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Abstract. We give a minimal counterexample for a conjecture of Ross and Yong (2015)
which proposes a K-Kohnert rule for Grothendieck polynomials. We conjecture a revised
version of this rule. We then prove both rules hold in the 321-avoiding case.

1. Introduction

Introduced by A. Lascoux and M. P. Schützenberger [14] to study of the K-theory of
the complete flag variety, Grothendieck polynomials Gw are a basis for the polynomial ring
Zrx1, x2 . . .s. Additionally A. Lascoux and M. P. Schützenberger [13], introduce Schubert
polynomials Sw, another basis for Zrx1, x2 . . .s, comprised of the lowest degree terms of
Gw. Several combinatorial rules have been developed to study Grothendieck polynomials
[3, 4, 6, 12, 23]. Many of these naturally generalize formulas for Schubert polynomials.

Kohnert’s rule [1, 11, 25, 26] combinatorially computes Schubert polynomials through local
moves on diagrams. C. Ross and A. Yong [21] conjecture a generalized Kohnert’s rule to
compute Grothendieck polynomials and Lascoux polynomials, another basis for Zrx1, x2 . . .s.
After initial work of O. Pechenik and T. Scrimshaw [19], J. Pan and T. Yu [17] prove the
Ross–Yong rule for Lascoux polynomials.

In contrast to the Lascoux case, no progress has been made towards establishing the Ross–
Yong conjecture for Grothendieck polynomials. Diagrams in recent work studying properties
of Grothendieck polynomials [8, 16, 18] are noted as similar to those in the conjecture. The
conjecture has been checked through S7, beyond which a counterexample might be surprising.

In Section 3 we present a minimal counterexample in S8 to the Ross–Yong conjecture for
Grothendieck polynomials. This counterexample suggests that when studying Grothendieck
polynomials, behavior exhibited in small examples may be misleading. In Section 4 we
propose a new K-theoretic Kohnert rule for Grothendieck polynomials. This new rule has
been checked through S8. We end with a proof for the 321-avoiding case of both rules in
Section 5.

2. Background

Let Sn denote the symmetric group on n elements. We say w P Sn contains a pattern
p if some subsequence in w has the same relative order as the entries in p. For example,
w “ 1746235 contains a 321 pattern, which we have underlined. If w does not contain a
pattern p, we say w is p-avoiding.
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For f P Zrx1, x2, . . . , xns, define

Bif “
f ´ sif

xi ´ xi`1

and πif “ Bip1 ´ xi`1qf.

Here si is the transposition swapping i and i ` 1.
Indexed by w P Sn, Schubert polynomials Swpx1, . . . , xnq and Grothendieck poly-

nomials Gwpx1, . . . , xnq are defined recursively [13, 14]. For w0 “ n n ´ 1 ¨ ¨ ¨ 2 1,

Sw0px1, . . . , xnq “ Gw0px1, . . . , xnq :“ xn´1
1 xn´2

2 ¨ ¨ ¨ xn´1.

Otherwise for w ‰ w0, take i P rns such that wpiq ă wpi ` 1q. Then

Swsipx1, . . . , xnq “ BiSwpx1, . . . , xnq, and

Gwsipx1, . . . , xnq “ πiGwpx1, . . . , xnq.

The Lascoux polynomials Lαpx1, . . . , xnq are defined recursively for weak compositions
α P Zn

ě0. If α is weakly decreasing,

Lαpx1, . . . , xnq “ xα.

Otherwise, take i P rns such that αi ă αi`1. Then

Lαpx1, . . . , xnq “ πipp1 ´ xi`1qLsiαpx1, . . . , xnqq.

2.1. Pipe Dreams. For n P Z, let rns :“ ti P Z | 1 ď i ď nu. For P Ď rns ˆ rns define the
weight of P as wtpP q P Zn

ě0 such that wtpP qi :“ #tpi, cq P P | c P rnsu, where i P rns.
Label boxes of rns ˆ rns where pi, kq has label i ` k ´ 1. For P Ď rns ˆ rns, let wordpP q

be the sequence determined by recording the labels of P , reading right to left across rows,
from top to bottom.

Define an algebra over Z generated by tew |w P Snu, where multiplication is given by

ew ¨ esi “

#

ewsi if ℓpwsiq ą ℓpwq,

ew otherwise.

The Demazure product δpP q of P is the permutation that satisfies

esi1 ¨ ¨ ¨ esij “ eδpP q,

where wordpP q “ pi1, i2, . . . , ijq. Following the setup in [9], define

Pipespwq :“ tP Ď rns ˆ rns | δpP q “ wu.

We illustrate P P Pipespwq by placing a ` at each pi, jq P P in the rns ˆ rns grid. We call
Pipespwq the set of pipe dreams for w. Minimal pipe dreams generate Schubert polynomials.

Theorem 2.1. [2, 7] For w P Sn,

Sw “
ÿ

PPPipespwq

#P“ℓpwq

xwtpP q.

This Schubert formula naturally generalizes to Grothendieck polynomials.
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Theorem 2.2. [6] For w P Sn,

Gw “
ÿ

PPPipespwq

p´1q
#P´ℓpwqxwtpP q.

Notice Gw “
ř

γp´1q|γ|´ℓpwqgw,γx
γ, where

gw,γ “ #tP P Pipespwq | wtpP q “ γu.

Example 2.3. Take w “ 12365847 and γ “ p3, 3, 3, 2q. Below are three P P Pipespwq such
that wtpP q “ γ. The words associated to each are 75475475464, 75475476464, 75475475467,
respectively. Thus, gw,γ ě 3.

`` `
`` `

`` `
` `

`` `
`` `

` ``
` `

`` `
`` `

`` `
``

In fact, these are all the P P Pipespwq with weight γ, so gw,γ “ 3. ♢

2.2. Kohnert Diagrams. A diagram is any D Ď rns ˆ rns. Here p1, 1q corresponds to the
northwestmost box in rns ˆ rns. We illustrate D by marking boxes of D in rns ˆ rns with ‚.
The weight of D, denoted wtpDq P Zn

ě0, is defined by

wtpDqi :“ # of boxes in row i, where i P rns.

For a diagram D and pi, jq P D rightmost in some row i P rns, the Kohnert move on D
at pi, jq outputs D1 “ D´ tpi, jqu Y tpi1, jqu, where i1 “ maxtr P ris | pr, jq R Du. Let KohpDq

denote the set of all diagrams obtainable through applying successive Kohnert moves on D.
The Rothe diagram of w P Sn is the set

Dpwq :“ tpi, jq P rns ˆ rns |wi ą j and w´1
j ą iu.

The key diagram of α P Zn
ě0 is the set

Dpαq :“ tpi, jq P rns ˆ rns |αi ě ju.

A diagram D is northwest hook-closed if pi, jq, pi1, j1q P D such that i1 ă i, j1 ą j
implies pi1, jq P D. A diagram D is southwest hook-closed if pi, jq, pi1, j1q P D such that
i1 ą i, j1 ą j implies pi1, jq P D. Both Rothe diagrams and key diagrams are northwest
hook-closed. Key diagrams are southwest hook-closed, but Rothe diagrams may not be.

Example 2.4. Take w “ 418723956. On the left is Dpwq. On the right is some diagram
D P KohpDpwqq.

‚ ‚ ‚

‚ ‚ ‚ ‚ ‚
‚ ‚ ‚ ‚

‚ ‚

‚ ‚ ‚ ‚ ‚
‚ ‚ ‚

‚ ‚ ‚ ‚
‚ ‚

♢
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These Kohnert diagrams give another rule to compute Sw.

Theorem 2.5. [1, 11] For w P Sn,

Sw “
ÿ

DPKohpDpwqq

xwtpDq.

3. The Ross–Yong conjecture

Let D Ď rns ˆ rns be a diagram. In this setting, boxes in D are labeled either ‚ or ‹.
For ease of reading we may omit southmost empty rows and eastmost empty columns in the
grid. Suppose pi, jq P D is rightmost in some row i P rns and has label ‚. Take

i1 “ maxtr P ris | pr, jq R Du.

Then if each pr, jq P D for i1 ` 1 ď r ď i has label ‚, define the following:

– The Kohnert move on D at pi, jq outputs the diagram D1 “ D´ tpi, jqu Y tpi1, jqu.
The new box pi1, jq has label ‚.

– The K-Kohnert move on D at pi, jq outputs the diagram D1 “ D Y tpi1, jqu. The
new box pi1, jq has label ‚, and the box pi, jq is reassigned label ‹.

Example 3.1. Let D be the diagram to the left. The middle diagram is the output of
applying a Kohnert move to p5, 1q. The rightmost diagram is the output of applying a
K-Kohnert move to p5, 1q.

‚ ‚
‚ ‚
‚

‚
‚ ‚
‚ ‚

‚
‚ ‚
‚ ‚
‹ ♢

Let KKohpDq denote the set of all diagrams obtainable through successive Kohnert moves
and K-Kohnert moves onD, where the initial diagramD has all boxes labelled ‚. C. Ross and
A. Yong [21] conjecture these diagrams generate Lascoux and Grothendieck polynomials.1

Conjecture 3.2. [21, Conjecture 1.4] For α, γ P Zn
ě0,

rxγsLα “ #tD P KKohpDpαqq | wtpDq “ γu.

Conjecture 3.2 has been proven by J. Pan and T. Yu [17] through a bijection to particular
set-valued tableaux defined by M. Shimozono and T. Yu [22].

For conciseness, take

KKohpw, γq :“ tD P KKohpDpwqq | wtpDq “ γu.

Conjecture 3.3. [21, Conjecture 1.6] For w P Sn and γ P Zn
ě0,

gw,γ “ #KKohpw, γq.

As stated in [21], Conjecture 3.3 holds for n ď 7. This conjecture fails in S8.

1We note that [21, Conjecture 1.6] was misstated in the 2015 version. The statement of this conjecture
was updated in 2018. This 2018 statement is consistent with C. Ross’s 2011 report [20] that originally stated
their rule.
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Theorem 3.4. Conjecture 3.3 is false.

Proof. Take w “ 12365847. As established in Example 2.3, gw,γ “ 3 for γ “ p3, 3, 3, 2q. We
prove the following:

(3.1) #KKohpw, γq “ 2 ă gw,γ.

This counterexample has been confirmed computationally. For completeness, we include a
non-computer based proof here.

To the left is Dpwq. To the right are diagrams D1, D2 P KKohpw, γq.

‚ ‚
‚
‚ ‚

‚ ‚ ‚
‹ ‹ ‹
‚ ‹ ‹
‚ ‹

‚ ‚ ‚
‹ ‹ ‹
‚ ‹ ‹
‚ ‹

Suppose D P KKohpw, γq ´ tD1, D2u. The number of boxes in each column of Dpwq as well
as the condition that ‚’s cannot pass over ‹’s ensures U Ă D, where U is the diagram below.
In U we have included row and column indices for ease of reading:

‚ ‚ ‚
‹ ‹
‹ ‹

1
2
3
4
5
6

1 2 3 4 5 6 7 8

.

Since wtpDq “ γ, we have p2, 4q, p3, 4q P D and

(3.2) #pD X tp4, 4q, p4, 5q, p4, 7quq “ 2.

If p2, 4q has label ‹ in D, then p3, 4q, p4, 4q P D must have label ‚. However this implies
D P tD1, D2u, a contradiction.

Now assume p2, 4q has label ‚. Since p1, 5q, p2, 5q, p3, 5q P D and p1, 7q, p2, 7q, p3, 7q P D,
the box originating in p4, 5q must leave row i before the box originating in p6, 7q enters row i
for 2 ď i ď 4. In particular, these boxes originating in p4, 5q and p6, 7q will only occupy the
same row in row 1.

By this fact, two of the boxes b1, b2 in originating in tp4, 4q, p5, 4q, p6, 4qu must always lie
weakly south of boxes originating in p4, 5q and p6, 7q. Further, without loss of generality, b1
must always lie weakly south of the southmost ‹ in column 5, and b2 must always lie weakly
south of the southmost ‹ in column 7.

Equation (3.2) requires #pDX tp4, 5q, p4, 7quq ě 1. Thus, b1 must always lie weakly south
of row 3, and b2 must always lie weakly south of row 4, or vice versa. Since p2, 4q does
not have label ‹, tp1, 4q, p2, 4qu X D ď 1, contradicting wtpDq “ γ. Therefore Equation 3.1
follows. □
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By an exhaustive computer check, we have confirmed w “ 12365847 is a minimal coun-
terexample to Conjecture 3.3 with respect to ℓpwq in S8. Our computations within S8 suggest
#KKohpw, γq ď gγw in general.
Grothendieck polynomials for vexillary, i.e., 2143-avoiding, permutations often have tamer

combinatorial descriptions than the general case, see [10, 23]. In light of Theorem 5.1, one
might hope Conjecture 3.3 still holds in the vexillary case, but this is false. For example,
Conjecture 3.3 fails for w “ 12375846. In Section 5, we prove Conjecture 3.3 for 321-avoiding
permutations.

4. An updated conjecture

Computational evidence suggests the Ross–Yong rule weakly undercounts gw,γ. Thus we
seek a suitable relaxation. Let D Ď rns ˆ rns be a diagram. Boxes in D are labeled with
either ‚ or ‹. Suppose pi, jq P D is rightmost in row i P rns with label ‹. Let

i1 “ maxtr P ris | pr, jq R Du.

Then if each pr, jq P D for i1 ` 1 ď r ď i has label ‹, define the following:

– The ghost Kohnert move on D at pi, jq outputs D1 “ D ´ tpi, jqu Y tpi1, jqu. The
new box pi1, jq has label ‹.

– The ghost K-Kohnert move on D at pi, jq outputs D1 “ D Y tpi1, jqu. The new
box pi1, jq has label ‹.

Example 4.1. Let D be the diagram to the left. The middle diagram is the output of
applying a ghost Kohnert move to p5, 1q. The rightmost diagram is the output of applying
a ghost K-Kohnert move to p5, 1q.

‚ ‚
‚ ‚
‚

‹

‚ ‚
‚ ‚
‚
‹

‚ ‚
‚ ‚
‚
‹
‹

♢
Let KKohpDq denote the set of diagrams obtainable through successive Kohnert, K-

Kohnert, ghost Kohnert, and ghost K-Kohnert moves on D, where D has all boxes labelled
‚. Take

KKohpw, γq :“ tD P KKohpDpwqq | wtpDq “ γu.

Example 4.2. Below is KKohpw, γq for w “ 12365847 and γ “ p3, 3, 3, 2q, the counterexam-
ple given in Theorem 3.4.

‚ ‚ ‚
‚ ‹ ‹
‹ ‹ ‹
‚ ‹

‚ ‚ ‚
‹ ‹ ‹
‚ ‹ ‹
‚ ‹

‚ ‚ ‚
‹ ‹ ‹
‚ ‹ ‹
‚ ‹

The leftmost diagram is the element in KKohpw, γq ´ KKohpw, γq. ♢
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Conjecture 4.3. For w P Sn and γ P Zn
ě0, gw,γ “ #KKohpw, γq. Thus,

Gw “
ÿ

DPKKohpDpwqq

p´1q
#D´ℓpwqxwtpDq.

Conjecture 4.3 has been checked exhaustively for Sn with n ď 8. In the next section we
prove Conjecture 4.3 for 321-avoiding permutations.

J. Pan and T. Yu [17] prove Conjecture 3.2, i.e., that KKohpDpαqq generate Lα. After
private communication, T. Yu proves that the same holds for KKohpDpαqq:

Proposition 4.4. [27] For α, γ P Zn
ě0, KKohpDpαqq “ KKohpDpαqq. Thus KKohpDpαqq

generates Lascoux polynomial Lα.

In fact, suppose we further relax Conjecture 4.3 so that one may apply ghost Kohnert
and ghost K-Kohnert moves to any pi, jq P D with label ‹. Take boldKKohpDq to be
the corresponding set of diagrams generated by these relaxed moves, along with the original
Kohnert and K-Kohnert moves. T. Yu proves boldKKohpDpαqq generates Lα. Computational
evidence suggests boldKKohpDpwqq weakly overcounts gw,γ. For example, w “ 12385746 and
γ “ p1, 4, 1, 2q, there are 8 diagrams in boldKKohpDpwqq with weight γ, but gw,γ “ 7.
However for w P S7, boldKKohpDpwqq correctly computes gw,γ.

5. Proofs for 321-avoiding permutations

In this section we prove these conjectures in the 321-avoiding case. We utilize a correspon-
dence between diagrams generating Grothendieck polynomials and Lascoux polynomials.

Theorem 5.1. Conjecture 3.3 and Conjecture 4.3 hold for w P Sn 321-avoiding.

We first provide additional combinatorial background. Then we end with the proof of
Theorem 5.1.

5.1. Flagged set-valued tableaux. A flagged set-valued tableau for D is a filling
f : D Ñ 2rns such that

‚ min fpr, cq ě max fpr, c ` kq for pr, cq, pr, c ` kq P D where k ą 0.
‚ max fpr, cq ă min fpr ` k, cq for pr, cq, pr ` k, cq P D where k ą 0.
‚ max fpr, cq ď r for pr, cq P D.

Let FSVTpDq denote the set of flagged set-valued tableau for D. The weight of T in
FSVTpDq, denoted wtpT q P Zn

ě0, is defined by wtpT qi :“ #i’s in T .
T. Matsumura [15] gives a formula for 321-avoiding Grothendieck polynomials in terms of

flagged set-valued tableaux:

Theorem 5.2. [15, Theorem 3.1] For w P Sn 321-avoiding,

Gw “
ÿ

TPFSVTpDpwqq

p´1q
#T´ℓpwqxwtpT q.

For the remainder of this section, assume w P Sn is 321-avoiding. Let

Dpwq :“ tpi, jq | pi, j ` kq, pi ´ k1, jq P Dpwq for some k, k1
ě 0u,
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i.e., the southwest hook closure of Dpwq. Define the map ϕ : FSVTpDpwqq Ñ FSVTpDpwqq,
where for T P FSVTpDpwqq,

pϕpT qqpr, cq :“

#

T pr, cq if pr, cq P Dpwq

tru else.

We see ϕ is a well-defined injection since for w 321-avoiding, pi, jq P Dpwq ´ Dpwq implies
that for j1 ă j, pi, j1q R Dpwq.

Define αw, βw P Zn
ě0 such that

αwi
:“#tpi, jq P Dpwqu

βwi
:“#tpi, jq P Dpwqu.

Since w is 321-avoiding, the nonzero parts of αw and βw are weakly increasing. Note for
T P FSVTpDpwqq, wtpT q “ wtpϕpT qq ´ pαw ´ βwq.

Let ψw : KKohpDpwqq Ñ KKohpDpαwqq be the map that deletes empty columns in the

grid. Restricting ψw to Dpwq induces a bijection ρw : FSVTpDpwqq Ñ FSVTpDpαwqq.

Example 5.3. In each of the tableaux below, we have shaded the underlying diagram. To
the left is some T P FSVTpDpwqq for w “ 451829367. The middle tableau is ϕpT q. To the
right is ρwpϕpT qq:

1 1 1
2 2 2

4 4 432 21

65 5 543

1 1 1
2 2 2

4 4 4 432 21

6 6 65 5 543

1 1 1
2 2 2

4 4 4 432 21

6 6 65 5 543 .
♢

5.2. Set-valued key tableaux. As proven in [17], KKohpDpαqq bijects with particular set-
valued tableaux. We describe this correspondence, specialized to the case in which the
nonzero parts in α are weakly increasing. Assume Dpαq Ď rns ˆ rns.

A tableau for Dpαq is a filling f : Dpαq Ñ rns such that

‚ fpr, cq ě fpr, c ` kq for pr, cq, pr, c ` kq P Dpαq where k ą 0.
‚ fpr, cq ă fpr ` k, cq for pr, cq, pr ` k, cq P Dpαq where k ą 0.

Let TabpDpαqq denote the set of tableaux for Dpαq. For T P FSVTpDpαqq, define the
tableau MpT q P TabpDpαqq such that

pMpT qqpr, cq :“ maxT pr, cq for pr, cq P Dpαq.

The left key of T , denoted K´pT q P TabpDpαqq, is defined recursively. We construct the
columns tCkukPrns of K´pT q, left to right, using the algorithm of [24].
Take T1pkq be MpT q restricted to its k leftmost columns. Let

mk “ # boxes in column k of MpT q.
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For j P rmks in increasing order, we compute the sequence pc
pjq

i qiPrks from Tjpkq. Define c
pjq

1

as the southmost entry in column k of Tjpkq. Take c
pjq

i`1 to be the smallest entry in column

k`1´ i of Tjpkq that is weakly greater than c
pjq

i , where i P rk´1s. Append c
pjq

k to Ck. Then:

‚ If j ă mk, let Tj`1pkq be the tableau formed from Tjpkq by deleting any entries in

column i weakly south of c
pjq

i for each i P rks.
‚ If j “ mk, place entries of Ck into the kth column of K´pT q such that entries increase
down columns.

Example 5.4. Leftmost is some T P FSVTpDpαqq for α “ p2, 3, 4, 4q. Next, left to right, we

have each T1pkq for k P r4s, where the sequences c
pjq

i are marked with superscripts j in blue.

1 1

2 2 1

43 3 3 32

6 6 65 54

ÝÑ

14

23

42

61 ,

14 14

23 23

42 32

61 61 ,

13 13

2 2 13

42 32 32

61 61 61 ,

1 1

2 2 1

42 32 32 32

61 61 61 51

ÝÑ

1 1

2 2 1

4 4 4 4

6 6 6 6

The rightmost tableau is K´pT q. ♢

Take α P Zn
ě0 whose nonzero parts are weakly increasing. A set-valued key tableau for

α is a filling f : Dpαq Ñ 2rns such that

(1) min fpr, cq ě max fpr, c ` kq for pr, cq, pr, c ` kq P Dpαq where k ą 0.
(2) max fpr, cq ă min fpr ` k, cq for pr, cq, pr ` k, cq P Dpαq where k ą 0.
(3) K´pT qpr, cq ď r for pr, cq P Dpαq.

Let SVKTpDpαqq denote the set of set-valued key tableau for α. By the definition of the
left key, it is immediate that FSVTpDpαqq “ SVKTpDpαqq. This produces the following
specialization of [17, 22]:

Theorem 5.5. [17, 22] For a weak composition α P Zn
ě0 such that the nonzero parts of α

are weakly increasing,

Lα “
ÿ

TPSVKTpDpαqq

p´1q
#T´|α|xwtpT q

“
ÿ

TPFSVTpDpαqq

p´1q
#T´|α|xwtpT q

“
ÿ

TPKKohpDpαqq

p´1q
#D´|α|xwtpDq.

Take α P Zn
ě0 such that the nonzero parts of α are weakly increasing. We describe the

weight-preserving bijection Φα : FSVTpDpαqq Ñ KKohpDpαqq in [17] that gives the last
equality in Theorem 5.5.

Encode T P FSVTpDpαqq as a pair of diagrams pOpT q, GpT qq in rns ˆ rns, where

OpT q “ tpi, jq | i “ maxT pr, jq for some r P rnsu, and

GpT q “ tpi, jq | i P T pr, jq ´ maxT pr, jq for some r P rnsu.
(5.1)

Define the map Φα by the following algorithm:

‚ Suppose T P FSVTpDpαqq. Initialize S :“ OpT q. Iterate over GpT q upwards in
columns, working from left to right.

‚ For each pi, jq P GpT q, pick the minimal i1 ě i such that pi1, jq P S. Update S to be
S ´ tpi1, jqu Y tpi, jqu.
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‚ After iterating through GpT q, output the labelled diagram ΦαpT q “ O1 Y G1, where
O1 :“ S and G1 :“ OpT q Y GpT q ´ S. Here, boxes in O1 are assigned label ‚, and
boxes in G1 are assigned label ‹.

We describe the inverse map Φ´1
α for completeness:

‚ Suppose D P KKohpDpαqq. Let OpDq be the boxes in D with label ‚ and GpDq be
the boxes in D with label ‹.

‚ Initialize S :“ OpDq. Iterate through boxes in GpDq down columns, working from
right to left.

‚ For each pi, jq P GpDq, pick the maximal i1 ď i such that pi1, jq P S. Update S to be
S ´ tpi1, jqu Y tpi, jqu.

‚ After iterating through GpDq, output the (encoded) tableau ΦαpDq “ pO1, G1q, where
O1 :“ S and G1 :“ OpDq Y GpDq ´ S.

Example 5.6. The leftmost diagram is the pair pOpUq, GpUqq, where U “ ϕpT q as in
Example 5.3. To the right is ΦαpUq.

‚ ‚ ‚ ‹

‚ ‚ ‚ ‹ ‚

‹ ‹

‚ ‚ ‚ ‚ ‹

‹ ‚ ‚

‚ ‚ ‚

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚ ‹

‹ ‚

‚ ‚ ‚ ‹ ‹

‚ ‚ ‹

‚ ‚ ‹
.

♢

5.3. Proof of Theorem 5.1. Assume w P Sn is 321-avoiding. We will construct a weight-
preserving bijection f : FSVTpDpwqq Ñ KKohpDpwqq.

First consider the weight-preserving bijection ρw : S1 Ñ S2, where

S1 :“tϕpT q | T P FSVTpDpwqqu, and

S2 :“tT P FSVTpDpαwqq | T pi, jq “ i if j ď αwi
´ βwi

u.

Since the nonzero parts of αw, βw are weakly increasing, tpi, jq P Dpαwq | j ď αwi
´ βwi

u lies
maximally southwest in Dpαwq.

Then consider U P S2 encoded as pOpUq, GpUqq using Equation (5.1). Suppose i P rns is
such that for i1 ě i, #Upi1, jq “ 1. Thus pUpi1, jq, jq P OpUq. Now suppose pr, jq P GpUq

for some r P rns. Then pr, jq P Upk, jq for some k P rns, where pmaxUpk, jq, jq P OpUq.
By assumption, r ă maxUpk, jq ă i. Thus, pUpi, jq, jq will never be removed from S when
computing Φαw , so pUpi, jq, jq has label ‚ in ΦαwpUq. This implies ΦαwpS2q Ď S3, where

S3 :“ tD P KKohpDpαwqq | pi, jq P D with label ‚ for j ď αwi
´ βwi

u.

Now takeD P S3 where OpDq are the boxes labelled ‚ andGpDq are those labelled ‹. Then
consider Φ´1

αw
pDq. Suppose i P rns is such that for i1 ě i, if pi1, jq P D, then pi1, jq P OpDq.

By the definition of Φ´1
αw
, a box pr, jq might be removed from S only if there exists some

pr1, jq P GpDq such that r1 ą r. This ensures pi1, jq P O1 where Φ´1
αw

pDq “ pO1, G1q. Thus
ΦαwpS2q “ S3.
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Take the map Ψ : S3 Ñ KKohpDpwqq where

ΨpDq “ ψ´1
w pDq ´ tpi, jq P ψ´1

w pDq | pi, jq P Dpwq ´ Dpwqu.

Note Ψ is a bijection such that wtpDq “ wtpΨpDqq ` pαw ´ βwq.
Therefore, f :“ Ψ ˝ Φαw ˝ ρw ˝ ϕ is as desired, so Conjecture 3.3 follows by Theorem 5.2.

By Proposition 4.4, Conjecture 4.3 follows by the same argument. □

Remark 5.7. By the argument in Theorem 5.1 along with [27], boldKKohpDpwqq generates
Gw for 321-avoiding w P Sn.

We expect Conjecture 4.3 may have tableaux-based proofs in the 1432-avoiding and vex-
illary cases. In particular, one might mimic the J. Pan and T. Yu [17] set-valued tableaux
argument using the rules of A. Knutson, E. Miller, and A. Yong [10] as well as N. J. Y. Fan
and P. L. Guo [5] to prove Conjecture 4.3 for vexillary and 1432-avoiding permutations,
respectively.
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Grothendieck d’une variété de drapeaux. C. R. Acad. Sci. Paris Sér. I Math., 295(11):629–633, 1982.

[15] T. Matsumura. A Tableau Formula of Double Grothendieck Polynomials for 321-Avoiding Permutations.
Annals of Combinatorics, 24, 03 2020.
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