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1. Introduction

This is an outline of the connections between the Tate, Shafarevich and Mordell conjectures
in arithmetic geometry. The focus is mainly on the work of Faltings, who proved versions
of all three of these conjectures. The Tate and Shafarevich conjectures are about abelian
varieties so in the first section I cover some of the relevant basics of abelian varieties.

2. Background on abelian varieties

In this section I will introduce some of the theory of abelian varieties. The standard
reference is Mumford’s book, Abelian Varieties ; Milne’s notes are also good.

One way to think about abelian varieties is as higher-dimensional generalizations of elliptic
curves. Indeed an elliptic curve is just an abelian variety of dimension 1. Alternatively, one
can think of abelian varieties as projective algebraic groups.
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Definition 1. A group scheme is a group object in the category of schemes (over a field K).
An algebraic group is a group scheme of finite type over K. An abelian variety is a smooth,
proper, connected algebraic group.

Remark 2. Abelian varieties are automatically projective and geometrically integral.

Here are some related definitions. Recall that a torus is an algebraic group that is a twist
of Gn

m as a group scheme.

Definition 3. A semiabelian variety is an extension G of an abelian variety A by a torus T :

(2.1) 0→ T → G→ A→ 0

Definition 4. A semiabelian scheme of relative dimension g over a base scheme S is a
smooth group scheme over S with whose geometric fibers are connected semiabelian varieties
of dimension g. An abelian scheme is a semiabelian scheme whose fibers are abelian varieties.

It is important to distinguish between a “morphism” and “homomorphism” of abelian va-
rieties. A morphism is simply a morphism in the category of schemes, while a homomorphism
is a morphism that preserves the group structure and is thus a morphism in the category of
abelian varieties.

Example 5. For any integer n, there is a “multiplication by n” homomorphism n : A→ A.
The kernel of this homomorphism is denoted A[n].

Example 6. Let A be an abelian variety over a field K, and let a ∈ A(K). Then there
is a morphism of translation by a, ta : A → A; on rational points, ta sends b ∈ A(K) to
b+ a ∈ A(K). Clearly a nontrivial translation is not a homomorphism.

Proposition 7. Every morphism f : A→ B of abelian varieties over K is the composite of
a homomorphism and a translation tb, where b = −f(0) ∈ B(K).

Proof. This is a consequence of the rigidity lemma. See Corollary 2.2 in Milne’s notes on
Abelian Varieties in Cornell-Silverman. �

Corollary 8. If a morphism A → B of abelian varieties sends the identity to the identity,
it is automatically a homomorphism.

Corollary 9. The group law on an abelian variety A is commutative.

Proof. There is an inverse morphism f : A → A sending a 7→ −a ∈ A(K). Since this
preserves the identity, it is a homomorphism. Since the map taking an element to its inverse
is a homomorphism, the group law is commutative. �

2.1. Tate module.

Definition 10. Let l be a prime different from the characteristic of a field K. Let A be
an abelian variety defined over K. Then the Tate module Tl(A) is the inverse limit over
the abelian groups A[ln](K), connected by group homomorphisms A[ln+1](K) → A[ln](K)
which are multiplication by l. The inverse limit has the structure of a Zl-module, and is
equipped with the action of the Galois group Gal(K,K). We also define the Ql-Tate module
by VlA := Ql ⊗Zl

Tl(A).

Remark 11. As a Zl-module, Tl(A) ∼= Z2
l (this can be easily seen over C); what is interesting

is the Galois action. Also the Tate module is actually isomorphic to dual of the first étale
cohomology group of the abelian variety.
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2.2. Good and semistable reduction.

Example 12. For motivation, consider an elliptic curve E defined over Q. This can be
defined using a minimal Weierstrass equation

(2.2) y2 = x3 + Ax+B, ∆ = 4a3 + 27b2 6= 0

Reducing this equation mod p defines an algebraic group E0 over Fp. There are three
possibilities:

(1) Good reduction: E0 is an elliptic curve; this happens when p - ∆
(2) Multiplicative reduction: E0 has a node, and with its node removed is isomorphic to

Gm (possibly after base change)
(3) Additive reduction: E0 has a cusp, and with its cusp removed is isomorphic to Ga

Cases (2) and (3) together are called bad reduction. Cases (1) and (2) together are called
semistable reduction. Essentially, the elliptic curve has good reduction at all primes except
for those that divide the discriminant, where it has one of two kinds of bad reduction:
multiplicative or additive. If the only kind of bad reduction it has is multiplicative reduction
(i.e. it has semistable reduction everywhere), then it is called a semistable elliptic curve.

We would like to generalize this to abelian varieties. Here is the definition of good reduction
for abelian varieties.

Definition 13. Let R be a discrete valuation ring, K its field of fractions. Let A be an
abelian variety defined over K. Then A has good reduction if there exists an abelian scheme
A over R such that there is an isomorphism AK

∼= A of K-schemes; in other words, a smooth
proper model for A over R.

Remark 14. Note that the special fiber of A over the residue field k = R/m is thus also an
abelian variety.

To define the notion of semistable reduction, one uses the theory of Néron models, which
are smooth models that are not necessarily proper. Even though the Néron model of an
abelian variety may not be proper, we still have a bijection between the R-points of the
Néron model and the K-points of the abelian variety. See the book of Bosch et. al. for the
theory of Néron models.

Definition 15. Let R be a discrete valuation ring, K its field of fractions. Let A be an
abelian variety defined over K. Let A be the Néron model of A and A0 the connected
component of the identity of A. Then A has semistable reduction if the special fiber of A0

is a semiabelian variety.

For a number field K, for each archimedian place v of K, we can ask what sort of reduction
the abelian variety has at that place. In the context of Faltings’ theorem, two phrases that
come up a lot are “good reduction outside a finite set of places S” and “semistable reduction
everywhere” (i.e. at all places).

Theorem 16. Every abelian variety has semistable reduction after base change to a finite
extension of K.

Remark 17. This is difficult fact (due to Grothendieck?) that is usually quoted without
proof. We will use it later. I remember it being discussed during Roy’s talk.
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2.3. Isogeny.

Definition 18. A homomorphism of abelian varieties f : A → B is an isogeny if it is
surjective and its kernel is a finite group scheme. The degree of f is the order of the kernel
of f as a finite group scheme.

Example 19. The multiplication by n map A → A is an isogeny of degree n2g, where g is
the dimension of A. (this is easy to see over C)

Remark 20. If there exists an isogeny A → B, we say A and B are isogenous. Isogenous
abelian varieties must be of the same dimension. Isogeny is actually an equivalence relation
on abelian varieties. In fact if there is an isogeny f : A → B of degree n, there is another
isogeny g : B → A such that the composite g ◦ f is multiplication by n.

Remark 21. Let AbelVarK be the category whose objects are abelian varieties over a field K
and whose morphisms are homomorphisms of abelian varieties. AbelVarK is a preadditive
category, meaning that Hom-sets are Z-modules. Let Q⊗AbelVarK be the category with
the same objects as AbelVarK , but with HomQ⊗AbelVar(A,B) := Q ⊗ HomAbelVar(A,B).
Then Q ⊗ AbelVarK is a Q-linear tensor category, in which isogenies are isomorphisms.
One can even define characteristic polynomials of endomorphisms in this category and prove
the Weil conjectures for abelian varieties. In fact, Q ⊗AbelVarK is a semisimple abelian
category.

2.4. Polarization. Associated to an abelian varietyA is its dual abelian varietyA∨. Roughly
speaking, A∨ parametrizes line bundles of degree zero on A. Here is a precise definition.

Definition 22. Given an abelian variety A over K, A∨ is the dual abelian variety of A, and
P is the Poincaré line bundle on A× A∨ if:

(1) P|{0}×A∨ is trivial and P|A×{a} for a ∈ A∨ is a line bundle of degree 0 on A × {a},
and

(2) For every K-scheme T and line bundle L on A × T such that L|{0}×T is trivial and
L|A×{t} for t ∈ T is a line bundle of degree 0, and there is a unique morphism
f : T → A∨ such that (1× f) ∗ P ∼= L.

Remark 23. We can think of this as follows: (1) says that P is a family of degree zero line
bundles on A parametrized by A∨, and (2) states that P over A× A∨ is the universal such
family of degree zero line bundles on A.

Remark 24. Given a line bundle L on A, there is a homomorphism of abelian varieties
associated to L called φL : A→ A∨. On the level of K-points, it sends a 7→ t∗aL ⊗ L−1.

Now we come to a very important definition.

Definition 25. A polarization on A is an isogeny λ : A→ A∨ such that λK = φL for some
ample line bundle on AK . The degree of the polarization is its degree as an isogeny. If λ is
of degree 1 it is called a principal polarization. An abelian variety along with the data of
polarization is called a polarized abelian variety (if the polarization is of degree 1, principally
polarized abelian variety).

Remark 26. There is an obvious notion of morphism of polarized abelian variety, so polarized
abelian varieties over K form a category with a “forgetful functor” to the category of abelian
varieties over K.
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The following proposition says that given a polarizable abelian variety, there are only
finitely many essentially distinct ways to equip it with a polarization.

Proposition 27. Let A be an abelian variety over K and d an integer. Then there are
only finitely many isomorphism classes of polarized abelian varieties (A, λ), where λ is a
polarization of degree d.

Proof. See Theorem 18.1, Milne’s notes on Abelian Varieties in Cornell-Silverman. �

Zarhin’s trick, as described in Zarhin’s paper “A remark on endomorphisms of abelian
varieties over function fields of finite characteristic”, establishes that for any abelian variety
A, (A × A∨)4 is principally polarizable. Interestingly, Zarhin’s trick relies on Lagrange’s
four-square theorem and the quaternions.

Definition 28. A direct factor of an abelian variety A is an abelian subvariety B ⊂ A such
that there exists another abelian subvariety C ⊂ A and an isomorphism A ∼= B × C.

Proposition 29 (Finiteness of direct factors). An abelian variety A has only finitely many
direct factors up to isomorphism.

Remark 30. By the proposition, this implies that the map from g-dimensional abelian va-
rieties (up to isomorphism) to 8g-dimensional principally polarized abelian varieties (up to
isomorphism) sending A 7→ (A× A∨)4 is finite-to-one.

This is very important, because it allows us to turn finiteness statements about principally
polarized abelian varieties into finiteness statements about abelian varieties. We will use
Zarhin’s trick in this way multiple times.

2.5. Siegel moduli space. One reason to be interested in polarizations is that polarized
abelian varieties can be parametrized by a moduli space.

Proposition 31. Let Fg,d be the functor which sends a (locally noetherian) scheme S to the
set of isomorphism classes of polarized abelian schemes over S of dimension g and degree d.
Then this functor has a coarse moduli space Ag,d, defined over Z, which is a quasi-projective
variety over Q.

Remark 32. Let A and B be polarized abelian varieties of dimension g and degree d over
K. So A and B correspond to elements of the set Fg,d(K) which are distinct if A is not
isomorphic to B. Then consider the following diagram:

(2.3)

Fg,d(K) Ag,d(K)

Fg,d(K) Ag,d(K)
∼=

The downward arrow Fg,d(K) → Fg,d(K) sends (the K-isomorphism class of) an abelian
variety A to (the K-isomorphism class of) AK . Thus A and B correspond to the same point
of Ag,d if and only if AK

∼= BK i.e. B is a twist of A. Also recall that the twists of A are
classified by the Galois cohomology group H1(K,Aut(A/K)).
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3. Tate conjecture

Let K be a a finitely-generated field (i.e. a field that is finitely-generated over its prime
subfield, either Q or Fp). Let K be the separable closure of K. The Tate conjecture is the
following statement.

Conjecture 33. Let A and B be abelian varieties over a field K, l a prime different from
the characteristic of K, and Tl is the l-adic Tate module, which is naturally equipped with a
linear action of G = Gal(K/K). Let HomG is the module of G-equivariant homomorphisms.
Then the natural map

(3.1) Zl ⊗ Hom(A,B)→ HomG(Tl(A), Tl(B))

is bijective.

Remark 34. Here is another way to think about this. Conjecture 33 states that the Tate
module functor defines a fully faithful embedding of the category Zl ⊗AbelVarK into the
category of l-adic Galois representations (i.e. representations of the Galois group on Zl-
modules). Thus in some sense it is saying the study of abelian varieties (after inverting
prime-to-l isogenies) can be reduced to the study of l-adic representations.

Let us discuss some equivalent statements.

Lemma 35. For abelian varieties A and B, the map

(3.2) Zl ⊗ Hom(A,B)→ HomG(Tl(A), Tl(B))

is injective with torsion-free cokernel.

Proof. See Theorem 12.5 in Milne’s notes on Abelian Varieties in Cornell-Silverman. �

Proposition 36. Conjecture 33 is equivalent to the following: For abelian varieties A and
B, the natural map

(3.3) Ql ⊗ Hom(A,B)→ HomG(Vl(A), Vl(B))

is bijective.

Proof. This map is obtained by tensoring 3.2 with Ql, which is flat over Zl. Thus 3.3 is
bijective if 3.2 is. The converse is a consequence of 35, since if M is a torsion-free Zl-module
and Ql ⊗Zl

M is zero, M must be zero. �

Proposition 37. Conjecture 33 is equivalent to the following: For an abelian variety A, the
natural map

(3.4) Ql ⊗ End(A)→ EndG(Vl(A))

is bijective.

Proof. This is a consequence of the previous proposition and the following facts: End(A ×
B) ∼= End(A)×Hom(A,B)×Hom(B,A)×End(B), and like wise for EndG(Vl(A)× Vl(B)).
Also Vl(A×B) ∼= Vl(A)× Vl(B). �

Now identify Ql ⊗ End(A) with its image End(Vl(A)), the algebra consisting of all (not
necessarily G-equivariant) Zl-endomorphisms. Let Ql[G] be the subalgebra of End(Vl(A))
generated by automorphisms of Vl(A) given by elements of the Galois group G.
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Proposition 38. If Ql[G] is a semisimple algebra, Proposition 3.2 is equivalent to the state-
ment that Ql[G] is the centralizer of Ql ⊗ End(A).

Proof. This follows from the semisimplicity of Ql[G] and the double centralizer theorem.
(because bijectivity of 3.2 just means that Ql ⊗ End(A) is the centralizer of Ql[G]). �

In the 1960s, Tate studied endomorphisms of abelian varieties over finite fields. He proved
the Tate conjecture for finite fields. Zarhin extended Tate’s work to function fields over finite
fields. In his breakthrough paper, Faltings proved the Tate conjecture for number fields. He
used this to prove the Shafarevich conjecture for number fields and the Mordell conjecture,
which will be discussed later in this paper.

3.1. The general Tate conjecture. There is a much more general conjecture called the
Tate conjecture on algebraic cycles. Let X be a smooth projective variety of dimension d
over K. Let l be a prime different from the characteristic of K. Then for all integers m, i,
with 0 ≤ i ≤ 2d, there is the étale cohomology group H i

et(XK ,Ql(m)): this is a Ql-vector
space equipped with the action of the Galois group Gal(K/K).

To any subvariety Z ⊂ X of codimension i we can associate an étale cohomology class in
H2i

et (XK ,Ql(i)). We say that the cohomology class is represented by the subvariety Z.
The Tate conjecture is a characterization of which étale cohomology classes are represented

by algebraic subvarieties. It is the following statement:

Conjecture 39 (Tate). The Ql-subspace of Galois-invariant cohomology classes in H2i
et (XK ,Ql(i))

is spanned by classes represented by subvarieties of X.

This conjecture, for divisors on abelian varieties (i.e. when i = 1 and X is an abelian
variety) is equivalent to our Tate conjecture, Conjecture 33. The relationship comes from
the fact that the Tate module is naturally isomorphic to the dual of the first étale cohomology
group with coefficients in Zl, and the relationship between divisors and homomorphisms of
abelian varieties given by

(3.5) NS(A×B) ∼= NS(A)⊕NS(B)⊕Hom(A,B∨)

where NS(X) is the Neron-Severi group, the group of divisors on X modulo algebraic
equivalence.

The Tate conjecture is one of the “big” conjectures on algebraic cycles in the arith-
metic context. It is closely related to a number of other famous conjecures: the Birch
and Swinnerton-Dyer conjecture, Hodge conjecture, standard conjectures, finiteness of the
Tate-Shafarevich group, etc. For a survey, see Totaro’s expository article “Recent progress
on the Tate conjecture”.

4. Shafarevich conjecture

The Shafarevich conjecture is a finiteness statement in algebraic geometry; it states there
are only finitely many families (up to isomorphism) of a certain kind. There are analogues
in the function field setting, but we will be interested in the formulation over number fields.
There are actually many finiteness statements involved in Faltings’ work on the Mordell
conjecture and related work. To keep track of them all, here are some acronyms:

Proposition 40. There are finitely many isomorphism classes of g-dimensional abelian
varieties
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(1) (∗Pd) equipped with a degree d polarization (e.g. (∗P1) equipped with a principal
polarization)

(2) (Pd) that can be given a degree d polarization
(3) (SS) with semistable reduction everywhere
(4) (F ) of bounded Faltings height
(5) (I) that are isogenous to A
(6) (Il) that are isogenous to A, with the isogeny of l-power degree
(7) (G) with good reduction outside a finite set of places S

Finally, let () be the finiteness statement “there are finitely many isomorphism classes of
g-dimensional abelian varieties”.

Statement (G) is called the Shafarevich conjecture (for abelian varieties): there are finitely
many isomorphism classes of g-dimensional abelian varieties with good reduction outside a
finite set of places S.

Remark 41. Note that the statement (∗Pd) is different from the rest; because it is not just
a statement about a restricted class of abelian varieties, but abelian varieties with further
structure. It is a finiteness statement for polarized abelian varieties, not abelian varieties.

I will represent various finiteness statements with codes, for example, (∗P1SSF ) is the
statement that “there are finitely many isomorphism classes of principally polarized abelian
varieties that have semistable reduction everywhere and of bounded Faltings height”.

Remark 42. Obviously, “(A) =⇒ (AB)”, if you know what I mean: a finiteness theorem
with more conditions is implied by a finiteness theorem with less conditions.

Remark 43. The statements (∗Pd) and (Pd) are actually equivalent because of Proposition 27;
given a polarizable abelian variety, there are only finitely many ways to make it a polarized
abelian variety.

Remark 44. If we have a finiteness statement starting with (∗P1) (equivalently (P1)), we can
often remove the ∗P1 using Zarhin’s trick.

Tate’s work is an important precursor to Faltings work. Tate showed (Pd2Il) implies the
Tate conjecture, and then proved (Pd2Il) over finite fields. A better way is to simply notice
that the Siegel modular variety over a finite field, being a quasi-projective variety over a
finite field, has finitely many rational points, establishing the finiteness statement (∗Pd).
Using Zarhin’s trick for (∗P1) gives us (). Then using Tate’s arguments we can show that ()
implies (PdIl) and (Il). So, the story over finite fields looks like the following:

(4.1) (∗Pd) =⇒ () =⇒ (Il) =⇒ Tate

(I) is called “Finiteness I”. Statement (G) is called “Finiteness II”, or the Shafarevich
conjecture for abelian varieties. Faltings’ proof proceeds by showing, essentially:

(4.2) (∗PdSSF ) =⇒ (∗P1SSF ) =⇒ (SSF ) =⇒ (I) =⇒ Tate =⇒ (G) =⇒ (∗PdG)

The first implication is trivial. The second implication, removing the principal polar-
izations on the abelian varieties, again uses Zarhin’s trick. Proving (SSF ) =⇒ (I) is
a technical step that involves earlier theories, specifically Raynaud’s work on finite group
schemes. (G) is really all we need for the Mordell conjecture, we don’t need (PdG). But I
should remark that the implication (∗PdG) =⇒ Tate was known before Faltings. Faltings
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idea is to replace (∗PdG) with the slightly weaker statement (∗PdSSF ), use that to prove
the Tate conjecture, and then use the Tate conjecture to finally establish (∗PdG) in the end.

Remark 45. If I’m not mistaken, from (SSF) you can actually deduce (F). At least, this is
suggested in Faltings-Chai. On the other hand, infinitely many quadratic twist seem to be
a counterexample; wtf is going on?

Tate’s work uses deduces the Tate conjecture over finite fields from a version of the Shafare-
vich conjecture. Faltings turns this around by first proving a weak version of the Shafarevich
conjecture, then deducing the Tate conjecture, then proving the full Shafarevich conjecture.

A closely related statement is the Shafarevich conjecture for curves : Up to isomorphism,
there are only finitely many curves of genus g with good reduction outside a finite set of
places S.

Proposition 46. The Shafarevich conjecture for abelian varieties implies the Shafarevich
conjecture for curves.

Proof. The connection is made by taking the Jacobian of the curve. The Torelli theorem says
that given a Jacobian variety, the original curve can be recovered up to isomorphism. �

5. Mordell conjecture

5.1. Digression on arithmetic of curves. The Mordell conjecture is a basic statement
about the arithmetic of curves. The arithmetic of an algebraic curve defined over a number
field is controlled by an invariant called the genus, which is a nonnegative integer.

The arithmetic of genus 0 curves is completely understood: genus 0 curves are precisely
the Brauer-Severi curves i.e. twists of P1

k. If C is a nontrivial twist, it has no rational points;
otherwise C ∼= P1

k. By the fundamental exact sequence of class field theory, it is possible to
compute whether C is a nontrivial twist of P1

k.
Genus 1 curves are torsors under their Albanese varieties, which are elliptic curves. If C

is a nontrivial torsor, it has no rational points; otherwise C is an elliptic curve. Using the
theory of the Selmer group, it is possible to compute whether C is a nontrivial torsor. Thus
the arithmetic of genus 1 curves reduces to the arithmetic of elliptic curves. This is a big
subject. By the Mordell-Weil theorem, the set of rational points on an elliptic curve is a
finitely generated abelian group. The rank of an elliptic curve is the rank of its group of
rational points, as a Z-module. So an elliptic curve has finitely many rational points if and
only if its rank is zero.

Mazur’s torsion theorem is an interesting result for elliptic curves defined over Q. Mazur’s
torsion theorem lists the possible torsion of the group of rational points; in particular, the
torsion group must have at most 16 elements. (This implies that an elliptic curve with
finitely many rational points can have at most 16 rational points!). On the other hand,
understanding the rank of elliptic curves is a major area of current research connected to the
subject of L-functions. Conjecturally, the rank is given by the Birch and Swinnerton-Dyer
conjecture, which states an equality between the rank of an elliptic curve and the order of
vanishing of the L-function of the elliptic curve L(s) at s = 1 (the “analytic rank”).

So much for curves of genus 0 and 1. What about curves of higher genus? The Mordell
conjecture states that curves of genus at least 2 defined over number fields have finitely many
rational points.

There are four “routes” toward the Mordell conjecture, three of which are complete proofs.
There is Faltings’ proof of the Mordell conjecture, which is what this paper is about. It
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earned Faltings a Fields medal, and used a variety of advanced mathematics, including
moduli stacks, p-adic Hodge theory, p-divisible groups, etc. There is Vojta’s proof, using
Diophantine approximation. Then there is the Chabauty-Coleman-Kim method, which is a
p-adic method; it still does not yield a complete proof of the Mordell conjecture. Finally,
there is the recent work of Lawrence and Venkatesh which proves the Mordell conjecture
using p-adic period maps.

5.2. Parshin’s trick. The Mordell conjecture (now Faltings’ theorem) is the following state-
ment:

Theorem 47 (Faltings). Let C be a smooth, projective and geometrically integral curve of
genus g ≥ 2 defined over a number field K. Then C(K) is a finite set.

The Mordell conjecture can be deduced from Shafarevich’s conjecture for curves using a
geometric construction due to Parshin known as Parshin’s trick. Given a curve C over K
and a point P ∈ C(K), Parshin’s trick produces a finite cover φP : CP → C that ramifies
only at P . φP is defined over a finite extension L/K, and CP is of bounded genus and has
good reduction outside a finite set of primes of L.

Consider the maps

(5.1) C(K)→ {possible CP → C, up to isomorphism} → {possible CP}

The first map is injective, and the second map is finite-to-one when g ≥ 2 by a classical
theorem of de Franchis stating that, for fixed C ′ and C, there are only finitely many maps
C ′ → C when C has genus greater than 2. (This is the only place where g ≥ 2 is used!)
Thus the composite is finite-to-one, and the latter set is finite by Shafarevich’s conjecture.
Thus the first set is finite, yielding Mordell’s conjecture.

6. Tate’s work

Here, using the simplification provided by Zarhin’s trick, review the Tate and Shafarevich
conjectures over finite fields.

Theorem 48. There are finitely many isomorphism classes of abelian varieties over a finite
field.

Proof. First note that the existence of the Siegel moduli space implies that there are only
finitely many isomorphism classes of principally polarized abelian varieties over a finite field.
Then using Zarhin’s trick and finiteness of direct factors, the result follows. �

Theorem 49. The Tate conjecture (33) holds over finite fields. In addition if A is an abelian
variety over a finite field K, the Ql-Tate module Vl(A) is a semisimple l-adic representation
of GK.

Proof. See Propositions 1 and 2 in Tate’s paper, ”Endomorphisms of abelian varieties over
finite fields”. The main idea of the proof is construct a sequence of abelian varieties Bn with
isogenies fn : Bn → A, whose kernel is (at most) of size ln. By the previous proposition,
there are infinitely many of the Bn’s in a single isomorphism class; these can be used to define
elements of Zl ⊗ End(A), which accumulate to a a desired element of Zl ⊗ End(A) which is
the preimage of the endomorphism of Tate modules under Zl ⊗ End(A)→ End(Tl(A)). �
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7. Faltings’ work

To attack the problem in the setting of number fields, we would like to define a notion of
the “height” h(A) of an abelian variety A, a nonnegative real number, such that there are
finitely many isomorphism classes of abelian varieties (satisfying some hypotheses) whose
height is less than a fixed constant C.

There is a classical notion of the height of a point of projective space Pn
K for K a number

field, such that there are finitely many rational points of bounded height. So one way to
define a notion of the height of a principally polarized abelian variety is by considering an
embedding of the Siegel moduli space into projective space. This is well-defined up to a
constant, depending on the choice of embedding. This is called the naive height.

Faltings key innovation is a new notion of the height of an abelian variety. Unlike the
naive height it is defined intrinsically using the data of the abelian variety. The definition is
motivated by the philosophy of Arakelov theory.

Definition 50. Let p : A→ S be a semiabelian scheme. Let s : S → A be the zero section.
Then define the Hodge line bundle ωA/S to be the sheaf s∗(

∧k Ω1
A/S).

In the following let K be a number field, OK the ring of integers of K, MK the set of
places of K, and M∞

K the set of infinite places of K.

Definition 51. A metrized line bundle on SpecOK is an invertible OK-module equiped with
a norm | · |v on Kv ⊗M for all v ∈M∞

K .

Definition 52. If (M, | · |v) is a metrized line bundle, its Arakelov degree is defined as

(7.1) log(|M/(OK ·m)|)−
∑

v∈M∞
K

log ||m||v

where 0 6= m ∈M can be any nonzero element in M .

The Hodge bundle described earlier can be given the structure of a metrized line bundle
as follows: If v ∈M∞

K , then we can define a norm | · |v on Kv ⊗M ⊆ C⊗M as follows:

(7.2) |α|v =

((
i

2g

)g ∫
A(C)
|α ∧ α|

) 1
2

Definition 53. Let A be an abelian variety over a number field K. Then let ωA be the
Hodge line bundle of the Néron model of A, with the structure of a metrized line bundle.
Then the Faltings height hF (A) is defined to be the Arakelov degree of ωA.

The first main finiteness theorem is the following:

Proposition 54 (Height I, or (∗PdSSF )). There are only finitely isomorphism classes of
polarized abelian varieties (A, λ) over K of dimension g, polarization of degree d, semistable
reduction everywhere, and bounded Faltings height.

Proof. This is the hardest part of Faltings paper. It involves a close study of certain moduli
stacks and is proved by a comparison theorem comparing the naive height and Faltings
height. �
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Proposition 55 ((SSF )). There are only finitely isomorphism classes of abelian varieties
(A, λ) over K of dimension g with semistable reduction everywhere and bounded Faltings
height.

Proof. This follows from (∗P1SSF ) and Zarhin’s trick, using a theorem of Raynaud that
says that hF (A) = hF (A∨). �

Proposition 56 (Height II). Let A be an abelian variety over K with semistable reduction
everywhere. Then the set

(7.3) {h(B) | B is isogenous to A}
is finite.

Proof. This is also difficult. It involves a long computation with p-divisible groups, and uses
some p-adic Hodge theory and theorems of Raynaud and Tate on p-divisible groups. �

Theorem 57. Let A be an abelian variety. Then there are only finitely many isomorphism
classes of abelian varieties isogenous to A.

Proof. The previous two propositions imply the theorem when A has semistable reduction
everywhere. To remove this assumption, note that there is a finite extension L/K such that
A acquires semistable reduction over L. The finiteness follows from the fact that there are
only finitely isomorphism classes of abelian varieties defined over K that become isomorphic
to each other over L, because the Galois cohomology group H1(Gal(L/K),Aut(AL/L)) is a
finite group. �

Theorem 58. The Tate conjecture holds over number fields. For an abelian variety A over
a number field K, the representation Vl(A) is semisimple.

Proof. This uses essentially the same argument as Tate’s proof, cf 49. �

Theorem 59 (Shafarevich, or (G)). There are only finitely many isomorphism classes of
abelian varieties with good reduction outside a finite set S of places of K.

Proof. The idea of the proof is to show that, since the Tate modules are semisimple, that they
give rise to only a finite number of trace functions. Here we can use the Weil conjectures,
which imply the traces are integers with bounded absolute value. This proves finiteness up
to isogeny. To prove it up to isomorphism we have to again prove a “boundedness within
isogeny classes” result like Height II, using work of Raynaud and other technical tools. �

The Shafarevich conjecture for abelian varieties implies the Shafarevich conjecture for
curves. By Parshin’s trick, this implies the Mordell conjecture.
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