Chapter 10

The derived category of blocks
with cyclic defect groups

by Raphaél Rouquier!

10.1 Introduction

Let O be a complete discrete valuation ring with algebraically closed residue field &
of characteristic p > 0 and field of fractions K of characteristic 0, “big enough” for
the groups considered.

Let G be a finite group, OGe a block of G with a cyclic defect group D. Let
ONg(D)e' the block of Ng(D) corresponding to OGe.

In this work, we give a “self-contained” account of the theory of blocks with cyclic
defect groups with aim the proof that the derived category of a block with cyclic
defect is (in a strong sense) locally determined — a special case of Broué’s conjecture
[26] :

Theorem 10.1 The blocks OGe and ONg(D)e' are splendidly Rickard equivalent. If
Op(G) # 1, then these blocks are in addition Morita equivalent.

Some remarks.

e That the blocks should be not merely Rickard equivalent, but also splendidly
Rickard equivalent, is Rickard’s refinement of Broué’s conjecture.

e When O,(G) # 1, there need not be a splendid Morita equivalence !

e The block ONg(D)e' has a very simple structure : it is Morita equivalent to
ODXE, where E = Ng(D,ep)/Cg(D) and (D, ep) is an e-subpair (Proposition
10.2.15).

Let us outline the organization of the proof of the theorem.

1The author thanks for its hospitality the Isaac Newton Institute for Mathematical Sciences,
Cambridge, where this paper has been written
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In §10.3, we prove that a stable equivalence between OGe and OD % E (the very
local case) can always be lifted in a nice way to a Rickard equivalence. To elucidate
part of the structure of OGe, we follow very closely Thompson’s original approach
[163], translated to the setting of an abstract stable equivalence of Morita type using
Broué’s philosophy [28]. Ideas of Green [58], Alperin [2] and Linckelmann [110] enable
us to understand well enough OGe and the stable equivalence to be left with a problem
which is solved with (a simplification of) the ideas of [153].

Theorem 10.1 is then proved in §10.4 by induction on the order of G : it is
enough to give a splendid Rickard equivalence between OGe and the corresponding
block OH f for H = Ng(R), where O,(G) < R < D and [R : O,(G)] = p, since by
induction OH f is splendidly Rickard equivalent to ONg(D)e'.

First, we consider the case where O,(G) = 1. By induction, we know that OH f is
Morita equivalent to OD xE. Now, Green’s correspondence gives a stable equivalence
between OGe and OH f, hence between OGe and OD X E, which can be lifted to
a Rickard equivalence by the results of §10.3. We have then constructed a splendid
Rickard equivalence between OGe and OH f.

Assume now Op(G) # 1 but O,(G) is central in G. Then, the blocks have a
unique simple module and we have already a Rickard equivalence for the blocks of
the groups modulo O,(G). This equivalence turns out to be nice enough to be lifted
to an equivalence between OGe and OH f.

Finally when O,(G) # 1 but O,(G) is not central in G, we extend the known
Rickard equivalence between the blocks of Cz(0,(G)) and Cy (0,(G)), following Mar-
cus [118].

In §10.2, we give various general results (i.e., not specific to blocks with cyclic
defect) pertaining to §10.3 and §10.4.

In the final part, we illustrate the constructions with an explicit study of PSLy(p).

As a final remark, let us say that the structure of blocks with cyclic defect has
been determined originally by Dade [40, 45]. The existence of a Rickard equivalence is
due to Rickard [136] and Linckelmann [107] (the Morita equivalence when O,(G) # 1
goes back to Linckelmann and Puig [112, 106]).

My thanks go to M. Broué for many a patient answer to my questions and to
G. Robinson for useful discussions.

10.2 Miscellany : stable equivalences, Rickard
equivalences and more

10.2.1 Notations

Let G be a finite group, e a block idempotent of @G (i.e., a primitive idempotent of
the center of OG) and A = OGe the corresponding block of OG. By an A-module, we
mean a finitely generated left A-module. The sign ® means ®. For V an O-module,
we put V* = Hom(V, ©O). We write KA and kA for the algebras K ® A and k ® A.
We denote by A° the O-algebra opposite to A.

Let H be another finite group, f a block idempotent of OH and B = OHf.
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10.2.2 Stable category, stable equivalences and invariants

We follow here [25, 28] for the main concepts associated with the stable category. We
denote by A—mod the stable category of A, whose objects are the A-modules. Let us
recall that a relatively O-projective A-module is an A-module of the form A®p U for
some O-module U. Given two A-modules V and W, the set of morphisms Hom(V, W)
in A — mod is Hom(V, W) modulo the submodule of O-projective morphisms, i.e.,
morphisms which factor through a relatively O-projective module.

Let Q4g4e be the kernel of the multiplication map A ® A° — A. Let Q34 4
be the cokernel of the map 74 : A - A ® A° dual to the multiplication. These
are (4 ® A°)-modules whose restrictions to A and A° are projective. The functors
Qagae ®4 — and Qg 40 ®4 — induce inverse self-equivalences of A — mod. Given an
A-module V, we denote by QV an A-module without projective direct summand such
that Qugae @4 V =~ OV in A — mod — such a module is unique up to isomorphism.

Let f: ¥V — W be an injection between A-modules. There exists a morphism
p: W = (A® A°) ®,4 V such that we have a commutative diagram :

f W

"

(A® A°) @4V

Vv

Let § be the induced map W/V — Q3. ®4 V. This gives rise to a “standard
distinguished triangle” :

VAwoswivLd ol el

The category A — mod becomes a triangulated category, with translation functor
Qagae ®4 — and distinguished triangles the triangles isomorphic to the standard
distinguished triangles.

We denote by RP(A) the kernel of the decomposition map R(KA) — R(kA). We
denote by R(A) the quotient of R(K A) by the submodule generated by the characters
of the projective A-modules. Note that the restriction of the usual bilinear form on
R(KA) x R(KA) to RP(KA) x R(KA) factors through RP(K A) x R(A) and gives a
perfect pairing between RP(K A) and x R(A).

Let M be an (A ® B°)-module, projective as an A-module and as a B°-module.

The module M induces a stable equivalence of Morita type between A and B if

M ®p M* ~ A & projective modules and
M* ®4 M ~ B & projective modules.

Since we are dealing with blocks, Rickard has noted that it is enough to check one
of the properties :

Lemma 10.2.1 Let M be an (A ® B°)-module, projective as an A-module and as a
B°-module. If A is not a matriz algebra over O and

M ®p M* ~ A @ projective modules,

then M induces a stable equivalence between A and B.
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Proof. Since A is not a matrix algebra over O, it follows that A is not a projective
(A ® A°)-module, hence M is not projective.

The functors M ®p — and M* ®4 — between B — mod and A — mod are left
and right adjoint. Consider the associated natural maps n : B =+ M* ®4 M and
£: M*®4 M — B. By [116, §IV.1, Theorem 1], the map

1@ . M@B->MQg M @4 M

is a split injection. As M ® M* ® 4 M is isomorphic to M in (A ® B°) — mod, the
map 1 ® 7 is an isomorphism in (4 ® B°) — mod. Similarly, the map

1®€ZM®BM*®AM—)M®BB

is an isomorphism in (4 ® B°) — mod. It follows that the composite (1®¢e)(1®n) =
1 ® (en) is an automorphism of M in (A® B°) — mod. Since B is a block, the algebra
Endpgp-(B) is local. If the composite e is not invertible, it is in the radical of this
algebra, hence gives an element in the radical of Endpgpe(B). This can’t happen,
since after applying M ®p — we get a non-zero isomorphism ! Hence, £7 is invertible
and as a consequence, M* ®4 M ~ B @ P for some module P.

Now,

MegM @ M) 2~MoMegP
and (M @ M*)®4 M ~ M & projective modules,

hence M ®p P is projective. As P isisomorphic to a direct summand of M* Q@4 MRp P,
we finally deduce that P is projective. »

Assume we have a module M inducing a stable equivalence between A and B.

Then, the functors M ® 3 — and M* ®4 — induce inverse equivalences of trian-
gulated categories between the stable categories B — mod and A — mod. The maps
R(KA) - R(KB) and R(KB) — R(KA) induced by M ®5 — and M* ®,4 — give
rise to

e inverse isometries between RP(A) and RP(B) and

e inverse isomorphisms between R(A) and R(B).

Lemma 10.2.2 Let V be an indecomposable non relatively O-projective B-module.
Let W be an A-module without projective direct summands such that

M@V ~W @ relatively O-projective modules.

Then, W 1s indecomposable.
If V is free over O and V ® k is indecomposable, then, W ® k is indecomposable.

Proof. Assume W = W, @ Wy, with Wi, W, # 0. Then,
V & relatively O-projective modules ~ M* @4 W) & M* ®,4 Wa.

As M* @, W; and M* ® 4 W contain both a non relatively O-projective direct sum-
mand, we get a contradiction.

Assume now V ® k is indecomposable and W ® k has a non-zero projective direct
summand. So, there is a projective A-module P and a surjective map W —» P ® k.
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As W is free over O, we have Ext'(W, P) = 0, hence the surjection lifts to a map

W — P, which is forced to be surjective by Nakayama’s lemma, hence which splits,

contradicting the property of W to have no projective direct summand. [
The following very useful result comes from [110] :

Lemma 10.2.3 The (A® B°)-module M is the direct sum of a non-projective inde-
composable module and of a projective module.

If M is indecomposable, then for any simple B-module V', the A-module M ®p V
1$ indecomposable.

Proof. Let M = M; & M,. Since M* @ 4 M ~ B @ projective modules, we have
M @4 M &M @4 M, ~ B® projective modules.

As B is indecomposable (as a (B ® B°)-module), there exists ¢ € {1,2} such that
M* ®4 M, is projective, so M ®p M* ® 4 M; is projective. Now, (M ®5 M*)®4 M, ~
M; @ projective modules, hence M; is projective.

Let us assume now that M is indecomposable. Denote by soc(kA) the largest
semi-simple kA-submodule of k4. Recall that a kA-module V' has no projective
direct summand if and only if soc(kA)V = 0. We have soc(kA ® kB°) = soc(k4) ®
soc(kB®). Since M has no projective direct summand, soc(kA ® kB°)M = 0, hence
soc(kA)(M ®p soc(kB)) = 0, which means that M ®p soc(kB) has no projective
direct summand. But, if V is a simple B-module, it is a direct summand of soc(kB),
so M ®p V has no projective direct summand : as M induces a stable equivalence,
M ®p V is the direct sum of an indecomposable non-projective module and of a
projective module and the lemma follows. [

10.2.3 Derived category and Rickard equivalences

The definition of a splendid Rickard equivalence follows [144]. We denote by D?(4)
the bounded derived category of A and by K*(A) the homotopy category of bounded
complex of A-modules. Viewing a module as a complex concentrated in degree 0, we
have a fully faithful functor from the category of A-modules to D°(A) and to K*(A).

Let C' be a bounded complex of (A ® B°)-modules, all of which are projective as
A-modules and as B°-modules.

The complex C induces a Rickard equivalence between A and B (or is a Rickard
complez) if

CR®pC* ~ A® complex homotopy equivalent to 0

C*®4C ~ B&® complex homotopy equivalent to 0.

Assume we have such a complex C. Then, the functors C ®g — and C* ®4 —
induce inverse equivalences of triangulated categories between the categories D°(B)
and D°(A) and between the categories K®(A) and K°(B).

They give rise to inverse “perfect” isometries between R(KA) and R(KB), to
inverse isomorphisms between the centers of A and B,... [26] and sections 6.3.1, 6.3.3
as well as 6.3.2).

Suppose the complex C' has homology only in one degree, isomorphic to M. If
C is a Rickard complex, then M induces a Morita equivalence between A and B.
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The converse doesn’t hold : if M induces a Morita equivalence between A and B,
we deduce that C ®5 C* ~ A® R, where R has zero homology, but might be non
homotopy equivalent to 0. Nevertheless, if C has only one non-zero term, M, then C
induces a Rickard equivalence if and only if M induces a Morita equivalence.

As for stable equivalences, Rickard [144] has proved the following :

Lemma 10.2.4 Let C be a bounded compler of (A ® B°)-modules, all of which are
projective as A-modules and as B°-modules. If

C ®p C* is homotopy equivalent to A,
then C induces a Rickard equivalence between A and B.

(The proof is similar to the proof of Lemma 10.2.1)

In D*(A ® B°), the complex C is isomorphic to a bounded complex of modules
which are all projective except the degree n term N, for some integer n (see lemma
6.3.14). The module M = Q"N induces a stable equivalence between A and B [139,
Corollary 5.5].

Lemma 10.2.5 Let C be a bounded complez of (A® B°)-modules, all of whose terms
are projective but the degree 0 term M, which is projective as an A-module and as a
B°-module. Assume M induces a stable equivalence between A and B. Then, A is a
direct summand of C @5 C* and B is a direct summand of C* ®4 C.

Proof. The functors C ® g — and C* @ 4 — between K°(B) and K°(A) are left and
right adjoint and induce natural maps7: B - C*®,4C and € : C* ®4 C — B. Let
7 :B—> M ®yMand<e: M*®4 M — B be the natural maps induced by the
functors M ® g — and M*® 4 —. The composite maps £77 and &'’ have the same image
in Endpgge(B). As M induces a stable equivalence between A and B, the map €' is
invertible, hence e7 is invertible. It follows that B is isomorphic to a direct summand
of C* ®4 C. The second property is obtained by a similar proof. ]

Assume A and B have a common defect group D. When the modules occurring
in C are direct summands of permutation modules induced from AD = {(z,z7')|r €
D} C G x H°, the complex C is called splendid and the equivalence of derived
categories it induces is called a splendid Rickard equivalence. Such an equivalence gives
rise to derived equivalences for corresponding blocks of centralizers of p-subgroups of
D in G and H ([144], [69] ; cf also [130],[111]).

Following a suggestion of M. Harris, we have

Lemma 10.2.6 Assume H' C H are two subgroups of G. Let f' be a block idempotent
of H'. Assume e, f and f' have defect D. Let C be a splendid Rickard complez for
OGe @ (OHf)° and C' a splendid Rickard complex for OHf @ (OH'f'Y°. Then,
C ®ouy C' is a splendid Rickard complez for OGe ® (OH'f')°.

Proof. Composing Rickard equivalences gives a Rickard equivalence. The point is
to check that the modules in C ®ogy C' have the required properties.
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Let M = IndgsHOO ~ OG ®pg OH be the trivial module induced from a diagonal

subgroup AQ to G x H°, where @ < D. Let N = IndZ}éH’o(’), where R < D. We
have

M ®ou N = OG ®0q OH ®op OH' ~ Ind§ K" Rest X E Ind 37" 0.
By Mackey’s formula, we obtain

M®@og N ~ @ TndS>H" o

(BH)B1AIN(QXR®)
(h1,h2)EQXRO\NHXH°/AH
GxH'®
P mdds0
heQ\H/R

1

It follows that M ®o g N is a direct sum of direct summands of permutations modules
induced from AD to G x H'. .

Homotopy equivalence is detected by a Sylow p-subgroup :

Lemma 10.2.7 Let G' be a subgroup of G of index prime to p. Let g: X — Y be
a morphism between two bounded complezes of OG-modules. Then, g is a homotopy
equivalence if and only if ResS g is a homotopy equivalence.

Proof. Let Z be the cone of g. Then, g is a homotopy equivalence if and only
Z is homotopy equivalent to 0. Assume Z is not homotopy equivalent to 0. Up to
homotopy, we can assume Z = --- Z,_; — Z, — 0, where « is not a split surjection.
So, a gives a non-zero element in Exty,(Z,, Kera). As [G : G'] is prime to p, the
restriction map Ext};(Z,, Kera) — Extly (ResS Z,, Resg Ker @) is injective, hence
the restriction to G’ of « doesn’t split, i.e., the restriction to G’ of Z is not homotopy
equivalent to 0 and the restriction to G’ of g is not a homotopy equivalence. »

The following lemma due to A. Marcus [118] shows how to solve (certain) extension
problems for Rickard complexes :

Lemma 10.2.8 Let G’ and H' be normal subgroups of G and H with G/G' = H/H' =
E. Assume e and f are block idempotents of OG' and OH'. Let C' be a Rickard
complez for eOG' and fOH'. Assume C' extends to a complez C of OL-modules,
where L = {(g,h) € G x H°|(¢G',hH"®) € AE}. )

If E has order prime to p or if C has only one non-zero term, then, C = Indf"HOC
s a Rickard complez for eOG and fOH.

Proof. We have
ResGXH". C' = ResGX 7, Ind$*#°C ~ nd & C"
by Mackey’s formula. Similarly,
Res$X 2. C ~ IndS 8. C".
Consequently,

ResSr%.C ®@on C* = C' Qo OH ®on C* ~ C' ®om C'” ®oc OG
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is homotopy equivalent to eOG’ Qpg OG ~ eOG.

In particular, C ®ogy C* has homology only in degree 0, M, with Resg,xx%’uM o~
eOG. The natural map g : eOG — C®py C* induces a map go = Hy(g) : eOG — M.
As the restriction of M to OG” is isomorphic to eOG, the OG°-submodule of M
generated by go(e), the unit of M = Endgs(oge)(C), must be isomorphic to eOG,
hence gp is an isomorphism.

If the index of G' X G° in G x G° is prime to p, it follows that ¢ is a homotopy
equivalence, since its restriction to G’ x G° is a homotopy equivalence (Lemma 10.2.7).
Similarly, one proves that C* ®p¢ C is homotopy equivalent to fOH and the lemma
follows. [

Let us finally consider normal p-subgroups.

Let R be a normal p-subgroup of G. We put G = G/R. For M an OG-module,
we put M = OG ®og M and for ¢ : M — N a morphism of OG-modules, we put
¢=1%¢: M= N.

Lemma 10.2.9 Let ¢ : M — N be a morphism between OG-modules. Then, ¢ s
surjective if and only if ¢ is surjective.
Let N be an OG-module whose restriction to OR is projective. Then,

® every projective direct summand of N lifts to a projective direct summand of N,
o if M is a projective cover of N, then M is a projective cover of N.

Proof. Assume ¢ is surjective. Then, N = ¢(M) + rad(OR)N, hence N = ¢(M)
by Nakayama’s lemma and ¢ is surjective.

Note that given a projective indecomposable @G-module N, the projective OG-
module N is indecomposable, and we obtain a bijection between the set of isomor-
phism classes of projective indecomposable OG-modules and the set of isomorphism
classes of projective indecomposable OG-modules.

Let M be a projective OG-module and f : N — M a surjection. Let M, be the
kernel of the canonical surjective map M — M. Then, M, is a direct summand of
Ind§Res$ My. In particular,

Extye(N, My) < Extho (N, Ind$ResE My) ~ Extyp(ResE N, Res§ My).

Since ResgN is projective, this last Ext-group is zero, hence the morphism f lifts to
a morphism ¢ : N — M. By the first part of the lemma, this morphism is surjective,
hence split surjective, since M is projective.

If o : M — N is a projective cover of N, then ¢ is a surjective map. Assume
there is a direct summand M’ of M such that the restriction of @ to M" is surjective.
Using the second part of the lemma, we can lift M’ to a direct summand M"” of M,
and the first part of the lemma shows that the restriction of ¢ to M" is surjective.
So, M = M" and M = M', i.e., M is a projective cover of N. [

Homotopy equivalence between @G-modules can sometimes be controlled by OG :

Lemma 10.2.10 Let n be an integer and ¢ : X — Y be a morphism between two
bounded complexes of OG-modules whose components are direct sums of indecompos-
able modules with trivial source and vertices @ such thet |Q N R| =n.

Then, ¢ is a homotopy equivalence if and only if ¢ is a homotopy equivalence.
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Proof. Let P be a Sylow p-subgroup of G. Let Q be a subgroup of P. We have

ResfIndO0 ~ P Indpq,0
9EP\G/Q

and [(PN Q% NR| =|QNR| Since Indf,,0 is indecomposable (it has a unique
simple quotient), every direct summand of Resy IndGO has a vertex @' such that
|Q N R| = |Q N R|. Hence, the assumptions of the lemma hold if we restrict the
modules from G to P and replace G by P. By Lemma 10.2.7, we can then assume
that G = P.

As in the proof of Lemma 10.2.7, we are reduced to the following problem. Let
@ : M — N be a morphism between OG-modules whose components are direct sums
of indecomposable modules with trivial source and vertices @ such that |Q N R| = n.
Assume @ is a split surjection. Then, we have to show that ¢ is a split surjection. By
Lemma 10.2.9, we know already that ¢ is a surjection.

We may of course assume that N is indecomposable. But, this implies that N has
a unique simple quotient, hence that N has a unique simple quotient and is therefore
indecomposable. If M = M; @ M,, then the restriction of @ to M; or to M, is a split
surjection : so, we can assume M, hence M, are indecomposable as well. Then, ¢
is a split surjection if and only if it is an isomorphism, i.e., if and only if M and N
have the same rank. Let @ and @' be subgroups of G such that M ~ Inng and
N =~ Indg 0. We have rankM = (G : RQ)] and rankN = [G : RQ']. Since ¢ is an
isomorphism, we have |RQ| = |RQ'|. But, by assumption, |RN Q| = |RN Q'|, hence
|Q] = |@'| and ¢ is an isomorphism. ]

Under good circumstances, normal p-subgroups can be factored out, in order to
check that a complex induces a Rickard equivalence :

Lemma 10.2.11 Let R be a common normal p-subgroup of G and H and C' a bounded
complez of (OGe® (OH f)°)-modules, each of which is a direct sum of indecomposable
modules with trivial source and vertices Q such that QN (1 x H°)=QN(Gx1) =1
and RxR° < (Rx1)Q = (1x R°)Q. Let & and f be the images of e and f through the
canonical morphisms OG — OG and OH — OH and C = 0Ge ®pc C Qoy OHF.

Then, C is a Rickard complex for OGe and OHf if and only C is a Rickard
complez for OGE and OHf.

Proof. Let @ be a p-subgroup of G x H° such that QN(1x H°)=QN(Gx1) =1
and R x R° < (R x 1)Q = (1 x R°)Q. By Mackey’s formula, we have

Res§X 2 Ind3*# 0 ~ @ Indgxn};)mg )
gERXR\GxH°/Q

and @ = (Rx R°) N Q9 satisfies @ N (I x H°) = Q@ N(Gx1)=1and Rx R®° =
(Rx1)Q = (1 x R°)Q'. Let N =Ind&*™ 0. We have

O ®or N ®or O ~ Homorgorye (N,0) = O

We have
ResZXF° N ~ Ind®'0
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since R x R° = (R x 1)@’ and (R x 1})N Q" = 1. It follows that O Qor N ~ O. So,
the canonical surjective map

O®or N = O®pr NQpg O
is an isomorphism. Similarly, the canonical surjective map
N®orO = O®or N Qor O

is an isomorphism. So, if M is a direct summand of Indgxm(’), the canonical maps
give isomorphisms of O(G x H°)-modules

M®OROZO®ORM20®ORM®ORO.
Consequently, we have
OG ®Roc C Qou C* ®oc 06 ~ 0G Roc C Rox OH Ron C* Rog O0G ~C Qo c*

and
OH ®oy C* ®o¢ C ®on OH ~ C* ®pa C.
The components of C ®pg C* are direct sums of direct summands of modules
Ind$** 0 ®on (Ind§X"°0)° ~ OG ®oq, OH ®0g, OG
where @;N(Gx1)=@Q;N(1x H)=1and Rx R° < (R x 1)Q; = (1 x R°)Q; for
ie{1,2}.

Let o : G x H° = G and v : G x H° — H° be the canonical projections. Then,
we have isomorphisms @; — ¢(Q;) and Q; — ¥(Q;) and R is contained in ¢(Q;) and

P(Qs).
We have
HoxH ~ $@XH(Q2)°
Resy 0, xp(qa OH = D Ind(y Q) xw(@a))nams ©-

9€%(Q1)x¥(Q2)°\Hx H° /AH

Note that, for @' = (¥{(Q1) x ¥(@2)°) N (AH)?, we have |Q' N (R x R°)| = |[ARN

oyg—1
(¥(Q1) x ¥(Q2)°) | = |R|. Hence,

GxH® GxH® A\° . 1 G XG° HOxH

Indg*™ O ®on (IndQ: = IndlexQ‘gResw(c;l)xw(Qz)oOH

is a direct sum of modules Indgffco(’), where |@" N (R x R°)| = |R|. Similarly, the
components of C*®ogC have trivial source and vertices Q" such that |Q"N(Rx R°)| =
|R|.

Letn: OGe - CQopyC*and ' : OHf = C*®pcC be the natural maps_inducgd
by thie functors C®ops— and g*_®oce_—- Therl, 7= 180rN®0r1 : OGEé = CQpzC"
and 7' = 1 ®or 7 Qor 1 E OHf — C* ®p¢ C are the natural maps induced by the
functors C' ®pp7 — and C* ®pge —- By Lemma 10.2.10, 7 (resp. 7') is a homotopy
equivalence if and only if 77 (resp. 7/) is a homotopy equivalence.

n
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10.2.4 Some more lemmas

For a module V|, we denote by Py a projective cover of V.

Lemma 10.2.12 Let M be an (A ® B°)-module. A projective cover of M is

@PM®BW®PJV
w

where W runs over a complete set of representatives of isomorphism classes of simple
B-modules.

Proof. Let V be a simple A-module and W a simple B-module. We have an
isomorphism of (4 ® A°)-modules

Hompe (M, V ® W*) ~ Homo(M ®5 W, V)
given by f = (m ®p w— f(m)(w)) and the lemma follows from the isomorphism
Homagpe (M, V ® W*) ~ Homa(M ®g W, V).

]
The following well-known lemma solves the problem of lifting modules through
cyclic p'-extensions.

Lemma 10.2.13 Let H be a normal subgroup of G with E = G/H a cyclic p'-group.
Let M be a G-stable OH-module. Then, there exists an OG-module M eztending M
and for any such module, we have

Indg M ~ Res§:%° (M ® OE).

Proof. Let g € G generating G/H. Since M is G-stable, there exists ¢ € Endp (M)
such that
©(gthg(m)) = hp(m) for all h € H and m € M.

Let v = ¢°g~¢, where e = |E}, and R be the subring of Endpon (M) generated by .

Suppose there is « € R such that o® = . Let ¢ = o }¢. Then, 9 acts on M as
g° and ¢(g~'hg(m)) = hy)(m) for h € H and m € M. It follows that we can extend
the action of H on M to an action of G by letting g act as 9.

The existence of a follows from the fact that R is a finite algebra over the strictly
henselian ring O, hence the etale extension B[X]/{X*—+~) of R must be trivial : first,
replacing R by one of its blocks, we can assume it is local. Then, the equation a® =7y
has e distinct roots in the residue field of R. By Hensel’s lemma, these solutions can
be lifted to R and we are done.

Let M be an OG-module extending M. Then,
Res$x% IndZx%. (M ® O) ~ Ind§Res§G M

by Mackey’s formula. u

Let us recall some basic definitions of local block theory and some properties
related to Brauer’s first main theorem (see for example [2, §IV]).
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Assume H is a subgroup of G. We say that the block OGe corresponds to OH f
if OGe is a direct summand of Ind%S. OH f.

Let D be a defect group of OGe. When Ng(D) < H, there is a unique block
idempotent f of OH such that OGe corresponds to OHf : OH f is called a Brauer
correspondent of OGe.

If R is a p-subgroup of D, e is a block of ORCg(R) (equivalently, a block of
OCs(R)) and OGe corresponds to ORCg(R)eg, then (R, eg) is called an e-subpair.

Assume furthermore R is normal in G and ep is G-stable. Then, e = e, DN
RCg(R) is G-conjugate to a defect group of ORCg(R)eg and p |G : DCg(R))].

The next two lemmas deal with blocks of groups having a normal p-subgroup.

Lemma 10.2.14 Let R be a normal p-subgroup of G, (R, f) an e-subpair and H its
normalizer. Then, OG f induces a Morita equivalence between OGe and OHf.

Proof. We have ef = f and (97! fg)f = 0 for g € G — H. The multiplication map
FOG ®pge OGf — fOGS is an isomorphism and

fOGf= > OHgg 'fgf=OHf.
geG/H

The lemma is then a consequence of Lemma 10.2.4. ]

Proposition 10.2.15 Assume a defect group D of OGe is normal in G and € is a
block of OCg(D). Let E = G/DCg(D). Assume E is cyclic. Then, OGe is Morita
equivalent to OD X E.

Proof. Let & be the image of e in O(C(D)/Z(D)). The canonical map from the
center of OCg(D)e to the center of O(Cg(D)/Z(D))eé is onto. Since O is complete,
this forces & to be a block of O(Cg(D)/Z(D)). This block has defect zero, hence has
a unique simple module. So, OCg{D)e has a unique simple module.

Let H = D %E and L = Ngyp-(AD). The map Cg(D) - G x H°,z + (z,1)
factors through L and gives an injection ¢ : Cg(D) — L/AD with cokernel isomorphic
to E.

The G-stable block e of OCg(D) has a unique simple module V, which is con-
sequently G-stable. The action of Cg(D) on V lifts to an action of L/AD on V
(Lemma 10.2.13). Let Py be a projective cover of V as an (’)(L/AD) module and @
the restriction of Py to L. Let M = Ind$*#°Q and P = RescG(D)xZ(D Q. Then, P
has vertex AZ(D) and P = O(Cs(D)/Z(D)) ®cypy P ®z(p) O is a projective in-
decomposable O(C¢(D)/Z(D))e ® O-module, hence it induces a Morita equivalence
between O(Cg(D)/Z(D))é and O. It follows from Lemma 10.2.11 that P induces a
Morita equivalence between OCg(D)e and OZ (D) and from Lemma 10.2.8 that M
induces a Morita equivalence between OGe and OH. m

What this proposition actually determines is a source algebra of the block. Note
that instead of assuming E cyclic, one can assume the blocks are principal to get the
same result. In general, a similar proof shows that OGe is Morita equivalent to a
twisted group algebra O,D » E when D is normal in G, as proven by L. Puig [162,
§45, theorem 12].
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10.3 Blocks stably equivalent to OD xE

Let G be a finite group, e a block of G with positive defect. Let E be a p'-subgroup
of the group of automorphisms of a non-trivial cyclic p-group D. Let A = OGe and
B = 0OD »xE. Let M be an indecomposable (A ® B°)-module which is projective as
an A-module and as a B°-module.

This section is devoted to the proof of

Theorem 10.2 Assume M induces a stable equivalence between A and B. Then,
there ezists a direct summand N of a projective cover p: Pyy —» M of M such that

the complez 0 -+ N Y M = 0 induces a Rickard equivalence between A and B.
IfE=1, then N =0 or N = Py, i.e., M or QM induces a Morite equivalence
between A and B.

Let ¥ : R(KB) — R(KA) and © : R(KA) — R(KB) be the maps induced by
the functors M ®p — and M* @4 —.

10.3.1 Exceptional characters

An exceptional character of B is defined to be the character of an irreducible K B-
module with a non-trivial D-action. A non-exceptional character of B is an irreducible
character which is not exceptional. Let 6, be the sum of the exceptional characters of
B. The simple B-modules are the simple OFE-modules. They lift uniquely to O-free
B-modules, with projective covers the indecomposable projective B-modules. If V is a
one-dimensional O-free O E-module, then its projective cover as a B-module is Indg V,
whose character is the character of V plus §,. Recall also that the indecomposable
kB-modules are uniserial.

The set {8}, exceptional 1S @ basis of R(B) (we denote by Z the image of z €

R(K B) under the canonical morphism R(KB) — R(B)).

Assume B has at least two exceptional characters. An irreducible character i of
A is called exceptional if there exists two exceptional characters 8,8 of B such that
(¢, ¥(8) — ¥(8)) # 0. Note that § — ' € RP(B), hence ||¥(8) — ¥(#)|| = 2. So,
the number of exceptional characters of A and B are the same. The rank of RP(B) is
this number and RP(A) and RP(B) have the same rank. It follows that R?(A) is not
generated by linear combinations of exceptional characters, hence A has at least one
non-exceptional character.

We denote by 1, the sum of the exceptional characters of A.

When B has a unique exceptional character 6, then we pick an irreducible charac-
ter ¥, = g, of A such that Uy # 0 and we call it exceptional (actually, any irreducible
character of A will do).

For the non-exceptional characters, we have

Lemma 10.3.1 Let ¢ be a non-exceptional irreducible character of A. Then, ©(¢)
s a multiple of 0.

Proof. Let 6,8’ be two exceptional characters of B. We have (O(¢),6 — 0y =
(¥, ¥(8 — 8')) = 0. We are now done since § = —§,. »
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10.3.2 Decomposition numbers

Lemma 10.3.2 Let V be a non-projective O-free A-module such that V @ k is
indecomposable. Let W be a non-projective indecomposable B-module such that
M* @4V ~W @ projective modules. Let ( be the character of W. Then,

(i) ¢ is multiplicity free
(it) { contains at most one non-exceptional character

(#%) if ¢ contains a non-exceptional character, then it doesn’t contain all exceptional
characters.

Proof. By Lemma 10.2.2, W®k is indecomposable and non projective. Since W ®k
is indecomposable, it is the quotient of an indecomposable projective kB-module.
Hence, W is the quotient of an indecomposable projective B-module. It follows that
the character { of W is multiplicity free and contains at most one non-exceptional
character. Since W ® k is not projective, we know in addition that if { contains a
non-exceptional character, then it doesn’t contain all exceptional characters. n

Lemma 10.3.3 Let x be a character of A and P an indecomposable projective A-
module such that x is contained in the character of P.

Then, there ezists an O-free A-module V' with character x and /pmjective cover P.
In particular, V @ k is indecomposable. -

Proof. Let L' be a K A-submodule of K ® P such that K ® P/L' has character x.
Let L=L'NP and V = P/L. Then, V has the required properties. m
As a consequence of Lemmas 10.3.1, 10.3.2 and 10.3.3, we obtain :

Corollary 10.3.4 Let ¢ be a non-exceptional character of A. Then, ©(¢) = %6,.

If x and x' are two characters, we say that x is contained in x' if ¥ — x is a
character.

Proposition 10.3.5 Let P be an indecomposable projective A-module. Then, its
character is the sum of two distinct non-exceptional characters or the sum of a non-
exceptional character and of all exceptional characters.

Proof. Let n be the character of P. Assume there are non-exceptional characters
¥ and ¢' such that ¢ + 9/ is strictly contained in 7. By Lemma 10.3.3, there is
an O-free A-module V with character 1 + ¢/, such that V ® k is indecomposable.
By Lemma 10.3.4, W) + ©(¢') is zero or +20,. By Lemma 10.3.2, the second
possibility can’t arise. Now, assume (1)) + O(y') = 0. Let W be a B-module such
that M* @4V ~ W & projective modules, with W ® & indecomposable. Then, the
character of W is 0 in R(B). By Lemma 10.3.2, this is impossible.

We assume now that 7 contains at most one non-exceptional character. Let 6,8’
be two distinct exceptional characters of B. We have

(n,¥(6) —T(8)) = (0(n),0 —¢) =0.
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Let ¢ and 9 be the two distinct exceptional characters of A such that ¥ () - ¥(§') =
+1p £ ¢'. Then, (n,¢) = (n,¢'), so ¥ and 9’ arise with the same multiplicity in
n. It follows that there is a positive integer o such that ¥ = n — ay, is zero or a
non-exceptional character.

Assume x = 0. Then the block A has a projective indecomposable module with
character 7' different from 7 such that {n,7') # 0. The character %' is a non-zero
multiple of 4, plus a non-exceptional character 1. But this implies that ¢ = 0, which
is impossible ! Hence, x is a non-exceptional character.

Now, ©(n) = 0 = £, + a©(y,) by Lemma 10.3.4. This implies & = 1 and
O(¢,) = 10, and we are done. =

10.3.3 The Brauer tree and its walk

Lemma 10.3.6 Let L be a simple B-module. Then, the module M ®g L has a unique
simple quotient V' and the correspondence L — V induces a bijection between the sets
of isomorphism classes of simple B-modules and simple A-modules.

Proof. Let V be a simple A-module and W = M* ®,4 V. Then, W is indecompos-
able (Lemma 10.2.3), hence it has a unique simple submodule Ly. So, we have a map
h from the set of isomorphism classes of simple A-modules to the set of isomorphisms
classes of simple B-modules given by V — Ly.

Let now L be a simple B-module and U = M ®p L. Let V be a simple A-module
which is a quotient of the indecomposable module U. Then,

Tom(L, M* @4 V) ~ Hom(U, V) # 0.

It follows that the map h is surjective. Let now V; and V, be two simple A-modules
such that W) = M*®,4 V; and W, = M* ®4 V5 have the same simple submodule L.
Since an injective hull of L is uniserial, there is an injection W; — W; for some ¢, j with
{4,7} = {1, 2}. Such an injection between modules with no projective direct summand
is not an O-projective morphism, hence Hom(W;, W;) # 0, so Hom(V;, V;) # 0 and V;
and V; are isomorphic. This proves the injectivity of h.

Since h is bijective, given a simple B-module L, the module M ® 5 L has a unique
simple quotient. [

The set {Q%k}o<i<e—1 is a complete set of simple k B-modules (up to isomorphism).
By Lemma 10.2.3, the module M ®5 Q%% is indecomposable. Hence, M ®p Q%0 is
indecomposable as well. On the other hand, M ® g — commutes with Heller translation
up to projective modules, i.e., M @5 Q%0 ~ Q%S5 @ projective modules, where S =
M @p O. It follows that M ®p Q%O ~ Q%S.

Proposition 10.3.7 The character of 2S is a non-exceptional character or the sum
of the exceptional characters.

Proof. Let x be the character of Q'S.
When ¢ is even, 'S has a unique simple quotient, hence Q'S is a quotient of a

projective indecomposable A-module P;. In particular, y is contained in the character
of P,.
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Assume now ¢ is odd. Then, we have an exact sequence
05 QS —= P -5 Q'S >0 (10.1)

Again, we see that x is contained in the character of a projective indecomposable
module.

We have y = +¥(6,) since the character of 'O is non-exceptional or equal to ;.
Hence, ¥ = +, and we get the conclusion from Proposition 10.3.5. =

Let us now define the Brauer tree T of A. The set of vertices is
{v} 4 non exceptional Y {¢z}. The vertices 1 and ¢’ are incident if ¥ +4)' is the char-
acter of an indecomposable projective module. This defines a graph whose number
of edges is the number of isomorphism classes of simple A-modules. By Proposition
10.3.5, this is a tree. The vertex corresponding to 7, is called exceptional.

Let v; be the vertex corresponding to the character of £2'S. Then, there is an edge
I; connecting v; and v, due to the exact sequence (10.1). The set {l3} is the set of
all edges of 7.

Note that Q%0 ~ O, where e is the order of |E|. It follows that vse,; = v; and
loeys = L.

For 0 < i < e—1, let v} € {ve;,ve41} be the further vertex of ly; from the
exceptional vertex. Let I be the set of non-negative integers i < e — 1 such that
Ui = Ugit1-

Note that {v;} is the set of non-exceptional vertices of 7.

10.3.4 Construction of the complex
By Lemma 10.2.12, a projective cover of the (A ® B°)-module M is

@ PQ2i5®P52,'O.

0<i<e—1
Let
N = @D Poris ® Puig
il
and let

C=0-N-5M=0
where M is in degree 0 and ¢ is the restriction to N of a surjection Py, c,_; Pa2is ®
Plap = M. o
For 0 <i,57 <e—1, we have
O ifi=y,

* 2y A,
FPorio ®5 270 = { 0 otherwise.

Hence, we have an isomorphism in D*(A)

05 Q%S 5050 ifiel,

%0 A .
C®p0 (’)—{0_)0_>Q215'_>0 otherwise

where Q%S is in degree 0 and Q%15 in degree —1.
In particular, the (Lefschetz) character of C ®p Q%O is ;v wheree; = —1ifie€ [
and €; = 1 otherwise.



The derived category of blocks with cyclic defect groups 215

Lemma 10.3.8 We have Homps(4)(C ®p Q%k, C ®p Q¥k[~1]) = 0 for all i, ;.

Proof. Let us recall first that Homp(Q"k, k) = O unless n = 0 (mod 2¢). Put
now T = Hompe(4)(C ®p Q*k, C ®p Q¥ k[-1]).

Since Hom(Q%S ® k, Q¥+ S @ k) ~ Hom(Q%k, Q¥+1k) = 0, we deduce that T =0
unless < ¢ I and j € I, in which case T ~ Hom(Q*S ® k,Q%*1S ® k). Then, we
have to prove that there are no k-projective morphisms from Q%S @ k to Q¥ +1S @ k.
As k-projective morphisms Q%S ® k — Q%*1S ® k lift to O-projective morphisms
Q%S — Q%15 we are done, since Hom(Q%S, Q%+1S) = 0 (the character of Q%S is
v; and the character of Q%15 is v}, hence, these are distinct since i # j). n

Corollary 10.3.9 The complex C* ® 4 C is homotopy equivalent to its 0-homology.
Proof. Let L, L’ be two simple B-modules. We have
Hompb(3®3a)(C* ®a C, L’ ® L*[—l]) ~ HOme(A)(C ®Rp L, C QB L’[—-l]) =0

by Lemma 10.3.8. Hence, C* ® 4 C' has no homology in degree 1. Since the degree 1
component of C* ®4 C is projective, C* ® 4 C is homotopy equivalent to a complex
with no component in degree 1. Since C* ®4 C is self-dual, it is homotopy equivalent
to its 0-homology. n
By Lemma 10.2.5, we have Hy(C* ®4 C) ~ B & @, where () is a projective
(B ® B°)-module.
Now,

Homops (x pe(x pye) (K ® (C* ®4 C), K ® (%0 @ (0¥ 0)"))
HOmpb(KA)(K ® (C ®p Q%O), K® (C ®p 92]0)) = Jin,
hence Hom(K ® @, K ® (%0 @ (Q¥0)*)) =0

for all 4,j. This implies @ = 0. So, we have proven that C* ®4 C is homotopy
equivalent to B (seen as a complex concentrated in degree 0). By Lemma 10.2.4, we
conclude that C' is a Rickard complex. This completes the proof of the first part of
Theorem 10.2.

Note that, if F = 1, then a projective cover of M is indecomposable : it follows

that C' has homology only in one degree and it is isomorphic to M or Q2M([1], from
which we derive the second part of Theorem 10.2.

10.4 Local study

Let G be a finite group, e a block of G with a non-normal cyclic defect group D.
Let @ be the subgroup of D containing R = O,(G) as a subgroup of index p. Let
H = Ng(Q) and f the block of H corresponding to e.
Theorem 10.1 will follow from the following more precise result :

Theorem 10.3 Let M be an indecomposable direct summand of the (OGe®(OH f)°)-
module eOG f with vertex AD. Then, there is a direct summand N of the (OGe ®
(OH f)°)-module OGe ®op fOH such that the comples C = 0 > N = M —
0 induces a splendid Rickard equivalence between OGe and OHf. Here, m is the
restriction of the multiplication map OGe ®or fOH — eOG.

If R# 1, then C has homology only in one degree.
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Note that the (OGe ® (OH f)°)-module eOG f has, up to isomorphism, a unique
indecomposable direct summand with vertex AD (this can easily be deduced from
the forthcoming proof of the theorem).

Let us check that a complex C as defined in the theorem is splendid. Note that
eOGf is a direct summand of Ind§$3" O, hence is isomorphic to a direct sum of
modules with trivial source and vertex contained contained in AD. Since OGe ®or
fOH is isomorphic to a direct summand of Indg}%H ‘O, it follows that N is isomorphic
to a direct sum of modules with trivial source and vertex contained in AR. Hence, C

is splendid.

Let us prove by induction on the order of G that Theorem 10.1 follows from
Theorem 10.3.

By induction, we know that Theorem 10.1 holds for OH f : there is a splendid
Rickard equivalence between OH f and ONg(D)e' given by a complex having ho-
mology only in one degree. Now, Theorem 10.3 gives a splendid Rickard equivalence
between OGe and OH f. Hence, composing the two equivalences, we get a splendid
Rickard equivalence between OGe and ONg(D)e/, by Lemma 10.2.6. Furthermore,
when O,(G) # 1, the Rickard complex has homology only in one degree. Hence,
Theorem 10.1 holds for G and, by induction, the proof of Theorem 10.1 is complete.

We assume now that Theorem 10.3 holds for all finite groups of order strictly less
than the order of G. The rest of this section is devoted to proving that the theorem
holds then for G.

10.4.1 O,(G) =1

Let us first consider the case where R = 1, i.e., 2 has order p.
Following Alperin, we have :

Lemma 10.4.1 The module eOGf induces a stable equivalence between OGe and
OHf.

Proof. We have

GxG° o o .
Res3 53 OG =~ Res§sd. nd$5% 0 ~ D Id ooy O
(91,92)EHx H°\GXG° |AG
Now, (@ x Q°) N (AG)¥192) £ 1 if and only if g1g,* € H. Since @ x Q° is
the maximal elementary abelian subgroup of D x D° and is normal in H x H®, it

follows that the OHf ® (OH f)°-module f (Ind{gg;&wz)n(yxyo)o) f is projective

when g9, ¢ H.
Hence,

OHf Qoy OG ®py fOH ~ OH f & projective modules.

Since f is the Brauer correspondent of e, OHf is a direct summand of
Res§ 5. OGe. So,

fOGe®pceOGf ~ fOGef ~ OH fRoyOGeQoy fOH ~ OH f& projective modules.
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The result is now a consequence of Lemma 10.2.1. =

Let M be an indecomposable non-projective direct summand of eOG f : by Lemma
10.2.3, it still induces a stable equivalence between OGe and OHf.

By induction, Theorem 10.1 holds for OH f. Hence, there is an (OHf ® (OD x
1E)°)-module M’ inducing a Morita equivalence between OH f and OD % E. So, the
indecomposable module My = M ®oxy M’ induces a stable equivalence between OGe
and OD x E. By Theorem 10.2, there exists a direct summand Ny of a projective
cover Py of My, such that the complex Cy = 0 —» Ny — My — 0 induces a Rickard
equivalence between OGe and OD x E. It follows that

Ci = Co ®opar M"™ =0 = Ny ®@opws M = M =0

induces a Rickard equivalence between @Ge and OH f. The module Ny ®ppye M"*
is a direct summand of Py; = Py ®opwr M'", a projective cover of M, and the map
Ny Qopse M'™ — M is the restriction of a surjective morphism Py — M. Now, the
multiplication map

m:0Ge® fOH — eOGf

is surjective and eOGf = M & projective modules, hence there is a direct summand
N of OGe ® fOH such that the complex C = 0 — N = M — 0 is isomorphic to
C.

So, the theorem holds when R = 1.

10.4.2 0,(G) #1

Let us now consider the case where R is non-trivial. Let G = G/R and & be the image
of e through the canonical morphism OG — OG. Similarly, let H = H/R and f be
the image of f through the canonical morphism OH — OH. Note that the canonical
map E = Ng(D,ep)/Cq(D) — Aut(D/R) is injective, since it factors through the
group of p-automorphisms of D. Hence, OH f and OG¢ are blocks with defect D/R.

Let (R,er) be an e-subpair. By Lemma 10.2.14, the (OGe ® ONg (R, er)er)-
module eOGepg induces a Morita equivalence. Hence, we can assume that G stabilizes
eR, that is, that e = eg.

Let C = C¢(R)/R. Since G/C ~ G/Cy(R) is a cyclic p'-group, a simple OCe-
module extends in exactly [G : Cg(R)] non-isomorphic ways to G and every simple
OGeé-module is obtained in this way (Lemma 10.2.13). By induction, OGE is derived
equivalent to (D/R) xF, hence has |E| simple modules. It follows that [G : Cg(R)] =
|E|, hence the canonical map Ng(D, ep)/Cq(D) = G/Cg(R) is an isomorphism. Note
that Op(Cg(R)) = R. Similarly, the canonical map Ng(D,ep)/Cu(D) — H/Cyx(R)
is an isomorphism and 0,(Cy(R)) = R.

1#0,(0) < 2(G)

By assumption, Theorem 10.3 holds for @Gé and OH f. The observation above shows
that these two blocks have a unique simple module. Let M’ be an indecomposable
direct summand of the O(G x H°)/AR-module eOGf with vertex AD/AR. Since
g0G is the direct sum of an indecomposable non-projective module and of a projec-
tive module, it follows from Lemma 10.2.9 that the O(G x H°)-module M" = M'®0rO
is an indecomposable direct summand of eOGf. Let f' : N' — M’ be a projective



218 Raphaél Rouquier

cover of M'. Then, N" = N' ®or O is a projective cover of M" (Lemma 10.2.9). Let
M (resp. N) be the restriction of M’ (resp. N') to G x H®.

If M" induces a Morita equivalence between OGE and OHf, then let C be the
complex with only one non-zero term, M, in degree 0. If the kernel of a surjective
map f”: N” — M" induces a Morita equivalence between OG& and OH f, then let
C' be the complex with N in degree —1, M in degree 0 and differential f’.

Then, it follows from Lemma 10.2.11 that C is a Rickard complex. Note that C
has the form required.

0,(G) £ Z(G)

Note that OCg(R)f is the Brauer correspondent of the block OCs(R)e.

Let M be an indecomposable direct summand of the O(Cg(R) x Cu(R)°)/AR-
module eOCg(R) f with vertex A(D/R). Let L = Ngxge(AR). The restriction to
L of the action of G x H° on OG leaves eOCg(R)f invariant. This gives a natural
extension of the action of (Cq(R) x Cy(R))/AR on eOCg(R)f to L/AR. Since
(eOCq(R)f)/M is a sum of modules with vertices strictly contained in A(D/R),
the module M is L-stable. The isomorphisms G/Cg(R) ~ E and H/Cy(R) ~ FE
induce an isomorphism L/(Cg(R) x Cy(R)°) = E. So, by Lemma 10.2.13, there is
an indecomposable summand M of Ind[‘/ [:1711 O ~ OCg(R) lifting M.

Let IV be a projective cover of M. This is an L-stable indecomposable O(Cg(R) x
Cr(R)°)/AR-module, hence it lifts to a projective L/ AR-module N (Lemma 10.2.13).
Since Ind(CG(R)XCH(R)O)/ARN is a projective cover of Ind(Lc/GA(Tz)xcH_(R)a)/ARM and M is
isomorphic to a direct summand of the latter, one may choose N to be a projective
cover of M. We have a natural map

Indf/RRes{{/RO - 0
giving rise to a surjective map

f:Ind{"*0 - Wdg/5T 0.
So, we may choose N to be a direct summand of Indf/ARO with f(N) =

Let N' = Ind§*#°Res;/**N and M’ = Ind$*#°Res?/*® . Then, N" is a direct
summand of OGe ®or fOH, M' is a direct summand of eOGf and m/(N') = M,
where ' is tl}{e rgultlphcamon map OGe Qpr fOH — eOGf.

If Re C(Z;G(E% LXCH”(%?,), VAEM induces a Morita equivalence between OCg(R)e and
OCy(R)f, then we define C to be M'. Otherwise, let C be the complex with N’ in
degree —1, M’ in degree 0 and differential m’.

Then, Lemma 10.2.8 says that C is a splendid Rickard complex between e(G and
fOH. Note that C has homology only in one degree. Hence, the proof of Theorem
10.3 is complete.

10.5 An example : PSLy(p)

We make the constructions of §10.3 explicit for the group PSLy(p).
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Let Vi be the natural 2-dimensional representation of SLy(p). Then, the simple
kSLy(p) modules are the symmetric powers S*(V;), where 0 < i < p—1 [2, pp 14-16).
The center of SLy(p) acts trivially on S*(V,) when i is even and we denote by V; the
module S%(V}) induced from SL,(p) to PSLy(p). Then, the simple modules in the
principal block e of G = PSLs(p) are the V;, 0 < 4 < 1’—;—3 There is only one other
block in G, it has defect 0 and its simple module is the Steinberg module VL;_L.

For i < %1, the dimension of V; is 2i +1 < p. Let B be the normalizer of a Sylow
p-subgroup of G. By Proposition 10.4.1, the (OGe ® (OB)°)-module OGe induces a
stable equivalence between OGe and OB. For V a simple OGe-module, the module
OGe ® V has a dimension strictly smaller than p, hence it cannot have a projective
direct summand. By Proposition 10.2.3, this implies the indecomposabiblity of OGe
as a (OGe ® (OB)°)-module.

Since indecomposable kB-modules are uniserial, the restriction of V; to B has a
unique simple quotient W;, for 0 < ¢ < ’%g (this is actually a special case of the
general property of simple modules for groups with a (B, N)-pair to have a unique
simple quotient when restricted to B). Furthermore, W; ~ W}.

Let U be the Sylow p-subgroup of B and T a complement to I/ in B. The group T
is cyclie, with order % and there are two conjugacy classes of non-trivial p-elements
in B (hence also in G). Let x,, zo be representatives for these classes. Let T’ be a
“Coxeter torus” of G, i.e., the centralizer of an element of order %1 This is a cyclic
group of order %1

Let 7 be the irreducible character of T which gives the simple module W;. Let
8 be a non-trivial irreducible character of T’ which occurs in the character of the
restriction of V; to T' (the restriction is then 1+ 6 +67!). Let ¢ = +1 withe = p
{mod 4).

The character table of the principal block of G is :

T T teT teT
1 1 1 1 1
(p—1); ~1 -1 0 —(F ()Y +577(tY)
P+1), 1 1 7 (t) + 77 (2) 0

2=t . . _
pte 1 : 10 . na(t) fe=1 0 1 ife=1
( 2 )i 2(5+ 'Ly/fp) 2(5 1\/51)) { 0 ife =—1 _5’%’—“/) ife = =1

where j € {1,..., 2552} 1 e {1,..., 255 — 1} and i € {-1,1}.
The character table of B is :

I Tg teT
1, 1 1 n'(t)
(52), | 3(-1+iv=p) | 3(-1~iv=p)| 0

where [ € {0,222 — 1} and i € {~1,1}.
The restrictions of the irreducible characters of the principal block of G to B are :

® Res§ 1=1,
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o Resg (p— 1), = (

-1
z

e Resf (p+1), = (B51), + (B2), + L+ PSR

2

pi ife = —
° Resg (p_+6)1 :{ gpzl)l le - .17

The Brauer tree of OGe is

P Pos P,

2

O
1 p-1), ((@+1),

The arrows describe Green’s walk on the tree (i.e., the sequence of vertices
Vo, Uy - - -)-
A projective cover of the (OGe ® (OB)°)-module OGe is

P Pe;

0SALESE

where Py is a projective cover of Vy and @) a projective cover of Wy. The module V
constructed in §10.3.4 is

N= P Pog

B
Restricting a surjective map
P e —0Ge

<A< B

to IV gives a complex
C=0-N- 0Ge

which induces a splendid Rickard equivalence between OB and OGe.
Let I be the isometry R(KGe) — R(K B) induced by this equivalence of derived
categories. We have

o I(1)=1,
e I((p+1)) =1,
« H(p-1,) =l

 H((3%)) = e (57).



