285P Introduction to
the Geometric Langlands Program
Spring 2020
This course will discuss the
categorical version of the Langlands correspondence for a
complex curve.
The lectures will be on zoom at 9am-10:50am on Mondays and
Wednesdays.
More details to come. Any question, send me an email.
Prerequisites: Lie Theory, Algebraic Geometry,
Homological Algebra.
References
E. Frenkel, D. Gaitsgory and K. Vilonen, On the geometric
Langlands conjecture, J. Amer. Math. Soc. 15 (2002),
367–417.
G. Laumon, Correspondence de Langlands géométrique pour les
corps de fonctions, Duke Math. Jour. 54 (1987), 309–359.
I. Mirkovic and K. Vilonen, Geometric
Langlands duality and representations of algebraic groups over
commutative rings, Ann. of Math. 166 (2007), 95–143.
M. Rothstein. Sheaves with connection on abelian varieties,
Duke Math. J., 84(3):565–598, 1996
Langlands over function
fields
G.Laumon, La correspondance de Langlands sur les corps de
fonctions, Astérisque, tome 276 (2002), Séminaire
Bourbaki, exp. no 873, p. 207-265.
B. Stroh, La paramétrisation de Langlands globale sur les
corps des fonctions (d'après Vincent Lafforgue), Séminaire
Bourbaki, 2015-2016, exp no. 1110.
J.Bernstein and S.Gelbart editors, An Introduction to the
Langlands Program, Birkhäuser, 2003.