all
of the following:

1. Every morphism in A has a kernel and a cokernel.
2. If α : X → Y in A, the natural induced map coimα → imα is an isomorphism in A,

i.e., the First Isomorphism Theorem holds. We write coimα by X/ kerα.

Examples 139.15. 1. If A is an abelian category, then so is Aop. However, in general,
an abelian category is not equivalent to its dual.

2. RM, MS and RMS are abelian categories for all rings R and S.

3. LetR be a left Noetherian ring. Then ((finitely generated leftR-modules, R-homomorphisms))
is an abelian category.

4. The category ((abelian topological groups, continuous homomorphisms)) is not abelian
as the First Isomorphism Theorem fails.

5. Let (X,OX) be a ringed space, e.g., a differential manifold, complex analytic manifold,
or scheme which are locally ringed spaces by Example 138.27. Let

Mod(X) = ((sheaves of OX-modules, sheaf morphisms)),

i.e., if F is a sheaf and F (U) is an OX(U)-module for all open sets U ⊂ X. Then
Mod(X) is abelian.

Definition 139.16. Let A be an abelian category and

(*) A
f−→ B

g−→ C
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in A. Then we have a commutative diagram

A

p

��

f
// B

g
// C

coim f
∼
//

f

// im f.

j

OO

We say that (*) is exact if j : im f → B is a kernel of g : B → C, i.e., ker g = im f . Exact
sequences and short exact sequences are now defined in the usual way. If B is also an
abelian category and F : A → B an additive functor, we say

1. F is exact if A
f−→ B

g−→ C is exact in A implies FA
Ff−→ FB

Fg−→ FC is exact in B.

2. F is left exact if 0→ A
f−→ B

g−→ C → 0 is exact in A implies 0→ FA
Ff−→ FB

Fg−→ FC
is exact in B.

3. F is right exact if 0→ A
f−→ B

g−→ C → 0 is exact in A implies FA
Ff−→ FB

Fg−→ FC → 0
is exact in B.

If F is contravariant, we use the same terminology given from F : Aop → B.

We also call a sequence X∗ : · · · → Xn1
dn−1

−−−→ Xn dn−→ Xn+1 → · · · a cochain complex if
dndn−1 = 0 for all n and the cohomology Hn(X) = ker dn/ im dn−1 for all n.

Proposition 139.17. Let F : A → B be an additive functor of abelian categories. Then
F is exact if and only if F preserves short exact sequences, i.e., it is both left and right
exact.

Proof. Exercise. �

Yoneda’s Lemma 136.10 implies

Lemma 139.18. Let A be an abelian category and A
α−→ B and B

β−→ C. Suppose that

(†) hX(A)
α∗−→ hX(B)

β∗−→ hX(C)

is exact in A for all X ∈ A, i.e.,

(*) HomA(X,A)
α∗−−−→ HomA(X,B)

β∗−−−→ HomA(X,C)

is exact in A. Then A
α−→ B

β−→ C is exact in A.

Proof. (*) is a zero sequence: Let X = A, then βα = β∗α∗(1A) = 0.

ker β ⊂ imα: Let X = ker β, so we have ker β
ι−→ B

β−→ C. So β∗ι = βι = 0. By the
exactness of (†), there exists σ ∈ HomA(ker β,A) satisfying ι = α∗σ = ασ, i.e.,

X

α
��

0 // ker β

σ

<<

ι
//

0

66B
β
// C.

So ker β = im ι� imα as needed. �
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Theorem 139.19. Let F : A → B and G : B → A be additive functors of abelian
categories with (F,G) an adjoint pair. Then

(1) F is right exact.
(2) G is left exact.

Proof. We first show (2). Let 0→ B′
f−→ B

g−→ B′′ → 0 be exact in B. Then we have
a commutative diagram

0→ HomB(FA,B′)
hFA(f)−−−−→ HomB(FA,B)

hFA(g)−−−−→ HomB(FA,B′′)

τA,B′

y τA,B

y τA,B′′

y
0→ HomA(A,GB′)

hGA(f)−−−−→ HomA(A,GB)
hGA(g)−−−−→ HomA(A,GB′′)

in A for all A ∈ A with verticals isomorphisms by adjointness. Therefore, the bottom

row is exact. By Yoneda’s Lemma 136.10, 0→ GB′
g∗−→ GB

g∗−→ B′′ is exact.

(1) follows as (Gop, F op) is an adjoint pair. �

By the proposition and Theorem 138.19, we have:

Corollary 139.20. Let F : A → B and G : B → A be additive functors of abelian
categories with (F,G) an adjoint pair. Then

(1) F preserves direct limits when they exist. In particular, if A is cocomplete, it
preserves all direct limits.

(2) G preserves inverse limits when they exist. In particular, if B is complete, G
preserves all inverse limits.

We have proven many things about such exact sequences and zero sequences. The
proofs also work for RM. In fact, the following fact is true.

Fact 139.21. (Mitchell Embedding Theorem) Let A be a small abelian category. Then
there exists a ring R and a fully faithful exact functor F : A → RM that is injective on
objects.

This means if we work on a specific problem, one can often ignore abelian categories
and assume the problem is in RM for some ring R and prove it there. In particular,
many of our proofs for the module case carry over. We shall use the Mitchell Embedding
Theorem implicity below when applcable.

Exercises 139.22. 1. Prove Lemma 139.4.

2. Prove Proposition 139.5.

3. Prove Proposition 139.10.

4. Prove Proposition 139.8.

5. Let A be an abelian category and α : X → Y a morphism in A. Prove all of the
following:

(i) α is a monomorphism if and only if kerα = 0
(ii) α is an epimorphism if and only if cokerα = 0

(iii) α is an isomorphism if and only if α is a monomorphism and an epimorphism.
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(iv) Let A be an abelian category and α : X → Y a morphism in A. Prove that there
exists a unique factorization (up to isomorphism) such that the diagram

X
α

//

    

Y

Z
/ �

??

commutes in A.

6. Prove 139.17.

7. Let F : A → B be an additive functor (respectively, contravariant functor) of abelian
categories. Prove that F is a left exact (respectively, right exact) if and only if whenever

0→ A
f−→ B

g−→ C (respectively, A
f−→ B

g−→ C → 0)

is exact, then

0→ FA
Ff−→ B

Fg−→ C (respectively, FA
f−→ FB

g−→ FC → 0)

is exact.

140. Derived Functors

In this section, we indicate which of our results from Chapter XXI are valid for certain
abelian category using the Mitchell Embedding Theorem 139.21. One can prove these
results and others in this section without using this theorem, but working without elements
(if they exist) can be tedious. This section is really a discussion of how one sets up a
(co)homology theory in an abelian category satisfying suitable conditions. We set up the
omenclature and results that can be proven, but omit proofs. We begin by using the same
language in an abelian category as we did in a for modules, i.e., in RM. .

Definition 140.1. Let A be an abelian category. A chain complex in A is sequence

· · · dn+2−−−→ An+1
dn+1−−−→ An

dn−→ An−1
dn−2−−−→ · · ·

in A with the morphisms di satisfying dn−1dn = 0 for all n, called differentials, i.e., a zero
sequence. Denote such a chain complex by (A∗, d∗) or simply A∗ if d∗ is clear. If (A∗, d∗)
is a chain complex, then we set

Hn(A) := ker dn/ im dn+1

the quotient in A and call it the nth homology of (A∗, d∗). A chain complex is called
acyclic if it is an exact sequence, i.e., Hn(A) = 0 for all n. If (A∗, d∗), n ≥ 0, is acyclic
and M ∈ Ob(A), satisfies

· · · d2−→ A2
d1−→ A1

d0−→ A0
ε−→M → 0

is acyclic, we call it an acyclic resolution of M with augmentation ε. We write this as
A∗

ε−→M → 0. The chain complex A∗ → 0 is called the deleted resolution of A. Note that
the deleted resolution is not exact in general (at A0).
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If (A∗, d∗) is a chain complex, the objects An are called the n-chains and

Zn(A) := ker dn the n-cycles of An

Bn(A) := im dn+1 the n-boundaries of An.

If we write the indices of the A∗ and the dn to go up, i.e.,

· · · dn−2−−−→ An−1
dn−1−−−→ An

dn−→ An+1
dn+1−−−→ · · · ,

then (A∗, d∗) is called a cochain complex with the differentials written as dn. We use the
notation (A∗, d∗) for a cochain complex. Analogously, An are called the n-cochains and

Zn(A) := ker dn the n-cocycles of An

Bn(A) := im dn−1 the n-coboundaries of An

Hn(A) := ker dn/ im dn−1 = Zn(A)/Bn(A) the nth-cohomology of An.

An acyclic resolution with augumentation ε ofM ∈ ObA is an exact sequence 0→M
ε−→ A∗,

with An, n ≥ 0, acyclic.
We have a category

Chain(A) := ((chains in A, chain homomorphisms)),

where a morphism of chains, f : (A∗, (dA)∗)→ (B∗(dB)∗) is a commutative diagram

· · ·
dn+2
// An+1

dn+1
//

fn+1

��

An

fn
��

dn
// · · ·

· · ·
d′n+2

// A′n+1 d′n+1

// A′n dn

// · · · .

An exact sequence of chains is a morphism of chains

· · · → (A∗, (dA)∗)
(fA)∗−−−→ (B∗, (dB)∗)

(fB)∗−−−→ (C∗, (dC)∗)
(fC)∗−−−→ · · ·

with

· · · → An
(fA)n−−−→ Bn

(fB)n−−−→ Cn
(fC)n−−−→ · · ·

exact at every n. We often omitting the maps fn, etc. when clear.

Usually will be interested in chains starting at 0.
Since the Snake Lemma 122.1 holds in an abelian category, we see that the following

are true:

Theorem 140.2. Let A be an abelian category. Suppose that

0→ (A∗, dA)
f∗−→ (B∗, dB)

g∗−→ (C∗, dC)→ 0

is an exact sequence of chain complexes in A. Then for all n ≥ 0, there exist morphisms
∂n+1 : Hn+1(C)→ Hn(A), called the connecting morphisms of the sequence, that give rise
to a long exact sequence in homology

· · · → Hn+1(C)
∂n+1−−−→ Hn(A)

fn−→ Hn(B)
gn−→ Hn(C)

∂n−→ Hn−1(A)→ · · ·
where fn and gn are the induced maps for all n.
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Theorem 140.3. Let A be an abelian category and

0 −−−→ (A∗, dA)
f−−−→ (B∗, dB)

g−−−→ (C∗, dC) −−−→ 0

α∗

y β∗

y γ∗

y
0 −−−→ (A′∗, dA′)

f ′−−−→ (B′∗, dB′)
g′−−−→ C ′∗, dC′) −−−→ 0

be a commutative diagram of chain complexes in A. Then there exists a commutative
diagram with exact rows

· · · → Hn(A)
fn−−−→ Hn(B)

gn−−−→ Hn(C)
∂n−−−→ Hn−1(A)→ · · ·

αn

y βn

y γn

y αn−1

y
· · · → Hn(A′)

f ′n−−−→ Hn(B′)
g′n−−−→ Hn(C ′)

∂′n−−−→ Hn−1(A′)→ · · · ,

where ∂n and ∂′n are the corresponding connecting morphisms and fn, gn αn, βn, and γn
the induced maps for all n.

We are interested in the following question: Let F : A → B be a functor (or con-
travariant functor) of abelian categories. If A∗ → M → 0 in A is an acyclic resolution
of M , what can you say about the chain complex

(
F (A∗)

)
→ F (M) → 0, in particular

about its homology Hn

(
F (A)

)
?

Definition 140.4. Let Tn : A → B, n ≥ 0, be additive functors (respectively, T n : A →
B, n ≥ 0, be additive functors) satisfying the following:

Given a short exact sequence 0 → A
f−→ B

g−→ C → 0 in A, there exist morphisms
∂n : Tn(C)→ Tn−1(A) (respectively δn : T n(C)→ T n+1(A)) with the following properties:

1. We have a long exact sequence

· · · gn−1−−→ Tn+1(C)
∂n−→ Tn(A)

fn−→ Tn(B)
gn−→ Tn(C)

∂n−1−−−→ · · ·

(respectively,

· · · g
n−1

−−−→ T n−1(C)
δn−→ T n(A)

fn−→ T n(B)
gn−→ Tn(C)

δn+1−−→ · · · )
in B.

As we are assuming that Tn (respectively T n) are trivial for n < 0, this also means
that T0 is right exact (respectively, T 0 is left exact).

2. If 0→ A′
f ′−→ B′

g′−→ C ′ → 0 is another exact sequence in A and there exists a morphism

from it to 0→ A
f−→ B

g−→ C → 0, then we have commutative diagrams

Tn(C ′)
∂′n−−−→ Tn−1(A′)y y

Tn(C) −−−→
∂n

Tn−1(A)

(respectively,

T n(C ′)
δ′n−−−→ T n+1(A′)y y ).

T n(C) −−−→
δn

T n+1(A)
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We call this data T∗ = (Tn)n≥0 a homological ∂-functor (respectively, T ∗ = (T n)n≥0 a
cohomological δ-functor) between A and B.

A morphism τ : (Tn)n≥0 → (Sn)n≥0 (respectively, τ : (T n)n≥0 → (Sn)n≥0) are natural
transformations such that

Tn(C)
∂n−−−→ Tn−1(A)y y

Sn(C) −−−→
∂n

Sn−1(A)

(respectively,

T n(C)
δn−−−→ T n+1(A)

τn,C

y yτn−1,A )

Sn(C) −−−→
δn

Sn+1(A)

commute.

A homological ∂-functor T is called a homological universal ∂-functor if given any other
∂-functor S and a natural transformation f0 : S0 → T0, then there exists a unique mor-
phism fn : Tn → Sn of ∂-functors extending f0.
A cohomological δ-functor T is called a universal cohomological δ-functor if given any
other δ-functor S and a natural transformation f 0 : T 0 → S0, then there exists a unique
morphism fn : Tn → Sn of δ-functors extending f 0.

Definition 140.5. An additive functor F : A → B of abelian categories is called effaceable
if for every A ∈ Ob(A) there exists a monomorphism f : A → E satisfying F (f) = 0.
It is called coeffeaceable if for every if for every A ∈ Ob(A) there exists an epimorphism
f : E → A satisfying F (f) = 0.

The proof of the following is left as a (long and tedious) exercise.

Lemma 140.6. Let T∗ : A → B be a homological ∂-functor (respectively, T ∗ be a co-
homological δ-functor) that is effaceable (respectively coeffaceable) for all n > 0, then
T∗ (respectively, T ∗) is a universal homological ∂-functor (respectively, T ∗ is a universal
cohomological δ-functor).

Definition 140.7. Let A be an abelian category. An object I ∈ Ob(A) is called an
injective object if given a diagram

0 // A
f
//

g
��

B

I

, there exists h such that

0 // A
f
//

g
��

B

h
��

I

commutes in A.

We say that A has enough injectives if for every object M ∈ A there exists an injective
object I ∈ Ob(A) and a monomorphism 0→M

ε−→ I.

Remark 140.8. If (X,OX) is a ringed space, then it can be shown that the category
Mod(X) contains enough injectives.

If A is an abelian category with enough injections, then every M ∈ A has an injective
resolution 0→M → I∗ in A.
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The main facts about injective modules in Section ?? hold for injective objects in a
abelian category A, viz., if A ∈ A then there exists an injective object I ∈ Ob(A), and if
I ∈ Ob(A) is injective in an abelian category A if and only if whenever 0 → I → B →
C → 0 is exact, is split exact, i.e., I → B is a split monomorphism.

Let A be an abelian category with enough injectives and F : A → B be a left exact
functor (or contravariant functor). Then we define the right derived functors RiF of F ,

i ≥ 0, as follows: For each M ∈ Ob(A), let 0→M
ε−→ I∗ be an injective resolution. Set

RiF (M) := H i
(
F (I∗)

)
for the deleted complex I∗. These cohomology groups are called the right derived functors
of F . In particular, F is effaceable.
We are now in the situation studied in Chapter XXI and we see that we have

Theorem 140.9. Let A be an abelian category.

(1) The Comparison Theorem 125.2 holds in A.
(2) The Horseshoe Lemma 125.6 holds in A.

It follows that H iF (M) := H iF (I∗) is independent of the injective resolution.
Let A is a abelian category with enough injectives and F : A → B a left exact functor

of abelian categories. An object M ∈ Ob(A) is called F -acyclic if RiF (M) = 0 for all
i > 0, e.g., if M is itself injective, as then 0 → I → I is an injective resolution. We do
not need to have an injective resolutions to compute these cohomology groups. Indeed

Proposition 140.10. Let F : A → B be a left exact functor of abelian categories. Suppose
that A has enough injectives. Let 0 → M → X∗ be exact with X∗ = (X∗, d) satisfying
each X i is F -acyclic. Then H iF (X) ∼= RiF (M) (naturally).

Proof. Exercise �

Lemma 140.11. Let F : A → B be a left exact functor of abelian categories. Suppose
that A has enough injectives. Then F is effaceable if and only if F (I) = 0 for all injective
objects I ∈ Ob(A).

Proof. (⇒): Suppose that I ∈ Ob(A) is injective and 0 → I
i−→ A is exact with

F (I) = 0. As i is a split monomorphism, A = i(I)
∐
B for some B ∈ Ob(C). Since F

preserves split exact sequences and F (i) = 0 : F (I) → F (I)
∐
F (B), we conclude that

F (I) = 0.

(⇐): If M ∈ Ob(A), choose I ∈ Ob(A) injective such that 0 → M
i−→ I is exact. As

F (I) = 0, we have F (i) = 0. �

Corollary 140.12. Let A and B be abelian categories with A having enough injectives.
If F : A → B is a left exact functor, then (RiF, δ) is a universal δ-functor.

Summary 140.13. Let F : A → B be a left exact functor of abelian categories. Suppose
that A has enough injectives. Then

(1) For each i > 0, RiF : A → B is an additive functor independent of the injective
resolutions (up to a natural isomorphism of functors).

(2) There is a natural isomorphism F → R0F .
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(3) For each short exact sequence 0 → A′ → A → A′′ → 0 in A, there is a natural
morphism δi : RiF (A′′)→ Ri+1(A′) such that we obtain a long exact sequence

· · · → RiF (A′)→ RiF (A′′)
δi−→ Ri+1F (A)→ · · · .

(4) Given a morphism of exact of short exact sequences 0 → A′ → A → A′′ → 0 to
0→ B′ → B → B′′ → 0, we have commutative diagrams

RiF (A′′)
δn−−−→ Ri+1F (A′)y y

RiF (B′′)
δn−−−→ Ri+1(FB′).

(5) For each injective I ∈ Ob(C) and i > 0, RiF (I) = 0.
(6) If 0→M → X∗ is exact with each X i F -acyclic for i ≥ 0, then there is a natural

isomorphism RiF (M) ∼= H i(X).
(7) (RiF )i≥0 is a universal cohomological δ-functor.

We have can also look at abelian categories with projective objects.

Definition 140.14. An object P ∈ Ob(A) in an abelian category is called an projective
object if given a diagram

P

g
��

B
f
// A // 0

, there exists h such that
P

g
��

h

��

B
f
// A // 0

commutes in A.
So a projective object P ∈ Ob(A) is just an object such that P op ∈ Ob(Aop) is

injective.
We say that A has enough projectives if for every object M ∈ A there exists an

projective object P ∈ Ob(A) and an epimorphism P
ε−→M → 0. In particular, if A has

enough projectives, then M ∈ A has a projective resolution P ∗
ε−→M → 0 in A.

Remark 140.15. It is not as common for an abelian category to have enough projective
objects.

We also have all the analogues of the results above for left exact contravariant functors
F : A → B of abelian categories when A has enough injectives or projectives in Summary
140.13. We leave the statements of these results to the reader.

In the case of modules we also have some results involving products and coproducts as
additive functors preserve split short exact sequences, e.g., they take preserve finite prod-
ucts and coproducts. However, if we want the result for arbitrary products or coproducts,
we would also need that the category is complete and/or cocomplete.

Moreover, we still have for abelian categories dimension shifting when an abelian
category has a universal δ-functor (or dually a universal ∂-functor), i.e.,
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Proposition 140.16. (Dimension Shifting) Let (T ∗, δ) be a δ-functor A → B of abelian
categories and E ∈ A such that T iE = 0 for all i > 0. If 0 → A → E → B → 0 is a
short exact sequence, then T iB

∼−−→ T i+1A for all i > 0. More generally, if

0→ A→ E0 → E1 → · · · → En → B → 0

is exact, with T i(Ej) = 0 for all j and all i > 0, then T iB ∼= T i+n+1A.

whose proof we leave as an exercise.

We also have the dual notion for homology. Let A be an abelian category with enough
projectives and F : A → B a right exact functor of abelian categories. Then define the
left derived functors LiF of F , i ≥ 0, as follows: For each M ∈ Ob(A), let (P ∗)

ε−→M be
a projective resolution of M in A. Set

LiF (M) := Hi(F (P ∗))

for the deleted complex P ∗ called the left derived functors of F . In particular, F is
coeffaceable. We then get the results analogous to the right derived functor case whose
statements we leave to the reader.

Examples 140.17. 1. Let M,N ∈ RM. Then we have a universal cohomological δ-
functor and a universal cohomological contravariant RM→A given by ExtiR( , N) :=
RihN and ExtiR(M, ) = RihM , respectively. If R is a commutative ring, these are
functors RM → RM as RM is a full and faithful subcategory of A. We also have
ExtiR(M,N) ∼= ExtiR(M,N) naturally for all M,N ∈ Ob(RM).

2. LetM ∈MR andN ∈ RM. Then we have universal homology ∂-functors TorRi ( , N) :=
Li( ⊗R N) : MR → Group and ToriR(M, ) = Li(M ⊗R ) : RM → A. If R is a
commutative ring, then both functors take RM→ RM. We also have TorRi (M,N) ∼=
TorRi (M,N) naturally for all M ∈ Ob(MR) and N ∈ Ob(RM).

Exercises 140.18. 1. Prove Lemma 140.6.
2. Prove Prop 140.16.
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APPENDIX A

Axiom of Choice and Zorn’s Lemma

We have alluded to the Axiom of Choice in the text, but have used Zorn’s Lemma 28.5
for the most part. These two axioms of set theory are equivalent. In this appendix, we
show this. We shall also show that Zorn’s Lemma is also equivalent to the Well-ordering
Principle.

Recall from Section 28.5 the following: A pair (S,≤) (or S if ≤ is clear) is called a
partially ordered set or poset (under ≤) if the following holds: For all a, b, c in S, we have
a ≤ a; if a ≤ b and b ≤ a, then a = b; and if a ≤ b and b ≤ c, then a ≤ c. Let (S,≤)
be a poset. We call (S,≤) a chain if for all a and b in S, we have either a ≤ b or b ≤ a.
Let T be a subset of S. An element a in S is called an upper bound of T if x ≤ a for all
x ∈ T , and s is called a maximal element of S if s ≤ y with y ∈ S implies that s = y. We
say that the poset S is inductive if every chain in S has an upper bound in S. We also
shall write a < b for a ≤ b with a 6= b. We shall also write ≥ and > when it enhances the
situation.

[Note: In this appendix for clarity, we write ⊆ instead of ⊂ as in the text.]

Zorn’s Lemma is the axiom that we assume to always be true. It says:

Lemma A.1. (Zorn’s Lemma) Let S be a nonempty inductive poset. Then S contains a
maximal element.

Call an inductive poset S strongly inductive if every chain C in S has a least upper
bound, i.e., an upper bound a ∈ S such that a ≤ x for every upper bound x in S of
C. If the least upper bound for a chain lies in the chain, we shall call it a last element
of the chain. We have similar definitions for lower bounds, least lower bounds, and first
elements. As every strongly inductive poset is inductive, we have the following that be
called a strong form of Zorn’s Lemma.

Lemma A.2. Assume that Zorn’s Lemma holds. Let S be a nonempty poset. If S is
strongly inductive, then S contains a maximal element.

The converse is also true.

Proposition A.3. Every nonempty strongly inductive poset has a maximal element if
and only if Zorn’s Lemma is valid.

Proof. Suppose that S is a partially ordered set and every chain in S has an upper
bound. We must show that S has a maximal element. Let P(S) = {A | A ⊆ S}, be the
power set of S. It is a poset via set inclusion ⊆. Let C = {C | C is a chain in S}. Since
C ⊆ P(S), it is also partially ordered by ⊆. Let C ∈ C and C0 =

⋃
C∈C C. Then C0 is a

least upper bound for C. Therefore, C is strongly inductive, so has a maximal element C ′

837
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in C. It follows that there is an upper bound x0 for C ′, viz., the union of the sets in C ′

and this x0 ∈ C0, so is a maximal element of S. Therefore, Zorn’s Lemma holds. �

We generalize the notion of the Well-ordering Principle for the integers.

Definition A.4. Let (S,≤) be a poset. We say that (S,≤) is well-ordered if every
nonempty subset A of S has a first element. This is equivalent to every nonempty subset
of a chain in S has a first element.

Definition A.5. The Well-ordering Axiom says if S is a nonempty set, then there exists
a partial ordering ≤ on S such that (S,≤) is well-ordered.

Proposition A.6. Suppose every nonempty strongly inductive poset has a maximal ele-
ment. Then the Well-ordering Axiom holds.

Proof. Let S be a nonempty set. We must show that S can be well-ordered. We know
that any partial ordering on S is inductive by Zorn’s Lemma, hence strongly inductive.
For each A ⊆ S that can be well ordered, let WA be the set of partial orderings on A that
are well-orderings and set W = {(A,≤A) | ∅ 6= A ⊆ S, ≤A ∈ WA}. Clearly, W is not the
empty set as ({a},=) lies in W for a ∈ A. Define a partial ordering ≤ on W by setting
(A,≤A) ≤ (B,≤B) in W , if A ⊆ B, ≤B |A =≤A, and if a ∈ A, b ∈ B, then a ≤B b.
Let C be a chain in W . So the set C consists of all chains in C. Set C0 =

⋃
(C,≤C)∈C C

and define ≤C0 by a ≤C0 b if there exists (C,≤C) ∈ C with a, b ∈ C and a ≤C b. As C is
a chain this is independent of C with a, b ∈ C. Therefore, C0 is well-ordered by ≤C0 and
(C0,≤C0) is the least upper bound for C. Since (C0,≤C0) is strongly inductive, there exist
a maximal element (A,≤A) for W . If (A,≤A) < W , let b ∈ W \A and B = A∪{b}. Define
≤B by x ≤B b for all a ∈ A and ≤B|A = ≤A. Then (B,≤B) ∈ W and (A,≤A) < (B,≤B).
This contradicts the maximality of (A,≤A). Hence W = S, and the Well-ordering Axiom
holds. �

There are a number of variants for the statement of the Axiom of Choice. We show:

Proposition A.7. The following are equivalent:

(1) If S is a nonempty set of nonempty disjoint sets A, then there exists a set B
whose elements consist of precisely one element from each set A ∈ S.

(2) If S is a nonempty set of nonempty sets A, then there exists a function ϕ : S →⋃
S A satisfying ϕ(A) ∈ A for all A ∈ S.

(3) If I is a nonempty set and Ai is a nonempty set for each i ∈ I, then the cartesian
product �IAi : {f : I →

⋃
I Ai | f(i) ∈ Ai for all i ∈ I} is nonempty.

Proof. (1) ⇒ (3): Let Bi = {(i, x) | x ∈ Ai}, a nonempty set for each i ∈ I. Set
S = {Bi | i ∈ I}, a nonempty collection of disjoint sets. By (1) there exists a set

B = {(i, ai) | precisely one element ai in Ai for each i in I}.

Define ϕ : I →
⋃
I Ai by i 7→ ai. Then ϕ works.

(3)⇒ (2): By (3), the set �SA is nonempty. Therefore, there exists a function ϕ : S →⋃
S S such that ϕ(A) ∈ A for all A ∈ S.
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(2) ⇒ (1): Let S be a nonempty collection of nonempty disjoint sets. By (2) there exist
a function ϕ : S →

⋃
A∈S S satisfying ϕ(A) ∈ A for all A ∈ S. Then the image of ϕ has

precisely one element from each A ∈ S. �

Definition A.8. We say the Axiom of Choice holds if the equivalent conditions of Propo-
sition A.7 hold for all nonempty sets.

Proposition A.9. Suppose the Well-ordering Axiom holds. Then the Axiom of Choice
holds.

Proof. Given a set B, let S = {A | A is a nonempty set} and set B =
⋃
S A. As

the Well-ordering Axiom holds, there exists a well-ordering ≤B on B. In particular, each
A ∈ S is a nonempty subset of the well-ordered set B. For each A ∈ S, let a be the first
element of A under ≤B. Then ϕ : S → B by A 7→ a satisfies ϕ(A) ∈ A for all A ∈ S.
This establishes (2) of Proposition A.7. �

Lemma A.10. Suppose that S is a strongly inductively ordered set and ϕ : S → S a
function satisfying ϕ(x) ≥ x for every x ∈ S. If a ∈ S, then there exists an x0 ∈ S
satisfying x0 ≥ a and ϕ(x0) = x0.

Proof. Let Ba be the set of all subsets B in S that satisfy all of the following:

(i) a ∈ B.
(ii) ϕ(B) ⊆ B.

(iii) If C is a chain in B, then the least upper bound of C lies in B.

Since the set {x | x ≥ a} lies in Ba. Ba is a nonempty set. Let A =
⋂
Ba B. Then check

that A ∈ Ba. In particular, if z ∈ A, then z ≥ a.

Claim. A is a chain.

Suppose that we show the claim is valid. Let x0 be the least upper bound for A. Then
x0 lies in A, since S is strongly inductive and ϕ(x0) lies in B by iii). Thus ϕ(x0) ≤ x0 ≤
ϕ(x0), so x0 = ϕ(x0) and the lemma would be proven. So we need only check that A is a
chain, i.e., satisfies (iii). To do so let

P = {p ∈ A | if y ∈ A and y < p, then ϕ(y) ≤ p.}
We have P ⊆ A and wish to show that A = P . To show this, fix p ∈ P and define

B(p) = {z ∈ A | either z ≤ p or z ≥ ϕ(p)},
i.e., B(p) contains no z ∈ A properly between ϕ(p) and p.

Step 1. A = B(p):

We show that (i), (ii), (iii) hold for B(p). Let z ∈ A.

(i): For all y ∈ A, we have a ≤ y and by (ii) for A, we know that ϕ(y) ∈ A. So a ∈ B(p).

(ii): If z < p, then ϕ(z) ≤ p by definition of P . If z = p, then ϕ(z) = ϕ(p) ≥ p. If
z ≥ ϕ(p), then ϕ(z) ≥ z ≥ ϕ(p) ≥ p. It follows that if z ∈ B(p), then ϕ(z) lies in B(p).

(iii): Let C be a chain in B(p) and c0 the least upper bound of C. Then c0 lies in A.
Suppose that c ≤ p for all c ∈ C. Then c0 ≤ p, hence ϕ(c0) ≤ p by (ii), so c0 lies in B(p).
Otherwise, there exists a c ∈ C satisfying c ≥ ϕ(p). Then c0 ≥ c ≥ ϕ(p). This also implies
that c0 lies in B(p) using (ii). It follows that the least upper bound of C lies in B(p).
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We have shown that B(p) ∈ Ba. Since B(p) ⊆ A, we must have B(p). This establishes
Step 1.

Step 2. P = A.

We show that (i), (ii), (iii) hold for A and P . Let z ∈ A.

(i): We have a ∈ P , since no y ∈ A can satisfy y < a.

(ii): Let p ∈ P . We want to show that ϕ(p) ∈ P , i.e., if z ≤ ϕ(p), then ϕ(z) ≤ ϕ(p). We
know that ϕ(p) ∈ A by (ii) for A. Suppose that z < ϕ(p). Since A = B(p), we must have
z ≤ p. If z < p, then by definition of P , we have ϕ(z) ≤ p ≤ ϕ(p); and if z = p, then
ϕ(z) = ϕ(p) ≤ ϕ(p). Hence ϕ(p) ∈ P and ϕ(P ) ⊆ P .

(iii): Let C be a chain in P . Then the least upper bound c0 of C lies in A. Let z ∈ A.
Suppose that we have z < c0. If z ∈ P , then c0 ≥ ϕ(z) by (ii) for P . If z /∈ P then for
each c ∈ C, either z < c or z ≥ ϕ(c) ≥ c as A = B(p). But c0 is the least upper bound of
C, so we cannot have z ≥ c for all c ∈ C. Therefore, c0 ∈ P .
It follows that P ∈ Ba. Since P ⊆ A, we must have P = A. Finally, if x ∈ A and y ∈ A,
then either x ≤ y or x ≥ ϕ(z) ≥ z. Therefore, A is a chain. This proves the lemma. �

Proposition A.11. Suppose the Axiom of Choice holds. Then Zorn’s Lemma holds.

Proof. Let S be strongly inductive and S the collection of all nonempty subsets
of S. Let ψ : S → S be a function satisfying ψ(A) ∈ A for all A ∈ S. Define
ϕ : S → S by ϕ(x) ={

x if x is a maximal element in S

ψ({z | z > x)}) if x is not a maximal element in S.

Then ϕ(x) ≥ x for all x ∈ S. Hence by Lemma A.10, there is an x0 in S such that
ϕ(x0) = x0. Then x0 is a maximal element of S. Therefore, every nonempty strongly
inductive poset has a maximal element. By Proposition A.3, Zorn’s Lemma holds. �

Definition A.12. Two sets A and B are said to have the same cardinality if there exists
a bijection f : A → B. If there exists an injection f : A → B, we write |A| ≤ |B| and
write |A| < |B| if, in addition, there exists no bijection g : A→ B.

Theorem A.13. (Schroeder-Bernstein Theorem) Let X and Y be two sets. Then there
exists a bijection between X and a subset of Y or a bijection between Y and a subset of
X. In particular, if |X| ≤ |Y | and |Y | ≤ |X|, then |X| = |Y |.

Proof. Let X and Y be sets. Let Z be the subset of the power set, i.e., the set of
all the subsets, of X × Y consisting of all C ⊂ X × Y satisfying:

(i) For each x ∈ X, there exists at most one element y ∈ Y such that (x, y) ∈ C
(ii) For each y ∈ Y , there exists at most one element x ∈ X such that (x, y) ∈ C.

This set is not empty by Proposition A.7. Order Z by inclusion. Then Zorn’s Lemma
gives a maximal element C in Z. Such an element either defines an injection X → Y if it
satisfies (i) or an injection Y → X if it satisfies (ii). �

Corollary A.14. Any two bases of a vector space have the same cardinality.

Remarks A.15. In fact, the Schroeder-Bernstein Theorem is equivalent to the Axiom of
Choice.



APPENDIX B

Bertand’s Hypothesis

In this appendix, we give a full prove Bertrand’s Hypothesis as well as giving Cheby-
shev’s approximation of the Prime Number Theorem as indicted in Section 3. As in that
section, [x], x ∈ R, is the greatest integer in x. As mentioned in Section 3, the proof

relies on the analysis of the binomial coefficient

(
2n

n

)
, Euclid’s Lemma 4.11, and the

Fundamental Theorem of Arithmetic 4.16, i.e, Section 4.

If n > 0 is an integer and p > 0 is a prime integer, we write pr ||n for r ≥ 0 in Z if
pr | n and pr+1 6 | n.

Theorem B.1. (Bertrand’s Hypothesis) Let n be a positive integer. Then there exists a
prime integer p satisfying n < p ≤ 2n. [If n > 1, then for this prime n < p < 2n.]

The proof will begin with a number of computations. Throughout p will denote a
positive prime. In particular, p ≤ x will mean all positive primes less than a real number
x.

Lemma B.2. For all real numbers y, 0 ≤ [2y]− 2[y] ≤ 1.

Proof. From Properties 3.2, we have [x] ≤ x ≤ [x] + 1 for all x ∈ R. Letting
x = y and multiplying this by 2 gives 2[y] ≤ 2y < 2[y] + 2 and setting x = 2y gives
[2y] ≤ 2y, 2[y] + 1 for all y ∈ R. Subtracting the second equation from the first yields
−1 < [2y]− 2[y] < 2 in Z. In particular, 0 ≤ [2y]− 2[y] < 2 as needed. �

Lemma B.3. Suppose that n > 1 is an integer. Then

(
2n

n

)
is the largest of the 2n + 1

binomial coefficients in (1 + 1)n and

(
2n

n

)
≥ 2n.

Proof. This follows from the following computations:(
2n

n

)
=

2n · (2n− 1) · · · (n+ 1)

n · (n− 1) · · · 1
= 2
(
2 +

1

n− 1

)
· · ·
(
2 +

n− 1

1

)
≥ 2n;

and, as
(

2n
i

)
=
(

2n
n−i

)
, (

2n

n

)
≥ 2n · · · i

(n− i) · · · 1
=

(
2n

i

)
.

for i ≤ n, by pairing the appropriate terms in the numerator and denominator. �

Lemma B.4. Let n be a positive integer. Then
∏
p≤n

p < 4n.

841



842 B. BERTAND’S HYPOTHESIS

Proof. We prove this by the Second Principle of Finite Induction on n. We may
assume that n > 2, since the cases n = 1, 2 are immediate.

Case 1. n is even.

As n > 2, n is not a prime, so
∏
p≤n

p <
∏

p≤n−1

p < 4n−1 < 4n, by induction.

Case 2. n = 2m+ 1 is odd.

Let p be any prime satisfying m+2 ≤ p ≤ 2m+1. Then p and i are relatively prime for all
i with 1 ≤ i ≤ m+1. Hence p and (m+1)!m! are also relatively prime, i.e., p 6 | (m+1)!m!.

For every such prime p, we have p | (2m + 1)!, so p | (2m+ 1)!

(m+ 1)!m!
=

(
2m+ 1

m+ 1

)
in Z. It

follows by induction that∏
p≤n

p =
∏

p≤m+1

p
∏

m+2<p≤n

p < 4m+1

(
2m+ 1

m+ 1

)
.

As 2m+ 1 is odd, in the binomial expansion of (1 + 1)m+1, both
(

2m+1
m

)
and

(
2m+1
m+1

)
occur

and are equal. So 2

(
2m+ 1

m+ 1

)
≤ (1 + 1)2m+1 = 22m+1. Therefore,

(
2m+ 1

m+ 1

)
≤ 22m = 4m

and ∏
p≤n

p < 4m+1

(
2m+ 1

m+ 1

)
≤ 4m+14m = 42m+1

as needed. �

Lemma B.5. Let n > 3 be an integer and p a prime satisfying 2
3
n < p ≤ n. Then

p 6 |
(

2n

n

)
.

Proof. Since 2n < 3p and 2 < p ≤ n, we have 2p ≤ 2n < 3p. Hence 2 ≤ 2n

p
< 3 and

2

p
≤ 2n

p2
<

3

p
≤ 1 in Q. Thus

∞∑
n=1

[
2n

pi
] = 2. Therefore, p2 || (2n)!.

Now suppose that 2p ≤ n. Then p ≤ n

2
<

2

3
n < p, a contradiction. It follows that

p ≤ n ≤ 2p and
1

p
≤ n

p2
<

2

p
< 1. Therefore,

∞∑
n=1

[
n

pi
] = 1 and p ||n!. By Theorem 3.3

p2 || (2n)! and p | ||n!. Consequently, p 6 |
(

2n

n

)
=

(2n)!

n!n!
by the Fundamental Theorem of

Arithmetic ??. �

Lemma B.6. Let n > 1 and p > 2 be a prime. Set

µp :=
∞∑
i=1

[
2n

pi
]− 2

∞∑
i=1

[
n

pi
].

Then the following are true:
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(a)

(
2n

n

)
=
∏
p≤2n

pµp.

(b) pµp ≤ 2n. In particular, if µp > 1, then p ≤
√

2n.

(c) Let n ≥ 5. Then
√

2n < 2
3
n. If

√
2n < p < 2

3
n, then µp ≤ 1.

(d) If n ≥ 3 and 2
3
n < p < n, then µp = 0.

Proof. For each prime p, let

ep =
∞∑
i=1

[
2n

pi
] and fp =

∞∑
i=1

[
n

pi
].

(a): By Theorem 3.3, we have pep || (2n)! and pfp ||n!. Therefore, µp = ep − 2fp.

(b): Choose rp to be the unique integer satisfying prp ≤ 2n < prp+1. By Lemma B.2, we
have

µp =
∞∑
i=1

[
2n

pi
]− 2

∞∑
i=1

[
n

pi
] =

( rp∑
i=1

[
2n

pi
]− [

n

pi
]
)
≤

rp∑
i=1

1 = rp.

Therefore, pµp ≤ prp ≤ 2n.

(c), (d): Suppose that
√

2n < p, so 2n < p2. By (b), we have pµp ≤ 2n < p2. Hence
µp ≤ 1 that gives (c) as the first statement is clear. If 2

3
n ≤ p, then by Lemma B.5 and

(a), we have µp = 0, which gives (d). �

We shall need the following corollary that follows from our proof of Lemma B.6, when
we prove Chebyshev’s Theorem below.

Corollary B.7. Let n > 1 an integer and p > 2 a prime. If rp to be the unique integer
such that prp ≤ 2n < prp+1, then

(a) µp ≤ rp.

(b)

(
2n

n

)
|
∏
p≤2n

prp.

(c)
∏

n<p≤2n

p |
(

2n

n

)
.

(d)
∏

n<p≤2n

p ≤
(

2n

n

)
≤
∏
p≤2n

2n.

We now proceed to the proof of Bertrand’s Hypothesis.

Proof. The primes 2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 557 are each less than two
times the previous. Therefore, the result holds for n ≤ 512. We proceed by induction on
n.

Set n > 128 and suppose that there exists no prime

(*) p satisfying n < p ≤ 2n.
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Using Lemma B.5, Lemma B.6, and (*), we have(
2n

n

)
=
∏
p≤2n

pµp =
∏
p≤n

pµp =
∏
p≤ 2

3
n

pµp

≤
∏

p≤
√

2n

pµp
∏

√
2n<p≤ 2

3
n

pµp ≤
∏

p≤
√

2n

pµp
∏

√
2n<p≤ 2

3
n

p

≤
∏

p≤
√

2n

2n
∏

√
2n<p≤ 2

3
n

p.

(†)

Clearly, π(x) := |{p | p a prime p ≤ x}| ≤ x+ 1

2
. So by Lemma B.4 and Lemma B.5, we

have (
2n

n

)
≤
∏

p≤
√

2n

2n
∏

√
2n<p≤ 2

3
n

p ≤ (2n)
√

2n
∏

√
2n<p≤ 2

3
n

p ≤ (2n)
√

2n4
2
3
n.

By Lemma B.4, we have 4n < (2n+ 1)

(
2n

n

)
. Therefore,

4n

2n+ 1
≤
(

2n

n

)
.

Thus,
4n

2n+ 1
≤ (2n)

√
2n4

2n
3
n.

Since 2n+ 1 < 4n2 for positive n, we have by (†),

4n ≤ (2n)
√

2n+24
2n
3 i.e., 4

n
3 ≤ (2n)

√
2n+2.

Taking log’s then gives
n log 4

3
≤ (
√

2n+ 2) log 2n. As f(x) =
√
x log 2−

√
2 log 2x is an

increasing function and positive for x = 512, this cannot hold. �

There have been increasing generalizations of Bertrand’s Hypothesis. For example,
Schoefield showed that for n ≥ 2010760, there always exists a prime p satisfying n <
p ≤ (1 + 1

16597
)n. Dusart, in a series of papers, has shown this can be improved to for

all x > 468991632 in R, there exists a prime p satisfying x < p ≤ (1 + 1
5000 log2 x

)x while

in 2001, Baker, Harman, and Pitz showed that for sufficiently large x ∈ R, there exists a
prime p satisfying x− x0.525 < p ≤ x. Dudek showed if the Riemann Hypothesis is true,
then there always exists a prime p satisfying x− 4

π

√
x log x < p < x for x > 2 in R.

We turn to Chebyshev’s Theorem approximating π(x) := |{p | p a prime and p ≤ x}|.
We use Corollary B.7 to get lower upper bounds and on π(2n)

Lemma B.8. Let n > 1. Then

(1) π(2n)− π(n) ≤ 2n log 2

log n
.

(2) π(2n) ≥ 2 log 2

log 2n
.
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Proof. It follows from Corollary B.7 that

(*) nπ(2n)−π(n) ≤
∏

n<p≤2n

n ≤
∏

n<p≤2n

p ≤
(

2n

n

)
≤
∏
p≤2n

2n = (2n)π(2n).

(1): Since
(

2n
n

)
is just one term of the binomial expansion of (1 + 1)2n, we have

nπ(2n)−π(n) ≤
(

2n

n

)
≤ (1 + 1)2n = 22n.

Taking log and dividing by log n, we obtain (1).

(2): By Lemma B.3, we see that

2n <

(
2n

n

)
≤ (2n)π(2n).

Taking log and dividing by log 2n, we get π(2n) ≥ n log 2

log 2n
as needed. �

Theorem B.9. (Chebyshev) There exists positive real numbers a and b satisfying

a
x

log x
< π(x) < b

x

log x
for all x ≥ 2 in R.

Proof. We prove each inequality separately.

Claim. There exists such an a > 0:

Choose the even integer 2n to be the largest integer that satisfies 2n + 2 > x ≥ 2n with
n ≥ 1. Using Lemma B.8(2) and the choice of 2n, we have

π(x) ≥ π(2n) ≥ n log 2

log 2n
≥ n

log 2

log x
≥ n+ 1

2

log 2

log x

=
2n+ 2

4

log 2

log x
>
x

4

log 2

log x
=

log 2

4

x

log x
.

So a =
log 2

4
works.

Claim. There exists such a b > 0:

We first show that

(B.10)
π(22m)

22m
<

4

m
if m ≥ 1 :

Let r ≥ 3. Therefore, we can apply Lemma B.8(1) with n = 2r−1. In particular,

(i) π(2r)− π(2r−1) ≤ 2r log 2

log 2r−1
=

2r log 2

(r − 1) log 2
=

2r

r − 1
.
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We look at the telescoping series
∑2m

r≥2

(
π(2r)−π(2r−1)

)
. As π(22) < 22, using (i), we see

for m ≥ 2, that

π(22m) = π(22m)− π(22) + π(22) = π(22m)− π(22) + 4 =
2m∑
r=3

(
π(2r)− π(2r−1)

)
+ 4

≤
2m∑
r=3

2r

r − 1
+ 4 =

2m∑
r=3

2r

r − 1
+

22

2− 1
=

2m∑
r=2

2r

r − 1

=
m∑
r=2

2r

r − 1
+

2m∑
r=m+1

2r

r − 1
.

(ii)

We estimate each of these final two sums.

Since
∑k

j=1 2j = 2k+1 − 1 < 2k, we have

m∑
r=2

2r

r − 1
≤

m∑
r=2

2r

1
< 2m+1

and
2m∑

r=m+1

2r

r − 1
≤

2m∑
r=m+1

2r

m
=

1

m

2m∑
r=m+1

2r <
22m+1

m
.

Plugging these into (ii) yields

π(22m) ≤
m∑
r=2

2r

r − 1
+

2m∑
r=m+1

2r

r − 1
< 2m+1 +

22m+1

m

if m ≥ 2. Now for any m ≥ 1, we have m < 2m, so 2m+1m < 2m+12m = 22m+1, hence
2m + 1 < 22m+1

m
. Therefore,

π(22m) <
2m+1

m
+

22m+1

m
<

2m+ 1

m
+

22m+1

m
=

2

m
22m+1 =

4

m
22m

if m ≥ 2. Checking this is also true for m = 1 establishes Equation B.10.
Now let x ≥ 2 in R. Choose the unique m ≥ 1 satisfying 22m−2 < x ≤ 22m Then by

Equation B.10, we have

π(x)

x
≤ π(22m)

22m−2
= 4

π(22m)

22m
≤ 4 · 4

m
= 16 · 1

m
.

Since x ≤ 22m, we have log x ≤ 2m log 2, i.e.,

π(x)

x
< 16 · 1

m
≤ 32 log 2

log x

and π(x) < b
x

log x
with b = 32 log 2. �

Remark B.11. The proof shows that a = log 2
4
∼ .1733 and b = 32 log 2 ∼ 22.1807.

Chebyshev’s original proof showed a > .92 and b < 1.105.
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Corollary B.12. Let pr denote the rth positive prime. Then there exist positive real
constants c, d satisfying c r log 2 < pr < d r log 2 for all r ≥ 2.

Proof. Let x = pr in Chebyshev’s Theorem B.9. So

(*) a
pr

log pr
< r < b

pr
log pr

.

Again, we look at each inequality separately.

Claim. Such a c > 0 exists:

As pr > r, we have from the second inequality in (*) that pr >
1

b
r log pr. So c =

1

b
works.

Claim. Such a d > 0 exists:

From the first inequality in (*), we have
r log pr
pr

> a. As there exist infinitely many

primes, pr → ∞ as r → ∞. We also know that
log x√
x
→ 0 as x → ∞. Therefore, there

exists an integer N > 0 satisfying
log pr√
pr

< a for all r ≥ N . So by the second inequality

in (*),

(†) r log pr
pr

> a >
log pr√
pr

for all r ≥ N.

It follows that r >
√
pr for all r ≥ N . Taking the log, we have 2 log r > log pr. So

using this and (†), we see that pr <
2

a
r log r if r ≥ N . Then pr < d r log r if r ≥ 2 for

d = max{2

a
,

p2

2 log 2
, . . . ,

pN−1

(N − 1) log pN−1

}. �

Corollary B.13. There exists a positive real number k satisfying
∑

2<p≤x

1

p
< k log log x if

x ≥ 3.

Proof. In the notation of the previous corollary, c r log r < pr for all r ≥ 2. Therefore,∑
2<p≤x

1

p
<

[x]∑
r=2

1

cr log r
=

1

c

( 1

2 log 2
+

[x]∑
r=3

1

r log r

)
=

1

c

( 1

2 log 2
+

[x]∑
r=3

∫ r

r−1

dt

r log r

)
≤ 1

c

( 1

2 log 2
+

[x]∑
r=3

∫ r

r−1

dt

t log t

)
<

1

2c log 2
+

1

c

∫ x

3

dt

t log t

=
1

2c log 2
+

1

c
log log x− 1

c
log log 2.

As log log x→∞ as x→∞, there exists a k > 0 as needed. �

Remark B.14. In fact, one can show that∑
p≤x

1

p
∼ log log x i.e., lim

x→∞

∑
p≤x

1
p

log log x
= 1.
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Exercises B.15. 1. Show every integer n > 6 is a sum of distinct primes.

2. Show if a finite set of consecutive positive integers contains a prime, then one of the
integers is relatively prime to all the others.

3. Show if n > 1, there exists a prime p satisfying p ||n.



APPENDIX C

Matrix Representations

We review the notion of matrix representation of a linear transformation relative to
a pair of ordered bases and what happens when we change bases. We do this in somewhat
more generality then in linear algebra. All proofs, however, are the same, hence omitted.
Throughout R will be a commutative ring. [So if R is a field, and R-module is just a
vector space over R and an R-homomorphism is just a linear transformation.]

Setup.

Let R be a commutative ring.
V and W are free R-modules of rank n and m respectively.

B := {v1, ..., vn} is an ordered basis for V .
B′ is a second ordered basis of V .

C := {w1, ..., wm} is an ordered basis for W .
C ′ is a second ordered basis of W .

T : V → W is an R-homomorphism.

Let v be an element in the free R-module V . Then there exist unique scalars α1, ..., αn in
R such that

v = α1v1 + · · ·+ αnvn.

The scalars α1, ..., αn are called the coordinates of v relative to the (ordered) basis B.

Let

[v]B =

α1
...
αn


the coordinate matrix of v relative to the basis B and

VB := { [v]B | v ∈ V } = Rn×1.

We have an R-isomorphism

V → VB given by v 7→ [v]B.

Similarly, if w is a vector in the free R-module W , then there exist unique scalars,
β1, ..., βm, in R such that

w = β1w1 + · · ·+ βmwm.

849
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Let

[w]C =

β1
...
βm


the coordinate matrix of w relative to the basis C and

WC := { [w]C | w ∈ W} = Rm×1.

Examples C.1. 1.

[v1]B =


1
0
...
0

 , . . . , [vn]B =


0
...
0
1

 .

2. Suppose that n = 3. Then

[2v1 − 3v3]B =

 2
0
−3

 [7v2 − v3]B =

 0
7
−1

 .

We turn to the R-homomorphism T : V → W . By the Universal Property of Free
Modules, there exists a unique matrix

[T ]B,C ∈ Rm×n

called the matrix representation of T relative to the ordered bases B, C that satisfies

[T ]B,C[v]B = [T (v)]C ∀v ∈ V.
If V = W and B = C, we let [T ]B = [T ]B,C.

The matrix [T ]B,C[v]B = [T (v)]C is computed as follows. Write Tvj in the C basis. Then
the coordinate matrix of Tvj relative to the C basis is the jth column of the matrix [T ]B,C,
i.e., if

Tvj = β1jw1 + · · ·+ βmjwm then [T (vj)]C =

β1j
...

βmj


and this is the jth column of [T ]B,C. It is convenient’ to write

Definition C.2. A matrix of the form [1V ]B,B′ is called a change of basis matrix.

It arises by writing the elements in the B basis in terms of the elements in the B′ basis.

The main results are:

Proposition C.3. Let V be an R-free module of rank n. Let B and B′ be ordered bases
for V . Then [1V ]B,B′ is an invertible matrix and

[1V ]−1
B,B′ = [1V ]B′,B
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Remarks C.4. It can be shown that

GLnR = {[T ]B,C |T an isomorphism, B, C bases for V }.
Since R is commutative, determinants exist. It can also be shown that

GLnR = {A ∈MnR | det(A) ∈ R×}

Theorem C.5. Let V , W , and X be finitely generated free R-modules. Let B, C, and
D be ordered bases for V , W , and X, respectively. Let T : V → W and S : W → X be
R-homomorphisms. Then

[S ◦ T ]B,D = [S]C,D[T ]B,C

where the right hand side is matrix multiplication.

Theorem C.6. Let V be a finitely generated free R-module and B an ordered basis for
V . Then

EndR V → MnR via T 7→ [T ]B

is a ring isomorphism and induces a group isomorphism

AutR V → GLnR.

Theorem C.7. (Change of Basis Theorem.) Let V and W be finitely generated R-free
modules. Let B and B′ be ordered bases for V and C and C ′ be ordered basis for W . Let
T : V → W be an R-homomorphism. Then

[T ]B′,C′ = [1V ]C,C′ [T ]B,C[1V ]B′,B = [1V ]C,C′ [T ]B,C[1V ]−1
B,B′ .

The Change of Basis Theorem states that the following diagram commutes

VB
[T ]B,C

//

[1V ]B,B′
��

WC

[1V ]C,C′
��

VB′
[T ]B′,C′

// WC′

Note that the inverses of the change of bases matrices go in the reverse direction. One
can fill in more of the diagram. For example, the maps from the diagonals can also be
read off, e.g.,

[T ]B,C′ = [T ]B′,C′ [1V ]B,B′

[T ]B′,C = [1V ]−1
C,C′ [T ]B′,C′ = [1V ]C′,C[T ]B′,C′

Warning C.8. Usually T is not an isomorphism, so [T ]B,C′ is not invertible. So you cannot
reverse arrows having T in them. If T is an isomorphism, then the matrix representation
of T−1 is the inverse of the corresponding matrix representation of T .

Historically, one defined equivalence relationships between matrices. We define these
and tell how they are related to R-homomorphisms of finitely generated free R-modules.
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Definition C.9. If A,B ∈ MnR, we say that they are similar and write A ∼ B if there
is an invertible matrix C ∈ GLnR such that A = C−1BC.

Clearly, ∼ is an equivalence relation. An important problem is to find good repre-
sentatives for the classes under this equivalence relation when R is a nice ring, e.g., a
PID. This leads to the study of Rational Canonical Forms and Jordan Canonical Forms
in linear algebra.

Theorem C.10. Let A,B ∈ MnR. Then A is similar to B in MnR if and only if there
exist a free R-module V of rank n with bases B,B′ and T ∈ EndR V such that A = [T ]B
and B = [T ]B′.

Definition C.11. If A,B ∈ Rm×n, we say that they are equivalent write A ' B if there
is an invertible matrices P ∈ GLmR and Q ∈ GLnR such that A = PBQ.

Clearly, ' is an equivalence relation. An important problem is to find good represen-
tatives for the classes under this equivalence relation when R is a nice ring, e.g., a PID.
This leads to the study of Smith Normal Forms in linear algebra.

Theorem C.12. Let A,B ∈ Rm×n. Then A ' B in Rm×n if and only if there exist free
R-modules V,W of rank n,m, respectively, with bases B,B′ for V and bases C, C ′ for W
and an R-homomorphism T : V → W such that A = [T ]B,C and B = [T ]B′,C′.
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Smith Normal Form over a Euclidean Ring

Let R be a domain and A ∈ Rm×n. Recall that A is in Smith Normal Form if A is a
matrix of the form 

q1 0 . . .
0 q2
...

. . .
qr

0
. . .

0


with q1 | q2 | q3 | · · · | qr inR and qr 6= 0, i.e., the diagonal entries ofA are q1, . . . , qr, 0, . . . , 0
with q1 | q2 | q3 | · · · | qr in R and qr 6= 0 and all entries off the diagonal are 0.

Let R be a domain and A ∈ Mn(R). We say that A = (aij) is an elementary matrix if

(i) Type I: if there exists 0 6= λ ∈ R and l 6= k such that

aij =


1 if i = j

λ if (i, j) = (k, l)

0 otherwise

(ii) Type II: if there exists k 6= l such that

aij =


1 if i = j 6= l and i = j 6= k

0 if i = j = l or i = j = k

1 if (k, l) = (i, j) or (k, l) = (j, i)

0 otherwise

(iii) Type III: if there exists a unit u in R and l such that

aij =


1 if i = j 6= l

u if i = j = l

0 otherwise

Remarks D.1. 1. Let A ∈ Rm×n. Multiplying A on the left (respectively right) by a
suitable size

853
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(i) Type I is adding a multiple of a row (respectively column) of A to another row
(respectively column) of A.

(ii) Type II is interchanging two rows (respectively columns) of A.

(iii) Type III is multiplying a row (respectively column) of A by a unit.

2. All elementary matrices are invertible.

Recall if R is a ring, two m × n matrices A and B in Rm×n are called equivalent if
there exist invertible matrices P ∈ GLm(R) and Q ∈ GLn(R) such that B = PAQ.

Theorem D.2. Let R be a euclidean ring, A = (aij) ∈ Rm×n. Then A is equivalent
to a matrix in Smith Normal Form. Moreover, there exist matrices P ∈ GLm(R) and
Q ∈ GLn(R), each a product of matrices of Type I, Type II, and Type III, such that PAQ
is in Smith Normal Form.

Proof. The proof will, in fact, be an algorithm to find a Smith Normal Form for A.
Let δ be the euclidean function on R. If A = 0 there is nothing to do, so assume that
A 6= 0.

Step 1. Choose a = aij 6= 0 such that δ(a) is minimal among all the δ(alk), alk 6= 0. Put
a in the (1, 1) spot using matrices of Type II. In particular, we may assume that a = a11.
[If a is a unit in R, use a Type III matrix to make a = 1.]

Step 2. If a | aij for all i and j, use Type I matrices to transform A into a matrix of the
form 

a 0 . . . 0
0
... A1

0


Note that a divides every entry of A1 [Check]. If a non-zero entry of A1 has smaller δ
value, δ(a) is not minimal so go back to Step 1.
[As δa is a non-negative integer this cannot happen infinitely often.]
If δa is still minimal, take A1 and go back to Step 1.
[Note. If this occurs, by induction there exist matrices Q1, P1 such that P1A1Q1 is in
Smith Normal Form. Let

P =


1 0 . . . 0
0
... P1

0

 and Q =


1 0 . . . 0
0
... Q1

0


then

P


a 0 . . . 0
0
... A1

0

Q
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is in Smith Normal Form.]

Step 3. Step 2 does not apply and there exists an entry b = aij in either the first row or
first column such that a 6 | b :

Write b = qa+ r in R with r 6= 0 and δ(r) < δ(a). Use Type I matrices to change A into
a matrix with r in it. Since δ(a) is not longer minimal, go back to Step 1.
[Since δ(a) is a non-negative integer and δ(r) < δ(a), this must eventually stop.]

Step 4. Neither Step 2 nor Step 3 apply. Thus a | aij whenever i = 1 or j = 1:

Use Type I matrices to convert A to
a 0 . . . 0
0
... A1

0


Now one of the following occurs.

(1) There exists a non-zero entry b in A1 such that δ(b) < δ(a). So δ(a) is no longer
minimal. Go back to Step 1.

(2) a | b for all entries b in A1. This is impossible — You should have been in Step
2.
[No matter, take A1 and go to Step 1.]

(3) There exists an entry b in A1 such that a 6 | b:
Write b = qa+ r in R with r 6= 0 and δ(r) < δ(a). Use Type I matrices to get b
into the first column. (This does not change the (1, 1) entry a.) Now use Type I
matrices to change b to r. Since δ(a) is no longer minimal, go back to Step 1.

Clearly this algorithm yields a Smith Normal Form of A.
�

Remarks D.3. 1. If R is a ring, twom×nmatrices A and B in Rm×n are called equivalent
if there exist invertible matrices P ∈ GLm(R) and Q ∈ GLn(R) such that B = PAQ.
Compare this to change of basis in linear algebra of matrix representations of linear
transformations. So the theorem says if R is a euclidean ring then any m × n matrix
over R is equivalent to a matrix in Smith Normal Form.

2. Note that we do not really need Type III matrices in the above. We only used them
to transform those diagonal entries qi that were units into one.

3. We did not really need Step 2 as it is incorporated into Step 4, but it is useful to isolate
it to complete the induction step of the proof.

As stated in Theorem 43.8 and proved, a Smith Normal Form of a matrix over a PID
is unique up to units. We shall assume it here. Its proof depends only on an elementary
determinant argument and could easily be done here, but we shall not repeat it in this
appendix.

In Section 45, Smith Normal Forms are used in understanding parts of linear algebra.
In this appendix, we shall prove (most) of Theorem 45.11 without the development needed
in Section 45 used to prove it there. Rather we shall only use the Smith Normal Form of a
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matrix over the euclidean domain F [t] with F a field and a generalization of the division
algorithm for F [t].

Let V be a finite dimensional vector space over a field F and B an ordered basis for
V . Classifying linear operators T : V → V is equivalent to determining [T ]B up to matrix
similarity. So we turn to the matrix formulation.

Let A0 be a matrix in Mn(F ) and A = tI − A0, a matrix in Mn

(
F [t]

)
. This matrix

is called the characteristic matrix of A0. As detA is the characteristic polynomial of A0,
hence nonzero, there is a Smith Normal Form of A of the form diag(1, . . . , 1, q1, . . . , qr)
for some non-constant polynomials q1, . . . , qr in F [t] and some unique r. As the Smith
Normal Form of A is unique up to units (by Theorem 43.8), using Type III operations,
we may assume that the polynomials q1, . . . , qr are all monic. This is will be called the
Smith Normal Form of A and the unique monic polynomials q1, . . . , qr will be called the
invariant factors of A. If B0 is another matrix in Mn(F ) and B = tI − B0, we want to
show that A is equivalent to B in Mn

(
F [t]

)
if and only if A0 is similar to B0. As mentioned

above this is also shown in Section 45, but our proof is not only more elementary but
interesting in its own right.

We need a special case of the division algebra applied to matrices in Mn

(
F [t]

)
. We

know that the division algorithm says if g ∈ F [t] \ {0} and a ∈ F , then g = (t− a)h + r
for some h in F [t] and r ∈ F — indeed r = g(a) by the Remainder Theorem. We want a
similar result for matrices in Mn

(
F [t]

)
. However, dividing on the right and dividing on the

left makes a difference, i.e., we may have G = AQ1 + R1 = Q2A + R2, but Q1 6= Q2 and
R1 6= R2 in the analogue of the above. However, the same algorithm in the commutative
case can be mimicked as we shall now show.

We use the following notation:

Notation D.4. Let F be a field, Ai ∈ Mr(F ), i = 0, . . . , n. The polynomial matrix

Ant
n + An−1t

n−1 + · · ·+ A0

will denote the matrix

An(tnI) + An−1(tn−1I) + · · ·+ A0

in Mn

(
F [t]

)
with t commuting with all elements of F and I the identity matrix. So if

A = (αij), then Atn = (αijt
n). Two polynomials matrices are the same if and only if their

coefficients are equal, i.e., we are identifying Mn

(
F [t]

)
and

(
Mn(F )

)
[t].

Lemma D.5. Let F be a field and A0 an element in Mn

(
F
)
. Set A = tI−A0 in Mn

(
F [t]

)
.

Suppose that P = P (t) is an element in Mn

(
F [t]

)
. Then there exist matrices M and N

in Mn

(
F [t]

)
and matrices R and S in Mn(F ) satisfying

(1) P = AM +R.
(2) P = NA+Q.

Proof. We show (1), the second being similar. Let

m = max
l,k

(degPlk) and Pij = αijt
m + lower terms in F [t]
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for all appropriate l, k, i, j. In particular, we have

αij =

{
leadPij if degPij = m

0 if degPij < m.

Let (αij) ∈ Mn(F ) and define a polynomial matrix

Pm−1 = (αij)t
m−1 = (αijt

m−1) = (tm−1αij).

Every entry in

APm−1 = (tI − A0)(αij)t
m−1 = (αij)t

m − A0(αij)t
m−1

has degree at most m and the tm-coefficient of (APm−1)ij is αij.

Therefore, P −APm−1 has polynomial entries of degree at most m−1. Applying the same
argument to P − APm−1 produces a matrix Pm−2 in Mn

(
F [t]

)
with all the polynomial

entries of (P − APm−1) − APm−2 having degree at most m − 2. Continuing in this way,
we construct matrices Pm−3, . . . , P0 such that if M := Pm−1 + Pm−2 + · · · + P0, then
R := P − AM has only constant entries, i.e., R ∈ Mn(F ). Therefore, P = AM + R as
needed. �

We use the lemma to prove our theorem:

Theorem D.6. Let F be a field and A0, B0 be elements in Mn(F ). Set A = tI − A0 and
B = tI − B0. Then A and B are equivalent in Mn

(
F (t]

)
if and only if A0 and B0 are

similar in Mn(F ).

Proof. (⇐) : If A0 = PB0P
−1 for some P ∈ GLn(F ), then

P (tI − A0)P−1 = PtIP−1 − PA0P
−1 = tI −B0 = B.

So B = PAP−1 and B is equivalent to A.

(⇒) : Suppose that there exist matrices P1 and Q1 in GLn
(
F [t]

)
, (each is a product of

elementary matrices by Theorem D.2) satisfying

B = tI −B0 = P1AQ1 = P1(tI − A0)Q1.

By the Lemma D.5, we can write

(i) P1 = BP2 +R with P2 ∈ Mn

(
F [t]

)
and R ∈ Mn(F ).

(ii) Q1 = Q2B + S with Q2 ∈ Mn

(
F [t]

)
and S ∈ Mn(F ).

As B = P1AQ1 with P1, Q1 ∈ GLn
(
F [t]

)
, we also have

(iii) P1A = BQ−1
1 .

(iv) AQ1 = P−1
1 B.

Therefore, we have

B = P1AQ1 =
(i)

(BP2 +R)AQ1 = BP2AQ1 +RAQ1

=
(iv)

BP2P
−1
1 B +RAQ1 = BP2P

−1
1 B +RA(Q2B + S)

= BP2P
−1
1 B +RAQ2B +RAS,

i.e., we have
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(v) B = BP2P
−1
1 B +RAQ2B +RAS.

We work on the middle term RAQ2B of this equation. By (i), we have

R = P1 −BP2,

so plugging this in for RAQ2B, yields

RAQ2B =
(i)

(P1 −BP2)AQ2B = P1AQ2B −BP2AQ2B

=
(iii)

BQ−1
1 Q2B −BP2AQ2B = B[Q−1

1 Q2 − P2AQ2]B,

i.e., we have

(vi) RAQ2B = B[Q−1
1 Q2 − P2AQ2]B.

Plugging (vi) into (v) yields

B =
(v)
BP2P

−1
1 B +RAQ2B +RAS

=
(vi)

BP2P
−1
1 B +B[Q−1

1 Q2 − P2AQ2]B +RAS

= B[P2P
−1
1 +Q−1

1 Q2 − P2AQ2]B +RAS.

Let
T = P2P

−1
1 +Q−1

1 Q2 − P2AQ2.

So we have

(vii) B = BTB +RAS.

Next we look at the degree of the polynomial entries in these three matrices in (vii).
Certainly,

(viii) Every entry of B = tI − B0 has degree at most one and every entry of RAS =
R(tI − A0) has degree at most one.

So we must look at BTB. Write

T = Tmt
m + Tm−1t

m−1 + · · ·+ T0 with T0, . . . , Tm ∈ Mn(F ).

Then

BTB = (tI −B0)(Tmt
m + · · ·+ T0)(tI −B0)

= Tmt
m+2 + lower terms in t.

Comparing coefficients of the matrix polynomials in (vii) and using (viii) shows that
Tm = 0. It follows that T = 0. Thus (vii) becomes

(D.7)
tI −B0 = B = BTB +RAS = RAS = R(tI − A0)S

= RSt+RA0S.

Comparing coefficients of the polynomial matrices in equation (D.7) now implies that
I = RS, i.e., S = R−1, and B0 = RA0S. In particular,

B0 = RA0S = RA0R
−1.
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Hence B0 is similar to A0 as needed. �

We therefore have, as Smith Normal Form is unique,

Theorem D.8. Let F be a field and A0, B0 be elements in Mn(F ). Set A = tI − A0 and
B = tI −B0. Then the following are equivalent.

(1) A and B are equivalent in Mn

(
F [t]

)
.

(2) A0 and B0 are similar in Mn(F ).
(3) A and B have the same invariant factors.

Corollary D.9. Let F be a field and A a matrix in Mn(F ). Then A is similar to At

Proof. They have the same Smith Normal Form. �

Exercise D.10. Let R be a commutative ring. Let En(R) be the subgroup of GLn(R)
generated by all matrices of the form I + λ where λ is a matrix with precisely one non
zero entry and this entry does not occur on the diagonal. Suppose that R is a euclidean
ring. Show that SLn(R) = En(R).





APPENDIX E

Symmetric Bilinear Forms

In this appendix, we establish Sylvestor’s theorem about the signature of a symmetric
matrix over the real numbers. We shall need its interpretation over a subfield F of
the reals using the usual ordering < of R restricted to F , i.e., we have a disjoint union
F = F+ ∪ {0} ∪ F− with F+ := {x ∈ F | x > 0} and F− := {x ∈ F | x < 0}. The proof
of Sylvestor’s Theorem will then hold in the more general situation needed in Section 76.

We begin with a short discussion of symmetric bilinear spaces. For convenience,
we restrict our attention to finite dimensional symmetric bilinear forms over a field of
characteristic different from two.

Definition E.1. Let V be a finite dimensional vector space over a field F of characteristic
different from two and B : V × V → F a symmetric bilinear form, i.e., linear in each
variable and B(x, y) = B(y, x) for all x, y ∈ V . We call (V,B) a symmetric bilinear space.
If W ⊂ V is a subspace of V , then B|W×W : W ×W → F is a symmetric bilinear form,
and we call (W,B|W×W ) a (bilinear) subspace of (V,B). We say x, y in V are orthogonal
(rel B) if B(x, y) = 0. We say two subspaces W1,W2 of V are orthogonal if B(x, y) = 0
for all x ∈ W1, y ∈ W2 and, if this is the case, we write W1 ⊥ W2. Note if this is the
case, then W1 + W2 = W1 ⊕W2 if and only if W1 ∩W2 = {0} (by dimension count). If
V = W1 ⊕W2 and W1 ⊥ W2, then we write (V,B) = (W1, B|W1×W1) ⊥ (W2, B|W2×W2),
and call it an orthogonal decomposition of (V,B).

Lemma E.2. Let F be a field of characteristic different from two and (V,B) a finite
dimensional symmetric bilinear space. If W is a subspace of V , then

W⊥ := {v ∈ V | B(v, w) = 0 for all w ∈ W}
is a subspace of V and (W⊥, B|W⊥×W⊥) is a subspace of (V,B). In particular, (V,B) =
(W,B|W×W ) ⊥ (W⊥, B|W⊥×W⊥) if and only if W ⊕W⊥ = V .

Proof. If v1, v2 ∈ W⊥ and α ∈ F , then

B(αv1 + v2, w) = αB(v1, w) +B(v2, w) = 0

for all w ∈ W , i.e., W⊥ is a subspace. The second statement is clear. �

Remark E.3. Let F be a field of characteristic different from two and (V,B) a finite
dimensional symmetric bilinear space. Then

B(x, y) =
1

2

[
(B(x+ y, x+ y)−B(x, x)−B(y, y)

]
.

Since 2 6= 0 under the characteristic assumption on F , it follows that B is determined by
the composition qB := B ◦∆ : V → V , where ∆ : V → V × V given by ∆(v) = (v, v) for
all v ∈ V is the diagonal map. The map qB is called the associated quadratic form of B. In

861
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particular, if B(x, y) 6= 0, then by Remark E.3, B(z, z) 6= 0 for z at least one of x, y, x+ y
since 2 6= 0. This is the major reason that we are assuming that the characteristic of F
is not two.

Definition E.4. Let (V,B) be finite dimensional symmetric bilinear space. Let rad(B) :=
{v | B(v, w) = 0 for all w ∈ V }, called the radical of (V,B). So rad(B) = V ⊥ and
B|rad(B)×rad(B) = 0. If rad(B) = 0, we say that (V,B) is regular.

Let (V,B) be a finite dimensional symmetric bilinear space over F , a field of char-
acteristic different from two. Then for every v ∈ V , the map Bv : V → F defined by

x 7→ B(v, x) is a linear functional, so defines a map B̂ : V → V ∗ by v 7→ Bv with V ∗ the
dual space of V . This map is checked to be an isomorphism if and only if V is regular.

Definition E.5. Let F be a field of characteristic different from two and (V,B), (V ′, B′)
finite dimensional symmetric bilinear spaces over F . A vector space isomorphism ϕ : V →
V ′ is called an isometry if B′

(
ϕ(x), ϕ(y))

)
= B(x, y) for all x, y ∈ V . If ϕ is an isometry

we write (V,B) ∼= (V ′, B′).

Let F be a field of characteristic different from two and (V,B) a finite dimensional
symmetric bilinear space. Let : V → V/ rad(B) (= V ) be the canonical epimorphism.
Define B to be the bilinear form on V determined by B(v1, v2) := B(v1, v2) for all v1, v2 ∈
V . Then (V ,B) is a regular symmetric bilinear space, called the induced bilinear space.

Lemma E.6. Let F be a field of characteristic different from two and (V,B) a finite
dimensional symmetric bilinear space. Let W be any subspace of V satisfying V =
rad(B)⊕W . Then (W,B|W×W ) is regular and

(V,B) =
(

rad(B), 0
)
⊥ (W,B|W×W )

with (W,B|W×W ) ∼= (V ,B), the form induced on V/ rad(B). Moreover, (W,B|W×W ) is
unique up to isometry.

Proof. The first statement follows, as : V → V induces a vector space isomorphism
V/W → V . Since any isometry of symmetric bilinear spaces takes radicals to radicals,
the uniqueness statement follows. �

We leave the following lemma as an exercise.

Lemma E.7. Let F be a field of characteristic different from two, (V,B) a finite dimen-
sional symmetric bilinear over F , and W ⊂ V a subspace. Define fW : V → W ∗ by
v 7→ (B|v)|W . Then W⊥ = ker fW , i.e., we have an an exact sequence of vector spaces

0 → W⊥ inc−→ V
fW−−→ W ∗,

where inc is the inclusion map. In particular, dimW⊥ ≥ dimV − dimW .

Using the lemma, it is easy to determine when this is an equality.

Proposition E.8. Let F be a field of characteristic different from two and (V,B) be
a finite dimensional symmetric bilinear form. Let W be any subspace of V . Then the
following are equivalent:

(1) W ∩ rad(B) = 0.
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(2) fW : V → W ∗ is surjective.
(3) dimW⊥ = dimV − dimW .

Proof. By linear algebra if T : V → W is a linear transformation, there is a dual
map of dual spaces T t : W ∗ → V ∗ where T t, called the transpose of T is the linear
transformation defined by T t(g) = g◦T . Moreover, applied to compositions, it takes exact
sequences to exact sequences (with the maps reversed upon taking the dual sequence).
As V is finite dimensional, V = V ∗∗. It follows that (1) holds if and only if the transpose
map (fW )t : W → V ∗ is injective if and only if the map fW : V → W ∗ is surjective (why?)
if and only if (3) holds. �

A key observation is:

Proposition E.9. Let F be a field of characteristic different from two and (V,B) a
finite dimensional symmetric bilinear space. Suppose that W is a subspace of V with
(W,B|W×W ) regular. Then (V,B) = (W,B)|W×W ) ⊥ (W⊥, B|W⊥×W⊥). In particular, if
(V,B) is also regular, then so is (W⊥, B|W⊥×W⊥).

Proof. By Proposition E.8, dimW⊥ = dimV − dimW , hence V = W ⊕W⊥. The
result follows. �

Corollary E.10. Let F be a field of characteristic different from two and (V,B) a finite
dimensional symmetric bilinear space. If v ∈ V satisfies B(v, v) 6= 0, then (V,B) =
(Fv,B|Fv×Fv) ⊥ (Fv⊥, B|(Fv)⊥×(Fv)⊥).

Theorem E.11. Let F be a field of characteristic different from two and (V,B) a finite
dimensional symmetric bilinear space. Then V has an orthogonal basis.

Proof. Let dimV = n. If V = radV any basis works, so we may assume this is not
so. In particular, there exists a vector v ∈ V such that B(v, v) 6= 0 by Remark E.3. The
result follows by induction on dimV in view of Corollary E.10. �

If we had not put the condition that the field is of characteristic not two, then an
orthogonal basis may not exist for a finite dimensional symmetric bilinear space.

As with linear operators on a finite dimensional vector space, we have matrix repre-
sentations of finite dimensional symmetric bilinear spaces (V,B). Let B = {v1, . . . , vn}
be an ordered basis for V . Then the symmetric matrix

(
B(vi, vj)

)
∈ Mn(F ) is called the

matrix representation of (V,B) relative to the basis V and we denote it by [B]B. We have
B(v, w) = vtBw for all v, w ∈ V (writing w as a column matrix in the matrix equation)
where vt is the transpose of v. In particular,

B an orthogonal basis if and only if [B]B is a diagonal matrix.

If C is another ordered basis for V , computation shows that

[1V ]tB,C[B]B[1V ]B,C = [B]C.

Let F be a field of characteristic different from two and (V,B) and (V ′, B′) two finite
dimensional symmetric bilinear spaces with B, and B′ ordered bases for V and V ′, respec-
tively. Then it is easy to see that (V,B) ∼= (V ′, B′) if and only if At[B]BA = [B′]B′ where
A is the matrix representation of the isomorphism T : V → V ′ taking the basis B to B′.



864 E. SYMMETRIC BILINEAR FORMS

We turn to the special case of interest in this book. Let F be a subfield of R, V a
finite dimensional vector space of dimension n and B : V × V → F a symmetric bilinear
form. Let < be the ordering on F induced by < on R, so if P := {x ∈ F | x > 0} and
−P := {x ∈ F | x < 0}, we have So F = P ∪ {0} ∪ −P is a disjoint union. For example,
if F = R, then P = {x2 ∈ F× | x ∈ F}.

Proposition E.12. Let F be a subfield of R, V a finite dimensional vector space of
dimension n and B : V × V → F a symmetric bilinear form. Let < be the ordering on
F induced by < on R Then there exists an orthogonal decomposition V = V0 ⊕ V+ ⊕ V−.
with

(E.13)
B(v, v) = 0 for all v ∈ V0

B(v, v) > 0 for all 0 6= v ∈ V+

Bv, v) < 0 for all 0 6= v ∈ V−.

Moreover, the dimensions dimV0, dimV+, and dimV− are independent of the orthogonal
decomposition satisfying (E.13).

Proof. We first show that there exists an orthogonal decomposition V = V0⊕V+⊕V−
satisfying (E.13).

By Theorem E.11, we know that V has an orthogonal basis B = {v1, . . . , vn}. Reordering
this basis if necessary, we may assume that

B(vi, vi) = 0, i = 1, . . . , r

B(vi, vi) > 0, i = r + 1, . . . , p

B(vi, vi) < 0, i = p, . . . , q.

So V0 =⊥r
i=1 Fvi, V+ =⊥p

i=r+1 Fvi, V− =⊥q
i=p+1 Fvi work.

Let V = V0⊕ V+⊕ V− satisfy (E.13) and W ⊂ V be a subspace satisfying B(v, v) > 0 for
all 0 6= v ∈ W . Then we establish the following:

Claim. W + V0 + V− = W ⊕ V0 ⊕ V−.

Let w ∈ W, v0 ∈ V0, v− ∈ V− satisfy w + v0 + v− = 0. Then

0 = B(w,w + v0 + v−) = B(w,w) +B(w, v0) +B(w, v−)
= B(w,w) +B(w, v−)

0 = B(v−, w + v0 + v−) = B(v−, w) +B(v−, v0) +B(v−, v−)
= B(v−, w) +B(v−, v−).

As B is symmetric, we have B(w,w) = B(v−, v−). But B(w,w) = 0 if and only if w = 0
and B(v−, v−) = 0 if and only if v− = 0. So w = 0 = v−. Hence also v0 = 0 and the claim
is established.

The claim implies that dimW ≤ dimV+. In particular, if we have another orthogonal
decomposition V = V ′0 ⊕ V ′+ ⊕ V ′− satisfying (E.13), then dimV ′+ ≤ dimV+. Applying
the same argument shows that dimV+ ≤ dimV ′+, so dimV+ = dimV ′+. An analogous
argument shows that dimV− = dimV ′−, hence also that dimV0 = dimV ′0 . �
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Remark E.14. In the above the subspace V0 = radV , so is unique by Lemma E.6, but
V+ and V− are not, although their dimensions are.

Definition E.15. Let (V,B) be a bilinear space over F , a subfield of R and < an ordering
on F arising from R. Let V = V0 ⊕ V+ ⊕ V− be an orthogonal decomposition satisfying
(E.13). Then dimV+ − dimV− is called the signature of B. We denote the signature by
sgnP (B), where P = {x ∈ F | x > 0}.

In the above, if V = rad(B) ⊥ W , then (W,B|W ×W ) is regular by Lemma E.6,
unique up to isometry, so satisfies sgnP (V ) = sgnP (W ).

Proposition E.12 implies

Corollary E.16. Let (V,B) be a bilinear space over F , a subfield of R and < an ordering
on F arising from R. Then the signature of B, sgnP (B) is independent of orthogonal
decomposition satisfying (E.13).

If F = R, then we classify isometry classes of finite dimensional real symmetric bilinear
spaces.

Theorem E.17. (Sylvestor’s Law of Inertia) Two regular finite dimensional symmetric
bilinear spaces over R are isometric if and only if they have the same signature.

Proof. Let V = Rv be a one dimensional real vector space with symmetric bilinear
form B given by B(v, v) > 0. Then B(v, v) = x2, some x ∈ R×. The map V → R
given by v 7→ x determines an isometry (V,B) → (R, B′) with B′(1, 1) = 1. Similarly, if
B(v, v) = −x2, we get an isometry (V,B)→ (R, B′) with B′(1, 1) = −1. �

Exercise E.18. Prove Lemma E.7.





APPENDIX F

Primitive Roots

Let G be a finite abelian group. In this section, we compute the automorphism group
of G. This is useful in the study of cyclotomic extensions of a field. We know that
G ∼= Z/nZ for some positive integer n and Aut(Z/nZ) ∼= (Z/nZ)× (as generators must go
to generators), so it is abelian of order ϕ(n). By the Chinese Remainder Theorem, we are
reduced to the case of of computing (Z/pnZ)× where p is a (positive) prime. We also know
that (Z/pZ)× is cyclic, so can assume that n > 1. We shall show that (Z/pnZ)× is also
cyclic unless p = 2. A generator for this automorphism group is called a primitive root.
The proofs rely on the binomial theorem and its special case, the Children’s Binomial
Theorem: that (a+ b)p ≡ ap + bp mod p for any integers a and b. In particular, it implies

Lemma F.1. Let p be a (positive) prime and n > 1. If a, b, and k are integers, then
bp ≡ (b+ kpn)p mod pn+1. In particular, if a ≡ b mod pn, then ap ≡ bp mod pn+1.

Lemma F.2. Let p be a (positive) odd prime and n ≥ 2. Then for every integer a, we

have (1 + ap)p
n−2 ≡ 1 + apn−1 mod pn.

Proof. We induct on n. The case n = 2 is trivial, so we may assume that n > 2.
In particular, 2(n − 1) > n + 1, so p(n − 1) > n + 1. By induction, we may assume the
result for n−2 and show the result for n−1. By the lemma, induction, and the Binomial
Theorem, we have

(1 + ap)p
n−1 ≡

(
(1 + ap)p

n−2)p ≡ (1 + apn−1)p

≡ 1 +

(
p

1

)
apn−1 +

(
p

2

)
a2p2(n−1) + · · ·+ (apn−1)p

≡ 1 +

(
p

1

)
apn−1 ≡ 1 + apn mod pn+1.

�

Lemma F.3. Let p be a (positive) odd prime and a an integer not divisible by p. Then
for every integer n ≥ 2, the congruence class of 1 + ap in Z/pnZ has order pn−1.

Proof. Let : Z → Z/pnZ the canonical epimorphism. By the previous lemma, we

know that (1+ap)p
n−1 ≡ 1+apn mod pn+1, hence (1+ap)p

n−1 ≡ 1 mod pn and the order

of (1 + ap) divides pn−1. The previous lemma also implies that (1+ap)p
n−1 ≡ 1+apn−1 6≡ 1

mod pn, so the order of (1 + ap) must be pn−1. �

Proposition F.4. Let p be a (positive) odd prime. Then (Z/pnZ)× is cyclic for all n.

Proof. Let a be an integer relatively prime to p. We know that (Z/pZ)× is cyclic of
order p− 1, so generated by the residue class of a.
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Claim 1. We may assume that ap−1 6≡ 1 mod p2:

Suppose that ap−1 ≡ 1 mod p2. Let b = a+ p. Then

bp−1 = (a+ p)p−1 ≡ ap−1 + (p− 1)ap−2p

≡ 1 + (p− 1)ap−2p 6≡ 1 mod p2

by the Binomial Theorem, so replacing a by b works.

Claim 2. Let : Z → Z/pnZ the canonical epimorphism. If a is as in the first claim,
then 〈a〉 = (Z/pnZ)×:

We know that ϕ(pn) = pn−1(p− 1) is the order of (Z/pnZ)×, so it suffices to prove that if
aN = 1, then pn−1 | N and p− 1 | N in Z, as p and p− 1 are relatively prime. By the first
claim, we can write a = 1 + xp for some integer x not divisible by p. By the last lemma,
1 + xp has order pn−1 in (Z/pnZ)×. As aN = 1, we must have pn−1 | N . Write N = pn−1M

for some integer M . By Fermat’s Little Theorem, 1 ≡ (aN) = (aM)p
n−1 ≡ aM mod p, so

p− 1 |M as a is relatively prime to p. Hence aM has order p− 1. This establishes Claim
2 and the theorem. �

We know that (Z/2Z)× ∼= 1 and (Z/22Z)× ∼= Z/2Z are cyclic, however, this is not the
case for (Z/2nZ)× when n > 2.

Proposition F.5. Let n ≥ 3 be an integer. Then (Z/2nZ)× ∼= Z/2Z× Z/2n−2Z,

Proof. Let n ≥ 3. We begin with the following:

Claim. 52n−3 ≡ 1 + 2n−1 mod 2n:

This is true for n = 3, so we proceed by induction. As n ≥ 3, we have 2n − 2 ≥ n + 1.
Assuming the result for n− 3 we show it holds for n− 2. By Lemma F.1

52n−2

= (52n−3

)2 = (1 + 2n−1)2 = 1 + 2n + 22n−2 ≡ 1 + 2n mod 2n+1,

proving the claim. The claim implies that 52n−3 ≡ 1+2n−1 6≡ 1 mod 2n and 52n−2 ≡ 1+2n

mod 2n+1. It follows that 52n−2 ≡ 1 mod 2n, and the order of 5 in (Z/2nZ)× is 2n−2,
where : Z→ Z/2nZ is the canonical epimorphism. To finish, it suffices to show that the
subgroup 〈−1, 5〉 in Z/2nZ has order 2n−1, as this would imply that (Z/2nZ)× ∼= 〈−1〉×〈5〉.
So suppose that (−1)a5b ≡ (−1)a

′
5b
′

mod 2n for some positive integers a, a′, b, b′. As
n ≥ 2 and 5 ≡ 1 mod 4, we have (−1)a ≡ (−1)a

′
mod 4, hence a ≡ a′ mod 2. It follows

that 5b ≡ 5b
′

mod 2n. We may assume that b ≥ b′, hence 5b−b
′ ≡ 1 mod 2n. Since 5 has

order 2n−2, we have 2n−2 | b− b′, i.e., b ≡ b′ mod 2n. The result follows. �

The two propositions and the Chinese Remainder Theorem yield the desired result.

Theorem F.6. Let n be a positive integer. Then (Z/nZ)× is cyclic if and only if n =
2, 4, pr, or 2pr where p is an odd prime.



APPENDIX G

The Sign of the Gauss Sum

In Section 59, we used Proposition 59.14 to determined the square of the Gauss sum
defined in that proposition. This proposition was used to prove the Law of Quadratic
Reciprocity 59.19 and Theorem 59.18 that every quadratic extension of Q was a subfield
of a cyclotomic extension of Q. We indicated what the sign of the Gauss sum in Proposition
59.14 was in Remark 59.15 without proof. It was this problem that was the most difficult
for Gauss to solve and took him several years after proving what the square was. In this
appendix, we shall prove Remark 59.15.

Let χ =
(
p

)
: Z → Z/pZ denote the Legendre symbol with p an odd prime and ζ a

primitive pth root of unity in C. Set

τ(χ) :=

p−1∑
a=1

(a
p

)
ζa,

the Gauss sum S, defined in Proposition 59.14. Proposition 59.14 stated that S2 =
(−1

p

)
p.

It follows that

(G.1) τ(χ) = ±√p or ±
√
−p,

but only remarked in Remark 59.15 what the correct signs were which depended on the
congruence of p modulo 4. We now state again and prove the rest of the full theorem.

Theorem G.2. Let p be an odd prime. Then

τ(χ) =

{√
p, if p ≡ 1 mod 4
√
−p, if p ≡ 3 mod 4.

Proof. It follows by equation (G.1) that

(G.3) τ(χ) =

{
±√p, if p ≡ 1 mod 4

±
√
−1
√
p, if p ≡ 3 mod 4.

We must show that the sign is +1 in both cases.
Let R = {1, . . . , p− 1} ( a system of representatives in Z of (Z/pZ)×), Q :={a ∈ R |(

a
p

)
= 1} and N := {a ∈ R |

(
a
p

)
= −1}. Therefore, we have

τ(χ) =

p−1∑
a=1

(a
p

)
ζa =

∑
q∈Q

ζq −
∑
n∈N

ζn.
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Since 0 = 1 + ζ + · · ·+ ζp−1 = 1 +
∑

q∈Q ζ
q +
∑

n∈N ζ
n, we have τ(χ) = 1 + 2

∑
Q ζ

q. As x

runs through 0, 1, . . . , p − 1, then modulo p, we have x2 takes the value 0 once and each
square modulo p twice. As ζp = 1, follows that

(G.4) τ(χ) =

p−1∑
a=0

ζa
2

.

Using this, we shall turn the proof of the theorem into a linear algebra problem. Let
A ∈ Mp(C) be the Vandermonde matrix

A = (ζkl)0≤k,l≤p−1 =


1 1 1 · · · 1
1 ζ ζ2 · · · ζp−1

1 ζ2 ζ4 · · · ζ2(p−1)

...
...

1 ζp−1 ζ2(p−1) · · · ζ(p−1)2 .


By equation (G.4), we know that τ(χ) = traceA. This indicates why the matrix A will be
involved in the proof, as will the matrix A2. In particular, we shall use the Vandermonde
determinant

detA =
∏

0≤l<k≤p−1

(ζ l − ζk)

as well as detA2. We want to compute the trace of A. This turns our problem into an
eigenvalue problem.

As A is triangularizable over C, we that know that if λ1, . . . , λp (not necessarily dis-
tinct) in C are the eigenvalues of A that

τ(χ) = traceA = λ1 + · · ·+ λp

and the eigenvalues of A2 are λ2
1, . . . , λ

2
p. We shall compute the λ2

i ’s. The problem, of

course, is that knowing λ2
i only determines its square root up to sign.

We first compute the characteristic polynomial fA2 of A2. As ζj, j = 1, . . . , p − 1, is
a primitive pth root of unity (with p an odd prime), the (k, l)th entry of A2 is given by

(A2)kl =

p−1∑
j=0

ζkjζjl =

p−1∑
j=0

ζj(k+l) =

{
p if k + l ≡ 0 mod p

0 if k + l 6≡ 0 mod p.

Therefore, we have

A2 =


p 1 0 · · · 0 0
0 0 0 · · · 0 p
1 0 0 · · · p 0
...

...
0 p 0 · · · 0 0

 .
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as p is odd. Computation
[
using the properties of the determinant, e.g, if B ∈ Mp−2(C)

det

 t 0 · · · 0 −p
... B

...
−p 0 · · · 0 t

 = det

t− p 0 · · · 0 t− p
... B

...
−p 0 · · · 0 t


= (t− p) det

 1 0 · · · 0 1
... B

...
−p 0 · · · 0 t

 = (t− p) det

1 0 · · · 0 1
... B

...
0 0 · · · 0 t+ p


= (t− p)(t+ p) detB

]
shows that the characteristic polynomial fA2 of A2 is

(G.5) fA2 = (t− p)
p+1
2 (t+ p)

p−1
2 .

In particular,

detA2 = p
p+1
2 (−p)

p−1
2 = pp(−1)

p−1
2 = pp(−1)

p(p−1)
2

as p is odd and

(G.6) detA = ±p
p
2 (
√
−1)

p(p−1)
2 .

It also follows that λ2
1, . . . , λ

2
p contain p+1

2
of the λ2

i having eigenvalue p and p−1
2

of the λ2
i

having eigenvalue −p. Therefore, every λi lies in {+√p,−√p,
√
−p,−

√
−p }.

We must compute the multiplicities of these eigenvalues. Let

r+ = |{i | λi = +
√
p}| r− = |{i | λi = −√p}|

s+ = |{i | λi = +
√
−p}| s− = |{i | λi = −

√
−p}|.

By equation (G.5), we have

(G.7) r+ + r− =
p+ 1

2
and s+ + s− =

p− 1

2
.

Hence

τ(χ) = λ1 + · · ·+ λp =
(
r+ − r− + (s+ − s−)

√
−1
)√

p.(G.8)

Using equations (G.3) and (G.8), we see that

(G.9)
r+ − r− = ±1 and s+ = s− if p ≡ 1 mod 4

r+ = r− and s+ − s− = ±1 if p ≡ 3 mod 4.

We want to determine the sign in equations (G.9). Equation (G.6) implies that

(G.10)
detA =

p∏
i=1

λi = p
p
2 (−1)r−(

√
−1)s+(−

√
−1)s−

= p
p
2 (
√
−1)2r−+s+−s− .

We can now determine the sign of detA as computed in equation (G.6) using that detA
is a Vandermonde determinant. Let ζ2p be a primitive 2pth root of unity. So we have

ζa = ζ2a
2p = cos

2πa

2p
+
√
−1 sin

2πa

2p
= cos

πa

p
+
√
−1 sin

πa

p
.
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Then for integers 0 ≤ l < k ≤ p− 1, we have

detA =
∏

0≤l<k≤p−1

(ζk − ζ l) =
∏

0≤l<k≤p−1

( ζ2k
2p − ζ2l

2p )

=
∏

0≤l<k≤p−1

ζk+l
2p ( ζk−l2p − ζ

−(k−l)
2p )

=
∏

0≤l<k≤p−1

ζk+l
2p

∏
0≤l<k≤p−1

(
2
√
−1 sin

(k − l)π
p

)
.

Now ∑
0≤l<k≤p−1

(k + l) =

p−1∑
k=1

k−1∑
l=0

(k + l) =

p−1∑
r=1

(
k2 +

k(k − 1)

2

)
= 2p(

p− 1

2
)2

is divisible by 2p and ζ2pn
2p = 1 for all integers n. Therefore, by equation (G.6), we have

(G.11) ± p
p
2 (
√
−1)

p(p−1)
2 = detA = (

√
−1)

p(p−1)
2 2

p(p−1)
2 sin

(k − l)π
p

.

Since sin(
(k − l)π

p
) > 0 for 0 ≤ l < k ≤ p − 1, we must have the plus sign in equation

(G.11). Hence, by equations (G.6) and (G.10),

p
p
2 (
√
−1)

p(p−1)
2 = detA =

p∏
k=1

λk = p
p
2 (
√
−1)2r−+s+−s− .

Comparing exponents, implies that

(G.12) 2r− + s+ − s− ≡ p(
p− 1

2
) mod 4.

Consequently, by equations (G.7) and (G.9) we deduce that

If p ≡ 1 mod 4, then s+ = s− and

r+ − r− =
p+ 1

2
− 2r− =

p+ 1

2
− p− 1

2
≡ 1 mod 4

If p ≡ 3 mod 4, then r+ = r− and

s+ − s− = −p− 1

2
+ 2r− = −p− 1

2
+
p+ 1

2
≡ 1 mod 4.

Therefore, r+ − r− and s+ − s− are both are +1, and the result follows by equation
(G.9). �



APPENDIX H

Pell’s Equation

In this section, we show that the well-known diophantine equation

(*) x2 − dy2 = 1 with d a positive integer,

is solvable, i.e., there exist integers x, y satisfying (*). In elementary number theory, it
is shown that the solutions may be found using continued fractions, a method based on
repeated use of the division algorithm, although it may not so easy to calculate. We need
two lemmas.

Lemma H.1. Let α be an irrational number. Then there exist infinitely many relatively
prime integers x, y satisfying

|x
y
− α| < 1

y2
.

Proof. Let n be a positive integer. Partition the half-open interval [0, 1) into n
half-open subintervals,

(†) [0, 1] =
n−1∨
j=0

[
j

n
,
j + 1

n
).

Recall if β is a real number then [β] is defined to be the largest integer ≤ β, and β − [β]
is then called the fractional part of β. Consider the n+ 1 fractional parts of the elements
0, α, 2α, . . . , nα. By the Dirichlet Pigeon Hole Principle, two of these fractional parts
must lie in the same subinterval in (†). Hence there exist integers j and k satisfying
0 ≤ j < k ≤ n and

|(kα− [kα])− (jα− [jα])| < 1

n
.

Set y = k − j and x = [jα]− [kα]. We have 0 < y < n and

0 < |x
y
− α| < 1

yn
<

1

y2
.

Therefore, x/y is one solution. We may assume that x and y are relatively prime, since
dividing by the gcd of x and y would also lead to a solution. Now choose an integer
n1 > 1/|(x/y) − α|. Repeating the construction would yield a new solution x1, y1 in
relatively prime integers. If follows that we can construct infinitely many such solutions.

�

Lemma H.2. Let d be a positive square-free integer. Then there exists a constant c
satisfying

|x2 − dy2| < c

has infinitely many solutions in integers x, y.
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Proof. We have x2 − dy2 = (x− y
√
d)(x+ y

√
d) in Z[d]. By the lemma, there exist

infinitely many relatively prime integers x, y with y > 0 and satisfying |x− y
√
d| < 1/y.

Therefore,

|x+ y
√
d| < |x− y

√
d|+ 2y

√
d <

1

y
+ 2y
√
d

and

|x2 − dy2| < 1

y2
+ 2
√
d < 1 + 2

√
d,

so c = 1 + 2
√
d works. �

Proposition H.3. Let d be a square-free positive integer. Then Pell’s equation x2−dy2 =
1 has infinitely many solutions in integers. Further, there exists an integral solution
(x1, y1) such that every solution is of the form (xn, yn) with xn + yn

√
d = (x1 + y1

√
d)n

for some integer n, In particular, the solution set in integers to Pell’s equation forms an
infinite cyclic group.

Proof. We begin with some notation. If γ = x + y
√
d, x, y in Q, let γ = x − y

√
d

and N(γ) = γγ = x2 − dy2. By the last lemma, we know that there exists a nonzero
integer m such that x2 − dy2 = m has infinitely many solutions x, y in positive integers.
We may also assume that we have reduced this set of solutions to those having different
x’s. In particular, among these infinitely many solutions in positive integers, there exist
two such pairs x1, y1 and x2, y2 to this equation with x1 6= x2 , x1 ≡ x2 mod |m| , and

y1 ≡ y2 mod |m|. Let α = x1 + y1

√
d and β = x2 + y2

√
d. By choice, N(α) = m = N(β).

Write αβ = r + s
√
d with r and s integers satisfying r ≡ 0 ≡ s mod |m|. It follows that

αβ = m(a+ b
√
d)

for some integers a and b. Taking N of this equation yields a2 − db2 = 1. Suppose that
b = 0, then a = ±1 and αm = αββ = ±mβ, i.e., α = ±β. This implies x1 = x2, a
contradiction. It follows that Pell’s equation has a solution a, b to a2 − db2 = 1 with
ab 6= 0.

Among all the solutions a, b to Pell’s equation choose one in positive integers a, b with
the real number α = a + b

√
d > 0 minimal. Suppose that x, y is another solution in

positive integers. Set β = x + y
√
d. We show that β = αn for some positive integer n.

Suppose not. Then there exists a positive integer n such that αn < β < αn+1. Since
αα = 1, i.e., α−1 = α, we have

1 < βα−n < α.

We can write 1 < βα−n = βαn = r+ s
√
d with r and s integers. As N(βαn) = N(β)(α) =

1, we have r, s is also a solution of Pell’s equation. Since r + s
√
d > 0, we have 0 <

r − s
√
d = (r + s

√
d)−1 < 1. In particular, r is positive and s

√
d > r − 1 ≥ 0. Therefore,

s is also positive, contradicting the minimality of a, b. If x, y is a solution in integers to
Pell’s equation with x > 0 and y < 0, then β = x+ y

√
d satisfies N(β) = 1, so β = αn for

some n, hence β = α−n. The cases x < 0, y > 0 and x < 0, y < 0 lead to solutions −αn
for some n in Z. �
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Notation

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
, representation of a

permutation, 57
(A∗, d∗), cochain complex, 686, 801
(A∗, d∗), chain complex, 685
(L/F, f), crossed product algebra, 607
(R,m), local ring with maximal ideal m, 514
(Z/mZ)×, units in Z/mZ, 32
(A : B), 526
(a), principal ideal generated by a, 142
(a1 · · · ar), r-cycle, 125
(a1, . . . , an), ideal generated by a1, . . . , an, 142
(gi)I , elements in �I

Gi, 45
∗ : G× S → S, G-action, 97
1R, identity (unity) of R, 137
1S , the identity map on S, 41
A < B, same as A ⊂ B, A 6= B, 53
A \B, element in A not B, 3

A
f−−→ B, map from A to B, 6

Aop, opposite algebra, 594
AK , 594
AK , integral closure of A in K, 447
An, alternating group group on n letters, 57
An, alternating group on n-letters, 127
C(P1, . . . , Pn), constructible points from

P1, . . . , Pn, 298
C(a), conjugacy class of a, 103
C(z1, . . . , zn), constructible points from

z1, . . . , zn, 299
D(R), basic open set, 509
Dn, dihedral group of order 2n, 43
Dn(R), diagonal group, 44
F (X), smallest field containing F and S, 277
FS , fixed field of F under the set S of

automorphisms, 313
F p, {xp | x ∈ F}, 309
FG(S), G-fixed point set, 99
G ∼= G ′, isomorphic, 48
G(K/F ), Galois group of K/F , 314
G/H, factor group of G by H, 62
G/H, set of cosets, 51

G(n), (G(n−1))′, 59, 82

Gab, abelianization of G, 68

GA(R), 560
Gs, isotropy subgroup (stabilizer) of s, 98
H oϕ G, semidirect product of H and G via ϕ,

59
H / G, normal subgroup, 56

H / /G, H a characteristic subgroup of G, 58
Hn(A), homology of (A∗, d∗), 685, 801
K/F , field extension, 275
LA(M); ring of left multiplications by A on M ,

630

Mn(R), matrices coefficients in R, 30
NG(H), normalizer of H in G, 46, 105
Q, the rational numbers, 3
R, ring, 137
R, the set of real numbers, 6

R/A, quotient (factor) ring of R by A, 147
R[[t]], formal power series over R, 139
R×, units in R, 41
R×, units in ring R, 32

R×, units of R, 138
Rp, localization at p, 512
Ra, localization at set of the powers of a, 512
S ∨ T , disjoint union of S and T , 10
S−1R, localization of R by S, 163

Sn, symmetric group on n letters, 41
VR(T ), variety of T , 233, 507
Z(G), center of G, 57, 103
Z(R), center of R, 141
ZF (A), zero set in Fn of A, 199

ZG(a), centralizer of a, 103
[G,G] = G′, commutator subgroup, 59, 82
[G : H], index of H in G, 52
[K : F ], degree of K over F , 276
[T ]B,C , matrix representation relative to bases
B, C, 57

[x, y], commutator of x and y, 82
[x]∼, equivalence class of x, 27
AssR V (A), associated primes of A (or R/A),

528
Aut(G), automorphism group of G, 56
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AutF (K), F -(algebra) automorphisms of K,
290

AutF (V ), automorphism group of F -vector
space V , 44

AutF (V ), automorphism group of vector space
V , 108

Br(F ), Brauer group of F , 604
C, set of complex numbers, 3
char(R), characteristic of R, 149
∆K , prime subfield of K, 153
End(A), endomorphism ring of A, 146
EndF (V ), endomorphism ring of vector space

V , 108
GLn(R), general linear group over R, 44
=⇒, implies, 6
Mn(R), n× n matrix ring over R, 26
Max(R), set of maximal ideals, 234
Min(R), set of minimal primes in R, 509
Q[t], polynomials with rational coefficients, 3
R+, the set of positive reals, 41
Σ(S), permutation group on S, 41
Spec(R), Spectrum of R, 233
Sylp(G), set of Sylow p-subgroups of G, 107,

111
Z, the set of integers, 3
Z/mZ, integers modulo m, 29
Z+, non-negative integers, 6
Z+, positive integers, 6
Z+, the set of positive integers, 8
≈, usually an equivalence relation, 25⋃

I Ai,
⋃

i∈I Ai, the union of the sets Ai, 27∨
I Ai, disjoint union of the sets i in I, 27
C∗, is = C \ Z(G), 103
F(K/F ), intermediate fields of K/F , 330
G, set of subgroups of G, 106
G(K/F ), subgroups of G(K/F ), 330
O, system of representatives for a G-action, 98
O∗, is O \ FG(S), 99
P(S), power set of S, 106
∼=, isomorphism, 140∐

I Mi, coproduct of the Mi, 210
degA, index of the algebra A, 598
det, determinant, 49
∅, the empty set, 9
≡ mod m, congruence modulo m, 29
A,B,C, ideals, 141
AB, ideal generated by A, and B, 142
B | A, ideal division, 455
m, maximal ideal, 145
p,P, prime ideals, 145
imϕ, image of ϕ, 48, 140
indG

H(W ), induced module, 649

kerϕ, kernel of ϕ, 48, 140
〈W 〉, group (etc.) generated by W , 42
〈a〉, group (etc) generated by a, 42
λa, left translation by a, 52
λx, left multiplication by x, 62
| A |, cardinality of A, 6
µn, nth roots of unity (in C), 42
nil(R), nilradical of R, 160
SLn(R), special linear group over R, 44
A, set of equivalence class of A, 27

: G→ G/H, canonical group epimorphism, 51
x, equivalence class of x, 27
aϕ, 510
π(x), 3∏
Ri, �Ri, product of rings, 153∏
I Mi, product of the Mi, 210

rad(R), Jacobson radical of R, 518
resGH(V ), restriction module, 649
sgn, signum (sign) map, 127
∼, usually an equivalence relation, 25
∼G, G=equivalence, 98√
A, radical of A, 162, 508

θx, conjugation by x, 55
ϕ̃ : R[t]→ S[t], ring extension of ϕ : R→ S, 288
tr degFA, tr degF qf(A), 545
tr degFK, transcendence degree of K/F , 285
ϕ : G →̃G ′, isomorphism, 48
zd(R), zero divisors of R, 159
a ≈ b, a is an associate of b, 144
a | b, a divides b, 3, 144
a6 | b, a does not divide b, 3
a−1, inverse of a, 40
e = eG, unity in the group G, 39
f : A→ B, map from A to B, 6
f−1(D), preimage of D, 35, 64
f−1(b), fiber of f at b, 35
l(M), length of a module M having a

composition series., 538
mF (α), minimal polynomial of α over F , 279
qf(R), quotient field of domain R, 150
t, represents a variable, 3
vp(A), power of p dividing A, 455
xHx−1, conjugate of H, 55
Spn(R), symplectic group over R, 44
On(R), orthogonal group over R, 44
O3,1(R), Lorenz group, 44
SOn(R), special orthogonal group over R, 44
STn(R), strictly upper triangular group over R,

44
SUn(R), special unitary group, 44
Tn(R), upper triangular group over R, 44
Un(C), unitary group, 44
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CoreG(H), core of H in G, 45
Inn(G), 56
PSLn(F ), projective special linear group, 131
Permn(R), permutation matrices over R, 57
:=, defined by, 3
[H,K], the group generated by [h, k], 86

module
induced, 649
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Cn field, 591
G-action, 101
G-module

fixed points of, 645
trivial, 645

G-set, 101
R-sequence, 578, 778

on a module, 578, 778
S-units, 520
EndR(M,N), 726
Hom

left exact, 716
A-adic topology, 586
p-primary ideal, 545
sgnP (B), signature at P , 861
End∗R(M,N), 747
n-(multi)linear map, 686
p-adic integers, 587
p-group, 107
(category

object, 785

Abel’s Theorem, 60, 133
Abel-Ruffini Theorem, 373
abelian group, 42

basis, 74
free, 92
rank, 74

absolutely irreducible module, 667
ACC, 180
action

compatible, 223, 262
action of a group on a set, 101
action of a ring, 219
adjoint

reflector, 816
Adjoint Associativity Theorem, 758
adjoint functors, 802
adjoints, 758
adjunction, 803
affine (plane) curve, 249
affine algebra, 243, 563

affine group scheme, 801
affine scheme, 815
affine variety defined by A, 211
Akizuki’s Theorem, 559
algebra, 151, 603, 692
F -split, 650
K-split, 618
affine, 243, 563
center of, 603
central, 614
central simple, 603

similarity of, 603
crossed product, 612, 627
cyclic of degree d, 609
derivation, 441
exterior, 696
finite dimensional, 603
finitely generated commutative, 243
free commutative, 692
graded, 692

homogeneous element of, 692
opposite, 614
semisimple

basic set for, 607
simple components, 607
Wedderburn decomposition, 607

split, 618
symmetric, 694
tensor, 693

algebra homomorphism
graded, 692

algebraic closure of a field, 296
algebraic element, 292
algebraic integer, 429
algebraic integers

ring of, 366
algebraic number, 429
algebraic number field, 433, 468
algebraically closed

right (respectively, left), 639
algebraically closed field, 296
algebraically independent elements, 298
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almost all, 166, 222
almost all zero, 205
alphabet

letters of, 94
of a free group, 94

alternating group, 59, 131
3-cycles and, 132
A5, 134
simplicity for n ≥ 5, 60, 133

alternating group on n letters, 59
analytic at infinity, 407
analytic function, 403, 433

zero, 433
annihilator, 224

of a module, 478
anti-derivation, 700
antiautomorphism, 192
antihomomorphism, 192
arithmetic function, 22

completely multiplicative, 22
division functions, 22
Euler ϕ-function, 22
identity arithmetic function, 22
Liouville function, 22
Möbius µ-function, 22
multiplicative, 22
von Mangoldt function, 22

Arithmetic Lemma, 664
arithmetic progressions, 190
Artin’s Lemma, 327

consequence of, 328
Artin’s Theorem, 329
Artin-Tate Lemma, 244
Artin-Weddeerburn Theorem, 607
Artin-Wedderburn Theorem, 605
Artinian module, 242
Artinian ring, 183
ascending chain condition, 180, 239
associated map, 530
associated prime ideal, 548
associated primes

isolated subset, 550
Auslander’s Theorem, 754
Auslander-Buchsbaum Theorem, 783
automorphism, 58

field, 291
Frobenius, 336

fixing, 186
Frobenius, 485
inner, 58
moves element, 291
ring, 150

automorphism group, 113, 223
of a group, 58
of vector space, 46

Axiom of Choice, 835

Bézout domain, 497, 499
Baer Criterion, 230, 719
balanced biadditive map, 755
base extension, 690
base units, 519
basic open set, 529
basis

complementary, 469
for a free abelian group, 92
for a free group, 92
integral, 433, 471
minimal, 487
projective, 736

Bertrand’s Hypothesis, 12
Bertrand’s Theorem, 837
Bezout’s Lemma, 250
bilinear form, 686
bilinear space

discriminant, 514
positive definite, 514

bimodule, 757
binary operation, 41
Binet-Cauchy Equations, 703
binomial coefficients, 12
binomial theorem, 13, 156
blinear space, 514
boundaries, 697
Brauer equivalence, 624
Brauer Group, 624
Brauer group, 603
Brill’s Theorem, 490
Burnside Conjecture, 677
Burnside Counting Theorem, 388
Burnside’s paqb-Theorem, 667
Burnside’s Lemma, 665
Burnside’s Theorem, 135, 650
Butterfly Lemma (Zassenhaus), 86

cancellation law, 42, 148
canonical homomorphism, 689
Cantor’s Theorem, 6
Casimir element, 691
categorical definitions, 681
category, 785

abelian, 820
additive, 817
arrows, 785
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comma, 790
concrete, 793
congruence relation, 787
contravariant functor, 789
discrete, 809
enough injectives, 826
enough projective objects, 828
epimorphism, 788

split, 788
equivalent, 794
full subcategory, 793
functor, 789
functor category, 795
hom-set, 796
initial object, 788
isomorphism, 789
locally small, 786
monomorphism, 788

split, 788
morphism, 785

codomain, 785
compatible, 785
domain, 785

natural transformation, 794
of cocones, 808
of cones, 807
opposite, 788
poset, 786
preadditive, 817
product, 791
projective object, 828
quotient, 787
slice, 787, 788
small, 786
subcategory

reflective, 816
terminal object, 788
zero object, 788

Cauchy’s Theorem, 70, 113
abelian case, 70

Cayley’s Theorem, 65, 800
general form, 64

Cayley-Hamilton Characteristic Sequence, 284
Cayley-Hamilton Theorem, 272, 544
central F -algebra, 614
central simple algebra

exponent, 633
index of, 618
period, 633
split, 603, 611

centralizer
of a subalgebra, 616

chain, 165, 833
stablized, 239

chain complex, 225, 707, 821, 823
n-chain, 707, 824
acyclic, 225
augmentation, 746
augmented, 823
boundaries of, 707, 824
cycles, 697
cycles of, 707, 824
differential of degree −1, 697
homology, 697
homology of, 707, 823
long exact sequence in homology, 710, 824

chain complexes
differentials, 707, 823

chain homotopy, 712
chain map

of degree i , 712
change of rings theorems

first, 773
general, 772
second, 775
third, 777

character
degree of, 655
irreducible, 655
krnel of, 657
real, 662
regular, 663
trivial, 655

character (linear), 325
character of a representation, 655
character table, 661
characteristic

of a domain, 159
characteristic matrix, 275, 852
characteristic polynomial, 269

reduced, 621
characteristic sequence, 274, 284
characterization of completely reducible

modules, 599
characters

algebraically independent, 385
complex, 662
dependent, 325
independent, 325
inequivalent, 659

Chebysev’s Theorem, 841
Chebyshev, 16

Bertrand’s Hypothesis, 16, 837
binomial coefficient, 16



886 INDEX

primenumber theorem approximation, 16
Chevalley-Warning Theorem, 397
Children’s Binomial Theorem, 35, 165, 307
Chinese Remainder Theorem (for Z), 33

homomorphism interpretation, 35
Chinese Remainder Theorem (for commutative

rings, 163
circle group, 44
class equation, 107
class function, 661
class group, 476
class number, 522
class sum, 646
classical adjoint, 704
Classification of Cyclic Groups, 51, 130
classification of similarity classes of matrices

over a field, 273
closed points, 248
cochain comples
n-cochain, 708, 824

cochain complex, 708, 824
acyclic, 708
augmentation, 723
coboundaries of, 708, 824
cocycles of, 708, 824
cohomology of, 708, 824
positive, 723

cocone
seecone

over a diagram to a functor with nadir, 808
codimension, 568
cofactor, 704
Cohen’s Theorem, 186
Cohen-Macaulay ring, 579
Cohen-Seidenberg Theorem, 539
cohomological δ functor, 826
cohomological delta-functor

universal, 826
cohomology, 821
cohomology group

1st, 380
2nd, 628

coimage, 683
cokernel, 226, 682
colon of ideals, 546
combinatorial dimension

of a topological space, 534
commutative diagram, 37
commutative ring, 32, 42, 148

(integral domain), 148
PID, 153

(integral) domain, 48

local, 175
Artinian, 183
ascending chain condition (or ACC), 180
chain of ideals stabilizing, 180, 183
coherent, 241
completion relative to an ideal, 586
descending chain condition (or DCC), 183
discrete valuation ring, 472
division, 154

properties of, 154
Frobenius homomorphism, 164
ideal

finitely generated (or fg), 180
irreducible, 184, 550
nilradical, 170
primary, 172
prime ideal, 154
radical of, 172

idempotent, 172
Jacobson radical of, 172
Japanese, 589
Krull dimension of, 472, 534
local, 164, 212, 472

equicharacteristic, 581
localization

construction of, 172
localization of, 173
maximal ideal, 154
Maximal Principle, 180
minimal principle, 184
multiplicative set, 168

exclusion and prime ideals, 169
exclusion by (of), 168
saturated, 185, 186

Nagata ring, 590
nilpotent element, 169
nilradical, 170
Noetherian, see also Noetherian ring
polynomial ring

evaluation, 200
reduced, 170
relation of division and ideals, 154
semi-local, 498
Universally Japanese, 589
valuation ring, 496
zero divisor, 169

commutative ring homomorphism
evaluation, 191

Comparison Theorem
injective resolutions, 723
projective resolutions, 747

complementary basis, 469



INDEX 887

completion of a ring relative to an ideal, 586
complex

acyclic resolution, 823
deleted, 823

complex number
irrational, 3
algebraic, 3
transcendental, 3

composition series
of modules, 557

compositum of fields, 351, 383
cone

over a diagram to a functor with apex, 807
product

limit, 809
under a diagram to a functor with nadir, 808

congruence modulo m, 31
conjugation, 57
Constructibility Criterion, 315

refined form, 369
Constructible points, 312
Construction problems

circles, 312
Constuction problems

lines, 312
convex set, 513
coproduct, 684

of modules, 222
Correspondence Principle, 66

alternate form, 67
modules, 224
rings, 158

coset, 53
counterexample

minimal, 10
counting norm, 507
Cramer’s Rule, 704
crossed homomorphism, 380

principal, 380
crossed product algebra, 627
cube, 103
cycle, 129

length of, 129
cyclic algebra

characterization of split of prime degree, 612
maximal subfield of, 611

cyclic group, 44
cyclic groups

classification, 51
classification of subgroups, 52

DCC, 183

Dedekind domain, 366
class group, 476
conductor, 481
discrete valuation ring, 472
discriminant, 487
division of ideals, 475
extension

unramified, 481
factorization of ideals, 475
fractional ideal in, 475
greatest common division of ideals, 475
invertible ideal, 475
prime ideal

decomposition field of, 484
decomposition group of, 484
inertia field of, 485
inertia group of, 485
inertia index of, 479
lying over, 479
ramification index of, 479
ramified, 481
splits completely, 481
splitting behavior of, 479
totally ramified, 481
unramified, 481

relatively prime ideals, 475
Dedekind’s Lemma, 325
Dedekind’s Modular Law, 86
Dedekind’s Theorem on Ramification, 492
degree

homogeneous, 398
of a field extension, 290
of a finite dimensional central simple algebra,

616
of a purely inseparable field extension, 541
of a separable field extension, 541

degree of a field extension, 293
dense action, 649
depth

of a ring, 578
derivation, 623, 699

inner, 623
derivative

of a polynomial, 321
derivative (formal), 205
descending chain condition, 183, 242
determinant, 256, 702

Vandermonde, 390
determinant map, 51
diagonal map, 686
diagram chasing, 227
diagram of shape J , 806
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dihedral group, 45
dimension

flat, 771
injective, 733
left global injective, 733
left global projective, 752
of an affine variety, 534
projective, 752
right weak, 771

Dimension Shifting, 829
dimension shifting, 733
diophantine equation, 19

linear, 25
direct limit, 636, 759
direct product

of abelian groups, 74
of groups, 47, 69
of modules, 222
universal property, 228

direct sum
external, 74, 222
internal, 74, 222
of abelian groups, 74
universal property, 227

Dirichlet product, 48, 357
Dirichlet Unit Theorem, 517
Dirichlet’s Pigeonhole Principle, 49, 52
Dirichlet’s Theorem on Primes in an Arithmetic

Progression, see also primes in an
arithmetic progression, 360

special case, 360
Dirichlet-Chevalley-Hasse Unit Theorem, 520
discrete subgroup, 510
discrete valuation ring, 472
discriminant

field extension, 384
of a polynomial, 390

distributative laws, 147
divisible group, 79
division algebra

algebraic, 401
algebraic over a finite field, 401
classification over the reals, 608
finite dimensional, 608

division algorithm, 17, 181
division algorithm (general form)

polynomials, 184
division ring, 43, 148, 608

center of, 398
dodecahedron, 103
domain

Bésout, 183

Bézout, 497, 499
Dedekind, see also Dedekind domain, see also

Dedekind domain
division algorithm, 181
Euclid’s Argument, 179
euclidean, see also euclidean domain
Gaussian integers, 186
GCD-domain, 183
greatest common divisor (gcd), 178
integrally closed, 183
irreducible element, 177
non-commutative, 609
normal, 183, 467, 537
prime element, 177
principal ideal domain (PID), 153
quotient field

construction of, 160
quotient field of, 160
reducible element, 177
relatively prime elements, 178
unique factorization domain or (UFD),

see also UFD
valuation, 183

domain (integral domain), 48, 148
associate, 154

dominant map, 530
domination of local rings, 500
Double Centralizer Theorem, 616
dual basis, 233
duality, 682

eigenspace, 281
eigenvalue, 269
eigenvector, 269
Eisenstein’s Criterion, 208
Eisenstein-Hermite Theorem, 515
element

idempotent, 599
integral, 465
norm of, 375
primitive nth root of unity, 333
trace of, 375

elementary divisors, 277
embed, 36
embedded prime, 548

of a module, 554
endomorphism, 221, 223

of a vector space, 112
endomorphism ring, 112, 221, 223
entire function, 433
epic, 50
epimorphism, 50, 150, 222
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split, 228
equivalence class, 29

representative of, 30
equivalence relation, 27

equivalence class under, 29
equivalence relations

examples, 28, 29
euclicean function

normed, 182
Euclid’s Argument, 179
Euclid’s Lemma, 20

for a PID, 178
general form, 13, 20

Euclidean Algorithm, 20
Euclidean Constructibility Problems

construction of a regular n-gon, 317
doubling of the cube, 317
squaring of the circle, 317
trisection of an angle, 316

Euclidean Construction Problems, 312
euclidean domain, 181

euclidean function, 181
examples, 182
Gaussian integers, 187

euclidean domains, 177
euclidean function, 181

strong, 181
euler φ-function, 36
Euler ϕ-function, 35
Euler Formulas, 23
Euler products, 23
Euler’s Criterion, 361
Euler’s Equation about four squares, 193
Euler’s Formula, 189
Euler’s Theorem, 55
evaluation, 200
evaluation map, 113, 221
exact

left, 714, 716
right, 757

exact sequence, 225
short exact, 226

extension of scalars, 453

factor group, 64
factor ring (by an ideal), 157
factor set, 627

normalized, 628
principal, 628

Feit-Thompson Theorem, 136
Fermat descent, 194
Fermat number, 318

Fermat prime, 318
Fermat’s Little Theorem, 35, 55, 360
Fermat’s Theorem on sums of two squares, 188
FFR, 782
fiber, 37
Fiber Dimension Theorem, 587
field, 25, 28, 43, 148
Cn-field, 591
F -automorphism, 291
algebraic closure of, 204, 296

existence of, 310
uniqueness of, 311

algebraic number field, 468
algebraically closed, 204, 296, 309

subfields of finite codimension, 456
algebraically closed field, 112
base field, 289
composite, 698
degree of extension, 290
element

algebraic, 292
algebraic - characterization of, 294
transcendental, 292
transcendental - characterization of, 294

element of
purely inseparable, 323
separable, 322

elements
algebraically independent over, 298

elments of
algebraically dependent, 299

euclidean, 448
extension, 290
finite extension of, 290
finite multiplicative subgroups in, 203
fixed field, 291
fixed field of, 327
formally real, 447
global, 473
intermediate field, 289
nontrivial extension, 290
of complex constructible numbers, 316
ordered, 449

existence of a real closure, 451
extension of, 449
real closure with respect to an ordering of,

449
uniqueness of real closures, 454

perfect, 322, 323, 342
prime field, 163
prime subfield, 163
pythagorean, 448
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quadratically closed, 448
quasi-algebraically closed, 591
real closed, 447
real closed with respect to an ordering, 449
root field of a polynomial, 301
separable closure of, 383
separable element over

characterization of, 341
splitting field, 300

existence, 301
uniqueness of, 303

splitting field over
existence and uniqueness (general case),

343
tower, 289

field extension
abelian, 333, 359, 369
algebraic, 295

splitting field, 311
tower of, 295

algebraic closure of, 309, 336
and solvable Galois group, 370
characterization of normal (general case), 343
conjugate ones, 338
cyclic, 359, 369, 376
cyclotomic, 333
degree of, 293
finite

characterization of being Galois, 342
characterization of being normal and

separable, 342
characterization when Galois, 331
characterization when normal, 337
degree vs order of Galois group, 328

finite Galois, 328
finitely generated, 299
Galois, 328

characterization of (general case), 352
exponent of, 381

Galois (general), 328, 351
Galois and solvable, 377
Galois group of, 304
Kummer, 381
norm of, 373
normal (finite), 336

characterization of normal subextensions,
338

normal (general), 336
normal and separable

characterization of (general case), 352
normal closure (finite), 338
normal closure of (finite case)

existence and uniqueness of, 338
purely inseparable, 323
purely transcendental, 393
radical, 368
separable, 322
separable (finite)

characterization of, 339
simple (or primitive), 291
splitting field, 300
splitting field (of a set of polynomials), 336
splitting field of a seat of polynomials, 311
square root tower, 315
trace of, 373
transcendece degree of, 299
transcendence basis of, 298
transcendental, 295

field homomorphism, 150
field homomorphisms

fixed field of, 327
field of fractions

seequotient field, 147
field of quotients, 160
finite extension of fields, 290
First Isomorphism of Sets

alternate version, 38
First Isomorphism Theorem

of Sets, 37
First Isomorphism Theorem of Sets, 52
Five Lemma, 227
fixed field, 291
formally real ring, 461
Frattini Argument, 122
free abelian group, 92
free group, 92

word in, 94
free module, 230

basis, 230
coordinate, 232
dual basis, 233
linear independent set, 230
linearly dependent set, 230
rank of, 234
spanning set, 230
standard basis, 231, 233

free modules
homomorphism of

invariants factors of, 258
Smith Normal Form of, 258

free presentation, 259
free resolution, 259
Frobenius automorphism, 336, 485
Frobenius homomorphism, 164
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Frobenius Reciprocity, 671
Frobenius’ Arithmetic Lemma, 664
Frobenius’ Theorem, 608
function, 27
n-linear, 256
alternating, 256
arithmentic

examples of, 367
arithmetic, 357
bijective, 6
fiber of, 37
graph of, 38
image of, 6
injective, 6
Möbius, 358
multilinear, 256
multiplicative, 357
polynomial, 202, 420
preimage, 37
restriction of, 9
surjective, 6

functor, 789
acyclic object of, 827
additive, 818
adjunction, 803
bifunctor, 791
coeffaceable, 826
constant, 807
contravariant, 789
diagonal, 807
diagonal of shape, 806
direct image, 806
effaceable, 826
embedding

full, 793
embedding , 793
essentially surjective on objects, 793
exact, 821
faithul, 793
forgetful, 789
full, 793
fully faithful, 793
isomorphism, 789
left exact, 821
presheaf, 790
projection, 791
quotient, 789
represenable, 796
representable, 796
right exact, 821
set functor

univeral element of, 801

Yoneda functor, 797, 798
functors

left derived, 829
right derived, 827

cohomology groups of, 827
set valued, 796

fundamental domain, 509
Fundamental Theorem of Algebra, 112, 204,

309, 349, 451
Fundamental Theorem of Arithmetic, 5, 21, 89
Fundamental Theorem of fg Modules over a

PID, Form I, 260
Fundamental Theorem of fg Modules over a

PID, Form II, 267
Fundamental Theorem of Finite Abelian

Groups, 73
Fundamental Theorem of Finite Abelian

Groups (Alternate Form), 73
Fundamental Theorem of Finitely Generated

Abelian Groups, 77
Fundamental Theorem of Free Modules, 232
Fundamental Theorem of Galois Theory, 344

general case, 356
Fundamental Theorem of Symmetric

Polynomials, 423
fundamental unit, 496
funtor

adjoint, 802

Galois Correspondence, 345
Galois group, 304, 328

absolute, 383
element moved, 328
of a polynomial, 304
of irreducible polynomial

transitivity of, 305
Galois’ Theorem, 388
Galois’ viewpoint, 331
gamma function, 514
Gauss sum, 362
gauss sum

sign of, 865
Gauss’ Lemma, 207
Gaussian integers, 149, 186
gcd, 18, 178, 205

properties of, 20
gdimension

weak, 771
Gelfond-Schneider Theorem, 444
General Division Algorithm, 201
general linear group, 41, 46
general quaternion group
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properties, 651
germ, 175
global field, 473
Going Down Theorem, 543
graded ring, 580

associate to an ideal, 580
homogeneous element of, 580
homomorphism of, 580
isomorphism of, 580

Great Trick, 57, 58
greatest common divisor, 18, 178

properties of, 20
greatest common divisor (or gcd), 205
greatest integer function, 13

properties of, 13
Green-Tao Theorem, 190
group, 41, 59
p-complement, 127
p-group, 72, 107
p-primary, 78
(set) second isomorphism counting, 68
abelian, 42
abelian of order p2q, 122
abelianization, 70
acting on a set, see also group action
additive, 42
automorphism, 223
automorphism group of, 58
bounded period, 675
center of, 59, 107

properties, 60
centerless, 138
cohomology group, 380, 628
conjugacy class, 107
conjugation, 107
conjugation by an element, 57
cyclic group, 44
divisible, 79
element

commutator, 61, 70
of finite order, 49

elementary p-group, 123, 386, 647
example of (see also specific group)

alternating group, 59
automorphism group, 113
automorphism group of a vector space, 46
circle group, 44
diagonal group, 46
dihedral, 45
general linear group, 46
group of all permutations, 43
Klein 4-group, 47

Lorenz group, 46
of nth roots of unity, 44
orthogonal group, 46
projective special linear group, 135
quaternion, 45
set of units in a ring, 43
special orthogonal group, 46
special unitary group, 46
strictly upper triangular group, 46
symmetric group, 43
symplectic group, 46
unitary group, 46
upper triangular group, 46

exponent of, 381
factor group, 64
finite, 49
finitely generated, 44
finitely presented, 100
free, 92
free abelian group, 74
Galois group, 304, 328
general linear group, 41
general quaternion group, 651
generator, 45
generators, 45
generators for, 44
infinite, 49
inner automorphism group of, 58
left transversal, 54
linear, 66
minimal normal subgroup, 386
nilpotent, 90

class of, 90
finite, 122

normalizer of a subset, 110
of affine transformations, 387
of order 2n, n odd, 137
of order p2q, 122
of order p2q2, 122
of order paq, 121
of order pqr, 122
of principle fractional ideals, 476
order of, 49
periodic, 677
permutation group, 65
polycyclic, 85, 369
presentation of, 95
projective general linear group, 141
projective linear group, 394
projective special linear group, 141
pullback action, 113
quotient group, 64
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relation, 45
relations, 45
relations in, 45
representation of, see also representation
series

abelian, 85
ascending central series of, 90
central series, 90
characteristic, 86
composition, 85
cyclic, 85
descending central series of, 90
equivalent, 88
length, 89
links, 89
normal, 85
proper refinement, 88
refinement, 88
subnormal, 85

simple, 58, 134, 135
simple group, 133
solvable, 85, 369

properties, 85
stabilizer subgroup, 43
subgroup, 43, 44, 48
nth derived, 86
centralizer of an element, 107
characteristic, 60, 61, 118
commutator, 61, 70
derived, 61, 85
index of, 54
isotropy subgroup, 102
left coset of, 53
minimal normal, 123
normal, 58
normalizer, 109
of smallest prime index, 65
proper, 55
right cosets of, 54
Sylow subgroup, 115

subset closed under ·, 48
subset generating, 44
torsion, 75, 657
torsion element, 75
torsion-free, 75
transitive, 43
trivial group, 43, 54

group action, 101
centralizer, 107
class equation, 107
conjugacy class, 110
conjugacy class of an element, 107

conjugation, 110
conjugation action, 107
doubly transitive action, 104
fixed point, 103
fixed point set, 103, 115
isotropy subgroup, 102
moved element, 133
orbit

one point orbit, 103
orbit under, 102
restriction to a subgroup, 101
right, 111
stabilizer of a point, 102
system of representatives, 102
transitive action, 104
translation, 111

group of all permutations, 43
group ring, 643
groups

external direct product of, 47
free product of, 97
free product with amalgamation of, 98
internal direct product of, 69
isomorphic, 50
semidirect product of groups, 61
semidirect product of subgroups, 70
with cyclic Sylow 2-group, 137

Hall’s Theorem, 125
Hamiltonian quaternions, 193
height

of a prime ideal, 533
Hilbert Basis Theorem, 180, 211, 242
Hilbert class field, 492, 523
Hilbert Irreducibility Theorem, 412
Hilbert Nullstellensatz, 211

Algebraic Form, 567
strong, 212
weak, 211

Hilbert Nullstellensatz (Strong Form), 247, 566
Hilbert Nullstellensatz (Weak Form), 246, 566
Hilbert ring, 567
Hilbert Syzgygy Theorem, 775
Hilbert Theorem 90, 375
Hilbert Theorem 90, 380
Hilbert’s 17th Problem, 463
Hilbert’s Seventh Problem, 5, 432
homogeneous element, 580
homological ∂-functor, 826
homological partial-functor

universal, 826
homology
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long exact sequence, 710, 729, 730, 750
naturality, 711

homomorphism
F -algebra, 301

automorphism, 301
algebra, 151, 301, 692

automorphism, 301
epimorphism, 301
involution, 302
isomorphism, 301
monomorphism, 301

automorphism, 58
bijective, 50
canonical, 689
coimage, 683
cokernel, 226, 682
epimorphism, 33, 50
field, 150
Frobenius, 164
group, 50

bijective, 52
properties of, 50

image, 683
image of, 50, 150
isomorphism, 50
kernel, 682
kernel of, 50, 150
linear, 222
linear transformation, 301
module, 222

epimorphism, 222
extend linearly, 232
isomorphism, 222
monomorphism, 222

monomorphism, 50
natural, 756
ring, 33, 149

epimorphism, 150
extension of , 301
finite, 469, 537
integral, 468, 537
isomorphism, 35
lift of, 301
monomorphism, 150
of finite type, 469, 537

rng, 150
trivial, 51

homorphism
algebra

epimorphism, 151
isomorphism, 151
monomorphism, 151

linear, 301
homotopy, 98

of loops, 98
Horseshoe Lemma, 727, 748
Hurwitz Theorem, 653
Hurwitz-Radon Theorem, 654
hypersurface, 211

icosahedron, 103
ideal, 147

2-sided, 151
associated prime ideal of, 548
discriminant, 487
embedded prime ideals of, 548
finitely generated (fg), 180
fractional, 475
generated by, 152
graded, 694
homogeneous, 694
invertible, 475
irreducible, 184, 550
isolated prime ideal of, 548
left, 151
left radical, 401
maximal ideal, 154
maximal left (right), 155
minimal left, 597
minimal prime containing, 249
minimal prime ideal of, 548
primary, 172, 545
prime, 147

minimal, 529
prime ideal, 154

characterization of, 155
principal, 153
principal ideal generated by, 152
radical, 528
radical of, 172, 212, 247
right, 151
right radical, 401
trivial, 151
unit ideal, 151

ideal colon, 546
ideal norm, 505
idempotent, 172, 599

central, 401, 606
orthogonal, 599
trivial, 599

Idempotent Theorem, 663
IDP, 234
image, 50, 150, 683
incomparable elements, 165
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induction
First Principle of Finite Induction, 10
Second Principle of Finite Induction, 10

induction hypothesis, 10
induction step, 10
inertial index, 479
Infinite descent, 177
infinite extension of fields, 290
injective equivalence, 731
inner automorphism group of a group, 58
integer

algebraic, 429
composite, 12
division of, 3
Fermat number, 318
Fermat prime, 318
perfect, 4, 26

Euclid/Euler Theorem, 4
prime, 3
standard factorization, 5
standard representation, 5, 21

integers
congruence modulo m, 31
division algorithm

modified, 25
division of

properties, 17
relatively prime, 12, 18
ring mod m, 31

integers mod m
unit, 34
unity or 1, 32
zero, 32

integers modulo m
characterization of units in, 34

integral basis, 433, 471
integral element, 465
integrally closed ring, 467
internal direct product

groups, 121
invariant dimension property, 234
invariant factors, 258, 260
invariant subspace, 221
Inverse Galois Problem, 348
inverse limit, 636, 764
involution, 186, 192, 302
irreducible component, 249, 532
irreducible decomposition, 249
irreducible decomposition of an ideal, 550
irreducible element, 147, 177
irredundant primary decomposition, 547
isometry, 514

isomorphic
rings, 150

isomorphism, 50, 222
of rings, 150
ring, 35

isomorphism theorem
(set) second isomorphism theorem counting

version, 68
isomorphism theorems

first isomorphism theorem for groups, 63
first isomorphism theorem for modules, 224
first isomorphism theorem for rings, 157
first isomorphism theorem for sets, 37
second isomorphism theorem for groups, 68
second isomorphism theorem for modules, 224
second isomorphism theorem for rings, 164
third isomorphism theorem for groups, 67
third isomorphism theorem for modules, 224
third isomorphism theorem for rings, 158

Jacobian matrix, 585
Jacobson Density Theorem, 649
Jacobson radical, 172, 538
Jacobson ring, 567
Jacobson’s Theorem, 401
Japanese ring, 589
Jordan canonical form, 112, 277
Jordan Canonical Form Theorem, 277
Jordan Decomposition

additive form, 282
multiplicative form for invertible matrices,

282
Jordan-Hölder Theorem, 89

for modules, 558

Kaplansky’s Theorem, 185
Kaplansky’s Theorem on projective modules,

737
kernel, 50, 150, 682
Key Observation, 21
Key Trick, 21
koszul complex, 697

homology, 698
with coefficients, 697

Kronecker’s Criterion, 411
Kronecker’s Theorem, 203, 300
Kronecker-Weber Theorem, 333, 361

special case of a quadratic extension, 363
Krull dimension, 472, 534
Krull Intersection Theorem, 242
Krull’s Conjecture, 781
Krull’s Intersection Theorem, 576
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Krull’s Theorem, 169
Krull’s Theorem on Algebraic Galois

Extensions, 354
Krull-Akizuki Theorem, 473
Krull-Akuzuki Theorem, 561
Kummer-Dedekind Theorem, 481

Lüroth’s Theorem, 394
Lagrange Interpolation, 406
Lagrange’s Theorem, 54
Lagrange’s theorem on roots of a polynomial,

202
Lagrange’s Theorem on sums of four squares,

194
Lambek’s Theorem, 766
Lang Homomorphism Theorem, 459
Lang’s Theorem, 442
Lang’s Theorem on Cn-fields, 593
Laplace expansion, 704
Lasker-Noether Theorem, 551
lattice

full, 509
lattice basis, 509

latttice, 509
Law of Quadratic Reciprocity, 190, 363
lcm, 26
least common multiple, 26
left translation, 54
Legendre symbol, 189, 361

properties of, 361
lexicographic order, 165, 422

on a finite dimensional real vector space, 166,
170

limit
cone, 808
of cones, 808

Lindemann’s Theorem, 292, 424
Lindemann-WeierstraßTheorem, 429
linear operator

diagonalizable, 278
eigenspace of, 281
nilpotent, 282
semisimple, 281, 283
triangularizable, 278
unipotent, 282

Liouville number, 292, 418
Liouville’s Theorem, 417
local ring, 164, 175, 212, 472, 483, 534

regular, 539, 575
localization, 173

at a prime ideal, 532
at powers of an element, 532

of a module, 535, 686
locally ringed space, 175
logarithmic map, 516
loop, 98

Möbius function, 358
Möbius Inversion Formula, 358
Möbius Inversion Theorem

general form, 367
Mantra for cosets, 54
Mantra of G-actions, 102
Mantra of Equivalence Relations, 30, 54
map, 6
n-(multi)linear, 686
of G-sets, 104
alternating, 695
associated, 530
balanced, 755

biadditive, 755
bilinear, 686
canonical surjection, 29
diagonal map, 686
dominant, 530
equivariant, 104
evaluation, 191
left translation, 54
multiplicative, 187
sgn, 132
signum, 132
surjective

summary about, 37
symmetric, 694
translation, 387

map, induced by, 37
Maschke’s Theorem, 646
matrices

equivalent, 28, 253
Jordan canonical form, 112
rational canonical form, 112
similarity of, 28

matrix
classical adjoint, 704
cofactor, 704
companion, 139, 270
diagonalizable, 277, 281
elementary

Type I, 255
Type II, 255

elementary divisors of, 277
invariant factors of, 272
Jordan block, 277
Jordan canonical form, 253
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Jordan canonical form of, 277
minor of, 257
permutation, 59
rational canonical form, 253
rational canonical form of, 272
Smith Normal Form, 253, 254
triangularizable, 278

matrix representation of a linear map, 59
matrix ring, 28
maximal counterexample, 181
maximal ideal, 154
Maximal Principle, 180, 239

and Zorn’s Lemma, 180
Maximum Modulus Principle, 434
maxmial subfield

self centralizing, 626
meromorphic function, 433

transcendental, 434
pole, 433

meromorphic functions
linear independence of, 434

Mersenne number, 4
Mersenne prime, 4
minimal basis, 487
minimal counterexample, 10
minimal element, 9
minimal left ideal, 597
minimal polynomial, 270
minimal prime

of a module, 554
minimal prime ideal, 170, 529
Minimal Principle, 184
Minimum Principle, 242
Minkowski bound, 521
Minkowski Lattice Point Theorem, 513
minor, 257
Mitchel Embedding Theorem, 822
module, 219
p-primary, 744
p-primary, 266
absolutely irreducible, 667
acyclic resolution, 723
acyclic resolution of, 746
Artinian, 242
ascending chain condition, 239
associated prime, 552
completely reducible, 597
coproduct, 684
cyclic, 222
depth of, 578
descending chain condition, 242
direct product

universal property, 228
direct sum

universal property, 227
direct summand of, 232
divisible, 722
dual, 233, 739
embedded prime of, 554
factor module, 221
finite length of, 557
finitely generated, 222
finitely presented, 241, 739
flat, 692, 765
free, 230
free resolution, 259
generators, 222
indecomposable, 605
induced, 669
injective, 229, 717

Baer Criterion, 230, 719
injective resolution of, 723
invariant factors of, 260
irreducible, 557, 597
length of, 558
localization, 686
Maximal Principle, 239
minimal (or isolated prime) of, 554
Minimum Principle, 242
Noetherian, 239
presentation, 739
product, 683
projective, 235, 734

local rank, 746
projective resolution of, 746
quotient module, 221
restricted, 669
simple, 227, 557, 597
stably free, 782
submodule of, 220
support of, 555
torsion, 253, 265
torsion element, 265
torsion-free, 242, 265
unitary, 220

modules
direct limit of, 636, 759
direct product, 222
direct sum (external) of, 222
direct sum (internal) of, 222
inverse limit of, 636, 764
isomorphic, 222
product, 222
tensor product of, 686
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monic, 50
monoid, 42
monomorphism, 50, 150, 222

split, 228
Morita Equivalence, 794
morphism

coequalizer, 819
coimage of, 819
cokernel of, 819
equalizer, 809

kernel, 810
fiber product, 810
identity, 786
image of, 819
inverse (or projective) limit, 811
kernel of, 819
pullback, 810
variable element parametrized by, 796

morphisms
parallel pair, 809

multinomial coefficients, 15
multiplicative map, 187
multiplicative set, 168

examples, 168
saturated, 185, 186

Nagata ring, 590
Nagata’s Lemma, 781
Nakayama’s Lemma, 483, 539, 776
natural homomorphism, 756
natural transformation, 794

components, 794
cone over with apex, 807
constant natural, 807
counit, 804
induced, 797
isomorphism, 794
unit, 804
universal mapping property, 804

negative element, 449
nilpotent element, 169
nilradical, 170

characterization of, 170
nodal cubic, 565
Noetherian domain

and products of irreducible elements, 181
Noetherian induction, 181
Noetherian ring, 180, 240

properties, 180
Noetherian space, 533
norm, 645

counting, 507

ideal, 505
of a finite extension, 541
of a finite Galois extension, 373
of a finite separable extension, 375
of an element, 375
reduced, 621

norm map on C, 186
norm map on the quaternions, 192
normal basis, 385
normal closure of a subgroup, 95
normalbasisthm, 386
normic form, 591
number

algebraic, 429
Liouville, 418

object
quotient, 819
suboject, 818

octahedron, 103
octonians, 193
opposite algebra, 614
Orbit Decomposition Theorem, 104
ordering, 447
orderings

existence of, 449
orthogonal group, 46
orthogonality relations, 659

pairing of groups, 381
parallelopiped, 509
partially ordered set, 165, 833

directed, 760
inductive

strongly, 833
upper bound

least, 833
partition, 30
Pell’s equation, 495, 870
perfect field, 322
permutation, 43

3-cycle, 132
cycle type of, 138
even, 60, 131
odd, 60, 131
regular, 138
transposition, 131

permutation group, 65
fixed points of, 43, 130
full cycle decomposition, 130
transposition, 131

permutation matrices, 59
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permutation representation, 115
PID, 153

Euclid’s Lemma, 178
examples of, 153
gcd in, 178
left, 609
PID is a UFD, 181
prime ideals in, 155

Poincaré’s Lemma, 57
point

constructible
complex, 316

fixed point, 326
points

constructible, 312
complex, 313

not constructible, 312
Pointwise Adjointness Theorem, 805
polynomial, 3

characteristic polynomial for a linear
polynomial, 269

companion matrix of, 139, 270
constant, 199
content of, 206
criterion for solvable by radicals, 378
cyclotomic, 306, 358

if arbitrary degree, 308
of degree 6, 306
of prime power order, 306

degree of, 199
derivative (formal), 205
derivative of, 321
discriminant of, 390
elementary symmetric, 347, 423
Galois group of, 304, 372
inseparable, 322
irreducible

separable, 322
splitting field and Galois group of, 332
transitivity of Galois group on roots, 305

irreducible or minimal, 293
leading coefficient, 199, 422
leading term, 422
linear, 204
minimal for a linear operator, 270
minimal of an algebraic element, 293
minimal or irreducible, 293
monic, 187, 199
monomial, 422
multiple root

criterion for, 321
multiple root of, 205, 250, 277, 305

multiplicity of a root, 202
of homogeneous degree, 398
primitive, 206
quadratic, 204, 398
reducible, 317
root

multiple, 321
multiplicity of, 321
simple, 321

root field of, 301
root of, 201
separable, 322
solvable by radicals, 372

and solvable Galois group, 372
split, 277
splits over a field extension, 300
splitting field of, 300

existence, 301
uniqueness, 303

symmetric, 422
total degree, 250, 397, 422

polynomial function, 202
polynomial ring, 25, 199

in n variables, 199
polynomials

division algorithm, 25
and content, 206
general division algorithm, 184, 201
irreducible over the reals, 204

poset, 165, 833
chain in, 165, 833
comparable elements, 165
incomparable elements, 165
inductive, 166, 833

strongly, 833
maximal element, 166, 833
upper bound, 166, 833
well-ordered, 834

positive element, 449
positive semi-definite function, 463
power series

regular element of, 212
power set, 110
preimage, 66

properties of, 66
preordering, 447
presentation

minimal, 779
presheaf, 536
primary decomposition, 547

irredundant, 547
of a module, 557
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Primary Decomposition Theorem, 266
primary decompostiom

irredundant
of a module, 557

primary ideal, 172, 545
p-primary, 545

prime
associated

of a module, 552
embedded) of a module, 554
inert, 366
minimal (or isolated) of a module, 554
ramified, 366, 479
splits completely, 366

Prime Avoidance Lemma, 157, 541
prime element, 177
prime field, 163
prime ideal, 154

embedded of an ideal, 548
height of, 185, 533
isolated prime of an ideal, 548
minimal, 170
minimal prime ideal of an ideal, 548
unramified, 481

prime ideals
in the integers, 155
saturated chain, 568

Prime Number Theorem, 4
primes

infinite, 520
primes in an arithmetic progression, 190

1 mod 4, 189
3 mod 4, 35

Primitive Element Theorem, 348
primitive root, 863
principal ideal domain, 153
Principal Ideal Theorem, 571
product, 683

cofiber, 731
fiber, 750
of modules, 222

projection, 38
projective general linear group, 141
projective special linear group, 141
pseudo-polynomial, 214
pullback, 221, 750
purely inseparable degree, 541
pushout, 731
pythagorean closure, 449

quadratic form, 398, 514
discriminant of, 514

positive definite, 514
Quadratic Reciprocity, 190
quadratic reciprocity, 363

supplements of, 364
quasi-algebraically closed field, 591
quaternion algebra

generalized, 594
quaternion group, 45, 192
quaternions, 192, 193, 202

conjugation, 192
pure, 196

quaternions (general), 196
conjugate of an element, 196

quotient field, 147, 160
quotient group, 64
quotient ring, 157

Rabinowitch Trick, 247
radical

Jacobson, 172, 538, 776
nilradical, 170
of an ideal, 172

radical ideal, 528
ramification index, 479
ramified prime, 479
rational canonical form, 112
Rational Canonical Form Theorem, 271
real closed field, 447

relative to an ordering, 449
reduced norm, 621
reduced polynomial, 621
reduced trace, 621
reducible element, 177
regular local ring, 539
regular representation, 65, 136, 644, 655
regular value (of an affine plane curve), 250
regulator, 519
relation, 27

reflexitivity, 27
symmetry, 27
transitivity, 27

Remainder Theorem, 201
representation, 644

characterization over algebraically closed
field, 646, 651

degree of, 644
equivalence of, 644
faithful, 644
general quaternion group, 652
group ring, 644
irreducible, 644
linear, 647



INDEX 901

regular, 644, 655
structure afforded by, 644
trivial, 645

residue class modulo m, 31
resolution

acyclic, 723, 746
finite free, 782
flat, 766
injective, 723
projective, 746

Riemann surface, 251
ring, 25, 32, 42, 147

1, 32
catenary, 570
center of, 151, 192, 399
characteristic of, 159
Cohen-Macaulay, 579
coherent, 241
commutative, 32, 42, 148
depth of, 578
division ring, 43, 148
domain, 48, 148
dual numbers, 576
endomorphism, 223
endomorphism ring, 221
example

endomorphism ring, 112
existence of maximal ideals, 168
factor ring of, 157
field, 148
formal power series over, 149
group of units, 43, 148
group ring, 205, 643
ideal, 151

maximal ideal, 154
maximal left (right), 154

ideal (2-sided), 151
idempotent, 172
integrally closed, 467
integrally closed in, 467
left hereditary, 737
left Noetherian, 720
left semi-hereditary, 746
linear combination of elements, 152
local, 483, 534
monoid ring, 205, 643
multiplicative inverse in, 34
nilpotent element, 169
Noetherian, 240
normal, 467
of algebraic integers, 366
of algebraic integers (in), 468

polynomial ring, 199
in n variables, 199

properties of, 148
quotient ring, 157
regular, 781
right Noetherian, 720
ring endomorphism, 221
semi-local, 542
semisimple, 597
simple, 151

matrix ring over a field, 156
subring of, 150
subrng of, 150
total quotient ring, 175
total ring of fractions, 175
trivial ring, 43, 148
twisted Laurent series ring, 613
twisted polynomial ring, 609
twisted power series ring, 613
units

in Z/mZ, 34
units in, 34
universally catenary, 570
zero, 32
zero ring, 43

ring antiautomorphism, 192
ring antihomomorphism, 192
ring epimorphism, 33
ring extension, 465

integral closure in, 467
ring homomorphism, 33

quasi-finite, 542
ring of algebraic integers, 468
ringed space, 815

local, 816
rings

examples, 32
rng, 148

example without maximal ideals, 171
subrng of, 150

root function, 403
root of unity

primitive, 308
primitive pth root of unity, 296

Roth’s Theorem, 419
RSA code, 55
Russell’s Paradox, 7

scalar multiplication, 219
Schanuel’s Lemma, 731
scheme

affine, 536, 815
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Schneider’s Theorem, 436
Schreier Refinement Theorem, 88
Schroeder-Bernstein Theorem, 7, 836
Schur’s Lemma, 601
Schur-Zassenhaus Theorem, 128
semi-local, 498
semi-local ring, 542
semi-real ring, 461
separable closure of F in K, 490
separable degree, 541
sequence

characteristic, 284
exact, 225, 821
split exact, 228
zero, 225

Serre’s Theorem on Global Dimension, 779
Serre’s Theorem on global dimension, 779
set

cardinality, 836
cardinality of, 6
countable, 6

facts about, 6
finite, 6
indexing, 29
infinite, 6
partially ordered, 165, 833

chain, 165, 833
partially ordered set

comparable elements, 165
incomparable elements, 165
inductive, 166, 833
maximal element, 166, 833
minimal element, 166
upper bound, 166, 833

partion of, 30
power set of, 110, 165
totally ordered, 165

sets
cartesian product of, 8, 47
disjoint union of, 10, 29
intersection of, 29
union of, 29

sheaf, 175
rings, 536
stalk, 175, 816

signature, 453, 861
signum map, 132
simple point, 585
Six Exponentials Theorem, 445
Skolem-Noether Theorem, 619
Smith Normal Form, 253, 254
Snake Lemma, 708

special linear group, 46
Spectrum of a ring, 247, 527
split exact sequence, 228
splitting type of a prime, 366
square root tower, 315
Square Root Tower Theorem, 315, 348
squares

sums of four squares, 194
sums of three squares, 195
sums of two squares, 188

standard basis, 231, 233
Stickelberger’s Criterion, 490
strong euclidean function, see also euclidean

domain
Strong Hilbert Nullstellensatz, 212
subcategory, 787
subgroup, 43, 48
p′-subgroup, 127
centralizer, 66
characteristic, 60, 83, 118
commutator, 61, 70
core of, 47, 60
derived, 61
discrete, 510
Hall, 123
index, 54
isotropy subgroup, 102
left coset of, 53
maximal, 121
minimal normal, 123, 386
normal, 58
normal closure of, 95
normalizer, 109
normalizer of, 48, 60
pure, 75
right coset of, 54
stabilizer, 102
Sylow, 115

submodule, 220
sums of four squares, 194
sums of two squares, 188

characterization of, 189
support of a module, 555
Sylow Theorems, 117

First, 65, 115, 117
First (general form), 115
Fourth, 117
Second, 117
Third, 117

Sylvester’s Lemma on real roots, 454
symmetric

1-cycle, 130
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symmetric group, 43
(full) cycle decomposition, 130
cycle, 129
cycle decomposition, 130
cycles

properties of, 129
disjoint cycles, 130
transpositions and, 131

symmetric group on n letters, 43
symmetric set, 513
system of parameters, 575

regular, 575
system of representative (under a group action),

102
system of representatives (for an equivalence

relation), 30

tensor algebra, 693
tensor product, 236, 686
tetrahedron, 103
toplogy

clopen set, 354
topological group

closure of subgroup, 355
topological space, 353

continuous function, 354
irreducible, 529
irreducible component of, 532
irreducible subset of, 529
Noetherian, 533

topology, 353
base, 353
closed set, 353
compact set, 354
connected, 354
connected component, 354
Hausdorff space, 353
open sets, 353
point

base for, 353
fundamental neighborhood system of, 353
neighborhood of, 353

product space, 354
profinite, 354
subbase, 353
subspace, 354
totally disconnected space, 354
Zariski, 248

torsion element, 265
torsion group, 657
totally negative element, 449
totally ordered set, 165

totally positive element, 449
tower of fields, 289

separable
characterization of (finite extension case) ,

342
separablity

characterization of (general case), 343
trace, 645

of a finite Galois extension, 373
of a finite separable extension, 375
of a linear transformation, 691
of an element, 375
reduced, 621

trace form, 452
transcendence

of π, 424
of e, 420

transcendence basis of a field extension, 298
transcendental element, 292
transposition, 131
transvection, 140
Tsen’s Theorem, 603, 623
Twin Prime Conjecture, 190
Tychonoff’s Theorem, 354

UFD, 179
characterization of, 185
Gaussian integers, 187
irreducibles and primes, 179
length of an element, 254
PID, 181
polynomial ring over, 208
polynomials and content over, 206

unique factorization domain, see also UFD
universal mapping property, 804
universal property

of quotient fields, 161
of cokernels, 683
of coproducts, 684
of exterior algebras, 696
of free abelian groups, 92, 100
of free groups, 92
of free modules, 232, 681
of free products of groups, 97
of kernels, 682
of localization, 175
of products, 684
of symmetric algebras, 695
of tensor algebras, 694
of tensor products, 687
of vector spaces, 90

universally Japanese ring, 589
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Useful Counting Result for groups, 65

valuation ring, 496
Van Dyck’s Theorem, 96
van Kampen’s Theorem, 99
Vandermonde determinant, 390
Vandermonde matrix, 390, 866
variety, 245, 247, 566

irreducible, 249
irreducible component, 249
irreducible decomposition of, 249

vector space
basis

characterization of, 167
linear independent subset, 166
spanning sets, 167

dimension, 89
extension to a basis, 166
invariant subspace, 221

Waring Problem, 196
Weak Hilbert Nullstellensatz, 211
Weak Real Nullstellensatz, 463
Wedderburn’s Theorem for simple rings, 601
Wedderburn’s Theorem on finite division rings,

398
Wedderburn’s Theorem on polynomials over a

division ring, 639
Weierstraß Preparation Theorem, 213
well-defined, 31, 32
Well-ordering Axiom, 834
Well-Ordering Principle, 9

modified, 9
Wilson’s Theorem, 57
word

empty word, 94
reduced word, 94

Yoneda Embedding Theorem, 797
Yoneda functor, 797, 798
Yoneda Lemma, 799

Zariski topology, 248
basic open set, 529
geometric, 248

Zariski’s Lemma, 245, 566
Zariski’s lemma, 503
zero divisor, 169, 553
zero sequence, 225
zeta function, 4, 367
Zorn’s Lemma, 166, 833
zyzygy, 751
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