CM regularity and Kazhdan-Lusztig varieties

Colleen Robichaux UCLA

joint work with Jenna Rajchgot and Anna Weigandt Schubert Seminar October 10, 2022

Schubert varieties

Let $\mathcal{F}I_n(\mathbb{C})$, the **complete flag variety**, be the set of complete flags

$$0 = V_0 \subset V_1 \subset \ldots \subset V_{n-1} \subset V_n = \mathbb{C}^n$$
, where dim $V_i = i$.

We can identify $\mathcal{F}I_n(\mathbb{C})$ with $B_-\backslash \mathrm{GL}_n(\mathbb{C})$, where $B_-\subset \mathrm{GL}_n(\mathbb{C})$ is the opposite Borel subgroup.

 $B_- \times B$ acts on $\mathcal{F}I_n(\mathbb{C})$ with finitely many orbits X_w° called **Schubert cells**. The **Schubert varieties** X_w are closures of these orbits. Moreover, Bruhat order \geq on permutations gives

$$X_w = \coprod_{v \geq w} X_v^{\circ}.$$

Kazhdan-Lusztig varieties of Woo-Yong '06

Let $e_v = B_- \setminus B_- v$ denote the fixed points of the left action of a maximal torus $T \subset B$ on X_w , where $v \geq w \in S_n$. Let $\Omega_v^\circ = e_v B_-$ denote the opposite Schubert cell. Then an affine neighborhood of e_v is simply $v\Omega_{id}^\circ$, so one may restrict to studying $X_w \cap v\Omega_{id}^\circ$.

Theorem [Kazhdan–Lusztig '79]

$$X_w \cap v\Omega_{id}^{\circ} \cong (X_w \cap \Omega_v^{\circ}) \times \mathbb{A}^{\ell(v)}$$

Of particular interest is the Kazhdan-Lusztig variety

$$\mathcal{N}_{v,w} = X_w \cap \Omega_v^{\circ}$$
.

Kazhdan-Lusztig varieties of Woo-Yong '06

Kazhdan–Lusztig variety $\mathcal{N}_{v,w}$ has defining ideal

$$I_{v,w} = \langle r_w(i,j) + 1 \text{ minors of } \mathbf{z}_{i \times j}(v) \rangle \subset \mathbb{C}[z_{ij} \mid (i,j) \in D(v)].$$

Kazhdan-Lusztig varieties of Woo-Yong '06'

Kazhdan–Lusztig variety $\mathcal{N}_{v,w}$ has defining ideal

$$I_{v,w} = \langle r_w(i,j) + 1 \text{ minors of } \mathbf{z}_{i \times j}(v) \rangle \subset \mathbb{C}[z_{ij} | (i,j) \in D(v)].$$

Matrix Schubert varieties \overline{X}_w and classical determinantal varieties are all examples of KL varieties.

Minimal free resolution

Consider the coordinate ring S/I. The **minimal free resolution**

$$0 \to \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{l,j}} \to \cdots \to \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{0,j}} \to S/I \to 0.$$

The K-polynomial of S/I

$$\mathcal{K}(S/I;\mathbf{t}) := \sum_{j \in \mathbb{Z}, i \geq 0} (-1)^i \beta_{i,j} t^j.$$

The Castelnuovo–Mumford regularity of S/I

$$reg(S/I) := max\{j - i \mid \beta_{i,j} \neq 0\}.$$

Proposition

For Cohen–Macaulay S/I

$$reg(S/I) = deg \mathcal{K}(S/I; \mathbf{t}) - codim_S I$$
.

Matrix Schubert varieties

Matrix Schubert varieties \overline{X}_w are special cases of $\mathcal{N}_{v,w'}$.

Combining results of Fulton '92, Buch '02, and Knutson-Miller '05:

Theorem

$$\operatorname{reg}(\mathbb{C}[\overline{X}_w]) = \operatorname{deg}(\mathfrak{G}_w(x_1,\ldots,x_n)) - \ell(w),$$

where $\mathfrak{G}_w(x_1,\ldots,x_n)$ is the Grothendieck polynomial and $\ell(w)$ is the Coxeter length of w.

Problem

Give an easily computable formula for $\deg(\mathfrak{G}_w(x_1,\ldots,x_n))$, where $w\in S_n$.

Schubert polynomials via reduced pipe dreams

By Bergeron-Billey '93 and Fomin-Kirillov '94,

$$\mathfrak{S}_w(x_1,\ldots,x_n) = \sum_{P \in rPD(w)} x^{wt(P)}$$

In general, $deg(\mathfrak{S}_w) = \ell(w)$.

Grothendieck polynomials via pipe dreams

By Fomin-Kirillov '94,

$$\mathfrak{G}_{w}(x_{1},\ldots,x_{n}) = \sum_{P \in PD(w)} (-1)^{(\#+'s)-\ell(w)} x^{wt(P)}$$

Thus
$$\deg(\mathfrak{G}_w) = \max\{\#P \mid P \in PD(w)\}$$
, and $\operatorname{reg}(\mathbb{C}[\overline{X}_w]) = \deg(\mathfrak{G}_w) - \deg(\mathfrak{S}_w)$.

Finding the degree of Grothendieck polynomials

Let's take a look at a larger example:

In general, how can we more easily compute $deg(\mathfrak{G}_w)$?

Finding the degree of \mathfrak{G}_{ν} vexillary

Theorem [Rajchgot–R.–Weigandt '22]

Suppose $v \in S_n$ vexillary. Then

$$\deg(\mathfrak{G}_{v}) = \ell(v) + \sum_{i=1}^{n} \#ad(\lambda(v)|_{\geq i}).$$

Example: v = 5713624

gives
$$\deg(\mathfrak{G}_{\nu}) = \ell(\nu) + ((2+1) + (1)) = 12 + 4 = 16$$
.

Finding the degree of \mathfrak{G}_{ν} vexillary

Theorem [Rajchgot–R.–Weigandt '22]

Suppose $v \in S_n$ vexillary. Then

$$\deg(\mathfrak{G}_{\mathbf{v}}) = \ell(\mathbf{v}) + \sum_{i=1}^{n} \# \operatorname{ad}(\lambda(\mathbf{v})|_{\geq i}).$$

Example: v = 5713624

gives
$$\deg(\mathfrak{G}_{\nu}) = \ell(\nu) + ((2+1) + (1)) = 12 + 4 = 16$$
.

Pechenik-Speyer-Weigandt '21 give a result for general $w \in S_n$.

Intuition via Excited Young Diagrams

Using Knutson-Miller-Yong '09,

$$\mathfrak{G}_{v}(\mathbf{x};\mathbf{y}) = \textstyle\sum_{D \in \mathsf{KExcitedYD}(\mu(v),\lambda(v))} (-1)^{\#D - |\lambda(v)|} \, \mathit{wt}(D).$$

So $deg(\mathfrak{G}_{\nu}) = \max\{\#D \mid D \in \mathsf{KExcitedYD}(\mu(\nu), \lambda(\nu))\}.$

Intuition via Excited Young Diagrams

$$\mathfrak{G}_{\nu}(\mathbf{x};\mathbf{y}) = \textstyle\sum_{D \in \mathsf{KExcitedYD}(\mu(\nu),\lambda(\nu))} (-1)^{\#D - |\lambda(\nu)|} \, \mathit{wt}(D).$$

so maximizing D depends on certain antidiagonals of $\lambda(v)$.

Finding the regularity of \overline{X}_{ν} vexillary

Theorem [Rajchgot–R.–Weigandt '22]

Suppose $v \in S_n$ vexillary. Then

$$\operatorname{reg}(\mathbb{C}[\overline{X}_v]) = \operatorname{deg}(\mathfrak{G}_v) - \ell(v) = \sum_{i=1}^n \#\operatorname{ad}(\lambda(v)|_{\geq i}).$$

Example: v = 5713624

gives
$$reg(\mathbb{C}[\overline{X}_{v}]) = ((2+1) + (1)) = 4.$$

Grassmannian permutations

A permutation $w \in S_n$ is Grassmannian if it has a unique descent k, i.e. if $i \neq k$, then $w_i < w_{i+1}$. To each Grassmannian permutation $w \in S_n$, we can uniquely associate a partition λ with k parts.

Computing CM-regularity of certain KL varieties

Theorem [Rajchgot–R.–Weigandt '22]

For $u_{\rho}, w_{\nu} \in S_n$ Grassmannian with descent k, $(u_{\rho}, w_{\nu}) \mapsto v$ vexillary such that

$$\operatorname{reg}(\mathbb{C}[\mathcal{N}_{u_\rho,w_\nu}]) = \operatorname{reg}(\mathbb{C}[\overline{X}_v]) = \sum_{i=1}^n \#\operatorname{ad}(\lambda(v)|_{\geq i}).$$

Example: $u_{(5,4,2,1,0)}, w_{(6,6,4,4,4)} \mapsto v = 5713624$

gives $\operatorname{reg}(\mathbb{C}[\mathcal{N}_{u_p,w_v}]) = \operatorname{reg}(\mathbb{C}[\overline{X}_v]) = 4.$

Application I: KLSS Conjecture

Fix $k \in [n]$. Let Y denote the space of $n \times n$ matrices of the form

$$\begin{bmatrix} A & I_k \\ I_{n-k} & 0 \end{bmatrix}$$
, where $A \in M_{k \times (n-k)}(\mathbb{C})$.

The map

$$\pi: GL_n(\mathbb{C}) \to Gr(k,n)$$

induces an isomorphism from Y onto an affine open subvariety U of Gr(k,n). Let $Y_w := \pi|_Y^{-1}(X_w \cap U)$.

Kummini-Lakshmibai-Sastry-Seshadri conjectured the regularities of Y_{u_ρ} . They consider ρ such that $\rho_k=0$ and ρ_i not 'too big'.

Application I: KLSS Conjecture

Conjecture [Kummini-Lakshmibai-Sastry-Seshadri '15]

For certain $u_{\rho} \in S_n$ Grassmannian with descent k,

$$\operatorname{reg}(\mathbb{C}[Y_{u_{\rho}}]) = \sum_{i=1}^{k-1} i(\rho_i - \rho_{i+1}).$$

But these Y_{u_0} are just KL varieties!

Corollary [Rajchgot-R.-Weigandt '22]

For
$$u_{\rho} \in S_n$$
 as in KLSS and $w_{\nu} = (\operatorname{Id}_k + n - k) \times (\operatorname{Id}_{n-k})$

$$\operatorname{reg}(\mathbb{C}[Y_{u_{\rho}}]) = \operatorname{reg}(\mathbb{C}[\mathcal{N}_{u_{\rho},w_{\nu}}]) = \operatorname{reg}(\mathbb{C}[\overline{X}_{u_{\rho}}]).$$

How does our formula compare to the KLSS conjecture?

Computing CM-regularity of certain KL varieties

Take $u_{\rho}=1457236$, so k=4. Our theorem computes

$$reg(\mathbb{C}[Y_{u_{\rho}}]) = 3 + 1 + 1 = 5.$$

Here $\rho = (3, 2, 2, 0)$, so KLSS conjecture gives

$$\begin{split} \operatorname{reg}(\mathbb{C}[Y_{u_{\rho}}]) &= \sum_{i=1}^{3} i(\rho_{i} - \rho_{i+1}) \\ &= 1(3-2) + 2(2-2) + 3(2-0) = 7. \end{split}$$

Application II: one-sided mixed ladder determinantal ideals

Consider a matrix $X=(x_{ij})$ of indeterminates. Let L denote the submatrix of X defined by choosing SE corners. I(L) is the ideal generated by the NW r_i minors of L. This defines the one-sided mixed ladder determinantal variety X(L).

Further, these are KL-varieties

$$X(L) \cong \mathcal{N}_{u_{\rho},w_{\nu}} \cong \overline{X}_{\nu}.$$

Corollary [Rajchgot-R.-Weigandt '22]

$$\operatorname{reg}(\mathbb{C}[X(L)]) = \sum_{i=1}^n \#\operatorname{ad}(\lambda(\mathsf{v})|_{\geq i})$$

Ongoing work: two-sided mixed ladder determinantal ideals

Consider a matrix $X=(x_{ij})$ of indeterminates. Let L denote the submatrix of X defined by choosing SE and NW corners. I(L) is the ideal generated by the NW r_i minors of L. This defines the two-sided mixed ladder determinantal variety $\tilde{X}(L)$.

Further, for any such variety, we can construct $u, w \in S_n$ 321-avoiding such that

$$\tilde{X}(L) \cong \mathcal{N}_{u,w}$$
.

Krattenhaler-Ghorpade '15 give constructions for the related a-invariant for certain $\tilde{X}(L)$.

Ongoing work: two-sided mixed ladder determinantal ideals

For $\mathcal{N}_{u,w}$, the K-polynomials are the unspecialized Grothendiecks $\mathfrak{G}_{v,w}$ of Woo–Yong, where

$$\mathfrak{G}_{v,w}(x_1,\dots,x_n) = \sum_{P \in PD(w) \cap R_v} (-1)^{(\#+'s)-\ell(w)} x^{wt(P)}$$

Example: $\mathfrak{G}_{v,w}$ for w = 132, v = 312.

Ongoing work: two-sided mixed ladder determinantal ideals

For $\mathcal{N}_{u,w}$, the K-polynomials are the unspecialized Grothendiecks $\mathfrak{G}_{v,w}$ of Woo–Yong, where

$$\mathfrak{G}_{v,w}(x_1,\ldots,x_n) = \sum_{P \in PD(w) \cap R_v} (-1)^{(\#+'s)-\ell(w)} x^{wt(P)}$$

Currently, we are working towards formulas for the degree of $\mathfrak{G}_{v,w}$ when v, w are 321-avoiding.

Conclusions

- We can express $\operatorname{reg}(\mathbb{C}[\overline{X}_w])$ in terms of the degree of the K-polynomial and the codimension of I_w .
- Use that $reg(\mathbb{C}[\overline{X}_w]) = deg \mathfrak{G}_w \ell(w)$.
- For v vexillary, we obtain an easily computable formula for deg \mathfrak{G}_v , and thus for reg $(\mathbb{C}[\overline{X}_v])$.
- By relating $\mathcal{N}_{u_{\rho},w_{\nu}}$ to \overline{X}_{ν} , we correct a conjecture of KLSS and obtain formulas for regularities of one-sided ladders.