Problem 1. Consider the linear differential equation

$$Ly = y'' + ay' + by = 0$$

where a and b are real numbers. Show that the solution set $W = \{f \in C(-\infty, \infty) \mid Lf = 0\}$ is a real vector space of dimension at least two. [In fact, it is exactly two.] Generalize.

Problem 2. Let V be a finite dimensional vector space over F and W a subspace of V. Show W = V if and only if $\dim(W) = \dim(V)$.

Problem 3. Let V be a finite dimensional vector space over F and $T: V \to V$ a linear map, i.e., $T(\alpha v + w) = \alpha T(v) + T(w)$ for all $\alpha \in F$ and all $v, w \in V$. Suppose that T is not injective. Show that dim $(\ker(T)) > 0$ where $\ker(T) := \{v \in V \mid T(v) = 0\}$. Also show that T is not onto.

Problem 4. Let U and W be subspaces of a vector space V over F. Suppose that $\dim(U) + \dim(W) > \dim(V)$. Show $U \cap W \neq \{0\}$.

Problem 5. Let

$$W_1 = \{ A \in M_2(\mathbf{R}) \mid A = A^t \}$$

$$W_2 = \{ A \in M_2(\mathbf{R}) \mid A = -A^t \}$$

Determine the dimensions of these real vector spaces by producing bases. Show that $M_2(\mathbf{R}) = W_1 + W_2$. What if we replace the \mathbf{R} in all the above with \mathbf{C} but still view everything as real vector spaces?

Problem 6. Let V be an n-dimensional space over F with n > 0. Let $v \neq 0$ in V be a fixed vector. Produce a linear map $f: V \to F$ such that $f(v) \neq 0$. (Recall that f linear means that $f(\alpha x + y) = \alpha f(x) + f(y)$.) Show that f is onto. Show that $\ker(f) := \{w \in V \mid f(w) = 0\}$ is n - 1 dimensional.

[Hint: If you have trouble doing this, think of the case that $V = F^n$.]

Problem 7. Let $S := \{e_1, \ldots e_n\}$ be the standard basis for \mathbb{R}^n and $\mathcal{B} := \{v_1, \ldots v_n\}$ be another basis. Suppose $v_i = (\alpha_{1i}, \ldots \alpha_{ni})$ for $1 \leq i \leq n$. Discuss how you would determine the coordinates of the e_i in the basis \mathcal{B} , i.e., how you would determine β_{ij} such that $e_i = \sum_j \beta_{ij} v_j$. More generally, discuss the case when V is a finite dimensional vector space over F with two bases \mathcal{B} and \mathcal{C} , you know how to write elements in the \mathcal{B} basis as linear combinations of vectors in the \mathcal{C} basis and want to do the reverse.

Problems 8,9. Do two problems you did not do before from section 2.3 p 48.

Problem 10. Do a problem you did not do before from section 2.6 p 66.