
Take Home Midterm and Homework #7

Instructions: This homework/midterm is open book. All proofs must be fully written or
typed out. You may not cut and paste solutions that you did not write or type yourself.
If you copy part of or the whole proof from a reference you must cite that reference when
used. If results not proven in class or homework are used, you must prove these also. You
may not help each other or have others help solve the problems for you.

In the problems below, all inner product spaces are defined over F equal to R or C (but you
cannot assume which one unless it is given).

Problem 1. Let V be a finite dimensional vector space over F and T : V → V a linear
operator.

(a) Show that there exists a positive integer N and a0, a1, . . . , aN in F not all zero such
that aNT

N + aN−1T
N−1 + · · · + a1T + a01V is the zero linear operator, i.e., if f =

aN t
N + aN−1t

N−1 + · · ·+ a1t+ a0, then f(T ) = 0.

(b) Show that there is a unique monic polynomial q ∈ F [t] such that q(T ) = 0 and if g ∈ F [t]
is any polynomial satisfying g(T ) = 0, then q divides g in F [t], i.e., g = qh for some
h ∈ F [t]. (You may use the Division Algorithm without proving it.)

Problem 2. Let V = R3 under the dot product. Let T : V → V be rotation by
the angle θ counterclockwise in the plane (through the origin) perpendicular to (1, 2, 3),
S : V → V the reflection with respect to the plane (through the origin) spanned by the vec-
tors (1, 0, 1), (1, 2, 1) (i.e., this plane is fixed and vectors perpendicular to it are send to their
negative), and U : V → V rotation by the angle ϕ counterclockwise in the plane (through
the origin perpendicular to (1, 0, 1). Find the matrix representation of U ◦S ◦T in the stan-
dard basis. [You do not have to multiply out the matrices but use Problem 8 to compute
inverses.]

Problem 3. Let V be an inner product space. Prove that d : V × V → R defined by
d(v, w) = ||v − w|| makes V into a metric space, i.e., for all v, w, x ∈ V , d satisfies all of
the following:

(a) d(v, w) ≥ 0 and equals zero if and only if v = w.

(b) d(v, w) = d(w, v).

(c) (Triangle Inequality) d(v, w) ≤ d(v, x) + d(x,w).

Problem 4. Let V = R[x] be the space of polynomial functions. Make V into an inner

product space by 〈f, g〉 =
∫ 1

−1 fg. Gram-Schmidt {1, x, x2, x3} to an OR (then an ON) set.

Problem 5. Let V be a finite dimensional inner product space with an orthonormal basis
{v1, ..., vn}. Let v, w ∈ V . Prove Parseval’s Formula:

〈v, w〉 =
n∑

i=1

〈v, vi〉〈w, vi〉.

In particular, the Pythagorean Theorem holds, viz.,

||v||2 =
n∑

i=1

|〈v, vi〉|2.



Problem 6. Let T : V → W be a linear transformation of finite dimensional inner product
spaces of the same dimension with respective inner products 〈 , 〉V and 〈 , 〉W .

(a) Show the following are equivalent:
(i) 〈T (v1), T (v2)〉W = 〈v1, v2〉V for all v1, v2 ∈ V . We say that T preserves the inner

product.

(ii) T is an isomorphism of vector spaces preserving inner products. We say that T is
an isometry.

(iii) T takes every ON basis of V to an ON basis of W .

(iv) T takes some ON basis of V to an ON basis of W .

(v) ||Tv|| = ||v|| for every v ∈ V .

(b) Show two finite dimensional inner product spaces over F are isometric (i.e., there exists
an isometry between them) if and only if they have the same dimension.

Problem 7. Let V be a finite dimensional inner product space with an orthonormal basis
{v1, ..., vn} and S, T : V → V be two linear operators. Let A = [T ]B and B = [S]B in Mn(F )
viewed as operators on F n×1 via the dot product (with S the standard basis). Then show
all of the following:

(a) 〈T (vi), vj〉 = Aji = Aei · ej and 〈vi, S(vj)〉 = (B∗)ji = ei ·Bej for all 1 ≤ i, j ≤ n.
(b) There exists a unique linear operator T ∗ : V → V such that [T ∗]B = A∗ and it satisfies

〈T (vi), vj〉 = 〈vi, T ∗(vj)〉 for i = 1, . . . , n.

(c) The linear operator T ∗ : V → V in (b) satisfies

(*) 〈Tv, w〉 = 〈v, T ∗w〉 for all v, w ∈ V.

(d) T ∗ is the unique linear operator satisfying (*). T ∗ is called the adjoint of T .

(e) T ∗∗ := (T ∗)∗ = T .

Problem 8. Let A ∈ Mn(F ) be a matrix whose columns form an ON basis for F n×1 under
the dot product. Show A is invertible and the inverse of A is A∗.

Problem 9. Show explicitly that the adjoint of a linear operator T : V → V with V a
finite dimensional inner product space is independent of the orthonormal basis B used to
construct it in Problem 7, i.e., if you compute [T ]C and [T ∗]C in another orthonormal basis
C of V , then (b) of Problem 7 holds by for the elements in B by direct computation using
the basis C.
Problem 10. Let V be a finite dimension inner product space and W a subspace of V . We
know that V = W ⊥ W⊥, i.e., if v ∈ V , then there exist unique w ∈ W and w⊥ ∈ W⊥

satisfying v = w + w⊥.

(a) Let T : V → V be the linear operator satisfying v = w + w⊥ 7→ w − w⊥. Prove that T
is both hermitian and an isometry. (See Problem 6 for the definition of an isometry.)

(b) Let T : V → V be a linear operator that is both hermitian and an isometry. Show that
there exists a subspace W of V such that T (v) = w−w⊥ where v = w+w⊥ with w ∈ W
and w⊥ ∈ W⊥.


