Problem 1. Let V = C[1,3] with $\langle f,g \rangle = \int_1^3 fg$. Let $f(x) = \frac{1}{x}$. Show that the constant polynomial g nearest f is $g = \frac{1}{2} \ln 3$. Compute $||g - f||^2$ for this g.

Problem 2. Let $V = C[0, 2\pi]$ with $\langle f, g \rangle = \int_0^{2\pi} fg$. Let $W = \{1, \cos x, \sin x\}$. Let f(x) = x. Find $f(x)_W$.

Problem 3. Let $V = \mathbf{M}_n \mathbf{C}$ with $\langle A, B \rangle = \operatorname{tr}(AB^*)$. Let

$$S = \left\{ \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix} \mid \lambda_1, \dots, \lambda_n \in \mathbf{C} \right\}$$

(i.e., the diagonal matrices). Determine S^{\perp} and dim (S^{\perp}) .

Problem 4. Let V = C[-1, 1] an inner product space via $\langle f, g \rangle = \int_{-1}^{1} fg$. Let $W_{odd} := \{ f \in V \mid f(x) = -f(-x) \}$. Show $W_{odd}^{\perp} = W_{even} := \{ f \in V \mid f(x) = f(-x) \}$.

Problem 5. Let V be an inner product space and $W \subset V$ a finite dimensional subspace. Show that $\langle v_W, x \rangle = \langle v, x_W \rangle$ for all $v, x \in V$.

Problem 6. Let V be an inner product space and $S \subset V$ a subset. Show

- a. Span $(S) \subset (S^{\perp})^{\perp}$.
- b. $\operatorname{Span}(S) = (S^{\perp})^{\perp}$ if V is finite dimensional.

Problem 7. Let V be a finite dimensional inner product space over F and W a subspace of V. Show that $P_W: V \to V$ defined by $v \to v_W$ is a linear operator and satisfies all of the following:

- (i) $\operatorname{im}(P_W) = W$ and $\operatorname{ker}(P_W) = W^{\perp}$. In particular, $V = \operatorname{im}(P_W) \oplus \operatorname{ker}(P_W)$.
- (ii) $P_W \circ P_W = P_W$.
- (iii) If $W' \subset W^{\perp}$ is a subspace, then $P_W \circ P_{W'} = 0$.
- (iv) $1_V = P_W + P_{W^{\perp}}$.

Problem 8. Let A be an $n \times n$ real matrix. Let row(A) be the subspace of \mathbf{R}^n spanned by the rows of A and col(A) be the subspace of \mathbf{R}^n spanned by the columns of A viewed in \mathbf{R}^n . Note that if R_i is the ith row of A and $v \in \mathbf{R}^{n \times 1}$, then $R_i v$ is the dot product of R_i and v. Show that $\ker A = (row(A))^{\perp}$.

Problem 9. Let A be an $m \times n$ real matrix. Show that $(A^t A)^t = A^t A$ and if A has rank n, then $A^t A$ is an invertible $n \times n$ matrix (see Problem 8).

Problem 10. Let V be an inner product space over F. Let $S = \{v_1, ..., v_n\}$ be an orthogonal set. Suppose that no $v_i = 0$. Let $v \in V$. Prove Bessel's Inequality:

$$\sum_{i=1}^{n} \frac{|\langle v, v_i \rangle|^2}{||v_i||^2} \le ||v||^2.$$

Moreover, show equality holds if and only if

$$v = \sum_{i=1}^{n} \frac{\langle v, v_i \rangle}{||v_i||^2} v_i.$$