Group Action Problems

Notation. If \(H \subset G \) are groups then we view the coset space \(G/H \) as a \(G \)-set via \(a \cdot bH = abH \) unless otherwise stated.

Prove all of the following. [Note one problem often depends on another.]

1. Let \(G \) be a group. Define what it means to be a homomorphism (respectively, monomorphism, epimorphism, isomorphism) of \(G \)-sets. Show that the \(G \)-action on a \(G \)-set \(S \) is transitive iff \(S \) is isomorphic to \(G/G_s \) for any \(s \in S \).

2. Let \(G \) be a group and \(X \) and \(Y \) be \(G \)-sets and \(x \in X \). Let \(\phi : X \to Y \) to be a homomorphism of \(G \)-sets. Show that \(G \cdot x \subset G \phi(x) \) with equality if \(\phi \) is an isomorphism.

3. Let \(G \) be a group and let \(H \) and \(K \) be subgroups. Show that the \(G \)-sets \(G/H \) and \(G/K \) are isomorphic iff \(H \) and \(K \) are conjugate in \(G \), i.e., there exists a \(g \in G \) such that \(H = gKg^{-1} \).

4. Let \(S \) be a transitive \(G \)-set. We say that \(G \) acts doubly transitively or 2-transitively on \(S \) if given any two pairs of elements \((x_1, x_2) \) and \((y_1, y_2) \) in \(S \times S \) with \(x_1 \neq x_2 \) and \(y_1 \neq y_2 \) then there exists some \(g \in G \) such that \(gx_i = y_i \) for \(i = 1, 2 \). [One has the obvious generalization to \(n \)-transitive.] Suppose \(S \) has more than two elements. Show that \(G \) acts doubly transitively on \(S \) iff \(G \cdot s \) acts transitively on \(S \setminus \{s\} \) for all \(s \in S \).

5. Let \(S \) be a \(G \)-set and \(s \in S \). Suppose that \(G \) acts doubly transitively on \(S \). Show that \(G_s \) is a maximal subgroup of \(G \) (i.e., if \(G_s \subset H \subset G \) is a subgroup then \(H = G_s \) or \(H = G \)).

6. Let \(G \) be a group and let \(H \) and \(K \) be subgroups. A double coset of \(H,K \) in \(G \) is a subset of \(G \) of the form \(HxK \), with \(x \in G \). Prove that the family of all double cosets of \(H,K \) of \(G \) partition \(G \). [Define an appropriate equivalence relation on \(G \).] If \(G \) is finite and \(Hx_iK \), \(1 \leq i \leq n \), partition \(G \) show \(|G : K| = \sum_{i=1}^{n} |H \cap x_iKx_i^{-1}| \). [Note Lagrange’s Theorem is the case that \(K = 1 \).]

The following is not a group action problem:

7. If \(A \) and \(B \) are additive groups then

\[
\text{Hom}(A, B) := \{ \varphi : A \to B \mid \text{group homomorphism} \}
\]

is a group under addition of functions. Compute (and justify) all of the following:

i. \(\text{Hom}(\mathbb{Z}, \mathbb{Q}) \) and \(\text{Hom}(\mathbb{Q}, \mathbb{Z}) \).

ii. \(\text{Hom}(\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \) and \(\text{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}) \).

iii. \(\text{Hom}(\mathbb{Q}, \mathbb{Z}/n\mathbb{Z}) \) and \(\text{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Q}) \).