DEGREES OF SYMMETRIC GROTHENDIECK POLYNOMIALS AND CASTELNUOVO-MUMFORD REGULARITY

JENNA RAJCHGOT, YI REN, COLLEEN ROBICHAUX, AVERY ST. DIZIER, AND ANNA WEIGANDT

ABSTRACT. We give an explicit formula for the degree of the Grothendieck polynomial of a Grassmannian permutation and a closely related formula for the Castelnuovo-Mumford regularity of the Schubert determinantal ideal of a Grassmannian permutation. We then provide a counterexample to a conjecture of Kummini-Lakshmibai-Sastry-Seshadri on a formula for regularities of standard open patches of particular Grassmannian Schubert varieties and show that our work gives rise to an alternate explicit formula in these cases. We end with a new conjecture on the regularities of standard open patches of arbitrary Grassmannian Schubert varieties.

1. Introduction

Lascoux and Schützenberger [10] introduced *Grothendieck polynomials* to study the K-theory of flag varieties. Grothendieck polynomials have a recursive definition, using divided difference operators. The symmetric group S_n acts on the polynomial ring $\mathbb{Z}[x_1, x_2, \ldots, x_n]$ by permuting indices. Let s_i be the simple transposition in S_n exchanging i and i+1. Then define operators on $\mathbb{Z}[x_1, x_2, \ldots, x_n]$

$$\partial_i = \frac{1 - s_i}{x_i - x_{i+1}}$$
 and $\pi_i = \partial_i (1 - x_{i+1})$.

Write $w_0 = n n - 1 \dots 1$ for the **longest permutation** in S_n (in one-line notation) and take

$$\mathfrak{G}_{w_0}(x_1, x_2, \dots, x_n) = x_1^{n-1} x_2^{n-2} \cdots x_{n-1}.$$

Let $w_i := w(i)$ for $i \in [n]$. Then if $w_i > w_{i+1}$, we define $\mathfrak{G}_{s_iw} = \pi_i(\mathfrak{G}_w)$. We call $\{\mathfrak{G}_w : w \in S_n\}$ the set of **Grothendieck polynomials**. Since the π_i 's satisfy the same braid and commutation relations as the simple transpositions, each \mathfrak{G}_w is well defined.

Grothendieck polynomials are generally inhomogeneous. The lowest degree of the terms in \mathfrak{G}_w is given by the *Coxeter length* of w. The degree (i.e. highest degree of the terms) of \mathfrak{G}_w can be described combinatorially in terms of pipe dreams (see [3, 7]), but this description is not readily computable. We seek an explicit combinatorial formula. In this paper, we give such an expression in the Grassmannian case. Our proof relies on a formula of Lenart [11].

One motivation for wanting easily-computable formulas for degrees of Grothendieck polynomials (for large classes of $w \in S_n$) comes from commutative algebra: formulas for degrees of Grothendieck polynomials give rise to closely related formulas for Castelnuovo-Mumford regularity of associated Schubert determinantal ideals. Recall that Castelnuovo-Mumford

Date: December 10,2019.

Jenna Rajchgot was partially supported by NSERC Grant RGPIN-2017-05732.

Yi Ren was supported by NSERC Grant RGPIN-2017-05732.

Colleen Robichaux was supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE 1746047.

regularity is an invariant of a homogeneous ideal related to its minimal free resolution (see Section 4 for definitions). Formulas for regularities of Schubert determinantal ideals yield formulas for regularities of certain well-known classes of generalized determinantal ideals in commutative algebra. For example, among the Schubert determinantal ideals are ideals of $r \times r$ minors of an $n \times m$ matrix of indeterminates and one sided ladder determinantal ideals. Furthermore, many other well-known classes of generalized determinantal ideals can be viewed as defining ideals of Schubert varieties intersected with opposite Schubert cells, so degrees of specializations of double Grothendieck polynomials govern Castelnuovo-Mumford regularities in these cases. Thus, one purpose of this paper is to suggest a purely combinatorial approach to studying regularities of certain classes of generalized determinantal ideals.

2. Background on Permutations

We start by recalling some background on the symmetric group. We follow [12] as a reference. Let S_n denote the **symmetric group** on n letters, i.e. the set of bijections from the set $[n] := \{1, 2, ..., n\}$ to itself. We typically represent permutations in one-line notation. The **permutation matrix** of w, also denoted by w, is the matrix which has a 1 at (i, w_i) for all $i \in [n]$, and zeros elsewhere.

The **Rothe diagram** of w is the subset of cells in the $n \times n$ grid

$$D(w) = \{(i, j) \mid 1 \le i, j \le n, w_i > j, \text{ and } w_i^{-1} > i\}.$$

Graphically, D(w) is the set of cells in the grid which remain after plotting the points (i, w_i) for each $i \in [n]$ and striking out any boxes which appear weakly below or weakly to the right of these points. The **essential set** of w is the subset of the diagram

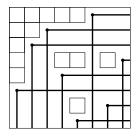
$$\mathcal{E}ss(w) = \{(i,j) \in D(w) \mid (i+1,j), (i,j+1) \not\in D(w)\}.$$

Each permutation has an associated rank function defined by

$$r_w(i,j) = |\{(i', w_{i'}) \mid i' \le i, w_{i'} \le j\}|.$$

We write $\ell(w) := |D(w)|$ for the **Coxeter length** of w.

Example 2.1. If $w = 63284175 \in S_8$ (in one-line notation) then D(w) is the following:



Here $\mathcal{E}ss(w) = \{(1,5), (2,2), (4,5), (4,7), (5,1), (7,5)\}.$

3. Grassmannian Grothendieck Polynomials

A **partition** is a weakly decreasing sequence of nonnegative integers $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$. We define the **length** of λ to be $\ell(\lambda) = |\{h \in [k] \mid \lambda_h \neq 0\}|$ and the **size** of λ , denoted $|\lambda|$, to be $\sum_{i=1}^k \lambda_i$. Write \mathcal{P}_k for the set of partitions of length at most k. Here, we conflate partitions with their Young diagrams, i.e. the notation $(i, j) \in \lambda$ indicates choosing the jth box in the ith row of the Young diagram of λ .

We say $w \in S_n$ has a **descent** at position k if $w_k > w_{k+1}$. A permutation $w \in S_n$ is **Grassmannian** if w has a unique descent. To each Grassmannian permutation w, we can uniquely associate a partition $\lambda \in \mathcal{P}_k$:

$$\lambda = (w_k - k, \dots, w_1 - 1),$$

where k is the position of the descent of w.

Let w_{λ} denote the Grassmannian permutation associated to λ . It is easy to check that

$$(1) |\lambda| = \ell(w_{\lambda}) = |D(w_{\lambda})|.$$

Define $YTab(\lambda)$ to be the set of fillings of λ with entries in [k] so that

- entries weakly increase from left-to-right along rows and
- entries strictly increase from top-to-bottom along columns.

For a partition λ , the **Schur polynomial** in k variables is

$$s_{\lambda}(x_1, x_2, \dots, x_k) = \sum_{T \in \mathsf{YTab}(\lambda)} \prod_{i=1}^k x_i^{\#i \text{ 's in } T}.$$

Definition 3.1. Let $\lambda, \mu \in \mathcal{P}_k$ so that $\lambda \subseteq \mu$. Denote by $\mathsf{Tab}(\mu/\lambda)$ the set of fillings of the skew shape μ/λ with entries in [k] such that

- entries strictly increase left-to-right in each row,
- entries strictly increase top-to-bottom in each column, and
- entries in row i are at most i-1 for each $i \in [k]$.

For ease of notation, let $\mathfrak{G}_{\lambda} := \mathfrak{G}_{w_{\lambda}}$.

Theorem 3.2. [11, Theorem 2.2] For a Grassmannian permutation $w_{\lambda} \in S_n$,

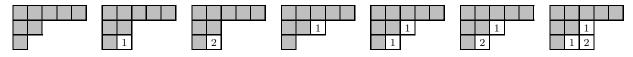
$$\mathfrak{G}_{\lambda}(x_1, x_2, \dots, x_k) = \sum_{\substack{\mu \in \mathcal{P}_k \\ \lambda \subseteq \mu}} a_{\lambda \mu} s_{\mu}(x_1, x_2, \dots, x_k)$$

where $(-1)^{|\mu|-|\lambda|}a_{\lambda,\mu} = |\mathsf{Tab}(\mu/\lambda)|$ and k is the unique descent of w_{λ} .

Example 3.3. The Grassmannian permutation w = 24813567 corresponds to $\lambda = (5, 2, 1)$. By Theorem 3.2,

$$\mathfrak{G}_{(5,2,1)}(x_1, x_2, x_3) = s_{(5,2,1)} - 2s_{(5,2,2)} - s_{(5,3,1)} + 2s_{(5,3,2)} - s_{(5,3,3)}.$$

This corresponds to the tableaux:



Definition 3.4. We say a partition μ is **maximal** for λ if $\mathsf{Tab}(\mu/\lambda) \neq \emptyset$ and $\mathsf{Tab}(\nu/\lambda) = \emptyset$ whenever $|\nu| > |\mu|$.

The following lemma can be obtained from the proof of [11, Theorem 2.2], but we include it for completeness.

Lemma 3.5. Fix a partition $\lambda \in \mathcal{P}_k$. Define μ by setting $\mu_1 = \lambda_1$, and $\mu_i = \min\{\mu_{i-1}, \lambda_i + (i-1)\}$ for each $1 < i \le k$. Then μ is the unique partition that is maximal for λ .

Proof. Let ρ be any partition with $\mathsf{Tab}(\rho/\lambda) \neq \emptyset$. Since elements of $\mathsf{Tab}(\rho/\lambda)$ have strictly increasing rows, ρ/λ has at most i-1 boxes in row i for each i. That is, $\rho_i \leq \lambda_i + (i-1)$ for each i. It follows that $\rho_i \leq \mu_i$ for each i. Thus, uniqueness of μ will follow once we show that μ is maximal for λ . It suffices to produce an element $T \in \mathsf{Tab}(\mu/\lambda)$.

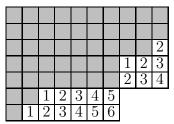
We will denote by T(i, j) the filling by T of the box in row i and column j of μ . For each i and j with $\lambda_i < j \le \mu_i$, set

$$T(i,j) = i + j - \mu_i - 1.$$

It is easily seen that T strictly increases along rows with $T(i, j) \in [i - 1]$ for each i. To see that $T \in \mathsf{Tab}(\mu/\lambda)$, it remains to note that T strictly increases down columns. Observe

$$T(i,j) - T(i-1,j) = \mu_{i-1} - \mu_i + 1 > 0.$$

Example 3.6. If $\lambda = (10, 10, 9, 7, 7, 2, 1)$, the unique partition μ maximal for λ is $\mu = (10, 10, 10, 10, 10, 7, 7)$. Below is the tableau $T \in \mathsf{Tab}(\mu/\lambda)$ constructed in the proof of Lemma 3.5.



Definition 3.7. Given a partition $\lambda = (\lambda_1, \dots, \lambda_k)$, let $P(\lambda) = (P_1, P_2, \dots, P_r)$ be the set partition of [k] such that $i, j \in P_h$ if and only if $\lambda_i = \lambda_j$, and $\lambda_i > \lambda_j$ whenever $i \in P_h$ and $j \in P_l$ with h < l.

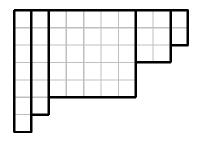
Note that if $\lambda = (\lambda_1, \dots, \lambda_k) = (\lambda_{i_1}^{p_1}, \dots, \lambda_{i_r}^{p_r})$ in exponential notation, then $p_h = |P_h|$ for each $h \in [r]$. In the following definition, we describe a decomposition of λ into rectangles.

Definition 3.8. Let $\lambda = (\lambda_1, \dots, \lambda_k)$ be a partition and $P(\lambda) = (P_1, P_2, \dots, P_r)$. Set $m_h = \min P_h$ for each h. Define $R(\lambda) = (R_1, R_2, \dots, R_r)$ by setting

$$R_h := \left\{ (i, j) \in \lambda \mid i \in \bigcup_{l=1}^h P_l \text{ and } \lambda_{m_{h+1}} < j \le \lambda_{m_h} \right\},\,$$

where we take $\lambda_{m_{r+1}} := 0$.

Example 3.9. For λ as in Example 3.6, one has $P_1 = \{1, 2\}$, $P_2 = \{3\}$, $P_3 = \{4, 5\}$, $P_4 = \{6\}$, and $P_5 = \{7\}$. The sets in $R(\lambda)$ are outlined below, with R_1 the rightmost rectangle and R_5 the leftmost.



Set $\lambda^{(h)}$ to be the partition

$$\lambda^{(h)} = \bigcup_{j=1}^{h} R_j$$

for $h \in [r]$, and set $\lambda^{(0)} := \emptyset$.

Definition 3.10. For any $n \ge 1$, let δ^n denote the **staircase shape** $\delta^n = (n, n-1, \dots, 1)$. Given a partition μ , let

$$sv(\mu) = \max\{k \mid \delta^k \subseteq \mu\}.$$

The partition $\delta^{sv(\mu)}$ is called the **Sylvester triangle** of μ .

Proposition 3.11. Suppose μ is maximal for λ and $P(\lambda) = (P_1, \dots, P_r)$. If $i \in P_{h+1}$ for some $0 \le h < r$, then

$$\mu_i = \lambda_i + \operatorname{sv}(\lambda^{(h)}).$$

Proof. By Lemma 3.5, $\mu_1 = \lambda_1$ and $\mu_i = \min\{\mu_{i-1}, \lambda_i + (i-1)\}$ for $1 < i \le k$. Clearly $P(\lambda)$ refines $P(\mu)$: if $\lambda_i = \lambda_j$, then $\mu_i = \mu_j$. Example 3.6 shows this refinement can be strict. Hence, it suffices to prove the statement when $i = \min P_{h+1}$. We work by induction on h.

When h = 0, $i = \min(P_1) = 1$. Since $\lambda_1 = \mu_1$, the result follows. Suppose the claim holds for some h - 1. We show the claim holds for h. Let $i = \min P_{h+1}$. Then it suffices to show that

(2)
$$\lambda_i + \operatorname{sv}(\lambda^{(h)}) = \min\{\mu_{i-1}, \lambda_i + (i-1)\}.$$

Since $i = \min P_{h+1}$, it follows that $i-1 \in P_h$. By applying the inductive assumption to μ_{i-1} ,

(3)
$$\min\{\mu_{i-1}, \lambda_i + (i-1)\} = \min\{\lambda_{i-1} + \operatorname{sv}(\lambda^{(h-1)}), \lambda_i + (i-1)\}.$$

By Equations (2) and (3), the proof is complete once we show

(4)
$$sv(\lambda^{(h)}) = \min\{(\lambda_{i-1} - \lambda_i) + sv(\lambda^{(h-1)}), i - 1\}.$$

Let ω, ℓ respectively denote the (horizontal) width and (vertical) length of R_h , and set $M = \operatorname{sv}(\lambda^{(h-1)})$. Equation (4) is equivalent to proving

$$sv(\lambda^{(h)}) = min\{\omega + M, \ell\}.$$

By definition, $\lambda^{(h)} = R_h \cup \lambda^{(h-1)}$, so it is straightforward to see that

$$\operatorname{sv}(\lambda^{(h)}) \le \min\{\omega + M, \ell\}.$$

Let (M, c) be the southwest most box in the northwest most embedding of $\delta^M \subseteq \lambda^{(h-1)}$, with the indexing inherited from λ .

Suppose first that $\ell \geq \omega + M$. Since R_h is a rectangle, $(\omega + M, c - \omega) \in \lambda^{(h)}$. Then $\delta^{\omega+M} \subseteq \lambda^{(h+1)}$ and Equation (4) follows. Otherwise, it must be that $\ell - M < \omega$. Since R_h is a rectangle, $(\ell, c - \ell + M) \in \lambda^{(h)}$. Thus, $\delta^{\ell} \subseteq \lambda^{(h+1)}$ and Equation (4) follows.

Theorem 3.12. Suppose $w_{\lambda} \in S_n$ is a Grassmannian permutation. Let $P(\lambda) = (P_1, \dots, P_r)$. Then

$$\deg(\mathfrak{G}_{\lambda}) = |\lambda| + \sum_{h \in [r-1]} |P_{h+1}| \cdot \mathfrak{sv}(\lambda^{(h)}).$$

Proof. By Theorem 3.2 and Lemma 3.5, the highest nonzero homogeneous component of \mathfrak{G}_{λ} is $a_{\lambda\mu}s_{\mu}$ where μ is maximal for λ . Since $\deg(s_{\mu})$ is $|\mu|$, Proposition 3.11 implies the theorem, using the fact that $\operatorname{sv}(\lambda^{(0)}) = 0$.

Example 3.13. Returning to λ as in Example 3.6, Theorem 3.12 states that $\deg(\mathfrak{G}_{\lambda}) = |\lambda| + \sum_{h=1}^{4} |P_{h+1}| \cdot \operatorname{sv}(\lambda^{(h)}) = 46 + (1 \cdot 1 + 2 \cdot 3 + 1 \cdot 5 + 1 \cdot 6) = 46 + 18 = 64.$

4. Castelnuovo-Mumford regularity of Grassmannian matrix Schubert varieties

In this section, we recall some basics of Castelnuovo-Mumford regularity and then use Theorem 3.12 to produce easily-computable formulas for the regularities of matrix Schubert varieties associated to Grassmannian permutations.

4.1. Commutative algebra preliminaries. Let $S = \mathbb{C}[x_1, \ldots, x_n]$ be a positively \mathbb{Z}^d -graded polynomial ring so that the only elements in degree zero are the constants. The multigraded Hilbert series of a finitely generated graded module M over S is

$$H(M; \mathbf{t}) = \sum_{\mathbf{a} \in \mathbb{Z}^d} \dim_K(M_{\mathbf{a}}) \mathbf{t}^{\mathbf{a}} = \frac{\mathcal{K}(M; \mathbf{t})}{\prod_{i=1}^n (1 - \mathbf{t}^{\mathbf{a}_i})}, \operatorname{deg}(x_i) = \mathbf{a}_i,$$

where if $\mathbf{a}_i = (a_i(1), \dots, a_i(d))$, then $\mathbf{t}^{\mathbf{a}_i} = t_1^{a_i(1)} \cdots t_d^{a_i(d)}$. The numerator $\mathcal{K}(M; \mathbf{t})$ in the expression above is a Laurent polynomial in the t_i 's, called the **K-polynomial** of M. For more detail on K-polynomials, see [13, Chapter 8].

We are mostly interested in the case where S is standard graded, that is, $\deg(x_i) = 1$, and the case where M = S/I where I is a homogeneous ideal with respect to the standard grading. Note that, in this case, the K-polynomial is a polynomial in a single variable t. There is a minimal free resolution

$$0 \to \bigoplus_{j} S(-j)^{\beta_{l,j}(S/I)} \to \bigoplus_{j} S(-j)^{\beta_{l-1,j}(S/I)} \to \cdots \to \bigoplus_{j} S(-j)^{\beta_{0,j}(S/I)} \to S/I \to 0$$

where $l \leq n$ and S(-j) is the free S-module obtained by shifting the degrees of S by j. The **Castelnuovo-Mumford regularity** of S/I, denoted reg(S/I), is defined as

$$\operatorname{reg}(S/I) := \max\{j - i \mid \beta_{i,j}(S/I) \neq 0\}.$$

This invariant is measure of complexity of S/I and has multiple homological characterizations. For example, $\operatorname{reg}(S/I)$ is the least integer m for which $\operatorname{Ext}^j(S/I,S)_n=0$, for all j and all $n \leq -m-j-1$ (see [2, Proposition 20.16]). We refer the reader to [2, Chapter 20.5] for more information on regularity.

Let K(S/I;t) denote the K-polynomial of S/I with respect to the standard grading. Assume that S/I is Cohen-Macaulay and let $\operatorname{ht}_S I$ denote the height of the ideal I. Then,

(5)
$$\operatorname{reg}(S/I) = \operatorname{deg} \mathcal{K}(S/I;t) - \operatorname{ht}_{S}I.$$

See, for example, [1, Lemma 2.5] and surrounding explanation. In this paper, we will use this characterization of regularity.

4.2. Regularity of Grassmannian matrix Schubert varieties. Let X be the space of $n \times n$ matrices with entries in \mathbb{C} , let $\widetilde{X} = (x_{ij})$ denote an $n \times n$ generic matrix of variables, and let $S = \mathbb{C}[x_{ij}]$. Given an $n \times n$ matrix M, let $M_{[i,j]}$ denote the submatrix of M consisting of the top i rows and left j columns of M. Given a permutation matrix $w \in S_n$ we have the matrix Schubert variety

$$X_w := \{ M \in X \mid \text{rank } M_{[i,j]} \le \text{rank } w_{[i,j]} \},$$

which is an affine subvariety of X with defining ideal

$$I_w := \langle (r_w(i,j) + 1) - \text{size minors of } \widetilde{X}_{[i,j]} \mid (i,j) \in \mathcal{E}ss(w) \rangle \subseteq S.$$

The ideal I_w , called a **Schubert determinantal ideal**, is prime [4] and is homogeneous with respect to the standard grading of S.

By [6, Theorem A], we have $\mathcal{K}(S/I_w;t) = \mathfrak{G}_w(1-t,\ldots,1-t)$, which has the same degree as $\mathfrak{G}_w(x_1,\ldots,x_n)$, since the coefficients in homogeneous components of single Grothendieck polynomials have the same sign (see, for example, [6]). Thus,

(6)
$$\operatorname{reg}(S/I_w) = \operatorname{deg} \mathfrak{G}_w(x_1, \dots, x_n) - \operatorname{ht}_S I_w = \operatorname{deg} \mathfrak{G}_w(x_1, \dots, x_n) - |D(w)|,$$

where the second equality follows because

$$\operatorname{ht}_{S}I_{w} = \operatorname{codim}_{X}X_{w} = |D(w)|$$

by [4]. We now turn our attention to the case where w is a Grassmannian permutation and retain the notation from the previous section.

Corollary 4.1. Suppose $w_{\lambda} \in S_n$ is a Grassmannian permutation. Let $P(\lambda) = (P_1, \dots, P_r)$. Then

$$\operatorname{reg}(S/I_{w_{\lambda}}) = \sum_{h \in [r-1]} |P_{h+1}| \cdot \operatorname{sv}(\lambda^{(h)}).$$

Proof. This is immediate from Theorem 3.12, Equation (6), and Equation (1).

Example 4.2. Continuing Example 3.13, Corollary 4.1 states that $reg(S/I_{w_{\lambda}}) = 18$.

Example 4.3. The ideal of $(r+1) \times (r+1)$ minors of a generic $n \times m$ matrix is the Schubert determinantal ideal of a Grassmannian permutation $w \in S_{n+m}$. Indeed, w is the permutation of minimal length in S_{n+m} such that rank $w_{[n,m]} = r$.

The corresponding partition is $\lambda = (m-r)^{(n-r)}0^r$. We have $\lambda^{(1)} = (m-r)^{(n-r)}$ and so $\operatorname{sv}(\lambda^{(1)}) = \min\{m-r, n-r\}$. Furthermore, $|P_2| = r$. Therefore,

$$reg(S/I_w) = r \cdot \min\{m - r, n - r\} = r \cdot (\min\{m, n\} - r).$$

We claim no originality for the formula in Example 4.3; minimal free resolutions of ideals of $r \times r$ minors of a generic $n \times m$ matrix are well-understood (see [9] or [14, Chapter 6]).

5. On the regularity of coordinate rings of Grassmannian Schubert varieties intersected with the opposite big cell

In this section, we discuss a conjecture of Kummini-Lakshmibai-Sastry-Seshadri [8] on Castelnuovo-Mumford regularity of coordinate rings of certain open patches of Grassmannian Schubert varieties. We provide a counterexample to the conjecture, and then we state and prove an alternate explicit formula for these regularities. We end with a conjecture on regularities of coordinate rings of standard open patches of arbitrary Schubert varieties in Grassmannians.

5.1. Grassmannian Schubert varieties in the opposite big cell. Fix $k \in [n]$ and let Y denote the space of $n \times n$ matrices of the form

$$\begin{bmatrix} M & I_k \\ I_{n-k} & 0 \end{bmatrix},$$

where M is a $k \times (n-k)$ matrix with entries in \mathbb{C} and I_k is a $k \times k$ identity matrix. Let $P \subseteq GL_n(\mathbb{C})$ denote the maximal parabolic of block lower triangular matrices with block rows of size k, (n-k) (listed from top to bottom). Then the Grassmannian of k-planes in n-space, Gr(k,n), is isomorphic to $P \setminus GL_n(\mathbb{C})$. Further, the map $\pi : GL_n(\mathbb{C}) \to Gr(k,n)$ given by taking a matrix to its coset mod P induces an isomorphism from Y onto an affine open subvariety U of Gr(k,n) (often called the opposite big cell).

Let $B \subseteq GL_n(\mathbb{C})$ be the Borel subgroup of upper triangular matrices. Schubert varieties X_w in $P \setminus GL_n(\mathbb{C})$ are closures of orbits $P \setminus PwB$, where $w \in S_n$ is a Grassmannian permutation with descent at position k. Let Y_w denote the affine subvariety of Y defined to be $\pi|_Y^{-1}(X_w \cap U)$.

Let \widetilde{Y} denote the matrix that has the form given in (7) with variables m_{ij} as the entries of M. Then, the coordinate ring of Y is $\mathbb{C}[Y] = \mathbb{C}[m_{ij} \mid i \in [k], j \in [n-k]]$, and the prime defining ideal J_w of Y_w is generated by the essential minors of \widetilde{Y} . That is,

(8)
$$J_w = \langle (r_w(i,j) + 1) - \text{size minors of } \widetilde{Y}_{[i,j]} \mid (i,j) \in \mathcal{E}ss(w) \rangle.$$

5.2. A conjecture, counterexample, and correction. We now consider a conjecture of Kummini-Lakshmibai-Sastry-Seshadri from [8] on regularities of coordinate rings of standard open patches of certain Schubert varieties in Grassmannians. We show that this conjecture is false by providing a counterexample, and then state and prove an alternate explicit combinatorial formula for these regularities. This latter result follows immediately from our Corollary 4.1.

To state the conjecture from [8], we first translate the conventions from their paper to ours. Indeed, we use the same notation as the previous section and assume that $w \in S_n$ is a Grassmannian permutation with unique descent at position k. Suppose that $w = w_1 \ w_2 \cdots w_n$ in one-line notation. Observe that w is uniquely determined from n and (w_1, \ldots, w_k) . Suppose further that for some $r \in [k-1]$,

(9)
$$w_{k-r+i} = n - k + i \text{ for all } i \in [r]$$

and $w_1 = 1$. Let \widetilde{w} be defined by $(\widetilde{w}_1, \dots, \widetilde{w}_k) = (n - w_k + 1, \dots, n - w_1 + 1)$. Then we have $(\widetilde{w}_1, \dots, \widetilde{w}_k) = (k - r + 1, k - r + 2, \dots, k, a_{r+1}, \dots, a_{n-1}, n)$

for some $k < a_{r+1} < \cdots < a_{n-1} < n$. Let $a_r = k$ and $a_k = n$. For $r \le i \le k-1$, define $m_i = a_{i+1} - a_i$.

Conjecture 5.1 ([8, Conjecture 7.5]).

(10)
$$reg(\mathbb{C}[Y]/J_w) = \sum_{i=r}^{k-1} (m_i - 1)i.$$

Example 5.2. We consider [8, Example 6.1]. Let J be the ideal generated by 3×3 minors of a 4×3 matrix of indeterminates. Then $J = J_w$ for $w = 1245367 \in S_7$, where k = 4 and n = 7. Then $\widetilde{w} = (3, 4, 6, 7)$. Here we see that Equation (10) yields a regularity of 2. This matches the regularity we computed in Example 4.3.

We now show that Conjecture 5.1 is not always true.

Example 5.3. Let k=4, n=10, w=145723689(10) so that $\widetilde{w}=(4,6,7,10)$. Then \widetilde{w} has the desired form. Furthermore, we have that $m_1=2, m_2=1, m_3=3$. Thus, by Conjecture 5.1, the regularity should be (2-1)1+(1-1)2+(3-1)3=1+6=7. However, a check in Macaulay2 [5] yields a regularity of 5. In fact, J_w , once induced to a larger polynomial ring, is a Schubert determinantal ideal for w, so we can use our formula from Corollary 4.1. Notice w has associated partition $\lambda=(3,2,2,0)$. Then $\lambda^{(1)}=(1)$ and $\lambda^{(2)}=(3,2,2)$, giving $\operatorname{reg}(\mathbb{C}[Y]/J_w)=2\cdot\operatorname{sv}(\lambda^{(1)})+1\cdot\operatorname{sv}(\lambda^{(2)})=2\cdot 1+1\cdot 3=5$.

As illustrated in Example 5.3, our formula for the regularity of a Grassmannian matrix Schubert variety given in Corollary 4.1 corrects Conjecture 5.1 whenever the ideal J_w is equal (up to inducing the ideal to a larger ring) to the Schubert determinantal ideal I_w . In fact, each Grassmannian permutation considered in [8, Conjecture 7.5] is of this form. This follows because all the essential set of such w is contained in $w_{[k,n-k]}$ by Equation (9).

Corollary 5.4. Let $w_{\lambda} \in S_n$ be a Grassmannian permutation with descent at position k such that $w_1 = 1$ and for some $r \in [k-1]$, $w_{k-r+i} = n-k+i$ for $i \in [r]$. Let $P(\lambda) = (P_1, \ldots, P_r)$. Then

$$\operatorname{reg}(\mathbb{C}[Y]/J_{w_{\lambda}}) = \sum_{h \in [r-1]} |P_{h+1}| \cdot \operatorname{sv}(\lambda^{(h)}).$$

5.3. A conjecture for the general case. We end the paper with a conjecture for the regularity of $\mathbb{C}[Y]/J_w$ where w is an arbitrary Grassmannian permutation with descent at position k. We begin with some preliminaries.

The codimension of Y_w in Y is equal to the number of boxes in the diagram D(w). So, to compute the regularity $\operatorname{reg}(\mathbb{C}[Y]/J_w)$, it remains to find the degree of the K-polynomial of $\mathbb{C}[Y]/J_w^1$. By [15, Theorem 4.5], this K-polynomial can be expressed in terms of a **double Grothendieck polynomial**, $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$, which is defined as follows:

$$\mathfrak{G}_{w_0}(\mathbf{x}; \mathbf{y}) = \prod_{i+j \le n} (x_i + y_j - x_i y_j).$$

The rest are defined recursively, using the same operator π_i and recurrence defined in Section 1. Note that if $G_w(\mathbf{x}; \mathbf{y})$ denotes the double Grothendieck polynomials in [6], we have $G_w(\mathbf{x}; \mathbf{y}) = \mathfrak{G}_w(\mathbf{1} - \mathbf{x}; \mathbf{1} - \frac{\mathbf{1}}{\mathbf{v}})$.

Let $\mathbf{c} = ((1-t), (1-t), \dots, (1-t), 0, 0, \dots, 0)$ be the list consisting of k copies of 1-t followed by n-k copies of 0, and let $\tilde{\mathbf{c}} = (0, 0, \dots, 0, 1-\frac{1}{t}, 1-\frac{1}{t}, \dots, 1-\frac{1}{t})$ be the list consisting of n-k copies of 0 followed by k copies of $1-\frac{1}{t}$. By [15, Theorem 4.5], the K-polynomial of S/J_w is the specialized double Grothendieck polynomial $\mathfrak{G}_w(\mathbf{c}; \tilde{\mathbf{c}})$. Consequently, we are reduced to computing the degree of this polynomial.

Example 5.5. Let w = 132 and k = 2. Then

$$\mathfrak{G}_w(\mathbf{x}; \mathbf{y}) = (x_2 + y_1 - x_2 y_1) + (x_1 + y_2 - x_1 y_2) - (x_1 + y_2 - x_1 y_2)(x_2 + y_1 - x_2 y_1).$$

Letting $\mathbf{c} = (1 - t, 1 - t, 0)$ and $\widetilde{\mathbf{c}} = (0, 1 - \frac{1}{t}, 1 - \frac{1}{t})$, one checks that $\mathfrak{G}_w(\mathbf{c}; \widetilde{\mathbf{c}}) = (1 - t)$ which is the K-polynomial of S/J_w with respect to the standard grading.

¹That this ring is graded with respect to the standard grading follows by observing that by the locations of 1s and 0s in \tilde{Y} , every non-zero generator of J_w is, up to sign, a minor of $\tilde{Y}_{[k,n-k]}$.

²The conventions used in [15] differ from ours, so the given formula is a translation of their formula to our conventions.

For the reader familiar with pipe dreams (see, e.g. [3] and [7]), we note that the degree of $\mathfrak{G}_w(\mathbf{c}; \tilde{\mathbf{c}})$ is the maximum number of plus tiles in a (possibly non-reduced) pipe dream for w with all of its plus tiles supported within the northwest justified $k \times (n-k)$ subgrid of the $n \times n$ grid. This follows from [15]. However, this is not a very explicit formula for degree.

We now turn to our conjecture. It asserts that the degree of the K-polynomial of $\mathbb{C}[Y]/J_w$ for a Grassmannian permutation $w \in S_n$ with descent at position k can be computed in terms of the degree of a Grothendieck polynomial of an associated vexillary permutation. This will be a much more easily computable answer than a pipe dream formula because the first, third, and fifth authors will give an explicit formula for degrees of vexillary Grothendieck polynomials in the sequel.

A permutation $w \in S_n$ is **vexillary** if it contains no 2143-pattern, i.e. there are no i < j < k < l such that $w_j < w_i < w_l < w_k$. For example, $w = \underline{325164}$ is not vexillary since it contains the underlined the 2143 pattern.

Suppose $w_{\lambda} \in S_n$ is Grassmannian with descent k. Define $\lambda' = (\lambda_1, \dots, \lambda_{\ell(\lambda)})$ and $\phi(\lambda) = (\phi_1, \dots, \phi_{\ell(\lambda)})$ as follows. For $i \in [\ell(\lambda)]$,

$$\phi_i = \begin{cases} i + \min\{(n-k) - \lambda_i, k - i\} & \text{if } \lambda_i > \lambda_{i+1} \text{ or } i = \ell(\lambda), \\ \phi_{i+1} & \text{otherwise.} \end{cases}$$

A vexillary permutation v is determined by the statistics of a partition and a flag, computed using D(v) (see [12, Proposition 2.2.10]). Thus, the partition λ' and flag ϕ defined above from w_{λ} define at most one vexillary permutation.

Conjecture 5.6. Fix $w_{\lambda} \in S_n$ Grassmannian with descent k. Then $\lambda', \phi(\lambda)$ define a vexillary permutation v, and $\deg(\mathfrak{G}_{w_{\lambda}}(\mathbf{c}; \tilde{\mathbf{c}})) = \deg(\mathfrak{G}_{v}(\mathbf{x}))$. In particular, $reg(\mathbb{C}[Y]/J_{w_{\lambda}}) = \deg(\mathfrak{G}_{v}(\mathbf{x})) - |\lambda|$.

While we state this as a conjecture here, the first, third, and fifth authors will prove this in the sequel and furthermore give an explicit combinatorial formula for $\deg(\mathfrak{G}_v(\mathbf{x}))$, as mentioned above.

Example 5.7. Let k = 5, n = 10 and w = 1489(10)23567. Then $\lambda' = (5, 5, 5, 2)$ and $\phi(w) = (3, 3, 3, 5)$, which corresponds to the vexillary permutation v = 678142359(10). Thus Conjecture 5.6 states that $\deg(\mathfrak{G}_w(\mathbf{c}; \tilde{\mathbf{c}})) = \deg(\mathfrak{G}_v(\mathbf{x})) = 18$, so $\operatorname{reg}(\mathbb{C}[Y]/J_{w_\lambda}) = 18-17 = 1$.

ACKNOWLEDGEMENTS

The authors would like to thank Daniel Erman, Reuven Hodges, Patricia Klein, Claudiu Raicu, and Alexander Yong for their helpful comments and conversations.

References

- [1] B. Benedetti and M. Varbaro, On the dual graphs of Cohen-Macaulay algebras, Int. Math. Res. Not. IMRN., 17 (2015), pp. 8085–8115.
- [2] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Vol. 150, Graduate Texts in Mathematics, Springer-Verlag, New York (1995), pp. xvi+785.
- [3] S. Fomin and A. N. Kirillov, *Grothendieck polynomials and the Yang-Baxter equation*, Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique, DIMACS, Piscataway, NJ (1994), pp. 183–189.
- [4] F. Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J., 65 (1992), no. 3, pp. 381–420.

- [5] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
- [6] A. Knutson and E. Miller, *Gröbner geometry of Schubert polynomials*, Ann. of Math., 161 (2005), no. 3, pp. 1245–1318.
- [7] ______, Subword complexes in Coxeter groups, Adv. Math., 184 (2004), no. 1, pp. 161–176.
- [8] M. Kummini, V. Lakshmibai, P. Sastry, and C. S. Seshadri, Free resolutions of some Schubert singularities, Pacific J. Math., 279 (2015), no. 1-2, pp. 299–328.
- [9] A. Lascoux, Syzygies des variétés déterminantales, Adv. in Math., 30 (1978), no. 3, pp. 202–237.
- [10] A. Lascoux and M. P. Schützenberger, Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math., 295 (1982), no. 11, pp. 629–633.
- [11] C. Lenart, Combinatorial aspects of the K-theory of Grassmanians, Ann. Comb., 4 (2000), no. 1, pp. 67–82.
- [12] L. Manivel, Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monographs, Translated from the 1998 French original by John R. Swallow, American Mathematical Society, Providence (2001).
- [13] E. Miller and B. Sturmfels, *Combinatorial commutative algebra*, Vol. 227, Graduate Texts in Mathematics, Springer-Verlag, New York (2005), pp. xiv+417.
- [14] J. Weyman, Cohomology of vector bundles and syzygies, Vol. 149, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge (2003), pp. xiv+371.
- [15] A. Woo and A. Yong, A Gröbner basis for Kazhdan-Lusztig ideals, Amer. J. Math., 134 (2012), no. 4, pp. 1089–1137.
 - (JR) Dept. of Mathematics and Statistics, University of Saskatchewan Saskatoon, SK S7N 5E6, CANADA

E-mail address: rajchgot@math.usask.ca

(YR) Physical and Theoretical Chemistry Laboratory, University of Oxford Oxford OX1 3QZ, UK

E-mail address: yi.ren@chem.ox.ac.uk

(CR) Dept. of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

E-mail address: cer2@illinois.edu

- (AS) Dept. of Mathematics, Cornell University, Ithaca, NY 14853, USA $E\text{-}mail\ address:}$ ajs6240cornell.edu
- (AW) Dept. of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA $\emph{E-mail address}:$ weigandt@umich.edu