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Combinatorial Structure Constants

Consider a basis B ={£4} in a ring R:

aocaﬁ = Z Clﬁ Ey

x€A

Here A is some combinatorial set (partitions, compositions, etc).

Take R =Z[xi,...,x,°" and B ={sy : L(A) < n}:

v
SASp = E CruSve
v

Here ¢y, € Z>¢ are the Littlewood-Richardson coefficients.
V.
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A Central Motivation

Problem A

Determine a non—cancellative combinatorial rule to compute
structure coefficients CZB.

Why should such a rule exist?

Problem B

Determine a cancellative combinatorial rule to compute structure
. . y
coefficients ¢, .

What is “combinatorial”?
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A Formalization

Informal Definition

Counting X is in #P if there exists a set S with |S| = |X|, where
checking s € S is poly-time.

.

Example: LR-coefficients ¢ |

The LR-rule via ballot semistandard Young tableaux gives

cny = #ballot SSYT(v/A, 1) € #P

.
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A Formalization

Define GapP := #P — #P.

Example: symmetric group characters xi‘l

The Murnaghan—Nakayama rule via border strip tableaux shows

xh= >  (—1M7 e GapP

TEBST(Au)
Y

Problem B, reformulated

Determine a GapP rule for coycﬁ.

V
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Central Takeaway

Combinatorial bases with integral
structure constants have signed
combinatorial formulas.

(Problem B is easily resolvable in most cases)
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Key Ingredient: Mobius Inversion

Let P := (A, <) be a poset.

Hall's Theorem

Take 11 : A2 — Z unitriangular. Then the inverse p : A> = Z of
has the form:

h
ply) =) Y (D'l za)n(z, ) ...onlzey).

=0 chains
X—2Z1—...—™Zp_ 1Y

Proposition

Suppose P has polynomial height and the incidence function in P
is poly-time computable. Then 1 is in GapP implies p is in GapP. )
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Schubert polynomials

Schubert polynomials give a Z-basis of R = Z[x1, x2, ..., Xpl:

Gy (XtyenoyXpy)= Z xVt(P) — Z Ke(w),ox™-

PEPD(w) ez,
Here c(w) € ZZ, is the code of w € S,,.

Example: &,, for w = 21435 via Bergeron—Billey '96

12345 12345
PD(w) : 1j_J 1
2 2
3 3
4 4
5 5
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Setup for &,

Take P = (Vjk, 9) to be the poset on o € ZZ, with || = k.
Here < is dominance order. Then: -

m P has polynomial height
B K(w),« € #P

B Gy(X1y.nyXp) = Zc(w]ﬁtx KC(W)»‘XX
m diagonal terms K () c(w) = 1

[0

Consider the inverse Schubert Kostka coefficients

x* = Z KC_(;)’O‘GW(XL...,X”).
(W)
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Argument for G,

G, -6, = ( (Z Kc(u)’mx“) : ( Z Kew )ﬁxﬁ)
clu)da B
= Z Z (Kc(u),tx KC(V),ﬁ) X

clu)<a c(v)<Lp

= Z Z 2 (Kc(u),ocKc(v),ﬁK&h),am)@w

da c(v)<dB a+Bdc(w

c(u)
§ W
= Cuv w e
w

Schubert structure coefficients ¢y, € GapP

= = = =
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Main Theorem

Theorem [Pak-R. '24]

Structure constants for the following families are in GapP:

m Symmetric Bases
B Sy, My, e, ha, pa
m Quasiymmetric Bases
m My, Fa, &%, S
m Polynomial Bases
B My, S« atomey, Ka, Sy, Lu, By

Using the same techniques, plethysm coefficients axu for
Algd =2, ay,Sv are also in GapP for symmetric bases f, gy..
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Main Theorem — Extended

Theorem [Pak—-R. '24]

Structure constants for the following are in GapP (or GapP/FP):

m Symmetric Bases

B S\, Ma, ex, ha, pa

m Pr(x;), Pa(x;t), Pa(x;q,t) (GapP/FP)
m Quasiymmetric Bases

B My, Fa, &%, S«

u ‘yo(,v (Dcxx P (GapP/FP)
m Polynomial Bases

B My, T, atomy, Ko, Sy, Lo, By

A

Here GapP/FP are functions f/g where f € GapP and g is
poly-time computable (i.e. in FP).
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What next? Improved signed formulas!

We construct O(n”) puzzle pieces T,. For u,v,w € S,, we build a
parallelogram region I'(u, v, w). Using Knutson's recurrence '03:

Theorem (Pak-R. '25)

The number of signed puzzles of I'(u, v, w) using Ty is ¢/, .

717 526 345 252 131 663 474
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Application

Using this signed puzzle rule, we find:

Corollary (Pak-R. '25)
Fix k, and let

Yk(n) = Z Ciry-

u,v,wESp:inv(w)=k

Then vy is a polynomial in n.

This follows from inequalities imposed by our rule + Ehrhart
theory.
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Conclusion

m Integral structure constants are in GapP
m Plethysm coefficients are in GapP

m Develop improved GapP formulas for your favorite
combinatorial basis

m Use GapP formulas to illuminate existing structure, develop
asymptotics, and approach #P formulas

Thank you!
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