- 1. Let M be an R-module and $M_i \subset M$ be R-submodules for all $i \in I$. We say that $\sum_{i \in I} M_i$ is an internal direct sum of the M_i if $M_i \cap \sum_{j \neq i} M_j = 0$ for all $i \in I$. If this is the case, we write $\bigoplus_{i \in I} M_i$ for $\sum_{i \in I} M_i$. Show that if this is the case then $\sum_{i \in I} M_i$ is R-isomorphic to the (external) direct sum $\prod_{i \in I} M_i$.
- 2.(*) Suppose the following diagram of R-modules and R-homomorphisms is commutative and has exact rows:

$$0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \rightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C' \rightarrow 0$$

Show that if two of the maps α, β, γ are R-isomorphisms then all three are.

- 3.(*) Let M and M_1, \ldots, M_n be R-modules. Show that $M \cong \coprod_{i=1}^n M_i$ if and only if there exist R-homomorphisms $\iota_i : M_i \to M$ and $\pi_i : M \to M_i, i = 1, \ldots, n$, satisfying all of the following:
 - i. $\pi_i \iota_i = Id_{M_i}$ for $i = 1, \ldots n$.
 - ii. $\pi_i \iota_i = 0$ for $i \neq j$.
 - iii. $\iota_1\pi_1 + \cdots + \iota_n\pi_n = Id_M$.
 - 4. Let M be an R-module. Prove the following are equivalent:
 - i. Every submodule of M is finitely generated (fg).
 - ii. M satisfies ACC (the **ascending chain condition**), i.e., if $M_i \subseteq M$ are submodules and

$$M_1 \subseteq M_2 \subseteq \cdots \subseteq M_n \subseteq \cdots$$

then there exists a positive integer N such that $M_N = M_{N+i}$ for all $i \geq 0$.

- iii. M satisfies the **Maximum Condition or Principle**, i.e., if $S \neq \emptyset$ is a collection of submodules of M then S contains a maximal element, that is a module $M_o \in S$ such that if $M_o \subseteq N$ with $N \in S$ then $N = M_o$.
- If M satisfies any of these equivalent conditions, we say that M is a **noetherian** R-module.
- 5. Let $N \subseteq M$ be R-modules. Show that M is an R-noetherian if and only if N and M/N are R-noetherian. In particular, show that if

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

is an exact sequence of R-modules and R-homorphisms with two of the modules M, M', M'' are R-noetherian then they all are.

6. Show if M, N are noetherian R-modules then so is $M \coprod N$.