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Castelnuovo–Mumford regularity for 321-avoiding
Kazhdan–Lusztig varieties
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Abstract. We introduce an algorithm to compute the degrees of 321-avoiding unspe-
cialized Grothendieck polynomials. Our result provides an algorithm to compute the
Castelnuovo–Mumford regularity of 321-avoiding Kazhdan–Lusztig ideals. This ex-
tends the work of an earlier paper of Rajchgot, the author, and Weigandt (2022) which
gives a formula in the case of Grassmannian Kazhdan–Lusztig ideals.
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1 Introduction

A. Woo and A. Yong [10] introduced Kazhdan–Lusztig varieties to study singularities of
Schubert varieties. Kazhdan–Lusztig varieties are generalized determinantal varieties
which include Matrix Schubert varieties [4] as special cases. Another well-studied class
of these Kazhdan–Lusztig varieties is the ladder determinantal varieties, introduced by
S. S. Abhyankar [1].

The Castelnuovo–Mumford regularity of a graded module is an invariant used to mea-
sure its complexity. In general, this regularity may be computed using the minimal free
resolution of the module. Using the fact that Kazhdan–Lusztig varieties are Cohen–
Macaulay, one may instead compute their regularities combinatorially in terms of de-
grees of unspecialized Grothendieck polynomials.

Our main results Theorems 2.8 and 3.3 extend the work of [8] to provide an algorithm
which computes the Castelnuovo–Mumford regularity for Kazhdan–Lusztig varieties
indexed by a pair of 321-avoiding permutations. These results continue the work of
J. Rajchgot, the author, and A. Weigandt [8] which provides a combinatorial formula to
compute the regularity for Kazhdan–Lusztig varieties indexed by a pair of grassmannian
permutations. This is an extended abstract of [9].

Due to a correspondence with matrix Schubert varieties in this case, this result in [8]
may be recovered using the results of O. Pechenik–D. Speyer–A. Weigandt [7]. The work
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in [7] uses different techniques to compute the regularity of arbitrary matrix Schubert
varieties. Our paper extends the techniques used in [8] to compute the regularities of
certain Kazhdan–Lusztig varieties which are not isomorphic to matrix Schubert varieties.
That is, the results of this abstract cannot, in general, be recovered using [7].

2 Combinatorial Background

In this section we define the underlying combinatorial objects used for our algorithm.

2.1 Pipe complexes

Let Sn denote the symmetric group on n letters. The Rothe diagram of u P Sn is the
subset

Dpuq “ tpi, jq P rns ˆ rns | ui ą j and u´1
j ą iu.

We illustrate Dpuq as cells remaining in the n ˆ n grid after placing points in cells pi, uiq

for each i P rns and drawing a line through cells which appear weakly south or weakly
east of each pi, uiq. Let ℓpuq :“ #Dpuq denote the Coxeter length of u.

Example 2.1. Below are Dpvq and Dpwq for v “ 46128935p10q7 and w “ 412368597p10q.

Here ℓpwq “ #Dpwq “ 7.

Define an algebra over Z generated by teu | u P Snu with multiplication such that

euesi “

#

eusi if ℓpusiq ą ℓpuq

eu otherwise.

Here si is the simple transposition permuting elements i and i ` 1.
Label the boxes of Dpuq along rows so that kth westmost box in row i is assigned the

label i ` k ´ 1. Given P Ď Dpuq let wordpPq in Dpuq be the sequence formed by reading
the labels of P in Dpuq, moving east to west across rows, starting with the northmost
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row and progressing south. Define Ipuq :“ wordpDpuqq in Dpuq. The Demazure product
of wordpPq, denoted δpPq, is the permutation determined by

esi1
¨ ¨ ¨ esik

“ eδpPq,

where wordpPq “ pi1, i2, . . . , ikq.
Take v ě w P Sn, where ě denotes Bruhat order on Sn. Define

Pipespv, wq “ tP Ď Dpvq |wordpPq “ pi1, i2, . . . , iℓpwqq in Dpvq and δpPq “ wu.

Similarly, let
Pipespv, wq “ tP Ď Dpvq | δpPq “ wu.

We illustrate P Ď Dpvq by marking pi, jq P Dpvq with a ` whenever pi, jq P P. Lastly, let
DNEpv, wq Ď Dpvq be the boxes corresponding to the earliest subsequence of wordpDpvqq

that forms Ipwq. Since v ě w, DNEpv, wq exists.

Example 2.2. The left two diagrams are Dpvq and Dpwq for w, v as in Example 2.1 with
Ipvq and Ipwq labeled. This gives Ipvq “ p3, 2, 1, 5, 7, 6, 8q in Dpvq. The third diagram is
DNEpv, wq P Pipespv, wq Ď Pipespv, wq and the fourth is another P P Pipespv, wq.

1 2 3
2 3 4 5

5 6 7
6 7 8

9

1 2 3

5
6 7

8

```
`

` `
`

`
```

`
`

`
`

As defined by Woo–Yong [11], the unspecialized Grothendieck polynomial is

Gv,wptq “
ÿ

PPPipespv,wq

p´1q
#P´ℓpwq

ź

pi,jqPP

tij. (2.1)

By setting v “ w0 P Sn and specializing variables tij, these unspecialized Grothendieck
polynomials recover the double Grothendieck polynomials of [6]. Note that we follow the
conventions of [8] for Gv,wptq, which differ from those in [11].

2.2 Skew Excited Young Diagrams

A permutation u P Sn is 321-avoiding if there does not exist a 321 pattern in u, i.e., indices
i ă j ă k such that uk ă uj ă ui. For example, u “ 17258346 is not 321-avoiding; we
underlined the positions of a 321 pattern. Let S321´av

n :“ tu P Sn | u is 321-avoidingu.
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For this subsection assume v ě w where v, w P S321´av
n . Let

ϕv : tP Ď Dpvqu Ñ tS Ă rns ˆ rnsu

be the map which deletes empty rows and columns of Dpvq from P Ă Dpvq. The shape
Rv :“ ϕvpDpvqq is a skew Young diagram, i.e., λ{µ for some partitions µ Ď λ. Our
conventions for drawing Young diagrams reflect the diagrams in English notation across
the y-axis. Define Dtoppv, wq :“ ϕvpDNEpv, wqq.

We visualize D Ď Rv by marking pi, jq P rns ˆ rns with a ` when pi, jq P D. In general,
we call a collection of `’s inside Rv a diagram in Rv.

Example 2.3. For v, w as in Example 2.2, the left picture is Rv, the middle is Dtoppv, wq,
and the rightmost diagram is ϕvpPq for the rightmost P in Example 2.2.

```
`
``

`

```
`

` `
` `

An excited move of a diagram D in Rv is the operation on a 2 ˆ 2 subsquare of D
such that

` ÞÑ
`

. (2.2)

For this move to occur, the subsquare must be contained in Rv. We let SEYDpv, wq

denote the set of D Ď Rv which can be computed through sequential applications of
excited moves to Dtoppv, wq. We call D P SEYDpv, wq a skew excited Young diagram.

We also may apply K-theoretic excited moves to diagrams in Rv

` ÞÑ `
`

, (2.3)

again, where all cells pictured are contained in Rv. Write SEYDpv, wq for the set of
diagrams which can be obtained by sequential applications of excited and K-theoretic
excited moves on Dtoppv, wq in Rv. We say D P SEYDpv, wq is a K-theoretic skew excited
Young diagram. Let #D denote the number of pluses in D. We say D P SEYDpv, wq

define to be maximal if D1 P SEYDpv, wq implies #D1 ď #D.

Example 2.4. Continuing Example 2.3, the left two diagrams are in SEYDpv, wq. The right
two diagrams are both maximal diagrams in SEYDpv, wq.

```

` `
` `

```
`

`
` `

```
`
``

` `

```
`

` `
` `
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Using [3] and the fact that v, w P S321´av
n we obtain the following:

Proposition 2.5. For v ě w where v, w P S321´av
n , the map ϕv restricted to Pipespv, wq gives a

bijection
rϕv : Pipespv, wq Ñ SEYDpv, wq (2.4)

such that for P P Pipespv, wq, #P “ #rϕvpPq.

Combining Proposition 2.5 with Equation (2.4) produces the following result.

Corollary 2.6. Suppose v, w P Sn. Then

degpGv,wptqq “ maxt#D | D P SEYDpv, wqu.

Example 2.7. Since the rightmost diagram in Example 2.4 is maximal, degpGv,wptqq “ 8
by Corollary 2.6.

In Section 4.1 we give an algorithm to compute statistics ∆v,wpqq from Dtoppv, wq for
certain q P Zą0. Using Corollary 2.6, we prove the following.

Theorem 2.8. Suppose v ě w, where v, w P S321´av
n . Then if Dtoppv, wq “

Ť

qPrss Cq where Cq
are the connected components of Dtoppv, wq,

degpGv,wptqq “ #Dpwq `
ÿ

qPrss

∆v,wpqq.

A proof sketch for Theorem 2.8 appears in Section 4.2.

3 Castelnuovo–Mumford Regularity of Kazhdan–Lusztig
varieties

In this section, we define Castelnuovo–Mumford regularity and Kazhdan–Lusztig vari-
eties. We then recall results of [8] which provide combinatorial interpretations of the
Castelnuovo–Mumford regularity of Kazhdan–Lusztig varieties.

3.1 Castelnuovo–Mumford Regularity

Let S “ Crx1, . . . , xns be a polynomial ring with the standard grading and let I Ď S be a
homogeneous ideal. The Hilbert series of S{I is a formal power series

HpS{I; tq “
ÿ

kPZ

dimCppS{Iqkqtk
“

KpS{I; tq
p1 ´ tqn .
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The numerator of the Hilbert series KpS{I; tq P Crt˘1s is the K-polynomial of S{I. A
minimal free resolution of S{I is the complex

0 Ñ
à

j
Sp´jqβl,jpS{Iq

Ñ
à

j
Sp´jqβl´1,jpS{Iq

Ñ ¨ ¨ ¨ Ñ
à

j
Sp´jqβ0,jpS{Iq

Ñ S{I Ñ 0,

where l ď n and Sp´jq is the free S-module shifted by j in degree. The Castelnuovo-
Mumford regularity of S{I, written regpS{Iq, is the statistic

regpS{Iq :“ maxtj ´ i | βi,jpS{Iq ‰ 0u.

In cases where S{I is Cohen-Macaulay,

regpS{Iq “ deg KpS{I; tq ´ htS I, (3.1)

where htS I denotes the height of the ideal I. For more context, consult [2, Lemma 2.5].

3.2 Kazhdan–Lusztig varieties

For v P Sn, define Mpvq “ pmijq to be the matrix such that for i, j P rns,

mij “

$

’

&

’

%

1 if j “ vi,
zij if pi, jq P Dpvq,
0 otherwise.

Let Crzvs :“ Crzij | pi, jq P Dpvqs. For v ě w P Sn the Kazhdan–Lusztig ideal Jv,w Ď Crzvs

is defined by
Jv,w “ xrwpi, jq ` 1 ´ minors in Mpvq

ris,rjs | pi, jq P Dpwqy,

where MI,J denote the submatrix of M with row indices in I and column indices in J
for I, J Ď rns. As noted in [8] when v P S321´av

n , Jv,w is homogeneous with respect to the
standard grading.

Let B`, B´ Ă GLnpCq denote the Borel and opposite Borel subgroups, respectively. As
defined in [10], the Kazhdan–Lusztig variety is the intersection of the Schubert variety
B´zB´wB` Ď B´zGLnpCq with the opposite Schubert cell B´zB´vB´. The coordinate
ring of this Kazhdan–Lusztig variety is precisely Crzvs{Jv,w. Through this fact, Crzvs{Jv,w
is Cohen-Macaulay. Again we follow the conventions used in [8] rather than those in
[10]. For additional context concerning Kazhdan–Lusztig varieties, see the survey [12].

Reformulating [11, Theorem 4.5] for the case v, w P S321´av
n ,

Lemma 3.1. [8, Lemma 6.3] Let v, w P S321´av
n where w ď v. Then

KpCrzv
s{Jv,w; tq “

ÿ

PPPipespv,wq

p´1q
#P´ℓpwq

p1 ´ tq#P.
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We apply this Lemma along with Equation (3.1) for the following proposition.

Proposition 3.2. [8, Proposition 6.4] Let v, w P S321´av
v where w ď v. Then,

deg KpCrzv
s{Jv,w; tq “ degGv,wptq.

Furthermore, the Castelnuovo-Mumford regularity of Crzvs{Jv,w is given by

regpCrzv
s{Jv,wq “ degGv,wptq ´ #Dpwq.

By combining Proposition 3.2 and Theorem 2.8,

Theorem 3.3. Suppose v ě w, where v, w P S321´av
n . Then if Dtoppv, wq “

Ť

qPrss Cq where Cq
are the connected components of Dtoppv, wq,

regpCrzv
s{Jv,wq “

ÿ

qPrss

∆v,wpqq.

In [5] S. R. Ghorpade–C. Krattenthaler give an algorithm to compute a related in-
variant called the a-invariant of certain two-sided ladder determinantal varieties. Two-
sided ladder determinantal varieties are Kazhdan–Lusztig varieties indexed by particu-
lar v, w P S321´av

n . In this setting, the a-invariant is easily computed from the Castelnuovo–
Mumford regularity. As we show in the full version of this abstract, Theorem 3.3 may be
applied to generalize [5, Lemma 14].

4 Construction and Recurrence for Theorem 2.8

Assume v ě w P S321´av
n . In Section 4.1 we describe how to compute the statistics ∆v,wpqq

used in Theorem 2.8. In Section 4.2 we sketch the proof of Theorem 2.8.

4.1 Construction for Theorem 2.8

We index Rv using matrix indexing, identifying the northwest most box in Rv with p1, 1q.
Suppose Dtoppv, wq “

Ť

qPrss Cq where Cq are the connected components of Dtoppv, wq.
Order Cq such that the indices increase when viewing components from northwest to
southeast.

Example 4.1. Consider D “ Dtoppv, wq below for some v, w P S321´av
15 .

``
`` ````

` ````
``
``
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Then D has connected components C1 and C2, where C1 “ tp1, 3q, p1, 4q, p2, 3q, p2, 4q, p3, 3qu

and C2 “ tp2, 6q, p2, 7q, p2, 8q, p2, 9q, p3, 6q, p3, 7q, p3, 8q, p3, 9q, p4, 8q, p4, 9q, p5, 8q, p5, 9qu.

For each q P rss, define Diagv,wpCqq “ tb
q
kukPrℓqs to be the westmost then southmost di-

agonal of boxes in Cq of maximal length ℓq. Boxes in Diagv,wpCqq are ordered increasingly
northwest to southeast.

For q P rss in decreasing order, compute mdpCqq “ td
q
kukPrℓqs Ď Cq, such that mdpCqq is

the westmost then southmost diagonal of length ℓq that minimizes

#
`

r}ψEpd
q
ℓq

q} ` 1s X t}d
q1

k1}uq1ąq,k1Prℓq1 s

˘

.

Here }b} :“ bp1q ` bp2q for b “ pbp1q, bp2qq P Dtoppv, wq. Boxes in mdpCqq are ordered
increasingly northwest to southeast.

Set Dp0q

zippv, wq :“ Dtoppv, wq. For q P rss, we define Dpqq

zippv, wq iteratively by applying

exited moves to certain pluses in Cq Ď Dpq´1q

zip pv, wq. In Dpq´1q

zip pv, wq, set

S “ tb P Cq ´ mdpCqq weakly southwest of mdpCqqu.

To each in b P S, working west to east and south to north, let b1 be the new position of b
after applying as many excited moves as possible to b. Let

Dpqq

zippv, wq :“ Dpq´1q

zip pv, wq ´ S Y tb1
| b P Su.

Define Dzippv, wq :“ Dpsq

zippv, wq. For b P mdpCqq, define trailv,wpbq such that

trailv,wpbq :“ maxtk P t0, 1, . . . , nu | b ` pk1, ´k1
q, b ` pk1, 1 ´ k1

q,
b ` pk1

´ 1, ´k1
q P Rv ´ Dzippv, wq for each k1

P rksu.

We define the statistic
∆v,wpqq :“

ÿ

kPrℓqs

trailv,wpd
q
kq.

Example 4.2. We continue with v, w as in Example 4.1. Left to right, the diagrams
below are Dp0q

zippv, wq, Dp1q

zippv, wq, and Dp2q

zippv, wq, respectively. In Dp0q

zippv, wq, Diagv,wpC1q

is bolded, and mdpC1q is shaded. In Dp1q

zippv, wq, Diagv,wpC2q is bolded, and mdpC2q is
shaded.

``
` ````

````
``
``

``
`` ```

` ` ``
`

`

``
` ````

```
` ` ``

` `
`



Regularity of 321-avoiding Kazhdan–Lusztig varieties 9

Using Dp0q

zippv, wq and Diagv,wpC1q, we find ∆v,wp1q “ p2 ` 1q. Similarly using Dp1q

zippv, wq

and Diagv,wpC2q, we compute ∆v,wp2q “ p2 ` 2 ` 1 ` 1q. Therefore, Theorem 2.8 deter-
mines

degpGv,wptqq “ #Dpwq ` ∆v,wp1q ` ∆v,wp2q “ 17 ` 3 ` 6 “ 26.

By Corollary 2.6, there exists D P SEYDpv, wq where #D “ 26. We have drawn such
a diagram below. This is computed by applying trailv,wpd

q
kq-many K-theoretic excited

moves along the antidiagonals of d
q
k P mdpCqq for each k P rℓqs, q P rss. The pluses that

result from these K-theoretic excited moves are drawn in blue.

``
` ````

```
` ` ``

` `
`

Theorem 3.3 gives regpCrzvs{Jv,wq “ ∆v,wp1q ` ∆v,wp2q “ 9. This corresponds precisely
with the number of blue pluses in the diagram above.

4.2 Proof Sketch for Theorem 2.8

In proving Theorem 2.8, we utilize a particular recurrence on Gv,wptq. Let pa, bq be the
northmost then eastmost plus in Dtoppv, wq. Take pa1, b1q to be the northmost then east-
most box in Rv. Set i “ wordpϕ´1

v ptpa, bquqq and i1 “ wordpϕ´1
v ptpa1, b1quqq in Dpvq. Define

vP “ si1v, which gives RvP “ Rv ´ tpa1, b1qu. Define wP :“ siw, wC :“ w, and vC :“ vP.
To proceed, we first establish vP, wP P S321´av

n . This follows from the definition of
pa, bq and pa1, b1q as northeast most choices along with the graphical definition of 321-
avoiding. That is, u P S321´av

n if and only if Ru is a skew Young diagram.

Example 4.3. Below we have Dtoppv, wq on the left and DtoppvC, wCq on the right for
particular v, w P S321´av

15 . In this case, pa, bq ‰ pa1, b1q.

```
` ``

``
`
`

```
` ``

``
`
`

Below are Dtoppv1, w1q, Dtoppv1
C, w1

Cq, and Dtoppv1
P, w1

Pq, listed from left to right, for par-
ticular v1, w1 P S321´av

15 . In this case, pa, bq “ pa1, b1q.
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```
` ``

``
`
`

``` ``
` ``

`
`

``
` ``

``
`
`

We give a general correspondence of these K-theoretic skew excited Young diagrams.

Lemma 4.4. For v ě w and v, w P S321´av
n , the following hold:

1. If pa, bq ‰ pa1, b1q,
SEYDpv, wq “ SEYDpvC, wCq.

2. If pa, bq “ pa1, b1q,

SEYDpv, wq “ SEYDpvC, wCq
ğ

!

D Y pa, bq | D P SEYDpvC, wCq Y SEYDpvP, wPq

)

.

Combining Corollary 2.6 with Lemma 4.4,

Corollary 4.5. For v ě w and v, w P S321´av
n , the following hold:

1. if pa, bq ‰ pa1, b1q, degpGv,wptqq “ degpGvC,wCptqq.

2. If pa, bq “ pa1, b1q, degpGv,wptqq “ maxpdegpGvP,wPptqq, degpGvC,wCptqqq ` 1.

With this recurrence established, we now sketch the proof.
Proof sketch of Theorem 2.8:

We proceed by induction on ℓpvq. For ℓpvq “ 0, the statement is trivial since in this
case SEYDpv, wq “ H. Suppose the statement holds for v such that ℓpvq “ k ´ 1 for
k ě 1. Consider v such that ℓpvq “ k. For brevity let dpu1, u2q “

ř

qPrss ∆u1,u2pqq where
Dtoppu1, u2q has s components.

If pa, bq ‰ pa1, b1q, by Corollary 4.5, degpGv,wptqq “ degpGvC,wCptqq. Using Lemma 4.4,
we determine Dzippv, wq “ DzippvC, wCq, so dpv, wq “ dpvC, wCq. Thus the result follows
by the inductive assumption.

Now assume pa, bq “ pa1, b1q. Then by Corollary 4.5,

degpGv,wptqq “ maxpdegpGvP,wPptqq, degpGvC,wCptqqq ` 1.

Since #Dpwq “ #DpwCq and #Dpwq “ #DpwPq ` 1, from the inductive assumption,

degpGv,wptqq “ #Dpwq ` maxpdpvP, wPq, dpvC, wCq ` 1q.

Thus it suffices to prove

dpv, wq “ maxpdpvP, wPq, dpvC, wCq ` 1q. (4.1)

To establish Equation (4.1), we perform a careful case analysis on the position of
pa, bq P Cq in relation to mdpCqq. The following claim is useful in this examination.
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Claim 4.6. Suppose pa, bq “ pa1, b1q P Cq where Cq is a connected component in Dtoppv, wq. Let
Rq “ td P Cq | d lies weakly southwest of pa, bqu. Then

1. DtoppvP, wPq “ Dtoppv, wq ´ pa, bq, and

2. DtoppvC, wCq “ Dtoppv, wq ´ Rq Y R1
q,

where R1
q “ td ` p1, ´1q | d P Rqu.

With Equation (4.1) proven, Theorem 2.8 follows.
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