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ABSTRACT. We develop the 2-representation theory of the odd one-dimensional super Lie alge-
bra gl(1|1)* and show it controls the Heegaard-Floer theory of surfaces of Lipshitz, Ozsvdth and
Thurston [LiOzTh1]. Our main tool is the construction of a tensor product for 2-representations.
We show it corresponds to a gluing operation for surfaces, or the chord diagrams of arc decom-
positions. This provides an extension of Heegaard-Floer theory to dimension one, expanding
the work of Douglas, Lipshitz and Manolescu [DouMa, DouLiMa].
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1. INTRODUCTION

This article is the first step in a program to recast Heegaard-Floer theory in the setting
of higher representation theory. It is also the first construction of tensor products in 2-
representation theory, a mechanism that produces complicated categories out of simpler ones,
an algebraic counterpart to the construction of moduli spaces in algebraic geometry.

Heegaard-Floer homology was introduced by Ozsvath and Szab6 [OsSz1] and has become a
very powerful tool in topology in dimensions 3 and 4. It is related to Seiberg-Witten theory
and instanton Floer homology.

Heegaard-Floer theory associates bigraded vector spaces to links in S®, hence two-variable
invariants of links. Specializing one of the variables to —1, they coincide with the Alexander
polynomial. The Alexander polynomial can be obtained from the category of representations
of quantum gl(1|1) (cf e.g. [KaSal, Sar]). It has been hoped that there is a 2-categorical version
of that category (”2-representations of gl(1]|1)”) that would give rise to (a (1,2,3,4)-TQFT
version of ) Heegaard-Floer theory, in analogy with Crane-Frenkel’s proposal [CrFr| to upgrade
the 3-dimensional Witten-Reshetikhin-Turaev TQFT to dimension 4, in the case of ordinary
simple Lie algebras. Very roughly, the theory would associate the monoidal 2-category of 2-
representations of gl(1/1)™ to an interval. A physical framework for the role played by Heegaard-
Floer theory for 3-manifolds, and its more precise relation with a conjectural gl(1|1)-theory, is
developed in [GuPuVal.

Bordered Heegaard-Floer theory is an extension down to dimension 2 introduced by Lipshitz,
Ozsvath and Thurston [LiOzThl]. Douglas and Manolescu initiated in [DouMa] an extension
of this theory further down to dimension 1 (cf also [DouLiMa] for the analysis of 3-manifolds
with codimension-2 corners).
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In [Rou3]|, the second author constructs a monoidal structure for the 2-category of 2-representations
of Kac-Moody algebras, as a step to obtain the sought-after 4-dimensional TQFT. This requires
working in a suitable homotopical setting (Ay- or co-categories), and this creates technical com-
plications for the full construction of a braided monoidal 2-categorical structure.

A surprising discovery in our work is that those homotopical complications in the definition of
the monoidal structure disappear for gl(1]1), and one of the objectives of this article is to develop
as much of the theory as possible without bringing in homotopical aspects. This essentially
means we are probing the 4d theory only with respect to curves and surfaces. This also limits us
to the consideration of the positive part of gl(1]1). We will consider these homotopical aspects
in future work.

Inspired by constructions in bordered Heegaard-Floer theory, Khovanov [Kh] introduced a
monoidal category U whose Grothendieck group is the enveloping algebra of the positive part
gl(1|/1)™ of the super Lie algebra gl(1]1), namely the algebra Z[e]/e?. This monoidal category
is built from the characteristic 2 nil Hecke algebras of symmetric groups, with a differential
(that makes them acyclic in rank > 2), and the monoidal structure comes from induction and
restriction functors.

Our 2-category of 2-representations of gl(1]|1)" is defined as the 2-category of differential
categories acted on by the monoidal differential category U. Given two 2-representations,
one has a category of lax morphisms of 2-representations. This generalizes to the case of a
differential category with two (lax) commuting structures of 2-representations. In the particular
case of a differential category obtained by tensor product from two 2-representations, this is
a structure considered and studied in [DouMa]. Our new construction is that of a structure
of 2-representation on a differential category with commuting structures of 2-representations.
From a field theory perspective, we have a surface and two chosen boundary intervals, and we
attach an open pair of pants to obtain a new surface which has now one fewer boundary circle.

Lipshitz-Ozsvéath-Thurston [LiOzThl] associate certain differential strand algebras to sur-
faces with extra structure. That structure can be encoded in a singular curve. An end of the
curve gives rise to a structure of 2-representation. We show that gluing curves corresponds,
at the level of strand categories, to the construction above. Since the category of differential
modules over the strand algebra is equivalent to a partially wrapped Fukaya category of a sym-
metric power of the surface [Aul], our work can be viewed as providing an algebraic description
of the Fukaya category of symmetric powers of a surface that is obtained by gluing simpler
surfaces.

Let us now describe the structure of this article.

We gather in §2 a number of basic definitions and facts involving differential categories and
bimodules. Most differential vector spaces we encounter come with bases, and we formalize
this aspect in the notion of ”differential pointed sets” and corresponding differential pointed
categories.

We consider Hecke algebras in §3. We study in §3.1 the differential algebra structure on nil
Hecke algebras of Coxeter groups over a field of characteristic 2 and we describe adjunctions
for induction and restriction functors, in the case of finite Coxeter groups. An important fact
is that those Hecke algebras are the graded algebras associated with the filtration of the group
algebra with respect to the length function. The remainder of §3 is devoted to the case of
symmetric groups and their affine versions. We introduce in §3.2.6 positive submonoids of the
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affine symmetric groups and we provide a description by generators and relations of their nil
Hecke algebras.

Section §4 is devoted to the development of the 2-representation theory of gl(1|1)*. We
introduce the monoidal category /. Our main construction is that of a tensor product product
operation on 2-representations, and more generally, of a diagonal action given two (lax) com-
muting 2-representation structures. We also consider a more complicated ”dual” construction
in §4.4. In §5, we recast our functorial constructions into bimodule constructions. Note that our
constructions work in the differential setting, but not in the usual differential graded setting.

In §6, we construct bimodules and 2-representations associated with nil Hecke algebras. In
§6.1, we describe explicitly the structures of 2-representation coming from the left and the
right action of the monoidal category U on itself and we show that the diagonal category
arising from these commuting left and right actions corresponds to Hecke algebras of positive
affine symmetric groups. It is a remarkable fact that those can be recovered from the Hecke
algebras of the ordinary symmetric groups. We introduce in §6.2 a categorical version of affine
symmetric groups and their Hecke algebras.

We develop in §7 an extension of Lipshitz-Ozsvath-Thurston [LiOzThl] and Zarev’s [Za]
theory of strand algebras associated with matched circles and intervals. Instead of consider-
ing curves with matchings, we consider the corresponding quotient spaces, where the matched
points are identified. We start in §7.1 with 1-dimensional spaces, which we define as comple-
ments of a finite set of points in a 1-dimensional finite CW-complex. In §7.2, we define our
objects of interest, the singular curves. They are 1-dimensional spaces together with an addi-
tional structure at singular points, and a partially defined orientation. They arise as quotients
of smooth curves, or, equivalently, as curves in R™ with transverse intersections of branches.
This leads to a notion of admissible paths, those paths that lift to a smooth model for the curve
(§7.3). We introduce in §7.4 the differential categories of strands associated to a curve. They
are defined as graded categories associated with a filtered category, in a way similar to the
constructions of §3.1. We show in §7.4.3 that strand categories on unoriented S* correspond to
the categories built from nil Hecke algebras of affine symmetric groups.

The final section §8 shows that the strand category of a glued curve is obtained as a tensor
(or more general diagonal) construction from the strand category of the original curve. This
provides some sort of 1-dimensional field theory, which is really part of a 2-dimensional field
theory for surfaces with extra structure. This gives a categorical mechanism by which strand
categories can be computed by cutting the curve into basic building blocks. We start in §8.1 by
constructing a structure of 2-representation associated with an unoriented ”end” of a curve. We
describe in §8.2 how the strand categories behave under the gluing of two ends of a curve. When
the gluing operation does not create an S', we show in §8.3 that the resulting 2-representation
is the one obtained from the diagonal action.

We thank Ciprian Manolescu for several useful conversations.
2. DIFFERENTIAL AND POINTED STRUCTURES
2.1. Differential algebras and categories.

2.1.1. Categories. Let C be a category. We denote by C°PP the opposite category. We identify
C with a full subcategory of Hom(C°PP, Sets) via the Yoneda embedding ¢ — Hom(—, ¢).
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Given (L, R) a pair of adjoint functors, we denote the unit of adjunction by n, r and the
counit by €z, g.

When C is enriched in abelian groups, we denote by add(C) the smallest full subcategory of
Hom(C°PP, Sets) containing C and closed under finite coproducts and isomorphisms.

Let X be a 2-category. We denote by X'°PP the 2-category with same objects and Hom(z,y) =
Hom(z,y)°PP. We denote by XA™ the 2-category with the same objects and with Hom(z,y) =
Hom(y, x) for z and y two objects of X' (so that the composition of 1-arrows is reversed).

Let Cat be the 2-category of categories. There is an equivalence Cat — Cat°PP sending a
category C to C°PP.

Let Cat” (resp. Cat') be the 2-full 2-subcategory of Cat with 1-arrows those functors that
admit a left (resp. right) adjoint. There is an equivalence of 2-categories Cat™ — (Cat!)™vPP.
It is the identity on objects and sends a functor to a left adjoint.

2.1.2. Differential categories. Let k be a field of characteristic 2. We write ® for ®j.

A differential module is a k-vector space M endowed with an endomorphism d satisfying
d*> = 0. We put Z(M) = kerd. An element m of M is said to be closed when d(m) = 0.
We define Hom-spaces in the category k-diff of differential modules by Homy_gig(M, M') =
Homy, noq (M, M'). That k-module has a differential given by Hom(dy, M') + Hom(M, dyy).
We define the category Z(k-diff) as the subcategory of k-diff with same objects as k-diff and
Homz(k_dig) (M, M’) = Z(Homk_diﬁ(M, M/))

The tensor product of vector spaces and the permutation of factors equip k-diff and Z(k-diff)
with a structure of symmetric monoidal category.

A differential category is a category enriched over Z(k-diff).

Let V and V' be two differential categories. We denote by Hom(V, V') the differential category
of (k-linear) differential functors ¥ — V'. Its Hom spaces are k-linear natural transformations.

We denote by V® V'’ the differential category with set of objects Obj(V) x Obj(V’) and with
Homygy((v1, ), (v2,v5)) = Homy (v1, v2) ® Homy (vy, v5).

We denote by V-diff = Hom(V, k-diff) the category of V-modules. There is a fully faithful
embedding v — Homy(—,v) : V — VPP_diff and we identify V with its image.

Note that add(V) identifies with the smallest full subcategory of V°PP-diff containing V and
closed under finite direct sums and isomorphisms.

There is a differential functor ®y : VoPP-diff QV-diff — k-diff. Given M € V°PP-diff and
N e V-diff, there is an exact sequence of differential k-modules

a®bH1\;lv(f)(fz)®b
D M) ®N(vy) —2O D M) @ N(v) > M@y N — 0.

feHomy, (v1,v2) veV
Given v € V, we have Hom(—,v) ®, N = N(v) and M ®, Hom(v, —) = M (v).

Recall that a category is idempotent complete if all idempotent maps have images.

We denote by V¢ the idempotent completion of V: this is the smallest full subcategory of
VoPP_diff containing V and closed under direct summands and isomorphisms. The 2-functor
VY +— V' is left adjoint to the embedding of idempotent-complete differential categories in
differential categories.
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2.1.3. Objects. Given v1,vy two objects of V and given f € ZHomy(vy,vs), the cone of f
f

is the object cone(Homy(—, f)) of V°PP-diff denoted by v@}g. We say that V is strongly
pretriangulated if the cone of any map of V is isomorphic to an object of V. Note that V°PP-diff
is strongly pretriangulated.

We denote by V the smallest full strongly pretriangulated subcategory of VoPP-diff closed
under taking isomorphic objects and containing V. Note that (V)! is strongly pretriangulated.
Note also that if V is a full subcategory of a strongly pretriangulated V', then V is strongly
pretriangulated if the cone in V' of a map between objects of V is isomorphic to an object of V.

Let vy, ..., v, be objects of V and f;; € Homy(vj, v;) for i < j. Assume d(fij) = >, _; firo[r;

0
for all i < j. We define the twisted object [v, ®- - - Dy, Jucin ] of V inductively
: 0
fin o fiz O
on n as the cone of
0
. fnf2,n71 R
(fnfl,na"'afl,n) PUp — ['Un,1®"‘@1)1, . . 0 ]
fincr o fiz O

The objects of V are the objects of VPP-diff isomorphic to a twisted object of V.

If V' is strongly pretriangulated, then the restriction functor Hom(V, V') — Hom(V, V') is an
equivalence. So, V — V is left adjoint to the embedding of strongly pretriangulated differential
categories in differential categories.

2.1.4. Algebras. Let A be a differential algebra. We denote by A-diff the category of (left)
differential A-modules. Note that Hom 4 gqig(M, M’) is the differential k-module of A-linear
maps M — M’. This is an idempotent-complete strongly pretriangulated differential category.
We say that a differential A-module is strictly perfect if it is in (A), where A denotes the full
subcategory of A-diff with a unique object A.

A differential category C with one object ¢ is the same as the data of a differential algebra
A = Ende(c). When C has a unique object ¢ and A = Endc¢(c), then there is an isomorphism
A-diff 5 C-diff, M — (¢ — M).

More generally, a differential category C can be viewed as a ”differential algebra with several
objects”. More precisely, there is an equivalence from the category of differential categories
C with finitely many objects (arrows are differential functors) to the category of differential
algebras A equiped with a finite set I of orthogonal idempotents with sum 1 (arrows (A, 1) —
(A’ I') are non-unital morphisms of differential algebras f : A — A’ such that f(I) < I'):

e to C, we associate A = @), ... Home(c, ') and I the set of projectors on objects of C;

e to (A, I), we associate the differential category C with set of objects I and Home(e, f) =
fAe.
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2.1.5. G-graded differential structures. We define a Z-monoid G to be a monoid G endowed
with an action of the group Z, denoted by g — g +n for g € G and n € Z, and such that
(g+n)(g +n') = g9 +n+n’. Note that eq + Z is a central submonoid of G, where eg
denotes the unit of G. So, the data above is equivalent to the data of a morphism of monoids
Z — Z(G). This is itself determined by the image of 1, a central invertible element v of G.

We define a differential G-graded k-module to be a G-graded k-module M together with a
differential module structure such that d(M,) < M, (cf [LiOzThl, §2.5]).

Given g € G, we define M{g) to be the differential G-graded k-module given by (M{g)), =
M. Similarly, we define (g)M by ({g)M )y = My,

We define similarly the notion of differential G-graded algebra, of differential G-graded cate-
gory, etc.

When G = Z and v = 1, we recover the usual notion of differential graded k-module, etc.

Let G; and G5 be two Z-monoids. We define GG; xz G5 as the quotient of G; x Gy by
the equivalence relation (gi,92 + n) ~ (g1 + n,g2) for g1,92 € G and n € Z. Denote by
p: Gy x Gy — G xz G5 the quotient map, a morphism of monoids. There is a structure of
Z-monoid on G; xz Go given by p(g1,92) + 1 =p(g1 + 1,92) = p(g1,92 + 1).

Let M; be a differential G;-graded k-module for i € {1,2}. We define a structure of dif-
ferential (G xz G2)-module on the differential module M; ® My by setting (M; ® M), =
@(gl,gz)epfl(g) (Ml)gl ® (M2)g2'

2.2. Bimodules.

2.2.1. Algebras. Let Alg be the 2-category with objects the differential algebras, and Homag (A, A)
the category of (A’, A)-bimodules. The composition of 1-arrows is the tensor product of differ-
ential bimodules.

Given M an (A’, A)-bimodule, we put M~ = Hom gops (M, A), an (A, A’)-bimodule.

There is a morphism of (A’, A)-bimodules

M — Homu (MY, A), m — (¢ — ((m)).

It is an isomorphism if M is finitely generated and projective as a (non-differential) A°*P-module.
There is a morphism of functors

Homa (MY, A) ®4 — — Homu (MY, =), f®r— ((— f({)r).

It is an isomorphism if MV is finitely generated and projective as a (non-differential) A-module.
Combining those two morphisms, we obtain a morphism of functors

M@A - > HOHIA(MV, —)

that is an isomorphism if M is finitely generated and projective as a (non-differential) A°PP-
module. So, when this holds, we have an adjoint pair (M ®a —, M ®4 —), with corresponding
unit n : A* > M ®4 MY and counit ¢ : MY ® 4 M — A. In other terms, the bimodule M"Y is
a left dual of M .

Note conversely that given M such that (MY ®a —, M ®4 —) is an adjoint pair, then M"Y is
a finitely generated projective A-module because Hom4 (MY, —) is exact and commutes with
direct sums, hence M ~ Homa (M, A) is finitely generated and projective as an A°°P-module.

We say that M is right finite when it is finitely generated and projective as an A°PP-module.
We say that M is left finite when it is finitely generated and projective as an A’-module.



8 ANDREW MANION AND RAPHAEL ROUQUIER

Consider the 2-full subcategory Alg” (resp. Alg') of Alg with same objects and l-arrows the
right (resp. left) finite bimodules. There is an equivalence of 2-categories Alg” = (Alg!)revorp,
It is the identity on objects and sends a bimodule M to M.

2.2.2. Categories. Let C and C’" be differential categories. A (C,C’)-bimodule is a differential
functor CQCPP — k-diff. There is a 2-category Bimod of differential categories and bimodules.
Its objects are differential categories and Hompimoa(C,C’) is the differential category of (C',C)-
bimodules. Composition is given by tensor product.

There is an equivalence of 2-categories Bimod — Bimod™" sending a differential category C
to C°P? and a (C,C’)-bimodule to the same functor, viewed as a (C’°P?, C°PP)-bimodule.

The bimodule Hom : C ® C°P? — k-diff, (c1,c2) — Home(co, ¢1) is an identity for the tensor
product. The canonical isomorphism of (C,C)-bimodules Hom ®: Hom — Hom is given by

Home(—, ¢1) ®c Home (o, —) — Hom(co, 1), ((f:d —>¢1)®(g:ca —d)— fog.
Let M be a (C’,C)-bimodule. We define the (C,C’)-bimodule M~ by
MY (¢, ) = Homeorp_aig (M (¢, —), Home(—, ¢)).
There is a morphism of (C,C)-bimodules 57 : MY ® M — Hom given by
enmlcr,ca) : MY (c1,—) ®c M(—,cy) — Hom(cg, 1)
(M(d,—) L Hom(—, e1)) @ m > f(cz)(m) for m e M(c, ¢z).

Given L e C-diff and L’ € C'-diff, we have a morphism functorial in L and L’
Hom(M Y ®cr L' e nr)

I’IOIII(Z\fv ®C’ LI, L)

Hom(L', M®c L) 8= Hom(M" @ L', M ®@c M ®c L)

We say that M is right finite if the morphism above is an isomorphism for all L and L'
When this holds, the functor MY ®¢ — is left adjoint to M ®: — and M"Y is left dual to M
. We also write YN = M where N = MV. We say that M is left finite if it is a right finite
(C'°PP_ C°PP)-bimodule.

Let M be a (C,C)-bimodule. We define the differential category T¢(M). Its objects are those
of C and
Homyy, ary(c1, c2) = @M’(cl,@).
=0
2.2.3. Bimodules and functors. There is a 2-functor from Alg to Bimod: it sends A to the
differential category C4 with one object ¢4 and End(cs) = A. It sends an (A’, A)-bimodule M
to the (Cas,C4)-bimodule Cy; given by Cps(ca,ca) = M. This 2-functor provides isomorphisms
of categories Homae(A, A’) = Hompimea(Ca, Car).

There is a 2-fully faithful 2-functor from the 2-category of differential categories to Bimod™":
it sends C to C and F': C — C' to the (C,C’)-bimodule (¢, ) — Hom(c, F'(c)).

There is a 2-fully faithful 2-functor from Bimod to the 2-category of differential categories:
it sends C to C-diff and M a (C’,C)-bimodule to M ®; — : C-diff — C’-diff.

Composing the 2-functor Alg — Bimod and the 2-functor from Bimod to the 2-category of
differential categories, we obtain a differential 2-functor from Alg to the 2-category of differential
categories: it sends A to A-diff and it sends an (A’, A)-bimodule M to the functor M ®4 — :
A-diff — A’-diff. Note that this 2-functor is 2-fully faithful.
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2.3. Pointed sets and categories.

2.3.1. Pointed sets. A pointed set is a set with a distinguished element 0. The category Sets®
of pointed sets has objects pointed sets and arrows those maps that preserve the distinguished
element.

It has coproducts: \/ S; is the quotient of [ [S; by the relation identifying the 0-objects of
the Si7S.

We define A S; as the quotient of [ [ S; by the relation identifying an element with (0); if one
of its components is 0. There is a canonical isomorphism S A {0,*} = S. This provides the
category of pointed sets with a structure of symmetric monoidal category (the tensor product
of S; and Sy is S1 A S2) and there is a symmetric monoidal functor from the category of sets
to the category of pointed sets F — E, = FE 1 {0}.

Given S a pointed set and k a commutative ring, we denote by k[S] the quotient of the
free k-module with basis S by the k-submodule generated by the distinguished element of S.
This gives a coproducts preserving monoidal functor from the category of pointed sets to the
category of k-modules.

Assume £ is finite. Let S and S” be two pointed sets. We say that a k-linear map f : k[S] —
k[S'] is bounded if there is N > 0 such that for all s € S, the set of elements of S’ that have a
non-zero coefficient in f(s) has less than N elements.

The functor k[—] induces a bijection from k[Homgese (S, S")] to the subspace of bounded
maps in Homy va(K[S], £[S']).

2.3.2. Gradings and filtrations. Let G be a set. A G-graded pointed set is a pointed set S
together with pointed subsets S, for g € G such that S = J,., Sy and S; n S, = {0} for g # h.
Given amap f : G — G' and S a G-graded pointed set, we define a structure of G’-graded
pointed set on S by setting Sy = {0} U {J,cp-1(4) So-
Given G and G two sets and S; a G;-graded pointed set for i € {1,2}, then S; A Sy is a
(G x Gg)-graded pointed set with (S1 A S2)(g1.90) = (S1)g1 A (52)g,-

Assume G is a monoid. Given two G-graded pointed sets S and T, there is a structure
of (G x G)-graded pointed set on S A T. Via the multiplication map, we obtain a structure
of G-graded pointed set on S A T. This makes the category of G-graded pointed sets into a
monoidal category with unit object the pointed set S = {0, +} with S; = S and S, = {0} for
g # 1.

Let G be a poset. A G-filtered set (resp. pointed set) is a set (resp. a pointed set) S together
with subsets (resp. pointed subsets) S, for g € G such that S5, < S-y if g > ¢’ and such
that given s € S (resp. s € S\{0}), the set {g € G | s € S5,} is non-empty and has a maximal
element, which we denote by deg(s).

Note that a structure of G-filtered set on a set (resp. a pointed set) S is the same as the
data of a map S — G (resp. a map S\{0} — G).

The associated G-graded pointed set is grS = {0} 1 S (resp. grS = S) with
(grS)y = {0} u {s e S| deg(s) = g} (resp. (grS), = {s € S\{0} | deg(s) = g}).
If G is a (partially) ordered monoid, then the category of G-filtered sets (resp. pointed sets)
is a monoidal category with (S A T')s, the image of [ | Ssgy x Ts5,,) in S AT. Its

91,92€G,9192 29(
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unit object is the set S = {+} (resp. the pointed set S = {0,#}) with S5, = S if 1 > g and
Sy = & (resp. S5, = {0}) otherwise.

There is a monoidal functor S — grS from the monoidal category of G-filtered sets (resp.
pointed sets) to the monoidal category of G-graded pointed sets. Given f : S — T a map
between G-filtered sets (resp. pointed sets), the map grf : grS — grT is given for s € (gr9),
by (grf)(s) = f(s) if f(s) € (grT), and (grf)(s) = 0 otherwise.

Note also that given a commutative ring k there is a monoidal functor S — k[S] from the
category of G-graded pointed sets to the category of G-graded k-modules.

2.3.3. Pointed categories. A pointed category is a category enriched in pointed sets. We define
similarly G-graded pointed categories, etc. The monoidal functors V; — V, defined above
provide a construction from a category enriched in V; of a category enriched in V,. Let us
describe this more explicitly.

e Given a G-filtered category (or a G-filtered pointed category) C, we have a G-graded pointed
category grC. Its objects are the same as those of C and Homy,c¢(c, ¢’) = gr Home(c, /).

e Given a pointed category C, we denote by k[C] the associated k-linear category: its objects
are those of C and Homye)(c, ¢) = k[Home(c,¢')]. 1If C is a G-graded pointed category, then
k[C] is a k-linear G-graded category.

e Given a category C, the associated pointed category C, has the same objects as C and
Home, (¢, ¢’) = Home(c, ¢') L {0}.

Consider a family {C;} of pointed categories. We have a pointed category A C; with object
set [[ODbj(C;) and Hom ¢, ((c:), (¢})) = /\ Homg, (c;, ¢;). Similarly, we have a pointed category

)

\/ C; with object set [ [ Obj(C;) and given ¢ € C, and ¢’ € Cy, we have

, Home, (c,d) ifr=s
Hompc,(c,¢') = {{0} otherwise.

Note that the data of a structure of G-filtered pointed category on a pointed category C
is the same as the data of a map deg from the set of non-zero maps of C to G such that
deg(f o a) = deg(f) deg(«) for any two composable maps o and  such that 8o a # 0.

Given a G-filtered pointed category C with degree function deg and given a morphism of
(partially) ordered monoids f : G — H, we obtain a structure of H-filtered pointed category
on C with degree function f o deg.

Note that the category Sets® has a structure of pointed category: the distinguished map
between two pointed sets is the map with image 0.

2.3.4. Differential pointed categories. We define a differential pointed set to be a pointed set S
together with a bounded endomorphism d of Fy[S] satisfying d* = 0.

Given S and S’ two differential pointed sets, then S v S’ and S A S” have structures of
differential pointed sets coming from the canonical isomorphisms F[S v S'] = F3[S] @ Fy[.9']
and Fy[S A S'] 5 Fo[S] ® Fy[5'].

We define the category diff of differential pointed sets: its objects are differential pointed sets
and maps the maps of pointed sets. There is a functor Fo[—] : diff — Fy-diff. Let S and S’ be
two differential pointed sets. Because the differentials on F5[S] and F5[S’] are bounded, the
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vector space Fy[Homgese (S, .5”)] identifies with a subspace of Homp, yjoq (F2[S], Fo[S']) that is
stable under the differential Hom(dp,g1, —) + Hom(—, dp,[s7).

We define Z (diff) as the subcategory of diff with same objects as diff and with Hom z(gi) (S, S”)
the subset of maps in the kernel of d (where we view Homg; (.S, S7) inside Homp, ymoa (F2[S], F2[S'])).
The categories diff and Z(diff) have a structure of symmetric monoidal category coming from
those on pointed sets and differential modules.

We define a differential pointed category to be a category enriched in Z(diff). This is the
same as a pointed category V together with a differential on Fy[V] endowing it with a structure
of differential category. The 2-functor V — Fy[V] from the 2-category of differential pointed
categories to the 2-category of differential categories is 2-faithful and 2-conservative.

Note that the category diff is a differential pointed category:

All our constructions below for differential pointed categories are compatible with the corre-
sponding constructions for differential categories, via the 2-functor Fy[?].

Given G a Z-monoid, we will also consider differential G-graded pointed sets: these are
differential pointed sets S with a structure of G-graded pointed set such that d(S,)] < Fa[Sg41]
for g € G. We have a corresponding notion of differential G-graded pointed category.

Let V be a differential pointed category. We say that a map of V is closed if its image in
Fy[V] is closed. Given f: S — S a closed map of differential pointed sets, we define the cone
cone(f) of f as the pointed set S v S’ with differential on Fy[S v §'] = F3[S] ® F5[S’] given

dpyrs) 0
b 2
Y ( [ drysn

We define a V-module to be a differential pointed functor (i.e., a functor enriched in Z(diff))
VY — diff. We denote by V-diff the category of V-modules.
Given f: vy — vy a closed map in V, we define cone(f) = cone(Homy(f, —)) € V-diff.

Let M be a V°PP-module and N a V-module. We define the differential pointed set M Ay N
as the coequalizer of

anb—>M(f)(a)rb

V setoms iy (M (02) A N(01)) e V(M (0) A N(2).

Given V' a differential pointed category, we define a (V,V’)-bimodule to be a differential
pointed functor V A VPP — diff.

Given V" a differential pointed category, N a (V,V’)-bimodule and M a (V',V")-bimodule,
then N Ay M is a (V,V”)-bimodule. This gives rise to a 2-category Bimod® of differential
pointed categories and bimodules, with a 2-fully faithful functor to the 2-category of differential
pointed categories and a 2-faithful functor Fo[—] to the 2-category Bimod.

Let M be a (V,V)-bimodule. We define a differential pointed category T\, (M). Its objects
are those of V and

HOH’ITV(M) (Ul, ’02) = \/ MZ'<’U1, UQ).

=0
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2.3.5. Pointed structures as Fo-structures with a basis. Let us reformulate the definitions of the
previous sections in terms of Fy-vector spaces with a basis.

The functor Fy[—] gives an equivalence from the category of pointed sets to the category
with objects Fa-vector spaces with a basis and where maps are Fa-linear maps sending a basis
element to a basis element or 0.

Under this equivalence, we have the following correspondences:

e a coproduct of pointed spaces corresponds to a direct sum with basis the union of bases

e a wedge product of pointed spaces corresponds to a tensor product with basis the
product of bases

e a (G-graded pointed set corresponds to a G-graded Fy-vector space with a basis consisting
of homogeneous elements

e a G-filtered pointed set corresponds to a G-filtered Fs-vector space V', ie a family
{V=4}4ec of subspaces of V with V5, < Vo if g > ¢/, with a basis B such that B n V%,
is a basis of V5, for all g € G and such that given v € V\{0}, the set {g e G | V5, # 0}
is non-empty and has a maximal element

e a differential pointed set corresponds to an Fy-vector space with a basis together with
a bounded differential.

2.4. Symmetric powers. Let C be a pointed category. We define a pointed category S(C).
Its objects are finite families I of distinct objects of C. We put

Homg(e)(1,J) = \/ /\ Home(i, ¢(i))
¢ el
where ¢ runs over the set of bijections I = J.

An element of Homgy(I,J) is a pair (¢, f) where ¢ : I — J is a bijection and f €
[ [;e; Home (2, ¢(2)). All pairs with f; = 0 for some ¢ are identified, and they form the 0-element
of Homgc (1, J). The composition is given by (v, g) o (¢, f) = (¥, (9s0) © fi)ier)-

Given a functor F': C — C’ of pointed categories that is injective on the set of objects, we
obtain a functor S(F) : S(C) — S(C’) of pointed categories. If in addition F is faithful, then
S(F) is faithful.

Given a commutative ring k and a k-linear category D, we define a k-linear category Si(D).
Its objects are finite families I of distinct objects of D. We put

Homyg, (p)({, J) = (—D ®Homp(z',¢(i)).
G:IST iel
The composition is defined as in the case of pointed categories above.
Consider a functor F': D — D’ of k-linear categories that is injective on the set of objects.
We obtain a functor Si(F) : Sp(D) — Sp(D’) of pointed categories. If Hom-spaces in D and
D' are flat over k and F' is faithful, then Sy (F) is faithful.

Given a pointed category C, there is an isomorphism of k-linear categories k[S(C)] —
Sk(K[C]).
3. HECKE ALGEBRAS

In this section, we define and study variations of the nil affine Hecke algebra of GL,,. From
§3.1.5 onwards, all additive structures will be defined over k = F,.
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3.1. Differential graded nil Hecke algebras. We discuss here the case of general Coxeter
groups. The results will be used only for types A, and A,.

3.1.1. Cozxeter groups. We refer to [Hu, §5 and §7.1-7.3] for basic properties of Coxeter groups
and Hecke algebras. Recall that a Cozeter group (W, S) is the data of a group W with a subset
S < W such that W has a presentation with generating set S and relations

s?=1, sts--- = tst--- when st has order my for s,te S.
— —
ms¢ terms mst terms

A reduced expression of an element w € W is a decomposition w = s;, - - - s;, such that s; € §
for r = 1,...,0 and such that [ is minimal with this property. The integer [ is the length ¢(w)
of w.

The Chevalley-Bruhat (partial) order on W is defined as follows. Let w’,w € W and let
w = s; ---s;, be a reduced decomposition. We say that w’ < w if there is I’ < [ and an
increasing injection f : {1,...,I'} = {1,... [} such that w' = s;, ;- This is independent
of the choice of the reduced decomposition of w.

St

3.1.2. Hecke algebras. Let R = Z[{as, bs}scs] where as and by are indeterminates with as; = ay
and by = by if s and s’ are conjugate in W.
The Hecke algebra H = H(W) of (W, S) is the R-algebra generated by {T}ss with relations

T? + a1y + by =0, T,I,T,--- = TyT,T; - - - when st has order my.
—_—
mg¢ terms mg¢ terms
Given a reduced decomposition w = s;, ---s;,, we put T, = Tsi1 T sy - This element is

independent of the choice of the reduced decomposition of w. The set {T;,},ew is a basis of H.
Let ¢ : H = H°PP be the algebra automorphism defined by T, — T, for s € S.

Let I be a subset of S. We denote by W; the subgroup of W generated by I. The group W7,
together with I, is a Coxeter group and the length function on W7y is the restriction of that on
W [Hu, §1.10].

We put Ry = Z[{ass,bs1}ser] where ag; and bs; are indeterminates with as; = ay; and
bs; = by s if s and s are conjugate in Wj. There is a morphism of rings Ry — R, as; —
as, bSJ —> bs.

We denote by H; = H;(W) the R-subalgebra of H generated by {Ts}sc;. There is an
isomorphism of R-algebras R ®g, H(W;) > H (W), T, — T,.

We assume for the remainder of §3.1.2 that W is finite. In this case, there is a unique element
wg of W with maximal length [Hu, §1.8] and we denote by N its length. We have w% = 1 and
wgSwg = S. There is an automorphism of algebras

s HS H, Ty Ty

We denote by w; the longest element of W; and by Nj its length. We denote by W (resp.
TW) the set of elements v € W such that v has minimal length in vWj (resp. Wiv). Note that
WIS W /Wy, v~ oW, [Hu, Proposition 1.10].
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3.1.3. Traces. We assume in §3.1.3 that W is finite.
Given J < I, we define an R-linear map

Twowew fvewr W
try: Hp — Hy, T, { " R
0 otherwise.

The next proposition shows this is relative Frobenius form (cf eg [Roul, §2.3.2]).

Proposition 3.1.1. We have ts; =trjotgs;.

Given h € H and x € Wy, we have

tS,I<hTm> = tS,I(h)Tm7 tS,](Twsz-x-w1w5h> = TmtS,](h>-

Given h' € H commuting with H;, we have tg(hh') = ts(ts(h)h).

There is an isomorphism of R-modules

5571 cH S HOHlH?Pp(H, H]), h — (h/ = tSJ(hh/))
with
fS,I(TwaI-x-w,wShTy) = Tacng(h)Ty for xe Wi and y e W.

Proof. Define w! = wgw; and ‘w = wywg, so that ‘w - w! = 1. We have w! e W1,

Let v € W. There is a unique decomposition v = v'v” where ¢(v) = £(v') + £(v"), v" € W}

and v' € W! [Hu, Proposition 1.10]. Furthermore, £(v') < ¢(w!) unless v = w!. We have

tS,[(Tv) = 5UI,wITrU//.

There is a unique decomposition v” = vyvy with £(v") = £(vq) + £(vs), v € W and v; has
minimal length in v"W;. We have v = (v'vy)ve where £(v) = £(v'vy)+£(v2) and v'vy has minimal
length in vW;. Furthermore, v'v; = w” if and only if v/ = w! and v; = w;w;. It follows that

ZfI,J o tS,I(Tv) = 5U’,w1tl,J(Tv”) = 5v’,w15v1,w1wJTv2 = tS7J<Tv)-
This shows the first statement of the lemma.
We have T,»T, € Hy, hence

tS,I(TvTx> = tS,I(Tv’ (Tv”Tx)) = 5v’,w1Tv”Tx = tS,I(Tv)Tx-

This shows the second statement of the lemma.

I

Let 2/ = w!-x-Tw. We have {(w’-z-w) = ¢(x). Since T}, T), is a linear combination of elements
T,. with y < 2/ and z < v, it follows that if v’ # w’, then T,,T, is a linear combination of
elements T,r.,.1,,, with y € Wy and z¢w’ W, hence of elements T, with u¢w’W;. So, if o' # w’,
then tS,[(TI/Tv) = 0.

Assume now v = w!. We have TpyT, = Tyrpi1yTyiTyr = Toyi,Tyr = Tyt TpTyr because
Uz wh) = l(w! - x) = L(w!) + U(z) = (') + L(w!). We deduce that tg;(TwT,) = Ty Ty =
Tyts(T,). This shows the third statement of the lemma.

Let v € W!. We have £(w!) = ¢(w vy ') + £(vo). Let v e W!. Note that Ty T = Tyrymr,
or T, 1T, is a linear combination of T,,’s with {(w) < L(wlvgh) + £(v). Tt follows that if
tSJ(Tw]valTv) = 01if (v) < l(vg) or £(v) = £(vy) and v # vy. We have also tS,I(TwlvalTvo) = 1.

Since H is a free right H;-module with basis {T, },eyr, we deduce that tAS, 7 is surjective. Since
fs, 7 is an R-module morphism between free R-modules of the same finite rank, it follows that
it is an isomorphism. This shows the fifth statement of the lemma.
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Let se Sand ve W. Let s = wg-s-wg e S. If v¢{ws, ws - s}, then tgx(T,75) = 0 and
tsz(TeT,) = 0. If v =wg s, then T, Ty = T\yy = ToT,. If v = wg, then tgx(T,Ts) = as =
ts.z(TeT,). So, we have shown that tg g (T,7s) = tsgz(TsT,). It follows by induction on ¢(w)
that tS’Q(Tva) = tS,@(TwS'w'wSTv> for all we W.

Consider now h' € H commuting with H;. Let h” € H;. We have

t17®(t57](hh/)h”) = tLQ(tsJ(hh,h”)) = t&g(hh”h/) = t57®(LS<h/)hh//) =
= trg(ts(ts(W)hR")) = trg(tsi(us(h)h)R").

It follows that 7 g(tss(hh')) = t15(tss(ts(R')h)), hence tg(hh') = tsr(ts(h')h). This com-
pletes the proof of the lemma. O

We put ¢} ; = t7;. We define an R-linear map

_ vaw ifUEWJ'U)[
t;,H—> H;, T, — e

Ly« A 7 { 0 otherwise.
We have t; ;(h) = u(t7 ;(¢(h))).

We put f; ; = ts;. We have an isomorphism of R-modules
tSI H— HomHOPP(H H[) h — (h/ — til(hh/))
with A X
ts (T:hT,) = Tty (R)T, for x € Wy and y € W.

Consider I,J ¢ S with I < J or J < I. We define an (Hj, H;)-bimodule L*(I,J) with
underlying R-module H. Weput a =0if £+ =+ anda=11if + = —.

If I < J, then the right action of H; is by right multiplication and the left action of h € H;
is by left multiplication by (¢se7)*(h).

If J < I, then the left action of H; is by left multiplication and the right action of h € Hj is
by right multiplication by (¢7¢;)%(h).

Note that L*(I,J) is free of finite rank as a left module and as a right module.

There is an isomorphism of (H, Hy)-bimodules

L*(I1,8)" = Hompees (L*(1,8), H) > L*(S, 1), ¢~ ((1).
The next result follows immediately from Proposition 3.1.1.
Corollary 3.1.2. The map %’I is an isomorphism of (Hy, H)-bimodules
L¥(I,8) = L*(S,1)" = Hompeore (L(S, 1), H).

The results above can be formulated in terms of dual bases. Note that {T},},cpr is a basis
of the free right H;-module H, while {T},},cry is a basis of the free left H;-module H.
We have

t 1 (Twgwo1Tw) = uw and tg (T Tu-100g) = 0w for v,we W and o', w’ € TW.

We deduce that the basis (Tygw,w—1)wew: When £ = + (resp. (Tiy)werw when + = —) of the
free left Hr-module LT (I, S) is dual to the basis (Ti)wewr When + = + (resp. (Ty-1wpwg)welw
when & = —) of the free right H;-module L*(S,I), via the pairing providing the isomorphism
of Corollary 3.1.2.
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The counit of the adjoint pair (L*(S, 1) ®y, —, L¥(I,S) ®y —) is given by the morphism of
(Hy, Hy)-bimodules
L¥(1,8)®u L*(S,1) — H;, a®b— t5 (ab)

while the unit is given by the morphism of (H, H)-bimodules

Z:wewl Ty @Twswlwﬂ if + =+

H — L*(S, I L¥(I,5), 1~
( 7 )®HI ( 7 >, {ZMGIWTwlwIwS@)Tw lfi -

3.1.4. Nil Hecke algebras. We define the nil Hecke algebra H3'(W) of (W, S) as the Z-algebra
H(W)®g R/(as, bs)ses. This is the Z-algebra generated by {T}ss with relations

TS2 =0, T.I,)T,--- =T, T,T; - - - when st has order mg;.
mst terms mst terms

This is a Z<g-graded algebra with T, in degree —¢(w) for w e W.
The multiplication is given as follows:

T, {Tww, if 0(ww') = L(w) + L(w)

(3.1.1) i
0 otherwise.

Consider the filtration of the group algebra Z[W] where Z[W]>~" is spanned by group ele-
ments w € W with ¢(w) < i, for i € Zg. The associated Z<o-graded algebra is Hy'(W) and
T, is the image of w € W in the degree —¢(w) homogeneous component of Hy'(W).

3.1.5. Differential. Let H™ (W) = Fy ® HE(W). We define a linear map d : H*(W) —
Hnil<W) by
d(Tw) = Z Tw’-

w' <w, L(w')=~L(w)—1
Proposition 3.1.3. The map d defines a structure of differential graded algebra on H™'(W).

Proof. Let w € W and s € S with ws > w. We have d(T,,T) = d(Tws) = X<, s(wr)=t(u) L'~
We have [Hu, Theorem 5.10]

{w eW |w <ws, L(w)="Llw)}={ws]|w <w, W <w's, (W) ="~0w)—1} v {w}.
It follows that d(T,Ty) = d(Ty)Ts + T = d(To)Ts + Twd(T)).

Consider now v € W and s € S with vs < v. We have d(T,) = d(T,sTs) = d(T,s)Ts + Tps by
the result above. It follows that d(T,)Ts + T,d(Ts) = TysTs + T, = 0 = d(T,Ty).

We deduce that d(T,, Ty ) = d(Ty)Tw + Twd(T,) for all w,w’ € W.

Since d*(Ty) = 0 for s € S, it follows that by induction that d* = 0. U

The following corollary shows that the computation of d(T),,) can be done using the Leibniz
rule, given a reduced decomposition of w. The terms that do not vanish are exactly the terms
given in the original definition of d(T,).

Corollary 3.1.4. Let w = s;, - - - 5;, be a reduced expression of we W. We have

d(T) = ) Ty T T T
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We have Ti - 'Er—lﬂr+1ﬂl # 0 Zf and only Zf Siy " Sip 1 Sipg T Si
if Z(51'1 © 0 Sie g Sig Siz) = é(w) -1

Given r,r" with s;, - S;._Si.\ S

, s reduced, i.e., if and only

— g a8 L g —
L= Siy iy SiuL, S reduced, we have r = r’.

Proof. The first statement follows from Proposition 3.1.3. The second statement is a property
of the multiplication of T},’s.

For the third statement, let us assume r < r’. We have s; ,, --- Si, = i, "+ 8i,_, reduced,

hence s; s;, ., ---s;, is not reduced, a contradiction. U
™

Remark 3.1.5. Note that the algebra H™ (W) is acyclic if S # .
Note also that one can introduce a family of commuting differentials d, for s € S modulo
conjugacy by setting d(7;) = 1 if t € S is conjugate to s and ds(7}) = 0 otherwise.

The specialization over Fy at a;, = b, = 0 of the bimodules L*(I,J) of §3.1.3 acquire a
structure of differential graded bimodules, using the differential graded structure of H™!(W).
We keep the same notation for those differential graded specialized bimodules and for the maps
t and t.

Proposition 3.1.6. If W is finite, then

tsr: H"Y(W) — H™(W;)}{N — N;)
1s a morphism of differential graded Fo-modules and Corollary 3.1.2 provides an isomorphism
of differential graded (H™ (W;), H™(W))-bimodules

t5,: L¥(1,8) = L*(S,1)"(N = Np).
Proof. Let v e W. There is a unique decomposition v = v'v” where £(v) = £(v') +£(v"), v" € Wi
and v’ € W,

We have d(T,) = d(Ty)Tyr + Tpd(Tyr). i ue W and u < v', then u¢wgWi. Tt follows that
ts(d(Ty)) = ts (Twd(Tyr)) = O ord(Tyr) = d(ts(T})).
O

3.1.6. Differential graded pointed Hecke monoid. Let W™ be the pointed Z<y-graded monoid
with underlying pointed set {7, }wew [ [{0} and multiplication given by (3.1.1). This is the
pointed monoid gri¥ associated to the filtration on W given by W= = {w e W | {(w) < i}
and there is an identification Fy[WW™!] = H™(W) making W™ into a differential graded pointed
monoid.

3.2. Extended affine symmetric groups.

3.2.1. Finite case. Fix n = 0. The symmetric group &, is a Coxeter group with generating set

{(1,2),...,(n—1,n)}.

Its differential nil Hecke algebra H,, is the k-algebra generated by 17, ...,T,_1 with relations
(3.2.1) T? =0, T,T; = TyT; if |i — §| > 1 and Ty T 1 T; = Ty TiTi

and with differential given by d(7;) = 1.
The algebra H,, has a basis (T})ues,, -
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3.2.2. Definition. Let n > 1. We denote by S,, the extended affine symmetric group: this is
the subgroup of the group of permutations of Z with elements those bijections o : Z = Z such
that o(n +r) =n + o(r) for all r € Z.

Given i, j € Z with i — j¢nZ, we denote by s;; the element of S, defined by

j—i+r ifr=i¢ (modn)
sijf(r)=<i—j7+r ifr=j (modn)
r otherwise.

Note that s;i, jin = Sij, sij = 55 and sfj = 1.
The symmetric group &, identifies with the subgroup of &, of permutations o such that

o({1,...,n}) ={1,...,n}. We have a surjective morphism &,, - &,, sending o to the induced
permutation of Z/n. We identify its kernel with Z™ via the injective morphism

7" — S, (A, h) = ({1, 0} 30— i +n\).
We have én =7"xG6,.

Assume n > 2. Let W, be the Coxeter group of type A,y it is generated by {s,}.ez/m With
relations
szz 1, su8p = SpsSq if a #b+ 1

SaSat18a¢ = Sa+1SaSar1 (for m > 2).

Consider the semi-direct product W,, x {(¢) of W,, by an infinite cyclic group generated by an
element ¢, with relation cs,c™! = s5441.

Lemma 3.2.1. There is an isomorphism of groups

W, x{c)y > én, c— (j—J+1), Sitnz — Siiy1 forie{l,...,n}.

Proof. Denote by f the map of the lemma. By [Lus, §3.6] (cf also [BjBr, Proposition 8.3.3]),

the restriction of f to W, induces an isomorphism with the subgroup of &,, of elements ¢ such
that >, ,(0(i) —i) = 0. It is immediate to check that f extends to a morphism of groups

~

W, x{c) — &,,.

Consider 0 € &, and let N = 3" (c(i) — i). Note that n|N. Put o’ = o f(c)~N/". We have
o' € f(W,), so f is surjective. Let 0 = f(we?). We have > (0(i) —i) = nd. So, if 0 =1,
then d = 0, hence w € ker(f) n W,, = 1. This shows that f is injective. O

We will identify W,, x {¢) and S,, via the isomorphism of Lemma 3.2.1.
We put W, =1, so that &; ~ {(¢c) = W} x {c). We also put &, = 1.

3.2.3. Diagrammatic representation. The permutations of Z can be described as collections of
strands in [—1, 1] x R going leftwards from integers points on the vertical line z = 1 to integer
points on the vertical line x = —1. Thanks to their n-periodicity, those permutations that are
elements of &, can also be encoded in a collection of strands drawn on a cylinder, going from
right to left, by passing to the quotient of the vertical strip [—1,1] x R by the vertical action
by translation of nZ.

Here are some elements of ég:
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|
N

|
N UTRWN RO -

The multiplication oo’ of o and ¢’ in én corresponds to the concatenation of the diagram of
o put to the left of the diagram of ¢’ as in the following example:
S15 . S12 = S15512

3 S

SaSa+1Sa Sa+18aSa+1
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csac_1 Sa+1

The elements of &,, correspond to diagrams whose strands do not go in the back of the
cylinder, hence can be drawn on a rectangle. For example, s;5 above can be represented as
follows:

S12

3.2.4. Length. Assume now again that n > 1. We extend the length function on the Coxeter
group W, to one on W, x {c) by setting {(wc?) = ¢(w) for w € W, and d € Z. Note that
the action of ¢ on W, preserves lengths. Similarly, we extend the Chevalley-Bruhat order on
W, % {c) by setting w'c? < we? if w' < w and d’ = d and we consider the corresponding order

on &,. Note that the action of ¢ on W, preserves the order, hence w'c? < we® if and only if

' < ctw.
Lemma 3.2.2. Let o/,0" € &, and 0 = 0'c”. Assume ((0) = ((¢") + ((c”). Let a € Z/n such
that ((cs,) < (o) and €(0"s,) > L(c").

Let o = 0"s, and o = 0'0"s,0""1. We have 0 = o/’ and (o) = {(a) + £(a”).

Proof. Multiplying if necessary ¢’ and ¢” by a power of ¢, we can assume o, ¢’ and ¢” are in
W,.

Let o' = sq, -+ 5,,, and 0" = s, ., -S4, be two reduced decompositions. The Exchange
Lemma [Hu, Theorem 5.8] shows that there is ¢ such that os, = S4, -S4, ,Sa;sy ** * Say-

If i > m, then 0”s, = Sa,.,, " Sa;_15as4, ** - Say and this contradicts £(0”s,) > £(0”). So,
i < m. We have 05, = Sa, - Sa; 1 Sais1 ** San0 - We deduce that o/ = s, --- 54, ,54,,, " Sa,n,
has length m — 1 and the lemma follows. O

Given o € &, we put L(c) = {(i,j) € Zx Z | i < j, o(i) > o(j)}. This set has a diagonal
action of nZ by translation. We put L(o) = {(i,j) € L(o) | 1 < i < n}. The canonical map
L(o) — L(0)/nZ is bijective.

The next lemma is a variation on classical results (cf [Sh, Lemma 4.2.2], [BjBr, Proposition
8.3.6] and [BjBr, §2.2]).

Lemma 3.2.3. Let 0 € &,. We have L(o) = L(c%0) for all d € Z and

(o) = i) = 3 (2=t

n
o<i<j<n

If (i,5) € L(o), then 0s;; < 0.
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d 1s a reduced decomposition of we W,. Giwen 1 <r <,

Assume 0 = c*w and w = Sq, -+ - Sq
let i, € {1,...,n} with i, + nZ = a,.
The set {(Sa, - Saysy (ir)s Say -~ Sayss (ir + 1)) hi<r< 15 @ subset of L(o). This induces a bijec-

tion

1

{((Saz T Sar+1(ir)> Sap Sar+1(ir + 1))}1<r<l - L(U)/TLZ.

Proof. Consider a pair (i,5) € L(o) with 1 < i < n and such that (i, )¢L(c) and (', 7)¢L(0)
fori < 7' < j. Given j' with i < j' < j, we have o(i) < o(j') < o(j), a contradiction. It follows
that 7 =4+ 1. We have

L(o) = ({(i,i + 1)} +nZ) | [(sii41, 81001) (L(051551))-

We deduce by induction on |L(c)| that £(¢) < |L(c)].

We prove the statements on {(sq, - Sa,., (i), Sa, = * * Saysy (ir + 1)) h1<r< by induction on £(o).
By induction, the statements hold for 0sq, 441. In particular, £(0se,.q41) = |L(0Saas1)]. Tt
follows that £(c) = (05a.a41) + 1 > |L(05a,.a,41)]. Assume (i, i; + 1)¢L(o). Tt follows that

L(oSaar+1) = Saa1(L(0) TT({(it, i+ 1)} +1Z), hence |L(0)] < |L(osaa+1)| = U050.a41) =
¢(0) — 1, a contradiction. It follows that (4,9, + 1) € L(o), hence

L(0) = Sapa+1(L(08i441)) H({(z’l,z’l +1)} +nZ).

The last statement of the lemma follows now by induction.

Consider now (i,7) € L(o). Up to translating (7, j) diagonally by nZ, we can assume there is
r such that i = s, - Sq,.,, (i) and j = g, Sa,,, (ir + 1). S0 08,5 = PS4y = Sar 1 Sary ** * Saps
hence os; ; < 0. The lemma follows. O

Lemma 3.2.4. Given 0,0’ € &,,, we have ¢’ < o and U(o") = (o) — 1 if and only if there is
(J1,J2) € L(0) such that o’ = osj, j, and

e jo—j1<noro(j)—o(jz2) <n and
e given i € Z with j; <i < ja, we have o(j1) < o(i) or o(i) < o(jz2).

Proof. Consider (ji, j2) € L(o) and let s = s, ;,. Consider integers i < j with ¢ — j¢nZ.

If s(i) < s(j), then (i,7) € L(o) if and only if s(i,7) = (s(¢), s(j)) € L(os).

Assume now s(i) > s(j). We have three possibilities:

o | —j1 €nZ, j— jo¢nZ: we have (i,7) € L(o) if and only if (i, ) € L(os) or o(i) > o(j) >
os(i) (and then (i,7)¢L(0s))

o i— j1¢nZ, j — jo € nZ: we have (i,7) € L(o) if and only if (i,7) € L(os) or os(j) > o(i) >
o(7) (and then (i,j)¢L(0s)).

o i =jy+nr, j=jo+nr’ with r,r" € Z: we have (i,j) € L(o) if and only if (i, j) € L(os)
or o(j1) —o(j2) > n(r" —r) > o(j2) — o(j1) (and then (7, 5)¢L(0s)).

We deduce there is an injective map a : L(os) — L(o) given by

(i) = {(m) if s(i) > ()

s(i,j) otherwise
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L(o) = a(L(cs)) u ]_[ ((j1 + nr, j2) + nZ)u

j2—i1 0(]’1)—0(]'2))

\r|<min(
n

T ((Ged+nZ)u((.5) +n2)).
a1 )j;:ESJ;U(]é)
Note that a(L(os)) w ((j1,72) + nZ) < L(o).

d d

Let us now prove the lemma. We have ¢ = ¢®w and ¢’ = ¢ "W € én for some w,w’ € W,.
Assume ¢/ < o and l(0’) = l(0) — 1. We have d = d', v < w and ((w') = {(w) — 1.
It follows that there is a reduced decomposition w = s,, --- s, and r € {1,...,l} such that
W' = Sq Sap_1Sap.1Say- L€t j1 = Sq - Sq,.,(4) and jo = Sq, - Sq,,, (4 + 1). We have
(j1,J2) € L(0) and ¢’ = 0s;, ;, (Lemma 3.2.3).

The discussion above shows that {i € Z | j; < i < ja, 0(j1) > o(i) > 0(j2)} = & and
min(j2_j1 U(jl)_g(”)) < 1. The lemma follows. O

n n

Example 3.2.5. The elements of E(o) are in bijection with intersection points between strands
of a "good diagram” representing . Here, we define a strand diagram to be good if no more
than two strands intersect at a given point and if the diagram minimizes the total number of
intersection points. Similarly, the elements of L(o) correspond to intersections in an unfolded
good strand diagram.

These descriptions can be deduced from Lemma 6.2.3 below, that shows those statements
hold for pairs of strands. Now, the intersection point set for a good diagram is the disjoint union
over intersection sets between pairs of strands, and a good diagram minimizes the intersection
number among good diagrams if and only of each pair of strands minimizes its intersection
number.

For example:

|
el A\

DU W~ O

3.2.5. Ertended affine Hecke algebra. We let c act on the differential graded algebra H™!(WV,,)
by ¢(T,) = Tyy1. Let H, = H"(W,,) x {c). For n > 2, it is the differential graded F,-algebra
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generated by {T,}sez/n and ¢ with relations
T2 =0, cT, = Toprc, T,y =Ty, ifa#b+1

TaTa+lTa = Ta+1TaTa+1 ( for n > 2 )

and differential d(T;,) = 1, d(c) = 0. The element ¢ has degree 0, while 7}, has degree —1. Note
that H, = F5[S;] = Folc), a differential graded algebra in degree 0 with d = 0.

Let we W, de Z and w' = wc?. We put T,y = T,,c?. We also put T, = T,,c? for o = wc?.
The set {1, },.s, is a basis of H,,.

Remark 3.2.6. Define a filtration on Fy[S,,] with (F3[&,,])>~* the subspace spanned by group
elements w € &,, with £(w) < i. The associated graded algebra is H,,.

We put Hy =F,.

Remark 3.2.7. The group S,, is more classically described as a semi-direct product Z" x G,
(cf §3.2.2) coming from its description as the extended affine Weyl group of GL,,. The nil affine
Hecke algebra of GL,, associated with this description (cf e.g. [Rou2, §2.2.2]) is not isomorphic

to H,. When considering invertible (instead of 0) parameters, the two algebras are isomorphic.

Example 3.2.8. An element T, of H, will be representated by a good strand diagram for o.
The multiplication of T,, and T, is obtained by concatenating the diagrams of o and ¢’ (as in
the multiplication of o and ¢’). If the corresponding diagram is good, then 1,7, = T,», where
o” is represented by the concatenated diagram. Otherwise, T,T,, = 0. For example:

T815281 Ts

2

3.2.6. Positive versions. Let & be the submonoid of &, of permutations ¢ such that o (Z-) <
Z-,. Note that & is stable under left and right multiplication by &,,.
There is a decomposition &, = (Zxo)" x &,,.

We have s, 18,9 $1¢Sp_15p—2- -8, = (0,...,0,1,0,...,0) € (Zso)" for r € {1,...,n},
p;;.’f’
hence v restricts to an isomorphism from the submonoid of W, x {¢) generated by s1,...,S,_1,¢
to &7

Let I:I;[ = @weéx F,T,,, an Fy-subspace of H, containing H,,.

Proposition 3.2.9. I:I;{ 15 a differential graded subalgebra of H,.
The algebra H has a presentation with generators Ty, ..., T,_1,c and relations

T? =0, T,T; = T;T; if |i — j| > 1, TTia Ty = T TiTia (ifn > 2)

cly =Tic for1 <i<n—1and T, 1 = Tic>
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The remainder of §3.2.6 will be devoted to the proof of Proposition 3.2.9.
Let A,, be the k-algebra with generators ti,...,t,_1,b and relations
=0, tit; = tit; if |i — j| > 1, titigit; = tigatitia(ifn>2)
bt; = tiqb for 1 <i<n—1and b’t,_; = t;b°.
Given i€ {1,...,n}, we put f; = bt,,_1---t;. Given I  {1,...,n} non-empty with elements
1<iy <<t <n,weput vy = B, 1r—18i4r—2 - Bi,. Note that vy = b"
There is a morphism of algebras H,, — A,,, T; — t; and we denote by t,, the image of T,, for

weS,.

Example 3.2.10. The elements of ég correspond to strand diagrams where the strands wind
positively around the cylinder. The relation ¢*T},_; = Tic? is illustrated below:

02 Tn_ 1 T1 62

B3 Y{2,3,6}
The element (0,0,0,0,1,0,0) € (Zso)” corresponds to the following element of & :

54535951CSgS5

Lemma 3.2.11. The set {t,y1,, - v} with w € &,, m > 0 and I, < {1,...,n}, I, C
{1,...,|L,_1|} for 1 <r < m generates A, as a k-vector space.

Proof. Let i e {1,...,n} and j € {1,...,n— 1}. We have
tj+1ﬁi lfj <t1—1
51‘—1 ifj:i_l
0 if j =

Bit; =
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Consider I < {1,...,n} non-empty with elements 1 <1i; < --- < i, <n. We put ig = 0 and
7:7-+1 =nNn + 1
Consider j € {1,...,n—1}. Fix k€ {0,...,r} such that i), < j < ix,1. Let us show that

Ljr—kVI if 4, < j <ippr—1
0 i, =7<1 -1
(3.2.2) yit; = Dl =S e
Vi1 < <ip<ipy1—1<ippo<--<ir} if iy, <j=ipp1—1
(7%00; ifip =J=1p41— 1.
We have

Y1ty = Biyer—1 Bipr4r—k—1tjar—k—1Bipsgtr—k—2 " Bi,-

If j < iggr — 1, then Bi, vr—k—1tjsr—k—1 = tjrr—tBip,,+r—k—1 and we deduce the first two
equalities in (3.2.2). Assume now j = ix11 — 1. We have 3, ,, yr—p—1tjer—k—1 = Bip,1+r—k—2 and
the third equality in (3.2.2) follows. The last equality from the fact that giveni € {1,... ,n—1},
we have

Bis1Bi = bty bty by = 0ty g+ bty -t = 007t g ity - i

_ 2
=1 i+1°

We deduce that y;t; = wyp for some I’ < {1,...,n} with |I'| = || and max(/") < max(])
and w e {0,1,t,...,t,1}.
Fix se {1,...,n} with s > max(/). We have

~iBs = {5T7{i2—1,‘..,z‘r—1,5} iflel

V(I-1)u{s} otherwise.

Consider I, ..., 1, as in the lemma. Let k£ be minimal such that 1¢l,. We put k = m + 1 if
there is no such k. Define u = vy ,,;; if K = m + 1 and u = 1 otherwise. Put Iy = {1,...,n}.
Recall that b = 3,. We have

Vi - Vb =g, v

where Il = {i —1jie [\{1}} 0 {|L,—1|} for 1 <r <k, I} = {i — 1|i € I} U {|Ix—1|} and I = I,
for r > k.

We deduce that the set B = {t,,71,, - - - 75, } of the lemma is stable under right multiplication
by t; for j € {1,...,n—1} and by b. Since B contains 1, it follows that B is a generating family
for A,, as an Fy-vector space. O

Remark 3.2.12. An example of the description of v;¢; in the proof of Lemma 3.2.11 is given
below:
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V{2,3,6}t4 157{2,3,6}

V{2,3,6} 12 11712,3,6}

Proof of Proposition 3.2.9. Let H be the subalgebra of H,, generated by T1, ..., T\ 1,¢. This is
a differential graded subalgebra of H,. Given w € S, let |w| = >}, w(i). Let w € S ow # 1.
We show by induction on ¢(w) + |w| that T, € H.

Assume £(ws;) < £(w) for some i € {1,...,n —1}. We have ws; € S} and |ws;| = |w], hence
by induction 7,5, € H. We deduce that T;, = T,,,,T; € H.
Otherwise we have 0 < w(l) < -+ < w(n), hence w(n) > n since w # 1. It follows that

we ' e & and we | < |w|, hence Toye-1 € H by induction. So T, = Ty Te € H.
We have shown that H + < H. Since H + is stable under right multiplication by T, and by
T, forie{1,...,n — 1}, it follows that H = H; .

There is a surjective morphism of algebras p : A4, — }A[;’, t;— T;, b— c. Given I = {i; <
- < i,} a non-empty subset of {1,...,n}, we put

cr = (Sn1 " Siy4r—1)(CSn—1 -~ Sigyr—2) -~ (CSp_1---8;) € én

We have ¢;(i)) =n+1for 1 <l <randc(j)=j+r—kifiy <j <irp: (where we put ig =0
and 4,41 =n +1).

Let E be the set of families (11, ..., ;) wherem >0, [; < {1,...,n}and I, < {1,...,|[,_1]|}
for 1 <r<m.

Given w € &,, and ([y,...,1,) € E, we have p(t,yr, -~ 71,) = 1, -1, and that

element is either qul---r:zm or 0.
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Let m = max{a(i)}1<i<n. We put

We define a map ¢ : (Zso)" — E. Let a € (Zxo)".
r<mbyl, =c_ cr(aZs,)). We

I = a7 *(Z=,) and we define inductively I, for 2 <
put ¢(a) = (I1,...,I,). We have

cr, e (1) = na(i) + |a (Zsq))| + (position of i in a™'(a(i))).

m

We define a map ¢ : F — (Zso)". Let (I1,...,1,) € E. We define a € (Z=o)" by a(i) =
[C’m(;&] and we put ¥([y,...,I,) = a. The maps ¢ and ¢ are inverse bijections. We
deduce that the map E — (6,\6}) sending (I, ..., I,,) to the class of ¢;, --- ¢, is bijective.
It follows that the map &, x E — &F, (w, (I1,...,I,)) — wey, - - - ¢, is bijective.

If p(twyr, - ) = Tiwey,, -e;, = 0 for some w € &,, and (I1,...,1I,) € E, then the bijectivty
of the map above shows that the image of p is the span of a proper subset of a basis of ﬁ;[ ,
contradicting the surjectivity of p.

This shows that the elements p(t,77,, - - -1, ) are distinct basis elements of H, hence p is an
isomorphism. O

Remark 3.2.13. The same method as the one used in the proof of Proposition 3.2.9 shows that
S, is the free (G,,, S, )-monoid on a generator ¢ with relations ¢-s, = s, 1-cforre {1,...,n—1}
and ¢® - s,_1 = §1 - 2.

3.2.7. Pointed versions. Given n > 0, we put H® = (&,)". This is the quotient of the free

pointed monoid generated by Ti,...,T,_; by the relations (3.2.1). The differential is given by
d(T;) = 1. Note that k[Hy]| = H, and H? = {0} U {Ty}ues,, -

We define é,nlﬂ to be the differential graded pointed monoid with underlying differential
pointed set {7, },.s [[{0} and multiplication, grading and differential that of H,,.

We define é;{ mil t6 be its differential graded pointed submonoid with non-zero elements those
that stabilize Z-.

4. 2-REPRESENTATION THEORY

We recall that k is a field of characteristic 2.
4.1. Monoidal category.

4.1.1. Definition. Let U be the differential strict monoidal category generated by an object e
and a map 7 : €2 — €2 subject to the relations

(4.1.1) dit)=1, 7 =0and eroTeoer = TecerorTe.

There are isomorphisms of differential monoidal categories opp : U — U°PP and rev : U —
U™V given on generators by e — e and 7 — T.

The following result is clear.

Proposition 4.1.1. The objects of the category U are the €™, n > 0. We have Hom(e", e™) = 0
if n # m and there is an isomorphism of differential algebras

H, = End(e"), T; > " tre" 1,
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There is a commutative diagram

LT =T Tm+j

Hm®Hn Hm+n

Canl~ ~lcan

End(E™) @ End(E") —> End(E™*")

The isomorphism opp : U — U°PP gives rise to the isomorphism of differential algebras
opp: H, — H® T, — T,

The isomorphism rev : U — U™ gives rise to the isomorphism of differential algebras
tn i Hy, = Hy, Ty T,_;.

The functor —® E™ induces an injective morphism of differential algebras H, = End(E") —
H,,, = End(E™™™), T; — T; and we will identify H, with a subalgebra of H,,, via this
morphism.

The functor £ ® — induces a morphism of differential algebras

fu: H, = End(E") — Hyyr = End(E™"), T) > Ty
Note that H, commutes with f,(H,) and that f, = ¢,y © ¢y

4.1.2. 2-representations. Let V be a differential category.

Definition 4.1.2. A 2-representation on V is the data of a strict monoidal differential functor
U — End(V).

The data of a 2-representation on V is the same as the data of a differential endofunctor F
of V and of 7 € End(F?) satisfying (4.1.1).

Note that a 2-representation on V extends to a 2-representation on V and on V* (uniquely
up to an equivalence unique up to isomorphism).

A morphism of 2-representations (V, E,7) — (V', E',7) is the data of a differential functor

® : YV — V' and of an isomorphism of functors ¢ : ®E = E'® (with d(p) = 0) such that
T®oFEpopE =Eypopkodr: PE* — £,

Example 4.1.3. Let V = k-diff and F = 7 = 0. This is the “trivial” 2-representation.

Let V be a 2-representation. The opposite 2-representation is (V-diff, E’, 1), where E'(() =
(E and 7/(¢) = (7 € End(E?(()) for ¢ € V-diff. Note that the canonical functor V —
(V-diff)-diff, v — (¢ — ((v)) is a fully faithful morphism of 2-representations.

Assume E has a left adjoint £Y. We still denote by 7 the endomorphism of (EY)? cor-
responding to 7 (cf §2.1.1). The pair (EY, ) defines the left dual 2-representation of (E,T).
Similarly, if E has a right adjoint ¥ E, we obtain a right dual 2-representation (¥ E,T) of (E,T).

Remark 4.1.4. One can also consider a lax 2-representation on V: this is the data of a lax
monoidal differential functor & — End(V).

Remark 4.1.5. The category U/ has a structure of differential graded monoidal category with
7 in degree —1 and one can consider (lax) 2-representations on differential graded categories.
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4.1.3. Pointed case. We denote by U* the strict monoidal differential pointed category gener-
ated by an object e and a map 7 € End(e?) subject to the relations (4.1.1). Its objects are the
e", n =0, Hom(e", e™) =0 for m # n and End(e") = H}.

Let V be a differential pointed category.

A 2-representation on V is the data of a strict monoidal differential pointed functor U* —

End(V). This is equivalent to the data of an endofunctor E of the differential pointed category
V and 7 € End(E?) such that (F,7) induce a 2-representation on k[V].

4.2. Lax cocenter.

4.2.1. Lax bi-2-representations. A lax bi-2-representation on V is a lax monoidal differential
functor F : U ® U — End(V). It corresponds to the data of
e differential endofunctors E; ; = F(e' ® ¢/) of V
e morphisms of differential algebras H; ® H; — End(E; ;)
e morphisms of differential functors ju(; j) @ j1y : EijEiy jo — Eivi jij
such that
(1) f1(5),,57y is equivariant for the action of (H; ® H;) ® (Hy ® Hj), where the action on
Eiiy j+j is the restriction of the action of H; .y ® H;j via the morphism (a®b)® (¢’ ®
V) = afi(a’) @bf;(V)
(2) Bivir ey ngn © (G Bir ) = 1), air gy © (B ),6.57))-
Consider two actions of U given by (Fy,71) and (Ey, 72) on V and a closed morphism of
functors A : F1 Fy — E5F; such that the following diagrams commute:

Fi Ay AE> Eo )\

(421) FfEQHFlEQFIHEQFE F1E22*>E2F1E2*>E22F1
7’1E2\L \LEQH F1T2i l72F1
F12E2K>F1E2F1TF1>E2F12 F1E22)\4E2>E2F1E2§>E22F1

Remark 4.2.1. The data of A and the required relations are described graphically as:

- XX

Es
A

Define morphisms
Nii= (Ao o (FI2AF) o (F/7'\) : FiEy — EyF)
and
Nij = (B " Np) oo (Bolin By ?) o (Na B 1) : FIE) — E}F}.
We define a lax bi-2-representation on V by F;; = ELF}. The actions of H; on E} and H,
on F} provide an action of H; ® H; on E; ; and i j), 1) = E;)\M/Ff/:

. s
. Eix. o FY L, o
L opiopd gl g’ D20 T i i’ i g’ i it
AL ESF By FY ——— ESES FVF) = B3 F{ .
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Remark 4.2.2. One can also consider the notion of colax 2-representation. A colax 2-
representation on V is the same data as a lax 2-representation on VPP,

4.2.2. Category. Let W be a differential category endowed with a lax action (E; ;) of U>.
We define a differential category AgW.

e The objects of AgWV are pairs (m,s) where m € W' and ¢ € Z Homgg: (Eo 1 By o(m), m)
such that for all i > 1, there exists ¢; € Z Homgg: (E;;(m), m) such that the composition b;

(Eo,1E1,0)" ¢ ( (Eo,1E1,0)" " %¢
- 5 -

(4.2.2) b;: (Eg1E1p) (m)

is equal to

Eo1E10) " (m) - — Eg1Eyg(m) = m
(Eo,lELo)i(m> RN Em(m) i’ m
and ;0 (T, ®1) =g o (1®T,) for 1 <r <.
o Homa,w((m,<), (m',¢'(m)) is the differential submodule of Homgg: (m, m’) of elements f
such that the following diagram commutes

EO,IEI,O (m) ;> m

EO,IEI,Ofl if

EO,IEI,O (m’) *§> m’
The composition of maps is defined by restricting that of W' So, we have a faithful forgetful

functor w : AgW — Wi, (m,s) — m. Note that AgWW is strongly pretriangulated and
idempotent-complete.

Remark 4.2.3. Note that applying the self-equivalence (a,b) — (b, a) of U?* provides another
lax action E’ of U? on W. The corresponding differential category Ap/ W is not equivalent to
AgWV in general.

4.3. Diagonal action.

4.3.1. Category. Consider a differential category W endowed with two actions of U given by
(E1, 1) and (Fs, 75) and a closed morphism of functors o : EyEy — FEj Ey such that the following
diagrams commute:

FEao oFo

(4.3.1) E2E, 2% E,E\Ey 22 E\E? BE T B EE 2% E2E,
TQEI\L \LE1T2 Elel \LT1E2
E22E1 ﬁ E2E1E2 TE2> E1E22 E2E12 TE1> E1E2E1 E) E%EQ

Remark 4.3.1. The data of o and the relations can be described graphically as follows:

Ao XK K-

o
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We define a differential category V = A, W.

e The objects of V are pairs (m, ) where m € W' and 7 e Z Homggi (Ey(m), Ey(m)) such
that the following diagram commutes

Eom

E22 (m) EgEl (m) # ElEg(m)

.| |-

E22 (m) E2E1 (m) — E1E2 (m)

T Eqim

o Homy((m,n), (m', 7)) is the differential submodule of Homgg: (m, m’) of elements f such
that the following diagram commutes

Es(m) —— E;(m)

o e

Ey(m') —= Ey(m)

The composition of maps is defined by restricting that of W' So, we have a faithful forgetful

functor w : V — W', (m, ) — m. Note that V is strongly pretriangulated and idempotent-
complete.

Remark 4.3.2. The structure of objects and maps in V can be described graphically as follows:

Remark 4.3.3. Assume E; admits a left adjoint F;. The data of the map o : EyEy — E1Es
corresponds by adjunction to the data of a map

A F1E2 ﬂ) FlEgElFl M’ F1E1E2F1 2’ EQFl.

The commutativity of the diagrams (4.3.1) is equivalent to the commutativity of the diagrams
(4.2.1). Assume the diagrams commute. We obtain a lax bi-2-representation (E;;) on W (cf
§4.2.1).

Let (m,s) € AgW. We have an adjunction isomorphism

¢ : Hom(FEy(m), E1(m)) = Hom(Fy Ey(m), m).

Let 7 = ¢~ 1(s) € ZHom(Fy(m), E;(m)). The object (m, ) is in A, W and (m,<) — (m,)
defines a fully faithful functor of differential categories AgWVW — A V.
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Assume now A is invertible. The canonical map f; : (Eo1F10)" — E;; is invertible. Let
g =b;o f . Consider r € {1,...,i — 1}. We have

Go(T,®1)=b,_10(EpE) (o (Th®1)0 fo) o (EyEi) bip_10fi!
=0b_10 (E01E10>T71(§2 o(1®1T))o fa)o <E01E10>T+1bi7r71 o ffl
=G O (1 ® Tr)

As a consequence, the functor above is an isomorphism of differential categories ApW — A, W.

4.3.2. 1-arrows. We define now a differential functor £ : V — V.

T
o Let (m,m) e V. Let m' = Ey(m) ® E1(m). We define

, cgoFymomy o
’/T:
0 nmoFBimoo

)+ Ealo) B

Eom
TN
E3(m) @ E>E1(m)

/J/ T10FE oo

E1Ey(m) @ E}(m)
\/
Fim

o coFEsmory

Remark 4.3.4. The graphical description of 7’ is the following;:

Lemma 4.3.5. (m/,7’) is an object of V.

Proof. Note that d(7’) = 0.
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Let a =1 0 By’ oo(m') o Ear’ and b = Eyn’ o o(m’) o Ean’ o 5. We have
ay = 11Ey 0 Byo o By\Eym o Ey1y 0 0By 0 Eyo 0 B2t o Eory
=mFEyo Eiogo E1EorooFyo Fyo oK o E227r o Fomy
=T1EyoEi000E; 0 ByE1mo Eyo o EimonEyo By
= Fiocgoob 0 FEyry 0o EhEimo Eyoo E§7r oTFy 0 Eymy
= FioookioEyEymo Eyoo E227T o FymyomoFEy 0 Eomy
= EicoE EyrocEy0 Eyoo EsmonEyo Eymy ook
= Ei00E Eyro0Ey0 EyoonEy o Eimo Eymy 0 1o

= Ela o E1E27TO E1T2 OO'EQ o EQJO E22’/T o EQTQ O’TQEQ = blla

aip =m1Eyo Eyoo EyEamo By 0 0By 0 Eyo + T Ey 0 Eyo o oEy o Bty o ExEnm o Eyo
=nFEyoEFicoEiEyrocoEy o EyoomnE) + 712E2 oFEioco0FE; o EsEymo Eyo
=nkEyoEiocgooE| o EsEymo EyoomE,
= Fioo Bi{Eymrooly o0 Eyo o 7'22E1 + FEiocoocE, 0 By 0o By Eymo Eyo ol
= FiooF EsroEymooFEyo Eyoonky + FioooE, o By o EsEymo Eyo o oy = byo,

91 = 0= bgl and

agy = 11 Ey 0 E\11 0 Eino Eyo 0 0Ey 0 Eyry 0 By By o Eyo
=mnFE o FEimo E127r oFiogocoFE; 0 Eyr o EoFymo Eyo
=mnFE oFEmnonk o E127r oFiocoFEEyroogkEyo Eyo
=FrnonE i okimo Efﬂ' oFiocoFEEyrooFEyo Eyo
=FEmnonkE o E127r oFEicgo E1Esmo By o0Fy 0 Eyo
= FEim o0 E127T omilEyo Bioo BiEymooFEyo Eyo ok
= FEim o0 E127T orilyoEiocook, o EyFEimo Eyo ol
= Ein o EinoEioco0E; 0 Eymi 0 EyEymo Eyo o oEy = byy.

The lemma follows. O

Remark 4.3.6. The equalities established in the proof of the lemma above have the following
graphical description:

We put E(m,m) = (m/, 7).
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e Given f € Homy((m, ), (m, 7)), we put E(f) = (Eéf E?f)

™

T
Ey(m) @ E1(m)

‘Elf

Ey(m) @ E1(m)
~__~

Esxf

Lemma 4.3.7. We have E(f) € Homy(E(m, ), E(m,7)). The construction makes E into a
differential endofunctor of V.

Proof. The lemma follows from the commutativity of the following diagram:

coFEsmore  T10E1mOO

D

E3(m) © EyEq(m) By Ey(m) @ Ef(m)
ng‘/ ExE: f E1Ex f E%f
E2(m) @ EyE1(m) E1Ey(m) @ E?(m)

ooFEsmore  T10E1ToO0

4.3.3. 2-arrows. We assume in §4.3.3 that o is invertible.
We define an endomorphism 7 of wE?. Let (m, ) € V. We have E?(m,n) = (m”,n") where
m” = [E3(m) @ EyE1(m) ® EyEy(m) @ E?(m), d] and

0
a: E27T 0
oo Fymrom o 0
0 nnoFEimoo Eim 0

We define an endomorphism 7 of m” by

0 0 0
00! 0
(4.3.2) =100 0 o0
00 0 m

Theorem 4.3.8. The endomorphism T of m” defines an endomorphism of E*. The data
(AW, E| T) is an idempotent-complete strongly pretriangulated 2-representation.
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Proof. The non-zero coefficients of 7" are
7Ti/1 = O'EQ @) EQO' @) E22’7T ¢) EQTQ @) T2E2
7Tg2 = O'E1 @) E27—1 o) E2E17T @) EQO‘ @) TQEl
7Tg3 = TlEQ o ElO' o E1E27T o E1T2 o O'EQ

7TZ4 = TlEl o E17'1 o E%ﬂ' o E10' o O'E1
Ty = 0Fy 0 Eyo o o Ey, 7y = 0Fy, my, = 0Ey, w4, = 11FEy0 Eijoook).
Let a = Fito7n” and b = 7" o E57. We have
ay] = O'E2 o EQO’ o E1T2 o E227T o E2T2 o TQEQ = O'E2 o EQO’ o E227T o T2E2 o EQTQ o TQEQ
= okFyo0 Eyoo ESW o Eoy 0l 0 Eymy = by
a2 = By o0by 0 Eyo ool =0 = by
a3 = Eymy00ls = big
azp = Eyo7' o1 Eyo Eyo 0 EyEom o EyTy 0 0By
= FiolonFEyoEi00E FsnocEyo EyoomE) o Eyt

=FEio torFEyoFEiog00Eyo EyFE1mm 0 0By 0 ToEy 0 Eyo ™t

=0F) 0By 0 ByEimo Eyo o moEy 0 Byo ' = bog
g = Byo b orEyo EijoooE, = 0F) 0 By = by
ay = EymiomEy 0 By 0 Efmo Eyo 0 0Fy = 1 Ey o Bymy o1 Ey 0 Eim o Eyo 0 0B,
=7 0o FEmo E127r oFiogo00FE; 0o Eyr = by

All the other coefficients of @ and b vanish. We deduce that a = b, hence 7 is an endomorphism
of E*(m, ). Tt follows easily that 7 defines an endomorphism of EZ.

We have 72 = 0 and

) 0 0 0
d(1) = 8 8 8 8 +T700+0orT
0 0 0 d(n)
id
B 2FE>m o Ty id
| oo Eyrors id
mio By 2moEimoo id

=id.

We have E3(m, ) = ([m”,d'],7"), where
m"” = E3(m)®EsE1(m)®EyEy Ey(m)®EL B (m)® Ey Ey(m)® E By By (m)® E? Ey(m)® E} (m).
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We have
nEy 0 0 0 0 0 0 0
0 mnE 00 0 0 0 0
0 0 0 0 o 'E, 0 0 0
~E_ 0 0O 00 0 o 'Ey, 0 0
0 0O 00 0 0 0 0
0 0O 00 0 0 0 0
0 0O 00 0 0 n1Ey 0
0 0 00 0 0 0 nkE
and
Eyrm 0O 0 0 0 0 0 0
0 0 Ey ™t 0 0 O 0 0
0 0 0 0 0 0 0 0
[ 0 O 0 Exry 0 0 0 0
0 O 0 0 Eimn 0 0 0
0 0 0 0 0 0 Eot 0
0 O 0 0 0 O 0 0
0 O 0 0 0 0 0 Eimr

Let a = (ET) o (TE) o (ET) and b = (TE) o (ET) o (TE). We have
a1 = Fomp o oFs 0 Fomy = 9 Fo 0 Famy 0 To By = by
ag = By omnEyo By =1 E1o By o By = by
Qg5 = oot oo tEyo Fimy = mEy 0 Eyo t oot Ey = bos

Qg7 = EQTl OU_1E1 @) Ela_l = O'_lEl @) E10_1 OTlEQ = b47

and all the other coefficients of a and b vanish. It follows that a = b. This completes the proof
of the theorem. U

4.3.4. Functoriality. We consider two differential categories W and W endowed with actions
(E;,7;) and (E.,7/) of U for i € {1,2} and closed morphism of functors o : ExE; — E1E, and

i '

o' ESFE, — EE) making (4.3.1) and the similar diagram for ¢’ commute.

Let ® : W — W be a differential functor and ¢; : ®E; > E!® be closed isomorphisms of
functors making (®, ;) into morphisms of 2-representations for i € {1,2}. Assume

(4.3.3) (E1p2) © (p1E2) o (Qo) = (0'Q) o (Eypr) o (p2En) « PELE, — E1E)D.

Proposition 4.3.9. There is a differential functor A® : A,W — Ay W' given by (m,m) —

(@(m), pr(m) o ®(7) 0 a(m)~").
There is a closed isomorphism of functors

o= (‘PQ ) - ADE > E'AD.
@1

If o and o' are invertible, then (A®,y) defines a morphism of 2-representations A,V —
A, W' .
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Proof. Let (m,7) be an object of A;W. Let @ = p1(m) o ®(7) o p;*(m), an element of
Z Homy: (E5®(m), E1®(m)).
We have

(Err’) o (0'®(m)) o (Eym') =
= (Ejp1(m)) o (E1@7) o (Ejpy ' (m)) © (0'®(m)) o (Eypr(m)) o (Ey®m) o (Egypy ' (m))
= (Ejp1(m)) o (E1@7) o (p1(E2(m))) o (Pa(m)) o (3" (Er(m))) o (E3@7) o (Eypy ™ (m))
= (Ejp1(m)) o (e1(E1(m))) o ©((Erm) 0 o(m) o (Eam)) © (03 (Ea(m))) o (Eypy ' (m))
It follows that
(Ern) o (o'®(m)) o (Eyn’) o (138 (m)) = (11 (m)) o (Ej7’) o (o' (m)) o (Eyr'),
hence (®(m),7’) is an object of A, W'. We put A®(m,7) = (O(m), n’).

Let f € Homa,_w((m, ), (m,7)). We have a commutative diagram

m 1(m
B0 (m) Y & By (m) 2 & By (m) ©L B d(m)

EQ‘P(f)l i<I>E2(f) \L(DEl(f) J/EN’(f)

E;@(M)ﬁ)CI)EQ(m) —== ®E(m) e E1®(m)

and it follows that ®(f) € Homa v (A®(m,7), A®(m,7)). We put (A®)(f) = ®(f). This
makes A® into a differential functor A,W — A, W',

We have
o(m)
N
(A®)(E(m,m)) = (P(E2(m)) ® P(E1(m)), B),
= gplEQOqDJOQDEQWo@TQogp;lEQ cplEQoCIDoogp;lEl
N 0 p1E1 0P 0 PE w0 $o o gpz_lEl
and
p1(m)o®(m)opa(m)~"
/ ’ /N\/ ’
E'((A®)(m, m)) = (E3(®(m)) @ E1(2(m)), 5),
g = o'® o E)(pr 0 Prop,!)orid o'd )
0 7|® o (010 ®Pmop,t) oo’ ®
We have

B/ EéSOQ 0 _ Ein 0 /8
0  Eyo 0 Eigr)

hence <<p2(m) o (m)) defines a closed isomorphism A®(E(m,7)) — E'(A®(m,n)). The
1

naturality of ¢; and ¢y implies immediately that of ¢.

We have 7/® o Elp; o p;E; = Elp; o ;B o ®7; for i € {1,2}. Together with (4.3.3), it
follows that 7/(A®) o F'p o pE = E'p o oE o (A®)7, hence (A®, p) defines a morphism of
2-representations. O
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Remark 4.3.10. The data of ¢ and s, the relations they are required to satisfy, and the
map 7’ in the proof of the proposition are described graphically as:

E] P E} d

XX

[} E1 0} E2
©1 P2

% 5 54
R A

The following proposition is immediate.
Proposition 4.3.11. If ® is faithful, then A® is faithful.

4.4. Dual diagonal action.

4.4.1. Category. Consider two actions of U given by (Fi,7;) and (E2,7) on W and a closed
morphism of functors A : F1Ey — EyFy such that diagrams (4.2.1) commute. As in §4.2.1, we
have maps fi;; = (i), () : EsFi B3] — Ey VFy.

We define a differential category A . Its objects are pairs (m,s) where m € W' and
¢ = (Gi)iz1, i € Z Homyy: (E5F(m), m), satisfies that
e for all 7,7 > 1, we have g; o Eéngj = Gitj O Mij

e ol . Fi =qoEiT, forall 1 <r <i.

We define Homa,w((m,s), (m/,<')) to be the differential submodule of Homgg: (m,m’) of
elements f such that for all + > 1, the following diagram commutes

ELFi(m) S em

EéFffi if

The composition of maps is defined to be that of W
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Remark 4.4.1. The structure of objects in A WV can be described graphically as follows:

| Gi | [ Siti |

Si :| S :|
(XX} ece oo o0e (XY oo

1 1 4 2% +1 1 r I3 i+
2i+j

i
i+1 24

Remark 4.4.2. The maps p,; ; make A = @._, F4F} into a monoid in the monoidal category

of endofunctors of W_i, when W' has enough direct sums. If W' has enough colimits, we have
an induced monoid A = @,.((E5F) ®n,en, Hi. Now, the category AyW is the category of

A-modules in Wi.

1=0

Remark 4.4.3. Let us define a lax bi-2-representation £; ; = EJFi on W as deduced from the
one defined in §4.2.1 by applying the swap automorphism of U x U (cf Remark 4.2.3).
There is a faithful differential functor Ay\W — AW, (m,<) — (m,<).

4.4.2. Adjoint. We assume Fj has a right adjoint £; and denote by €; and 7; the counit and
unit of the adjunction. We denote by 7; the endomorphism of E? corresponding by adjunction
to the endomorphism 7; of F. The pair (F;, ;) provides an action of U on W.

Remark 4.4.4. The maps 71y, €1, the relations they satisfy, and A, ¢ and p are described
graphically as:

ol R

m €1

We denote by o the composition

mExE; E1AE2 FE1F2eq

(441) o . E2E1 E1F1E2E1 e ElEQFlEl E1E2
and by p the composition
(4.4.2) p: LB, B0, g2y Bnf poprp B0 pop

The diagram (4.3.1) is commutative.
Lemma 4.4.5. We have
EilopEyo Fio =0F) 0 Eypo AE) and pFyo Fiporn By = Eym 0 pFy o Fip.

Proof. We have
EiAopEyo Fio =
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= B\ EyFiey 0 EIANFRLE o FIE?FI\E, o [T FEEE) o F By F\EyEy o Fin Ey By
= B\ EyFiey 0 EIANFLE| o F\E?FI\E, o FLE*1EyE) o FLE\n F\Ey By o Fyn By B,
= B\ EyFie1 0 EIANFLE; 0 E\FIAE) 0 E\TEyEy o LBy By o e FYEyFy o Fin By By
= F\EyFiey 0 E\AF\Ey o E\FI\E o By EsEy o FLEs By
= E\EyFie) 0 E\Fyr By o EIANFLE) o BEyFI\E, o F\Ey )
— E\FyFiey 0 EyEyFie1FyFy o ByFyF2E i, o EyEyr Ey 0 E\AF\Ey o ByF\\E, oy F\E, B,
= B\ FEyFiey 0 B\ EyFie\EVFy o B\Eyr EiF, o B\EyFEEm o E\AF\E) 0o E\F\\Ey o F\EL By
= B\ FEyFiey 0 B\ FEyFie BV Fy o BYEyFErFy o E\EyFEE m o E\AF\Ey o BE\FI\E, o FLEy By
=0l 0 FEypo \E;.
We have
pFioFiporFy = 51E1F12 o FlglEfFf o TlEfFf o F12E17'1F12 o FlefmFl o F127'1F1 o F12E1771
=B\ F} o Fie\EiF} o FimE\F? o FPE\ 7 F} o FEEim Fy o FimFy o FPEym,
= B\ F} o Fie EiF} o F(r\Ey 0o BEyry o T By FE o FEEIN Fy o FEEim,
=B\ F} o Fie\EiF} o FA(Eym o By o Eymy)FE o FEEI Fy o FEEim,
= B\ F} o Fie EiF? o FA By o M E))F2 o FEE T o FEE*n Fy o F2Em,
= Eym 0 pFy o Fip.
O

4.4.3. Relations. Let M be the strict monoidal pointed category generated by objects a; for
1 <1< 3 and maps Ay, : qa,, — a,,aq; for | < m with relations )\lgl = 0 and

Al © M, © Xt = Ny © A © Iy, for Il <m < n.
Lemma 4.4.6. We have a pointed faithful strict monoidal functor
H- M->U* a—e, N\p—T.

Givenly, ..., l.,my,...,m, € {1,2,3}, the non-zero elements of H(Hom(ay, -~ a;,, Gy -+ @) <

H? are those T, with w € &, such that for all 1,5 € {1,...,r} withi < j and w(i) > w(j), we
have I; < 1;.

Proof. Given the defining relations for #*, the construction of the lemma does define (uniquely)
a monoidal functor H.

Fix Iy,...,0, € {1,...,3}. Given i € {1,...,n — 1} such that I; < l1, we put T; =
---ay,. Note that TZTZHTZ is well-defined if and only if [; < [;;1 < [0,
hence if and only if Tiﬂﬁj}ﬂ is well-defined. As a consequence, given iq,...,%., J1,...,Js €
{1,...,n — 1} such that T}, --- T}, and T}, - --T;, are well-defined and T}, --- T} = T}, --- T},
then we have T}, --- T}, = le x Tjé This shows the faithfulness of H.

Consider 71, ..., 1, such that Til o -Tir is well-defined and non-zero. Let w = s;, - -+ 5;. € &,,.
We show by induction on r that given (4, j) € L(w), we have I; < I;.

Let w' = s;,+--s; _,. Put d =i, and w' = ws,. Since T}, ---T;, # 0, we have r = {(w). We
have L(w) = {(d,d+1)} [ [ sa(L(w')) by Lemma 3.2.3. We have a well-defined map T}, - - - 1

ag - ali—lAlivli+lali+2

r—1
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from ay, - - ay,_ ay,, a,a;,,, - a,. It follows by induction that given (i,5) € L(w’), we have
Lsgi) < lsy)- Since L(w) = {(d,d+ 1)} L[sd(i(w’)) (Lemma 3.2.3), we deduce that [; < I; for
all (i,7) € Z(w)

Consider now w € &,, such that given (i,7) € L(w), we have [; < I;. Let w = s;, -~ s;, be
a reduced decomposition of w. We show by induction on r that Til . -Tu is well-defined. As
before, we define d and w’. By induction on r, the element T}, --- T}, _, gives a well-defined map
from ay, - -, i, @ a,,, - a,. Since (d,d+1) € E(w), it follows that l; < g1, hence Ty
is a well-defined map from ay, - - - a;,. We deduce that ﬁl . T~ZT This shows that T,, is in the
image of H. O

Given ly,...,l,,mq,...,m, € {1,2,3} and w € &, satisfying the assumptions of Lemma 4.4.6,
we put A\, = HY(T,).

We denote by M’ the strict monoidal k-linear category obtained from k[M] by adding maps
€:ajaz — 1 and n: 1 — asa; and relations

ase onag = id, €a; oayn = id
A23 = A302€ © A3A1203 O 1)a2a3, A3 = £a3a1 © A1A33a1 © A1G37)
A1 = €@ o ayeazaj o aihszal o ataznay o ain.
There is a monoidal duality, i.e. a monoidal equivalence M"PP = M’ given by
ap — az, G = Az, az — a1, A2 = A3, Az > A2, A1z = A3
A1 > Az, Aoz > Agg, Agz o Arr, € 1), o €
Lemma 4.4.7. Let Gy,...,G, € {a1,a2,a3}. We have
A1omt1) ©Gre G = g2y oG- Gy 1 Gy - Gy — a3Gr - - Grag
and
€G- GpoXgumsa) = Gr1- - Gre o Apgrn) 1 a1Gr - - - Grag — Gy Gy,
Proof. We have
azA13 © a3 = A3€a3ay O A3a1A3301 © A3A1G37) © a3

= aseasa; o na%al 0 A33a1 © asm

= A\33a1 © asn

A3a1 0 a4y = eaga% o) al)\g,gaf o ajagna o ayn
_ 2 2
= &a30ay © (1,1(13)\11 O ajagnay ©an
= &3)\11 @) 5(1361% o ajagnay ©arn
= agA11 0 Nay © €ay © A7

= Cl,g/\ll O 77(11



42 ANDREW MANION AND RAPHAEL ROUQUIER

/\23&1 O Aol = A3G2EQ1 © a,3>\12&3a1 O NagAasay © AN
= a3(2€a1 © A3A2017) © A3A12 © 1A2

= agAi2 © nas

It follows that the first statement of the lemma holds when n = 1. Consider now n > 2. We
prove the first statement of the lemma by induction on n. We have

Ant2-2) NG Gr = Any2.3) © (A@3) o nG1)Ga -+~ Gy,
= Ant2-3) © (Aaz) 0 G1n)Ga - G,
= Aa2) © G1(Ant1..2) 0 nGa - - Gy)
- )‘(12) © G1(>\(1.._n) 0Gy--- Gnn)
= )\(1‘..n+1) oGy--Gun

The second statement of the lemma follows by applying the duality of M’. O

Lemmas 4.4.5 and 4.4.6 show that there is a k-linear monoidal functor R : M’ — W

ap — Iy, ag v Es, az — Ei, Mg = X\ Aoz = 0, Mz = p, A1 = T1, Agg = T, Ag3—> T

n—n, €e—¢&1.

Given ly,...,l,,my,...,m, € {1,2,3} and w € &, satisfying the assumptions of Lemma 4.4.6,
we still denote by A, the element R(\,).
Lemma 4.4.7 has the following consequence.

Lemma 4.4.8. Let Gy,...,G, € {E, Ey, F1}. We have
)\(1~~n+1) oGy -Gy = >\(n+2-~~2) omGr---Gp: G- G — BG-GBy

and

€1G1 - GpoXgums) = Gr- - Gper 0 Apgrn) t F1Gy - G Ey — Gy -+ - G,
4.4.4. 1-arrows. Let (m,s) € A\W. Let m = 7(<) be the composition
71 Ey(m) 28 ByEyFy(m) 255 BBy Fy(m) 25 By (m).
Note that 7 is also equal to the composition
7 By(m) 2 B\ F Ey(m) 22 B EyFi(m) 25 By (m)

since y\AE Fyon By By Fyo By = EyEyFymy o EyAon By and By EyFinyo By EyFie) = idg, g,r, -

The pair (m,m) defines an object of A,)V. We obtain a faithful differential functor I' :
AW — AW, (m,s) — (m,m).
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Remark 4.4.9. The construction of 7 from ¢; is illustrated below.

We define now a differential functor £ : A\)V — A W.

TN
Let (m,<) € A\W. Let m' = Ey(m) @ E1(m) where m = m(¢;). Given ¢ > 1, we define

/ FEa6i 0 A1.2i11) Zi_l FEagiq 0 EéFfflﬁ © )\(1~--7")(2i~~~7j+r)> i, ’

S = "= B Fi(m') — m
( 0 FEiG o Ai..2i1) F1(m)

Lemma 4.4.10. (m/, <) is an object of AWV .

Proof. We have

d((s)n) = Essiod(maEy ™ o+ 0 BE ') F o Ajig1ais)

= Z Esg; 0 )\(1-~~r)(r+1~~-i+1) o >\(i+1~~~2i+1)

r=1

= Z Esgi o )\(1-~~r)(r+1~~-i+1) © /\(i+1~~2i+1)

r=1

= Z Esgi o )\(1-~-r)(2i+1~--i+r+1) o >\(i+1~~2i+1)
r=1

= LG o >\(1---i)
($)12 0 E5Fim =

= Z By 0 EyF g0 A(2i,2i+1) © EyF a1 FiEy 0 EyF{m Es o A(1eor) (2iewir)

r=1

= Z Esyg; o )‘(i+1~--2i) © >\(2i,2i+1) o >\(1-~r)(2i~~-z'+r)
r=1

= F5G 0 A(1...5)
= d(())11)-
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d((C{)Qz) = Ego /\(1---i+1) o Eéd(PFli_l S Flpr_2 ©--0 Ff_lp)

= Z E1G o ANaigr) © ELF ' Fl " o BSF e Fy " o Aitr+1--2i41)
r=1

= 2 E1Gi o Aigrs1.2) © mEyF " o EyF] e o A(2i-itr)
r=1

= Z Eigi o )\(i+7“+1--~i+2) © )\(i+2--‘2) % 'fhEéFf*l © EéFfflﬁ o )\(2i~--i+r)

r=1

= Z E16G o A@ori1) © Aig22) © mEsF o EyFy ey 0 A(2iitr)
r=1

= E16; 0 Ait2..2) o mESF ™ o B4 F 7 ey 0 Mgyt

o (S )12 = Z E161 0 A2y © Eomi 0 Eai_q 0 ESF{ €1 0 A1) (2iivictr)

r=1

= Z Eig o )\(23) on by o Eayg_1 0 EéFf_lgl © )\(1---r)(2i---i+r)

r=1

= Z Ei6 0 EyEaFigi 10 dggomESF o EyF ey o A(1oor) (2iewi4r)

r=1

= 2 Eigi o >\(i+2~~-3) O A3 © >\(3-~~r+2) © ThE;Ff*l © EéFfflé‘l © )\(27;~-z‘+r)
r=1

= E1G; 0 Nip2.2) o mESF] ™t o ESF{ 7 ey 0 Mgieigr) = d((5])22)-

We have
d((s)iz) = A+ B
where
A= Z Eogiq0 EéFf_lﬂ 0 )\(1---5)(s+1---7‘)(2i---i+r)
1<s<r<i
= Z Eogiq10 )\(erl---r) o EéFf_lffl o )\(1---5)(21'---1'+7")
1<s<r<i
= Z Es6iq 0 >\(i+r71---s+i) o EéFf_lfl © )\(1---5)(2i---i+r)
1<s<r<i
= Z Esgi 10 E;Ff_lf‘h o >\(1---s)(2i---i+r)(i+r71---i+s)
1<s<r<i
and

i1
B = Z Eagiq0 EQFf €10 )\(lu-r’)(2i--~i+7”+s’)(i+r’+s’—1-~-i+r’)

1<r'<s
1<s'<i—r'
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So A = B and d((s})12) = 0.
We have shown that d(s/) = 0,

Fix re {1,...,i}. We put b, = Esqi_1 0 E4F;_161 0 A1) @ivitr) : BT E1(m) — Eo(m).
Consider s € {1,...,i— 1}.
If s > r, we have

br(Te ®1) = Eagi1 0 As s41) © E5Fi1 0 (1) (2iivier)
= Fygi_10 )\(i+571,i+s) o EéFi—l o )\(1---7")(2i---i+7")
= Fyg_q 0 E;E—l o )\(i+sfl,i+s))\(1‘-~r)(2i--~i+r)
= E5i-10 E4F; 1 0 A1) @ivir) Nt s,its+1)
= b (1QTy).
If s <r—1, we have
br(1®Ty) = EaGi1 0 Nitsitst1) © E4Fi—1 0 AN1or)@iitr)
= E56i—1 0 As41,5+2) © BsFi1 0 A(1oo) @ivnitr)
= Fygq 0 EéFiq % )\(S+1,s+2) S )\(1~~-7‘)(2i-~~i+7")
= LG 0 E;Efl o )\(1---r)(2i---i+r) o )\(s,erl)
=0.(T,®1).
We have

bo(T,_1 ®1) = Ey;_y 0 E4F; 0 Aot (2ivwigr) © A1) = 0

b(1®T,) = Eagi—1 0 ESFi_1 0 A1e)@iitr) © Niritrs1) = 0

by(1®T,_1) = Eogi—1 0 E5F;—1 0 A1y @ivigr—1) = br—1(Tro1 @ 1).
We have shown that (¢;)12(1 ® Ts) = (s;)12(Ts ® 1).

We have
(6)11(Ts ® 1) = EaG 0 Msi1,842) © A(1-2i41)
= F56; 0 Aipst1,its+2) © A(1-2i41)
= FhG o )\(1~~2i+1))\(z‘+s,z’+s+1)
= () (1@ Ty).
Similarly,

(Na2(Te®1) = (H1u(1®Ts),
So (1R T) = (T, ®1).
Let [ € {1,2}. We have
(§f+j)u o lij = EiGi1j0 Ay

where w(r) =rand w(i+r)=i+r+j+1for 1 <r <i,w@i+r)=i+randw(2i+j+r)=
2i+j+r+lfor1<r<jandw(2i+2j+1)=i+j+1.
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We have

(shuo (sj)u = Eg o EiESF{; 0 M1.2i11) © A@i41.-2i12)+1)

= EiSi1j © Adw © A1:2i+1) © A\@it1.-2i+2j+1)

where w'(r) = rfor 1 <r <i+1,w'(i+1+r) =i+j+1+rforl <r <i, w'(14+2i+r) = 1+i+r
and w'(14+2i+j+r)=1+2i+j+rforl<r<j.
It follows that (c;, ;)u o pij = (;)u© (s})u-

Given [ < U < 1, we put bl/J = E2§ll—1 o Eé/F’l/_la?l o >\(1---l)(2l/---l/+l) : E’élFll/El(m) - Eg(m)
We denote by wy, ;, the permutation of &;, 4, given by s — s+l for 1 < s <[, and s — s—1;
forl1+1<s<ll+l2.

Consider r € {1,...,i}. We have

biy © (Sj)az = Eagi1 0 EyFi~'; 0 ESFi e  EJF} o A(Looor) (2iitr) © A2it1.-2i42j+1)
= FsGiyj—10Aw;_y; © EyF e ByF) o A(2i41-2i42541) © A(Loor) (2i--idr)
= FsGipj-1 0 Eékwi,l,jF]_j o EéFfflEgFljflé‘l O A(2i42j--2i) © A(1oor)(2iwi+r)
= HsGiyj10 E;A’wifl,ij © EéFf_lEgFf_lﬁl . )\(21'+2j---i+r)
= FaGiyj10 E;JerlHj_lgl © E;/\wi—LjFleEl O A(2i+2j-itr)
= ExGiyj1 0 By F{ 77 ey 0 Agisajitjir) © By, Fi By

= bitjr © i
Consider r € {1,...,j}. We have

(9()11 o bj,r = Py 0 E;HFij—l o )\(1---2i+1) o E;FngFf_lfl o )\(2i+1---2i+r)(2i+2j---2i+j+r)
= E2§z‘+j—1 © E;H)\wi,j_lFlj_l o /\(1--~2i+1) o E;FfE%Ff_lﬁl © )\(2i+1~--2i+r)(2i+2j---2i+j+r)
= Fagiyj 10 By E e 0 ES N, F/E o A(12i41) © A(2ict 120t 7) (2042520 j+7)
= E2§i+j71 © E;ﬂFlijl& ° )\(1~~-i+r)(2i+2j~~~2i+j+r) © EéAwi,jFlj&

= bitjjtr © Hij-

It follows that for all 4,57 = 1, we have ; 0 EYFi¢; = G4 0 i ;. O
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Remark 4.4.11. The graphical description of ¢’ is the following:

' 1+

T 1 2 21 +1

Given f € Homa,w((m,s), (m,<)), we put E(f) = <E2éf) Eﬁf)).

Lemma 4.4.12. We have E(f) € Homa,w(E(m,<), E(m,<)). The construction makes E into
a differential endofunctor of A\WW.

Proof. The lemma follows from the commutativity of the following diagram:

E2§1'O>\(1..42i+1) Elgio)\(1...2i+1)

Zi:l E2§i71OEéFfflaO)\(144.T)(2¢4..¢+T)

EyF{Ey(m) ® E5F{Ey (m) Es(m) @ Eq(m)
E;F;ngl ELF}E:f Ezfl J/Elf
EyF{Ex () © EyF{E, () Es(m) @ Er(m)

S 1 Ea& 10ELF T e1oN (1) 2iigr

E3GioA1.2i+1) E1GioA1.2i41)

Lemma 4.4.13. We have Eol' =1 0o E.

Proof. Let (m,s) € A\W. We have E(m,n) = (m/,n") where m’ = cone(w) and 7’ is given in
§4.3.2. We have I o E(m,¢) = (m/, ") where

7'4'1/2 = E1E2€1 o El)\El o 771E2E1 =0, ﬂ-gl =0
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T = E1Ea6 0 EyEy)\ 0 E{AEy o By Fimy 0 By
= E1Eyg 0 E\Eydo E\MNEy o E2 oy
= F1Eyg 0 E1Fod oo FiEy o EonEy oy
=00 FEyFiG o EsE1\o EsmnEyom

_ !
=T

Ty = Eici 0 EiX o EypEy o EyFyo o By By
= E%q o E? o EypEyomE Fyoo
= E%q o’ o F\Ey,0o EymEyo0
=70 Efgl o E12)\ o EymFEso0

_ /
= Tog

It follows that 7" = 7. O

4.4.5. 2-arrows. We assume in §4.4.5 that o is invertible.
Given (m,s) € A\W, write E?(m,s) = (m”,¢"). The formula (4.3.2) defines an endomor-
phism 7 of m”.

Lemma 4.4.14. Given i > 1, we have T o/ = ! o ESF|T.

Proof. Let A=71o¢! and B =< o E{Fir.
We have

(g1 = Q3 = (31 = A3z = (33 = Az4 = Qg1 = Qg2 = Qg3 = 0

ai = M) © 22§i O A(2.-2i42) © A(1.-2i+1)

= %9’ © )\(1---2i+2) © )\(1---2i+1)

a1 = 2 A2) © Ea6i1 0 EST F 7 et 0 Mgt 1) © A@ig1itr+1) © A(1-2i41)

r=1

= Z E36i1 0 BT F e 0 A12) © Atit1) © A1or) © A@is1vibrs1) © A(it1o2i41)
r=1

=0
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%

)\(12) © E22§1'71 © )\(2‘..21‘) © E;'Ff*1515’2 % >\(1-~r)(2i~~-i+r)

13

%
Il
—_

Il
MSA

E36i1 0 A12i) © By F 7 €1 By 0 (1) (@ivitr) © A2ig1,2i42) © EsFy to™!

ﬁ
Il
—_

E§§i_1 o /\(121) o E;Fli_lEggl o )\(21'722'_,_1) o /\(2i--~i+r) o /\(17“) o E;Ff_la_l

l
Ms.

%
I
—

E§§z‘—1 © EéHFf_l& © >\(1---21‘+1) © )‘(2i---i+r) © )\(1---7") © E;Fli_lg_l

[
M -

ﬁ
I
fu

a4 = 2 )\(12) l¢) 22§i72 o E;Ff7261 o )\(2...54.1)(21‘_1‘..7;_5_3) o E;FfilglEl o )\(1~--T)(2i~~~i+r)

1<r<i
1<s<i

= Z E36 50 EyF{ %1 0 E4F7'e1E1 0 A(1s41) © A1r) © A@ie1oits) © A2invivtr)

1<r<i
1<s<i

= Z B3G50 EYF] ey 0 EYF{ ' €1E1 0 Ar1) © Adost1) © A@ivitr) © A@ivvibs+1)

1<r<s<i

agg = 0 ' o BBy 0 A(2--2i+2) © A(1..2i+1)
=0 1Yo FEi By 0 A@2--2i42) © A(1--2i+1) © A(2i41,2i+2) © EyFjo™!
= 0" 0 E1Ea6; 0 A12) © A22i42) © A(12i41) © EsFlo ™
= F1E5G 0 A\(2..2i42) © A(1.-2i+1) © E;Flig_l

Qoy = Z o0 o BBy 0 EIEéFf’lel O A(2rt1) O A@i41vitrt1) © A(1-2i41)

r=1

= 2 EyEiGi10 By E By Fy ey 007V EY T FLEL © M1iaig1) © A1or) © A@iitr)

r=1

= Z E2E1§i_1 o EgElEé_lFli_lgl 9 /\(2-~~2i+1) 9 /\(1r) o )\(2i...i+7=)

r=1

a4 = A(12) © E%% O A(2--2i+2) © A(1.-2i+1)

= E7G 0 AN1.2i42) © A(12i41)

We have

b21 = b12 = 622 = b31 = b32 = b33 = b41 = b42 = b43 =0
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bii = E36 0 \(2.2i4+2) © A(1-2i41) © A(2i41,2i+2)

= 229' O A(1.-2i+2) © A(1-2i+1)

biz = 2 Ejg 1o EST F e 0 A@er41) © AN2ig1oibr+1) © A(1-2i41) © EiFio™!

r=1

= Z Eis 10 By F e 0 A(12i41) © A@iwvitr) © A(Loy) © EiFio™!

r=1

Z E3G 90 ELFi % 0 A(2-541)(2i—1.i4+s) © EiF g1 0 A(1oor)(2iewitr) © A(2i41,2i42)

1<r<i
1<s<i

Z E36 50 EyF{ %e1 0 ESF T €1 E1 0 A2i41,2i42) © A(@st 1)(@im1oits) © A(Lor)(2ivnrictr)

1<r<e
1<s<i

Z B3G50 EyF{ %e1 0 ESF] €1 E1 0 A2i—121) © (@54 1)(@im1oits) © A(Lor)(2ivmictr)

1<r<i
1<s<i

Z E22§i—2 o EEFf_Qﬂ o ByF e E; o A(2-541) © A(1oor) © A(2ivsits) © A(2ivwvitr)

1<s<r<i

Z E3G 00 EyF{ e 0 E4F 7 e1E1 0 A9 i1) © A1ws41) © A@ivitr’) © A@ivits/+1)

1<r’'<s'<i

by = Z EyE 610 )\(2---21') o EéFf’1€1E1 © )\(1~-~r)(2i--~i+r) o )\(2i+1,2i+2)

r=1

= Z EyFiGiq 0 )\(2~--2i) % EéFf71E1€1 © )\(Qi,2i+1) o )\(1~--r)(2i~~i+r)

r=1

= Z EyEiGi_1 0 ESFTT Er1e1 0 A22i41) © A1) (2inivtr)

r=1
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b3y = Z E\EsG_10 ElEéFf;lgl O A@r1) © A@isTovitra1) © A(12i41) © A2i+1,2i+2)

r=1

= Z E1Esgi 10 EYELF 61 0 MN1.9i42) © A1r) © A@ivivtr)

r=1

- Z E1EsG1 0 A1) © ESFL T 161 0 A\25.2i11) © A2041,2+2) © A(1oor) © A@ievvictr)

r=1

= Z E1Essi—10 A2y © EsF{ 7 €11 0 A\2i11,2i42) © A2i41,2i+2) © A1) © A@ivvictr)
r=1

~0

bas = E76 0 N2-2i+2) © A(1-2i41) © A(2i41,2i+2)
= E7G 0 A\12i42) © A(12i11)
We deduce that A = B and the lemma follows. 0
Lemma 4.4.14 shows that 7 defines an endomorphism of E?(m,¢) for all (m,s) € A\W. The

functor T is faithful, TE? = E’T' (Lemma 4.4.13) and 7 commutes with I'. It follows that 7 is
functorial.

Theorem 4.3.8 has the following consequence.

Theorem 4.4.15. The data (A\W, E,T) is an idempotent-complete strongly pretriangulated
2-representation.

The following proposition is a consequence of Lemma 4.4.13 and the construction of 7.
Proposition 4.4.16. The functor I' : A\W — A, W induces a morphism of 2-representations.

4.5. Tensor product and internal Hom. Let us give two applications of the construction
of §4.3. Let (V1, By, 1) and (Vs, Ea, 72) be idempotent-complete strongly pretriangulated 2-
representations.

We view V) ®V, as endowed with two strictly commuting actions of U given by (E3®1, 71 ®1)
and (1® Ey, 1®7,): the isomorphism o : (1Q Ey) o (E1®1) = (E1®1) 0 (1® E») is the identity.
We define the tensor product 2-representation

VIV = A (VI ®Vs).
Given (®;,¢;) : Vi — V! a morphism of 2-representations for i € {1,2}, Proposition 4.3.9
provides a morphism of 2-representations V;@Vy — Vi @V5.
We have constructed a monoidal structure on the differential 2-category of idempotent-

complete strongly pretriangulated 2-representations.

Consider now Hom(V,Vs). It is endowed with two strictly commuting structures of 2-
representations: the first one is given by ((® — ® o E;), ®71) and the second one by ((® —
E5 0 @), 75®). The isomorphism o is the identity.
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We define the internal Hom 2-representation
Hiom(Vy, V) = AHom(Vy, Vs).

The category #Hom(V1,Vs) has objects pairs (®,7) where ® : V; — Vy' is a differential
functor and 7 : E,® — ®F is a closed natural transformation of functors such that
T1®onE o Eyr =nE; 0o Eamromnd: Eg@ — CIDEf.
Note that Homy,(Vy,Vs) is the full subcategory of HHom(Vy,V,) with objects pairs (®, )
where ® takes values in V5 and 7 is invertible.
Given (®q,p1) : Vi — Vy and (g, 02) : Vo — V) two morphisms of 2-representations,
Proposition 4.3.9 provides a morphism of 2-representations H{om(Vy, Va) — HLom(Vi, V).

5. BIMODULE 2-REPRESENTATIONS
5.1. Differential algebras.
5.1.1. 2-representations. Let A be a differential algebra.

Definition 5.1.1. A 2-representation on A is the data of a differential (A, A)-bimodule E and
of an endomorphism 1 of the (A, A)-bimodule E ®4 E such that

™ =0,d7)=1id and (EQT)o (T®E)o (E®T)=(T®E)o(E®T)o (T® E).

We say that the 2-representation is right finite if E is finitely generated and projective as a
(non-differential) A°PP-module.

Consider a 2-representation on A. Note that F ®4 — is a differential endofunctor of A-diff,
and 7 defines an endomorphism of (E ®,4 —)*. This gives a structure of 2-representation on
A-diff. Tt restricts to a 2-representation on (A)"if F is strictly perfect as a differential A-module.

Note that there is a morphism of differential algebras
Hn — EndA®Aopp(En), 7-'1 —> Eniiil ®’T ® Eiil.

Let A’ be another differential algebra with a 2-representation (E’,7"). We define a morphism
of 2-representations from (A, E,7) to (A’, E',7') to be an (A’, A)-bimodule P together with a
closed isomorphism of (A’, A)-bimodules ¢ : P®4 E = E’ ®4 P such that
(5.1.1) T"PoFE'popE =FE'¢opEoPr:PE*— E*?P
Note that such a pair (P, ) gives rise to a morphism of 2-representations (P ®4 —,®) :
(A-dlff, FE ®A -, ’7') i (A,—diff, E/ ®A/ - T,).

We obtain a differential 2-category of 2-representations on differential algebras.

The opposite 2-representation is the data (A’, E',7') where A’ = A®? E' = E and 7/ = 7.
Note that (A, E,T) coincides with its double dual.

Assume now the 2-representation is right finite. We have two morphisms of (A, A)-bimodules
n:A—>E®sFEY ande: EY®4 E — A (unit and counit of adjunction). We have a morphism
of (A, A)-bimodules p : EYE — EEY defined as the composition

p: EYE S EYEEEY 2L EYEEEY £ EEY.

There is a canonical isomorphism of differential algebras End(FE?)°P? = End((E")?) and we

still denote by 7 the endomorphism of (EY)? corresponding to 7.
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We define the left dual 2-representation on A with the bimodule E¥ and the endomorphism
T.

5.2. Lax cocenter. Let B be a differential algebra. A lax bi-2-representation on B is the data
of

e differential (B, B)-bimodules E; ; for i,j > 0

e morphisms of differential algebras H; ® H; — End(E; ;)

o morphisms 1 j) i) : Eij By jo — Eivo j+j satisfying properties (1) and (2) of §4.2.1.
Consider a lax bi-2-representation E. Note that the functors (E; ; ® —) provide a structure

of lax bi-2-representation on B-diff.

We define the differential algebra A = Ag(B) as the quotient of the tensor algebra T5(Eq 1 E1 )
by the two-sided ideal generated by @, K, where K; is the kernel of the composition

(E0,1E1,0)i — E;; R E;/(T,®1)x—(1 ®Tr)$)meEi,i, 1<r<i-
We have A” = B and A is generated by A° and A' = (Ey1E1)/K; as an algebra.
Let (M,<) an object of Agg,—(B-diff). The action of Ts(Ey1E10) on M vanishes on K;
for all 7, hence defines an action of A on M. This gives a fully faithful differential functor

Agpg,—(B-diff) — (Ag(B))-diff. If the canonical injective morphism of differential (B, B)-
bimodules

(5.2.1) (EO,lEl,O)i/Ki - B/ (T, @) — (1®T,)%) ek, 1<r<i
is a split injection for all 7 > 1, then the functor above is an isomorphism

Agg,— (B-diff) > (Ag(B))-diff .
5.3. Diagonal action.

5.3.1. Algebra. Let B be a differential algebra endowed with two 2-representations (Fi,7) and
(B9, 79) together with a closed morphism A : FyFEy; — FEyF; such that the diagrams (4.2.1)
commute.

We define the algebra A = A’ (B) as the quotient of the tensor algebra Tp(F)Es) by the by
the image of the composition

T E3—Ffr 1AL
F2E? A B AN F2E2 D282 ()2,
We have A° = B and A' = F\ Es.

Let B’ be a differential algebra endowed with two 2-representations (F7,7]) and (FE},75)
together with a closed morphism X : F{E} — E}F] such that the analogs of the diagrams
(4.2.1) commute. Let A" = A}, (B’). Let P be a (B’, B)-bimodule and ¢; : PF; = F|P and
@y : PEy > E4P be two closed isomorphisms of bimodules such that (P, 1) and (P, ) are
morphisms of 2-representations and such that

)\/PO F{QOQ (@) Q01E2 = Eég@l (@) SOQFl O P)\ . PF1E2 —> EéF{P

The isomorphism Fpy o p1Fy : PFiEy, = F{E,P induces an isomorphism of (B’, B)-
bimodules f : P ®p Tg(F1Fy) — Tp/(F/E}) ®g P. This isomorphism f endows the right
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Tp(F1Ey)-module P ®p T(F1E>) with a commuting left action of Tp/(F|ES). The isomor-
phism f induces an isomorphism

P ®p Tp(F1E>) @ry(ryy) A = A' @1y (i) T (FIEy) @pr P.
So, we obtain a structure of (A’, A)-bimodule on P ®p A.

Remark 5.3.1. The data of ¢; and ¢, and the relations they are required to satisfy are
described graphically as:

ZNZAR7

F! P Ej

P
XX X X
Pt

»1 P2 Flps0p1Fy

5.3.2. Left dual. Let B be a differential algebra endowed with two 2-representations (F1,7)
and (FEs, 7), the first of which is right finite.
We consider the data of o € Z Hom(EsF1, Fy Es) such that the diagrams (4.3.1) commute.
We define

(5.3.1) \:EBYEy, *" BY BBV EY

Let A = A,(B) = A\ (B). This is the graded quotient of the tensor algebra Tp(E) E2) by
the ideal generated by the image of the composition

EY oEY

EY E\E>Ey <2 E,EY .

v T E2—(EY)*r v EY\E v
(EY)*E; ————— (EY )’ E; = (E) E,)*.
The algebra A is generated by A° = B and A! = E) E.

Let L be a differential B-module. The data of a structure of A-module on L extending the
action of B is the same as the data of a morphism of B-modules ¢ : E) Fy ®p L — L such that
d(¢) = 0 and the following diagram commutes

EY \E EYE
(5.3.2) (By)2E2L — "2 o (BY By’ L — "2 ~ EYE,L
(Ey)2E2L L
(Elv)27_2 /
(BY B3L —pr (BY B)’L — o EY Byl
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This gives us an identification (isomorphism of categories) between differential A-modules and
pairs consisting of a differential B-module L and a map ¢ as above.

Consider the adjunction isomorphism
¢ : Homp(EsL, By L) = Homp(EY E,L, L)
Let m € ZHompg(EsL, E1L) and let ¢ = ¢(m) € Z Homp(E, E5L, L). The commutativity of the
diagram (5.3.2) is equivalent to the commutativity of the diagram

5.3.3 E2L 2% poE L -2 BB, L 2 2L
2 1

) l |-

This gives us an identification (isomorphism of categories) between differential A-modules and
pairs [L, 7| where L is a differential B-module, 7 € Z Hompg(FEsL, E1 L) and the diagram (5.3.3)
commutes. We have obtained the following lemma.

Lemma 5.3.2. The construction (m,n) — [m, 7] defines an isomorphism of differential cate-

gories ® : A, (B-diff) — (A, B)-diff.

We will show that the structure of 2-representation on A, (B-diff) comes from a structure of
2-representation on A, B, when o is invertible.

Remark 5.3.3. The map ¢, the relations it is required to satisfy, and the relation ¢ = ¢(m)
are described graphically as:

L | |

S || S
FJ <= T ]
EY Ey L ‘

S

5.3.3. Action. We define the closed morphism of (B, A)-bimodules u : Fs @ A — E; ®p A as
the adjoint to the multiplication map E) Ey ®p A — A. We define E as the cone of u.
We define a morphism of (B, A)-bimodules v : By ®p E — Ey ®p E by

0 E2@p A O B2@p A BN BB Y By@p A D By BB Ey@p A Bt

BB ®@p A — el E\E; ®p A
Vo1 = 0
Vst ByEy @p A 28 BBy @p A 2 E}EYE,®p A5 ETE) E> Qp A E?®p A

Note that the morphism v corresponds, by adjunction, to the morphism w : BY Es@p E — E
defined as follows

n: EYE;®p A"

E\E,®p A

E%mult,

E1 T2®1 E E2 ®B A AEa®1 E2Ev E2 ®B A Eomult. E2 ®B A

: BY By By ®BA—> EYE\E;®@p A E;®p A, wy =0
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Wy : By BBy @p A =220 BY BBy @p A 25 BEY By @p A 22 By @ A.

Lemma 5.3.4. The pair [E,v] gives E a structure of differential (A, A)-bimodule via Lemma
5.3.2. Furthermore, there is an isomorphism of functors ®E = (E ®4 —)® : A, (B-diff) —
A-diff.
Proof. The vanishing of d(v);; and d(v)s follows from d(7;) = id and d(7) = id. The vanishing
of d(v)19 is clear. Finally, the vanishing of d(v)s; follows from the commutativity of the diagram
(5.3.3). Since d(v) = 0, we have obtained a structure of differential (T5(E) Es), A)-bimodule
on I.

The object of A, (B-diff) corresponding to A via Lemma 5.3.2 is (A, u). We have E(A,u) =
(E,v), where £ is the endofunctor defining the 2-representation on A, (B-diff). Since (F,v) is
an object of A, (B-diff), it follows that the action of T(E E2) on E factors through an action
of A. So, E has a structure of differential (A, A)-bimodule and we have an isomorphism of
functors € = (E ®a —)® : A, (B-diff) — A-diff. O

Remark 5.3.5. The maps v and w are described graphically as:

& X ||| & A

v w

We assume now that o is invertible. We define 7 an endomorphism of (B, A)-bimodules of
FiQpA® ELE, Q@ A® E1F,®p A® F} ®p A

»®1L 0 0 0
0 0 o'®1 0
(5.3.4) S 0

0 0 0 1 ®1

Proposition 5.3.6. The pair (E,T) defines a 2-representation on A and ® induces a isomor-
phism of 2-representations A, (B-diff) = (A,B)-diff. If Ey is right finite, then E is right
finite.
Proof. The fact that 7 defines an endomorphism of (A, A)-bimodules of E? satsifying the ap-
propriate relations follows from the fact that it agrees with the endomorphism of £? defining
the 2-representation on A, (B-diff). We deduce that (E,7) is a 2-representation on A and & is
a morphism of 2-representations.

Note that E is finitely generated and projective as a (non-differential) A°°P-module if £ and
E5 are finitely generated and projective B°PP-modules. U
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5.3.4. Tensor product case. Let A; and A, be two differential algebras equiped with structures
of 2-representations (F;, 7;), i = 1,2.

Let B = A; ® Ay. It is endowed with commuting 2-representations (F; ® Ay, 7 ® 1) and
(A1 ® Es, 1®73): the isomorphism o is induced by the swap map Fo®F; — F1®FEs, as®ay —
a1 ® az. The tensor product identifies (A;-diff) ® (Ay-diff) with a full subcategory of B-diff.

Assume E is right finite. The map A is an isomorphism. We put A;®A4, = A\(B). It is
the quotient of the tensor algebra T4,g4,(E) ® Es) by the ideal generated by pra(q) — 11(p)g
for p e (EY)®? and q € (F)®%. The underlying differential module is

A=D(E) ®n, Bs.
>0
The multiplication is defined by
((B})" ®n, B3) @ (B))” ®u, B}) — (By7) ®n,., By, (01 ®a2) ® (b1 ®bz) — (a1b1) ® (asby).

This construction provides the differential 2-category of right finite 2-representations on dif-
ferential algebras with a monoidal structure.

5.4. Dual diagonal action.

5.4.1. Algebra. Let B be a differential algebra endowed with two 2-representations (Fy, 1) and
(E5, 79) together with a closed morphism A : FyFEy — FEyF; such that the diagrams (4.2.1)
comimute.

We define the differential algebra

A= A\B) = DER)/(T @ Vo — (1R T1)2) sepyry, 1<
>0
Its multiplication is given by the maps p; ; = i ) EaFiE3F] — EyY Y defined in §4.2.1.
Given M a differential A-module and given ¢ > 1, we have differential B-module maps
G : BEYF! ®p M — M. These make (M, (g;);) into an object of Ay(B-diff) and provides an
isomorphism of differential categories Ay(B)-diff = A, (B-diff).

Remark 5.4.1. As in Remark 4.4.3, we obtain a lax bi-2-representation on B by setting
E;; = EJF}. We have an injective morphism of differential algebras Ap(B) — Ay(B).

Assume the morphisms (5.2.1) are isomorphisms for all ¢ (this holds for example if A is an
isomorphism). Then we have a canonical isomorphism Ag(B) = A,(B). The algebra A,(B)
is generated by B and EsF}.

The map A extends (uniquely) to a morphism of algebras A} (B) — A,(B) that is the identity
on B. If X is an isomorphism holds, then this map is an isomorphism A} (B) = A (B).

5.4.2. Left dual. We assume now that FE; is right finite. Consider o € Z Hom(FyE, E1E»)
defined as in (4.4.1).
Let 7 : Fy ®p A — E; ®p A be the closed morphism of (B, A)-bimodules given as a compo-
sition
E1mult

T B AZN BEEY @ AT BIEEY @5 ALY B ®p A.
We put E = cone(r). Given i > 1, we define a morphism of (B, B)-bimodules ¢; : ESF{E — E



58 ANDREW MANION AND RAPHAEL ROUQUIER

¢ = Egmult 9) )\(1---2i+1) Zi:l Egmlﬂt o) EéFli_lffl ¢ >\(1---r)(2i---i+r)
' 0 Elmult @) )\(1-~-2i+1)

The following lemma is a consequence of Lemmas 4.3.5 and 4.3.7 applied to m = A.

Lemma 5.4.2. The ¢;’s define a left action of A on E, giving E a structure of differential
(A, A)-bimodule.

Note that the isomorphism of differential categories Ay (B)-diff = A (B-diff) commutes with
E.

Assume now o is an isomorphism. We define 7 a (B, A)-bimodule endomorphism of E? as
in (5.3.4).
Theorem 4.4.15 has the following consequence.

Theorem 5.4.3. The data (E,T) defines a 2-representation on Ax(B).

Note that we have an isomorphism of 2-representations Ay (B)-diff = A, (B-diff).

Consider the (A, (B), Ax(B))-bimodule Ay(B), where the right action is given by multipli-
cation and the left action by multiplication preceded by the morphism of algebras A,(B) =
A\ (B) — A\(B). It follows from Proposition 4.4.16 that this bimodule induces a morphism of
2-representations from Ay (B) to A, (B).

5.5. Differential categories.

5.5.1. Bimodule 2-representations. All the definitions and constructions of §5.1-5.4 extend from
the setting of differential algebras to that of differential categories. We will describe this
explicitly.

We view the monoidal category U as a 2-category with one object =.

Definition 5.5.1. A bimodule 2-representation is the data of a 2-functor ¥ : U — Bimod.
It is right finite if Y(e) is right finite.

We say that T is a bimodule 2-representation on Y ().

Bimodule 2-representations form a differential 2-category.

Let C be a differential category. There are equivalences of differential 2-categories between

e the 2-category of bimodule 2-representations T on C
e the 2-category with objects differential functors M : C x C°P? x U — k-diff together with
— isomorphisms iy, : M(c,—,e™) @ M(—,c,e") = M(c,d,e™™™) functorial in ¢
and ¢, compatible with the canonical morphism End(e”) ® End(e") — End(e"*™)
and satisfying i ,4+m © (1d @pmn) = tmtin © (H1m ®id)
— an isomorphism g : M(—, —, €%) = Id such that p,, o = mult o (M(c, —, €™) ® o)
and [0, = mult o (g ® M(—,c,e™))
e the 2-category of pairs (F,7) where FE is a (C,C)-bimodule and 7 € End(E?) satisfies
(4.1.1).
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The category Hom((C, E, 1), (C’', E',7")) of 1-arrows in the third 2-category above has objects
pairs (P, ) where P is a (C’,C)-bimodule and ¢ : P®¢ E = E' ®c¢ P’ is a closed isomorphism
of (C’,C)-bimodules satisfying (5.1.1). We leave it to the reader to describe l-arrows in the
second 2-category above. In these 2-categories, the 2-arrows are morphisms of (non-differential)
bimodules or functors compatible with the additional structure.

The equivalences are given by
T (M: (c1,c9,€") — Y(e")(er,¢2)), M— (E=M(—,—,e),7=M(—,—,7))
Ew— (T:e"— E").
We will use the terminology ”bimodule 2-representation” for either one of those three equivalent
structures.
Note that a 2-representation Y : Y — End(C) gives rise to a bimodule 2-representation M on
C given by M(cq,ce,e™) = Home(co, Y o rev(e™)(c;)) (cf §2.2.3). Note also that a bimodule

2-representation M on a differential category C gives rise to a 2-representation YT : U —
End(C-diff) given by Y(e") = M(—, —, €") ®c —.

5.5.2. A bimodule lax bi-2-representation is a lax differential 2-functor T : U/ ® U — Bimod.
We say it is a bimodule lax bi-2-representation on Y (» ® ).
A bimodule lax bi-2-representation on C is the same as the data of
e (C,C)-bimodules E; ; for i,5 >0
e morphisms of differential algebras H; ® H; — End(E; ;)
e morphisms pi; ) w1y : £ij By — Eii j+j satisfying properties (1) and (2) of §4.2.1.
We define the differential category Ag(C) as the additive category quotient of T¢(Ep1E1 )
by the ideal of maps generated by the kernels of the compositions

(Eo1E10) (c1,62) =5 Eyicr, c0) <5 Eii(cr, )/ (T, @ D)x — (1@ T0)x)sek, ;, 1<r<i-

Assume now C is a differential category endowed with two structures (Fi, 1) and (Es, 72) of
bimodule 2-representations together with a closed morphism A : F} Ey — FEsF) such that the
diagrams (4.2.1) commute.

We define the differential category A\ (C) as the additive category quotient of T¢(FyEs) by
the ideal of maps generated by the image of the composition

T1E§—F127'2

FfES(Cl,CQ) Fng(Cl,CQ) M (F1E2)2(C1,CQ>.

We have a differential category C' = P, EiF}. Tts objects are those of C and Home (cy, ¢3) =
@~ E5Fi(c1, ¢2). The multiplication is induced by the maps f; ;. We define the differential
category A,(C) as the additive category quotient of (P, EiF} by the ideal of maps generated
by the images of T, ® 1 — 1 ® T, : E%Ff — EéF{ forl <r <.

Assume now C is a differential category endowed with two structures (Fy, 1) and (Es, 72) of
bimodule 2-representations, the first of which is right finite. Consider ¢ : Ex | — E1F5 closed
such that the diagrams (4.3.1) commute. We define A : EY Ey — E3EY as in (5.3.1).

e We put A,(C) = AL(C). As in §5.3.3, we define a (A,C,C)-bimodule E and extend it

to a (A,C, A,C)-bimodule. Assume finally that o is invertible. We construct in addition an
endomorphism 7 of E2. We obtain a bimodule 2-representation on A,C and an isomorphism
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of 2-representations A, (C-diff) = A, (C)-diff. The 2-representation is right finite if Fy is right
finite.

As in §5.3.4, we have a monoidal structure on the differential 2-category of right finite bi-
module 2-representations.

e We drop now the assumption that o is invertible. We define as in §5.4.2 a (A\C, A,\C)-
bimodule E. Assume o is invertible. We obtain an endomorphism 7 of E? and a bimodule
2-representation on A,C.

5.6. Pointed categories. Let ) be a differential pointed category. A bimodule 2-represesentation
on V is the data of a strict monoidal differential pointed functor from the 2-category with one
object given by U*® to Bimod®. Note that a bimodule 2-representation on V gives rise to a
bimodule 2-representation on k[V].

A bimodule lax bi-2-representation is a lax differential pointed 2-functor T : U®* A U* —
Bimod®. We say it is a bimodule lax bi-2-representation on T (x A *).
A bimodule lax bi-2-representation on V is the same as the data of
e (V,V)-bimodules E; ; for i,5 > 0
e morphisms of differential pointed algebras H; A H; — End(E; ;)
o morphisms 1 j), i) : Eij By j — Eivo j+j satisfying properties (1) and (2) of §4.2.1.
We define the differential pointed category Ag(V) as the quotient of Ty, (Ey1E19) by the
equivalence relation generated by f ~ f"if (f, f’) is in the equalizer of a composition

(Eo1Er0)'(c1,¢2) = Eii(cr, c2) = Eii(cr, ) /(T A D ~ (1A T)T)aes, ., 1<r<i

Consider a differential pointed category V endowed with two bimodule 2-representations
(F1,7) and (Fs, ) and a closed morphism A : F} By — E5F) such that the diagrams (4.2.1)
commute.

We define the differential pointed category A (V) as the quotient of T\, (F; Ey) by the equiv-
alence relation generated by

(Fl)\Eg) ¢} (TlEQQ)(f) ~ (Fl)\EQ) o (F12T2>(f) for f S Fleg(Cl,Cg) and C1,C € V.

We define the differential pointed category A,(V). We consider first the differential pointed
category with same objects as V and pointed set of maps v; — v, given by /oo E5F}(vy, v2).
The category A, (V) is the quotient of that category by the equivalence relation generated by
(T, AD(f) ~ (A AT)(f) for fe EiFf and 1 <7 <.

Note that there is a canonical isomorphism of differential categories for 7 € {¢F,/}
KAL) = AL RDV])

5.7. Douglas-Manolescu’s algebra-modules. Let us recall some aspects of Douglas-Manolescu’s
theory [DouMal].

Note that Douglas and Manolescu work in the differential graded setting, and we translate
their constructions to the differential setting.

Their nil-Coxeter 2-algebra [DouMa, §2.2] can be viewed as the same data as our monoidal
category U (cf [DouMa, Remark 2.4]). A bottom-algebra module [DouMa, §2.4] for the nil-

Coxeter 2-algebra is the same data as a lax bimodule 2-representation on a differential algebra
A, where a lax bimodule 2-representation on A is defined to be a lax 2-functor T : &/ — Bimod
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with Y (1) the differential category with one object whose endomorphism ring is A. They also
consider top-algebra modules, where U above is replaced by U°PP. Using the isomorphism
U = UPP (84.1.1), a top-algebra module can be viewed as a bottom-algebra module, hence as
a lax bimodule 2-representation.

Douglas and Manolescu define a tensor product of a top algebra-module and a bottom
algebra-module [DouMa, Definition 2.11]. This corresponds to our construction of a differ-
ential algebra A as a tensor product (). Note that they do not endow this tensor product with
any algebra-module structure.

6. HECKE 2-REPRESENTATIONS

6.1. Regular 2-representations.

6.1.1. Bimodules. Fix r,n > 0. We define some bimodules L*(r,n) and R*(r,n) with under-
lying differential graded module H,,,, following §3.1.3 and Proposition 3.1.6.

We endow L*(r,n) (resp. L~ (r,n)) with a structure of differential graded (H, ® H,, H,1y)-
bimodule where

e H, ., acts by right multiplication
e h e H, acts by left multiplication by h (resp. by f,.(h))
e h e H, acts by left multiplication by f, o ¢,(h) (resp. by h).

We endow R*(r,n) (resp. R~ (r,n)) with a structure of differential graded (H,,, H, ® H,)-
bimodule where

e H,.., acts by left multiplication
e h € H, acts by right multiplication by h (resp. by f,.(h))
e h e H, acts by right multiplication by f, o ¢,(h) (resp. by h).
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Example 6.1.1. Elements of L*(r,n) and R*(r,n) can be represented by good strand diagrams
in a rectangle, as in the examples below.

1
1 2
) 3
4
3 5
4 6
7

1 2 3

L+(4, 3)

1 2 3
1
1 2
2 3
4
3 5
4 6
7

L= (4,3)

1
2 1
3 2
4
. 3
6 4
7

3 2 1

R¥(4,3)

3 2 1
1
9 1
3 9
4
. 3
6 4
7

R™(4,3)

The actions are obtained by concatenation of diagrams (note that a diagram that is not good
represents 0), as in the example below, where we first apply the reflection of the rectangle
swapping the top and the bottom, then rotate 90 degrees anticlockwise the diagram of A’

~NO Ut W

3 2 1 3 2 1
1
1 1 1 2 1
2 3 2
5 2 2 = 451 3
4 3 3 6 4
7
heR™(4,3) W € Hy hh' € R=(4,3)

These bimodules coincide with (the nil version of) the bimodules introduced in §3.1.3, after
restricting the action of H, ® H,, to H,:

L*(r,n) = L*(I,S) and R*(r,n) = L*(S,I) where S = {sy, ..

S Span—1) and I = {s1,..., 8.1}

Given m = 0, we denote by w,, € &, the longest element, i.e., w,,(i) = m — i+ 1. We have
two morphisms of differential graded Fo-modules (cf Proposition 3.1.6)

given by

+
trJrn,r

1
=15, Hopp — H,,<§n(2?“ +n—1))
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if r+nr —
e W 6 and tr-‘rn,’r(Tw) =

0 otherwise

Twa+nwr if we er'r+n
0 otherwise

t:—i-n,r(Tw) = {TwTwT+nw

Example 6.1.2. Let us describe some examples of t74(T,,):

1
2
3
4
5
6 +
7 t7 4
—
WrW4
}_>
t7,4
wqwy

It is immediate that there is an isomorphism of differential graded (H,,, H, ® H,)-modules
Homore (L* (7, 1), Hy 1) = R*(r,n), f = f(1)

and it follows from Proposition 3.1.6 that there is an isomorphism of differential graded (H, ®
H,, H,,,)-modules

- ~ 1
L¥(r,n) = Hompore (R*(r, n), HT)<§n(27" +n—1)), h— (b —t; (h})).

6.1.2. Twisted description. We describe now L*(r,n) as a twisted free (H, ® H,,)-module.

Consider F < {1,...,r + n} with |E| = r. Let wg € &,,, be the permutation such that
wg(E) = {1,...,r} and the restrictions of wg to E and to {1,...,r + n}\E are increasing. If
E = {i; <--- <i,}, then we have a reduced decomposition

Wg = (ST N 8%71)(57‘71 e S’L'T,171> e (52 e Si271>(81 e Silfl)

and
T

L(wg) = [ [(({1, . iy = W\{in, - dpea}) x {in}).
b=1
There is a bijection

B:6, xG, x{Ec{l,....r+n}||E|=1}> G, (0,0, E) — vf.(V)wg

where f,.(v') € 6,4, is given by f,.(v')(i) =i for i < r and f.(v)(r+1d) = r+'(i) for 1 <i < n.
We have ¢(B(v,v', E)) = £(v) + (V") + l(wE).
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Given (a,iy) € L(wg), we define v(FE,a,b) € &, and v'(E,a,b) € &, as follows. Let b €
{1,...,r} be minimal such that a < i,y. We define v(E,a,b) to be the cycle (b,b—1,...,V)
and v'(E, a,b) to be the cycle (a — b + 1,a—V +2,... i, —b). We have

wgsei, = V(E,a,0)f:(v'(E, a,0)wEoapii)
and ﬁ(wE) — g(w(Eu{a})\{ib}) = ib — Q.
Given m > 1, we define a free differential (H, ® H,,)-module

Vi = P (H, ® H,)bg.

EC{I ----- T+n}7 \E|:7‘, e(wE):m_l

Given m’ < m, we define f , : Vi, — Vi,y as the morphism of (H, ® H,)-modules given by

by > > (To(E,4) ® Tor(e,g0)bEo iy

We will show below (Lemma 6.1.3) that d(f.m) = 2= mrem Jrvm? © frm. We denote by V
the differential (H, ® H,,)-module obtained as the corresponding twisted object [P Vi, (frrm)]
(cf §2.1.3). We have V = @P,, Vin as a (H, ® H,)-module and dy = >} dy,, + >, . fm'.m-

Lemma 6.1.3. The maps (fmm) define a twisted object V- = [P Vi, (fowm)]. There is an
isomorphism of differential (H, ® H,)-modules

V S L(rn), (h@W)bg — hf(1tn(h)Tw, for he H, and b € H,.

Proof. The length property of the bijection § above shows that the map of the lemma is an
isomorphism of (H, ® H,)-modules. Since

d(TwE) = Z TIUESZ'J?
i€l je{l,...,r+n}\E, j<i

it follows that the map of the lemma intertwines dy and the differential of L* (r,n). The lemma
follows. O

There is a dual version of Lemma 6.1.3. In particular, there is a decomposition of right
(H, ® H,)-modules

R™(r,n) = (—B Tw;(HT ® f(H,))
Ec{1,...,r+n}, |E|=r
6.1.3. Actions. There is a "left” 2-representation on U
T™:U — EndY{), " — " ® —

and a "right” 2-representation on U

T U ey SO End(U).

The bimodule 2-representation L* associated to T+ is given by
LE(e", €% e") = 0y pinL*(r,n)

and it is left and right finite. Its right dual is isomorphic to the bimodule 2-representation R*
given by
R*(e%,e",e") = §gpinR*(1,n)
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while its left dual is isomorphic to RF(—3n(2r +n—1)) (note that the action of U on the duals
is obtained from the natural action of U*¥°PP by applying the isomorphism rev o opp).

6.1.4. Gluing. Consider the morphism of functors
AR (—1,—,e)@L"(—,—9,e) > LT (=1, —,¢) @ R (—, —2,¢€)

where A(e®, e®) is given by the following morphism of differential graded (H,, H,)-bimodules

R (ef,—,e)® Lt (—,e*,e) =R (s —1,1)®pu, , LT(s—1,1) a®b
LT(e’,—e)® R™(—, e e) = L™(s,1) Qu,., B (s,1) a® f(b)

Remark 6.1.4. An example of diagrammatic description of A is given below:

146 ? b .
2
44 >
re— 9 ¢ >
cg— @ e >
Te————  ® e 3
| I
< 3
e 3 e 3
r 1 e 1
P )
P >
P 3
1 Ih
1@ ]
3 b [ b
4 q 3 1%»
5 P b
6 P b
7 q D
8 P 1
I I
14 3 o« ——* |
.
e |
36 b p b
g :b—/—" ) :
ce— 3 b !
7 »—/—" p ]

The morphism

(R (—,—,e)ALT(—,—,e)) o (R (—,—,e)*t —TL"(—,—,e)?) :
R_(_’ 5 €>2L+<_> B 6)2 - (R_(_v _7 €)L+<—, _7 6))2<_1>
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is on (e*,e®) the morphism of differential graded (Hj, Hy)-bimodules
R (s—1,1)®u,_, R (s—2,1)®u, , L"(s —2,1)®y,_, LT (s —1,1) —
R_(S - 17 1) ®Hs_1 L+(S - 17 1) ®H5 R_(S - 17 1) ®H5_1 L+(S - 17 ]-)<_1>

given by
IIRXIRT—TIRI®I®RLI-1R1R®1IRT;_.

Given s = 1, let My = R~ (s—1,1)®p,_, LT(s—1,1), a differential graded (H,, H,)-bimodule.
When s > 2, we define k = 1®1Q1QTs 1 —T1®1®1®1 e M;®y, Ms. We put k = 0 when
s =1. We put M, = 0.

Lemma 6.1.5. There is a morphism of differential graded (Hg, Hy)-bimodules My — Hj given
by a ®b— acb for a,b e H,. It induces an isomorphism of differential graded algebras and of
differential graded (H,, H,)-bimodules Ty (M,)/(k) = HZ .

Proof. We have acT;b = aT;,1cb for i € {1,...,s — 2}. This shows the first statement of the
lemma.

We have now a morphism of differential graded algebras and of (Hj, Hs)-bimodules f’ :
Ty, (M,) — H; induced by the morphism M, — H;}. We have

A1) ®(1RTs)) =Ty =Tid = f(1101)®(1®1)),

hence f'(k) = 0. So, f induces a morphism of algebras f : Ty, (M,)/(k) — HJ .

On the other hand, H F is the free algebra generated by H, and ¢ with the relations ¢T; = T qc¢
forie {1,...,5s—2} and ¢*T,_, = Tyc* (Proposition 3.2.9). Since Tj,; ® 1 = 1®T; in M, for
ief{l,....,s—2}and (1®1)®(1®T, 1) = (T1®1)®(1®1) in M;® M, we deduce that there
is a morphism of algebras g : H} — Ty (M,)/(x), T; = T}, ¢ — 1® 1. The morphisms f and
g are inverse and we are done. U

Let H* be the differential graded pointed category with set of objects Z>o and Homy+ (m,n) =
5mné; 2l Temma 6.1.5 has the following consequence.

Theorem 6.1.6. The construction of Lemma 6.1.5 induces an isomorphism of differential
graded pointed categories © : A\ (U*) > H*.

6.2. Nil Hecke category.

6.2.1. Definition. We now define a groupoid of n-periodic bijections.

Given I a subset of Z/n we denote by I its inverse image in Z.

Let S,, be the category with objects the subsets of Z/n and where Homg, (1, J) is the set of
n-periodic bijections ¢ : I = J. The group nZ acts by translation on Hom-sets. Note that
S, = Ends, (Z/n).

Given i, j € I with i — Jj¢nZ, the element s;; € S, restricts to an n-periodic bijection 151,
which we also denote by s;;.

Let I be a subset of Z/n. There is a unique increasing bijection 8y : {1,...,[I[} — In
{1,...,n}. We extend it to an increasing bijection Z — I by B;(r + d|I|) = B;(r) + dn for
re{l,...,|I|} and d € Z. There is an isomorphism of groups

Fy: éIII > Endg, (I), 0+ Brooop;t.
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6.2.2. Length. Consider o € Homg, (I, J). We define
Lio) ={(i,i"Y e I* | i <i, o(i) > o(i')}

and L(o) = {(i,7') € L(0) | 1 <i < n}. The canonical map L(o) — L(0)/nZ is bijective. We
define ¢(0) = |L(0)].
Lemma 6.2.1. We have {(c'oc) < l(o’)+ (o) for all 0 € Homg, (I, J) and ¢’ € Homg, (J, K).
Proof. We have

L(c" oo) = {(i1,12) € I | i1 < g, 0(i1) > 0(iz), 0’ oc(iy) > o’ o0o(iz)}u

{(iy,i2) € I? | iy < iy, 0(iy) < 0(ia), 0’ 00c(ir) > o' 0oliy)}

— {(i1,i2) € L(o) | o' 00(iy) > o’ 00(i2)} s (0~ x 0~ ({1, 2) € Lio’) | o (1) < o (7))

It follows that
U(o") + (o) —L(c"o0) = 2/{(i1,ia) € I? | iy < iy, 0(iy) > 0(iy), 0’ 0o(iy) < o’ 0o(iz)}/nZ| = 0.

Let o0 € Homg, (1, J). We have ¢(¢) = 0 if and only if o is an increasing bijection.

Given 7 € Homs, (J, ) with {(7) = 0, we have L(T o 0) = L(0) = (7 x 7)(L(c o 7)), hence
l(roo)=LooT)=1{(0).

Since L(1 o 0) = (B x Br)(L(F; ' (7 00))), we have {(c) = {(F;'(T 0 0)). As a consequence,
we deduce the following result from Lemma 3.2.3.

Lemma 6.2.2. Let 0 € Homg, (I, .J). We have

0 T S e G e A

[ — n
0<i1<ia<n
il,iQEI

The next lemma relates length and number of intersections of paths on a cylinder.

Lemma 6.2.3. Let 0 € Homg, (I, J) where I = {iy + nZ,is + nZ} and J = {j1 + nZ, jo + nZ}
with 1 < 47 # iy < n, 1 < j1 # jo < n and o(i,) = j. (mod n) for r € {1,2}. Fiz § :
{i1,12, 1, jo} — R increasing with |f(u) — B(v)| < 1 for all u,v.
Consider 7, : [0,1] — R continuous with ~.(0) = 5(i,) and v.(1) = B(j,) + U(’nﬂ for
re {1,2}. We have
(o) < [{te[0,1] | Xm0 = 22}y

with equality if, for all r € {1,2}, the map ~, is affine.

Proof. Without loss of generality, we can assume i; < i5. The lemma follows by applying
the intermediate value theorem to v2(t) — 1 () and using Lemma 6.2.2, considering four cases
according to the signs of j, — j; and o(iy) — o(iy). O

6.2.3. Filtration. Given I,J < Z/n, we define Homg=--(1,J) = {0 € Homs, (I, J) | I(0) < 1}
for r € Zq. It follows from Lemma 6.2.1 that this defines a structure of Z(-filtered category
on §,. We put H,, = grS;,, a pointed Z<y-graded category.

Note that a map o of length 0 is invertible in H,,. Note also that F; induces an isomorphism
of graded pointed monoids éf}l‘l = Endy, (I).
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6.2.4. Non-commutative degree. Let us consider the free abelian groups R, = @, In Zo, and
L, = ®an/n Ze,. We define a linear map p : R,, — L, by p(a,) = €,11—¢, and a representation
of the group R, on L, given by

Qg €p = (0ap + Oat1,p)Eb-
Note that § = Zan/n o, € ker p and ¢ - g, = 2¢, for all b.
We define a bilinear map
(=, =Y: R, x R, = L, {a,d') = a- p(a).
Let I, = L, x R,. We define a group structure on I"/ by
(La)-(Id)=(1+1"+{a,d),a+d).

Given I € Z/n, we put €7 = >, .;€q € L. Given i,j € Z, we put

Q5 = Z Qpynz — Z QrynZ-

I<r<j Js<r<i

Note that a; ;11 = Qitnz, Qisnjin = i and o ; + o, = o, for all 4, 5, k € Z. Note also that
d = @ i4n for all i € Z. Note finally that p(o ;) = €j4nz — Eitnz-

Consider o € Homg, (1, .J). We put
[o] = Z Qo) € Ry
ieln[1,n]
Note that p([o]) = e; — e and [0’ o o] = [o'] + [o] for any ¢’ € Homg, (J, K).
We define
m(o) = [o] - &1 € L, and dm(o) = (—m(0), [o]) € T,.

Lemma 6.2.4. Let w € Wy, m € Z and let 0 = Fr(wc™) be the element of Ends, (I) corre-
sponding to wc™. We have (o) = L(w), [o] =m-§ and m(o) = 2me;.

Proof. The first statement follows from the fact that F; preserves lengths (cf the discussion
before Lemma 6.2.2).

Note that [s;;] = 0 for 4, j € I with i — j¢nZ, while [Fi(c)] = 6. We deduce that [o] = m-6.
The last statement of the lemma is immediate. O

Lemma 6.2.5. Consider 0 € Homg, (I, J) and ¢’ € Homg, (J, K). We have dm(c’ o o) =
dm(o’) - dm(o).

Proof. We have
m(o’ oo) = [o] -er + [o]er = m(a’) + m(o) + [0'] - (1 — €5),
hence

m(o’') + m(o) —m(o’ oo) = [o] - p([o]).
The lemma follows. U
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We put I'), = %Z x I'" . We endow I';, with a structure of Z-monoid by using the embedding
7 — %Z —I,.
Given o € Homg, (I, J), we put deg(c) = (—{(0),—dm(0)) € [',,.

Let D be a subset of {1,...,n} x {£1} that embeds in its projection on {1,...,n}. We denote
by I'p the quotient of I, by the subgroup generated by (0, €;4nz) — (374, 0), where (i,1;) € D.
We identify 37 with the image of 3Z x 0 in I'p. We define a partial order on I'p by h > g if
hg~'is in 3Zo. We denote by degp (o) the image of deg(o) in I'p.

Given E a subset of {1,...,n}, we put E* = {(i,1) | i € E}.

By Lemmas 6.2.1 and 6.2.5, we obtain a I'p-filtration on §,, by defining

Homgz4(1, J) = {o € Homg, (I, J) | degp(o) = g}

It follows from Lemma 6.2.5 that the pointed category H,, is isomorphic to the graded pointed
category associated to the I'p-filtration of S, (after forgetting the I'p-grading to Z).

Note that if D = ¢, then I'p = T',,, degp, = deg and the Z<y grading on H,, given by the
length can be recovered from the I',-grading by using the quotient map I',, — I',,/T", = %Z.

This quotient map provides a Z-grading on the I',,-graded pointed category associated to the
[',-filtration of S,,. This Z-graded pointed category is isomorphic to H,.

Remark 6.2.6. The bilinear form R,, x R,, — Z obtained from {—, —) by composing with the
quotient map L, — Z, ¢; — 1 is antisymmetric.

Let D = {1,...,n} x {+1}. The group I'p is a central extension of R, by Z using the
antisymmetric form above. It restricts to the antisymmetric form L of [LiOzThl, §3.3.1].

6.2.5. Differential. Given o € Homg, (I, J), let D(c) be the set of pairs (i1,42) € L(o) such that
o iy — iy <noro(i) —o(iz) <nand
e given i € [ with i1 < i < iy, we have 0(iy) < o(i) or o(i) < o(is).
We put D(c) = D(o) mj)(a). The diagonal action of nZ on L(o) preserves D(o) and we
have a canonical bijection D(o) = D(c)/nZ.
Given (i1,42) € L(0), we put 02 := g 0 54, ;,.
We define a partial order on Homg, (I, .J) as the transitive closure of o’ < ¢ if 0/ = o2 for
some (iy,12) € D(0).
When I = J = Z/n, this coincides with the extended Chevalley-Bruhat order on &,, by
Lemma 3.2.4 and given (i1,43) € L(c), we have 02 < ¢ (Lemma 3.2.3). The next lemma
shows that this holds for general maps in S,,.

Lemma 6.2.7. Let 0,0’ € Homg, (I,J). Given 7 € Homg, (J, 1) with {(T) = 0, we have 0’ < o
if and only if Too’ <Too if and only if o’ oT <ooT.

Proof. Note that 7 is an increasing bijection since ¢(7) = 0. We have D(7o0) = D(c0) and given
(i1,12) € D(0), we have (T 0 o) = 70 ¢, This shows the first equivalence. The second
equivalence follows from the fact that D(c o 7) = (77! x 771)(D(0)) and given (i,15) € D(0),
we have (g o7)7 ()7 (2) = giviz o 1. O

Lemma 6.2.8. Given o € Homg, (I, J), there is a bijection

D(0) 5 {¢’ e Homg, (I,.J) | 0’ < o, L(c’) = l(c) — 1}, (i1, iy) — o2
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Note that
{o' e Homg, (I,J) | o' <o, L(c") = l(0)—1} = {0’ € Homg, (I, J]) | 0’ < o, deg(c’) = deg(o)+1}.

Given (i1,i2) € L(o), we have (i1,12) € D(o) if and only if degp(o) = degp (o) — 1 for
some subset (equivalently, for any subset) D of {1,...,n} x {x1} that embeds in its projection
on {1,...,n}.

Proof. Let 7 € Homg, (J, ) be an increasing bijection. We have D(7 o 0) = D(0) and
{o" € Ends, () | 0" < 700, £(c") = {(To0)—1} = {r00’ | 0’ € Homg, (I, J), o' <o, {(c') = {(c)—1}

by Lemma 6.2.7. Since the first statement of the lemma holds for 7 o ¢ by Lemma 3.2.4, it
holds for o.
The other statements follow from Lemmas 6.2.4 and 6.2.5. O

Lemma 6.2.9. Consider ¢” € Homg, (I, J) and ¢’ € Homg, (J, K) and let 0 = o’c”. Assume
o)=L+ L(a").

Let (i1,i3) € D(o)\(D(c) n D(¢")). Let o' = d"si,4, and o = (o) )"(2)  We have
o=da" and (o) = () + L(a”).

Proof. Assume first I = J = K. The lemma follows in that case from Lemmas 3.2.4 and 3.2.2.

Consider now the general case. There are increasing bijections 7 : J — [ and 7" : K — J.
We have D(c) = 77Y(D(7'07)) and D(0") = 771(D(0”"7)) (proof of Lemma 5.4.7). The lemma
follows now from the previous case applied to the decomposition 707 = (7/0") (0" 7). d

Consider o € Homy,, (I, J) non-zero. We put

d(o) = Z o™ € Homp,y,1(1, J).

(il ,’L'Q)E[)(O')

Proposition 6.2.10. The maps d equip the Fy-linear T, -graded category Fo|H,| with a dif-
ferential T, -graded structure, hence equip H,, with a differential I',,-graded pointed structure.

Given I < Z/n, the morphism Fy induces an isomorphism of differential Z-graded pointed
monotds

&Pl S Endy, (1).

Proof. Note that Lemma 6.2.8 shows that d is homogeneous of degree 1. The compatibility of
d with F} follows from Lemma 3.2.4.

Consider now o € Homy,, (I, J) non-zero. There exists 7 € Homy,, (J, I) with ¢(1) = 0. We
have d(7oc) = Tod(c), hence d*(Toc) = Tod?(c). The compatibility of F; with d shows that
d*(t o o) = 0. Since 7 is invertible, we deduce that d*(c) = 0.

Consider finally ¢’ € Homgy, (J, K) and fix 7 € Homgy, (K, J) with ¢(7) = 0. We have
d(t"oc’oogor)=1"0d(0'0o0)or and it follows from the compatibility of F; with d that

d(t" oo’ ocoor)=F;(d(F; ' (T"o0’ oo o)) = Fy(d(F; (70 d") o F' (o 071)))
= Fy(d(F;'(t"od")) o Fy (o o7)) + Fy(Fy ' (7 o 0’) o d(F; (0 07))

=d(r'oc’)ooor+7 00’ od(goT).
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Example 6.2.11. Elements of f)(a) correspond to intersections in a representing diagram.
Given (iy,i2) € L(0), the element ¢ correspond to the diagram obtained by smoothing
the intersection point corresponding to (i1, is). If (i1,i2)¢D(0), the element associated to the
diagram will vanish in H,,.

6.2.6. Change of n. Fix a positive integer n’ < n and an increasing injection o : {1,...,n'} —
{1,...,n}. We extend « to an increasing injection Z — Z by «a(r + dn') = «a(r) + dn for
re{l,...,n'} and d e Z.

Consider a : {1,...,n'} — {1,...,n} an increasing injection as in §6.2.1. We define two
injective morphisms of groups

Ra : Rn - Rn/, Qipn'Z = Qo(i),a(i+1) and La . Ln - Lnl, Eirn'Z V> Ei4nZ

for 1 <1i <n/. We have commutative diagrams

Rn’ *p> Ln’ Rn’ X Ln’ - Ln’ Rn’ X Rn’ iﬁ Ln’
Rai \LLQ RaxLa\L \LLQ RaXRa\L \LLQ
R,—— L, R, x L,——1L, R, x R,—— L,

p ' <7)7>

As a consequence, we have two injective morphisms of groups
M =LyxRy: T, »>T and Ty =id XLy x Ry : T — T,

the last of which induces an injective morphism of groups I'p — I'(axia)(p), for D be a subset
of {1,...,n'} x {£1} that embeds in its projection on {1,...,n'}.

We define now a fully faiNthful functor F' = F, : S,y — S,,. Given I a subset of Z/n’, we define
F(I) to be the image of a(I n[1,n']) in Z/n. Given o € Homg ,(1, J), we put F(0) = aocooa ™"

Note that the isomorphism of group &,/ = Ends ,(Z/n') = Ends, (F(Z/n')) induced by F
coincides with Fp(z/, defined in §6.2.1.

As a consequence, F,, induces a fully faithful graded functor H,, — H,,.

Lemma 6.2.12. Given n’ < n and o : {1,...,n'} — {1,...,n} an increasing injection, the
functor F, induces a differential T',,-graded pointed functor H, — H,.

Proof. Let 0 € Homg, (I,J). We have L(F,(0)) = (o x «)(L(0)), hence {(F,(0)) = {(o).
We have R, ([o]) = [Fa(0)], hence L,(m(c)) = m(F,(o)). We deduce that I',(deg(c)) =
deg(Fa(0)). i

We have D(F,(0)) = (o x a)(D(0)) and Fi(84,4,) = Sa(iy),a(iz) for 41,12 € I with iy — is¢nZ,
hence F,, is compatible with d. Il
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6.3. Positive and finite variants.

6.3.1. Constructions. We define now positive and finite variants of the categories.

We define &1+ to be the submonoid of &, of elements o such that o(r) = r for all r € Z.

Let 7 € {+,++}. We define S’ to be the I',-filtered subcategory of S, with same objects
as S, and with maps those o € Homg, (1, J) such that o(r) > 0 if 7 = + (resp. o(r) = r if
? = ++) for all r € I N Z-. We define H’ as the I',-graded pointed subcategory of H,, with
same objects as H,, and non-zero maps those of S’. Note that there is a canonical isomorphism
of T',-graded pointed categories grS’ = H;.

Note that the usual symmetric group &,, identifies with the subgroup of S, of elements
o such that o({1,...,n}) = {1,...,n}. The subalgebra of H, generated by Ti,...,T, 1 is
isomorphic to H,,.

We denote by 8/ the T',-filtered subcategory of S, with same objects as S, and with maps
those o € Homg, (I, J) such that o(r) € {1,...,n} forall r € I n {1,...,n}. We denote by H/
the corresponding I',,-graded pointed subcategory of H,. There is a canonical isomorphism of
I',-graded pointed categories grS/ = HJ.

We have also subcategories S/*+ = S/ n St of S, and HI*+ = HS A HIT of H,.

Lemma 6.3.1. H!, H', HIT and HITt are differential T,-graded pointed subcategories of
Hn-
Proof. Let o € Hom,s(I,J). There is 7 € Hom,(J,I) with £(7) = 0. We have d(7 o o) =
7 0d(0). The isomorphism H, = Endy,[#,](Z/n) given by Proposition 6.2.10 restricts to an
isomorphism of differential graded algebras H,, — Endg, ;,51(Z/n). It follows that d(7 o 0) €
Fy[H/], hence d(o) € Fo[HI]. So, Fo[H/] is a differential subcategory of Fo[H,,].

One shows similarly that Fy[#H,"] is a differential subcategory of Fy[H,].

Let 0 € Homy+(I,J). Let (i1,i) € D(o) and let o/ = o2, Given i € I, we have
o'(i) =o(i) if i ¢ (i1 + nZ) U (i + nZ), while

Ul(il) = U(iQ) =09 > 1 and U/(ig) = U(il) > J(ig) = 19.

It follows that o’ € Homy,++ (1, J), hence d(o) € Fo[H, ] O

We extend all previous constructions to the case n = 0 by setting Sy = S+ = &y = 1,
Hy = Hy = Fy, S, = S§* = 8! is the category with one object @ and one map and H, =
H = HoT is its associated pointed category.

6.3.2. Lipshitz-Ozsvath-Thurston’s strands algebras. Fix n > 1. The strands algebra with n
places [LiOzThl, Definition 3.2] is the differential algebra

IcZ/n

The group G’(n) of [LiOzTh1, Definition 3.33] is an index 2 subgroup of I'; ,,+ and the extension
to 'y ny+ of the G’'(n)-grading on A(n) [LiOzThl, Definition 3.38] coincides with our I'fy )+-
grading.
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7. STRAND ALGEBRAS

7.1. 1-dimensional spaces.

7.1.1. Definitions. A manifold is defined to be a topological manifold with boundary with
finitely many connected components, all of which have the same dimension. A 1-dimensional
manifold is a finite disjoint union of copies of S', R, Rx¢ and [0, 1].

Given a point = of a topological space X, we put C'(z) = Cx(z) = limy mo(U — {z}), where
U runs over the set of open neighbourhoods of z. If X’ is a subspace of X containing an open
neighbourhood of x, then we have a canonical bijection Cx/(2) = Cx(z) and we identify those

two sets.
We put T'(X) = [ [,.x C(x) and we denote by pt : T(X) — X the canonical map.

Definition 7.1.1. We define a 1-dimensional space to be a topological space that is homeomor-
phic to the complement of a finite set of points in a 1-dimensional finite CW-complex, and that
has no connected component that is a point.

Given E a finite subset of S* = {z € C | ||z|| = 1}, we put St(E) = |J 5 R>oe and St°(E) =
St(E) — {0}. These are 1-dimensional spaces. Given n > 1, we put St(n) = St({*™/"}o<pen).

Let X be a 1-dimensional space. There is a finite subset E of X such that X — E is
homeomorphic to a finite disjoint union of copies of R.

Let x € X. If U is a small enough connected open neighbourhood of x, then there is a
homeorphisms U = St(n,), x — 0 for some n, = ng x = 1. In addition, we have a canonical
bijection C(x) = mo(U — {x}) and we identify those two sets of cardinality n,.

We define the boundary 0X = {x € X | n, = 1}. We put X.,. = {x € X|n, = 3}.

Definition 7.1.2. We say X is non-singular if X.,. = . Note that X — X, is a non-singular
1-dimensional space.

A 1-dimensional space is non-singular if and only if it is a 1-dimensional manifold.

Definition 7.1.3. We say that an open neighbourhood U of x € X is small if it is homeomorphic
to St(ng), if |U —U| = ny and if ny =2 for all 2’ € U — {x}.

Note that every point of a 1-dimensional space admits a small open neighbourhood.

7.1.2. Morphisms. Let X’ be a 1-dimensional space and let f : X — X’ be a continuous map.
Let X be the set of points 2’ € X such that there is no open neighbourhood U of 2" with the
property that fi;-1qy : f71(U) — U is a homeomorphism. Let X; = ffl(X}).

Lemma 7.1.4. The following conditions are equivalent:

(1) there is a finite subset By of X such that f(X —Ey) is open in X" and fix_p, : X —Ey —
f(X — Ey) is a homeomorphism

(2) Xy is finite

(3) there is a finite subset Ey of X such that fix_p, : X — Ey — f(X — E») is a homeomor-
phism

(4) given x € X, there is a finite subset E, of X — {x} such that fix_g, is injective

(5) there is a finite subset B3 of X such that fix_g, is injective.
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Proof. The implication (1) = (2) follows from the fact that X; < f~*(f(F1)). For the impli-
cation (2) = (3), take Fy = X;. For (3) = (4), take E, = (X — {z}) n (f~!(f(x)) U E3). The
implication (4) = (5) is immediate.

Let us show that (5) = (1). Note first that an injective continuous map R — R is open and
a homeomorphism onto its image. It follows that the implication holds when X and X’ are
homeomorphic to R and E3 = .

Consider now the general case. There is a finite subset E; of X containing E3 such that
X — F; and X' — f(E;) are homeomorphic to a finite disjoint union of copies of R. By the
discussion above, the restriction of f to a connected component of X — E; is open and a

homeomorphism onto its image, so the same holds for fix_g,.
O

Definition 7.1.5. We say that f is a morphism of 1-dimensional spaces if it satisfies any of
the equivalent conditions of Lemma 7.1.4.

Note that

e a composition of morphisms of 1-dimensional spaces is a morphism of 1-dimensional
spaces
e a morphism of 1-dimensional spaces is invertible if and only if it is a homeomorphism.

Definition 7.1.6. We define a 1-dimensional subspace of X to be a subspace Y with only
finitely many connected components, none of which are points.

Let us record some basic facts on subspaces.

Lemma 7.1.7. (1) The image of a morphism of 1-dimensional spaces is a 1-dimensional

subspace.

(2) IfY is a 1-dimensional subspace of X, then'Y is a 1-dimensional space and the inclusion
map Y — X is a morphism of 1-dimensional spaces.

(3) Let f : X — X' be a morphism of 1-dimensional spaces and Y’ be a 1-dimensional
subspace of X'. Let F be the set of connected components of f~1(Y') that are points.
Then F is finite, Y = f~*(Y') — F is a 1-dimensional subspace of X and fy :Y —Y’
1s a morphism of 1-dimensional spaces.

We now provide a description of the local structure of morphisms of 1-dimensional spaces.

Lemma 7.1.8. Let f : X — X' be a morphism of 1-dimensional spaces and let ©’ € X'. Let
r=|f"t(a")|. There exists

e a small open neighbourhood U of x' and a homeomorphism a : St(ny) — U with a(0) =
x,
o a family of disjoint subsets Iy, I, ..., I, of {€*™ /" }ocqey , with I # & for 1 <1 <7
and a homeomorphism b : St°(Iy) L St(I;) u -+ LU St(L,) = f~HU)
such that fiy—1qy = aogob™ where g : St°(Iy) L St(I1) L --- L St(1,) — St(ng) is the map
whose restriction to St°(1y) and St(1;) is the inclusion map.
In particular, the canonical map, still denoted by f : T(X) — T(X') is injective and
f(Xeze) € X!

exc’

Proof. Let FE be a finite subset of X such that f~'(f(F)) = E, f(X — E) is open in X’ and
fixce + X — E — f(X — E) is a homeomorphism. Let U be a small open neighbourhood
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of 2’ such that U—- {2} ¢ X' — f(F). Note that f(X) n (U — {2}) is open in X’ and
fi—rw—gy  JHU = {2'}) = f(X) n (U — {2'}) is a homeomorphism.

Let L be a connected component of U — {z'}. Note that f(f'(L)) is an open 1-dimensional
subspace of L and L is homeomorphic to R. By shrinking U, we can assume that f~}(L) = ¢J

or f(f7Y(L)) = L. So, we can assume that given L a connected component of U — {z} with
f7HL) # &, the map fiz-1(z): f7'(L) — L is a homeomorphism.

Since U is small, there is a homeomorphism a : St(n,) — U, 0 — z’. Let {zy,..., 2.} =

f7H(2") and define

I = {ezmd/nﬂm <d<ng, 1€ f—l(a(R>062i7rd/nx/))}
for L e {1,...,r}. Define
Iy = {¥™ "0 < d < ngr, [Ha(Raoe®™ ™)) £ &, f7H2') A f~1(a(Rape2m ) = g},

Note that a restricts to a homeomorphism St(UO<l<r - — f(FH0)).
The composition a o g takes values in f(f~1(U)). Its restriction to St°(Iy) defines a homeo-
morphism St°(fy) = a(St°(ly)). Since fis-1(aseeo)) : f (a(St°(1))) — a(St°(1p)) is a home-

omorphism, we have a homeomorphism by = (fis-1(a(st°(10)))) " © (@ © 9)sto(r0) = St°(Lo) —
S~ (a(St°(10)))-
Consider now [ € {1,...,r}. We construct as above a homeomorphism b, : St°([;) —

f~'(a(St°(1}))) such that (a o g)jsee(y = fob). The homeomorphism b; extends uniquely
to a homeomorphism b; : St(I;) — f~(a(St(;))). We define b = by L by L -+ - L b,. We have
f‘f—l(U) zaogob_l. U

Example 7.1.9. Here is an example of map ¢ as in Lemma 7.1.8:

2R g

St°(1o) St(17) St(12) St(I3) St(14) St(10)

The next two results follow immediately from Lemma 7.1.8.

Lemma 7.1.10. LetY be a 1-dimensional subspace of X andlety e Y. Let I = {eQi“d/”va}ogd@yy.
There is an open neighbourhood U of y in X and a homeomorphism St(n, x) — U, 0 — y whose
restriction to St(I) is a homeomorphism St(I) = U n'Y. We have a commutative diagram

~

U

St(n%X)

Lemma 7.1.11. Let f : X — X' be a surjective morphism of 1-dimensional spaces. It induces
a bijection T(X) = T(X).
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7.1.3. Quotients. Let X be a 1-dimensional space and ~ be an equivalence relation on X.

Definition 7.1.12. We say that ~ is a finite relation if the set of points that are not alone in
their equivalence class is finite.

Assume ~ is a finite relation. Let ¢ : X — X = X/~ be the quotient map. Note that X is
a l-dimensional space with

Xege = q(Xe:m) ui{reX| g (z)>2tu{re X ||¢ (z)| =2, qil(m)d:(?f(}

and ¢ is a morphism of 1-dimensional spaces.
Given x € X, the quotient map induces a bijection ¢ : [ |

C(7) > Cx).

Quotients have a universal property. In particular, we have the following result.

Feq 1 (x)

Lemma 7.1.13. Let f : X — X' be a morphism of 1-dimensional spaces. Define an equivalence
relation on X by x1 ~ o if f(x1) = f(xg). This defines a finite relation on X and f factors
uniquely as a composition f = foq where f : X/~ — X' is a morphism of 1-dimensional
spaces and q : X — X/~ is the quotient map.

The next lemma shows that 1-dimensional spaces X can be viewed (non uniquely) as 1-
dimensional manifolds with a finite relation.

Lemma 7.1.14. Gwen X a 1-dimensional space, there is a 1-dimensional manifold X with a
finite relation ~ and an isomorphism f: X/~ = X such that f(X;) = Xeze.

Proof. Fix, for every z € X..., a small open neighbourhood U, of z and a homeomorphism
fz: Uy > St(E,), where E, is a finite subset of S'. We choose now an equivalence relation on
E, whose classes have cardinality at most 2. Note that f, induces a bijection between C'(x)
and F,, hence the equivalence relation can be viewed on C'(x).

Define U, = [ . g/~ St(E"). The map f, provides an open embedding

U, — {2} > St°(E,) > [ St°(F) — U

E'eE;/~

X=(X-Xa) ] (L] G

(Heexepe (Ue—{z})) v€Xee

Note that X is a 1-dimensional manifold. Let g : X — X be the canonical map: it identifies
X with the quotient of X by the equivalence relation given by &; ~ &5 if ¢(#1) = q(#2). Up to

We put

isomorphism, X depends only on the choice of an equivalence relation on C'(z) for x € Xope. O

7.1.4. Paths.

Lemma 7.1.15. Let E be a finite subset of X and v be a path in X such that for all con-
nected components I of [0, 1]\~ (E), the restriction of v to I is nullhomotopic. Then 7 is
nullhomotopic.

Proof. Given e € E, let U, be a connected and simply connected open neighborhood of e.
Choose U, small enough so that U. n Uy = F for e # €. Let U = | 5 Ue. Let V be an open
subset of X\ E containing X\U.
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Let C be the set of connected components I of [0, 1]\y~!(E) such that I is not contained in
v~ HU) nor in v~1(V). By Lebesgue’s number Lemma, that set is finite. Since the restriction
of v to I is nullhomotopic for I € C, it follows that « is homotopic to a path +’ that is constant
on [ for I € C and that coincides with v on [0,1] — ;. I. Let I’ be a connected component
of [0,1]\"Y(E) with I'¢C. We have I n v 1(E) # &, hence I < v~}(U). We deduce that
7'([0,1]) < U, hence ~' is nullhomotopic. O

Lemma 7.1.16. Let E be a finite subset of X and v a path in X. Let B be the set of connected
components I of [0, 1]\n""(E) such that ~ is not nullhomotopic. Then B is finite and there
are paths v and v" homotopic to v such that

e v and ' coincide on | J;cp I and v ([0,1\U;epI) € E

e V'"Y(E) is finite.

Proof. Let U be an open covering of X by connected and simply connected subsets, each of
which contain at most one element of E. By Lebesgue’s number Lemma, there are only finitely
many I € mo([0,1]\y"}(E)) such that I is not contained in an element of v~*(Uf). So, B is
finite.

We can write 7 as a finite composition of its restrictions to I for I € B interlaced with finitely
many paths that satisfy the assumptions of Lemma 7.1.15. Thanks to that lemma, we obtain
a path +' satisfying the requirements of the lemma. By shrinking the intervals on which +' is
constant to points, we obtain a path v as desired. O

Definition 7.1.17. We say that a path v in a 1-dimensional space X is minimal if there is
a finite covering of [0,1] by open subsets such that the restriction of v to any of those open
subsets is injective.

Given a continuous map f : X — X’ and a path v : [0,1] — X, we will usually denote by
f(7) the path fo~.

We denote by [v] the homotopy class of a path . Note that we always consider homotopies
relative to the endpoints. We denote by II(X) the fundamental groupoid of X.

Given zg, 1 € X such that there is a unique homotopy class of paths from xq to z1 in X, we
denote by [zg — z1] that homotopy class.

The following lemma is classical for 1-dimensional finite CW-complexes.

Lemma 7.1.18. Let X be a 1-dimensional space. A homotopy class of paths in X contains a
manimal path if and only if it is not an identity.

Given 7,7 two homotopic minimal paths in X, there is a homeomorphism ¢ : [0,1] = [0,1]
with ¢(0) =0 and ¢(1) = 1 such that v =y o ¢.

Proof. Let 71, 72 be two minimal paths in X with v;(1) = 72(0). The path 72 0 7; is minimal
if and only if there are t1,t3 € (0,1) such that v;((¢1,1)) N 12((0,t2)) = &. If 49 041 is not
minimal, then there are unique elements ¢, € [0,1) and ¢, € (0, 1] such that (v2)0,2] © (71)|[t1.,1]
is homotopic to a constant path and (v2)|,17 © (71)[0,] 1 minimal (if ¢, # 1 or ¢ # 0).

We deduce by induction that a composition of minimal paths is homotopic to a minimal path
or to a constant path.

Let v be a path in X. If X is homeomorphic to an interval of R, then 7 is homotopic to a
minimal path or a constant path. In general there is a finite subset £ of X such that given U
a connected component of X\ E, the space U is homeomorphic to an interval of R. By Lemma
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7.1.16 there is a path 4" homotopic to v and such that «'~!(E) is finite. So, 7 is a composition
of paths contained in subspaces of X that are homeomorphic to intervals of R. Consequently,
~" is a composition of minimal paths. It follows that +/, hence , is homotopic to a minimal or
constant path.

Let v be a path homotopic to a constant path. The image 7 of v in X = X/(Xepe U
{v(0),v(1)}) is homotopic to a constant path. Since X is homotopy equivalent to a wedge of
circles, its fundamental group is free and 4 cannot be a minimal path. It follows that 7 is not
minimal.

Let v be a minimal path. Let {0 = t; < t; < ... < t, = 1} = {0,1} Uy }(X.z). Note
that v((t;,t;41)) is contained in a connected component U; of X\X,,. and it is a connected
component if y(¢;), V(tir1) € Xege. If U; is homeomorphic to an interval of R, then U; # Us,,
and U; # U;_,. Otherwise, U; is homeomorphic to S* and if U; = U;1, then the paths Vv, and
Yu.,, have the same orientation.

Let +' be a minimal path homotopic to 7. We will show the existence of ¢ as in the lemma by
induction on n. Since o4/t is not minimal, there is ¢ > 0 such that 7/([0,¢]) = U;. Consider
¢ maximal with this property.

Assume /()¢ Xcze. We have € = 1. Let ¢’ € (¢, t1] such that y(e') = 7/(¢). The path v 1
is homotopic to the identity, hence n = 1, ¢’ = 1 and y(t;) = 7/(¢).

If 7'(¢) € Xeqe, then 7(e) = 7(t1) as well. In both cases, the paths o) and 7y are
injective and have the same image. So, there is a homeomorphism ¢ : [0,£] = [0, #1] such that
v (t) = v((t)) for t € [0,e] and the existence of ¢ follows by induction.

Il

Definition 7.1.19. Let ¢ be a non-identity homotopy class of paths in a 1-dimensional space
X. We define the support supp(C) of ¢ to be the subspace v([0,1]) of X, where 7 is a minimal
path in C.

Lemma 7.1.18 ensures that the support is well defined. Note that supp(¢) = (1), ([0, 1]),
where ~y runs over paths with [v] = (.

Since a minimal path [0,1] — X is a morphism of 1-dimensional manifolds, it follows that
the support of ( is a compact connected 1-dimensional subspace of X.

We define the support of the identity homotopy class id, at a point x to be {x}.

Lemma 7.1.20. Let f: X — X' be a morphism of 1-dimensional spaces and let 7y, v be two
paths in X.

e 7 is minimal if and only if f(7y) is minimal. In particular, supp([f(v)]) = f(supp([7)])-
o If f(v) = f(v'), then v =~ or~y and ' are constant paths at two distinct points of X

having the same image under f.
o If[f(N] = 1f(Y)], then [v] =[] or [7] = ida, and [Y'] = ida, for some 1 # 23 € X
with f(z1) = f(22).

Proof. A minimal path is a locally injective path. Since every point of X has an open neigh-
bourhood on which f is injective (cf Lemma 7.1.8), the image by f of a minimal path is a
minimal path.

Consider the set Q = {t € [0,1] | v(¢) # +/(¢)}, an open subset of [0, 1]. Let I be a connected
component of . If I = [0, 1], then v and 4 are constant paths at distinct points of X with



HIGHER REPRESENTATIONS AND CORNERED HEEGAARD FLOER HOMOLOGY 79

the same image under f. Otherwise, let s € I — I. There is an open neighbourhood U of
v(s) = 7/(s) such that fy is injective. There is ¢ € I such that v(¢) and +/(t) are in U, hence
v(t) = +/(t), a contradiction. This shows the second assertion of the lemma.

Assume v and 4/ are minimal. Since f(y) and f(9') are minimal and homotopic, it follows
from Lemma 7.1.18 that there is ¢ : [0,1] = [0,1] with ¢(0) = 0 and ¢(1) = 1 such that
f(&Y)=f(y)op = f(yod). It follows from the previous assertion of the lemma that 7' = o ¢.

Assume now < is minimal. Since f(7) is minimal, it follows that [f(7)] is not the identity,
hence [7/] is not the identity. We deduce that the third assertion of the lemma holds when [7]
and [7'] are not both identities. The case where they are both identities is clear. U

7.1.5. Tangential multiplicity. Let X be a 1-dimensional space. Let x € X and U be a small
open neighborhood of z.

Let ¢ € C(z) and U. be the connected component of U — {z} corresponding to c¢. Given v a
path in X, let I () (resp. I (7)) be the set of elements ¢ € [0, 1] such that v(¢) = « and there
ise>0witht+e<1and~((t,t+¢)) cU. (resp. t —e >0 and y((t —¢,t)) < U,).

When ~ is minimal, the set IF(7) is finite and it follows from Lemma 7.1.18 that its cardinality
depends only on the homotopy class [y]. We put m*([v]) = |IF ()| € Z¢ for v minimal and
me([v]) = m([v]) —m_ ([7v]). Similarly, whether or not 0 € I7 depends only on the homotopy

class [] (for v minimal).

Lemma 7.1.21. Let v be a path in X such that y~'(x) has finitely many connected components,
none of which contain 0 or 1 in the closure of their interior.

We have 0y~ (2)) = Ueeco) (L (VW1 (7)) and [IF ()| =12 (V)] = me([y]) for all.c € C(x).

Proof. The first statement is clear. Let us now prove the second statement. That statement is
clear if ¥((0,1)) N (Xeze v {2}) = &.

The left side of the equality is additive under compositions of paths, and so is the right side
by Lemma 7.1.22 below.

Assume now 7! (X,,. U {z}) is finite. The path ~ is a (finite) composition of paths mapping
(0,1) into the complement of X.,. U {x}, hence the statement holds for .

Consider now the general case. The proof of Lemma 7.1.16 for £ = X,,.u{z} produces a path
7' homotopic to 7 such that v/~!(E) is finite and such that |I} (v)|—|I. (7)| = | I ()= |17 (7)].
Since the statement holds for +/, it follows that it holds for ~. U

Let ¢ be the homotopy class of a minimal path v. Let # = {(0). There is a unique ¢ € C(z)
such that 0 € I.(y)* and we define ((0+) = {c}. Similarly, we define {(1-) = {¢'}, where
¢ € C(¢(1)) is unique such that 1 € I.(y)".

When ( is the homotopy class of a constant path we put (0+) = C(¢(0)) and ¢(1—) =
C(¢(1)) and mg (¢) = me(C) = 0.

Given a category C, we denote by Hy(C) the abelian group generated by maps in C modulo
the relation f + g = f o g for any two composable maps f and g. We denote by [f] the class
in Hy(C) of a map f of C. Note that if f is an identity map, then [f] = 0.

Note that Hj is left adjoint to the functor sending an abelian group to the category with one
object with endomorphism monoid that abelian group.
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Let R(X) = Ho(II(X)). Note that R(X) is generated by the set I of homotopy classes of
paths v such that v is injective. It follows from the description of the composition of two
minimal paths in §7.1.4 that R(X) has a presentation with generating set the non-identity
homotopy classes of paths and relations [y o~'] = [v] + [7/] if 7, 7/ and v o’ are minimal and
[v] + [7'] = 0 for v minimal. Note finally that every element of R(X) is a linear combination
of non-identity homotopy classes of paths such that the intersection between the supports of
two distinct homotopy classes is finite.

Lemma 7.1.22. Given x € X, the map m,. induces a morphism of groups R(X) — Z.

Proof. Consider v and ' two injective composable paths such that v o~ is injective. We have

mz ([vy']) = mz([7]) + mZ ([v'])- B
Consider now v a minimal path. We have mZ([y]) = mZ ([y!]), hence m.([v]) + m.([y~'])

c

0 = m.([y* ov]). The lemma follows. O
Z,

The next lemma shows how to realize R(X) as a subgroup of the group of maps U —
where U is a dense subset of X.

Lemma 7.1.23. Let U be a dense subset of X — (0X U Xepe). Given x € U, fiz a group
morphism l, : Z€@ — Z that does not factor through the sum map.
The morphism (I © (Me)eec(x))zev © R(X) — ZY is injective.

Proof. Let L be a non-empty finite subset of I such that supp(¢) n supp(¢’) is finite for any
two distinct elements ¢ and ¢ in L. Let r = > .., ac[(] where ac € Z — {0} for ¢ € L.

Let (o € L. There is x € supp(G) N U with 2¢{((0),Co(1)} and @¢ ey (4 Supp(C). Let
c € C(x) and «(c) be the other element of C(x). We have m.(¢y) = —my)({) = +1, while
me(C') = mye)(¢') = 0 for (" € L—{(o}. It follows that m.(r) = —m,(r) = +a,. Consequently,
(Ly o (me, mye))) () = +ly(ay, —a,) # 0. Since every non-zero element of R(X) is of the form r
as above, the lemma follows. Il

Let f: X — X’ be a morphism of 1-dimensional spaces. The next lemma follows from the
injectivity statement of Lemma 7.1.8.

Lemma 7.1.24. Given z € X, ¢ € C(X) and ¢ a homotopy class of paths in X, we have
Mo (F(Q)) = mE(Q) and myo (£(C)) = me(C).

Note that f induces a morphism of groups f : R(X) — R(X’).

Lemma 7.1.25. Let H be the subgroup of R(X') generated by classes [y] with supp(y) <
X' — f(X).
The composition R(X) 4, R(X') =5 R(X")/H is injective.

Proof. Let U' = X' — (X} u X/, U 0X'), a dense subset of X'. Note that U = f~'(U’) is a

dense subset of X — (X U 0X). Given 2’ € U’, fix a morphism 1,/ : 7@ 5 7 that does not
factor through the sum map. Given x € U, let I, = Iy o f : Z¢® — Z. Lemma 7.1.23 shows
that (I, o (Mc)cec(@))zer : R(X) — ZY is injective. This map is equal to the composition

(lz’ O(mc’)c’EC(z’) )z’EU’

ZU’ f_*) 7U

R(X) L R(X")
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since mjf(c)(f(g“)) =mZ(¢) and my(f(€)) = m(¢) for all z € X, ¢ € C(X) and all homotopy

classes of paths ¢ in X (Lemma 7.1.24). Since H is contained in the kernel of the composition

l.ro(m s LeC(x) )z eU! 1l
R(X/> (z ( (,)(, c( )) U ZU ﬁ)ZU’

it follows that the composite map of the lemma is injective. O
7.2. Curves.

7.2.1. Definitions. We consider now partially oriented 1-dimensional spaces. We build the
theory so that the unoriented part is a manifold, and morphisms are injective on the unoriented
part.

Definition 7.2.1. We define a curve to be a 1-dimensional space Z endowed with

e an open subset Z, containing Zy.
e an orientation of Z, — Zez. and
e a fized-point free involution v of Cz(z) for every z € Zgy.
satisfying the following conditions:
e 0/ =
e 7/ — Z, has finitely many connected components, none of which are points

o given z € Zey., given U a small open neighbourhood of z in Z,, and given L € mo(U—{z}),
then L U «(L) U {z} has an orientation extending the given orientations on L and t(L).

We put Z, = Z — Z,. Note that 0Z, = Z, 0 Z,. Given z € Z — Zuy., we have |C(2)| = 2 and
we define ¢ as the unique non-trivial automorphism of C'(z).

We denote by Z°PP the opposite curve to Z all of whose data coincides with that of Z, except
for Z, — Z..., whose orientation is reversed.

Fix n > 1. The 1-dimensional space Z = St(2n) (cf §7.1.1) can be endowed with a structure
of curve by giving Re’™/™ the orientation of R for 0 < r < n and setting Z, = Z. The
involution ¢ is defined by t(R-oe™™/™) = Rge™/™.

7.2.2. Morphisms and subcurves.

Definition 7.2.2. A morphism of curves f : Z — Z' is a morphism of 1-dimensional spaces
such that

o f(Z.) = Z’L/L

o fiy-1(z,—z,.) 1S orientation-preserving

e given z€ f~YZ!,.), the canonical map C(f) : Cz(2) — Cz(f(2)) is t-equivariant.

Note that a composition of morphisms of curves is a morphism of curves. Let f : Z — Z' be
a morphism of curves. We have the following statements.

Properties 7.2.3.

e f is invertible if and only if it is a homeomorphism and f(Z,) < Z..
o [(Zewe) © Z!,.and C(f): Cz(2) = Cz(f(2)) is t-equivariant for all z € Z.

exc

e f restricts to a homeomorphism from f~1(Z’ — Z! ) to the open subset f(Z) n (Z' —

exc

Zle) = [(Z = Zewe) 0 (Z' = Z.,,) of Z', since Z; < f~Y(Z!,.). In particular, the

exc exc
restriction of f to Z, is a homeomorphism Z, = f(Z,).
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e If 7’ is non-singular, then f is an open embedding.

We say that f is strict if f(Z,) is closed in Z! and f(Z,) < Z!. Note that this implies that
f(Z,) is also open in Z/.

Let Z be a curve.

Definition 7.2.4. A subcurve of Z is a 1-dimensional subspace X of Z such that given z € X,
the image of Cx(z) in Cz(z) is t-stable.

If X is a subcurve of Z, then X is a curve with X, = X n Z,, Xeze © Zeze and ¢ is defined
on C'x(z) as the restriction of ¢ on Cz(2), for z € X ... Note that X, is open in Z,.

Equivalently, a subspace X of Z is a subcurve if it is a curve, X, = X n Z, and the inclusion
map X — Z is a morphism of curves.

We define an equivalence relation on connected d components of Z — Z,,.: it is the relation
generated by T ~ T if there is 2 € Zepe n' T N T', U a small open neighbourhood of z and
L e mo(U — {z}) such that L ¢ T and «(L) = T".

Let £ be the set of equivalence classes of connected components of Z — Z,,.. Given FE € £,
let Zp = Urer T. The subspaces Zg of Z are called the components of Z.

A curve has only finitely many components, each of which is a closed subcurve.
If Z is non-singular, then its components are its connected components.

The local structure of a curve is described as follows. Let z € Z. There is an open neigh-
bourhood U of z that is a subcurve of Z and an isomorphism of curves U — X, z + 0, where
X < C is one of the following:

¢ R viewed as an unoriented manifold, if z € Z, — 07,

e R where R is unoriented and R_( has either of its two orientations, if z € 07,
¢ R viewed as an oriented manifold, if z € Z, — Z_,.

o St(n,) if 2 € Zeye.

Remark 7.2.5. Let Z be a closed subspace of RY for some N > 0. Assume there is a finite
subset E of Z such that Z — E is a 1-dimensional submanifold of R" with no boundary and
such that given e € E, there is n/, > 1 and a finite family {jc;}1<i<n. of smooth embeddings
Jei: (=1,1) > RY such that

d ]e,i(o) =6,

L je,i((_lao) U (07 1)) cZ - {6}7

* jeil((=1,1)) M jewr((—1,1)) = {e} for i #

. Rdj“(O) Rd]e “(0) for i # i" and

e U jez( 1,1) is an open neighborhood of e in Z.

Let us choose in addition an open subset Z, of Z containing F and an orientation of the 1-
dimensional manifold Z, — E. We assume that Z — Z, has finitely many connected components,
none of which are points. We assume furthermore that given e € £ and i € {1,...,n.}, the
orientation of j_; (Z, — {e}) extends to an orientation of j_; (Z,).

Given e € E, we denote by ¢ the involution of C'(e) that swaps je;((—1,0)) and j.,;((0,1)) for
1 <7 < n.. Note that Z,,. = F and n. = 2n,, for e € E. This defines a structure of curve on Z
that does not depend on the choice of the maps j. ;.
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We leave it to the reader to check that any curve is isomorphic to a curve obtained by such
a construction.

7.2.3. Quotients. Let (Z,Z,,1) be a curve.

Definition 7.2.6. A finite relation on Z is an equivalence relation ~ such that the set of points
that are not alone in their equivalence class is finite and contained in Z,.

Consider a finite relation ~ on Z. We define a curve structure on the 1-dimensional space
Z =7/~

Let ¢ : Z — Z be the quotient map. We have Zepe = q(Zeze) Uiz € Z| |q7 (2)| > 1} (cf§7.1.3).
Let Z, = q(Zo). The map UZy—gq1(Zewe) - Z, — ¢ Y (Zewe) = Zo — Zege is a homeomorphism and
we provide Z, — Z.,. with the orientation coming from Z, — G Y Zege). Let 2 € Zey. We define
¢ on C(z) to make the canonical bijection | | C(z) > C(z) t-equivariant. This makes ¢

into a strict morphism of curves.

seq1(2)

Lemma 7.2.7. Let f: Z — Z' be a morphism of curves.
Define an equivalence relation on Z by z1 ~ 2o if f(z1) = f(22). This is a finite relation

on Z and f factors as a composition of morphisms of curves Z EiN Z/~£> 7' where fi is the
quotient map and fo is injective.

Proof. We have Z; < f~1(Z!) = Z,. It follows that ~ is a finite relation on Z and the lemma
follows from Lemma 7.1.13. g

We define the category of non-singular curves with a finite relation as the category with
objects pairs (Z, ~) where Z is a non-singular curve and ~ is a finite relation on Z, and where
Hom((Z,~),(Z',~")) is the set of morphisms of curves f : Z — Z’ such that if z; ~ 25, then
f(z1) ~ f(z2).

The next proposition shows that curves can be viewed as non-singular curves with a finite
relation.

Proposition 7.2.8. The quotient construction defines an equivalence from the category of non-
singular curves with a finite relation to the category of curves.

Proof. Let (Z,~) and (Z',~') be two non-singular curves with finite relations and let ¢ : Z —
Z =Z/~and ¢ : 7' — Z' = Z'/~' be the quotient maps.

A morphism of curves f : Z — Z' such that 2z ~ z, implies f(z1) ~' f(z;) induces a
morphism of curves Z — Z'. So, the quotient functor induces indeed a functor as claimed.
Consider f': Z — Z' such that z; ~ 2z, implies f'(z1) ~' f'(z2). If ¢ o f = ¢ o f’, then f and
f' coincide outside a finite set of points, hence f = f’. So, the quotient functor is faithful.

Consider now a morphism of curves ¢ : Z — Z'. Let E’ be the finite subset of Z’ of points that
are not alone in their equivalence class and E = ¢~ (g7 *(¢/(E"))). Consider the composition of
continuous maps

~ (ql'/7 /)71 ~
f:Z-ELZ—¢EBE)S 7 —¢E) 27 - F.

Given z € E, the t-equivariance of C(g) : Cz(q(2)) — Cz(g(q(2))) ensures that f extends to
a continous map at z. So, f extends (uniquely) to a continous map Z — Z’, and that map is
a morphism of 1-dimensional spaces.
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We have Z, ¢ Z — E and f(Z,) c Z'. Since 91g-1(21)—p 18 orientation-preserving, it follows
that f‘ f-1(2,—py 18 orientation-preserving. So, f : Z — Z'is a morphism of curves and it is
compatible with the relations. This shows that the quotient functor is fully faithful.

Let now Z be a curve. Let z € Z.,. and U, < Z, be a small open neighbourhood of z. Fix an
isomorphism of curves f, : U, = St(n.), z — 0. The equivalence relation on my(U, —{z}) whose
equivalence classes are the orbits of ¢ defines via f, the equivalence relation on {e"/2"
given by ¢ ~ ¢’ if and only if ¢’ = ¢*L.

The proof of Lemma 7.1.14 provides us a non-singular curve Z with a finite relation. Indeed,
with the notations of the proof of Lemma 7.1.14, we have U, = [ o<ren, Re™/m=. Note that
20 is the Subspace of Z obtained by adding to Z, — Zey the point 0 of Re!™/™ for each
r e {0,.. — 1} and each z € Z,,.

This gwes Z a structure of non-singular curve. As in the proof of Lemma 7.1.14, we obtain
a finite relation on Z and an isomorphism of curves Z = Z / ~. This shows that the quotient
functor is essentially surjective. Il

}0<r<2nz

Definition 7.2.9. Given Z a curve, the non-singular cover of Z is a non-singular curve Z,
together with a finite relation ~ and an isomorphism Z/~ = Z.

Note that Z.,. = Z, where q : 7 — 7 is the canonical map. Proposition 7.2.8 shows that
non-singular covers exist and are unique up to a unique isomorphism. The following proposition
makes this more precise.

Proposition 7.2.10. The functor sending a curve Z to its non-singular cover is right adjoint
to the embedding of the category of non-singular curves in the category of curves.

Proof. Let Z' be a non-singular curve. We have a map h : Hom(Z', Z) — Hom(Z', Z), g — qog.
Since Z, is finite, it follows that & is injective.

Consider now a morphism of curves f : 7' — Z. We factor f as Z' — Ny / ~L 7 asin
Lemma 7.2.7. By Proposition 7.2.8, there is a morphism f Z' — Z such that qo f f, hence
h(f) = f. So h is surjective. O

Example 7.2.11. Let us provide some examples of curves and non-singular covers. The dotted
lines link the points in the same equivalence class. The grey part corresponds to Z,,.
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7.2.4. Chord diagrams as singular curves. We describe here the relation between singular curves
and chord (or arc) diagrams.

We define a chord diagram to be to be a triple (£, a, u) where

e Z is a closed oriented 1-dimensional manifold (i.e., a finite disjoint union of copies of
St and [0,1])

e a=(aj,...,ay) is a collection of distinct points of zZ

e u:a—{l,...,k}is a 2-to-1 map.

A chord diagram gives rise to a smooth oriented curve 7 = Z with the following relation:
given z # 2/, we have z ~ 2’ if there is j such that u=1(j) = {z,2’}. We obtain an oriented
curve Z = Z/ ~.

Up to suitable isomorphism, this defines a bijection from chord diagrams to oriented singular
curves with n, € {2,4} for all 2.

Convention 7.2.12. We will use the above bijection composed with the reversal of all orien-
tations when identifying chord diagrams with certain singular curves. This orientation reversal
is related to the usual direction reversal between arrows in a quiver and morphisms in the
corresponding path category, and to the time-reversal of graphs mentioned in Example 7.3.8
below.

When Z is a union of intervals, we recover the notion of (possibly degenerate) arc diagram
due to Zarev [Za, Definition 2.1] (compare Example 7.2.11 and [Za, Figures 3 and 4]).

The chord diagrams such that the singular curve Z is connected and £ > 0 correspond to
the chord diagrams of [AnChePeReiSu].

Zarev’s definition generalizes that of pointed matched circles due to Lipshitz, Ozsvath and
Thurston [LiOzThl, §3.2]: they correspond to the case where Z is a single interval (Z is
obtained from the circle considered in [LiOzThl| by removing its basepoint).

7.2.5. Sutured surfaces and topological field theories. We define a sutured surface to be a quadru-
ple (F, A, S*,S7) where F is a compact oriented surface, A = JF is a compact 0-manifold, and
S+ and S~ are unions of components of dF — A such that A = S+ n S~ (this is [Za, Definition
1.2] without the topological restrictions). A sutured surface is representable by a chord diagram
(as we define it) if and only if each component of F' (not 0F) intersects S and S~ nontrivially.

Let (Z,a, ) be a chord diagram. We define a sutured surface (F, A, S*,S7):

e the oriented surface F is obtained from | [,(Z; x [0, 1]) by adding 1-handles at ! (j) x {0}
for all 5
e AN=0Z x %
o ST=(Zx{1})u (02 x(3,1])
e 5™ is obtained from surgery (corresponding to the handle addition) on (Z x {0}) u
(02 x [0,3)).
When Z is a union of intervals, this is Zarev’s construction [Za, §2.1].
Example 7.2.13. In the table below, the first row depicts some chord diagrams. The second
and third rows show the corresponding sutured surfaces; the second row applies the above
construction directly, and the third row gives an alternate perspective. The fourth row shows
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the sutured surfaces as open-closed cobordisms (with empty source and with target colored in
orange); this interpretation is discussed in §7.2.5.

Under the strands algebra construction of §8.1, the first and second columns give rise to
simple 2-representations of U, categorifying the vector representation and its dual. Tensor
powers of the algebra of the first column give algebras very similar to the one considered by
Tian [Ti]; in fact, Tian’s algebras were an important early clue in the development of the present
work. Tensor powers of the algebra of the second column will be studied from the Heegaard
Floer perspective by the first-named author in work in preparation.

The algebra of the third column is the n = 3 case of a family of algebras considered in
[ManMarWi, LePo]. For general n, these are isomorphic to the algebras B(n) = @p_,B(n, k)
used by Ozsvath and Szabd in their theory of bordered knot Floer homology [OsSz2, OsSz3,
OsSz4] (their notation is slightly different). The middle summand of the algebra of the fourth
column is the undeformed version of a curved Ay -algebra used by Lipshitz-Ozsvath-Thurston
(in preparation) to define bordered HF~ for 3-manifolds with torus boundary. The middle
summand of the algebra of the fifth column is the well-known ”torus algebra” from bordered
Floer homology. The fifth and sixth columns together illustrate our perspective on cornered
Floer homology; following Zarev’s ideas, we view the cornered Floer gluing theorem as recover-
ing the algebra of two matched intervals glued end-to-end, rather than as the invariants of two
matched intervals with distinguished endpoints being glued to form a pointed matched circle.

The first, fifth, and sixth columns give algebras that are among Zarev’s strands algebras
A(Z), although the first diagram is degenerate (equivalently, its sutured surface has closed
circles in S7). The second, third, and fourth columns do not satisfy the restrictions that
Zarev imposes. As far as we are aware, our strands categories below give the first detailed
description of strands algebras associated to general chord diagrams with circles as well as
intervals; less formal descriptions have appeared previously, cf. [Au2, Proposition 11]. As
indicated by Lipshitz-Ozsvath-Thurston’s work in preparation, curved A, -deformations of the
algebras appear necessary in the general setting when defining modules and bimodules for 3-
manifolds with boundary, although in special cases like Ozsvath-Szabd’s bordered knot Floer



HIGHER REPRESENTATIONS AND CORNERED HEEGAARD FLOER HOMOLOGY 87

homology (third column) this complication should be avoidable.

!
Q ,,,,
!

0

L O

0

A sutured surface can be viewed as a morphism in the 2d open-closed cobordism category with
empty source; if (F, A, S*,S7) is a sutured surface, the corresponding open-closed cobordism
has target given by S™ and non-gluing boundary given by S~. See the bottom row of the figure
in Example 7.2.13; the targets of these open-closed cobordisms are shown in orange and the
non-gluing boundary is shown in black.

Let us consider how the end-to-end gluings of chord diagrams covered by our results in §8 can
be viewed in terms of open-closed cobordisms. When gluing two distinct intervals of a chord
diagram end-to-end, the corresponding sutured surface gets glued as in the top-left picture
below: the two intervals marked in blue are glued together to form the top-middle picture.
However, we can also consider the top-middle picture as arising from the top-right picture; in
this latter case the gluing is an instance of composition (with an open pair of pants) in the
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open-closed cobordism category. Similarly, when self-gluing the two endpoints of an interval of
a chord diagram, the sutured surface gets glued as in the bottom-left picture below, producing
the bottom-middle picture; we can also think of the bottom-middle picture as arising from the
bottom-right picture, which is another instance of composition in the open-closed category.

TV (—

I-0 <«

One could try to view our constructions as giving part of the structure of an open-closed 2d
TQFT valued in a category whose objects are dg 2-categories and whose morphisms are certain
dg 2-functors. In particular, this hypothetical open-closed TQFT would assign a dg 2-category
of 2-representations of U to an interval. To an open-closed cobordism with empty source, the
open-closed TQFT would assign an object of the dg 2-category of the target, encoding the data
of a lax multi-2-action of U for the interval components of the target. Our approach doesn’t
quite realize that. We associate 2-representations of U to chord diagrams or singular curves
rather than directly to surfaces.

One can also consider the extent to which such a theory would extend to a point. Things
are considerably simpler for the decategorified version of the theory, where one sees many
relationships with other work on 3d TQFTs; this will be addressed in more detail in a follow-
up paper [Man].

7.3. Paths.

7.3.1. Admissible paths. Let Z be a curve.

Definition 7.3.1. An oriented path vy in Z is defined to be a path whose restriction to v~ (Z,—
Zeze) 18 compatible (non strictly) with the orientation.

Let us note some basics facts about oriented paths.

Properties 7.3.2. Let v be a non-constant oriented path in Z.

(1) We have v([0,1]) n Z, = supp([7]) n Z, and ([0, 1]) N Z, is contained in the union of
the connected components of Z, that have a non-empty intersection with supp([7]).
(2) If v is homotopic to a constant path, then it is contained in Z, (as ([0, 1]) is con-
tractible).
(3) There are unique real numbers 0 = ¢ty < t; < --- <t, = 1 such that
— given 0 < i < r, there are {j, k} = {i,7+1} with the property that v([¢;,t;41]) S Z,

(if j < r) and y([tx, ths1]) S Z, (if kK < 1) (cf Lemma 7.1.16 for E = Z, n Z,).
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— given 0 < i < 7 and & > 0 such that y([t;, t;+¢]) = Z,NZ,, we have y([t;, tis1])EZ,
— given 0 < i < r and € > 0 such that y([t;—¢,t;]) = Z.NZ,, we have y([t;_1, t:]) £ Z,.
The sequence [Vj,6.1]: - - -+ [V[t_1,,1] depends only on [v].
(4) Consider homotopy classes of oriented paths (i, ¢; and (3 with [y] = (3o {0 (1. If
supp(¢2) is contained in Z, but not in Z,, then there are 0 < t; < t» < 1 such that

[Yroa1] = G [V t1] = G and [yean] = G-
Lemma 7.3.3. Let v be a path in Z. The following conditions are equivalent:

(i) v lifts to a path in the non-singular cover of Z
(i) given z € Zuyze, given a small open neighbourhood U of z in Z, and given K a connected

component of v1(2), the set of L € mo(U — {z}) with K nvy~1(L) # & is contained in
an orbit of v.

Proof. Let Z be the non-singular cover of Z and ¢ : Z — Z be the quotient map.

Assume (i). Consider z, U, K as in the lemma and let 4 be a lift of . Consider L; €
mo(U — {z}) with K n~~Y(L;) # & for i € {1,2}. We have ¥(K) < ¢~'(L;). Consequently,
we have ¢71(L1) n ¢ '(Lg) # &. If Ly and Ly are not in the same ¢-orbit, then ¢=1(L;) and
q~'(Lsy) are in distinct connected components of ¢=1(U), a contradiction. So, (ii) holds.

Assume (ii). Since lifts of non-identity paths are unique if they exist (Lemma 7.1.20), it is
enough to show the existence of lifts locally on Z. This is clear for a small open neighbourhood
of a point of Z — Z,,.. Consider now z € Z,,. and a small open neighbourhood U of z in Z,.
Let K be a connected component of y7'(2) and let W be the connected component of y~(U)
containing K. There is L € my(U — {z}) such that v(W) < L u {z} u «(L). Since ¢ splits over

L u{z} u(L), it follows that the restriction of v to W lifts to Z. O

Definition 7.3.4. We say that a path v in Z is smooth if it satisfies the equivalent conditions
of Lemma 7.3.3.

We say that a path v in Z s admissible if it is oriented and smooth.

We say that a homotopy class of paths is smooth (resp. admissible, resp. oriented) if it
contains a smooth (resp. an admissible, resp. an oriented) path.

Let us note some basic properties of smooth and admissible paths and classes.

Properties 7.3.5.

(1) A path is smooth if and only if its inverse is smooth.

(2) A smooth path is contained in a component of Z.

(3) Every admissible path v is homotopic to a minimal admissible path via a homotopy
involving only admissible paths contained in the support of v (cf Lemma 7.1.18).

(4) A minimal path in a smooth (resp. admissible) homotopy class is smooth (resp. admis-
sible).

(5) An oriented path is admissible if and only if its homotopy class is admissible (Lemma
7.1.16 provides a minimal oriented path 7,,;,, homotopic to a given oriented path
with the property that 7 is admissible if 7,,;, is admissible, hence we obtain the desired
equivalence by (4) above).

(6) Given two oriented homotopy classes of paths a and § with « o f admissible, then «
and [ are admissible (cf (5) above).
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Definition 7.3.6. Given two smooth non-identity homotopy classes of paths (1 and (o contained
in the same component of Z, there is a unique € € {£1} such that there is a minimal smooth
path v in Z with the property that (; and (5 are equal to the classes of restrictions of v. We say
that (1 and (2 have the same orientation (resp. opposite orientation) if e =1 (resp. ¢ = —1).

Note that Z°PP and Z have the same smooth paths. Note also that the notion of ”opposite
orientation” does not depend on the orientation of Z.

Remark 7.3.7. Assume X < RY is obtained by the construction of Remark 7.2.5. A homotopy
class of paths in X is smooth if and only if it contains a path + such that the composition
[0,1] &> X < RY is a smooth immersion.

Example 7.3.8. We give below some examples of paths. The top and bottom paths are
admissible, while the middle one is not. The left and middle columns describe the path in the
singular curve, while the right column describes the lifted path (if it exists) in the non-singular
cover.

In the middle and right columns, and throughout the paper, we depict paths v using their
time-reversed graphs, so that 7(0) is on the right and (1) is on the left.

KX

7.3.2. Pointed category of admissible paths. We now define a category associated with admis-
sible paths.

Definition 7.3.9. We define §*(Z, 1) to be the pointed category with object set Z, with
Homge(z1)(z,y) = {0} L {admissible homotopy classes of paths x — y}

and

{a of if aof is admissible
aff =

0 otherwise.
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Remark 7.3.10. Consider I1,(Z) the category with objects the points of Z and arrows the
oriented homotopy classes of paths, a subcategory of I1(Z). We define a Z-filtration on I1,(Z2)
by defining a class ¢ to have degree < d if it is the product of d + 1 admissible homotopy classes
of paths. The category S*(Z, 1) is isomorphic to the degree 0 part of grll,(Z).

Note finally that if Z is non-singular, then S*(Z,1) is the pointed category associated to
I1,(2).

We put §(Z,1) = Fy[S*(Z,1)].
Example 7.3.11. We describe below some examples of products in §*(Z,1). Here Z is the
third singular curve of example 7.2.11 and the paths are drawn in the smooth cover.
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7.3.3. Central extension. Let L(Z) = (B .er(z) Zee)/(Deer(z) L(ecteue))). We define a bilinear
map (—, —) : R(Z) x R(Z) — L(Z) by
1
(a, B) = 2 Z (Mue) — me)(@) - (me + mye)) (B)ec.
ceT(Z)

Note that (m. + m,))(8) = 0 for all but finitely many c’s, hence the sum above is finite.
More precisely, let ¢ be a non-identity homotopy class of paths in Z. We have ((0+) # ((1—)
and

1 ifce(04) ue(C(0+)) and c¢((1—) U (¢(1-))
(731)  (me+m@)Q) = {—1 ifeec(1-) U uC(1-)) and c#C(0+) U o(C(0+))
0 otherwise.

If ¢ is admissible and non-identity, then ((1—) # ¢(0+), hence
@, [C]) = (Mueony = meon)(@econ) = (Mueamy = meam)(@ecan-

We define a group [(Z), a central extension of R(Z) by L(Z). The set of elements of I''(Z)
is L(Z) x R(Z) and the multiplication is given by
(m, a)(n, B) = (m +n+ (o, B),a + B).
We put I'(Z) = (Doery () 3Zeq) x I'(Z).
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Note that L(Z), I'(Z) and I'(Z) depend only on the 1-dimensional space underlying Z and
on ¢.

Let D be a subset of T'(Z) such that D n (D) = &. We denote by I'p(Z) the quotient of
['(Z) by the central subgroup generated by {e. — %69}, where ¢ € D and € is the connected
component of Z containing ¢. The canonical map o,z 5Zeq — T'p(Z) is injective and we
identify (1Z)™(#) with its image.

We put a partial order on I'p(Z) by setting g1 = g2 if g1g5 "' € (3Z50)™@).

We define I'p(Z) to be the quotient of I'p(Z) by the central subgroup generated by eq—1eq
for Q,Q € mo(2).

The image of (3Z50)™% in ['p(Z) is 3Z (where feq — 3). Let € 1Z. We still denote by
r the image of r in I'p(Z). Given x e I'p(Z), weput z +r =2 -r =1- 2.

We define a partial order on I'p(Z) by setting g1 = g2 if g1g; " € %Z;O.

Given z € Z,, we denote by C(2)* the set of ¢ € C(z) such that there is an oriented path ~y
in Z with m}(y) = 1. Note that C(z) = C(2)" [[¢(C(2)"). Note also that given ¢ an oriented
homotopy class of paths in Z, we have

(7.3.2) me(Q)ec + My Qe = (M (C) +my,y(Q))ec for z € Z, and ce C(2)".
Given E a subset of Z,, we put £ = [[ ., C(2)".

Remark 7.3.12. Fix an orientation of each component of Z (forgetting about the already
given orientation of Z,) and define Z* < T'(Z) to be the set of pairs (z,c) such that there is
an oriented path ~ in Z (for the given new orientation) with m7(y) = 1.

There is a quotient map L(Z) — Z™?) given by e, + eq for all s € Q and (z,¢) € Z*.
Let us show that the bilinear form R(Z) x R(Z) — Z™“) obtained by composing (—, —) with
this quotient map is antisymmetric. Let v and 7' be two injective oriented paths in Z (for the
given new orientation). If the supports of v and + are disjoint, then {[v], [¥']) = 0. We have

D = =es00) = ey ([0, 1]) 0 7/([0,1]) = {7(1)}, then
OILWD = —evon and (ML VD = €100

We deduce the antisymmetry statement.
7.3.4. Functoriality. Let f: Z — Z' be a morphism of curves.

Lemma 7.3.13. Let ( be a homotopy class of paths in Z. The class f(() is smooth if and only
if ¢ is smooth. If ¢ is admissible, then f(() is admissible.

Proof. Given v an oriented path in Z, the path f(v) is oriented. It is smooth if and only f(7)
is smooth. This shows that if ¢ is a smooth (resp. admissible) homotopy class of paths in Z,
then f(() is smooth (resp. admissible).

Consider now ¢ a homotopy class of paths in Z such that f(() is smooth. Given  a minimal
path in ¢, then f(7) is minimal (Lemma 7.1.20). Since f({) is smooth, it follows that f(v) is
smooth (Properties 7.3.5(4)), hence 7 is smooth and finally ¢ is smooth. d

It follows from the previous lemma that the morphism f induces a functor f : S*(Z,1) —
S§°(Z',1). We have constructed a functor §*(—, 1) from the category of curves to the category
of pointed categories.

Let us state a version of Lemma 7.1.20 for morphisms of curves.
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Lemma 7.3.14. Let~,~' be two admissible paths in Z. If [f(v)] = [f(Y)] # id, then [v] = [¥'].
The functor [ : S8*(Z,1) — S8*(Z',1) is faithful.

Note that f induces an injective morphism of groups f : L(Z) — L(Z’) and a map [ :
WO(Z) — 7T0(Z/).

The next lemma is an immediate consequence of Lemma 7.1.24.

Lemma 7.3.15. Given «, 8 € R(Z), we have {f(«), f(B)) = f({a, 5)).

It follows from Lemmas 7.3.15 and 7.1.25 that we have a morphism of groups f : I'(Z) —
0z, (r,(m,a)) — (f(r),(f(m), f(a)) which restricts to an injective morphism of groups
(7)) —T1(Z").

Let D be a subset of T(Z) such that given z € pt(D), the composition D n pt~'(z) —
C(z) — C(z)/¢ is bijective. The morphism f : I'(Z) — I'(Z’) induces a morphism f : I'p(Z) —
Lrpy(Z2'). Let g,h e 'p(Z). If g < h, then f(g) < f(h). If f:70(Z) — mo(Z') is injective and
7(9) < f(), then g < h. ) )

Finally, the morphism f : I'p(Z) — ['yp)(Z’) induces a morphism f : I'p(Z) — Ty (Z').
Given g,h € I'p(Z), we have g < h if and only if f(g) < f(h).

Let Zy, ..., Z, be the connected components of Z. There are isomorphisms of groups R(Z;) x

-x R(Z,) > R(Z) and L(Z;) x -+ x L(Z,) = L(Z) given by the inclusions Z; < Z. They
induce an isomorphism of groups
(7.3.3) ['(Z) x - xT(Z,) >T(2).

The inclusions Z; — Z induce pointed functors S*(Z;,1) — S*(Z,1) and give rise to an
isomorphism of pointed categories

(7.3.4) S (Zy, 1) v---vS(Z,1) > S(Z,1).
7.3.5. Pullback. Let f : Z — Z' be a morphism of curves. We define a non-multiplicative
“functor” f# : add(S(Z’,1)) — add(S(Z,1)). It commutes with coproducts but is not a functor,
i.e., it is not compatible with composition for a general f. We put f#(2') = [].. f-1(2 % Given
¢’ € Homge (2 1)(1, 25) non-zero, we define f#(¢’) to be

e idif (' =id

e 0 if ¢’ does not lift to an admissible class of paths in Z

e the composition
H ~ projection 2 i) % inclusion L[ p
zef=1(2}) z€f~1(z3)
where ( : z; — 2z is the unique lift of ’, otherwise (cf Lemma 7.3.14).
We denote by f~1(¢’) the set of admissible lifts of ¢'. We have f#((') = Dicef1(en G-

Given (f € Homge(z1)(2}, z3) and ¢} € Homge(z1)(25, 23) such that f#(¢]) # 0 and f#({}) #
0, we have f#(C5)f#(¢) = f#(¢4¢)) (cf Lemma 7.3.13).

Given f': Z' — Z" a morphism of curves, we have (f'f)# = f# f'#.

Lemma 7.3.16. Let v be a smooth path in Z'. Consider the following assertions:
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) 7 lifts to a smooth path in Z
) 5 ([0,1]) < £(2).
) '] lifts to a smooth homotopy class in Z
) supp([v']) < f(2).
We have (1) < (2) = (3) < (4).

Assume f is strict. Then (3) = (2). Furthermore, if v is admissible and it lifts to a smooth
path in Z, then that path is admissible.

(1
(2
(3
(4

Proof. The implications (1) = (2), (1) = (3) = (4) are clear. We can assume that + is not
constant, for otherwise the other implications are trivial.

Assume (2). Let f . Z — 7' be the map between non-singular covers corresponding to f.
Since 4/ is smooth, it lifts uniquely to a path 4’ on Z’ and 4/([0,1]) < f(Z). Since f is an open
embedding, it follows that 4’ is the image of a path of Z. Its image in Z is a smooth path that
lifts 4/, hence (1) holds.

Assume (4). Let 7 be a minimal smooth path homotopic to 7' (cf Properties 7.3.5(4)). We
have ([0, 1]) = supp([y']) < f(Z), hence 7 lifts to a smooth path in Z. So (3) holds.

Assume (3) and f is strict. Note that +/([0,1]) n Z = supp([7']) n Z) and ([0, 1]) n Z, is
contained in the union of the connected components of Z/ that have a non-empty intersection
with supp([7’]) (Properties 7.3.2(1)). Since f(Z,) is open and closed in Z!, it follows that
v ([0,1]) = f(Z), so (2) holds.

Assume ~' is admissible and lifts to Z. Since f is strict, it follows that the lift is oriented. [

Since quotient maps are strict, we have the following consequence of Lemma 7.3.16.

Lemma 7.3.17. Assume [ is the quotient map of Z by a finite relation. Every mon-constant
admissible path in Z' lifts uniquely to a path in Z and that lift is admissible.

Proposition 7.3.18. If f is strict, then f# : add(S(Z’,1)) — add(S8(Z,1)) is a functor.

Proof. We need to check that f# is compatible with composition. This is clear if Z and Z’ are
non- smgular In general, consider two maps (] and ¢} in S(Z’,1) such that f#(C2 o(]) #

Let f Z — Z' be the map corresponding to f between non-singular covers ¢ : Z — Z and

AR A
We have
T FHG o) = FFa*(G o ) = FHA*(G) 0 (D) = (PP (@) o (FFa* ()
= " f#(G) o a* F (D),
hence f#(¢]) # 0 and f#(¢}) # 0 since ¢ f#(¢} o ¢]) # 0 by Lemma 7.3.17. It follows that
fH(Go¢l) = [H(G) o f7(G). O

The construction Z — add(S(Z,1)) and f — f# defines a contravariant functor from the
category of curves with strict morphisms to the category of Fa-linear categories.

Lemma 7.3.17 and Proposition 7.3.18 have the following consequence.

Proposition 7.3.19. Let Z be a curve with an admissible relation ~ and let q : Z — Z/~ be
the quotient map. The functor ¢ : add(S(Z/~,1)) — add(S(Z,1)) is faithful.
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Note that Proposition 7.3.19 provides an identification of S(Z/~, 1) with a (non-full) sub-
category of add(S(Z,1)).

Example 7.3.20. We describe the image by the map f# of two paths, the first of which is the
constant path at the singular point of Z.,. (we draw the lifts in the non-singular cover).

fti
— +

_|_

7.3.6. One strand bordered algebras. Consider an chord diagram (Z,a, u) as in §7.2.4 with as-
sociated singular curve Z. Proposition 7.3.19 shows the category S(Z, 1) has a full subcategory
corresponding to Zarev’s algebra A(Z,1) [Za, Definition 2.6] (this will be explained for the
more general algebras S(Z,i) in §7.4.11):

A(Z, 1) ; Endadd(S(Z,l))( @ Z)

2€2exc

e Consider the chord diagram (R, {1,2,3,4}, i : ;’i : é)

The associated singular curve Z is the quotient of oriented R by the relation whose non
trivial equivalence classes are 1 = {1,3} and 2 = {2, 4}.

The full pointed subcategory of S(Z, 1) with object set {1,2} is generated by o,/ : 1 — 2
and 3 : 2 — 1 with relations fa = o/ = 0. This corresponds to the well-known ”torus-algebra”

in bordered Floer homology.

P e &

R R

1 .E :/\\2
2
7 =

7] ~

idy ida « B o af Ba! afa’

+1
e Consider the chord diagram (S, {1,7,—1, —i}, u : __J = 21)
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The associated singular curve Z is the quotient of oriented S! by the relation whose non
trivial equivalence classes are 1 = {+1} and 2 = {+£3}.

The full pointed subcategory of S(Z, 1) with object set {1,2} is generated by o,/ : 1 — 2
and 3,3 : 2 — 1 with relations fa = o/ = a8’ = '’ = 0. A curved A, -deformation of this
subcategory appears in a work in preparation of Lipshitz, Ozsvath and Thurston [LiOzTh2].

We have

Homs(z1)(2,1) = {(8'aBa)" B knzou{(B'afd )" o tnzou{ (Ba B'a)") Blnzo{ (Ba/ B'a)") B/ B} =0

Z~:
Z[~ id, idy o 3 o 3

7.3.7. Intersection multiplicity. Let v and 4" be two paths in Z. We consider the number of
intersection points between the graphs of v and '

i(7,7") = [{t € [0,1] [ v(t) =" (1)}] € Zp U {o0}.
Note that i(y1 072,71 ©73) = i(71,71) +i(72,72) = 040~ (0)-
Given ¢ and ¢’ two admissible homotopy classes of paths in Z, we put

i(¢,¢') = Viylgli(%v’),

where «y (resp. 7') runs over admissible paths in [(] (resp. in [(]). Note that i(¢;Cs, (1¢) <
i(C1, G1) + (G2, G3) = 0y (0)=¢} 0)-

The next lemma relates the intersection multiplicity with a constant path and tangential
multiplicities.

Lemma 7.3.21. Let vy be a minimal admissible path in Z and let z € Z. We have

(ol ids) = min i(y,id.) = itr0,ids) = (3 0 (0]) + iz ([oD) + Grorms + s

admiss.
Ti=To] <C(:)
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If z € Z,, then we have

i([vlidz) = = (Y] (me([v0]) = M) ([V0])) + Sr00)== + Sro(1)=2)-

ceC(z)*

DN | —

Proof. Note that
=[]

The third equality of the lemma follows from Lemma 7.1.21.
When Z = S! unoriented, the lemma follows from Lemma 6.2.3.

When Z is a connected non-singular curve, there is an injective morphism of curves f : 7 —
St We have i([vo],id.) = i«(f([70]),1ds) = i(f(70),idfe)) = i(70,id.), hence the first two
equalities of the lemma hold for Z. It follows that they hold for any non-singular curve.

Consider now a general Z and let ¢ : Z — Z be the non-singular cover. Let 4y be the lift of
Yo to Z. We have

i(0,id.) = Y i(fo.ids) = > ([Fo),ids) < i([0]id.).
sef~1(2) zef=1(z)
We deduce that the first two equalities of the lemma hold.
The last equality of the lemma follows from (7.3.2). O

Let us now state some basic properties of intersection counts.

Lemma 7.3.22. Let (; and (5 be two admissible homotopy classes of paths in Z. Assume
C1(t) # Cao(t) fort e {0,1}.
(1) We have i((y, () < 0.
(2) There are minimal or identity admissible paths v1 in 1 and vo in (o such that i(¢y, (o) =
Y1, 72)-
(3) G(’iven 3‘ . Z" — Z a morphism of curves such that (1 and (3 are images of admissible
homotopy classes of paths in Z', we have i((1,(2) = chef”(ci) i((1, 8.

Proof. e Assume (; or (y is an identity. In that case, (1) and (2) follow from Lemma 7.3.21
and (3) follows from Lemmas 7.1.24 and 7.3.21.

From now on, we assume that neither (; nor (, is an identity.

o Let f:Z — Z' be an injective morphism of curves and assume f(¢;) and f((s) satisfy
(1) and (2). We have i(f(¢1), f(¢2)) < i(¢1,¢2). There are minimal admissible paths 7, in
f(¢) for i € {1,2} such that i(f((1), f((2)) = i(74,7%). There are admissible paths v; of Z
such that 7/ = f(y;) for ¢ € {1,2}. Tt follows that (i, () = i(vy,7%) = i(71,72), hence
i(f(C1), f(&)) =i(C1,C2). We deduce also that (1) and (2) hold for ¢; and (s.

e Assume Z = S! unoriented. The assertions (1) and (2) follow from Lemma 6.2.3.

e Assume Z is non-singular and connected. There is an injective map f : Z — S1. It follows
that Z satisfies (1) and (2). This shows that (1) and (2) hold for a general non-singular curve.
e Let Z’' be an arbitrary curve and let f : Z — Z' be the non-singular cover of Z’. Assume
f(Gi(t) # f(G(t)) for t € {0,1}. Since all admissible paths in Z’ lift to Z, it follows that

i(C1, G2) < i(f(G), f(G2))-
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Consider two minimal admissible paths v; and 7 in (; and (; such that i(y1,v2) = ({1, (2)-
We assume that given py,ps : [0,1] = [0,1] any two homeomorphisms fixing 0 and 1 and

such that i(y1 o p1,72 © p2) = (G, ), we have i(f(m), f(12)) < i(f(n © p1), (72 © p2)).
Let ty € (0,1) such that vi(to) # v2(to) but f(11(to)) = f(72(t0)). There is a small open
neighbourhood U of 2" = f(y1(tp)) homeomorphic to St(n,) and with U n f(Z;) = {2’} and
there are 0 < t; < ty < to < 1 such that f(y1)([t1,t2]) < U and f(y2)([t1,t2]) < U. The
paths (71)|(t 4 and (72)|t1,4,] are contained in disjoint connected components of f~!(U), hence

F(v)([t1, t2]) 0 f(y2)([t1,t2]) = {2'}. So, by reparametrizing f(v1) and f(y2) in the interval
[t1, 2], we can assume they do not have a common value in that interval. This contradicts the
minimality of i(f(y1), f(72)). It follows that

(G, G2) = i(y1,72) = i(f (), f(72)) = i(f(C), £(C2)),

hence i((1,C2) = i(f(¢1), f((2)). This shows that (1) and (2) hold for f(v1) and f(v). We
deduce that (1) and (2) hold in full generality. It follows also that (3) holds when f is injective.

e Consider now a morphism of curves f : Z — Z'. Consider the map f : Z — Z' between
non-singular covers corresponding to f. Let (; be the lift of (; to Z. Since f is injective, it follows

that i(f(C1), £(G2)) = (1, ¢2). The study above shows that i(f((1), f(C2)) = i(f(G1), f(¢2)) and
i(C1, G) = i(C1, (). It follows that i(f(¢1), f((2)) = i(C1,2). This completes the proof of the

lemma. Ul
We provide now an upper bound for intersections involving a composition of paths.

Lemma 7.3.23. Consider (, (1 and (s three homotopy classes of admissible paths in Z. Assume
¢ is not an identity, (2(1) = (1(0), €(0) # (2(0) and ¢(1) # (1(1). We have

i(¢, Gro Ge) < min(mf,(G2) + (¢, Cr), mey (G) + (G, G2))-
Proof. Let (' and ¢” be homotopy classes of admissible paths such that ¢ = (' o (. We have

?’(Cv Cl © C2) < i(clv CI) + Z.<gﬂ7 CQ)

Let v be a minimal path in ¢ and let ¢ € (0,1). We have m¢(o)+(¢2) = i(V[0,4, C2) for ¢ small
enough. Since i([y17,¢1) < (¢, ¢1), it follows that

i(¢, G o) <i(C,¢) + meoy+ (G).
The second inequality follows from the first one by replacing Z by Z°PP. O

Recall that we denote by I1(Z) the fundamental groupoid of Z. Consider (;, (> two admissible
homotopy classes of paths in Z with (;(t) # (2(t) for t € {0,1}.
Let I(¢1,(2) be the set of non-identity classes ¢ € Homyi(z)(¢1(0), (2(0)) such that

(i) ¢, &o¢ and o (" are smooth
(ii) ¢ and ¢ := (; 0 o ¢! have opposite orientations (cf Definition 7.3.6).

Note that there are bijections
v : I(Cla CZ) — I(CQaCl)a C = C_l and [(Cla CQ) = [(Cl_lvc2_1)7 C = 5

If Z is non-singular, then the condition (i) in the definition of I((;,(y) is automatically
satisfied.
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Let f : Z — Z' be a morphism of curves. If f((i(t)) # f(((¢)) for t € {0,1}, then the
map f induces an injection I((1,(2) = I(f(C1), f(¢2)) with image f(HomH(Z)<C1<O)a CQ(O))) A

The next lemma is immediate.

Lemma 7.3.24. Let q : Z — Z be the non-singular cover of Z. The map q induces a bijection
[T 16.6) > 1(G. G).

Gieq=1(G)
Lemma 7.3.25. If ( € I((1,(2), then supp(¢) < supp(¢y) U supp((a).

Proof. Consider three non-identity homotopy classes of paths (, ¢; and {» in R with ((0) =
¢1(0) # (1) = ¢(0). If ¢ and ¢, 0 o¢; " have opposite orientations, then supp(¢) < supp((1) U
supp((2). We deduce that the lemma holds for Z = S! by using the universal cover of Z. As a
consequence, the lemma holds when Z is connected and smooth by embedding it in S!, hence
it holds for Z smooth. Lemma 7.3.24 shows that the lemma holds for any Z, since it holds for
the non-singular cover of Z. O

Example 7.3.26. In the two examples below, we describe the set I((j,(2). In the second
example, (, is the identity at the singular point.

7.4. Strands.
7.4.1. Braids. Let Z be a curve. Let I and J be two finite subsets of Z.

Definition 7.4.1. A parametrized braid I — J is a family ¥ = (Us)se; where Uy is an admissible
path in Z with 94(0) = s and such that s — 94,(1) defines a bijection x(9) : I = J . A braid
I — J is a homotopy class of parametrized braids, i.e., a family of admissible homotopy classes
of paths.

Definition 7.4.2. We define the pre-strand category P*(Z) = S(S*(Z,1)) (c¢f §2.4).

The objects of this pointed category are the finite subsets of Z and Homp.(z) (1, J) is the
set of braids I — J, together with a 0-element. Given ¢ : I — J and ¢’ : J — K two braids,
we have 0’ 0§ = (9"93(1) 0 0s)ser if 94/93(1) o 0, is admissible for all s € I, and we have #/ 00 = 0
otherwise. If ' 0 6 # 0, we have x (6" 0 0) = x(0") o x(0).

We put P(Z) = Fo[P*(Z)].

Note that there is a decomposition P*(Z) = \/,-,P*(Z,n), where P*(Z,n) is the full sub-
category of P*(Z) with objects subsets with n elements. We have P*(Z,1) = S*(Z,1).
*(

Given M a subset of Z, we denote by Py,(Z) the full subcategory of P*(Z) with objects the
finite subsets of M.

Given 0 : I — J a braid and I" a subset of I, we denote by 6| the braid (0;)scr .
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Let f: Z — Z' be a morphism of curves. We denote by P}(Z) the full subcategory of P*(Z)
with objects those finite subsets I of Z such that |f(I)| = |1].

The next proposition follows immediately from Lemma 7.3.14 and §2.4.
Proposition 7.4.3. The functor f : S*(Z,1) — S*(Z',1) defines a faithful pointed functor
f : ,PJ:(Z) - P.(Z/)v - f([)v 0 — (f(es))f(S)'

In particular if f : Z — Z' is injective then we have a faithful pointed functor f : P*(Z) —
Pe(Z).

We define a non-multiplicative f# : add(P(Z’)) — add(P(Z)) that commutes with coprod-
uct. Given I’ a finite subset of Z’, we put

fFay = 1] e

p:I'—=Z, fp=idp

Consider now 6 € Hompe 7 (I’, J') non-zero. Given s’ € I, we have a decomposition f#(¢’,) =
Disef-1(s") f#(0.), along the decomposition f#(s') = Dicp1(sy s (cf §7.34). Given p: I' »> Z
with fp = idp, we put f#(6) = (f#(Q}(s))S)SEpU,), a map in P(Z) with source p(I’).
We define
ey = >, ).

p:l'—=Z, fp=idy
Note that f#(6") = X pc;-1(y 0, where f~1(6') is the set of braids in Z lifting 6.
Given f': Z' — Z" a morphism of curves, we have (f'f)# = f# f'#.

The next two propositions are immediate consequences of Propositions 7.3.18 and 7.3.19 (cf

§2.4).

Proposition 7.4.4. If f is strict, then f# defines a functor add(P(Z")) — add(Ps(Z)) com-
muting with coproducts.

Proposition 7.4.5. Let Z be a curve with a finite admissible relation ~ and let q : Z — Z |~
be the quotient map. The functor ¢ : add(P(Z/~)) — add(P,(Z)) is faithful and every map
in P*(Z/~) is in the image of the functor q : Ps(Z) — P*(Z/~).

Note that the construction Z — add(P(Z)) and f — f# defines a contravariant functor from
the category of curves with strict morphisms to the category of Fa-linear categories.

Let Zy,...,Z, be the connected components of Z. The isomorphism (7.3.4) induces an
isomorphism of pointed categories
(7.4.1) P (Zy) A APNZ) > P (2).

Note that the inverse functor sends a braid 6 : I — J in Z to (6y,...,0,), where 0; be the
restriction of 8 to I n Z;.
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Example 7.4.6. We describe below an example of product in P*(Z).

7.4.2. Degree. Consider 6 : I — J a braid. We put

Z D1 i(0s,00)eq € (Zzg)™ )

QEWO(Z) s#s'€elnQ)

We define [0] = >, [0s] € R(Z) and

n=% 3 mlDec L(Z).

s€l cefs(0+)ue(0s(0+))
Finally, we define deg’(0) € T'(Z) by
deg'(60) = (i(0), (—=m(0), [0]))-

Given D < T(Z) with D n (D) = ¢, we denote by deg,(6) the image of deg’(#) in I'p(Z).
Note that if D’ < D, then degp () is the image of deg,/(0) € I'p/(Z) in I'p(Z).

We put deg(f) = deg,+ (0) and we denote by deg(0) (resp. degp(6)) the image of deg(6)
(resp. degp(f)) in I'y+ (Z) (vesp. I'p(Z)).

Lemma 7.4.7. Let 0 : I — J be a braid in Z. Let E be a subset of {s € I n Z, | 05 = id,} and
let 0 = (05)ser—g- We have degp(0) = degg+(0).

Proof. Note that [0] = [0]. Let s € E. We have

O melbhec= D, X ( @) [0ec <52 3 iid,, 0y)

ceC(s) ceC(s)* s’el, s'#s s'el, s'+#s
by Lemma 7.3.21. The lemma follows. U
Remark 7.4.8. Note that i(0) = X>.;.c; |p— 9(0)1)-

The next lemma shows that the failure of multiplicativity of deg and ¢ coincide up to terms
involving points in Z,..
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Lemma 7.4.9. Let 0 : I — J and 0" : I' — I be two braids such that 6 o 0" is a braid. The
element deg(6) - deg(0') - deg(0 0 0')~" of T 5y (Z) is in P, 3Zeq and it is equal to

i(0) + () —i(6 o 0)

1 1
-5 Yo (me—mue)([0)ea — 5 > (me — mue)) ([0]) -
Q, s'el'nZeyxcn ) Q, s'el’'"Q
0, =id, 0,/ #id 0, #id, 0y (1)=id
dEC() T\, (0+) ceC(e!, (1))@, (1-))

02,(1)eZezc
and is also equal to

% Z (i(QSN 932) + Z<9;'179/s’2) - 2'(981 © 0/5’17 (932 © 6;’2))69"1'

(s} 5)e(1'n)?
(s1,85)¢ EUE'

+ Z (i(esu 032) + m£1(0+)(9;’2) - i(851 ) 952 © 9;’2))69+
Q, (s),s5)eEnQ
+ (105, 0%) +mg o (0s,) — (0, 0s, 0 05)) e
Q, (s),5))€E AQ 1
where

o given (s}, sh) € I”?, we put s; = 0,(1)
o E is the set of pairs (s),s) € I' x I' with s} € Zeye, 9;,1 =id, Oy #1id, (9’53 # id
o ' is the set of pairs (s}, sh) € I' x I' with $1 € Zeye, 0;,1 #id, 05, = id and 6,, # id.

Proof. Given s’ € I' and s = /,(1), the class 6, o ¢/, is admissible, hence 65(0+) U ¢(65(0+)) =
0, (1—) U t(0.,(1—)) unless s € Z.,. and one of 6, and 0y is the identity, but not the other.
Given ce T(Z), we put

Ve = (mc - mL(C))([[Q]])eC = mc([[é’]])ec + mL(C)([[Q]])eL(C) = Uy(c)-

Let
a= 2 me([0ee = D) (me = mye)([0)ee
S/EIIQZEZC SIEI/chzc
0,=id, 0, #id 0,=id, 0, #id
eC("\ (04 (0+)ue(B,(0+)) eC(s")\0,/ (0+)
We have

m(fo0)—m() —m(0) =
> meee — Y melhe—a

s'el’ sel
c'€(000") 1 (0+)ue((006") 4 (0+)) c€fs(0+)uL(0s(0+))
1
= 2 e ) Vman Ty ), vea
s'el’ s'el’ sel’
0, #id 0’ ,#id 0, #id
S S . S .
90;/<1)9ﬁ1d 99;/(1):1d

ceC(9/,(1)
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Using (7.3.1), we find
WLWD=—5 Y wrr Y w

s'el’ s'el’
'€’ (0+)ue(07,(0+)) cet’, (1-)uu(8’,(1-))
== 2 Vo0t Q) veao
s'el’ s'el’
o', #id 0/, #id

We deduce that
01, 10T + m(0 0 0') —m(0) —m(¢) = — > (me —mye))([0])ec — a

s'el’
0, #id
01 (1) =id
ceC(e, (1)) (@, (1-))
9;,(1)6ZeggC
and the first equality of the lemma follows.
Consider s} # s5 in I’
If 8 € Zege, 0, = idy and 0, # id,,, it follows from Lemma 7.3.21 that

$1
» 1 1
Z Z(ldsll7 0;/2) = 5 Z (mc/ — mL(C/))(Q;/Q) = 5 Z (mc’ — mL(c/))([[Q/]])
shel’ shel’ ceC(s)+
0, #id 0, #id,
52 52 o2
deC(sh)*
Similarly, if 51 € Zeye, 0,  F id and 0,, = id, we have
i 1
Z i(ids,, 0s,) = B Z (me — mye)([0]).
shel’ ceC(s1)*
05, #id
The second equality of the lemma follows. O

Example 7.4.10. The left (respectively second) side of the diagram below shows a typical
instance where the left (respectively right) sum of Lemma 7.4.9 is nonzero.

o' p "

Remark 7.4.11. Let 6 : I — J and ¢’ : I’ — I be two braids such that # o #" is a braid. By
Lemma 7.3.23, the terms (0, , 0s,) + i(@;/l 0,)—i(fs, o 9;,1, 0s, 09;,2), i(0s,,0s,) + mil(oﬂ(ﬁgé) —

75/2

i(0s,, 05, 002,2) and i(@;,l 0y ) +my _y(0s,) —2'(6;/1, Os, 09;,2) in Lemma 7.4.9 are all non-negative.

75/2
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We deduce that the following assertions are equivalent:
o deg(f) - deg(#') = deg(f o 0)
o deg(0p) - deg(0]5) = deg(f|g o 0]5) for any two-element subset £’ < I', where E =
X(0')(E").
If given s € I' with 0, = id or 6,9 (s) = id, we have s¢Z.,., then deg(f) - deg(#’) = deg(f o 0’)
if and only if i(0e;(1), 0o, (1)) + (0}, 6},) = i((0 0 6')s, (00 0')y) for all s # s in I".

51 7s!

Lemma 7.4.12. Let f : Z — Z' be a morphism of curves. Let I and J be two finite subsets
of Z such that |f( W= 1f(J)| =I| = |J|. Let 0 : I — J be a braid in Z. Let E = {s €
In Zf | 0

We have f(degf 1)+ (0)) = deg gy« (f(0))-

Proof. Assume first E = @. Given s € I with 6, = id,, we have a bijection C(s) = C(f(s)). It
follows that

fm) = ) > me([6])f(ec) + ) Z me([0]) f

958§1de c€ls(0+)ue(0s(0+)) Sv_Elf . ceC(s
= Z Z me ([f(0)])ee + Z Z me ([f(6)
s'ef(I) ef(0)y(0+)ue(f(0),(0+)) s'ef(I) cdeC(s)
f(9)517'5id51 f(e) y=id s/
=m(f(0))

by Lemma 7.1.24.

Given s’ € f(I)such that f(0)y = idy, we have s'¢Z%. We deduce that i(0;, 0;:) = i(f(0) s), f(0) sr))
for all s # t e I by Lemma 7.3.22. So f(i(f)) = i(f(#)). We deduce that the lemma holds for
6.

Consider now the case where E # §. Let 6 = (0;)ses—p. We have degy () = degg: ()
by Lemma 7.4.7; taking quotients, we obtain deg -1 yg))+(0) = degs—1(y())+ +(0). Since f(0) =
(f(0)t)iern)—f(m), it follows again from Lemma 7.4.7 that degp)+(f(0)) = degsp)+(f(0)).
Since the lemma holds for §, we deduce that the lemma holds for 6. i

As a consequence of Lemma 7.4.12, we have the following result.

Proposition 7.4.13. Let f : Z — Z' be a morphism of curves and let ' be a non-zero map in
P*(Z"). Then f#(0') is a sum of maps 6 such that f(degzy(Q)) = degy(z,)+(0").

Let Zy,...,Z, be the connected components of Z. The isomorphism (7.4.1) is compatible
with the degree function in the following sense. Given 6 : I — J a braid in Z, let 6; be the
restriction of 6 to I n Z;. The image of (deg(6,),...,deg(f,)) in I'(Z) by the map of (7.3.3) is
deg(0).

Let I and J be two finite subsets of Z and let 6 : [ — J be a braid in Z. We define

[ 16.6s).
i17#09€l

Note that ¢ — ¢~! induces a fixed-point free involution inv on L(#).

Let ¢ € L(f). Put iy = ¢(0) and iy = ((1). We define 6¢ by (6%); = 6; if i € T — {iy,is},
(09);, = 0,0 =Cob;, and (0%);, = 6;, o' = (1 06,,. Note that 8¢ = 6.
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Let D(0) be the set of classes ¢ in L(€) such that

(a) given a class of smooth paths ¢’ : ((0) — (1) such that ¢ o ("' and ("' o { are
smooth and have the same orientation as ( and (', and given a class of smooth paths
¢": (0) — (1) such that (o¢”~! and ("' o are smooth and have the same orientation
as ¢ and ¢, then ¢’ = C or (" = (.

(b) given ¢’ and ¢” in L(#) with ¢ = ¢’ o ", then ¢’ and " have opposite orientations.

Remark 7.4.14. Condition (a) above is automatically satisfied if the component of the support
of ¢ is not isomorphic to S?.
The subset D(0) of L(6) is stable under the involution inv.

The next lemma restricts the cases where condition (b) above needs to be checked.

Lemma 7.4.15. Let (,(',¢" € L(0) such that ¢ = (' o¢". If ('(0) € Z, and Oy) = id, then ('
and (" have opposite orientations.

Proof. Let z = ¢'(0) = ¢"(1). We have ¢’ € I(id,, 0¢1)). Since ¢’ = 0¢1) o ¢’ is smooth and has
opposite orientation to (', it follows that ¢'(0+) € ¢«(C(2)"). Similarly, ¢"(1—) € «(C(2)*). We
deduce that ¢’ and ¢” have opposite orientations. O

Lemma 7.4.16. Let I’ be a subset of I such that [ —1' < Z, and 0; = id forie I — 1.
We have D(6,1) < D(6).

Proof. We have L(0|;) < L(#) and Lemma 7.4.15 shows that D(6):) = D(0). 0

Example 7.4.17. In the picture below, the left side shows a valid braid 6, for which the
conclusion of Lemma 7.4.15 holds. For contrast, the right side shows a braid # that is disallowed
since 6;, is not oriented, and the conclusion of Lemma 7.4.15 fails.

7.4.3. Strands on S'. Let Z = S', viewed as an unoriented manifold. Fix a family a =
{a1,...,a,} of cyclically ordered points on S, i.e., a; = €" for some real numbers e; < - -+ < e,
with e, — e; < 27.

Fix 7/,r € {1,...,n}. There is a bijection
Foy 1" —r+nZ = Hompsy(ar, ay) :
it sends [ to the homotopy class of paths going in the positive direction and winding [%J times

around S, if [ > 0, and to the homotopy class of paths going in the negative direction and
winding |=!| times around S', otherwise.
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We put
Fr = ZFT’,T Z S HHomH(Sl)(am ar’)-
T./ T/

Given r,r' € {1,...,n} and [,I' € Z with v’ —r = [ (mod n), we have F,.(I+1") = F.(I") o F,.(l).
Note also that given j € {1,...n} and j' € Z, we have

St if [j/—jl=n
supp(F;(j' —j)) = < {e™ | e <u<ejp +2mbp~,, ifj —je{0,...,n—1}
{e™ | ejr —2mdpco <u<e; ifj—7€{0,...,n—1}

where j” € {1,...,n} and j” — j' € nZ.
We denote by S! the oriented curve S'. Fix z = ¢ € S! with # < ¢; and e, — 2 < 27 and

Q a connected open neighbourhood of z in S' containing no a;. Let I = S' — {2z} unoriented

and I = S' — {z} oriented. We define S to be the curve S* with (S%), = Q with its standard
orientation.

Proposition 7.4.18. There is an isomorphism of pointed categories F : (S,,)1 — P2(S*) given
by F(J) = {aj};cinpn and F(o)e; = Fj(o(j) — j) for o a map of S,.
It restricts to isomorphisms of pointed categories

(S1)e = Pa(Sh), (ST = PaSY), (8D = PaI) and (8]*) 4 = Pa(D).
Proof. Consider J, J' = Z/n. We have an injective map f : Homg, (J,J") — Z7, o — (o(j) —
7)), where j € {1,....,n} and b = j + nZ. The image of that map is the set of those ¢ € Z’
such that {¢, + b}, = J' and we obtain a bijection

Homgn(J, ‘],) - HomP;(§1)<{aj}jeJm[1,n]= {aj'}j’ej’m[l,n])
0 = (Fyr i (£(0)j4n2)) je i, ieimofin], o()—ifenz-

We deduce that F' induces a bijection on pointed Hom-sets. Consider now o : J — J' and
o' J' — J" two maps in S,,. Given j € J n [1,n], we have

F(o'0)a, = Fj(0'0(j) — j) = F;(0'(a(j)) = 0(j) + 0(j) = J) = Fo(5)(0")a,;) © F(0)a;-
We deduce that F'is a functor and the first statement of the proposition follows.

Consider now o € Homsg, (J, J').

The map F(co) is in P2(S?) if and only if o(j) = 0 for all j € [1,n] n J, hence if and only if
oisin S;.

The map F(o) is in P2(S') if and only if o(j) — 7 = 0 for all j € J, hence if and only if o is
in S+,

The map F(o) is in P2(I) if and only if ¢(j) € [1,7n] for all j € J A [1,n], hence if and only
if o is in S7.

The proposition follows. U

There are morphisms of groups Fr : R, — R(SY), ajinz — [F;(1)] and Fp : L, —

L(S"), €jinz — €, where j € {1,....n}, ¢; = (aj,a;e™) € C(a;) and u € Ry is small
enough.
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Lemma 7.4.19. Given o, € R,, we have Fy({a,B)) = (Fr(a), Fr(p)) and there is an
injective morphism of groups Fr : T, — T'(SY), (r, (I, «)) — (r, (FL(I), Fr(a))).

Let D be a subset of {1,...,n} x {£1} that embeds in its projection on {1,...,n}. Define
0:D — T(SY) by 5((@',1/0) =¢ ifv; =1 and d((i,v;)) = t(c;) otherwise. The morphism Fr
induces an injective morphism of groups Fp : T'p — Top)(S'). We have u < u' if and only if
FD(U) < FD(UI).

Let o be a map in S,,. We have Fg([o]) = [F(0)], m(F(c)) = Fr(m(0)), i(F(o)) = £(o)
and deg(F (o)) = Fr(deg(o)).

Proof. Let r,j e {1,...,n} and let j' € Z. We have
me, ([F5(" =) ={ier+nZ|j<i<j}—[ier+nZ|j>i=j}
and
Mue) ([F5(" = 7)) = —l{ier+nZ | j<i<j}+{ier+nZ]|j=i>j}

In particular, me, ([F;(1)]) = d,; and my,e([F;(1)]) = —d,j+1. This shows that Ff is
injective. This shows also that given i € {1,...,n}, we have
AEOLIFEMID = 041 + 6i5) FL(Ej114nz) = (015 + 0iv1,5) FL(€j1nz) = FLQitnz, Oj1nz))-
This shows the first equality and this shows that Fr induces an injective morphism of groups
Fr.

Taking quotients, we obtain an injective morphisms of groups Fp : I'p — T'sp)(S*) compat-
ible with the order.

Consider ¢ € Homg, (I, J). Given d € Z, we have [F,(d)] = Fr(r+ad), hence Fr([o]) =
[F(o)]-

We have
m(F(o) = > (me, —muye)([Fi(e(G) = )ee,
rjeln[1.n]
and
m(a) = Z Ajo(j) " Erd4nZ-
r,jefrw[l,n]
Since

Qo) * Ertnz = (Me, = Mu(e))(F(0))erinz,
it follows that m(F (o)) = Fr(m(0)).
Consider iy,iy € I with 0 < i; < iy < n. We have i(F(0)a;,, F(0)as,) = z(vl,vg) for some
minimal paths 7, in F(0),, by Lemma 7.3.22. Lemma 6.2.3 shows that i(F(0)q,,, F'(0)a;,) =
HMH Lemma 6.2.2 shows now that i(F(c)) = £(0). O

Given iy, 1y € Z with do¢iy + nZ, we put A(i1,iz) = Fy (ia — i1), where 4} € [1,n] n (i1 + nZ).

Lemma 7.4.20. Let 0 be a map in S,. Given (iy,iz) in L(c) (resp. D(0)), the class (i1, i)
is in L(F(c)) (resp. D(F(0))) and F(o) 2 = F(g"2), Furthermore, \ induces bijections

L(o)/nZ = L(F(0))/inv and D(o)/nZ = D(F(0))/inv.
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Proof. Note first that, given ¢} and i) two distinct elements of {1,...,n}, then A induces a
bijection
((¢1 + nZ) x (it + nZ))/nZ = Homps (az, az,).

Consider o € Homg, (I, J) and 4y, € I with i»¢i; + nZ. Note that (i1, 19) = A(ig,i1) " for
any le, ’ig.

Let ¢, = F(0),, and ¢ = A(i1,i2). We have ¢ = A(o(i1),0(i2)). So, ( € L(F(0)) if and only
if i1 — 15 and o(i;) — o(iz) have opposite signs. On the other hand, (i1,i2) € L(0o) if and only
if iy < i and o(i2) < o(i1). This shows that A(L(c)) < L(F(c)) and A induces a bijection
L(o)/nZ = L(F(0))/inv.

Consider (i1,i2) € L(0). Let r = |2=%] and s = [MJ We have r > 0 if and
only if supp(A(i1, s — rn)) < supp(A(ir,i2)) and s > 0 if and only if supp(A(iy1,ia + sn)) <
supp(A(i1,i2)). There is ¢ such that (i1,4) and (i,45) are in L(o) if and only if there are ¢’ and
¢” with the same orientations in L(F(¢)) such that A(iy,is) = (" o ('. We have is —i; > n
if and only if there is ¢’ such that ¢, ¢’ and ¢ o "' have the same orientation. We have
o(i1) —o(iy) > n if and only if there is ¢” such that ¢, ¢” and  o¢"~! have the same orientation.

We deduce that (i1,i2) € D(o) if and only if A(iy,i2) € D(F(0)).

Assume now (i1,12) € L(o). Let i’ € [1,n] n (i, + nZ) for r € {1,2}. We have

(F(U)A(ihiz))aia = Fy (0(ig) —i2) 0 Fyr (ia —i1) = Fy (0(ig) —i1) = (F(o2))

Similarly, (F(o)®®)), = (F(6"7%)),, . It follows that F/(0)*2) = F(¢""2). This completes
the proof of the lemma. O

ail .

7.4.4. Strand category. Let Z be a curve.
We have a positivity result in the setting of Lemma 7.4.9.

Lemma 7.4.21. Let 6 and 0 be two braids such that 000" is a braid. We have deg(6)-deg(8') =
deg(f o).
Given D a subset of T(Z) containing Z,. and such that D n (D) = &, the following
assertions are equivalent:
o deg(f) - deg(0') = deg(f o 0')
o deg(f) - deg(#') and deg(0 o 0’) have the same image in I'p(Z)
e deg(f) - deg(#') and deg(f o §') have the same image in T'p(Z).

Proof. Assume Z = S! unoriented. Let a be a family as in §7.4.3. Assume a contains 6,(r) and
0.(r) for r € {0,1} and all s. Proposition 7.4.18 and Lemma 7.4.19 show that the inequality
follows from the corresponding inequality for maps in §,,, which is given by Lemmas 6.2.1 and
6.2.5.

Given Z a non-singular connected curve, there is an injective morphism of curves Z — S1,
and the lemma follows from Proposition 7.4.3 and Lemma 7.4.12. We deduce that the inequality
holds for any non-singular curve Z.

Consider now a general curve Z and let ¢ : Z — Z be the non-singular cover. Since the functor
¢* : add(P(Z)) — add(P(Z)) is compatible with degrees (Proposition 7.4.13), if follows that
the inequality holds for Z.

The equivalence of the three assertions follows from the fact that an element of (3Z5)™%) <
[+ (Z) is zero if and only if its image in 17 < Tp(Z) is zero. O
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By Lemma 7.4.21, the degree function gives a I' ,+ (Z)-filtration on the category P*(2).

Definition 7.4.22. We define the strand category S*(Z) as the I+ (Z)-graded pointed cate-
gory associated with the filtered pointed category P*(Z) (cf §2.3.3).

The category S*(Z) has the same objects and the same maps as the category P*(Z). It is a
pointed category with objects the finite subsets of Z and with Homge 2 (1, J) the set of braids
I — J, together with a 0O-element.

The product of two braids 6 : I — J with ¢ : J — K is defined as follows:

00— 008 if deg(f o6) = deg(d) - deg(0)
o otherwise.

Note that the strand category decomposes as a disjoint union S*(Z) = [[,,-,S*(Z,n), where
S°(Z,n) is the full subcategory with objects subsets with n elements.

It follows from Lemma 7.4.21 that given D a subset of T'(Z) containing Z} . and such that
Dn (D) = &, the structure of I'p(Z)-graded (resp. I'p(Z)-graded) category on S(Z) obtained
from the quotient morphism f : T+ (Z) — Ip(Z) (vesp. f: T, (Z) — T'p(Z)) is the same
as the graded category obtained from the structure of I'p(Z)-filtered (resp. I'p(Z)-filtered)
category on P*(Z) that is deduced from the structure of T',+. (Z)-filtered category via f.

Remark 7.4.23. We leave to the reader to check the following alternate definition of the
product in the strand category.

We have 0’ -0 # 0 if and only if there are parametrized braids ¥, 9" with § = [J] and 6" = [V']
and there are v : I’ — [ and o : K — K’ two parametrized braids with I, K/ < Z\Z.,.
such that i(a) = i(a’) = 0, @yogon. 1) © Vyoas1) © Ya.1) © @s is admissible for all s € I and
(0o ofoa)=1ildol)+i(foa).

Let S(Z) = Fo[S*(Z)], a [';+ (Z)-graded Fa-linear category.

Let f: Z — Z' be a morphism of curves.

Let S3(Z) be the full subcategory of §*(Z) with objects those finite subsets I of Z such that
|f(I)] = |I]. We deduce from Proposition 7.4.3 and Lemma 7.4.12 a faithful I, (Z’)-graded
pointed functor f : S3(Z) — S§*(Z'). Here, the I'y (Z')-grading on S3(Z) comes from the
['t-1(z. )+ (Z)-grading via the morphism I'(f).

Assume f is strict. Propositions 7.4.4 and 7.4.13 provide an additive Fo-linear I, (Z')-
graded functor f# : add(S(Z’)) — add(S¢(Z)), where the Ty (Z')-grading on Sy(Z) is de-
duced from the I'y-1(z_)+(Z)-grading via the morphism I'(f).

If f is a quotient morphism, it follows from Proposition 7.4.5 that f# is faithful.

Given M a subset of Z, we denote by Sy,(Z) the full subcategory of S*(Z) whose objects
are the finite subsets of M. We denote by S}, ;(Z) the full subcategory of S3(Z) with objects
subsets contained in M.

We put A*(Z) =S5 (2).

Let Zy,...,Z, be the connected components of Z. The isomorphism (7.4.1) induces an
isomorphism of I' ;4 (Z)-graded pointed categories

(7.4.2) SUZ) A ASNZ) S S(Z)
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where the grading on the left hand term is deduced from the the (H:Zl I‘( Zi)zlc(Zi))—grading
via (7.3.3) and an isomorphism of Fa-linear categories

(7.4.3) S(Z)® - ®8(Z,) > S(Z).
Example 7.4.24. In the example below the first row is the product in P*(Z), while the second

row is the product in §*(Z2).
p

7.4.5. Generation. We equip Z with a metric. Given ¢ a path in Z, we denote by |{] its length.
Given ¢ a homotopy class of paths in Z, we put |(| = |£|, where { is a minimal path in {. Given
0:1— Jabraid in Z, we put |0 = >, |6s].

Let M be a finite subset of Z.

Lemma 7.4.25. Let 0 € Homss (7)(I,J) and ¢' € Homgs (7)(I',I) such that 6 o 0" is a braid.
Let Iy be a finite subset of M\(I v 1" U J).
If 0] + 10'] = [0 0 &|, then (0 Xidy,) - (¢’ Kidy,) = (6 -0") K idy,.
Proof. Let s" € I'. Since |0p(s)| + |0%] = [0o(s) © 0], it follows that i(0y (s, 1d;) + (0, id;) =
i(0gr (o) 0 0,,1d;) for all 7 € Iy. As a consequence,
i((000)®idy,) —i(0Ridy,) — i(¢ ®idy,) = i(000) — i(0) — i(6).
The lemma follows now from Lemma 7.4.9. U

Let ¢ € Homgs (z)(I, J) be a non-zero braid.
Let Iy = {i e I | 6; =id;}. Let i € I\Ip. There is a (unique) decomposition §; = 5°- ' in
S*(Z,1) with
e a'(1) e M\I
o |0i] = la'| + |5| |
e given a minimal path £ in o', we have £((0,1)) n M < I,.



HIGHER REPRESENTATIONS AND CORNERED HEEGAARD FLOER HOMOLOGY 111

We define a quiver T'(f) with vertex set I\Iy. There is an arrow i — i if a’(1) = 7.
Note that there is at most one arrow with a given source (that arrow can be a loop).

Lemma 7.4.26. Let I' be a non-empty finite subset of I\Iy such that
e if there is an arrow i — i’ in I'(0) with i € I', then i’ € I
e giveni # i’ € I', we have o(1) # o' (1).

There is a (unique) decomposition 6 = 0" - w in Sy, (Z), where |0 = 0| + |u| and

{ai ifiel
U; =

id;  otherwise.

Proof. Note that the second assumption on I’ show that the full subquiver of I'(§) with vertex
set I’ is a disjoint union of oriented lines and oriented circles.

Let iy # ig € 1. If iy,i5 € I\I', then u(iy) # wu(iz). Assume now i; € I’ and iy € I\I'.
Since i; — iy is not an arrow of the quiver, we have u(iy) # i2, hence u(iy) # u(iz). Finally if
i1, € I', then u(iy) # u(iz). We have shown that u is a braid.

Note that there is a (unique) decomposition § = 6 owu with || = |6"| + |u|. In order to show
that 6* - u # 0, we can replace 0 by 0p;, and M by M\, thanks to Lemma 7.4.25. So, we
assume now that Iy = .

Let ¢ : Z — Z be a non-singular cover of Z. Let M = ¢ 1(M) Let 6 : I — J be the unique
lift of @ to Z. We have a decomposition 6; = 3 - &' for i € I and q(&@) = 1,

Let I' = ¢~'(I') n I. Note that ¢ induces a morphism of quivers F(@) — T(#), hence I’
satisfies the assumptions of the lemma and we have a decomposition 6 = §%o 4. Since q(a) = u,
it follows that if the lemma holds for 8, then it holds for 6.

We assume now that Z is non-singular. If the lemma holds for connected components of 7,
it will hold for Z, hence it is enough to prove the lemma for Z connected. Assume now 7 is
connected. There is an injective morphism of curves f : Z — S!, where S! is unoriented. It

the lemma holds for S!, it holds for Z.

We assume finally that Z = S! unoriented. Let i; # i5 € I’ such that i(u;,,u;,) # 0. Note
that u;, and wu;, have opposite directions and i(u;,,u;,) = 1. Furthermore, 6;, has the same
direction as w;,, hence i(0;,,6;,) = i((6");, (0")i,) + 1. Given iy # iy € I with i;¢1’, we have

i(uiy, uiy) = 0. It follows from Remark 7.4.11 that 6* - u # 0. This completes the proof of the
lemma. U

Note that the length of a map in S3,;(Z) takes value in a finitely generated submonoid of
R.y. So, a repeated application of the previous lemma provides a decomposition of any map 6
of §3,(7Z) as a product 0 = w,, - - - uy, where wu; is a map w as in the lemma.

7.4.6. Decomposition at a point. Let zq € Z, with zo¢ M.

Given ¢ a homotopy class of admissible paths in Z with ¢ # id,,, we put u(¢) = i({,id,,).

Assume p(¢) = 1. There is a unique decomposition ¢ = (" - (" in §*(Z,1) such that
¢'(1) = 20 and u(C7) = 1.

Given ¢ € Homss (z)([,J), we put u(0) = >, u(0s). Given ¢ € Homss (z)(I',I) with
60 #0, we have u(6-0) = pu(0) + u(d).
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Lemma 7.4.27. Let 0 € Homss (2 (I, J) with pu(0) = 2.

There ezists a decomposition 6 = r'(0)-r(0) in Sy (Z) with u(r(0)) = 1 and with the following
property.

Let s € I such that u(r(0)s) = 1. Given s’ € I such that u(6y) = 1 and supp(67,) < supp(6’),
then s’ = s.

Proof. We prove the lemma by induction on |0]. Assume there is a set I’ satisfying the as-
sumptions of Lemma 7.4.26 and such that p(u) = 0. By induction, there is a decomposition
v = (%) - r(6") as in the lemma. Now r(f) = r(0*) - u and 7'(0) = r'(6") satisfy the
requirements of the lemma.

Assume now that given any set I’ satisfying the assumptions of Lemma 7.4.26, we have
p(u) = 1.

Let s € I with p(6s) = 1 such that given s’ € I with u(6y) = 1, we have supp(6%) < supp(6%).
Given s’ € I\{s}, we have ;(a®) = 0 (notations of §7.4.5).

Let I’ be the set of s’ € I such that there is a sequence sy = s, s1,...,5s, = s" of elements of
I such that s; — s;41 is an arrow of I'(#) for 0 < ¢ < r. Assume there exist si, ..., sq in I'\{s}
such that s; = s; and s; — s;41 is an arrow of I'(0) for 1 < ¢ < d. Then I” = {s1,..., 54}

satisfies the assumptions of Lemma 7.4.26. On the other hand, we have u(a®) = 0 for s’ € I”,
hence we get a contradiction. It follows that I’ is a cycle or a line and it satisfies the assumptions
of Lemma 7.4.26. The braids /(0) = 6 and r(f) = u of Lemma 7.4.26. satisfy the requirements
of the lemma. U

7.4.7. Differential. Let us start with a description of i(6) in terms of L(#), using our previous
analysis of S*.

Let f: Z — Z' be a morphism of curves. Given 6 € Homp;(z)(f ,J), the map f induces an
injection f : L(0) < L(f(#)) by the discussion above Lemma 7.3.24.

Lemma 7.4.28. Given 0/ € f(Homps(7) (1, J)), the map f induces a bijection Jpe -1 gy L(0) —
L(0'). It restricts to a bijection | Jpe -1 4 D(0) = D(¢).

Proof. Assume first f is a non-singular cover of Z’.

Let ¢ € L(¢'). There are i} # i, € f(I) such that (' € 1(922,9;,2). By Lemma 7.3.24, there
are elements ¢, € f71(0] ) and ¢ € (1, (o) such ¢ = f({). We define § € f~1(¢') by setting
0¢,0) = ¢ and by setting 6; to be any lift of 0}(1.) for all f(i) ¢ {4}, 45}. This shows the surjectivity
part of the first statement of the lemma.

Consider now # and 6 maps in P3(Z) such that f(0) = F(6) = 0. Let ¢ e L(#) and ¢ € L(6)

~

such that f(¢) = f({) = ¢’. There are i} # i, € f(I) such that (' € 1(6’2,1,9’.,2). We have

éé(t),em e f71(0;,) for t € {0,1}. Tt follows from Lemma 7.3.24 that { = . So, the first
statement of the lemma holds.

Assume now f is an open embedding. The injectivity of the first map of the lemma is clear,
while the surjectivity follows from Lemma 7.3.25.

We deduce the first part of the lemma for Z and Z’ non-singular and the general case follows
now by taking non-singular covers of Z and Z’ and the lift of f.

Let us prove now the second statement of the lemma about D(6).
Consider 6 € f~1(0) and ¢ € L(0). It is clear that if f(¢) € D(#'), then ¢ € D(6).
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Assume now ¢ € D(0). Fix iy # iy € I so that ( € 1(0;,,0,).

Let ¢/, ¢" € L(¢) such that f(¢) = ¢'o¢". Let 2 = ¢'(0) = ¢"(1). If | f~1(0))] > 1, then z € Z,
and €, = id, hence ¢’ and (" have opposite orientations by Lemma 7.4.15. Assume now 6’ has
a unique lift. Let ¢’ and ¢ be the unique lifts of ¢ and ¢” (first part of the lemma). By unicity
of lifts, we have ¢ = ¢’ o (". We have (',(" € L(6), hence ¢’ and ¢” have opposite orientations.
It follows that ¢’ and ¢” have opposite orientations as well.

Consider now (' : f(i1) — f(i2) a smooth homotopy class of paths such that f({) o ¢'~! and
¢'L o f(¢) are smooth and have the same orientation as f(¢) and ¢’. Let ¢’ be the unique lift
of ¢’ Since f(¢) o ¢! is smooth, it follows that ¢'(0) = i, and ¢ o ¢! is smooth and has the

same orientation as (. Similarly, g: '(1) =iy and é’ _E o ( is smooth and has the same orientation
as (. A similar statement holds for ¢ replaced by (. We deduce that f({) € D(¢'). O

Remark 7.4.29. The picture below shows what would go wrong in Lemma 7.4.28 if we allowed
unoriented points in Z,.. In the proof, we need ¢’ and (" to be in L(6), which would not be
true if this example were valid.

Proposition 7.4.30. Let 6 € Homp.(z)(1, J). We have i(0) = Xoc, (7 [(L(0) N Q)/inv]eq. In
particular, L(0) is finite.

Proof. The statement is true for Z = S' unoriented by Lemmas 3.2.3, 7.4.19 and 7.4.20. It
follows from Lemmas 7.4.28 and 7.3.22 that it holds for any connected non-singular Z, by
embedding it in S'. So, the lemma holds for any non-singular Z. By realizing an arbitrary
Z as a quotient of its non-singular cover, we deduce from Lemmas 7.4.28 and 7.3.22 that the
lemma holds for any 7. U
Given f : Z — Z’ a morphism of curves, given 6 € Homps(z)(I,J) and given ¢ € L(0), w

have f(0°) = f(6)7(©.
Lemma 7.4.31. Given 6 € Hompez)(I,J) and ¢ € L(A), we have 8¢ € Hompe (I, J). We

have ¢ € D(0) if and only if degD(HC) degp(0) — 1 for some (or equivalently, any) finite
subset D of T(Z) such that D n (D) = &.
Proof. Let us shows the first statement. We can assume 9 a id.

Assume 9( 0) has the same orientation as (~!. We have 94 = E(O) o (7t If v and 4 are
minimal paths in QE(O) and ¢!, then v 04/ is a minimal path in 6,(;). Since o+’ is admissible,
it follows that v is admissible, hence Qg(o) is admissible.

Otherwise, 02(0) has the same orientation as (~! and Oco) = (to 95(0), hence we deduce as
above that Qg(o) is admissible.

Similarly, Gg(l) is admissible and we deduce that 6¢ is a braid.
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Let us prove the second part of the lemma. When Z = S! unoriented, this holds by Lemmas
7.4.20, 6.2.8 and 7.4.19 and Proposition 7.4.18. We deduce that the lemma holds when Z is
a connected non-singular curve, by embedding Z in S!. So, it holds when Z is a non-singular
curve (since supp(() is contained in a connected component of 7).

Consider now a general Z and the non-singular cover q : Z — Z. There is a braid 0 in
Z with ¢(0) = 6 (Lemma 7.4.5) and there is ¢ € L(f) such that ¢ = ¢(¢) (Lemma 7.4.28).
The considerations above show that 6° is a braid in Z , hence 0° = q(éi) is a braid in Z. The
statement on degrees follows from Lemmas 7.4.28 and 7.4.12. O

Given 6 € Homge (2 (1, J), we put

d0) = ). 6°eHomg (I, J).
¢eD(0)/inv

Note that the set D(6) is finite by Proposition 7.4.30.

Theorem 7.4.32. The map d equips S(Z) with a structure of differential Fo-linear category
and S8*(Z) with a structure of differential pointed catgory.

Let f: Z — Z' be a morphism of curves.
o The functor f : S}(Z) — 8*(Z') is a faithful pointed functor and its restriction to
ez | |f,1f(z)‘:1}(Z) is a differential pointed functor.
o If [ is strict, then f# : add(S(Z')) — add(S;(2)) is a differential functor commuting with
coproducts.

o If f is a quotient morphism, then f# is faithful and every map in S*(Z') is in the image

by f of a map of S}(Z).

Proof. Lemma 7.4.28 shows that d(f#(0')) = f#(d(')) for any ¢’ and that d(f(0)) = f(d(0))
i [f1F(0)] = 1.

Assume Z = S! (unoriented) and consider a finite subset a of Z as in §7.4.3. We use the
notations of that section. It follows from Lemma 7.4.19 that the isomorphism F' of Proposition
7.4.18 induces an isomorphism of Fs-linear categories F' : Fo[H,] = Sa(Z). It follows now
from Lemma 7.4.20 that this isomorphism commutes with d. In particular, d is a differential
on S,(Z). Since this holds for any finite subset a of Z, we deduce that d is a differential on
S(2).

Consider now a non-singular connected Z and an injective morphism of curves f : Z — S*.
Since f induces a faithful Fy-linear functor S(Z) — S(S') commuting with d, we deduce that
d is a differential on S(Z2).

The decomposition (7.4.3) is compatible with d, hence d is a differential on §(Z) for any
non-singular 7.

Consider now a general Z and ¢ : 7 — 7 its non-singular cover. Since the additive Fa-linear
functor ¢# commutes with d, it follows that d is a differential on S(Z).

The last statement of the theorem follows from Lemma 7.3.17. g

There is an isomorphism of differential pointed categories

(7.4.4) S*(Z°PP) 5 S*(Z)°P, [ I, 0 — (071),.

s
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Note that the construction Z — add(S(Z)) and f — f# defines a contravariant functor from
the category of curves with strict morphisms to the category of differential categories.

7.4.8. Strands on non-singular curves. We consider as in §7.4.3 a family a = {ay,...,a,} of
points on S and z € S' — a such that a,, ..., an, z is cyclically ordered.

The next proposition follows immediately from Proposition 7.4.18 and Lemmas 7.4.19 and
7.4.20.

Proposition 7.4.33. The functor F' induces an isomorphism of differential pointed categories
H, — S2(SY). It restricts to isomorphisms of differential pointed categories

HE - 82(SY), Hit — S:(SY), HI — S2(I) and HITH — S2(I).

n

Consider Z = R.g as an unoriented curve. We denote by SC;)(R>0) the full subcategory
of §*(R~¢) with objects the subsets of the form {1,...,n} for some n € Z-,. We define a
monoidal structure on the differential pointed category Sg(Rxo) by {1,...,n} ®{1,...,m} =
{1,....,n+m} and §" = 0 ® 0 is defined by 0/ = 0, if i < n and 07 = 0,_, otherwise.

The next theorem follows immediately from Proposition 7.4.33.

Theorem 7.4.34. There is an isomorphism of differential pointed monoidal categories U* —
Sg(Rso) defined by e — {1} and 7 maps to the non-zero and non-identity element of Endser.,)({1,2}).

7.4.9. Products and divisibility.

Lemma 7.4.35. Consider braids 0" : I — J and 0’ : J — K and assume 8 = 6 -0" is non-zero.
Let ¢ € D(O)\(D() n D(0")). Assume ¢ and (' are oriented.
Define " : [ — J by

92’(1) o( if s = C(O)
oy =10 oC" ifs=((1)

0! otherwise.
Let (' = 6{y0 (o (9’4’(0))_1 and o/ = (0')". Then o and o/ are braids and 6 = o/ - o”.

Proof. Since ¢ and (™! are oriented, it follows that o is oriented for all s. Also, it follows from
Lemma 7.4.31 that «' is a braid.

Consider first the case where Z = S! unoriented. In that case, the lemma follows from
Proposition 7.4.33 and Lemmas 7.4.20 and 6.2.9.

Assume now Z is smooth and connected. There is an injective morphism of curves f : Z —
S1, where S! is unoriented. Since the lemma holds for S*, we deduce that it holds for Z.

When Z is only assumed to be smooth, the lemma follows from the case of the connected
component containing (.

Consider now the general case. Let f : Z — Z be a smooth cover. Let 6 be a braid lifting 6.
There are unique braids @ and 6” in Z with § = ¢’ - 8" and f(8') = ¢, f(6") = 6". There is a
unique ¢ € D(#) with f(¢) = ¢ (Lemma 7.4.28). We have (¢D(6") (Lemma 7.4.28). Since the
lemma holds for Z, we deduce it holds for Z. Il
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7.4.10. Subcurves. Let Z be a curve.

Let S and T be two finite subsets of Z. Let S; be a subset of S and Sy = S\S;. Let T be a
subset of T"and T, = T\T}. Let ®; € Homge(z)(S;, T;). We define & = &;X]1®, € Homge(£)(S,T')
by &, = (®;); when s € S;. This gives an injective map of pointed sets

HOI’IlSo(Z)(Sl, T1> VAN Homgo(z)(SQ,TQ) — HOIl’lso(Z)(S, T)

Note that this is not compatible with composition in general. We obtain an isomorphism of
pointed sets

\/ (H0m3-(2)<Sl,T1/) AN Homgo(z)(SQ,T\Tll)) = Homgo(z)(s, T)
T/cT
T{|=[1]
We have corresponding morphisms of Fy-modules between Hom-spaces in S(Z). Note these
are not compatible with the differential.
Assume Sy = T5. The map ¢, — &, X]idg, defines a canonical embedding of pointed sets
(not compatible with the differential nor the multiplication in general)

Homg.(z)(Sl,Tl) — Homg.(z)(Sl [ SQ,Tl Ll SQ)

Given Z; and Z, two disjoint closed subcurves of Z, we obtain a faithful differential pointed
functor

S*(Z1) A 8*(Zs) — S*(Z), (51, 55) — S1 i Ss.

Let Zi,...,Z, be the connected components of Z. The construction above induces an iso-
morphism of differential pointed categories (cf (7.4.2))
(7.4.5) S (Z) A AS(Z)>8(Z), (S1,...,8,)—S1u--uS,.

Let us record a case where the tensor product construction [x] is compatible with composition
and the differential in the following immediate lemma.

Lemma 7.4.36. Let M be a subset of Z and let Z' be a subcurve of Z. Assume that given an
admissible homotopy class of paths ¢ in Z with endpoints in M, there is an admaissible path
in ¢ contained in Z — Z'. There is a faithful functor of differential pointed categories

Su(Z) n S(Z') = Siyuz(2)
(S, T)— SuT
(a,8) —» aX B = (aKid) - ([dKB) = (IdXB) - (a Kid).
7.4.11. Bordered Heegaard-Floer algebras. We consider a chord diagram (Z,a, i) as in §7.2.4.

Let Zy,..., 7 be the connected components of Z. Let n; = |an Z;] and let ¢ : Z — Z be the
quotient map.

The isomorphism (7.4.5) associated with the decomposition Z = Z; [ |- - -] [ Z; together with
the strands algebra description of §6.3.2 and the isomorphism of Proposition 7.4.33 induce an

isomorphism of differential algebras

A(n) ® -+ ® A(m) = End, 502, (D 1).

Ica
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The differential algebra A(Z) associated to Z is a differential non-unital subalgebra of
Any) ® --- ® A(ny) (cf [Za, Definition 2.6] and [LiOzThl, Definition 3.16] for the original
setting where [ = 1). There is a unique isomorphism of differential algebras

A(2) > Endagaszy( P S)

Scq(a)

making the following diagram commutative

A(Z) - Endaaas2)) (Dsegra S)

| [

A(n) ® -+ @ A(ng) —= End,4q(5(2))(Drca )

8. 2-REPRESENTATIONS ON STRAND ALGEBRAS

8.1. Action on ends of curves.

8.1.1. Definition. Let £ : Rog — Z be an injective morphism of curves, where R+ is viewed
as an unoriented curve. Let M a subset of Z\¢(Rx1).

We say that £ is terminal for (Z, M) if the following two conditions hold:

e given an admissible homotopy class of paths ¢ in Z with endpoints in M, there is an
admissible path ~ in ¢ contained in Z\¢(Rx1)
e there is no admissible path in Z\{{(1)} from a point of M to £(2).

Note that ¢ is terminal for (Z, M) if and only if £ is terminal for (Z(§), Z(§) n M), where
Z (&) is the component of Z containing £(Rxg).

We say that £ is outgoing for Z if {(Rs1) is closed in Z. Note that if £ is outgoing for Z then
it is terminal for (Z, M) for any M < Z\{(Rs1).

Remark 8.1.1. Assume £ is not outgoing for Z and let zp € Z such that {(R>1)\{(Rx1) = {20}
Note that £ is outgoing for Z\{z}. The map & is terminal for (Z, M) if and only if 2o¢ M and
the inclusion induces an isomorphism Hom ae(z (20},1)(m, 2) = Hom e (z1)(m, z) for all m € M
and z € M u {{(1)}.

We assume now that ¢ is terminal for (Z, M). Thanks to Lemma 7.4.36, we have a differential
pointed functor

L*=1L¢: Sy(Z) x 83(Z2)°PP x U* — diff
L*(T, S, e") = Homge () (S, T 1 {£(1),...,£(n)})
L*(B,a,0)(f) = (BXE(0)) - frae LT, 5 n)

for a € Homge(£)(5',5), B € Homge2)(T,T"), 0 € Endy.(e"), and f € L*(T,S,n). We have
used the strands realization of U*® given by Theorem 7.4.34.

We put L*(T,S) = L*(T, S,e). As usual, we put L¢ = Fo[L¢].

The naturality in the next lemma is immediate as in Lemma 7.4.36.
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Lemma 8.1.2. Given S < M and n > 0, there is an isomorphism of functors Sy;(Z) — Sets®
(forgetting the differential)

\/ HomS'(Z)(S/’ {5(1)7 s af(n)}) A HomS'(Z)(S\S,> _) - L.(_> 57 en)

S'cS
[S"]=n

(a, ) = a 5.
Lemma 8.1.2 shows that there is an isomorphism of functors, functorial in S and T’
L*(T,—,e") A L*(—,S,e™) > L*(T, S, e"™™)
(o, B) = (aBIE([r = n+ rlicr<m)) - 5.

The functor £ = E = L*(—,—) gives a bimodule 2-representation on Sy;(Z). The endo-
morphism 7 of L*(—, —, e?) is given by the non-identity non-zero braid {1,2} — {1, 2}.

We have obtained the following proposition.

Proposition 8.1.3. The bimodule E and the endomorphism T define a bimodule 2-representation
on 8y (Z) and on Sy (Z).

Lemma 8.1.2 shows that L¢(—, —) is left finite.

Remark 8.1.4. Proposition 8.1.3 generalizes and make more precise a result of Douglas and
Manolescu [DouMa, §5.2].

Let (Z,a, ) be a chord diagram where Z = [0,1]. Let Z’' = (0,0), viewed as a curve with
7' = Z = (0,1) (with its usual orientation). We extend the equivalence relation from Z to Z’
by having all points of [1,00) alone in their class. Let Z’ = Z'/ ~. We have Z' = Z,. Let
M = Z!,. be the image of ain Z’. Let £ : R.g — Z’, © — x + 1. Note that £ is outgoing for
Z'

The lax 2-representation underlying the 2-representation on Sy;(Z) = Sy(Z') provided by
Proposition 8.1.3 is the "bottom algebra module” constructed by Douglas and Manolescu, via
the identification of §5.7.

Example 8.1.5. The left picture below gives an example where ¢ is terminal for (Z, M) but
not outgoing for Z. The right picture is an example where ¢ is outgoing for Z.

The picture below consider the case of a curve quotient of the disjoint union of an interval
and a circle, with an outgoing ¢ at an end of the interval. The middle picture describes an
element of Lg(—, —,€?). The rightmost picture provides a different graphical representation of
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that element: the interval {(Rs;) has been moved to the bottom horizontal line.

The next remark discusses the dependence of Lg on &.

Remark 8.1.6. Assume ¢ is terminal for (Z, M). Consider f : Z = Z an isomorphism of
curves fixing M. Note that fo¢ is terminal for (Z, M) and the map f induces an isomorphism
Ly S L.
Consider now another injective morphism of curves £ : R-y — Z such that £’ is terminal
for (Z, M). Assume there is a connected open subset U of Z, containing {(R~¢) and £(R~o)
and assume the canonical orientations on {(R~o) and §'(R~o) extend to an orientation of U.
There is an isomorphism of curves f : Z = Z fixing Z\U such that ¢ = f o &. It induces an

isomorphism L¢ = Lg, and that isomorphism does not depend on the choice of f.

8.1.2. Approzimation. Assume £~'(M) has no maximum. Fix an increasing sequence mg, my, . . .
of points of (0,1) with £(m;) € M for all ¢ and with lim; m; > ¢ for all t € £ 1(M).

Fix n > 0 and define the braid £, : {m,,...,my4n_1} — {1,...,n} of Rog by (By)m,,. =
[mrﬂ- — 7+ 1]

Let S and T be two finite subsets of M. Consider r such that m, > £71(t) for all ¢t €
T n &(Rxp). There is an isomorphism

Homge(7)(S, T u&({my, ..., myin_1})) = L*(T, S, e"), a— (idrXE(B,)) - o

It follows that there are isomorphisms functorial in .S and T’

(8.1.1) colim, o, Homgs (7)(S, T 1 &({my, ..., mpyn_1})) = LT, S, e").
Here, the colimit is taken over the invertible maps £(6,), where 0, : {m,,....,m 1, 1} —
{m,i1,...,mpyn} is the braid in R.q given by (6,)m. = [ms — mgi1].

We deduce that T'+— (S +— L*(T,S,e")) is isomorphic to the functor
Sy(Z) = Sy (2)-diff, T — colim, oo T L E({my, ..., Myyn_1}).

8.1.3. 2-representations and morphisms of curves. Let f : Z — Z' be a morphism of curves.
Assume ¢ is terminal for (Z, M) and f o ¢ is terminal for (Z', f(M)).

Assume that |f*(f(z))| = 1 for all z € M. Let M; be the (S3(2), S}y (Z'))-bimodule cor-
responding to f, i.e. given by M;(S,S’) = Homgez/ (5", f(S)). There is a morphism of functors
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Ee nss.(z) My — My A 830 (2) FE{o¢ defined as making the following diagram commutative

Bra'—f(B)-a

Homge(z) (=, T 1 {£(1)}) A Homge (2 (5", f(=)) Homge (2 (5", f(T) b {f 0 £(1)})

i B’ no'—(B'Klid og (1)) o
Homge(zy(=, f(T')) n Homge(z) (5", = 0 {f 0 £(1)})
The following lemma is a consequence of (8.1.1).
Lemma 8.1.7. If £ (M) has no mazimum, then the construction above gives an isomorphism
Ee nszy(z) My = My ns

f(M)( ") Ef°§7

and f provides a morphism of bimodule 2-representations L}, — Lg.

We consider now an arbitrary M but we assume that f is strict. Let My« be the (Syr)(Z'), Sm(2))-
bimodule corresponding to f#, i.e. given by My+(S",5) = @,.5 5. fopia ., Homs,, (2 (S, p(5)).-
There is a morphism of functors Fy. @y (2) Mpr — Mpx Qs,,(2 Eg defined as making

the following diagram commutative
(—B Homs(z/) L {f 0 &(1)}) ® Homsz) (S, p(—)) @ Homsz) (S, p(T") L {£(1)})
pT'—Z

fOP ld Sfop=id
i B A= (Blide(1yy)-

@ Homsz)(—, p(T")) ® Homsz)(S, — L {£(1)})

B nam f#(B)-a
_—

The following lemma is a consequence of (8.1.1).
Lemma 8.1.8. If £~ (M) has no mazimum, then the construction above gives an isomorphism
Efoe ®sy0py(21) Mgz = Mps ®s,(2) Ee,
and f# provides a morphism of bimodule 2-representations L¢ — L.

8.1.4. Twnisted object description. We explain how to obtain a version of Lemma 8.1.2 with a
differential.
We say that a homotopy class of path in Z(&) is positive if it has the same orientation as

§([1—2)).

Fix a finite subset S of M and n > 0.

Let S” be a subset of S with n elements, let s’ € S\S” and s” € S”. Let ( : s" — s be a
positive smooth homotopy class of paths in Z. We put §" = (S"\{s"}) u {s'}.

We define a map

gsrc Homgo(z)(S", {¢(1),...,¢(n)}) — Homg.(z)(S/, {£€(1),...£(n)}) A Homs.(z)(S\S’, S\S").
We put

gsrc(a) = (en sy B (g 0 C1) A (idgysrugsy BC)
if
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e o, 0 (!is smooth
e and given s € S"\{s"} and (' : s > &' and (" : " — s smooth positive with ( = ¢’ o "
and with ag o ("' smooth, then ag o ("1 o a! is negative.

We put ggr (o) = 0 otherwise.

Remark 8.1.9. Note that if aer o (7! is smooth, then the support of ¢ is contained in Z(€).
Given a non-zero, if ¢ is positive, then both ag»o(~! and ¢ are oriented, since o is oriented.

We obtain a map fere:a A f— (id AB) o ggr ()
Homge () (S",{£(1),...,&(n)}) AHom(S\S”, =) — Homge () (S", {£(1), ... £(n)}) AHomg. (£)(S\S', —).
Let r(S”) be the number of pairs (s”,s) € S” x (S\S”) such that there exists a positive path
" — s.
We define now
V,= @ Hom(S {£(1),....&(n)}) ® Homgz) (S\S', —) € Su(2)-diff .

S'cS, |8 |=n
r(S")=r

Given r’ < 1", define fu,» = > g for ¢, where
e S”is a subset of S with [S”| =n and r(S”) ="
e ( is a positive admissible homotopy class of paths in Z with ((0) € S” and (1) € S\S”
such that supp(¢) n S” = {s"} and r((S"\{C(0)}) u {C(1)}) ="
Let V =V,(S) =@, V; and let dy = 3 dv, + >, . fr,n. We will show below (Proposition
8.1.10) that d% = 0, i.e. V is the object of Sy/(Z)-diff corresponding to the twisted object

(D V2, (frr)]-
Proposition 8.1.10. Given S < M and n = 0, then d%,n(s) = 0 and the map of Lemma 8.1.2
defines an isomorphism of functors Sy(Z) — k-diff
Vo(S) = L(—,S,e").
Proof. By Remark 8.1.1, we can assume £ is outgoing for Z. We will show that
(8.1.2) the isomorphism of Lemma 8.1.2 is compatible with the differentials.

The proposition will follow immediately from (8.1.2).

Let S” be a subset of S with n elements, and let T" be a finite subset of M. Let a :
Homge () (5", {£(1),...&(n)}) A Homge (£ (S\S",T) — L*(T, S, e™) be the map of Lemma 8.1.2.
Let o € Homge(£)(S”, {£(1),...&(n)}) and B € Homge(z)(S\S",T). Let 0 = aX 3 = a(a A ).
The statement (8.1.2) will follow from the following property:

(8.1.3) a(d(a® B)) = d(6).
We have
a(da®B)) = d@) B+ aRd(B) + ) a((ild®B) - gsnc())
¢

where ¢ runs over positive admissible homotopy classes of paths starting in S” and ending in

S\S".
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We have

D(0)/inv = (D(a)/inv) L (D(B)/inv) L H I(ag,, Bsy) N D(0).

(s1,82)€S" % (S\S")

Fix (s1,82) € 8" x (S\9”). Let S = (S"\{s1}) u {s2}. Let ¢ be a smooth path s; — s9. Let
v = idg\(srus, ) XIC. Write ggr (o) = vAau with w0 S\S" — S\S" and v : " — {£(1),...,&(n)}.
We take u =0 and v = 0 if ggr () = 0. If ggv () # 0, then u = .

Assume (B -u) # 0. Then a,, o (™' and S, o ¢ are smooth, and ¢ and ¢ have opposite
orientations, since ( is negative (it starts in £(Zs;) and ends in M). It follows that ¢ € L(6).

Assume ¢ € L(0 ) Since ( is negative it follows that ¢ is positive, then (6¢), = 6, for
s#{s1, 82}, while (6%),, = B, 0 ¢ and (0°),, = a,, o ("L, We deduce that (8- u) Kv = 6° if
B -u # 0. So, the assertion (8.1.3) is a consequence of the following:

(8.1.4) given ¢ € L(#) positive, we have - u # 0 if and only if ( € D(0).

We will prove that statement by reduction to the non-singular case. Let f : Z — Z be
a non-singular cover. The morphism § : R.o — Z lifts uniquely to a morphism of curves
§:Rog— Z. Let M = f~1(M) and let & : 5" — {£(1),.. ( )} and ¢ be the unique lifts of «
and ¢ to Z. There exists subsets 5,7 of M and a lift 6 S\S" — T of B such that Ce L),
where § = &X 3 (Lemma 7.4.28). We have ¢ € D(0) if and only if ¢ € D(f) (Lemma 7.4.28).

Write gg :(&) = 0 A @ as above. We have f(i) = u and f(9) = v. We have gsn ¢(a) # 0 if
and only if gS,,’é(d) # 0. Finally, 8-u # 0 if and only if 8-4 # 0. This completes the reduction

of (8.1.4) to the case of Z.

So, we now prove (8.1.4) assuming Z is smooth. Note that Z(§) is isomorphic (as a 1-
dimensional space) to an interval of R. We consider ¢ : s; — sy in L(f) positive with s; € S”
and s, € S\S”.

Remark 7.4.11 shows that - u" # 0 if and only if i(Ss, s, 0 ¢) = i(Bs, Bs,) + 1(ids, ¢) for all
s € S\(S" u{s1}). That equality is always satisfied unless there are (" : s; — s and (' : s — $9
positive. In that case, (" is negative and the equality is satisfied if and only if ¢’ is positive.

~ We have u # 0 if and only if given ¢ : 51 — s and (' : s — 55 positive with s € S"\{s2}, then
(" = as, 0 (" oo is positive.
We deduce that ¢ € D(0) if and only if 5 - u # 0. The proposition follows. O
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Example 8.1.11. The picture below gives two examples of description of the map ggr .

CH — 0
Q¢

8.1.5. Right action. Consider now & : R_y — Z an injective morphism of curves, where R
is unoriented. Identifying (R-)°"" with R.g by # — —z, we obtain a morphism of curves
£:Rog— Z°PP. Let M be a subset of Z\¢'(R<_1).

We say that &' is initial for (Z, M) if € is terminal for (Z°PP, M) and that £ is incoming for
Z if € (R<_1) is closed in Z.

Assume ¢’ is initial for (Z, M). As in the left action case, we define a differential functor

R* = R : C x CPP x U — k-diff
R*(S,T,e") = Hom(T u {¢'(-1),...,&(-n)},9)
R (B,a,0)(f) = B- [ (@& (c™)) € R*(S",T", n)
for v € Homge(z)(1",T), B € Homge(£)(S,5’) and o € Endye(e”), and f € R*(S,T,n).
We put Rg(S,T) = R{(S,T,e) and Re = Fo RE].
Recall that the isomorphism (7.4.4) of differential categories S3,;(Z) = S}, (Z°PP)°PP. This
isomorphism provides an isomorphism R, (S, T, e") — Li(T, S, e") functorial in S, T and e".

In particular, R® provides a "right” 2-representation on Sy, (Z) and all results of §8.1.1-8.1.4
have counterparts for R°.

Given S < M and n > 0, there is an isomorphism of functors

\/ Homge(z)({£'(=1), ..., €' (=n)}, 9) A Homge(z)(—, S\S') = R*(S, —, €").

R
There is an isomorphism of functors, functorial in .S and T
R*(T,—,€e") A R*(—,S,e™) > R*(T, S,e"™)
(@, 8) = - (BRIE([=m — 1 = —r]icr<n))-
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Assume there is a decreasing sequence mg, m_q, ... of points of &~1(M) with lim; m; <t for
all t € &~H(M).
We obtain as in (8.1.1) isomorphisms functorial in S and 7'

(8.1.5) colim, ., Homgs (7)(T &' ({m—y,...,m_y_ny1}),S) = R*(S,T,e").

Let us finally consider functoriality as in §8.1.3. Let f : Z — Z’ a morphism of curves and
assume f o ¢’ is initial for (2’ f(M)).

The functor f : S} ,/(Z) — S} (Z') induces a morphism of bimodule 2-representations
R} e — R, when [ f71(f(2))] = 1 for all ze M.

If f is strict, then the functor f# : add(Sy)(Z')) — add(Sy(Z)) induces a morphism of
bimodule 2-representations Re — Ryoer.

Remark 8.1.12. As in Remark 8.1.4, we recover the construction of "top algebra module” of
Douglas and Manolescu by taking the underlying lax 2-representation of Rg.

Example 8.1.13. As in Example 8.1.5, we use an alternative graphical description for R,
This is illustrated in the example of Rg,(—, —, €%) below.

g(-2)}
&(=1)

" %

8.1.6. Duality. Let Z' = R be the smooth curve with Z, = (-1, 1), with its standard orienta-

tion. Consider a morphism of curves & : Z’ — Z such that £(Z’) is a component of Z.
Fix an increasing homeomorphism « : R.y > R. 1 fixing the positive integers and define

o R — R__1 by o (t) = —a(—t). Let &t =€oa:Rog— Zand & =€o0a’ : Ry — Z.
These are injective morphisms of curves, £ is outgoing for Z and £~ is incoming for Z.

Given n > 0, we denote by §(n) € Homge(z)({—n,...,—1},{1,...,n}) the braid given by
O(n)_; = [—i — 1.

Let T and T’ two finite subsets of Z and I — Z=; finite. Assume that £(—I) < T and that
given z € R with x < ¢ for all i € —I, we have &(z)¢T. Assume also that (1) c T’ and that
given x € R with x > i for all i € I, we have é(m)géT’.

We consider the pointed map
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ko : Homge(z) (T, T") — Homge(zy(T\(T n (1)), T'\(T" ~ (1))

0 {(Qt)teT\g(_I) if x(0)(E(—1)) = £(d) for i e I
0

otherwise.

We put k,, = K1,..n. Note that k, = kg, 0+ 0 K2y © K1y

Let f:Z — Z be a morphism of curves such that f o 5 is a homeomorphism from Z’ to a

component of Z. Put £ = fo é . Denote by &, the map defined as above for Z replaced by Z.
Let T and 7" be two finite subsets of Z such that |f(T)| = |T| and |f(T")| = |T'|. Put

T =T\(T ~E({=n,...,—1})) and T" = T'\(T" ~ £E({—n,...,—1})). There is a commutative
diagram
(8.1.6) Homge(z)(T, T') ———— Homgs (T, T")

] I
Homge 7 (f(T), f(T")) = Homg-(z)(f(f), f(T/))

Similarly, if f is strict and U and U’ are two finite subsets of Z, there is a commutative
diagram

(8.1.7)
Homgz (U, U") —— Homg 2, (U\(U A E({—n, ..., —1}), U\U" A £({1,...,n}))
# lf#
Dr.» Homgz) (T, T") — Dy Homgz) (T, T")

where T' (resp. T") runs over finite subsets of Z such that f(T) = U (resp. f(U') =T").
Lemma 8.1.14. The map k,, commutes with differentials.

Proof. Assume first f is a homeomorphism and Z, = ¢J. Let T and 1" be two finite subsets
of R with same cardinality m. Let a : {1,...,m} > T and ' : {1,...,m} = T’ be the
increasing bijections. There is an isomorphism of differential modules (Proposition 7.4.33)
¢ : Homgz) (T, T") = H,,: given 6 € Homge(z)(T,T") non-zero and given i € {1,...,m}, we put
¢(0)(7) = a6 (1)).

Assume in addition that {—n,...,—1} ¢ T and T\{-n,...,—1} < (=1,0) and {1,...,n} c
T" and T'\{1,...,n} < (—o0,1). There is a commutative diagram
Homg ) (T, T") B Homgz)(T\{—-n,...,—1},T"\{1,...,n})
o)~ |
Hm Hm_n
tv_n,mfn

The lemma follows now from §6.1.1.
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Assume now Z is smooth. If Z(£%) is unoriented, then the lemma holds by the discussion
above, using §7.4.10. In general, we consider the morphism of curves f : Z — Z that is an
isomorphism outside Z(£%) and the identity on Z(£1), with f(Z(£1)), = &. The vertical maps
of the commutative diagram (8.1.6) are injective, hence the lemma holds for Z since it holds
for Z.

Consider now a general Z. Let f : Z — Z be a non-singular cover. The vertical maps of
the commutative diagram (8.1.7) are injective, hence the lemma holds for Z since it holds for
Z. O

Let M be a subset of Z\¢((—o0, —1] U [1,%0)).
Given S a finite subset of M, the pointed map
L (T, S,e") A RZ-(S,T',¢") — Homge(z)(T",T), (¢/,0) — k(0 - 0)
induces an Fa-linear map
/%(T, S) . L€+ (T, S, e") — HOmS(Z)OPP_diﬁ(Rf— (S, -, 6”), HOHl(—, T))
0 — ((9 € ;- (S, T e")) — k(0 - 9))

Proposition 8.1.15. The map & induces an isomorphism of differential pointed bimodules
Lev (=2, —1,€") = Re-(—1, —2,€")".

Proof. Lemma 8.1.14 shows that &4 commutes with differentials.
Let S be a finite subset of M of cardinality n.
Assume ¢ is a homeomorphism and Z, = . There is a commutative diagram (see the proof

of Lemma 8.1.14 with (7,7") = (S, ¢ ({1,...,n}) and (T, 7") = (¢ ({—n,...,—1}),9))
Homg(z) (S, €7 ({1, ..., n}) —> Homgz) (¢~ ({~n,..., 1}, 9)*
/- o
H, - H;
i5 o

The bottom horizontal map is bijective by Corollary 3.1.2, hence #({F, S) is bijective.

Assume now Z (&%) is smooth unoriented. The map #(F, S) is the same for Z and for Z(£7),
so k(, S) is still bijective.

Assume Z(£T) is smooth. There is a morphism of curves f : Z — Z that is an isomorphism
outside Z(£*) and the identity on Z (1) with f(Z(€1)), = &. The map #(F, S) is the same
for Z and for Z, so &(, S) is still bijective.

Consider now a general Z and let f :NZA — Z be a non-singular cover. Let é . Z' — 7 be
the morphism of curves such that é =f of . The functors f and f # are inverse bijections between

Homg(z) (S, £ ({1,...,n}) and Py Homs(z)(S’, f({l7 ..., n}) (resp. Homgz((~({—n,...,—1},95)

and P, Homgz, (f({—n, oo, —1}4,5"), where S’ runs over n-elements subsets of Z such that

f(S") = S. Furthermore, &(F,S) is compatible with these bijections (see the proof of Lemma
8.1.14). It follows that (¥, S) is bijective.
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We consider now two arbitrary subsets S and T" of M. The canonical isomorphisms of Lemma
8.1.2 and of §8.1.5 fit in a commutative diagram of Fy-modules

@Dy Le+ (3,5, ") ® Homg(z)(S\S', T')
I R(Q,S’)®idl lk(T,S)
@y Re- (5, J, €")* ® Homg(z)(S\S', T') — Hom(R¢- (S, —, "), Hom(—, T))

~

L§+ (T, S, e")

where S’ runs over n elements subsets of S. The discussion above shows that the left vertical
arrow is an isomorphism, hence £(7), S) is an isomorphism. O

Given x1, x5 € [—1, 1], the homotopy class é([:cl — x5]) is admissible if z1 < x5 or 7 < —%
or z5 > 3. Given z € [—1,1] and ¢ an admissible class of paths in Z with ((1) = £(z) and
£([x = 1]) - ¢ # 0, there is a unique y € [—1,1] such that ¢ = &([y — x]).

Let us describe now the unit of the adjunction when n = 1.

Lemma 8.1.16. The unit of the adjunction (Le¢+(—,—) ® —, Re-(—, —) ® —) is given by the
morphism of bimodules whose evaluation at (T,S) is

Homg 2 (S, T) — Re-(T, =) @ Le+ (=, S)

ol Z (Vs (&) [-1-2])® (idg () B ([2 — 1])).
zef1(S5)

Proof. The counit of the adjunction is ¢ = x; o mult. Let v € R (T,5). Let n be the map
defined in the lemma. We have

n(idr) = Z (-1 — «]) X idp (g())) @ (£([z — 1]) X idp g

wed~1(T)
hence
(id®z) o (n®id)(v) = Z (E([—1 = z]) K id g gay) - 51 (€[ = 1) BHidp gayy) - 7)
veé (1)

Let = be the unique element of £'(x(7)(¢~(~1))). We have v~y = &([-1 — x]) and
s ((E([z — 1)) idp ¢()) -7) = s, hence

(ld®e) o (n®id)(7) = (e~ (1) Bidryx(mye-(-1)) ® Vs
We deduce that

mult o (id®e) o (n®id)(y) =~

and the lemma follows. O
Remark 8.1.17. There is a bifunctorial injective map
Re (T, ~) AL (— 8) — Hom(Su (£ (~ 1)}, TU{E" (1)), B ra — (FRides (1)) - (0Ride- (1)
The composition of the unit given by Lemma 8.1.16 with this map is the following map

Hom(S,T) — Hom(S w {¢™ (=)}, T u{¢" (1)}), 7= (v ®ider (1)) - d(§([~1 — 1]) KHids).
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Example 8.1.18. The first picture below provides an example of description of the unit of
adjunction as in Lemma 8.1.16.

--_,-
o606

hd

i

i

i

i

i

i

i

'

i

a

¢

.
oo 0o

The second picture describes a calculation of an image by the counit.

0 0 k3 (0" - 0)

8.1.7. Actions for the line. We consider the unoriented curve R. Let M = {+(1 — 2)},cz_,.
Consider S,T two finite subsets of R with |S| = |T| = n. Let fs : S = {1,...,n} and
fr:T = {1,...,n} be the unique increasing bijections. We define

¢(S,T) : Homgery(S,T) = Hpp = Endys ("), 0 — Trrox(@)ofs'

We define a functor ® : S3,;(R) — U*. We put ®(S) = eIl and ®(f) = ¢(S,T)(f) for
f € Homge(r) (S, T).

The next proposition follows from Proposition 7.4.33.
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Proposition 8.1.19. The functor ® : Sy, (R) — U* is an equivalence of differential pointed
categories.

Consider £, : Rop — R and £_ : R_.g — R the inclusion maps.
We define py : Le, (—, —, €") = L¥(—,—,¢") o (P A D) by

p+(T,5) = ¢(S, Tug({£1, ..., £n})) : Homgem)(S, Tuée ({£1, ..., £n})) = djsjznsr L (IT], 7).
Similarly, we define ¢/, : Re, (—, —, €") = R*(—,—,¢") o (¢ A @) by

@ (T,S) = ¢p(Tué ({£1,...,+n}),S) : Homge ) (Twés ({£1,..., +n}),5) = §jsj—nsn RE( T, n).

Proposition 8.1.20. Together with ¢+ (resp. '), the functor ® induces equivalences of
bimodule 2-representations between Le, and L™ (resp. Re, and R*).

8.2. Gluing.

8.2.1. Construction. Consider two injective morphisms of curves & : Reg — Z and & :
R_y — Z where R_o and R are unoriented. We assume that & is outgoing for Z, that & is
incoming for Z and that & (Rso) n & (R<o) = &J. We write r instead of & (1) and —r instead
of & (=), for r € Zy.

Let M be a subset of Z\(& (R=1) ué&; (Re1)).

Fix an oriented diffeomorphism R~y — R._; and let i, : Ry — R be its composition with
the inclusion map. Similarly, fix an oriented diffeomorphism R_y — R-; andleti_ : R.g — R
be its composition with the inclusion map.

Consider m,n > 0. Let E,,,, be the (S3,(2),Sy,(Z))-bimodule given by
Enn(T,S) = Homge(z)(S u (—n,—1),T 1 (1,m)).
Note that Ey; = R:_ and Ey o = L?,, but E,, , is not isomorphic to (R;_)"(Lg+)m in general.
1 2 1

2
There is an action of H;, A H} on E,,, given by

(To ATy) -0 = (idrX([i — a(i)]i<i<m) - 0 - (Ids X(—i — bil(n +1—1i)—n—1)1<i<n)
for 0 € Homge(z)(S 1w (—n,—1),T 1 (1,m)),a € &,, and be &,,.
There is a map * : B, By — By nn glven by
anfoaxf=(aX([i—i+m])icicn) (B ([—n’ — i — —i])1<i<n)-

This map is compatible with the action of (Hy, A HY) A (H2, A H?) via the canonical
embeddings Hy Hy, — Hy . and HyH?, — H .. We have (a )y =ax*(8*7).
So, we have defined a bimodule lax bi-2-representation on Sy, (Z).

m

Let Z¢ = Z UR_,.Rr_, R, where the gluing is done along the maps { W&, : RoguRog — Z
and iy wi_ : Rog u Ry — R. Note that Z; is a 1-dimensional space and it comes with
an injective open morphism of 1-dimensional spaces { : R — Z;. We endow R with a curve
structure by setting R, = R<_1 L R-; and by endowing (—1, 1) with its usual orientation. We
extend the curve structure on Z by endowing £(R) with the curve structure of R. Note that
(Ze)u = Zu-

Given ¢,¢’ € {+,—} and a € R., b € Ry, we put [a — b] = &([i-(a), i (D)]).
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We consider the differential pointed category Ts: Z)(R L ) with objects those of S3;(2)
and with
Homg, (Z (S,7T) \/R'2 ) A L’ (—i,—ic1) Ao A Rgg(—g, —1) A LE;(—le)-

=0

We define a differential pointed functor = : T, 52, Z)(Rg_ L2+) — Sy(Ze). 1t is the identity on
2 1
objects and defined on maps by
61'/\041'/\”‘ /\61 N 1 —> (ﬁz(ld[1—>—1])oz,)(51(1d[1—>—1])041)

a1 id 1.[1—> 1] _ L o
SR A Gy e i N T oo G NI R

Theorem 8.2.1. The functor = factors through A8y (Z) and induces an isomorphism of
differential pointed categories = : ApSy(Z) = Sty(Ze).

The sections §8.2.2-8.2.4 below are devoted to the proof of Theorem 8.2.1.

Example 8.2.2. We give below an illustration of the gluing data.

eee 5 (1) 1il(1) *ee
fr(z) &l} (5) 52_ 1 -3 7/_ "l+(2)
. 1-2 Ti+(3)
11 do:
o
+1 T /\/W
T2 1
G0y & s iy I 5
+i_(—1) eo®

Z R.oUR< R Ze

—_
—

Example 8.2.3. The pictures below give two examples of description of =. The first picture
corresponds to the gluing of two intervals to form an interval. The second picture corresponds

to the self-gluing of an interval to form a circle.

Jin

koo o< te—e—o
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*

oo i
:
:
:
-

o0 ¢

|

;

;
oo 0000
oo 0 ¢ 0o

1
L

8.2.2. Bimodules. 1f Homgz,)+({—1},{1}) # 0, then there is " € Homg(z,)-({—1},{1}) such
that Homgz,) ({1}, {1}) = {&" - &'}nz0, where k = x' - [1 — —1].

When Homgz,).({—1}, {1}) = 0, we put x = id;.

We define a partial order on the component Z’ of Z containing 1. We define s < s if there
exists an admissible path ¢ : ' — 1 in Z’ whose support does not contain s.

We consider the map p of §7.4.6 for the curve Z, and its point z; = 0.
Given n = 0, we put G, = E,, .

Lemma 8.2.4. Let o € G,, — {0}.
Given i € (1,n — 1), the following assertions are equivalent
(1) a(i =n—1) > a(i —n)
(2) L(efi-n—1,i-ny) # &
B) [i—n—1—1i—n]e D(a)
(4) a € G,T;
(5) aT; = 0.
There exists i € (1,n — 1) such that o € G,/ T; if and only if L(c(—n,—1)) # .

Proof. The equivalence between (1) and (2) follows from Lemma 7.4.20.

Assume (2). We deduce that [ —n —1 — i —n] e L(«), hence [i —n —1 — i —n] e D(a).
So (3) holds.

Assume (3). Writing o = « - 1, we deduce from Lemma 7.4.35 that (4) holds.

The implication (4)=(5) is immediate.

Asssume (5). We have a|;_n—1-n} - ([i —n—1 —i—n]X[i—n —i—n—1]) = 0 by Remark
7.4.11. Lemma 7.4.9 shows that i(c{—n—1,—n}) # 0, hence (2) holds.

Assume now L(a|(—n,—1)) # . It follows from Lemma 7.4.20 that there is i € (1,n — 1) with
a(t —n —1) > a(i —n), hence a € G, T;. This shows the last statement of the lemma. d

There is a map v, : Rg,(—, —,e”)Lé(—, —,e") — G, given by
Hom(— w (—n,—1),T) A Hom(S, — u (1,n)) - Hom(S u (—n,—1),T 1 (1,n))

Baam— (BRidam)  (eXid-n,-1)
We have
V(B Tp) A (Ty - @) = To - va(B A @) - 1 (T3)
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for a,be S,.
The multiplication map on E defines a map pu,, : (R;_L£+)” = (Eg 1B o))" — Enpn = Gy,
2 1
hence gives a morphism T*(Rg_ L;+) — G =/, >, Gn compatible with multiplication.
2 1 -

We define (S3,(2),S3,(Z))-subbimodules A, B,, C,, D,, E, and F, of G,. Let o €

Gn(T,S).
We have

ecgecA,ifo(—i)eTu(l,n—id)for1<i<n
e 0 € B, if there exists 1 < j <i<nwitho(—i) =n—j+1
e 0 € (), if it is in the image of pu,
eceD,ifo(—i)eTforl<i<n
ecekE,ifoce A, and L(o|—p-1)) = J.
ecel,ifoe A, and L(ojp-1(1,0)) = O

We put A =\/,oqA4n, B =V, Bn, etc.
Note that G,, = A,, v B,,.
We have C,, D, E,, F, c A,.

~

Lemma 8.2.5. We have an isomorphism v, : R;,(—, -, e”)Lé(—, —,€e") > D,.

In particular, we have an isomorphism i : Rg_ = Dy = Ay = Cy and C,, = Cf™ = Af™.
2

Proof. Let B A o€ Hom(—w (—n, —1),T) AHom(S, — i (1,n)). We have B A a = ' A o/ where
B = Bj(=n,—1yX¥id and o/ = (8- Kidan)) - a. If v,(8 A a’) =0, then ' = o/ = 0 (cf beginning
of §7.4.10). Now v, has an inverse given by ¢ — (idXo|_pn,—1)) A 0}s. O

Remark 8.2.6. Consider £ : Rog — Z°PP, 2+ & (—x) and & : Ry — Z°PP, 2 — & (—x).
There is an isomorphism (Z°PP)s = (Z,)°PP that is the identity on Z and x — —z on R. This
provides an isomorphism (S*(Z¢))°P? = S‘(ngp). It induces isomorphisms

Homge () (S 1 (—n, —1),T 1 (1,n)) = Homge(zorry (T L (—n, —1),5 L (1,n)).

This restricts to isomorphisms between A, (resp. B,, D,, E,, F,) for Z and A,, (resp. B,,
D,, F,, E,) for Z°P.

Lemma 8.2.7. e B, and D,, are stable under the action of Ht A (H?2)PP.
o E, is stable under the action of HY and I, is stable under the action of (Hy)°PP.

e A and C are stable under multiplication
o Givenae B and € G, we have a* € B and f*«a € B.

Proof. Let 0 € B, and r € {1,...,n — 1}. Assume o7, # 0.

If thereis 1 < j<i<nwitho(—i)=n—j+1andi#n+1—r, then o7, € B,,.

Assume now o(—i) € Tu(1,n—i) for all i # n+1—r. We deduce that L(o)_m+1-r),—(n-r)}) #
&, hence o1, = 0 (cf Lemma 8.2.4), a contradiction.

Using Remark 8.2.6, we deduce that T,.0 € B,,.

The other assertions of the lemma are immediate. Il
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8.2.3. Gluing map. We define a morphism of (S83,(2), S3,(Z))-bimodules ¢ : G — Idss (z,):
Homge(z)(S b (=n,—1),T 1 (1,n)) — Homge(z, (S, T).

Let o € A,. Weput 71 = a(S) nT and I} = a(S) n (1,n). We define inductively T,, < T
and I, ¢ (I,n—m+1)for l <m<n+1by T, =Th1u(a(-n+1IL,-1—1)nT) and
Ly, =a(-n+Inh1—1)n (1,n).

Note that —n + I,y — 1 < (—n, —m + 1), hence I,,, = (1,n —m + 1) since o € A,,.

Note that 1,1 =T and 1,1 = .

Define

B = idg,, B([X](@psro1 - [r = —n4+r—=1])) : Ty 1 Ly > Tpgr 0 Iipia

relm,

for 1 < m < n. We define g(a) = g"- "1 g1 - g

We put ¢(a) =0 if a € B,,.

Assume now g(a) # 0, hence o € A,. Let ' = Sna ™ (T) and T" = T n «(S). Let
S"=S—-Sand T"=T-T".

Given s € S, we have ¢(a)s = as.

Note in particular that S" = {s € S | u(q(a)s) = 0}.

Let se 8", t = q(a)(s) and i = a™*(t). Put dy = p(g(a)s) — 1 = 0. We have
g(a)s = a; - [1 = i] - k% - [a(s) — 1] - as.

Given a decomposition g(a); = - [1 — —1] - k% - & with ¢ € Homg.(z)({s}, {1}) and
§ € Homge(z)({—1},{t}), we have o; = £ - [i — —1] and o = [1 — a(s)] - &'

The next lemma is immediate.

Lemma 8.2.8. The map q defines a morphism of (S3,(Z),S3,(Z))-bimodules G — Idss (7,

and q(a o) = q(a) - q(a).
Given h € H, and a € G,,, we have q(ha) = q(ah).

Lemma 8.2.9. The restrictions of ¢ to E and to F' are injective.

Proof. Let o : S 1 (—n,—1) — T 1 (1,n) be a non-zero element of F,. Let s € S”. Given
1 <m<n, weputiy(s)=p8""1o- 0B oa(s). We put dy = min{mli,41(s) € Trni1}
Let s, s" be two distinct elements of S and let 6 = /B%"*lo---oﬂloa({s R -ﬁ|1a({s ) Qllfs,s)-

o If 5,5 €S, then § = o0y # 0.
e Assume s € S" and s’ € S”. We have 0 = 0" - o, ¢ where

0" = (idags) B(@nriy, ()1 [1 = =0+ g, (s) = 1] - 6% 71 [ir(s) — 1])).
We have
i(0' o Ys,s}) = 10, ogr) + (s, a,nﬂdg,(s/),l) +dy — 1 =1i(os,0y) + i(01).
Ir follows that 6 # 0. |
e Assume finally s,s" € S” and dy > d,. We have 0 = 0' - 6% - 6° - o oy where

0" = (Qnig, ()1 [1 = =1+ ig, (s) = 1 k%70 [ig 0 (s") — 1)) Bidi, ()
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0% = [—n +iq, (') + 1 = dg1(8")] K (Qniy, (5)+1 - [-10 = 1 — g (s) + 1])

0 = (([1 = —n+ig,(s) +1]- &% Jia(s) > DR (1 = —n] - x5 Tia(s) = 11)).
We have

(0" 0070 6”0 oy ) = iy (s), iy () +dy — ds i, o) = i(0") +(07) +i(0°) + i(oys,51y)-

It follows that 6 # 0.
It follows from Remark 7.4.11 that g(«) # 0.

Define S’ and S” as above. Let r = |S”|. We have a(S”) = (n—r+1,n) and a (i) < a™(¢')
fori <i in (n—7r+1,n).

Given i < i in (—n,—1) with a(i),a(?') € (1,n), we have (i) < ().

Consider now & : S u (—n,—1) — T 1 (1,n) another non-zero element of F,, and assume
q(a) = g(@) # 0. We have S na }T) = S and T n a(S) = T". The discussion above shows
that a(s) = a(s) for s € S”. Note also that ay = &, for s € S’. As a consequence, a = @ if
plg(@)) = 0.

Let s € 8", t = q(a)(s), t = q(@)(s), i = a~'(t) and 1 = &~
followsthatt—tu(())z (())[()—»1]-%: )
&; - [-1 — 1]. We deduce that &, = a, for s € 5.

We proceed now by induction on p(g(«)) to show that ¢(«) determines a, for o € F.

Assume there is s € S” such that pu(g(a)s) = 1. Let j = a(s) € (1,n) andi = —n+j—1. We
have t = a(i) = g(a)(s) € T. Define o : S\{s}u(—n+1,—-1) > T\{t} 1 (1,n—1) an element of
F,_; as follows. Given s’ € S\{s}, we put o, = ay if a(s') < j, al, = [a(s') = a(s') — 1] - ay if
a(s’) > j. Given ¢’ € (—i+1,—1), we put o, = apy. Given ¢’ € (—n + 1, —i), we put o, = ayr_1.
This defines an element of F;,_;. Furthermore, ¢(o) = q()s\(s}-

We define similarly 7, j, ¢ and & starting with & and s. We have 7 = j and ¢ = ¢, hence also
i =i. We have ¢(a’) = ¢(&'), hence o/ = & by induction. Since oy = &, and a; = d;, it follows
that o = a.

Assume p(g(a)s) = 2 for all s € §”. We have a™ ' ((1,n—1)) = {i; < -+ <ip_,} < (—n,—1).
Note that a_;, = [—ig > d] for 1 <d <n—r. Let p: (—r,—1) = (—n,—1)\a"((1,n — 1))
be the unique increasing bijection. We define o : S 1 (—r,—1) — T w (1,7) and element of
F, as follows. We put o/, = a5 for s € S, o, = [a(s) — a(s) —n +r] - a5 for s € §” and
o = Q) - [1 — @(i)] for i € (—=r,—1).

Let s€ 8", t = q(a)(s) and i = a~*(t). We have

q(d)s = a; - [1 > 1] [a(s) = 1] - as.

Define & similarly, starting with & instead of a. We have ¢(a/) = ¢(&'). By induction, we
deduce that o/ = &', hence o = a.

This completes the proof that the restriction of ¢ to F' is injective.

We deduce that the restriction of ¢ to E is injective using Remark 8.2.6 O

Lemma 8.2.10. The restrictions of ¢ to E n C and to F n C' are surjective.

Proof. Let 0 € Homgs (7,)(I,J). Let n = pu(#). We show by induction on n that there exists
a € F, n C,, such that q(a) = 6.
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Assume n = 1. Let s € I such that p(fs) = 1. There is a decomposition 65 = 67~ - 07 as in
§7.4.6. We define a € Homgs () (I v {—1},J v {1}) by ay = 0y for 8" # s, a; = [0 — 1] - 0
and a_; = 0.~ -[-1 — 0]. We have a € A; = F} n C} and ¢(a) = 6.

Assume now n > 1. Consider a decomposition 6 = /() - r(f) as in Lemma 7.4.27. There
exists a € Ay and B € F,,_1 n C,—; such that ¢(«) = r(#) and ¢(B8) = r'(#). Let v = B+ € C,,.
We have ¢(vy) = 6.

Let s = v }(n) = a7 '(1). We have u(r(6)s) = 1. Let i € (I,n —1) and s’ = v 1(z). If
s" € (—=n,—1), then I(yys) = . Assume s'¢(—n,—1). We have 6], = [i — 0] - vy. Since
supp(f7) < supp(6%), it follows that I(vs ) = &. Since 8 € F,,_1, we deduce that v € F,.

The case of En C follows from that of F' n C' applied to Z°PP, cf Remark 8.2.6. g

8.2.4. FEquivalence relation. We define an equivalence relation ~ on G as the transitive, sym-
metric and reflexive closure of the relation T;o0 ~ ¢T; for c € G,, and 1 <7 < n and o ~ 0 if
o€ B,.

Lemma 8.2.11. Let aw € G,,. There exists 0 € E,, and o’ € F,, such that « ~ 0 ~ o’

Proof. If a € B, then a ~ 0 and we are done. Assume now « € A,,. We proceed by induction
on M(a) = $|L(oq(—pn,—1))| and then on N(a) =n —max{i | [-n+i—1— —n +1i| € L(a)} if
M (a) # 0 to show that there exists o € E,, with a ~ 0.

If M(«) =0, then a € E,, and we are done. Assume now M («) > 0. By Lemma 8.2.4, there
are i € (1,n—1) and § € G, such that o = T}, and we choose i maximal with this property, so
that N(a) = n —i. We have a ~ T; 8. If T;5 € B,, then we are done. We assume now 1;5¢B,,.
We have L(B)(—n-1)) = L(o)cn-))\{[-n+i—-1—> —n+i],[-n+i— —n+i—1]}

If 571({i,i + 1})d(—n, —1), then L(T;5—n-1)) = L(B(—n—1)), hence M(T;5) < M(«). By
induction, there is ¢ € E,, with T;5 ~ o, hence a ~ o.

Assume now there are j,k € (1,n) with f(—n +j —1) =i and f(-n+k —1) = i + 1.
Since T;8 # 0, we have j < k. Since f € A,, we have j > i and k£ > i + 1. We have
M(T;5) < M(B) + 1 = M(«). On the other hand, [j — k] € L(T;8) (cf Lemma 7.4.20), hence
N(T;8) < N(a). We conclude by induction.

The case of F}, follows by applying Remark 8.2.6. U

Lemma 8.2.12. Let o, 5 € G,,. We have q(a) = q(5) if and only if o ~ 5.

Proof. Lemma 8.2.8 shows that if « ~ 3, then g(a)) = ¢(5). Assume now g(«) = ¢(3). There are

o, B € E, with o ~«a and ' ~ f (Lemma 8.2.11) and we have ¢(a/) = q(a) = q(8) = q(5').

It follows now from Lemma 8.2.9 that o/ = ', hence o ~ 3. O

Proof of Theorem 8.2.1. The canonical surjective map T*(Rg_ L;+) — Iday(ss,(2)) factors through
2 1

a surjective map C' — Idagss (z))- Its equalizer is given by the equivalence relation ~,

so it induces an isomorphism C/ ~— ldag(ss,(z))- On the other hand, the canonical map
T*(R;, L2+) — Idss (z,) factors through the map ¢, and the restriction of ¢ to C' is surjective
2 1

(Lemma 8.2.10). Lemma 8.2.12 completes the proof of the theorem. O

8.2.5. Complement. We provide here a more direct description of the equivalence relation ~
on C.

Corollary 8.2.13. We have E < C and F < C.



136 ANDREW MANION AND RAPHAEL ROUQUIER

!/ /

We define an equivalence relation ~
o = (aTy) = a” for o/, " € C and «a € Ds.

Lemma 8.2.14. Let 0 € G, andie€ {1,...,n— 1}
If oT; € C,\{0}, then T;o € C,, and oT; ~' T;o.
If T,o € C,\{0}, then oT; € C,, and oT; ~' T;o.

Proof. Put ¢’ = ¢T; and assume o’ € C,\{0}. There are v C,_;_1, B € Cy and a € C;_; such
that o/ = a = [ = .

Lemma 8.2.4 shows that [-n +i—1 — —n +1] € D(0o’). We have o/,_,,; | . = (o=
B)=ict,—pyo([-n+i—-1— —i—1]X[-n + i — —i]). It follows from Lemma 8.2.4 that
[-i—1— —i] € D(a* ). Since [—i — 1 — —i] € L((a * 8)|(—i—1,—)), it follows that S(—1) # 1,
hence € Ds.

e Assume [—1 — —2] € D(f5). We have § = §'T; for some 3’ € Gy by Lemma 8.2.4. Since
B € Dy, we have ' € Dy < Ay. We deduce that ' € Fs, hence T1 3" € Ey < Cy (Corollary
8.2.13). So, oT; = a = (B'Ty) v ~ ax (T18') »v = Tio.

e Assume now [—1 — —2]¢D(5), i.e., f € Ey. We have T13, fT1 € Dy € Ay and T 5 < Ey C
Cy (Corollary 8.2.13).

o Assume T8 = 0. There is 8" € Gy such that 5 = T1” (Lemma 8.2.4). Since § € Fyn Dy,
we have 87 € Ey n Dy < Oy, hence also 8" € F,. As a consequence, 3T} € F, < Cy. We
deduce that o+ § ~" a = (8"T7). We have L(ag((—2,-1))) # & and L((8"T1)|(-2,-1)) # &, hence
(a=*(B"T1))|(~2,—1) = 0 and a = (8"T1) = 0. We have oT; = a+ (T18") v ~" a = (8"T1) =y = 0.
Since T;oT; = 0 and oT; # 0, it follows that L((0T})|o1)-1(ii+1)) # &, by applying Lemma
8.2.4 to Z°PP. Since oT; € A,,, we deduce that L(0|,-1((;,41})) # &, hence Tjo = 0 ~' oT; (using
Lemma 8.2.4 for Z°PP again).

o Assume now 71715 # 0. It follows that 8 € Fy, hence 817 € Fy < Cs.

There are o', ... a1 € C) with a = o'+« al. Let s; = 8(—i) for i € {1,2}. Consider
j = 1 minimum such that L((a/ x - x o) j(s,,50}) # .

Define v/ = o/ ¥ ([l > 1 + 1])1<i<j41 and v = (0?1« ol « B) K [—) — 2 —> —1].

Let ( =u",0[-1— —2]o (u”,)"!. Define I and J to be the domain and codomain of u”,
intersected with M. Note that ¢(0),((1) € M. Let v = (¢/)¢ = (o?)*® ([l = I+ 1])1<1<j+1 and
definev” : I L (—j—2,-1) > Ju(L,2)u{-1}u(l,j+1) by

u,o[-1—=2] ifs=-1
Vi=3u"jo[-2— —1] ifs=-2
"

Uy otherwise.

on C as the relation generated by o' = (Th«a) » o ~

Lemma 7.4.35 shows that v' and v" are braids and o/ = ---x o'+ 8 = v’ - 4" = v' - v". We have
v = (a7l al x (BTY)) K [~ — 2 — —1] and we deduce that « = 8 = o = (8T}), where
o = lswad T (@) xad T xat € Cp_y. We have oT; = o' «(B8T1)+y ~' /(T 8)*y = Tio.
This completes the proof of the first statement of the lemma.

The second statement of the lemma follows from the first one applied to Z°PP thanks to
Remark 8.2.6. Il

Proposition 8.2.15. Let o, € C,,. We have o ~' 8 if and only if a ~ (3.

Proof. 1t is clear that a ~'  implies a ~ 3. The converse follows from Lemma 8.2.14. O
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Corollary 8.2.16. We have C/ ~'= G/ ~.

Proof. The surjectivity of C/ ~'— G/ ~ is given by Lemma 8.2.10. The injectivity follows from
Lemmas 8.2.12 and 8.2.15. U
8.3. Diagonal Action.

8.3.1. Isomorphism Theorem. Let Z' = R be the smooth curve with Z, = (—3, 1) with its
standard orientation. Fix an increasing homeomorphism a : R.g — R>% fixing the positive

integers and define o/ : Ry — R__1 by o (t) = —a(—t).
Assume Z({) # Z(¢;) and assume there is a morphism & 1 Z' — Z with image Z(¢])
and such that & = & oa. Put & = & oa’ : Ry — Z and denote by £~ the composition

Ry 7 Z,.

Proposition 8.1.15 gives an isomorphism of differential pointed bimodules #; : Lg (—2,—1) =
Re—(—1,—2)".

Since there is no admissible path from & (—1) to & (1) in Z, we have A, = D,, = G,, (with
the notations of §8.2.2), hence we have an isomorphism (Lemma 8.2.5)

ot R (T, ") AL (. 5, ¢") S Homge ) (SU{&; (—n), ..., & (1)}, T (1), & ().
Consider
A L;r (T, —)Rg;(—, S) — Rg; (T, —)Lgr(—,S)
anf—vit(a-f)=((a- 5){5;(71) idT\{X(aog)(g;(q))}) Ao B)s.
There is an isomorphism of differential pointed categories (cf Remark 5.4.1)
ApSH(Z) > MSy(2).

Composing its inverse with =, we deduce from Theorem 8.2.1 an isomorphism of differential
pointed categories
= ANSH(2) > S (Ze).

Theorem 8.3.1. The isomorphism Z' provides an isomorphism of 2-representations, where
AN\Sy(Z) is equiped with the diagonal action and Sy (Ze) with the action of Re-.

The remainder of §8.3 is devoted to the proof of Theorem 8.3.1.
8.3.2. Setting. Let 0 : Re— (T, =)@ R (=, 5) = Re— (T, =)@ R (—, S) be defined as in (4.4.1).

Lemma 8.3.2. The morphism o is invertible. Given o € R;_(T, U) and 8 € R:_(U,S), we
2 1

have
(@ ® B) = Gayy-p20 ([ Bty 565 (1)) * By (1)) ® (g (1) B (o uayes -1y~ Bis))-
Given o/ € R'_ (T,U") and p' € R'_(U’,S), we have

A @) = b0 (1B 067 (1)) By () ® (O 0y B (o (-1 © Fls)):
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Proof. We have
o= <R§; o mult) o (Rgf ®R§; ®6L€1+7R§;) o (REI ® A@Rg) o (nquRq ®id).
We have o = (idKag-(_y)) - (rXid), hence a®f = (idKag-(_;))@(ajp-8). As a consequence,

it is enough to prove the first statement of the lemma assuming that oy = idy. In that case,
the composition above is given by

a®f— Z (id 8, ) R (-1 — 2]) ® (id &, ) B[z —1]) ®a® B
xeéT H(T)
= ) (g gy BE([-1 = 2]) ® (ag; (1) Kid) @ (id R [z — 1]) @ 8
zed (1)
= (B (1) ® (ag; (1) Bid) ® Bis
= (1d&Be (1)) ® (ag; (1) B Fis)-
It is immediate to check that the formula for c~! does produce an inverse. Il

Consider the map p : L+ (T, =) ® Re= (=, §) = R (T, =) ® L¢ (=, 5) defined in §4.4.2.
Lemma 8.3.3. Given o € L£+ (T,U) and [ € Rg,(U7 S), we have

pla®p) = (Oé|U\X(a)*1(§f'(1 ' (55—(_1 id))@((ax(a),l & (1) id) - Bis)

where 6 = 1 if x(aoB)(§1 (—1)) # & (1) and (id (g)(e: (1)) Bty (o) -1er (1) Ber (Bl (oy-1er (1) #

0 and 6, = 0 otherwise.

Proof. Assume first & ¢ (a)-1(¢5 1))y = id and fjs = id. We have
pla® p) = €1R§;L§1+ o L§1+TL£1+ (a® B®mn(ids))

= €1R€;L§r ( Z o ®T<(ﬁ§;(_l) ld) ® (ldgl([—l — {L‘]))) X (&([90 — 1]) 1d)
wedy ! (S)

=R Les (Z a® (i ([~1 = 2]) ® (Ber () Wid) ® (&1([z — 1]) id)>

zel

= 0B (1) B1d) @ (0 o) 1557 B 1)
where I = o &71(8) | @([-1 — 2D B (5 (1) [6(=2) = &1 (<1 -7 # 0}

Since p is a morphism of (Sy/(Z), Sy (Z))-bimodules, the general result follows using the
decompositions & = (i py(a)-1er (1)) B 1der 1)) -~ (dE (@)-1e5 (1)) and B = (dXBe-(_y)) -
(Bs idg;(—n)-

8.3.3. Diagonal bimodule. Recall that we have a (A Sy(Z), AxSy(Z))-bimodule E. Tts restric-
tion to a (Sy(Z), AxSu(Z))-bimodule is the cone of 7 : Ry ®s,,(2) Ida,sy(2) = Re- ®s,(2)

IdAASM(Z)‘
The (Sym(Z),Sm(Z¢))-bimodule E' = F o (1 ® Z7!) is the cone of the map u defined as
follows.
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Given a € Ry (T,U) with oy = id and given § € Homgs(z,)(S,U), we have
2

uwa®p) = Z (id&& (-1 — x]))@((ag(_l)-[ff(l) — & (=D]-&([z — 1]))id> B

zeé N (T)

We construct now an isomorphism between E’ and the restriction of Re- to a (Sy(Z), Sm(Ze))-
bimodule.
We define two morphisms of pointed sets

fi: Rgf (T, —) A Homge(z,) (S, —) — Rgf(T, S)
(a:Uuf{&G () =T)A(B:S—>U)—a- (5id§1—(_1)) = (a - B) X ey
and
fo: RE; (T, =) A Homge(z,(S, —) — R¢- (T, S)
(:Uu{s (1)} >T) A (B:5 = U)—a- (BR[E (1) = & (=1)])
= (o - B) B (ag () - [& (=) = & (=D)]).

Note that we have an isomorphism of pointed sets

fav fi: (Rg; (T, =) A Homge(z,(S,—)) v ((Rgf (T, =) A Homge(z,(S,—)) = Re- (T, S).

Lemma 8.3.4. We have d(f1) = 0 and d(f2) = f1ou. There is an isomorphism of differential
modules

(f27 fl) : El(Ta S) - RE‘<T7 S)
functorial in T € Sy (Z) and S € Sy(Ze).
Proof. It is immediate that d(f;) = 0. For the second equality, consider « € Re (T,U) and
2

B € Homge(z,)(S,U). Since a® 8 = (idag(_l)) ® (ou - B), we can assume that oy = id. We
have

d(f2)(a®B) = a- (dBR[E (-1) = & (D) +dB) K [& (1) = & (-1)]).
We have
dBR [ (—1) = & (-1)]) = d((dR[& (1) = & (—D)]) - (BRide ()
= (A& (1) = & (D)) - dlidy BF[& (—1) = & (D)) - (BRide ()
+ (Id R (1) = & (D] - (d(B) Kide- ()

= (o[ (1) — & D) D) ([dRE([z — 1) RE&([-1 - 2]))
wedy 1 (U)

F(BRide_qy) + d(B) B [§1 (—1) = & (=1)]
hence

A e®s) =a- Y (MR(E (1) = & (~D]-&(z — 1) Ra([-1 - 2])) - (FRidey)

ze€; H(U)
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= Y (A1~ ) E (g [ (1) = & (D] -le — 1)) - (FR i)

zeé H(U)
= fiou(la® f).

The lemma follows. U

8.3.4. Matching of extended action. Recall that E’ is the restriction of the (Sy(Z¢), Sm(Ze))-
bimodule £ o (2! @ Z'71).

We show here that the previous isomorphism is functorial in 7' € Sy(Z). Consider the
diagram

(8.3.1) R (T,-)® Le+ (-, U) ® E(U, S) —— E(T, S)
E@(fg,fl)l i(f%fl)
HOIHS(ZE)(T, U) ®R§—(U, S) R{— (T, S)

action

w11 Wi2
0 W29

Wy = (RE (mult o =Hom)) o (TLG Hom) o (RE;)‘ Hom)

2

where w = ( ) (cf §5.4.2) with

Wiy = Rgs Hom
waz = (R-(mult o Z=Hom)) o (0 L+ Hom) o (R.—p Hom).
Lemma 8.3.5. The diagram (8.3.1) is commutative.

Proof. Note first that all the maps of the diagram are functorial with respect to S € Sy (Ze).
o Let v e Rg;(U> S), B e LG(V, U) and a € Rﬁ; (T, V). We will show that

(8.3.2) actiono (2@ f2)(@®@B®7) = fao Rz (mult o E) o 7Lt 0 Re-AMa ® Q7).

Since v = (id 7527(71)) -7)s and since actiono (2® f,) and fy 0 R, (mult o Z) o 7L+ o R\
are morphisms of Sy/(Z)°*P-modules, we can assume 7|5 = id. We have a®/f = (id Ko () ®
(aqy idg(l) -B), hence we can assume o)y = id. We can also assume that 3 ® v # 0.

We have
action o (E® fo)(a ® ®7) = (idv H(ag - [&7(1) = & (=1)]) - B
(ids B (1) - [67 (1) = & (=1)]))
= 318516t ) B (g ) - [67 (1) = & (Z1)] - Byoyag )

B9((8 0 Mex - 65 (-1) = & (~D)])

where §; = 51(%7( (8o )=0- On the other hand, we have
S

&5 (-1

fooRe-(multoZE)orLey o R-ANa®B®7Y) =
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= f20 R (mult o) o 7Ly (a ( D ((Bynieg (-1 * Vg (-1)) Wid) © 5IS>
= 01f2 0 R (mult 0 =) <(id(ﬂx(7)(§5(—1)) ey (1) © ([dRoag; ) ® 5IS)

=01/ ((1d.(5x(7 & (~1)) ‘75;(_1))) ® <(id(%;(—1) &7 (1) = & (-1)])) '5|5>>

= 51((5 (& (-1) " Teg (- ) (& (-1) — 52_(_1)]) ((id(%;(fl) 65 (1) — 52_(_1)])) 'BIS>
= action o (E® f2)(a® L& 7).

We deduce that (8.3.2) holds.

o Let ye R-(U,5), B € L+ (V,U) and a € R (T, V). We will show that

(8.3.3) actiono (E® f1)(a®L®~) = (floRgl—(multOE)oan ORﬁz—p—i—fQORgg) (a®L®7).

As before, we can assume 75 = id, ay = id and S ® v # 0. We put u; = x(v)(& (—1)) and
uz = x(B)7H(& (1)),
We have

action o (2@ f1)(a®B®7) = (dv Rag yy - [& (1) = & (=1)])) - B+ (ids By ()

_ {52(%(1) (1) > & (D) R Bys if ug =
03( gy 1y - [67 (1) = & (=1)] - Buz) B (Buy © Ver (<1)) B s\ Ottherwise
where
o 0y = Lif 7~ _)(1-) = ¢(Buy(0+)) and b, = 0 otherwise
e 03 = 1if By - (ids ’Yg;(q)) # 0 and 93 = 0 otherwise.

We have
fooRee(a®BR7) = 02fa(a®Bis) = 02 (_yy - [§1 (1) = & (=1)]) X Bys.

We have
fioRe (mult 0 =) 0 0Ler o R pla® B®7) =

— 0, f1 0 R, (mult 0 ) 0 0Ly (0@ (B us) - (s (1) Bid))@(B,, Bid) )
= 0303 f1 0 Re-(mult 0 Z) 0 0 L+ <a®(ﬁ|5\{u2} (ﬁul © Ve (-1)) ) ®(Bua id)>

= 0305 f1 o Rgl— (mult o =) (((ﬁul © Ve ( ) x] 1d) ® ( & (1) Bis\(uz}) @ (Bus id))
= 5§5g(ﬁm © 75;(—1)) (%;(_1) ’ [51 ( ) - 52 (_ )] ’ Bm) B|S\{u2}

where

o 03 = 1if uy # up and (idy, XBus,) - (Ve (_) M idy,) # 0 and d3 = 0 otherwise
o 0y = 1if Biunfusy - (idsyfuo) BYer (1)) ;é O and 05 = 0 otherwise.

Since 03 = 0495, we deduce that (8.3.3) holds and the lemma follows. O
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8.3.5. Action of 7. The action of 7 on E(T, —) ® E(—,S) corresponds to an endomorphism of
Rz_ ® R Re— @ Re-R- ®R£‘ given in (5. 34)
2 1

Lemma 8.3.6. We have 7o ((f2, f1) ® (fa2, f1)) = ((f2, f1) ® (f2, f1)) o7
Proof. Consider «; € R; (T,U) and p; € R' (U,S). In order to prove that the equality of

the lemma holds when applied to ((ae, 1) ® (ﬂg,ﬁl)), we can assume that (a;)r = id and
(Bi);s = id, since the morphisms involved in the equality commute with the right action of
Su(2).
We have
o (fi® fi)(e: ® B;) =

~ (e oy [6(-1) — & (-] i) ® (BB ). Ly - 165 (1) = & (D))

= di,j((ﬁj)gj—(—l) & (1) — ( 1)] .1d) (1d(0‘i)§;(—1) (6 (1) = & (-1 ])

)
where dy; = 0, djp = 1l and d;; = 1 if ( [Si_(—Q) — & (—1)] X )) T
and d;; = 0 otherwise. We deduce that the lemma holds when applied to ((0427 al) (B, Bl))
hence it holds in general. O
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