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1 Introduction

The sides of a spherical triangle are arcs of great circles. A great circle is the intersection of a sphere with
a central plane, a plane through the center of that sphere. The angles of a spherical triangle are measured
in the plane tangent to the sphere at the intersection of the sides forming the angle.

To avoid conflict with the antipodal triangle, the triangle formed by the same great circles on the opposite
side of the sphere, the sides of a spherical triangle will be restricted between 0 and π radians. The angles
will also be restricted between 0 and π radians, so that they remain interior.

To derive the basic formulas pertaining to a spherical triangle, we use plane trigonometry on planes related
to the spherical triangle. For example, planes tangent to the sphere at one of the vertices of the triangle,
and central planes containing one side of the triangle.

Unless specified otherwise, when projecting onto a plane tangent to the sphere, the projection will be from
the center of the sphere. Since each side of a spherical triangle is contained in a central plane, the projection
of each side onto a tangent plane is a line. We will also assume the radius of the sphere is 1. Thus, the
length of an arc of a great circle, is its angle.

Figure 1: Central Plane of a Unit Sphere Containing the Side α
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One of the simplest theorems of Spherical Trigonometry to prove using plane trigonometry is The Spherical
Law of Cosines.

Theorem 1.1 (The Spherical Law of Cosines): Consider a spherical triangle with sides α, β, and γ,
and angle Γ opposite γ. To compute γ, we have the formula

cos(γ) = cos(α)cos(β) + sin(α)sin(β)cos(Γ) (1.1)

Proof: Project the triangle onto the plane tangent to the sphere at Γ and compute the length of the projection
of γ in two different ways. First, using the plane Law of Cosines in the plane tangent to the sphere at Γ, we
see that the length of the projection of γ is

tan2(α) + tan2(β) − 2tan(α)tan(β)cos(Γ) (1.2)

Whereas if we use the plane Law of Cosines in the plane containing the great circle of γ, we get that the
length of the projection of γ is

sec2(α) + sec2(β) − 2sec(α)sec(β)cos(γ) (1.3)

By applying Figure 1 to α and β, Figure 2 illustrates these two methods of computing the length of the
projection of γ onto the plane tangent at Γ, that is, the red segment:

Figure 2: Two ways to measure the red segment

Subtracting equation (1.2) from equation (1.3), we get that

0 = 2 + 2tan(α)tan(β)cos(Γ) − 2sec(α)sec(β)cos(γ) (1.4)

Solving for cos(γ), gives The Spherical Law of Cosines:

cos(γ) = cos(α)cos(β) + sin(α)sin(β)cos(Γ) (1.5)
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Corollary 1.2: Given the spherical triangle ABΓ with opposing sides α, β, and γ, we have the following:

sin(α)cos(B) = cos(β)sin(γ) − sin(β)cos(γ)cos(A) (1.6)

Proof: Extend the side γ to π
2 radians as in Figure 3:

Figure 3

Using The Spherical Law of Cosines, there are two ways of computing cos(δ):

cos(δ) = cos(α)cos(π/2) + sin(α)sin(π/2)cos(B) (1.7a)

= sin(α)cos(B) (1.7b)

cos(δ) = cos(β)cos(π/2 − c) + sin(β)sin(π/2 − c)cos(π − A) (1.8a)

= cos(β)sin(γ) − sin(β)cos(γ)cos(A) (1.8b)

Equating (1.7b) and (1.8b), we get the corollary:

sin(α)cos(B) = cos(β)sin(γ) − sin(β)cos(γ)cos(A) (1.9)
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2 Duality: Equators and Poles

For every great circle, there are two antipodal points which are π
2 radians from every point on that great

circle. Call these the poles of the great circle. Similarly, for each pair of antipodal points on a sphere, there
is a great circle, every point of which is π

2 radians from the pair. Call this great circle the equator of these
antipodal points. The line containing the poles is perpendicular to the plane containing the equator. Thus,
a central plane contains both poles if and only if it is perpendicular to the equatorial plane. Therefore,
any great circle containing a pole is perpendicular to the equator, and any great circle perpendicular to the
equator contains both poles.

Figure 4: Semilunar Triangle
BC is an Arc of the Equator for the Pole A

In Figure 4, ∠BAC is the angle between the plane containing AB and the plane containing AC. As is
evident in the view from above A, the length of BC is the same as the size of ∠BAC.

Definition 2.1 (Semilune): A triangle in which one of the vertices is a pole of the opposing side is called
a semilunar triangle, or a semilune.

As described above, the angle at the pole has the same measure as the opposing side. All of the other sides
and angles measure π

2 radians.

Lemma 2.2 (Semilunar Lemma): If any two parts, a part being a side or an angle, of a spherical triangle
measure π

2 radians, the triangle is a semilune.

Proof: There are four cases:

1. two right sides
2. two right angles
3. opposing right side and right angle
4. adjacent right side and right angle

We will handle these cases in order.
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Case 1 (two right sides):
Suppose both AB and AC have a length of π

2 radians. The Spherical Law of Cosines says

cos(BC) = cos(AB)cos(AC) + sin(AB)sin(AC)cos(∠BAC) (2.1a)

= cos(
π

2
)cos(

π

2
) + sin(

π

2
)sin(

π

2
)cos(∠BAC) (2.1b)

= cos(∠BAC) (2.1c)

Thus ∠BAC and opposing side BC are equal. Furthermore,

cos(AC) = cos(AB)cos(BC) + sin(AB)sin(BC)cos(∠ABC) (2.2a)

cos(
π

2
) = cos(

π

2
)cos(BC) + sin(

π

2
)sin(BC)cos(∠ABC) (2.2b)

0 = sin(BC)cos(∠ABC) (2.2c)

Since BC is between 0 and pi radians, sin(BC) 6= 0; thus, cos(∠ABC) = 0, and ∠ABC must be π
2 radians.

By a similar argument, ∠ACB must also be π
2 radians.

Case 2 (two right angles):
Suppose both ∠ABC and ∠ACB are right angles. The Spherical Law of Cosines says that

cos(AC) = cos(AB)cos(BC) + sin(AB)sin(BC)cos(∠ABC) (2.3a)

= cos(AB)cos(BC) + sin(AB)sin(BC)cos(
π

2
) (2.3b)

= cos(AB)cos(BC) (2.3c)

Similarly, cos(AB) = cos(AC)cos(BC). Plugging this formula for cos(AB) into equation (2.3), we get

cos(AC) = cos(AC)cos2(BC) (2.4)

Subtracting the right side of equation (2.4) from both sides yields

cos(AC)sin2(BC) = 0 (2.5)

Since BC is between 0 and π radians, sin(BC) 6= 0. Therefore, cos(AC) = 0, and AC is π
2 radians. By the

same argument, AB is also π
2 radians. Now apply Case 1.

Case 3 (opposing right side and right angle):
Suppose both ∠ABC and AC measure π

2 radians. equation (2.3) says that

cos(AC) = cos(AB)cos(BC) (2.6a)

0 = cos(AB)cos(BC) (2.6b)

Therefore, one of AB or BC must be π
2 radians, and we are back to Case 1.

Case 4 (adjacent right side and right angle):
Suppose both ∠ABC and AB measure π

2 radians. The Spherical Law of Cosines says that

cos(AC) = cos(AB)cos(BC) + sin(AB)sin(BC)cos(∠ABC) (2.7a)

= cos(
π

2
)cos(BC) + sin(

π

2
)sin(BC)cos(

π

2
) (2.7b)

= 0 (2.7c)

Thus, AC is π
2 radians, and we are back to Case 1.
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3 Dual Triangles

Definition 3.1 (Dual Triangle): Given a spherical triangle ABC, let 4A′B′C′ be the triangle whose
vertices are the poles of the sides opposite the corresponding vertices of 4ABC in the same hemisphere as
4ABC (i.e. A′ is on the same side of BC as A, etc.). 4A′B′C′ is the dual of 4ABC.

As in Figure 5, let a, b, and c be the sides opposite A, B, and C respectively, and a′, b′, and c′ the sides
opposite A′, B′, and C′. Since A′, B′, and C′ are the poles of a, b, and c, all the red arcs measure π

2
radians. By construction, 4ABC′, 4AB′C, and 4A′BC are semilunes. However, by Lemma 2.2, so are
4A′B′C, 4A′BC′, and 4AB′C′. Thus, the vertices of 4ABC are poles of the sides of 4A′B′C′, in the
proper hemispheres. Therefore, 4ABC is the dual of 4A′B′C′.

Figure 5: Dual Triangles

Theorem 3.2 (Angle and Side Duality): The measure of an angle in a spherical triangle and the length
of the corresponding side in its dual are supplementary.

Proof: Given 4ABC, let 4A′B′C′ be its dual as constructed above. By the duality of the construction, we
need only consider one side and the angle at its corresponding pole, which is a vertex of the dual triangle.
Consider ∠ACB and c′ in Figure 5. As noted above, 4A′CB′, 4AB′C, and 4A′BC are semilunes. Thus,
∠A′CB′ and c′ are the same size. Furthermore, ∠A′CB and ∠ACB′ are right angles. Therefore,

c′ + ∠ACB = ∠A′CB′ + ∠ACB (3.1)

= ∠A′CB + ∠ACB′ (3.2)

=
π

2
+

π

2
(3.3)

= π (3.4)

Thus, we have that side c′ and ∠ACB are supplementary.

Applying The Spherical Law of Cosines to the dual of a spherical triangle, we get
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Theorem 3.3 (The Law of Cosines for Angles): Given a spherical triangle with two angles A and B
and the side γ between them, we can compute the cosine of opposite angle, Γ, with

cos(Γ) = −cos(A)cos(B) + sin(A)sin(B)cos(γ) (3.5)

Proof: Consider 4A′B′Γ′, the dual of 4ABΓ, with sides α′, β′, and γ′. Apply The Spherical Law of Cosines
to compute γ′:

cos(γ′) = cos(α′)cos(β′) + sin(α′)sin(β′)cos(Γ′) (3.6)

Use Theorem 3.2 to replace each angle and side with the supplement of the corresponding side and angle in
the dual

cos(π − Γ) = cos(π − A)cos(π − B) + sin(π − A)sin(π − B)cos(π − γ) (3.7)

Since cos(π − x) = −cos(x) and sin(π − x) = sin(x), this becomes

cos(Γ) = −cos(A)cos(B) + sin(A)sin(B)cos(γ) (3.8)

Theorem 3.4 (Incircle and Circumcircle Duality): The incenter of a spherical triangle is the circum-
center of its dual. The inradius of a spherical triangle is the complement of the the circumradius of its
dual.

Proof: Given 4ABC, as in Figure 6, let G be the center of its incircle, and D, E, and F be the points of
tangency of the incircle with sides BC, AC, and AB respectively. Let 4A′B′C′ be the dual of 4ABC.

Figure 6: Incircle and Dual Circumcircle

Since any radius of a circle is perpendicular to the circle, GD is perpendicular to BC. Therefore, if we
extend DG, it passes through A′, the pole of BC, and DA′ has length π

2 . The same is true for the other

points of tangency. Thus, GA′, GB′, and GC′ are complementary to r, the inradius of 4ABC, and hence,
equal. We can then conclude that the incenter of 4ABC is the circumcenter of 4A′B′C′ and the inradius
of 4ABC is complementary to the circumradius of 4A′B′C′.
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4 Right Spherical Triangles

As in plane trigonometry, many facts about spherical triangles can be derived using right spherical triangles.

Theorem 4.1 (Projecting Right Angles): Projecting a right spherical triangle onto a plane tangent to
any of its vertices preserves the right angle.

Proof: The case of projecting at the right angle is trivial. Therefore, consider the right triangle ABC in
Figure 7.

Figure 7

Construct the right triangle ADC, congruent to ABC, only reflected across side AC. Made of two right
angles, ∠BCD is a straight angle; thus, C is on BD. Let B′, C′, and D′ be the projections of B, C, and
D onto the plane tangent at A; thus, C′ is on B′D′. Since 4ABC is congruent to 4ADC, 4AD′C′ is
congruent to 4AB′C′; that is, AC′ = AC′, AB′ = tan(AB) = tan(AD) = AD′, and ∠B′AC′ = ∠BAC =
∠DAC = ∠D′AC′. Therefore, ∠AC′B′ = ∠AC′D′, yet since C′ is on B′D′, ∠AC′B′ and ∠AC′D′ are
supplementary. Thus, each is a right angle.

Theorem 4.1 says that right angles are preserved when projecting a spherical triangle onto a plane tangent
at any vertex of the given triangle. Corollary 4.2 tells what happens to other sizes of angles in a spherical
triangle.

Corollary 4.2 (Projecting Angles): Given a spherical triangle projected onto a plane tangent at one
angle, the tangent of the projection of any other angle in the triangle is the tangent of the corresponding
spherical angle times the cosine of the edge connecting the angles.

Proof: Consider 4ABD in Figure 7. From A, drop the perpendicular, AC, to BD. Consider the projection
of 4ABC onto the plane tangent at A, 4AB′C′. Since 4ABC is a right triangle, Theorem 4.1 assures that
4AB′C′ is also a right triangle. The Law of Cosines for Angles says that

cos(∠ACB) = −cos(∠CAB) cos(∠B) + sin(∠CAB) sin(∠B) cos(AB) (4.1)
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Since ∠ACB is a right angle, cos(∠ACB) = 0, leaving us with

tan(∠CAB) tan(∠B) cos(AB) = 1 (4.2)

Now in the plane, ∠CAB = ∠C′AB′ is complementary to ∠B′, therefore

tan(∠CAB) tan(∠B′) = 1 (4.3)

Combining equation (4.2) and equation (4.3), we get that

tan(∠B′) = tan(∠B) cos(AB) (4.4)

In plane trigonometry, the Law of Cosines is usually derived from the Pythagorean Theorem. Here, we prove
things the other way around.

Theorem 4.3 (Spherical Pythagorean Theorem): Given a right triangle with legs α and β and hy-
potenuse γ, we have the relation

cos(α)cos(β) = cos(γ) (4.5)

Proof: In Figure 8, ∠Γ is a right angle.

Figure 8

Applying The Spherical Law of Cosines, we get

cos(γ) = cos(α)cos(β) + sin(α)sin(β)cos(Γ) (4.6a)

= cos(α)cos(β) + sin(α)sin(β)cos(
π

2
) (4.6b)

= cos(α)cos(β) (4.6c)
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Theorem 4.4 (Right Spherical Trigonometric Identities): Given a right triangle ABΓ with legs α
and β opposite angles A and B, and hypotenuse γ opposite the right angle Γ, we have

sin(A) =
sin(α)

sin(γ)
sin(B) =

sin(β)

sin(γ)
(4.7a)

cos(A) =
tan(β)

tan(γ)
cos(B) =

tan(α)

tan(γ)
(4.7b)

tan(A) =
tan(α)

sin(β)
tan(B) =

tan(β)

sin(α)
(4.7c)

Proof: Refer to Figure 8. If we project the triangle onto the plane tangent at A, we get 4AB′Γ′. By
Theorem 4.1, Γ′ is a right angle. AB′ = tan(γ) and AΓ′ = tan(β). Using the plane trigonometric formulae,
we get

cos(A) =
tan(β)

tan(γ)
(4.8)

By similarity, we also have

cos(B) =
tan(α)

tan(γ)
(4.9)

Projecting onto the plane tangent at Γ, we get the right triangle A′B′Γ. Using this projection, plane trigono-

metric formulae say that tan(A′) = tan(α)
tan(β) . Corollary 4.2 says that tan(A′) = tan(A) cos(β). Therefore, we

get

tan(A) =
tan(α)

sin(β)
(4.10)

By similarity, we also have

tan(B) =
tan(β)

sin(α)
(4.11)

Multiplying equation (4.8) and equation (4.10), we get

sin(A) =
tan(α)

sin(β)

tan(β)

tan(γ)
(4.12a)

=
sin(α)

sin(γ)

cos(γ)

cos(α)cos(β)
(4.12b)

=
sin(α)

sin(γ)
(4.12c)

where the last step in equation (4.12) follows by The Spherical Pythagorean Theorem.

By similarity, we also have

sin(B) =
sin(β)

sin(γ)
(4.13)
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5 Spherical Trigonometric Formulas

Theorem 5.1 (The Spherical Law of Sines): Given 4ABC with sides a and b opposite angles A and
B, we have the following:

sin(a)

sin(A)
=

sin(b)

sin(B)
(5.1)

Proof: As in Figure 9, drop the perpendicular CD onto AB. Using equations (4.7a), compute sin(h) in two
ways: sin(B)sin(a) = sin(h) = sin(A)sin(b). Dividing by sin(A)sin(B), we get equation (5.1).

Figure 9

Given two sides and their included angle, The Spherical Law of Cosines yields the cosine of the remaining
side. As a complement, the following theorem yields the tangents of the other angles.

Theorem 5.2: Given the spherical triangle ABC with opposing sides a, b, and c, we have the following:

tan(A) =
tan(a)sec(b)sin(C)

tan(b) − tan(a)cos(C)
(5.2)

Proof: The Spherical Law of Sines followed by Corollary 1.2 says

tan(A) =
sin(A)

cos(A)
(5.3a)

=
sin(a)sin(C)

sin(c)cos(A)
(5.3b)

=
sin(a)sin(C)

cos(a)sin(b) − sin(a)cos(b)cos(C)
(5.3c)

=
tan(a)sec(b)sin(C)

tan(b) − tan(a)cos(C)
(5.3d)
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6 Trigonometric Identities

Let us recall some trigonometric identities that we will need.

Theorem 6.1:

sin(u + v) + sin(u − v) = 2 sin(u) cos(v) sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

(6.1a)

sin(u + v) − sin(u − v) = 2 cos(u) sin(v) sin(x) − sin(y) = 2 cos

(

x + y

2

)

sin

(

x − y

2

)

(6.1b)

cos(u + v) + cos(u − v) = 2 cos(u) cos(v) cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

(6.1c)

cos(u − v) − cos(u + v) = 2 sin(u) sin(v) cos(y) − cos(x) = 2 sin

(

x + y

2

)

sin

(

x − y

2

)

(6.1d)

Proof: These identities follow immediately using the standard trigonometric sum and difference formulae

sin(u + v) = sin(u) cos(v) + cos(u) sin(v) (6.2a)

sin(u − v) = sin(u) cos(v) − cos(u) sin(v) (6.2b)

cos(u + v) = cos(u) cos(v) − sin(u) sin(v) (6.2c)

cos(u − v) = cos(u) cos(v) + sin(u) sin(v) (6.2d)

and the relations

u =
x + y

2
v =

x − y

2
(6.3a)

Corollary 6.2:
sin(x) + sin(y)

cos(x) + cos(y)
= tan

(

x + y

2

)

(6.4)

Proof: Divide equation (6.1a) by equation (6.1c).
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7 Spherical Half-Angle Formulas

Given the spherical triangle ABC with opposing sides a, b, and c, use The Spherical Law of Cosines to
compute cos(A):

cos(A) =
cos(a) − cos(b)cos(c)

sin(b)sin(c)
(7.1)

Thus, using equation (7.1), equation (6.1d), and setting s = a+b+c
2 , we get

sin2

(

A

2

)

=
1 − cos(A)

2
(7.2a)

=
sin(b)sin(c) + cos(b)cos(c) − cos(a)

2 sin(b)sin(c)
(7.2b)

=
cos(b − c) − cos(a)

2 sin(b)sin(c)
(7.2c)

=
sin(s − b)sin(s − c)

sin(b)sin(c)
(7.2d)

Similarly, we have

cos2

(

A

2

)

=
1 + cos(A)

2
(7.3a)

=
cos(a) − cos(b)cos(c) + sin(b)sin(c)

2 sin(b)sin(c)
(7.3b)

=
cos(a) − cos(b + c)

2 sin(b)sin(c)
(7.3c)

=
sin(s)sin(s − a)

sin(b)sin(c)
(7.3d)

Using equation (7.2) and equation (7.3) and their analogs for B and C, we get

sin

(

A

2

)

sin

(

B

2

)

=

√

sin(s − a)sin(s − b)sin2(s − c)

sin(a)sin(b)sin2(c)
(7.4a)

= sin

(

C

2

)

sin(s − c)

sin(c)
(7.4b)

and

sin

(

A

2

)

cos

(

B

2

)

=

√

sin(s)sin(s − c)sin2(s − b)

sin(a)sin(b)sin2(c)
(7.5a)

= cos

(

C

2

)

sin(s − b)

sin(c)
(7.5b)

and

cos

(

A

2

)

sin

(

B

2

)

=

√

sin(s)sin(s − c)sin2(s − a)

sin(a)sin(b)sin2(c)
(7.6a)

= cos

(

C

2

)

sin(s − a)

sin(c)
(7.6b)
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and

cos

(

A

2

)

cos

(

B

2

)

=

√

sin(s − a)sin(s − b)sin2(s)

sin(a)sin(b)sin2(c)
(7.7a)

= sin

(

C

2

)

sin(s)

sin(c)
(7.7b)

Theorem 7.1: Given the spherical triangle ABC with opposing sides a, b, and c, we have the following:

cos

(

A + B

2

)

sin

(

C

2

) =

cos

(

a + b

2

)

cos
( c

2

) (7.8a)

sin

(

A + B

2

)

cos

(

C

2

) =

cos

(

a − b

2

)

cos
( c

2

) (7.8b)

cos

(

A − B

2

)

sin

(

C

2

) =

sin

(

a + b

2

)

sin
( c

2

) (7.8c)

sin

(

A − B

2

)

cos

(

C

2

) =

sin

(

a − b

2

)

sin
( c

2

) (7.8d)

Proof: We will use equations (6.1) and equations (6.2). We can write cos
(

A+B
2

)

as

cos

(

A + B

2

)

= cos

(

A

2

)

cos

(

B

2

)

− sin

(

A

2

)

sin

(

B

2

)

(7.9a)

= sin

(

C

2

)

sin(s) − sin(s − c)

sin(c)
(7.9b)

= sin

(

C

2

)

2 cos
(

a+b
2

)

sin
(

c
2

)

sin(c)
(7.9c)

= sin

(

C

2

)

cos
(

a+b
2

)

cos
(

c
2

) (7.9d)
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and we can write sin
(

A+B
2

)

as

sin

(

A + B

2

)

= sin

(

A

2

)

cos

(

B

2

)

+ cos

(

A

2

)

sin

(

B

2

)

(7.10a)

= cos

(

C

2

)

sin(s − b) + sin(s − a)

sin(c)
(7.10b)

= cos

(

C

2

)

2 cos
(

a−b
2

)

sin
(

c
2

)

sin(c)
(7.10c)

= cos

(

C

2

)

cos
(

a−b
2

)

cos
(

c
2

) (7.10d)

and we can write cos
(

A−B
2

)

as

cos

(

A − B

2

)

= cos

(

A

2

)

cos

(

B

2

)

+ sin

(

A

2

)

sin

(

B

2

)

(7.11a)

= sin

(

C

2

)

sin(s) + sin(s − c)

sin(c)
(7.11b)

= sin

(

C

2

)

2 sin
(

a+b
2

)

cos
(

c
2

)

sin(c)
(7.11c)

= sin

(

C

2

)

sin
(

a+b
2

)

sin
(

c
2

) (7.11d)

and we can write sin
(

A−B
2

)

as

sin

(

A − B

2

)

= sin

(

A

2

)

cos

(

B

2

)

− cos

(

A

2

)

sin

(

B

2

)

(7.12a)

= cos

(

C

2

)

sin(s − b) − sin(s − a)

sin(c)
(7.12b)

= cos

(

C

2

)

2 cos
(

c
2

)

sin
(

a−b
2

)

sin(c)
(7.12c)

= cos

(

C

2

)

sin
(

a−b
2

)

sin
(

c
2

) (7.12d)
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Corollary 7.2: Given the spherical triangle ABC with opposing sides a, b, and c, we have the following:

tan

(

A + B

2

)

tan

(

C

2

)

=

cos

(

a − b

2

)

cos

(

a + b

2

) (7.13a)

=

1 + tan
(a

2

)

tan

(

b

2

)

1 − tan
(a

2

)

tan

(

b

2

) (7.13b)

tan

(

A − B

2

)

tan

(

C

2

)

=

sin

(

a − b

2

)

sin

(

a + b

2

) (7.14a)

=

tan
(a

2

)

− tan

(

b

2

)

tan
(a

2

)

+ tan

(

b

2

) (7.14b)

Proof: Dividing equation (7.8b) by equation (7.8a) yields equation (7.13). Dividing equation (7.8d) by
equation (7.8c) yields equation (7.14).

Corollary 7.3 (The Spherical Law of Tangents): Given the spherical triangle ABC with opposing sides
a, b, and c, we have the following:

tan

(

A − B

2

)

tan

(

A + B

2

) =

tan

(

a − b

2

)

tan

(

a + b

2

) (7.15)

Proof: Divide equation (7.14a) by equation (7.13a).
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8 Spherical Excess

In plane triangles, the angles all sum to π radians. In spherical triangles, the sum of the angles is greater
than π radians. This leads us to the following

Definition 8.1 (Spherical Excess): The spherical excess of a spherical triangle is the sum of its angles
minus π radians.

Theorem 8.2 (Girard’s Theorem): The area of a spherical triangle is equal to its spherical excess.

Proof: Consider the area between the two great circles which form ∠A of 4ABC in Figure 10. If ∠A is π
radians, the area of the double wedge would be 4π steradians, the area of the full sphere. The area of such
a double wedge varies linearly with the angle of the wedge. Thus, the area of the wedge is 4 times ∠A.

Figure 10

If we count the contribution of all the double wedges for all the angles of 4ABC, we see that all of the
sphere is covered, but 4ABC and its antipodal triangle are covered 3 times; that is, 2 times each more than
needed to cover the sphere, or 4 times the area of 4ABC more than 4π. Thus,

4A + 4B + 4C = 4π + 4 × area of 4ABC (8.1)

Whence we get the formula for the area of a spherical triangle:

area of 4ABC = A + B + C − π (8.2a)

= spherical excess of 4ABC (8.2b)
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9 Spherical Triangular Area

The following formula is the spherical equivalent of Heron’s Formula for the area of a plane triangle.

Theorem 9.1 (L’Huilier’s Formula): Let E be the spherical excess of 4ABC, and a, b, and c be the
sides opposite the corresponding angles. Let s = a+b+c

2 . Then we have

tan

(

E

4

)

=

√

tan
(s

2

)

tan

(

s − a

2

)

tan

(

s − b

2

)

tan

(

s − c

2

)

(9.1)

Proof:

tan

(

E

4

)

= tan

(

A + B + C − π

4

)

(9.2a)

=

sin

(

A + B

2

)

+ sin

(

C − π

2

)

cos

(

A + B

2

)

+ cos

(

C − π

2

) (9.2b)

=

sin

(

A + B

2

)

− cos

(

C

2

)

cos

(

A + B

2

)

+ sin

(

C

2

) (9.2c)

=

(

cos

(

a − b

2

)

− cos
( c

2

)

)

cos

(

C

2

)

(

cos

(

a + b

2

)

+ cos
( c

2

)

)

sin

(

C

2

) (9.2d)

=

2 sin

(

s − a

2

)

sin

(

s − b

2

)

2 cos
(s

2

)

cos

(

s − c

2

)

√

sin(s)sin(s − c)

sin(s − a)sin(s − b)
(9.2e)

=

√

tan
(s

2

)

tan

(

s − a

2

)

tan

(

s − b

2

)

tan

(

s − c

2

)

(9.2f)

where equation (9.2b) follows by Corollary 6.2, equation (9.2d) by Theorem 7.1, and equation (9.2e) by
Theorem 6.1 and the analogs for C of equation (7.2) and equation (7.3).
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The following formula is the spherical equivalent of the formula for the area of a plane right triangle: 1
2ab.

Theorem 9.2: Suppose 4ABC is a right spherical triangle with right angle at C and sides a, b, and c
opposite the corresponding angle. We have the following formula for the spherical excess, E, of 4ABC:

tan

(

E

2

)

= tan
(a

2

)

tan

(

b

2

)

(9.3)

Proof: Use equation (7.13b) of Corollary 7.2, with C = π
2 , to get

tan

(

E

2

)

= tan

(

A + B

2
−

π

4

)

(9.4a)

=
tan

(

A+B
2

)

− 1

tan
(

A+B
2

)

+ 1
(9.4b)

= tan
(a

2

)

tan

(

b

2

)

(9.4c)
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