Signed combinatorial interpretations in algebraic combinatorics

Colleen Robichaux UCLA

joint work with Igor Pak

FPSAC 2025, Hokkaido University July 21, 2025

▲日▼▲□▼▲目▼▲目▼▲□▼ ④40

Colleen Robichaux UCLA

Combinatorial Structure Constants

Consider a basis $B = \{\xi_{\alpha}\}$ in a ring R:

$$\xi_lpha\xi_eta=\sum_{lpha\in \mathcal{A}}c^\gamma_{lphaeta}\xi_\gamma$$

Here A is some combinatorial set (partitions, compositions, etc).

Example

Take
$$R = \mathbb{Z}[x_1, \ldots, x_n]^{S_n}$$
 and $B = \{s_{\lambda} : \ell(\lambda) \leq n\}$:

$$s_{\lambda}s_{\mu}=\sum_{\nu}c_{\lambda\mu}^{
u}s_{
u}.$$

イロト イポト イヨト イヨト

э

Here $c_{\lambda \mu}^{\nu} \in \mathbb{Z}_{\geq 0}$ are the *Littlewood–Richardson coefficients*.

Colleen Robichaux UCLA

A Central Motivation

Problem A

Determine a *non-cancellative* combinatorial rule to compute structure coefficients $c^{\gamma}_{\alpha\beta}$.

Why should such a rule exist?

Problem B

Determine a *cancellative* combinatorial rule to compute structure coefficients $c^{\gamma}_{\alpha\beta}$.

What is "combinatorial"?

A Formalization

Informal Definition

Counting X is in $\#\mathbf{P}$ if there exists a set S with |S| = |X|, where checking $s \in S$ is poly-time.

Example: LR-coefficients $c_{\lambda,\mu}^{\nu}$

The LR-rule via ballot semistandard Young tableaux gives

$$c_{\lambda,\mu}^{\nu} = \# \mathsf{ballot} \ \mathsf{SSYT}(\nu/\lambda,\mu) \in \#\mathsf{P}$$

A (1) > A (2) > A

3

Colleen Robichaux UCLA

A Formalization

Define **GapP** := #P - #P.

Example: symmetric group characters χ^{λ}_{μ}

The Murnaghan-Nakayama rule via border strip tableaux shows

$$\chi^{\lambda}_{\mu} = \sum_{\mathcal{T} \in \mathsf{BST}(\lambda,\mu)} (-1)^{ht(\mathcal{T})} \in \mathsf{GapP}$$

イロン イ団 と イヨン イヨン

3

Problem B, reformulated

Determine a GapP rule for $c_{\alpha\beta}^{\gamma}$.

Colleen Robichaux UCLA

Combinatorial bases with integral structure constants have signed combinatorial formulas.

(Problem B is easily resolvable in most cases)

Colleen Robichaux UCLA

Key Ingredient: Möbius Inversion

Let $\mathcal{P} := (A, \prec)$ be a poset.

Hall's Theorem

Take $\eta:A^2\to\mathbb{Z}$ unitriangular. Then the inverse $\rho:A^2\to\mathbb{Z}$ of η has the form:

$$\rho(x,y) = \sum_{\ell=0}^{h} \sum_{\substack{\text{chains} \\ x \to z_1 \to \dots \to z_{\ell-1} \to y}} (-1)^{\ell} \eta(x,z_1) \cdot \eta(z_1,z_2) \cdot \dots \cdot \eta(z_{\ell-1},y).$$

Proposition

Suppose \mathcal{P} has polynomial height and the incidence function in \mathcal{P} is poly-time computable. Then η is in GapP implies ρ is in GapP.

ヘロト ヘヨト ヘヨト ヘヨト

Colleen Robichaux UCLA

Schubert polynomials

Schubert polynomials give a \mathbb{Z} -basis of $R = \mathbb{Z}[x_1, x_2, \dots, x_n]$:

$$\mathfrak{S}_{w}(x_{1},\ldots,x_{n})=\sum_{P\in PD(w)}\mathbf{x}^{wt(P)}=\sum_{\alpha\in\mathbb{Z}_{\geq0}^{n}}K_{c(w),\alpha}\mathbf{x}^{\alpha}.$$

Here $c(w) \in \mathbb{Z}_{\geq 0}^n$ is the **code** of $w \in S_n$.

Colleen Robichaux UCLA

Setup for \mathfrak{S}_w

Take $\mathcal{P} = (V_{n,k}, \trianglelefteq)$ to be the poset on $\alpha \in \mathbb{Z}_{\geq 0}^n$ with $|\alpha| = k$. Here \trianglelefteq is dominance order. Then:

- \mathcal{P} has polynomial height
- $K_{c(w),\alpha} \in \#P$
- $\mathfrak{S}_w(x_1,\ldots,x_n) = \sum_{c(w) \leq \alpha} K_{c(w),\alpha} \mathbf{x}^{\alpha}$
- diagonal terms $K_{c(w),c(w)} = 1$

Consider the inverse Schubert Kostka coefficients

$$\mathbf{x}^{lpha} = \sum_{c(w) \leq lpha} \mathcal{K}_{c(w), \alpha}^{-1} \mathfrak{S}_{w}(x_{1}, \ldots, x_{n}).$$

Colleen Robichaux UCLA

Argument for \mathfrak{S}_w

$$\begin{split} \mathfrak{S}_{u} \cdot \mathfrak{S}_{v} &= \Big(\sum_{c(u) \leq \alpha} \mathcal{K}_{c(u),\alpha} \mathbf{x}^{\alpha} \Big) \cdot \Big(\sum_{c(v) \leq \beta} \mathcal{K}_{c(v),\beta} \mathbf{x}^{\beta} \Big) \\ &= \sum_{c(u) \leq \alpha} \sum_{c(v) \leq \beta} \Big(\mathcal{K}_{c(u),\alpha} \mathcal{K}_{c(v),\beta} \Big) \mathbf{x}^{\alpha+\beta} \\ &= \sum_{c(u) \leq \alpha} \sum_{c(v) \leq \beta} \sum_{\alpha+\beta \leq c(w)} \Big(\mathcal{K}_{c(u),\alpha} \mathcal{K}_{c(v),\beta} \mathcal{K}_{c(w),\alpha+\beta}^{-1} \Big) \mathfrak{S}_{w} \\ &= \sum_{w} c_{uv}^{w} \mathfrak{S}_{w}. \end{split}$$

Corollary

Schubert structure coefficients $c_{\mu\nu}^w \in GapP$

Colleen Robichaux UCLA

Main Theorem

Theorem [Pak-R. '24]

Structure constants for the following families are in GapP:

- Symmetric Bases
 - s_{λ} , m_{λ} , e_{λ} , h_{λ} , p_{λ}
- Quasiymmetric Bases

$$\blacksquare M_{\alpha}, F_{\alpha}, \mathfrak{S}_{\alpha}^*, \mathcal{S}_{\alpha}$$

- Polynomial Bases
 - $\blacksquare \mathfrak{M}_{\alpha}, \mathfrak{F}_{\alpha}, \operatorname{atom}_{\alpha}, \kappa_{\alpha}, \mathfrak{S}_{w}, \mathcal{L}_{\alpha}, \mathfrak{G}_{w}$

Using the same techniques, plethysm coefficients $a_{\lambda\mu}^{\nu}$ for $f_{\lambda}[g_{\mu}] = \sum_{\nu} a_{\lambda\mu}^{\nu} s_{\nu}$ are also in GapP for symmetric bases f_{λ}, g_{μ} .

イロト イポト イヨト イヨト

Main Theorem – Extended

Theorem [Pak-R. '24]

Structure constants for the following are in GapP (or GapP/FP):

Symmetric Bases

• s_{λ} , m_{λ} , e_{λ} , h_{λ} , p_{λ}

- $P_{\lambda}(x; \alpha), P_{\lambda}(x; t), P_{\lambda}(x; q, t) (GapP/FP)$
- Quasiymmetric Bases

$$\blacksquare M_{\alpha}, F_{\alpha}, \mathfrak{S}_{\alpha}^{*}, \mathcal{S}_{\alpha}$$

•
$$\Psi_{\alpha}, \Phi_{\alpha}, \mathfrak{p}_{\alpha} \text{ (GapP/FP)}$$

Polynomial Bases

 $\blacksquare \mathfrak{M}_{\alpha}, \mathfrak{F}_{\alpha}, \operatorname{atom}_{\alpha}, \kappa_{\alpha}, \mathfrak{S}_{w}, \mathcal{L}_{\alpha}, \mathfrak{G}_{w}$

Here GapP/FP are functions f/g where $f \in$ GapP and g is poly-time computable (i.e. in FP).

Colleen Robichaux UCLA

What next? Improved signed formulas!

We construct $O(n^9)$ puzzle pieces \mathcal{T}_n . For $u, v, w \in S_n$, we build a parallelogram region $\Gamma(u, v, w)$. Using Knutson's recurrence '03:

Theorem (Pak-R. '25)

The number of signed puzzles of $\Gamma(u, v, w)$ using \mathcal{T}_n is $c_{u,v}^w$.

Colleen Robichaux UCLA

Application

Using this signed puzzle rule, we find:

Corollary (Pak–**R.** '25)

Fix k, and let

$$\gamma_k(n) := \sum_{u,v,w \in S_n: \operatorname{inv}(w)=k} c_{u,v}^w.$$

Then γ_k is a polynomial in n.

This follows from inequalities imposed by our rule $+\ {\sf Ehrhart}$ theory.

Conclusion

- Integral structure constants are in GapP
- Plethysm coefficients are in GapP
- Develop improved GapP formulas for your favorite combinatorial basis
- Use GapP formulas to illuminate existing structure, develop asymptotics, and approach #P formulas

Thank you!

イロト イポト イヨト イヨト