
Chapter 10 

The derived category of blocks 
with cyclic defect groups 

by Raphae l  Rouquier  I 

10.1 Introduct ion  

Let (9 be a complete discrete valuation ring with algebraically closed residue field k 
of characteristic p > 0 and field of fractions K of characteristic 0, "big enough" for 
the groups considered. 

Let G be a finite group, OGe a block of G with a cyclic defect group D. Let 
ONG(D)e' the block of Na(D) corresponding to OGe. 

In this work, we give a "self-contained" account of the theory of blocks with cyclic 
defect groups with aim the proof that  the derived category of a block with cyclic 
defect is (in a strong sense) locally determined - -  a special case of Broufi's conjecture 
[26]: 

T h e o r e m  10.1 The blocks (gGe and ONc(D)d are splendidly Rickard equivalent. If 
Op(G) ~ 1, then these blocks are in addition Morita equivalent. 

Some remarks. 

�9 That  the blocks should be not merely Rickard equivalent, but  also splendidly 
Rickard equivalent, is Rickard's refinement of Brou~'s conjecture. 

�9 When Op(G) r 1, there need not be a splendid Morita equivalence ! 

�9 The block ONa(D)e ~ has a very simple structure : it is Mori ta  equivalent to 
OD :~E, where E = Na(D, eD)/Ca(D) and (D, eD) is an e-subpair (Proposit ion 
10.2.15). 

Let us outline the organization of the proof of the theorem. 

1The author thanks for its hospitality the Isaac Newton Institute for Mathematical Sciences, 
Cambridge, where this paper has been written 
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In w we prove that a stable equivalence between OGe and OD ~ E (the very 
local case) can always be lifted in a nice way to a Rickard equivalence. To elucidate 
part of the structure of OGe, we follow very closely Thompson's  original approach 
[163], translated to the setting of an abstract stable equivalence of Morita type using 
Brou4's philosophy [28]. Ideas of Green [58], Alperin [2] and Linckelmann [110] enable 
us to understand well enough OGe and the stable equivalence to be left with a problem 
which is solved with (a simplification of) the ideas of [153]. 

Theorem 10.1 is then proved in w by induction on the order of G : it is 
enough to give a splendid Rickard equivalence between OGe and the corresponding 
block O H f  for H = NG(R), where Op(G) < R <_ D and JR:  Op(G)] = p, since by 
induction O H f  is splendidly Rickard equivalent to ONc(D)e'. 

First, we consider the case where Or(G) = 1. By induction, we know that O H f  is 
Morita equivalent to OD ~E. Now, Green's correspondence gives a stable equivalence 
between OGe and OH f,  hence between OGe and OD :~ E, which can be lifted to 
a Rickard equivalence by the results of w We have then constructed a splendid 
Rickard equivalence between OGe and OHf.  

Assume now Op(G) ~ 1 but Op(G) is central in G. Then, the blocks have a 
unique simple module and we have already a Rickard equivalence for the blocks of 
the groups modulo Or(G). This equivalence turns out to be nice enough to be lifted 
to an equivalence between OGe and OHf.  

Finally when Ov(G ) ~ 1 but Op(G) is not central in G, we extend the known 
Rickard equivalence between the blocks of Ca(Or(G)) and CH(Op(G)), following Mar- 
cus [118]. 

In w we give various general results (i.e., not specific to blocks with cyclic 
defect) pertaining to w and w 

In the final part, we illustrate the constructions with an explicit study of PSL2(p). 

As a final remark, let us say that the structure of blocks with cyclic defect has 
been determined originally by Dade [40, 45]. The existence of a Rickard equivalence is 
due to Rickard [136] and Linckelmann [107] (the Morita equivalence when Op(G) ~ 1 
goes back to Linckelmann and Puig [112, 106]). 

My thanks go to M. Brou4 for many a patient answer to my questions and to 
G. Robinson for useful discussions. 

10.2 Misce l lany  : s tab le  equiva lences ,  Rickard 
equiva lences  and  m o r e  

1 0 . 2 . 1  N o t a t i o n s  

Let G be a finite group, e a block idempotent of OG (i.e., a primitive idempotent of 
the center of OG) and A = OGe the corresponding block of OG. By an A-module, we 
mean a finitely generated left A-module. The sign | means |  For V an O-module, 
we put V* = Horn(V, O). We write KA and kA for the algebras K | A and k | A. 
We denote by A ~ the O-algebra opposite to A. 

Let H be another finite group, f a block idempotent of OH and B -- OHf.  
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1 0 . 2 . 2  S t a b l e  c a t e g o r y ,  s t a b l e  e q u i v a l e n c e s  a n d  i n v a r i a n t s  

We follow here [25, 28] for the main concepts associated with the stable category. We 
denote by A -  rood the stable category of A, whose objects are the A-modules. Let us 
recall that a relatively O-projective A-module is an A-module of the form A Go U for 
some (9-module U. Given two A-modules V and W, the set of morphisms Horn(V, W) 
in A - mod is Horn(V, W) modulo the submodule of O-projective morphisms, i.e., 
morphisms which factor through a relatively O-projective module. 

--1 Let ~A| o be the kernel of the multiplication map A | A ~ -~ A. Let ~A| o 

be the cokernel of the map ~/A : A -~ A | A ~ dual to the multiplication. These 
are (A | A~ whose restrictions to A and A ~ are projective. The functors 

- 1  
~A| ~ |  -- and ~A| o |  -- induce inverse self-equivalences of A - mod. Given an 
A-module V, we denote by ~V an A-module without projective direct summand such 
that ~A| o |  V ~ ~ V  in A - mod - -  such a module is unique up to isomorphism. 

Let f : V ~ iV be an injection between A-modules. There exists a morphism 
: W --+ (A | A ~ | V such that we have a commutative diagram : 

f 
V ~ W 

(A | A ~ | V 

- -  1 ~ T .  Let 6 be the induced map W / V  -+ ~A| o | This gives rise to a "standard 
distinguished triangle" : 

V ~ W--+ W/V s -~ fiA| o |  ~" 

The category A - rood becomes a triangulated category, with translation functor 
~AeAO | -- and distinguished triangles the triangles isomorphic to the standard 
distinguished triangles. 

We denote by RP(A) the kernel of the decomposition map R(KA)  + R(kA).  We 
denote by R(A) the quotient of R(KA)  by the submodule generated by the characters 
of the projective A-modules. Note that the restriction of the usual bilinear form on 
R(KA)  x R(KA)  to RP(KA) x R(KA)  factors through RP(KA) x/~(A) and gives a 
perfect pairing between RP(KA) and x/~(A). 

Let M be an (A | B~ projective as an A-module and as a B~ 
The module M induces a stable equivalence of Morita type between A and B if 

M | M* --~ A @ projective modules and 

M* | M ~- B ~ projective modules. 

Since we are dealing with blocks, Rickard has noted that it is enough to check one 
of the properties : 

L e m m a  10.2.1 Let M be an (A | B~ projective as an A-module and as a 
B~ I f  A is not a matrix algebra over 0 and 

M | M* ~ A @ projective modules, 

then M induces a stable equivalence between A and B. 
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Proof. Since A is not a matrix algebra over O, it follows that  A is not a projective 
(A | A~ hence M is not projective. 

The functors M | - and M* | - between B - mod and A - rood are left 
and right adjoint. Consider the associated natural  maps 77 : B --+ M* | M and 

: M* | M --> B. By [116, w Theorem 1], the map 

I | TI : M QB B --+ M | M* | M 

is a split injection. As M | M* | M is isomorphic to M in (A | B ~ - mod, the 
map 1 | V is an isomorphism in (A | B ~ - rood. Similarly, the map 

l | c : M QB M* QA M --+ M QB B 

is an isomorphism in (A | B ~ - rood. It follows that the composite (1 | c)(1 | 77) = 
1 | (c~) is an automorphism of M in (A | B ~ - mod. Since B is a block, the algebra 
EndB| (B) is local. If the composite c'I7 is not invertible, it is in the radical of this 
algebra, hence gives an element in the radical of EndBeBo(B). This can ' t  happen, 
since after applying M | - we get a non-zero isomorphism ! Hence, c'r] is invertible 
and as a consequence, M* | M _~ B | P for some module P. 

Now, 
M | (M* | M) --~ M | M |  P 

and (M | M*) | M ~-- M | projective modules, 

hence M |  is projective. As P is isomorphic to a direct summand of M* |174  
we finally deduce that P is projective. �9 

Assume we have a module M inducing a stable equivalence between A and B. 
Then, the functors M | -- and M* | -- induce inverse equivalences of trian- 

gulated categories between the stable categories B - rood and A - mod. The maps 
R ( K A )  -4 R ( K B )  and R ( K B )  --+ R ( K A )  induced by M | -- and M* | -- give 
rise to 

�9 inverse isometrics between RP(A) and RP(B) and 

�9 inverse isomorphisms between/~(A) and/~(B) .  

L e m m a  10.2.2 Let V be an indecomposable non relatively O-projective B-module. 
Let W be an A-module without projective direct surnmands such that 

M | V ~- W @ relatively O-projective modules. 

Then, W is indecomposable. 
I f  V is free over O and V | k is indecomposable, then, W | k is indecomposabIe. 

Proof. Assume W = W1 @ 1412, with W1, W2 r 0. Then, 

V | relatively O-projective modules -~ M* | W~ @ M* | W2. 

As M* | W1 and M* |  W~ contain both a non relatively O-projective direct sum- 
mand, we get a contradiction. 

Assume now V | k is indecomposable and W | k has a non-zero projective direct 
summand.  So, there is a projective A-module P and a surjective map W >> P | k. 
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As W is free over (.9, we have Extl(W, P)  = 0, hence the surjection lifts to a map 
W --+ P,  which is forced to be surjective by Nakayama's lemma, hence which splits, 
contradicting the property of W to have no projective direct summand. ,, 

The following very useful result comes from [110] : 

L e m m a  10.2.3 The (A | B ~ M is the direct sum of a non-projective inde- 
composable module and of a projective module. 

If M is indecomposable, then for any simple B-module V, the A-module M | V 
is indecomposable. 

Proof. Let M = M1 @ M2. Since M* | M ~-- B @ projective modules, we have 

M* | MI O M* | M2 ~-- B | projective modules. 

As B is indecomposable (as a (B | BO)-module), there exists i C {1, 2} such that 
M* | ]i'll is projective, s o  M |  B M* @A A~li is projective. Now, (M | M*) | ~'f i  "~ 

M~i | projective modules, hence Mi is projective. 
Let us assume now that  M is indecomposable. Denote by soe(kA) the largest 

semi-simple kA-submodule of kA. Recall that  a kA-module V has no projective 
direct summand if and only if soc(kA)V = 0. We have soc(kA | kB ~ = soc(kA) | 
soc(kB~ Since M has no projective direct summand, soc(kA | kB~ = 0, hence 
soc(kA)(M | soc(kB)) = 0, which means that M | soc(kB) has no projective 
direct summand. But, if V is a simple B-module, it is a direct summand of soc(kB), 
so M | V has no projective direct summand : as M induces a stable equivalence, 
M | V is the direct sum of an indecomposable non-projective module and of a 
projective module and the lemma follows. ,, 

1 0 . 2 . 3  D e r i v e d  c a t e g o r y  a n d  R i c k a r d  e q u i v a l e n c e s  

The definition of a splendid Riekard equivalence follows [144]. We denote by :Db(A) 
the bounded derived category of A and by Kb(A) the homotopy category of bounded 
complex of A-modules. Viewing a module as a complex concentrated in degree 0, we 
have a fully faithful functor from the category of A-modules to :Db(A) and to Kb(A). 

Let C be a bounded complex of (A | B~ all of which are projective as 
A-modules and as B~ 

The complex C induces a Riekard equivalence between A and B (or is a Rickard 
complex) if 

C | C* ~- A G complex homotopy equivalent to 0 

C* | C --~ B G complex homotopy equivalent to 0. 

Assume we have such a complex C. Then, the functors C | - and C* | -- 
induce inverse equivalences of triangulated categories between the categories Db(B) 
and :Db(A) and between the categories Kb(A) and Kb(B). 

They give rise to inverse "perfect" isometries between R(KA) and R(KB), to 
inverse isomorphisms between the centers of A and B,... [26] and sections 6.3.1, 6.3.3 
as well as 6.3.2). 

Suppose the complex C has homology only in one degree, isomorphic to M. If 
C is a Rickard complex, then M induces a Morita equivalence between A and B. 
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The converse doesn't hold : if M induces a Morita equivalence between A and B, 
we deduce that  C |  C* ~- A @ R, where R has zero homology, but might be non 
homotopy equivalent to 0. Nevertheless, if C has only one non-zero term, M, then C 
induces a Rickard equivalence if and only if M induces a Morita equivalence. 

As for stable equivalences, Rickard [144] has proved the following : 

L e m m a  10.2.4 Let C be a bounded complex of (A | B~ all of which are 
projective as A-modules and as B~ If  

C |  C* is homotopy equivalent to A, 

then C induces a Rickard equivalence between A and B. 

(The proof is similar to the proof of Lemma 10.2.1) 

In :Db(A | B~ the complex C is isomorphic to a bounded complex of modules 
which are all projective except the degree n term N, for some integer n (see lemma 
6.3.14). The module M = D~N induces a stable equivalence between A and B [139, 
Corollary 5.5]. 

L e m m a  10.2.5 Let C be a bounded complex of (A | B ~ all of whose terms 
are projective but the degree 0 term M, which is projective as an A-module and as a 
B~ Assume M induces a stable equivalence between A and B. Then, A is a 
direct summand of C | C* and B is a direct summand of C* | C. 

Proof. The functors C| - and C* | -- between Kb(B) and Kb(A) are left and 
right adjoint and induce natural maps 77 : B -+ C* | C and E : C* | C -+ B. Let 
rf : B -+ M* | M and c ~ : M* @d M --+ B be the natural maps induced by the 
functors M| -- and M*QA --. The composite maps Eq and c ~  ~ have the same image 
in Ends| (B). As M induces a stable equivalence between A and B, the map c'q' is 
invertible, hence cq is invertible. It follows that B is isomorphic to a direct summand 
of C* | C. The second property is obtained by a similar proof. ,, 

Assume A and B have a common defect group D. When the modules occurring 
in C are direct summands of permutation modules induced from A D  -- {(x, x -1) Ix E 
D} C G x H ~ the complex C is called splendid and the equivalence of derived 
categories it induces is called a splendid Rickard equivalence. Such an equivalence gives 
rise to derived equivalences for corresponding blocks of centralizers of p-subgroups of 
D in G and H ([144], [69] ; cf also [130],[111]). 

Following a suggestion of M. Harris, we have 

L e m m a  10.2.6 Assume H' C H are two subgroups of G. Let f '  be a block idempotent 
of H ~. Assume e, f and f '  have defect D. Let C be a splendid Rickard complex for 
OGe | (OH f )  ~ and C' a splendid Rickard complex for O H f  | (OH' f ' )  ~ Then, 
C | C' is a splendid Riekard complex for OGe | ((gH'f') ~ 

Proof. Composing Rickard equivalences gives a Rickard equivalence. The point is 
to check that  the modules in C | have the required properties. 
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indaXH~ 0 Let M = Aq ~- OG | O H  be the tr ivial  module induced from a diagonal 
v .HxH '~ subgroup AQ to G x H ~ where Q _< D. Let N = maaR (9, where R _< D. We 

have 

T ~GxH'~ HxH~ .HxH~ M ~OH N ~-- OG | O H  | OH' "~ lnf lQxRO l~eSQxRO In(:IAH LA 

By Mackey's formula, we obtain 

M ~ O H  g '~ ~ T . G x H  '~ /.~ 
lnd(AH)(h l  ,h2)N(qxRo) ~'2 

(hi ,h2)6Q • R ~ \H  x H ~  

~) v .GxH I~ r.',, 
InG A( QhAR ) L] 

hcq\H/R 

It follows that  M| N is a direct sum of direct summands of permutat ions  modules 
induced from A D  to G x H '~ �9 

Homotopy equivalence is detected by a Sylow p-subgroup : 

L e m m a  10.2.7 Let G' be a subgroup of G of index prime top. Let g : X -+ Y be 
a morphism between two bounded complexes of (.gG-modules. Then, g is a homotopy 
equivalence if and only if ResG, g is a homotopy equivalence. 

Proof. Let Z be the cone of g. Then, g is a homotopy equivalence if and only 
Z is homotopy equivalent to 0. Assume Z is not homotopy equivalent to 0. Up to 
homotopy, we can assume Z . . . .  Z,-1 ~ ) Z, ~ 0, where a is not a split surjection. 
So, (~ gives a non-zero element in Ext~gG(Z~,Kera ). As [G : G'] is prime to p, the 
restriction map Ext~)a(Z,,  K e r a )  --+ Ext~oG,(Res~,Zr, ResG, Kera) is injective, hence 
the restriction to G' of a doesn' t  split, i.e., the restriction to G' of Z is not homotopy 
equivalent to 0 and the restriction to G' of g is not a homotopy equivalence. �9 

The following lemma due to A. Marcus [118] shows how to solve (certain) extension 
problems for Rickard complexes : 

L e m m a  10.2.8 Let G' and H' be normal subgroups of G and H with G/G' = H / H '  = 
E. Assume e and f are block idempotents of OG' and OH'. Let C' be a Rickard 
complex for cOG' and f O H ' .  Assume C' extends to a complex C of OL-modules, 
where L = {(g, h) 6 G • H~ '~ 6 A E } .  

I r E  has order prime to p or if C has only one non-zero term, then, C -- Ina~L•176 C 
is a Rickard complex for cOG and f(.gH. 

Proof. We have 

i~ GxH ~ .-'. r~ GxH~ " "GxH~ T rlGxH '~ ."a 
eSGxH, OtJ ---- rteSGxH,olnGL t~ ---~ ~n~G, xH,Ot~ 

by Mackey's formula. Similarly, 

i~ GxH ~ I'. T .G'xH ~ . ' ~ !  
eSG, xHOt~ "~-- InGG, xH, Ot~ . 

Consequently, 

GxG~ * C t C' ResG, xaoC ~OH C '~ ~OH' OH | C* ~- ~OH' C'* ~OG' OG 
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is homotopy equivalent to eOG' | OG "~ eOG. 
In particular, C @OH C* has homology only in degree 0, M, with rtes a , n  axa oxaolvl*. "" 

eOG. The natural map g : e O G  --+ C@oHC* induces a map go = Ho(g) : e O G  --+ M. 
As the restriction of M to OG ~ is isomorphic to eOG, the OG~ of M 
generated by go(e), the unit of M = Endgb(oHo)(C), must be isomorphic to eOG, 
hence go is an isomorphism. 

If the index of G' x G ~ in G x G ~ is prime to p, it follows that g is a homotopy 
equivalence, since its restriction to G' x G ~ is a homotopy equivalence (Lemma 10.2.7). 
Similarly, one proves that C* | C is homotopy equivalent to f O H  and the lemma 
follows. .. 

Let us finally consider normal p-subgroups. 
Let R be a normal p-subgroup of G. We put G = G/R.  For M an (gG-module, 

we put _~ = (gG |  M and for ~ : M -+ N a morphism of (gG-modules, we put 
~ = l |  ~. 

L e m m a  10.2.9 Let ~ : M --+ N be a morphism between (gG-modules. Then, ~ is 
surjective if and only if ~ is surjective. 

Let N be an (.gG-module whose restriction to O R  is projective. Then, 

�9 every projective direct summand of ~'V lifts to a projective direct summand of N, 

�9 if M is a projective cover of N,  then f/l is a projective cover of 19. 

Proof. Assume ~ is surjective. Then, N = p(M)  + rad((gR)N, hence N = ~(M) 
by Nakayama's lemma and ~ is surjective. 

Note that given a projective indecomposable OG-module N, the projective OG- 
module _N is indecomposable, and we obtain a bijection between the set of isomor- 
phism classes of projective indecomposable OG-modules and the set of isomorphism 
classes of projective indecomposable OG-modules. 

Let M be a projective OG-module and f : N ~ M a surjection. Let M0 be the 
kernel of the canonical surjective map M --+ _~. Then, M0 is a direct summand of 
IndaResRaM0 . In particular, 

ExtloG(N, Mo) <_ EXt~G(N, IndaRReSaRM0 ) ~-- ExGR(ResaN,  ResRaM0). 

Since ReSaR N is projective, this last Ext-group is zero, hence the morphism f lifts to 
a morphism ~2 : N --+ M. By the first part of the lemma, this morphism is surjective, 
hence split surjective, since M is projective. 

If ~ : M ~ N is a projective cover of N, then ~ is a surjective map. Assume 
there is a direct summand M'  of /~/such that the restriction of ~ to M'  is surjective. 
Using the second part of the lemma, we can lift M' to a direct summand M" of M, 
and the first part of the lemma shows that the restriction of ~ to M" is surjective. 
So, M = M" and M = M',  i.e., .~  is a projective cover of N. ,, 

Homotopy equivalence between OG-modules can sometimes be controlled by OG : 

L e m m a  10.2.10 Let n be an integer and ~ : X -+ Y be a morphism between two 
bounded complexes o/OG-modules  whose components are direct sums of indecompos- 
able modules with trivial source and vertices Q such that IQ A R I -- n. 

Then, ~ is a homotopy equivalence if and only if ~ is a homotopy equivalence. 
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Proof. Let P be a Sylow p-subgroup of G. Let Q be a subgroup of P. We have 

RespGIndgO "~ ( ~  IndPnQgO 
geP\V/Q 

and I(P n Qg) n R I = IQ n R I. Since IndPnQg(_9 is indeeomposable (it has a unique 

simple quotient), every direct summand of ResGpIndgO has a vertex Q' such that 
]Q' n R I = IQ n R]. Hence, the assumptions of the lemma hold if we restrict the 
modules from G to P and replace G by P. By Lemma 10.2.7, we can then assume 
that G = P. 

As in the proof of Lemma 10.2.7, we are reduced to the following problem. Let 
qo : M --+ N be a morphism between OG-modules whose components are direct sums 
of indecomposable modules with trivial source and vertices Q such that ]Q n R] = n. 
Assume ~ is a split surjection. Then, we have to show that 9~ is a split surjection. By 
Lemma 10.2.9, we know already that ~ is a surjection. 

We may of course assume that  N is indecomposable. But, this implies that N has 
a unique simple quotient, hence that .]9 has a unique simple quotient and is therefore 
indecomposable. If M = M1 G M2, then the restriction of 93 to 3711 or to fff2 is a split 
surjection : so, we can assume hi, hence M, are indecomposable as well. Then, 
is a split surjection if and only if it is an isomorphism, i.e., if and only if M and N 
have the same rank. Let Q and Q' be subgroups of G such that M -~ Indg(.9 and 

N ~- Ind~,O. We have rank]/7/ = [G : RQ] and rank~- = [G : RQ']. Since 9~ is an 
isomorphism, we have IRQI = IRQ'I. But, by assumption, IRA QI = I R n Q'I, hence 
IQI = IQ'I and ~ is an isomorphism. �9 

Under good circumstances, normal p-subgroups can be factored out, in order to 
cheek that  a complex induces a Rickard equivalence : 

L e m m a  10.2.11 Let R be a common normal p-subgroup of G and H and C a bounded 
complex of ( OGe| (OH f )  ~ each of which is a direct sum of indecomposable 
modules with trivial source and vertices Q such that Q n (1 • H ~ = Q N (G x 1) = 1 
and R x R ~ <_ (R x 1)Q = (1 x R~ Let ~ and f be the images of e and f through the 
canonical morphisms OG --+ (gG and O H  --+ O[-I and C = OG~ | C | O H  f .  

Then, C is a Rickard complex for OGe and O H  f if and only C is a Rickard 
complex for OG~ and O[-I f . 

Proof. Let Q be a p-subgroup of G • H ~ such that QN (1 x H ~ = QN (G x 1) = 1 
and R x R ~ _< (R x 1)Q = (1 • R~ By Mackey's formula, we have 

I:~ G •  ~ ~ G x H ~  eSRxRO tnoQ t.y "~ ~ T ~ R x R  ~ ,.,~ m~ n o)nQ~ L., 

g~RxR~176 

a n d Q ' =  ( R x R  ~  x H  ~ = Q ' N ( G x l )  = 1  a n d R x R  ~ = 
(R x 1)Q' = (1 x R~ '. Let N = Ind~,Xn~ We have 

0 | N | 0 ~-- HOmOR| (N, O) ~-- O. 

We have 
n• ~ indRXlo Resnx 1 N "-- 
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since R x R ~ = (R • 1)Q' and (R • 1) A Q' = 1. It follows that O |  N "~ O. So, 
the canonical surjective map 

0 @OR N -+ 0 @OR N @OR 0 

is an isomorphism. Similarly, the canonical surjective map 

N @OR 0 --~ 0 @OR N @OR 0 

is an isomorphism. So, if M is a direct summand of T "axH~ lnaQ tv, the canonical maps 
give isomorphisms of O(G x H~ 

M | 0 "~ 0 @OR M ~- 0 @OR M @on O. 

Consequently, we have 

0 r  @Oe C @OH C* @(De 0 r  ~- 0 r  @(De C @(DH O~I @(DH C* @OG 0 r  ~' r @0[t r 

and 
O~I @OH C* @(DG C @(DH O H  ~- C* | C. 

The components of C @(DH C* are direct sums of direct summands of modules 

GxH o o 
I n d ~  xH~ @OH (IndQ2 O) -- OG | O H  @(Dch OG 

where QiM(Gx i) =QiM(I xH ~ = 1 andRx R ~ (Rx l)Qi=(l xR~ for 
i e (1, 2}. 

Let ~ : G x H ~ -9 G and ~ : G x H ~ --4 H ~ be the canonical projections. Then, 
we have isomorphisms Qi -9 ~(Qi) and Qi --4 r and R is contained in T(Qi) and 

We have 

Re -H~ O H  in,~r176 (~ ~(r162 ~ .  
g6r162176176 

Note that, for Q' = (r  x r ~ N (AH) 9, we have IQ' M (R x R~ = ]ARM 
(r x r176 = ]R I. Hence, 

i .G•176 q .GxH~ ~ T .G• ~ r~ H~ r.~.r nclQi t.2@OH I, nflQ2 t_)) ~ lnoQlxQ~l~esr215162 

is a direct sum of modules T ,GxG ~ I.~ IQ" maQ,, t2, where M (R x R~ = ]R]. Similarly, the 
components of C* @oGC have trivial source and vertices Q" such that ]Q"M (R x R~ = 

IRI. 
Let 7/: OGe -+ C@oHC* and q' : O H / - 9  C*@oaC be the natural maps induced 

by the functors C@OHS-- and C*@oae--. Then, f / =  l@onrl@on l : OG~ --+ C'@o~C* 
and ~' = 1 @on 7/' @oR 1 : 0 [ - I / - 9  C* | C' are the natural maps induced by the 
functors C' |  - and G'* | - .  By Lemma 10.2.10, 77 (resp. r/) is a homotopy 
equivalence if and only if f/ (resp. ~') is a homotopy equivalence. 
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1 0 . 2 . 4  S o m e  m o r e  l e m m a s  

For a module V, we denote by Pv a projective cover of V. 

Lemma 10.2.12 Let M be an (A | B ~ A projective cover of M is 

P.| o 
W 

where W runs over a complete set of representatives of isomorphism classes of simple 
B-modules. 

Proof. Let V be a simple A-module and W a simple B-module. We have an 
isomorphism of (A | A~ 

HomBo (M, i s @ W*) ~- Homo(M | W, V) 

given by f ~ (m | w ~ f (m)(w))  and the lemma follows from the isomorphism 

HOmA| (M, V | W*) -~ Homa(M | W, V). 

The following well-known lemma solves the problem of lifting modules through 
cyclic/)'-extensions. 

Lemma 10.2.13 Let H be a normal subgroup of G with E = G / H  a cyclic/-group. 
Let M be a G-stable OH-module. Then, there exists an OG-module M extending M 
and for any such module, we have 

a•176 - (.9E). I n ~ M  ~_ Reszx a (M | 

Proof. Let g 6 G generating G/H.  Since M is G-stable, there exists ~ e Endo(M) 
such that  

~(g-lhg(m)) = h~(m) for all h E H and m 6 M. 

Let 7 = ~ g - e  where e = IEL, and R be the subring of EndoH(M) generated by 7- 
Suppose there is a 6 R such that a ~ = 7- Let ~ -- a-l~o. Then, Ce acts on M as 

g~ and r  = h~(m) for h 6 H and m E M. It follows that  we can extend 
the action of H on M to an action of G by letting g act as r 

The existence of ~ follows from the fact that  R is a finite algebra over the strictly 
henselian ring (.9, hence the etale extension R[X] / (X  ~ -  7) of R must be trivial:  first, 
replacing R by one of its blocks, we can assume it is local. Then, the equation a" = 7 
has e distinct roots in the residue field of R. By Hensel's lemma, these solutions can 
be lifted to R and we are done. 

Let itS/be an (,gG-module extending M. Then, 

R O • 2 1 5  indaHReSa/~/ esar tndGxHo[lVl | (.9) ~_ 

by Mackey's formula. �9 

Let us recall some basic definitions of local block theory and some properties 
related to Brauer's first main theorem (see for example [2, w 
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Assume H is a subgroup of G. We say that  the block OGe corresponds to O H f  
if OGe is a direct summand of vxv~ IndHxHoOH f . 

Let D be a defect group of OGe. When Na(D) < H, there is a unique block 
idempotent  f of OH such that  OGe corresponds to O H f  : O H f  is called a Brauer 
correspondent of OGe. 

If R is a p-subgroup of D, eR is a block of ORCc(R) (equivalently, a block of 
OCt(R))  and OGe corresponds to ORCa(R)eR, then (R, eR) is called an e-subpair. 

Assume furthermore R is normal in G and eR is G-stable.  Then, eR = e, D n 
RCa(R) is G-conjugate to a defect group of ORCo(R)eR and p J([G: DCa(R)]. 

The next two lemmas deal with blocks of groups having a normal p-subgroup. 

L e m m a  10.2.14 Let R be a normal p-subgroup of G, ( R , f )  an e-subpair and H its 
normalizer. Then, OG f induces a Morita equivalence between OGe and OH f .  

Proof. We have ef  = f and (g-afg) f  = 0 for g C G -  H. The multiplication map 
f O G  | OG f -+ f OG f is an isomorphism and 

.fOGf = ~ OHgg l f9  f = OHf.  
gcG / H 

The lemma is then a consequence of Lemma 10.2.4. �9 

P r o p o s i t i o n  10.2.15 Assume a defect group D of OGe is normal in G and e is a 
block of OCa(D). Let E = G/DCa(D).  Assume E is cyclic. Then, OGe is Morita 
equivalent to O D )~ E. 

Proof. Let ~ be the image of e in O(Ca(D)/Z(D)).  The canonical map from the 
center of OCa(D)e to the center of O(Ca(D)/Z(D))~ is onto. Since O is complete, 
this forces ~ to be a block of O(Ca(D)/Z(D)).  This block has defect zero, hence has 
a unique simple module. So, OCa(D)e has a unique simple module. 

Let H =  D ~ E  and L =  NO• The map Ca(D) --+ G•  H~ ~-+ (x, 1) 
factors through L and gives an injection 9~ : Ca(D) --+ L / A D  with cokernel isomorphic 
to E.  

The G-stable block e of OCa(D) has a unique simple module V, which is con- 
sequently G-stable.  The action of Ca(D) on V lifts to an action of L / A D  on V 
(Lemma 10.2.13). Let Pv be a projective cover of V as an O(L/AD)-module and Q 
the restriction of Pv to L. Let M * "G•176 : lno n (~ and P = ResLa(D)xZ(D)oQ. Then, P 
has vertex A Z ( D )  and /5 = O(Co(D)/Z(D))  | P | 0 is a projective in- 
decomposable O(Ca(D)/Z(D))~ | O-module,  hence it induces a Mori ta  equivalence 
between O(Ca(D)/Z(D))~ and O. It follows from Lemma 10.2.11 tha t  P induces a 
Mori ta  equivalence between OCa(D)e and OZ(D) and from Lemma 10.2.8 tha t  M 
induces a Mori ta  equivalence between OGe and OH. .. 

What  this proposit ion actually determines is a source algebra of the block. Note 
that  instead of assuming E cyclic, one can assume the blocks are principal to get the 
same result. In general, a similar proof shows tha t  OGe is Mori ta  equivalent to a 
twisted group algebra O.D >4 E, when D is normal in G, as proven by L. Puig [162, 
w theorem 12]. 
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10.3 Blocks stably equivalent to OD >4E 

Let G be a finite group, e a block of G with positive defect. Let E be a / f - subg roup  
of the group of automorphisms of a non-trivial  cyclic p-group D. Let A = (gGe and 
B = OD >~ E. Let M be an indecomposable (A | B~ which is projective as 
an A-module and as a B~ 

This section is devoted to the proof of 

T h e o r e m  10.2 Assume M induces a stable equivalence between A and B. Then, 
there exists a direct surnmand N of a projective cover p : P M  ~ ) M of M such that 

the complex 0 --~ N p,N> M --+ 0 induces a Riekard equivalence between A and B. 
I r E  = 1, then N = 0 or N : PM, i.e., M or 9 M  induces a Morita equivalence 

between A and B. 

Let 9 : I~(KB) -~ R(KA)  and 0 : R(KA)  -+ R ( K B )  be the maps induced by 
the functors M | - and M* |  - .  

1 0 . 3 . 1  E x c e p t i o n a l  c h a r a c t e r s  

An exceptional character of B is defined to be the character of an irreducible KB- 
module with a non-trivial  D-action. A non-exceptional character of B is an irreducible 
character which is not exceptional. Let 0x be the sum of the exceptional characters of 
B. The simple B-modules  are the simple (9E-modules. They lift uniquely to O-free 
B-modules,  with projective covers the indecomposable projective B-modules.  If V is a 
one-dimensional (9-free (gE-module, then its projective cover as a B-module  is IndHV, 
whose character is the character of V plus 0x. Recall also that  the indecomposable 
kB-modules  are uniserial. 

The set {0}o exceptional is a basis o f /~ (B)  (we denote by 2 the image of x C 

R(KB)  under the canonical morphism R ( K B )  --~ R( B) ). 
Assume B has at least two exceptional characters. An irreducible character r of 

A is called exceptional if there exists two exceptional characters 0, 0' of B such that  
( r  - q2(0')} # 0. Note that  0 - 0' e RP(B), hence I]9(0) - 9(0')1 [ = 2. So, 
the number of exceptional characters of A and B are the same. The rank of RP(B) is 
this number and RP(A) and RP(B) have the same rank. It follows that  RP(A) is not 
generated by linear combinations of exceptional characters, hence A has at least one 
non-exceptional character. 

We denote by Xx the sum of the exceptional characters of A. 
When B has a unique exceptional character 0~, then we pick an irreducible charac- 

ter r = r of A such that  ~ r 0 and we call it exceptional (actually, any irreducible 
character of A will do). 

For the non-exceptional characters, we have 

L e m m a  10.3.1 Let r be a non-exceptional irreducible character of A. Then, @(r 
is a multiple of Oz. 

Proof. Let 0,0'  be two exceptional characters of B. We have ( 0 ( r  - 0') : 
(r 9 (0  - 0')) : 0. We are now done since 0 = -0~.  ,, 
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10.3.2 Decomposition n u m b e r s  

L e m m a  10.3.2 Let V be a non-projective O-free A-module such that V @ k is 
indecomposable. Let W be a non-projective indecomposable B-module such that 
M* | V ~- W (9 projective modules. Let ~ be the character of W. Then, 

(i) ~ is multiplicity free 

(ii) ~ contains at most one non-exceptional character 

(iii) if ~ contains a non-exceptional character, then it doesn't contain all exceptional 
characters. 

Proof. By Lemma 10.2.2, W| is indecomposable and non projective. Since W N k  
is indecomposable, it is the quotient of an indecomposable projective kB-module.  
Hence, W is the quotient of an indecomposable projective B-module.  It follows that  
the character ~ of W is multiplici ty free and contains at most one non-exceptional 
character. Since W | k is not projective, we know in addit ion that  if ~ contains a 
non-exceptional character, then it doesn ' t  contain all exceptional characters. ,, 

L e m m a  10.3.3 Let X be a character of A and P an indecomposable projective A- 
module such that X is contained in the character of P. 

/ . . 

Then, there exists an O-free A-module V with character X and proyectwe cover P. 
In particular, V | k is indecomposable. 

Proof. Let L I be a KA-submodule  of K @ P such that  K @ P / U  has character X. 
Let L = L I n P and V = P/L. Then, V has the required properties. ,, 

As a consequence of Lemmas 10.3.1, 10.3.2 and 10.3.3, we obtain : 

C o r o l l a r y  10.3.4 Let r be a non-exceptional character of A. Then, 0(•) = • 

If X and X I are two characters, we say tha t  X is contained in X I if X I - X is a 
character. 

Proposition 10.3.5 Let P be an indecomposable projective A-module. Then, its 
character is the sum of two distinct non-exceptional characters or the sum of a non- 
exceptional character and of all exceptional characters. 

Proof. Let 77 be the character of P .  Assume there are non-exceptional characters 
r and r  such that  r + r is s tr ict ly contained in 71. By Lemma 10.3.3, there is 
an O-free A-module V with character r + r such that  V | k is indecomposable. 
By Lemma 10.3.4, e ( r  + O(r  is zero or 4-20x. By Lemma 10.3.2, the second 
possibili ty can ' t  arise. Now, assume O(r  + O( r  I) = 0. Let W be a B-module  such 
that  M* | V ---- W @ projective modules, with W | k indecomposable. Then, the 
character  of W is 0 in /~(B) .  By Lemma 10.3.2, this is impossible. 

We assume now that  ~? contains at  most one non-exceptional character. Let 0, 0 I 
be two dist inct  exceptional characters of B. We have 

( , ,  ~,(e) - ~ ( r  = ( e ( , ) ,  o - r  = o. 
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Let ~ and r  be the two distinct exceptional characters of A such that  q(0) - ~(0')  = 
-t-r • r  Then, (~,r  = (71,r so r and r  arise with the same multiplicity in 
77. It follows that there is a positive integer a such that  X -- ~ - ag;z is zero or a 
non-exceptional character. 

Assume X --- 0. Then the block A has a projective indecomposable module with 
character 7f different from 7? such that  (r/, Tf) ~ 0. The character ~ is a non-zero 
multiple of r plus a non-exceptional character r  But this implies that  r = 0, which 
is impossible ! Hence, X is a non-exceptional character. 

Now, 0(77) = 0 -- d:0z + aO(r by Lemma 10.3.4. This implies a = 1 and 
O(r = d=0~ and we are done. 

1 0 . 3 . 3  T h e  B r a u e r  t r e e  a n d  i t s  w a l k  

L e m m a  10.3.6 Let L be a simple B-module. Then, the module M |  has a unique 
simple quotient V and the correspondence L ~-~ V induces a bijection between the sets 
of isomorphism classes of simple B-modules and simple A-modules. 

Proof. Let V be a simple A-module and W = M* | V. Then, W is indecompos- 
able (Lemma 10.2.3), hence it has a unique simple submodule Lv. So, we have a map 
h from the set of isomorphism classes of simple A-modules to the set of isomorphisms 
classes of simple B-modules given by V ~-~ Lv. 

Let now L be a simple B-module and U = M | L. Let V be a simple A-module 
which is a quotient of the indecomposable module U. Then, 

Horn(L, M* @A V) -~ ~ ( U ,  V) ~ O. 

It follows that the map h is surjective. Let now V1 and V2 be two simple A-modules 
such that W1 = M* | V1 and W2 = M* | ~/2 have the same simple submodule L. 
Since an injective hull of L is uniserial, there is an injection Wi -+ Wj for some i , j  with 
{i, j}  = {1, 2}. Such an injection between modules with no projective direct summand 
is not an (.P-projective morphism, hence Hom(W~, Wj) ~ 0, so Hom(V~, V2) ~ 0 and V~ 
and Vj are isomorphic. This proves the injectivity of h. 

Since h is bijective, given a simple B-module L, the module M @B L has a unique 
simple quotient. 

The set {f~2~k}0<~<e_ 1 is a complete set of simple kB-modules (up to isomorphism). 
By Lemma 10.2.3, the module M | ~2ik is indecomposable. Hence, M | ~ 2~(-9 is 
indecomposable as well. On the other hand, M |  commutes with Heller translation 
up to projective modules, i.e., M | ~ 2i(9 -~ f~2iS @ projective modules, where S = 
M | (9. It follows that  M | f~2iO --~ f~2iS. 

P r o p o s i t i o n  10.3.7 The character of ~ S  is a non-exceptional character or the sum 
of the exceptional characters. 

Proof. Let X be the character of fPS. 
When i is even, fPS has a unique simple quotient, hence fPS is a quotient of a 

projective indecomposable A-module Pi. In particular, X is contained in the character 
of P~. 
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Assume now i is odd. Then, we have an exact sequence 

0 ~ ~2is -+ Pi-1 ~ f~i- lS  --+ O. (10.1) 

Again, we see that  X is contained in the character of a projective indecomposable 
module. 

We have 2 = •  since the character of f~iO is non-exceptional or equal to 0z. 
Hence, 2 = • and we get the conclusion from Proposition 10.3.5. .. 

Let us now define tim Brauer tree T of A. The set of vertices is 
{~}r non exceptional t2 {r The vertices ~ and r  are incident if r + r  is the char- 
acter of an indecomposable projective module. This defines a graph whose number 
of edges is the number of isomorphism classes of simple A-modules. By Proposition 
10.3.5, this is a tree. The vertex corresponding to r is called exceptional. 

Let vi be the vertex corresponding to the character of ~iS .  Then, there is an edge 
l~ connecting v~ and vi+~, due to the exact sequence (10.1). The set {/2i} is the set of 
all edges of T. 

Note that fFr _~ (.9, where e is the order of ]E]. It follows that v2r = vi and 
12e+i = li. 

! For 0 _< i < e -  1, let v~ E {v2~,v2i+l} be the further vertex of I2i from the 
exceptional vertex. Let I be the set of non-negative integers i < e - 1 such that 

! 

Yi ~ "U2i+l" 
Note that {v~} is the set of non-exceptional vertices of 7-. 

10.3.4 C o n s t r u c t i o n  of  the  c o m p l e x  

By Lemma 10.2.12, a projective cover of the (A | B~ M is 

Paris | P* f l 2 i ( ~ .  

O<i<_e-1 

Let 

and let 
iEI 

C = O - - ~  N - - - ~  M ~ O  

where M is in degree 0 and ~ is the restriction to N of a surjection (D0<~_<e-1 Pn2~s | 
P~'o -4 M. 

F o r O < i , j < _ _ e - l ,  wehave 

(9 i f i  = j ,  
P~2Jo | f~2iO ~-- 0 otherwise. 

Hence, we have an isomorphism in Db(A) 

/ 0 - -4 f t2 i+1S-40 - -+0  i f i E I ,  
C | ~2 i0  "" 0 -+ 0 ~ f~2iS --+ 0 otherwise 

% 

where ~2iS is in degree 0 and ~ i + l S  in degree - 1 .  
In particular, the (Lefschetz) character of C|  ~ 2 ' 0  is ~iv~ where ei = - 1  if i C I 

and ei = 1 otherwise. 
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L e m m a  10.3.8 We have Homv~(A)(C | f~2ik, C | ft2Jk[-1]) = 0 for all i , j .  

Proof. Let us recall first that  HomB(f~k,k)  = 0 unless n - 0 (mod 2e). Put 
now T = Hom~b(A)(C @S f22~k, C | ~2Jk[-1]). 

Since Hom(f~2~S @ k, ~2J+1S | k) ~- Hom(ft2~k, f2:J+lk) = 0, we deduce that  T = 0 
unless i ~ I and j E I,  in which case T ~- Hom(f~2~S @ k,f~2J+lS @ k). Then, we 
have to prove that there are no k-projective morphisms from 122iS | k to D2J+IS @ k. 
As k-projectivc morphisms f~2iS | k -+ f~J+I S | k lift to O-projective morphisms 
f~2iS --+ 122J+1S, we are done, since Hom(f~2iS, f~J+lS) = 0 (the character of f~2iS is 

' and the character of ~'-~2j+Is is V}, hence, these are distinct since i ~ j). ,, v i 

C o r o l l a r y  10.3.9 The complex C* | C is homotopy equivalent to its O-homology. 

Proof. Let L, L' be two simple B-modules. We have 

Homgb(s| | C, L' | L*[-1]) _~ Homvb(A)(C | L, C |  L'[-1])  = 0 

by Lemma 10.3.8. Hence, C* | C has no homology in degree 1. Since the degree 1 
component of C* @A C is projective, C* @A C is homotopy equivalent to a complex 
with no component in degree 1. Since C* | C is self-dual, it is homotopy equivalent 
to its 0-homology. 

By Lemma 10.2.5, we have Ho(C* @A C) ~-- B @ Q, where Q is a projective 
(B | B~ 

Now, 

Hom~b(KBe(KB)o)(K | (C* @A C), K | (f~2{O | (f}2JO)*)) _ 

Homvb(KA)(K | (C | ~2io), K | ( C | ~-~2Jo)) = 6ijK, 

hence Hom(K | Q, K | (Q2iO | (~2JO)*)) = 0 

for all i , j .  This implies Q = 0. So, we have proven that C* | C is homotopy 
equivalent to B (seen as a complex concentrated in degree 0). By Lemma 10.2.4, we 
conclude that  C is a Rickard complex. This completes the proof of the first part of 
Theorem 10.2. 

Note that, if E = 1, then a projective cover of M is indecomposable : it follows 
that  C has homology only in one degree and it is isomorphic to M or t iM[l],  from 
which we derive the second part of Theorem 10.2. 

10.4 Local study 

Let G be a finite group, e a block of G with a non-normal cyclic defect group D. 
Let Q be the subgroup of D containing R = Op(G) as a subgroup of index p. Let 

H = Na(Q) and f the block of H corresponding to e. 
Theorem 10.1 will follow from the following more precise result : 

T h e o r e m  10.3 Let M be an indecomposable direct summand of the (OGe| f)~ - 
module eOG f with vertex AD. Then, there is a direct summand N of the (OGe @ 
(OHf)~ OGe @OR f O H  such that the complex C = 0 -+ N m> M --+ 
0 induces a splendid Rickard equivalence between OGe and O H f .  Here, m is the 
restriction of the multiplication map OGe | f O H  --+ eOG f .  

I f  R # 1, then C has homology only in one degree. 
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Note that  the (OGe | (OHf)~ eOGf has, up to isomorphism, a unique 
indecomposable direct summand with vertex AD (this can easily be deduced from 
the forthcoming proof of the theorem). 

Let us check that a complex C as defined in the theorem is splendid. Note that  
eOGf is a direct summand of a|176 IndAD O, hence is isomorphic to a direct sum of 
modules with trivial source and vertex contained contained in AD.  Since OGe | 
f O H  is isomorphic to a direct summand of Inda~ H~ O, it follows that N is isomorphic 
to a direct sum of modules with trivial source and vertex contained in AR. Hence, C 
is splendid. 

Let us prove by induction on the order of G that Theorem 10.1 follows from 
Theorem 10.3. 

By induction, we know that Theorem 10.1 holds for O H f  : there is a splendid 
Rickard equivalence between O H f  and ONa(D)e' given by a complex having ho- 
mology only in one degree. Now, Theorem 10.3 gives a splendid Rickard equivalence 
between OGe and OH.[. Hence, composing the two equivaleuces, we get a splendid 
Rickard equivalence between OGe and ONa(D)e', by Lemma 10.2.6. Furthermore, 
when Op(G) # 1, the Rickard complex has homology only in one degree. Hence, 
Theorem 10.1 holds for G and, by induction, the proof of Theorem 10.1 is complete. 

We assume now that Theorem 10.3 holds for all finite groups of order strictly less 
than the order of G. The rest of this section is devoted to proving that the theorem 
holds then for G. 

10.4 .1  Op(G)  = 1 

Let us first consider the case where R = 1, i.e., Q has order p. 
Following Alperin, we have : 

L e m m a  10.4.1 The module eOGf induces a stable equivalence between OGe and 
OHf.  

Proof. We have 

~ ~ ~ GxG ~ T .GxG ~ .,~ 
l%eSH~Hot.]tT~ "~ I%eSH| t] "~ 

T .HxH ~ i~ 

InG(AG)(91,92)N(HxHO) L]" 
(g1,92)6Hx H ~ \GxG ~ 

Now, (Q • Q~ fq (AG) (9',92) # 1 if and only i f g l g {  1 6 H. Since Q • Qo is 
the maximal elementary abelian subgroup of D • D ~ and is normal in H • H ~ it 

/ x H o 
follows that  the OH f @ (OH f)~ f , .tInd(Aa)(~l"g2)n(UxU~ f is projective 

when glgf 1 ~ H. 
Hence, 

OH f | OG | "~ OH f • projective modules. 

Since f is the Brauer correspondent of e, O H f  is a direct summand of 
GxG ~ ReSH• So, 

fOGe| ~- /OGe/ ~- OH f|174 ~-- OH/@ projective modules. 
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The result is now a consequence of Lemma 10.2.1. �9 
Let M be an indecomposable non-projective direct summand of eOGf : by Lemma 

10.2.3, it still induces a stable equivalence between OGe and OHf .  
By induction, Theorem 10.1 holds for OHf .  Hence, there is an (O H f  | ((riD x 

I E)~ M' inducing a Morita equivalence between O H f  and OD >~ E. So, the 
indecomposable module Mo = M @OHf M' induces a stable equivalence between (_gGe 
and OD ~ E. By Theorem 10.2, there exists a direct summand No of a projective 
cover P0 of M0, such that  the complex Co = 0 -4 No -4 M0 -4 0 induces a Rickard 
equivalence between OGe and OD ~ E. It follows that 

CI : Co | M'* ~-- 0 -4 No | M'* -4 M --+ 0 

induces a Rickard equivalence between OGe and OHf .  The module No |  M'* 
is a direct summand of PM = i~ | M'*, a projective cover of M, and the map 
No | M'* -4 M is the restriction of a surjective morphism PM -4 M. Now, the 
multiplication map 

m : OGe | f O H  --+ eOGf 

is surjective and eOGf = M | projective modules, hence there is a direct summand 
N of OGe | f O H  such that the complex C = 0 --+ N ~ M -4 0 is isomorphic to 
C1. 

So, the theorem holds when R = 1. 

10.4.20p(G) r 1 

Let us now consider the case where R is non-trivial. Let 0 = G /R  and ~ be the image 
of e through the canonical morphism OG - 4 0 G .  Similarly, let / )  = H / R  and f be 
the image of .f through the canonical morphism OH -4 OH. Note that  the canonical 
map E -- Na(D, eD)/Ca(D) ~ Aut (D/R)  is injective, since it factors through the 
group of p'-automorphisms of D. Hence, O[-If and OG~ are blocks with defect D/R.  

Let (R, eR) be an e-subpair. By Lemma 10.2.14, the (Oae | ONv(R,  eR)eR)- 
module eOGeR induces a Morita equivalence. Hence, we can assume that G stabilizes 
eR, that is, that  e = eR. 

Let C = Ca(R)/R.  Since G/C' ~_ G/Ca(R) is a cyclic p'-group, a simple OC'~- 
module extends in exactly [G : Ca(R)] non-isomorphic ways to G and every simple 
OG~-module is obtained in this way (Lemma 10.2.13). By induction, OG~ is derived 
equivalent to (D/R) >4E, hence has IEI simple modules. It follows that  [G: Ca(R)] = 
IEI, hence the canonical map Na(D, eD)/Ca(D) -4 G/Ca(R) is an isomorphism. Note 
that @(Ca(R)) = R. Similarly, the canonical map NH(D, eD)/CH(D) -4 H/CH(R) 
is an isomorphism and O,(Cr4(R)) = R. 

1 r op(a) <_ Z(G) 

By assumption, Theorem 10.3 holds for OG~ and O[-If. The observation above shows 
that these two blocks have a unique simple module. Let M'  be an indecomposable 
direct summand of the O(G x H~ eOGf with vertex A D / A R .  Since 
~OGf is the direct sum of an indecomposable non-projective module and of a projec- 
tive module, it follows from Lemma 10.2.9 that the O ( G x  H~ M" = M'| 
is an indecomposable direct summand of ~oC, f .  Let f~ : N '  -4 M ~ be a projective 
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cover of M' .  Then, N" = N '  | 0 is a projective cover of M" (Lemma 10.2.9). Let 
M (resp. N) be the restriction of M '  (resp. N ' )  to G x H ~ 

If M" induces a Morita equivalence between OGg and Of-If, then let C be the 
complex with only one non-zero term, M, in degree 0. If the kernel of a surjective 
map f" : N" -+ M" induces a Mori ta  equivalence between OG~ and Of-If, then let 
C be the complex with N in degree - 1 ,  M in degree 0 and differential f ' .  

Then, it  follows from Lemma 10.2.11 that  C is a Rickard complex. Note that  C 
has the form required. 

oAG) z(G) 

Note that  OCH(R)f is the Brauer correspondent of the block OCc(R)e. 
Let m be an indecomposable direct summand of the O(CG(R) • CH(R)~ - 

module eOCG(R)f with vertex A(D/R). Let L = NG• The restriction to 
L of the action of G • H ~ on OG leaves eOCv(R)f invariant. This gives a natural  
extension of the action of (CG(R) x CH(R))/AR on eOCG(R)f to L/AR. Since 
(eOCc(R)f)/M is a sum of modules with vertices strictly contained in A(D/R), 
the module M is L-stable. The isomorphisms G/Ca(R) ~- E and H/CH(R) ~- E 
induce an isomorphism L/(CG(R) x CH(R) ~ ~_ E. So, by Lemma 10.2.13, there is 

an indecomposable summand f f  L/AR of Ind~(H/R)O ~_ OCc(R) lifting M. 
Let N be a projective cover of M. This is an L-stable indecomposable O(CG(R) x 

CH(R)~ hence it lifts to a projective LIAR-module IV (Lemma 10.2.13). 

Since In(I(cc(R)XCH(R)o)/AR2V is a projective cover of InO(CG(R)XCH(R)O)/ARIV1 and A~/is 

isomorphic to a direct summand of the latter,  one may choose N to be a projective 
cover of AT/. We have a natural  map 

IndH/RResH/R(.9 --~ (9 

giving rise to a surjective map 

T,~A L/AR ('9 f : IndL/ARo -+ .. . .  A(H/R) v .  

So, we may choose N to be a direct summand of IndL/ARO with f ( N )  = A:/. 
Let N' "f~AG•176176 M I "[~AG•176176 g I 

. . . . .  L . . . .  n l *  a n d  . . . . .  n . . . .  L . . . .  Then, i s  a d i r e c t  

summand of OGe @OR fOH, M' is a direct summand of eOGf and m'(N') = M', 
where m' is the multiplication map OGe | fOH ---+ eOG f . 

If Res (Ca(R)• in ' ' CG(R)• duces a M o n t a  eqmvalence between OCa(R)e and 
OCH(R)f, then we define C to be M'. Otherwise, let C be the complex with N '  in 
degree - 1 ,  M '  in degree 0 and differential m'.  

Then, Lemma 10.2.8 says that  C is a splendid Rickard complex between eOG and 
fOH. Note that  C has homology only in one degree. Hence, the proof of Theorem 
10.3 is complete. 

10 .5  A n  e x a m p l e  : PSL2(p) 
We make the constructions of w explicit for the group PSL2(p). 
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Let V1 be the natural 2-dimensional representation of SL2(p). Then, the simple 
kSL2(p) modules are the symmetric powers Si(V1), where 0 < i < p -  1 [2, pp 14-16]. 
The center of SL2(p) acts trivially on Si(V1) when i is even and we denote by V~ the 
module S2i(V1) induced from SL2(p) to PSL2(p). Then, the simple modules in the 
principal block e of G = PSL2(p) are the V/, 0 < i < p-a There is only one other 

2 " 
block in G, it has defect 0 and its simple module is the Steinberg module Ve_~a~. 

For i < e-~21 , the dimension of V/is 2i + 1 < p. Let B be the normalizer of a Sylow 
p-subgroup of G. By Proposition 10.4.1, the (OGe | (OB)~ OGe induces a 
stable equivalence between OGe and OB. For V a simple OGe-module, the module 
OGe @ V has a dimension strictly smaller than p, hence it cannot have a projective 
direct summand. By Proposition 10.2.3, this implies the indecomposabiblity of OGe 
as a (OGe | (OB)~ 

Since indecomposable kB-modules are uniserial, the restriction of Vi to B has a 
unique simple quotient Wi, for 0 < i < p-3 (this is actually a special case of the 

2 
general property of simple modules for groups with a (B, N)-pair to have a unique 
simple quotient when restricted to B). Furthermore, Wi ~ We. 

Let U be the Sylow p-subgroup of B and T a complement to U in B. The group T 
is cyclic, with order ~ and there are two conjugacy classes of non-trivial p-elements 
in B (hence also in G). Let xl, x2 be representatives for these classes. Let T'  be a 
':Coxeter torus" of G, i.e., the centralizer of an element of order p+l This is a cyclic 

2 " 

group of order ~-2 +1 . 
Let 77 be the irreducible character of T which gives the simple module W 1. Let 

(i be a non-trivial irreducible character of T'  which occurs in the character of the 
restriction of 171 to T'  (the restriction is then 1 + 6 + (f-i). Let c = -4-1 with e - p 
(mod 4). 

The character table of the principal block of G is : 

xl x2 t �9 T t' �9 T '  
1 1 

( p -  1)j - 1  
(p + 1)l 1 

+ 

1 
- 1  
1 

- i v Y )  

1 
0 

+ ,7-'(t) 

r/ 4 (t) if e = l  
0 if e = - 1  

1 
-(SJ(t ' )  + (i-J(t')) 

0 

i fc  = 1 
O-5+~(t') i fc  = - 1  

whe re j  �9 {1 , . . . ,  +a.~.s , , l � 9  { 1 , . . . , ~ - 1 }  a n d i � 9  { -1 ,1} .  
The character table of B is : 

l l  

X l  X 2  

1 1 
�89 + i , / - ~  i 4 -  ~ } ( - 1  - 

t E T  
v'(t) 

0 

where 1 �9 {0, arA _ 1} and i �9 { -1 ,  1}. 2 
The restrictions of the irreducible characters of the principal block of G to B are : 

�9 Resg 1 = 1, 
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v-1 
�9 Res a ( p -  1)j = (~2)o  + ( 2 )1' 

�9 ResB a (p + 1), = ( 4 ) 0  + ( 4 ) 1  + 1, + le_~_,. 

�9 Resg (P+q = { (~2 ) i  if g = - 1 ,  
, 2  ,'i ( - ~ ) i + 1 ~  i f r  

The Brauer tree of OGe is 
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0 0 0 0 0 ..................................................... O 
1 (p - 1)1 (p + 1)1 (p - 1)2 (p + 1)2 (p - r ( 

s ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  r 

The arrows describe Green's walk on the tree (i.e., the sequence of vertices 
VO~ ?Jl~ �9 �9 - ) .  

A projective cover of the (OGe | (OB)~ OGe is 

�9 
o_<~<_z~ 

where P~ is a projective cover of V~ and Q~ a projective cover of W~. The module N 
constructed in w is 

N = ( ~  P~ | 
F + 2 + ~  <-),<~ p - 3  

Restricting a surjective map 

@ P~ |  >,> Oae 

o<~<~ 

to N gives a complex 
C = O --+ N --+ OGe 

which induces a splendid Rickard equivalence between OB and OGe. 
Let I be the isometry R(KGe) --+ R ( K B )  induced by this equivalence of derived 

categories. We have 

�9 1(1) = 1, 

�9 I((p + 1)l ) = 1~, 

�9 I ( ( p -  1)j) = - l ~ _ j ,  

�9 


