HW #4

- 1. Let f, g be polynomials with coefficients in a commutative ring R. Suppose the leading coefficient of f is a unit (i.e., the coefficient of the highest term is a unit). Show that there are polynomials f and f with coefficients in f such that f is less than the degree of f. This says the Division Algorithm holds when dividing by a polynomial with unit leading term. (This problem was also given to you last quarter more or less.)
- 2. Let R be a domain. Show that R[t], the ring of polynomials with coefficients in R is a euclidean domain if and only if R is a field.
- 3.(*) Let $R = \mathbf{Z}[\sqrt{-d}] = \{a + b\sqrt{-d} \mid a, b \in \mathbf{Z}\}$ a subring of \mathbf{C} with d a positive square-free integer. Let $N : R \to \mathbf{Z}$ by $\alpha = a + b\sqrt{-d} \mapsto \alpha \overline{\alpha} = a^2 + db^2$. Show all of the following.
 - a. The field of quotients of R is $Q[\sqrt{-d}] = \{a + b\sqrt{-d} \mid a, b \in \mathbf{Q}\}.$
 - b. $N: R \setminus \{0\} \to \mathbf{Z}$ is a monoid homomorphism.
 - c. $R^{\times} = \{ \alpha \in R \mid N(\alpha) = 1 \}$ and compute this group for all d.
 - d. The element α is irreducible in R if $N(\alpha)$ is a prime. Is the converse true?
 - e. Suppose $d \geq 3$, then 2 is irreducible but not prime in R.
 - 4. Show that $\mathbf{Z}[\sqrt{-2}]$ is a euclidean domain.
 - 5. Let $R = \mathbf{Z}[\sqrt{-1}]$. Let $n = p_1^{e_1} \cdots p_r^{e_r}$ be a factorization of an integer n > 1. Show that the following are equivalent:
 - a. n is a sum of two squares.
 - b. $n = N(\alpha)$ for some $\alpha \in R$.
 - c. If $p_i \equiv 3 \pmod{4}$ then e_i is even.
- 6.(*) Let $R = \mathbf{Z}[\sqrt{-5}]$. Show the all of the following:
 - a. The elements $2, 3, 1 + \sqrt{-5}$, and $1 \sqrt{-5}$ are all irreducible but no two are associates. In particular, R is not a UFD.
 - b. None of the elements $2, 3, 1 + \sqrt{-5}$, and $1 \sqrt{-5}$ are prime.
 - 7. Let $R = \mathbf{Z}[\sqrt{-5}]$. Let $\mathfrak{P} = (2, 1 + \sqrt{-5})$. Show
 - a. $\mathfrak{P}^2 = (2)$ in R.
 - b. \mathfrak{P} is a maximal ideal.
 - c. \mathfrak{P} is not a principal ideal.
 - 8. Determine all prime elements, up to units, in $\mathbf{Z}[\sqrt{-1}]$.