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CASTELNUOVO-MUMFORD REGULARITY OF
LADDER DETERMINANTAL VARIETIES AND
PATCHES OF GRASSMANNIAN SCHUBERT VARIETIES

JENNA RAJCHGOT, COLLEEN ROBICHAUX, AND ANNA WEIGANDT

ABSTRACT. We give degree formulas for Grothendieck polynomials indexed by vexillary
permutations and 1432-avoiding permutations via tableau combinatorics. These formulas
generalize a formula for degrees of symmetric Grothendieck polynomials which appeared in
previous joint work of the authors with Y. Ren and A. St. Dizier.

We apply our formulas to compute Castelnuovo-Mumford regularity of classes of gener-
alized determinantal ideals. In particular, we give combinatorial formulas for the regular-
ities of all one-sided mixed ladder determinantal ideals. We also derive formulas for the
regularities of certain Kazhdan-Lusztig ideals, including those coming from open patches of
Schubert varieties in Grassmannians. This provides a correction to a conjecture of Kummini-
Lakshmibai-Sastry-Seshadri (2015).

1. INTRODUCTION

Castelnuovo-Mumford reqularity is a fundamental measure of the complexity of a graded
module. In this paper, we use Schubert calculus techniques to provide explicit, easy-to-
compute, combinatorial formulas for the Castelnuovo-Mumford regularity of classes of gen-
eralized determinantal ideals. The classes we treat include one-sided mixed ladder determi-
nantal ideals and ideals defining patches of Schubert varieties in Grassmannians. These two
classes of ideals are connected by work of N. Gonciulea and C. Miller [13].

Let k be a field. Let S = k|zy,...,z,] be a polynomial ring with the standard grading,
deg(z;) =1, and let I < S be a homogeneous ideal. When S/I is Cohen-Macaulay, as is the
case throughout this paper, the regularity of S/I is known to satisfy

(1.1) reg(S/1) = deg K(S/I;t) — hts(I),

where K(S/I;t) is the K-polynomial of S/I and htg(I) is the height of I in S. Using this
fact, the authors, in joint work with Y. Ren and A. St. Dizier [32], gave a combinatorial
formula which computes the regularity of coordinate rings of Grassmannian matriz Schubert
varieties. The key technical ingredient was a formula of C. Lenart [26] regarding symmetric
Grothendieck polynomials. In the present paper, we extend our work from [32].
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1.1. Summary of results. We give a combinatorial formula for degrees of Grothendieck
polynomials indexed by 1432-avoiding permutatlons (see Theorem (1.3) and vezillary (2143-
avoiding) permutations (see Theorem [1.7). These formulas in turn, allow us to compute the
regularity of the corresponding matrix Schubert varieties. In particular, our formula in the
vexillary setting provides a formula for Castelnuovo-Mumford regularity of one-sided mixed
ladder determinantal varieties (see Section [7] for details). Our formulas naturally generalize
the Grassmannian formula of [32] (see Section [2.5| for details).

Theorem 1.1. Given w € S,, so that w is 1432-avoiding,
reg(S/1,) Z

Defined in Section [2] these o) (w) are certain subsets of the Rothe diagram D(w) of w, and
pa(or(w)) denotes the size of the largest diagonal in oy (w).

Example 1.2. Let w = 1462375. In the images below, the elements of o, (w) are shaded,
with a maximal diagonal path in oy(w) marked with x for k& € [5]. For & = 6,7, we have
or(w) = &, and so we omit the figures.

el |HeEgd |Hog |Heg ||HEZ
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Theorem [1.1] computes reg(S/I,) =3+ 1+0+1+1=6. &

Theorem [I.1]is a direct consequence of the following:

Theorem 1.3. If w € S, is 1432-avoiding, then

deg (&, i

For w € S, #D(w) is the Coxeter length of w. See Section [2| for the definitions of
Grothendieck polynomials &, and Rothe diagrams D(w). The proof of Theorem appears
in Section [l

Example 1.4. Returning to w as in Example [1.2] Theorem [1.3] with Theorem [I.1] give that
deg(®,) = #D(w) +reg(S/I,) =6+ (3+1+0+1+1) = 12. &
We have similar diagrammatic regularity and degree formulas in the vexillary setting.

Theorem 1.5. Given v € S,, so that v is vexillary,

reg(S/1,) i
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Here, the 74 (v) are certain subsets of the Young diagram \(v) associated to v and p,(7%(v))
denotes the size of the largest antidiagonal in 7 (v). See Section [2| for details.

Example 1.6. Let v = 169247358. In the diagrams below, the elements of 7;(v) are shaded
for i = 1,2,3 in A(v). In particular, a maximal size antidiagonal path contained in 7;(v) has
been marked with x’s.

x| [ ] [X] [ ]
X
X X X
24 X |
Applying Theorem [L.5] we have reg(S/I,) =4+ 3+ 1 = 8. &

Theorem is a direct consequence of the following:
Theorem 1.7. Suppose v € S,, is vexillary. Then

dex(8.) = #D(0) + Y pu(r(v)

The proof of Theorem [I.7] appears in Section [4]

Example 1.8. Returning to v as in Example [1.6] Theorem [1.7] with Theorem [1.5] give that
deg(®,) = #D(v) +reg(S/1,) =13+ (4 +3+ 1) = 21. &

We also provide formulas for the regularity of certain homogeneous Kazhdan-Lusztig ideals
Jow- When v is a 321-avoiding permutation, we provide a formula in terms of pipe dreams
(see Proposition . When v and w are both Grassmannian, we provide an easily com-
putable formula by computing the degree of the corresponding K-polynomial in terms of a
vexillary Grothendieck polynomial.

1.2. Connections to the literature. Concurrently with this work the third author, with
O. Pechenik and D. Speyer [31], derived a combinatorial formula for the regularity of matrix
Schubert varieties indexed by arbitrary permutations. In contrast with our diagrammatic
combinatorics, the formula in [31] is phrased in terms of a new statistic on permutations.
In work released around the same time as the present paper, E. Hafner [I7] obtained a new
proof of the vexillary case of [31] in terms of bumpless pipe dreams. Her results illustrate the
connection from the formula in [31] to our vexillary formula through bumpless pipe dreams.
A. Yong also has recent work related to the present paper, where he studies regularities of
tangent cones of Schubert varieties [37].

For certain mixed ladder determinantal ideals, regularity formulas can be deduced through
a-invariant formulas of S. Ghorpade and C. Krattenthaler [11]. The ladder determinantal
ideals they consider have certain restrictions on their rank conditions. Consequently, their
one-sided ideals are special cases of the ideals that we consider. See Section [7] for further
discussion.

Our formula for regularity of patches of Grassmannian Schubert varieties (Theorem [6.5)
provides a correction to a conjecture of M. Kummini, V. Lakshmibai, P. Sastry, and C. S.
Seshadri (see [23, Conjecture 7.5]). This correction was conjectured in our previous paper
(see [32, Conjecture 5.6)).
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1.3. Outline of the paper. In Section [2, we introduce the necessary combinatorial back-
ground. In Section [3, we give tableau interpretations of our Grothendieck degree formulas.
We provide proofs of our degree formulas for vexillary and 1432-avoiding permutations in
Section [l Section [5] describes the connection between Grothendieck polynomials and regu-
larity and proves our main theorems. Section [0] applies these regularity formulas to correct
the conjecture of [23]. Section [7| further applies our main theorems to give combinatorial
formulas for the regularity of one-sided ladder determinantal ideals.

Acknowledgements. We would like to thank Philippe Nadeau and Alexander Yong for
helpful comments and conversations. We would also like to thank Elisa Gorla for helpful
communications about the literature. Finally, we would like to thank the anonymous referee
for their helpful comments.

2. COMBINATORIAL DEGREE FORMULAS

2.1. Grothendieck polynomials. We start by defining Grothendieck polynomials, intro-
duced by A. Lascoux and M. P. Schiitzenberger [25] in their study of the K-theory of the
complete flag variety. Let S,, denote the symmetric group on n letters, i.e., the set of
bijections from [n] := {1,2,...,n} to itself. We write permutations in one-line notation
unless otherwise specified and define w; := w(i) for ¢ € [n]. The symmetric group S, acts
on Zlxy,...,x,] by w- f(xy,...;2,) = [(Twys Twyy---»Tw,). Let s; € S, be the simple

transposition (i i + 1), written here in cycle notation. For f € Z[z,xs, ..., x,], define
of = L2550 and mf — a1 — mi)f
Ty — Tj+1
We recursively define Grothendieck polynomials as follows. Let wg =nn —1 ... 1 be the

longest permutation in 5,. Define
B (X) = Gy (21,0, ..y 1y) = 27 22y .

For w # wy there exists some i € [n — 1] such that w; > w;;1. Then we define &, (x) =
Ti(®,(x)). Since the m; satisfy the same braid and commutation relations as the simple
transpositions, &,,(x) is well defined.

Write t @y := x + y — xy. We define the double Grothendieck polynomials using the
same recurrence, starting from the initial condition

Su(xiy) = [ @@y
1<i+j<n

Here, the 0;’s only act on the z;’s, leaving the y;’s fixed.

2.2. Permutations. First we recall some background on the symmetric group with [27] as
a reference. The permutation matrix of w, which we also denote by w, is the 0, 1-matrix
with 1’s at (¢, w;) for all i € [n] and 0’s elsewhere. To each permutation we associate a rank
function defined by
ro(t,7) = #{(k,wy) : k <i,wp < j}.
The Rothe diagram of w € S, is the subset

D(w) = {(i,j) € [n] x [n] : w; > j and w;' > i}.
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Visually, D(w) is the set of cells remaining in the n x n grid after plotting the points (i, w;)
for each i € [n] and striking out any cells which appear weakly below or weakly to the right
of these points, as shown in Example [2.1]

Let ¢(w) := #D(w) denote the Coxeter length of w. The code of w is the tuple
code(w) = (¢, ..., ¢,) where ¢; records the number of cells in the ith row of D(w). Let

L(code(w)) := max{i € [n] : ¢; > 0}.
The essential set of w is the subset of D(w)

Ess(w) = {(i,7) € D(w) : (i +1,5),(i,j +1) ¢ D(w)}.
The dominant component Dom(w) is the connected component of D(w) containing (1, 1).

Example 2.1. For w = 72416835 € Sg, D(w) is the following:
HEEE

10
sl [=lIE

Here, we have Ess(w) = {(1,6),(3,1),(3,3),(6,3),(6,5)}, code(w) = (6,1,2,0,2,2,0,0), and

Dom(w) = {(1,1) =1 € [6]} U {(2,1), (3, 1)} o
A subset D < [n] x [n] is a diagonal path if
D:{<i1,j1)7...,(ik,jk)Ii1<i2<"'<ikandj1<j2<"'<jk}.

Given S € [n] x [n] write py(S) for the size of the largest diagonal path in contained S.

A permutation w € S, is 1432-avoiding if there does not exist a 1432 pattern, i.e., indices
h <1 < j <k such that w has the pattern w;, < w, < w; < w;. For example, w = 23715846
is not 1432-avoiding; we underlined the positions of a 1432 pattern. For w 1432-avoiding, let

or(w) ={(i,7) € D(w) : i >k and j > wg},

i.e., op(w) is the set of cells in D(w) which are strictly southeast of (k,wy). Example
gives an example of diagonal paths in oy (w).

A partition \ = (A\,..., ;) is a weakly decreasing sequence of non negative integers.
We write |A| = A\ + -+ + Ax. The Young diagram of a partition \ is the set {(i,7) €
Zwo X L=o : 1 < j < N;}. We often conflate Young diagrams with their partitions. Given
partitions A and p, we write A\ € p to mean that the Young diagram of X is contained in the
Young diagram of pu.

Given w € S, let pu(w) be the partition whose Young diagram is

U [l < (1,4,
(4,5)eD(w)
i.e., pu(w) is the smallest partition whose Young diagram contains D(w).

A permutation v € 5, is vexillary if it does not contain a 2143 pattern, i.e., indices
t < j <k < [such that v; < v; < vy < v. For example, v = 72581364 is not vexillary
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FIGURE 1. Let v = 169247358. Pictured on the left is the filling of the cells
(1,7) € D(v) with 7,(4, 7). On the right is A(v) filled with F,,.

since the underlined indices form a 2143 pattern. A vexillary permutation v has shape A(v),
where A(v) is code(v) = (c1, ..., ¢,) sorted into decreasing order. A vexillary permutation v
has flag

d(v) = (1 < o < -+ < yy), Where
¢; = max{j :(j,k) € p(v) lies in the same diagonal as (i, A\;(v))}.

Note that we can think of A(v) as the partition with the property that each of the diagonals
of its Young diagram has the same number of cells as the corresponding diagonal of D(v).
Observe that ¢(v) tells us how the positions of these boxes changed between D(v) to A(v).
Fill the diagonals of A\(v) with 7,(4, j) for the corresponding cells (i, j) € D(v), so that the
entries are (weakly) increasing along diagonals. Write F), for this filling (see Figure [1| for an
example). Let
(V) = {(i,7) € Mv) : F,(i,7) = k}.

A subset A < [n] x [n] is an antidiagonal path if
A=A{(i1, 1), (ks i) + 01 <2 < <igand ji > jo > > i}

Given S < [n] x [n] write p,(S) for the largest antidiagonal path in S. See Example [1.6| for
an example of antidiagonal paths in 7 (v).

A permutation g € S, is Grassmannian if it has a unique descent, i.e. a unique k € [n—1]
such that gx > gri1.

2.3. Pipe complexes. Let a = (ay,...,a;) be a word on the alphabet [n — 1]. We say a is
a reduced word for w if w = s, -+ 5, and {(w) = k.
Define an algebra over Z with generators {e,, : w € S,,} and multiplication given by

Cws; 1if L(ws;) > L(w)
CwCs; = .
' ew if l(ws;) < l(w).
The Demazure product §(a) of a word a = (aq, ..., a) is defined by computing
€sa1 e ~€sak = €5(a)-

Label cells in D(v) along rows so that the first cell in row i is labeled 7, the next i + 1, and
so on. Given P < D(v) let ap be the word obtained by reading the labels of the elements in
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P within rows from right to left, starting at the top row and working downwards. Let
Pipes(v,w) = {P < D(v) : ap is a reduced word for w}.

Likewise, let
Pipes(v,w) = {P < D(v) : d(ap) = w}.
For any P < [n] x [n], we assign it the t-weight
(.9)eP

Pictorially, we represent P € D(v) by marking (i, j) € D(v) with a + whenever (i,j) € P.
We define the unspecialized Grothendieck polynomial to be

(2.1) G,u(t) = > (D)FT Wty (P).
PePipes(v,w)

Note that by setting v = wp, we can recover double Grothendieck polynomials by special-
izing the variables in &, ,,(t):

®w(x; y) = 6wo,w(xl @ Y1, T2 ) Y2,...,Tn @ yn)
2.4. Excited Young Diagrams. Fix partitions A < pu. Let
Dt°P<M7 )\) = {(7‘7]) S [k] and j € [)‘z]}

We call D < p a diagram, represented graphically by marking these cells in D with +’s.
An excited move is a mutation of a local 2 x 2 subsquare of the form

(2.2) T >

-

Here, the mutated subsquare must be entirely contained within .

We write ExcitedYD(u, A) for the set of D < p which can be obtained by a sequence of
excited moves starting from Dyop(p2, A). Such diagrams are called excited Young diagrams.
There is a unique element of ExcitedYD(u, A) to which no excited moves may be applied, see
e.g., [34, Lemma 7.4]. Call this Dyt (1, A).

We also consider K-theoretic excited moves of the form

2.3 il I IR e f I
(2.3 _

again, where all cells pictured are contained in p. Write KExcitedYD(u, A) for the set of
diagrams which can be obtained from Deop(p1, A) by a sequence of excited and K-theoretic
excited moves. We weight D € KExcitedYD(p, \) by

wt(D) = ] (@oy).
(i,j)eD
Proposition 2.2. Ifv e S, is vexillary, then

&.(x;y) = > (~)#P" POl (D).
DeKExcitedYD (p(v),A(v))
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Proof. This follows by noting the flagged set-valued tableaux (and diagonal pipe dreams)
of [22] can be identified with KExcitedYD(u(v), A(v)). See e.g., [16] and [34] for further
details. ]

Lemma 2.3. Fix partitions X\  u. There exists a unique permutation v € Sy, so that
D(v) = Dyor(pt, N). In particular, v is vexillary.

Proof. That Dyot (11, \) € ExcitedYD(u, A) is the diagram of a vexillary permutation follows
from [34, Proposition 7.6]. O

Example 2.4. Let A = (5,4,2,1,0) and p = (6,6,4,4,4). Then v = 5713624 is the unique
vexillary permutation so that D(v) = Dyes (i, ).

EEREREEEE | .
SRERERER ¥ | O
T
+ T E| O|
+ |+ I ¢
Above are Dyop(ft, A), Dpot (1, A), and D(v), respectively. O

Theorem 2.5. Fix Grassmannian permutations g and u with descent at position k so that
A(g) € A(u). Let v be the vezillary permutation such that D(v) = Dyes(A(u), A(g)). Then

deg(Bu,(t)) = deg(B,(x)).

Proof. Write code(u) = (c1,...,¢,). Since u is Grassmannian with descent at position k,
AMu) = (g, Ch—1,--.,c1) (see [27, Section 2.2]). In particular, this means we can identify each
cell in D(u) with cells in Dy, = {(4,7) : 1 < j < ¢} by left justifying cells in D(u) within
rows.

Under this identification, we map each element of Pipes(u,g) to a subset of D). Call
this set of diagrams L. It is immediate that L < Pipes(wy, g). In particular, this implies
elements of L are connected by (flipped) K-theoretic moves, i.e., replacements of the form:

— +

and

¥ ¥

By flipping the first k rows vertically, we see that elements of L are in bijection with elements
of KExcitedYD(A(u), A(g)). Thus, we have a (degree preserving) bijection between elements
of Pipes(u, g) and KExcitedYD(A(u), A(g)).

Then by Equation and Proposition 2.2 we conclude deg(®,,4(t)) = deg(8,(x)). O
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Example 2.6. Let ¢ = 1247356 and u = 1457236. An element of Pipes(u,g) and its
corresponding K-theoretic excited Young diagram are pictured below.

+ |+ |+
u— +

T

%

2.5. Connections to the Grassmannian degree formula. In previous work with Ren
and St. Dizier [32], the authors presented a formula to compute the degree of symmetric
Grothendieck polynomials. If u € S,, is Grassmannian with descent k, then the symmetric
Grothendieck polynomial is &, (1, ..., 2x) = &yu(21,...,2,). Since Grassmannian per-
mutations are both 1432-avoiding and vexillary, our new degree formulas are two different
generalizations of this formula. We illustrate these connections here.

Write 6% = (k,k —1,...,1). Let sv(\) = max{k : 6®) < A\}. Given a partition \ =
(AL, ..., A), let trunc®()) be the partition obtained by removing the first i columns of the
Young diagram of A\. Then:

Theorem 2.7 ([32]). If A\ = (A\1,..., \x), then

k
deg(®(z1,. .., 71)) = [\l + D sv(trunc®I ().
i=1
Theorem can be recovered using Theorem or Theorem [I.7] We illustrate this in
the example below.

Example 2.8. Let A = (3,2,2,0) and k£ = 4. The Grassmannian permutation associated to
the pair (A, k) is w = 1457236. The first line below computes the formula in Theorem
where the ith Young diagram has trunc®)()\) shaded, with 6*) marked with x’s for k =
sv(trunc??)())).

| | x| x| X[ x[x]
— X [ X
X

Below, we demonstrate the rule given in Theorem . Here, we have oy (w) shaded, with
the longest diagonal marked with x’s.

@D—» Ry @ ﬁ ﬁl:l»

Tl

| X}
[ IX] |

3
3
:
:
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Now, we use the formula from Theorem . In each Young diagram, we have shaded 4 (w),
with the longest antidiagonals marked with x’s.

1[1]3] x| x| x| |
1)1 — X
1]1 X

Thus we see all three formulas compute deg(®,(z1,...,2x)) = [N\ +3+ 1+ 1 = 12. &

3. TABLEAU FORMULAS FOR GROTHENDIECK POLYNOMIALS

Since their introduction, Grothendieck polynomials have been studied with a number of
combinatorial formulas ([9, 26], [4]). For our degree formulas, we will focus on two tableau
formulas in the special cases of 1432-avoiding permutations and vexillary permutations.
Furthermore, in each of these cases, we construct a tableau whose weight contributes to the
top degree terms of the corresponding Grothendieck polynomial.

3.1. Set-valued Rothe tableaux. A set-valued Rothe tableau 7' of shape D(w) is a
filling of D(w) with nonempty subsets of Z- such that for boxes a,b € D(w):

e if a lies north of b in the same column, then max 7T'(a) < min7'(b), and
e if a lies west of b in the same row, then min7'(a) > maxT'(b),

where T'(a) denotes the set of entries of 7" in box a. Let SVT(D(w)) be the collection of such
tableaux. We say a tableau T € SVT(D(w)) is flagged by ¢ = (¢1, ¢, ..., ¢,) if for each
box b in row i of D(w), maxT'(b) < ¢; for all i. For a 1432-avoiding w € S, let

FSVD(w) = {T € SVT(D(w)) : T is flagged by (1,2,...,n)}.
Example 3.1. Below is some 7' € FSVD(w) for w = 1462375.

21[ 1
332

—

I

¢
Theorem 3.2. [§ Theorem 1.1] For w € S,, 1432-avoiding, &, has the following expansion:
(31) ®w(X, Y) = Z <_1)#T_#D(W) 1_[ Tval(e) @ y)\T<e)+¢>T(e)fc(e)7val(e)+1'
TeFSVD(w) ecT

where the product is over entries e in T whose value is val(e) and c(e),r(e) are the column
and row indices of e.
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For T' € FSVD(w), let #T denote the number of entries in 7. We say T" € FSVD(w) is
maximal if 77 € FSVD(w) implies #1" < #T. Now we give a construction of T, € FSVD(w)
for a given 1432-avoiding w. Theorem proves T, is maximal. Let md(D) denote the
northmost then westmost maximal diagonal path of D < [n]?. For md(oy(w)) # &, let

NE(md(oy(w))) = {(¢,7) € D(w) —md(ox(w)) : (i,7) lies northeast of md(ox(w))}.

Take Ty € SVT(D(w)) such that To(i, j) = i for ¢ € [L(code(w))]. For k € [L(code(w)) — 1],
let T}, € SVT(D(w)) such that for (7, 5) € D(w):

Te1(i,7) v {minTy_1(i,7) — 1} if (4,7) € md(o(w)),
Tk(l,j) = Tk—1<i7j) -1 if (17]) € NE(md<0k<w)))7
Ty-1(i,7) otherwise,

where T'(7, j) — 1 is entrywise subtraction. Let T, := T (code(w))-

Example 3.3. Below we construct T, for w = 1462375.

2|2 211 211
3132

W
w
(2]
bl
Il
—

[x2]

b

||
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w
w
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]
—
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]
—_

ke

Il

N
w
w
[\

]
—_

ko

Il

ot
w
w
[\

]
—_

D
Al
1
=&
1
1 &8
1

¢
Lemma 3.4. Suppose w in S, is 1432-avoiding. Then T, € FSVD(w).

Proof. We proceed by showing T}, € FSVD(w) for k € [L(code(w))] by induction on k. By
construction, Ty € FSVD(w). Suppose T € FSVD(w) for some k € [L(code(w))]. If
md (o (w)) = &, the result follows the inductive assumption since Ty, = T_;.

Otherwise, since Tj,_; € FSVD(w) by construction of Ty,

max Ty (i, 7) < maxTj_1(i,7) < i.
Similarly since Tj;_; is decreasing along rows, T} is clearly decreasing along rows. By def-
inition of T}, any (4,7) can be decremented no more than i — 1 times, so no entry can be
decremented to 0. Thus it remains to show 7} increases down columns. Consider some
(7,7) € md(og(w)). Let

i' = max{x <i : (z,j) € D(w)}.
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11123 3
2121|233
34145
26

FIGURE 2. Let v be as in Figure 2.2 Then A(v) = (6,4,2,1) and p(v) =
(8,8,8,5,5,5). Pictured on the left is A\(v) < u(v) with the diagonals used to
compute ¢(v) = (3,3,6,6) drawn in red. To the right is an element of FSVT (v).

Since Ty_; is increasing down columns, it suffices to show that max Ty (i, j) < minT}(, j).
If (i',5) € NE(md(ox(w))) or does not exist, the result follows by the construction of 7.

Otherwise, by the definition of md(oy(w)), it follows that ¢ =i’ + h for some h > 1. Then
for s € [i'], by the definitions of Ty and md(os(w)),

(3.2) max Ty(i', j) + h < min T, (4, 7).

Thus if £ < ¢/, we are done. If k& > ¢, it follows that maxTy(i’,j) = maxTy(¢,j) and
min T (4, j) = min Ty (i,j) — h + 1, so by Equation (3.2)),

max T(i',j) < min Ty (7, 5) — 1.

Thus T}, € FSVD(w). O

3.2. Set-valued Young tableaux. A set-valued tableau T of shape A = (A1, A2, ..., \,)
is a filling of A with nonempty subsets of Z~ such that for boxes (a,b) € A:

e if g lies north of b, then maxT'(a) < min7'(b), and
e if a lies west of b, then max7T'(a) < min7'(d),

where T'(a) denotes the set of entries of 7" in box a. Let SVT(X) be the collection of such
tableaux. We say a tableau 7' € SVT()) is flagged by ¢ = (¢1, ¢a, . .., ¢,) if for each box b
in row 7 of A, we have maxT'(b) < ¢;. For a vexillary permutation v, let

FSVT(v) = {T e SVT(A(v)) : T is flagged by ¢(v)}.

An example of some T € FSVT(169247358) is given in Figure . We note that many different
choices of flagging can result in the same underlying set of tableaux. See [28, Remark 3.10]
for further commentary.

Theorem 3.5. [22) Theorem 5.8] If v € S, is vexillary, the double Grothendieck polynomial
&, (x;y) has the following expansion:

(33) ®U<X; y) = Z (_1)#T_|M 1_[ Tyal(e) S Yval(e)+c(e)—r(e)s

TeFSVT(v) ecT

where the product is over entries in T whose value is val(e) and c(e),r(e) are the column
and row indices of e.
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For T' € FSVT(v) let #T denote the number of entries in 7. We say T € FSVT(v) is
maximal if #7 = max{#U : U € FSVT(v)}. Now we give a construction of U, € SVT(v)
for a given vexillary v. Theorem proves U, is maximal.

Let ma(\) denote the northmost then westmost maximal antidiagonal path of | J, ;i < A.
For ma(7,(v)) # O, let

SE(ma(7k(v))) = {(i,7) € A —ma(7x(v)) : (i,7) lies southeast of ma(7(v))}.

Take Uy € SVT(A) such that Uy(i, j) =i for i € [¢(N)]. For ke [£(\) — 1], let U, € SVT(A)

such that for (i,7) € A :
Up-1(i,j) v {max Up_1 (¢, j) + 1} if (¢,7) € ma(ri(v)),
Uk(Zm]) = kal(iaj) +1 if (Z>]) € SE(ma‘(Tk(v>))7
Ur—1(i,7) otherwise,
where U (i, j) + 1 is entrywise addition. Let U, := Uyy).

Remark 3.6. By a similar argument to Lemma [3.4] it follows that U, € FSVT(v). By
Theorem [I.7] it follows that U, is maximal.

Example 3.7. Let v = 169247358. From Figure2.2] we saw A(v) = (6, 4,2, 1). Furthermore,
o(v) = (3,3,6,6). Below is the construction of U, from U.

L[1[1]1]1]1] 11]1]12]2]2] 1]1]1]12]2 23] 1]1]1]12]2 23]
2 2[223]3 2[223]3 2[223]3
k=1 k=2 k=3
3]3 — |3[34 — |3 s — |3]&
4] ) = I
¢

4. PROOFS OF DEGREE FORMULAS

In this section, we prove our Grothendieck degree formulas for 1432-avoiding permutations
and vexillary permutations to deduce our main theorems.

4.1. Proof of Theorem (1.3, Recall, md(D) is the northmost then westmost diagonal path
of D € [n]? and
op(w) ={(i,j) € D(w) : i>k,j >w(k)}.
For brevity, define fy(w) = #D(w) + > 1_; palox(w)).
We start by recalling a lemma from [§].

Lemma 4.1 ([8 Lemma 2.4]). Let w # wqy be a 1432-avoiding permutation. If v is the first
ascent of w, then ws, is also 1432-avoiding.

Proposition 4.2. If w is 1432-avoiding, there exists T € FSVD(w) such that
In particular, deg(®,,) = fa(w).
Proof. This follows by Lemma (3.4 since #71,, = fa(w) by construction. O
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Lemma 4.3. Let w # wy be a 1432-avoiding permutation and suppose r is the first ascent
of w. If there is a maximal diagonal path in o,.(w) which has no cells in row r + 1, then there
exists a mazrimal set-valued Rothe tableau for w such that the entries in row r + 1 restricted
to o,.(w) are all strictly less than r + 1.

Proof. Suppose w is such that there is a maximal diagonal path in o,(w) which has no cells
in row r + 1. Consider maximal 7' € FSVD(w) such that T has boxes containing r + 1 in row
r + 1 restricted to o,(w). We will construct 7" € FSVD(w) such that #7" = #T and such
that the entries in row r + 1 restricted to o,.(w) are all strictly less than r + 1.

Let b; denote the box containing the eastmost occurrence of » + 1 in row r + 1 in 7.
For 1 < i < #md(o,(w)), we define b; € o,(w) as the box containing the northmost, then
eastmost occurrence of r + ¢ in 7', in the region strictly east of b;_;. Thus {bi}ie[gr(w)] forms
a diagonal path.

Let ¢; denote the northmost box of o,.(w) lying directly south of b; for each i € [#md (o, (w))].
By the assumption that there is a maximal diagonal path in o, (w) which has no cells in row
r 4+ 1 and the definition of b;, {c;}iepr exists for some 1 < k < #md(o,(w)). Let P be
constructed as follows:

P ={bi} u{b; : bj_; € P and ¢;_; lies in the same row as b;}.

Let P' = {c; : b; € P}. By maximality of T it follows that {r + 1,7 +1i—1} < T'(b;) for each
i € [#P]. Take T" such that

(T(b;)\{r +1i}  if (z,y) = b;,
T(c;) v {r +i} if (x,y) = ¢,
T (z,y) = T(z,y) — if (x,y) lies directly between c; and b;, 1,
T(x,y) — if (x,y) = (r + 1,y) € o.(w), lying west of by,
(T (x,y) otherwise.

It is straightforward to check 77 € FSVD(w). Since #T = #T", T" is of the desired form. O

Proposition 4.4. Suppose w € S, is 1432-avoiding. Let r denote the position of the first
ascent of w and {¢,, <--- < co} = {w, <i < w4y : (r+1,1) € D(w)}. Then

Dw-s,)=(D(w)—{(r+1,¢):0<i<m})u{(r,g):0<i<m}u{(r,w)}
Proof. This follows by the definition of D(w), since r is the first ascent of w. O

Lemma 4.5. Let w # wqy be a 1432-avoiding permutation, and suppose r is the first ascent
of w. If there is a mazximal diagonal path in o,.(w) which has no cells in row r + 1, then

fa(w) +1 = fy(ws,).
Otherwise,
fa(w) = fa(ws;).

Proof. By Proposition #D(ws,) = #D(w) + 1. Further, since r was the first ascent of
w, (r,w,) € Dom(ws,). Further we see

pa(or(w)) = pa(or(ws,)) for k #r,r+1
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by Proposition [£.4] By definition of r,
pa(0r41(w)) = pa(or(wsy)).

Finally, by Proposition[d.4] o,.1(ws,) = o,(w)—J_y(r, ¢;). Thus pa(o,(w)) = pa(or41(ws,))
if there is a maximal diagonal path in o,(w) which has no cells in row r + 1. Otherwise,
pa(o-(w)) = pa(or11(ws,)) + 1, so the result follows by the definition of fj. O

Proof of Theorem[1.3. We proceed by induction on ¢(wg) — ¢(w). In the base case, w = wy
and the formula is immediate since deg(wg) = £(wg) = #D(wo) = fa(wo).

Now pick w € S,, so that w # wy. Assume the formula holds for all w’ € S,, so that
((w") > (w). Let r be the first ascent of w. Let R denote the set of boxes in o, (w) lying in
row 7 + 1. By Proposition [£.4] one obtains D(ws,) from D(w) by shifting all cells in R up
one row and then placing a new cell in position (r,w,).

Consider T' € FSVD(w). We will construct 7" € FSVD(ws,) from T" by the following:

(7 if (x —1,y) = (r,wy),

T(x,y)—{r+1} u{r} (a:,y)eR r+1eT(z,y), and r ¢ T(z,y),
T(zx—1,y) =% T(x,y) — {r+1} if (zr,y)e R, r+1€T(x,y), and r € T(z,y),

T(x,y) 1f (x,y)e R, r+1¢T(x,y),

(T'(z—1,y) otherwise.

Thus 7" € FSVD(ws,) and #T" > #T, giving deg(®,,) < deg(®,,,.). We have two cases
to check.
Case 1: Suppose all maximal diagonal paths in o,(w) have a cell in row r + 1.

We have

fa(w) < deg(&,,) (by Proposition [4.2)
< deg(Bys,)
= fa(ws,) (by inductive hypothesis).

By Lemma [4.5] fi(w) = fa(ws,). Thus, fu(w) = deg(B,).
Case 2: Suppose there exists a maximal diagonal path in o,(w) which has no cells in row
r 4+ 1. By Lemma [4.3] there exists a maximal tableau 7" for w so that boxes in R have
entries less than r + 1. Using the above construction for 77 € FSVD(ws,), it follows that
#T' = #T + 1. As a consequence, deg(®,,) < deg(Bs, ).

Thus,
fa(w) < deg(®B,,) (by Proposition
< deg(Sus,)
= fa(ws,) (by inductive hypothesis)
= fa(w) +1 (by Lemma [4.5)).

Thus fi(w) = deg(B,,). O
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4.2. Proof of Theorem [1.7} If v is vexillary, we associate to v the following statistic:
(4.1) Ja(v) = #D(v) + 3 pu(mi(v)).
i=1

Note that by definition, #D(v) = |[A(v)]. The goal of this section is to prove Theorem [L.7],
i.e., to show if v is vexillary, then deg(®,) = f,(v). We start with some lemmas.

We follow [22] for combinatorial background. The maximal corner (r,s) of w is the
position of the right most cell in the last row of D(w). Let ¢; ; denote the transposition (i j).
Define wp := wt, ,-1(5. Then wp is the unique permutation such that

(4.2) D(wp) = D(w) —{(r,s)}.
Grothendieck polynomials satisfy a recurrence known as transition. Recall ¢; ; denotes the
transposition (4, j). Let wp := wt, ,-1(5). Let 4y < iy < --- < i; be the list of those indices

i < r for which {(wp) + 1 = l(wpt;,).

Theorem 4.6 ([24]). Given w € S,,, with mazximal corner (r,s) and t;,,’s as above,
Gy = Gup + (2 = I)(Gup * (L=t ) (L= tiy) - (1= tiyr)),

where G, x u 1= B,,.

When v is vexillary, there is at most one index ¢ < r for which ¢(vp) +1 = £(vpt;,). When
such an index exists, we define vg = vpt;,. In this case, Theorem specializes to

6, =&y, + (v, — 1)(Gyp * (1 — i)
(4.3) =&y + (2 = 1)(Gy, — Gy
= 2,6, + (1 —2,)8,..
If no such index exists, then necessarily (r,s) € Dom(v) and we have
Gy = &y, + (7, — 1)(6y)

4.4
(44) =2,6,,.

Lemma 4.7. Fiz any permutation w and suppose the mazimal corner (r,s) € Dom(w). Then
deg(®,,) = deg(®,,) + 1.

Proof. This is an immediate consequence of Equation (4.4]) since multiplying any nonzero
polynomial by z, increases the degree by 1. 0

Given a permutation w, the cell (r,s) € D(w) is called accessible if

(1) (r,s) ¢ Dom(w) and
(2) there are no other cells which occur weakly southeast of (r,s) in D(w).

The maximal corner is an accessible box if and only if there exists i < r such that /(wp)+1 =
((wpt;,). For vexillary permutations, there can be at most one such ¢, so we define v = vpt;
in this case. We may construct v graphically as follows. Consider the cells in D(v) which
sit weakly northwest of the accessible box in its connected component. Move each of these
diagonally one step in the northwest direction. This new diagram is the D(v¢).
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Lemma 4.8. Fiz v vezillary, where the maximal corner (r,s) is an accessible box. Then

deg(®,) = max{deg(®,,),deg(B,.)} + 1.

Proof. The monomials of Grothendieck polynomials alternate in sign based on degree. As
such, Equation (4.3) is cancellation free. Therefore, the top degree monomials in &, must
come from z,&,, or 2,8, .. O

Lemma 4.9. For v vezillary, if the maximal corner (r,s) € Dom(v), then f,(v) = f,(vp)+1.

Proof. By Equation (4.2)), A(vp) is obtained by removing the corresponding (boundary) cell
from A(v). The label of this cell in F), is zero since (r,s) € Dom(v). At all other positions,
F, matches F,,. As such, 7;(v) = 7;(vp) for all ¢ > 0. Therefore,

D+ Y (o)

— @) + 1+ Y alri(op)

=1

= fa(vp) + 1. [l

Lemma 4.10. Fiz v vexillary and suppose the mazximal corner (r,s) is an accessible box.

(1) fa(v) = fave) + 1.

(2) If (r,s) is the only cell in its row within its connected component in D(v), then
fa(v) = fa(ve) + 1.

(3) fa(v fa(vp) + 1.

(4) [f (r, s) is not the only cell in its row within its connected component in D(v), then

fa(v) = falvp) + 1.

Proof. Throughout, let (a,b) denote the position of the box in A(v) which corresponds to
(r,s). Write k = F,(a,b). By assumption since (r,s) ¢ Dom(v), k > 1.

(1) To get F,. from F,, take all labels weakly northwest of (a,b) with label k£ and decrease
the value of these labels by 1. As such, 7;(v) 2 7;(ve) for all 4. Furthermore, since (r, s)
has label k, 74(v) 2 7x(ve). In particular, 74(ve) is obtained from 74 (v) by removing a
rectangular strip. Since this strip contains (r, s), removing this rectangle removes the last
row of 74 (v) entirely (and anything north of this row) by the definition of (r,s). Therefore,
any antidiagonal path in 7(ve) can be completed to a larger antidiagonal path in 74 (v) by
adding a box row r. As such, p,(7x(v)) > pa(7:(vc)) and so

D+ Y ()

> |A(ve)| + Z pa(Ti(vC))

i=1
= fa(UC)'
Since these are all integers, f,(v) = fa(ve) + 1.
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(2) Since there is a single box in the same row as (a,b) in 7(v) and this box is not in 7 (v¢)
(nor any boxes in its same column) we claim p,(7:(v)) = pa(7x(ve)) + 1. For all other i, we
have 7;(v) = 7;(ve) and o0 p.(7:(v)) = pa(7i(vc)). Therefore, fu(v) = fu(ve) + 1.

(3) Using Equation (£.2), F,,(i,j) = F,(i, j) for all (¢,5) € A(vp). As such,

7;(v) ifi<k
7;(v) = {(a,b)} otherwise.

(4.5) Ti(vp) = {

In particular, 7;(v) 2 7;(vp) for all i. Therefore,

PIACIOIEDWACITNE
Then

) = O+ 3 pulre)

> Mwp) + 1+ Y palri(or))

=1

= fa(l)p) + 1.

(4) By assumption, (r,s — 1) € D(v). As such, if (a,b) € 7;(v) then (a,b — 1) € 7;(v) as
well. Fix an antidiagonal path of cells in 7;(v). If it does not use (a,b), then it is also
an antidiagonal path of cells in 7;(vp). If it does use (a,b), then we can construct a new
antidiagonal path of cells of the same size by replacing (a,b) with (a,b —1). By (4.5)), we
see that this new antidiagonal path is also in 7;(vp). As such, p,(7;(v)) = pa(7i(v)). Then
we conclude f,(v) = f,(vp) + 1. O

Proof. Fix v vexillary. The statement is trivial for the identity, so assume ¢(v) = 1. We will
proceed by induction on the position of the maximal corner (r,s) (ordering cells of the grid
lexicographically). In the base case, v = 21, we confirm deg(®,) =1 = f,(v).

Assume the formula holds for any vexillary v whose maximal corner occurs before (r, s),
Le., deg(&,) = fa (V).
Case 1: (r,s) € Dom(v). By Equation (4.2), the maximal corner of vp occurs before (r,s).
Furthermore, vp is vexillary. As such,

deg(®,) = deg(8,,) + 1 (by Lemma [4.7))
= fa(vp) +1 (by induction hypothesis)

= fa(v) (by Lemma [4.9)).

Case 2: (r,s) ¢ Dom(v) (i.e., it is an accessible box).
Both vp and ve are vexillary and their maximal corners (when defined) occur before (r, s).
We know by Lemma [£.§] and the induction hypothesis that

(4.6) deg(®,) = max{deg(®,,), deg(Gy.)} + 1 = max{fu(vp), fa(vo)} + 1.
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In particular, 1 + f,(vp) < deg(®,) and 1 + f,(vc) < deg(®,). Applying Lemma to
(4.6), we see that deg(®,) < f,(v). By parts (2) and (4) of Lemma since (7, s) is an
accessible box, 1+ f,(vp) = fo(v) or 1 + f,(ve) = fo(v). Then f,(v) = deg(B,). O

5. CASTELNUOVO-MUMFORD REGULARITY OF SCHUBERT DETERMINANTAL IDEALS

We begin this section by recalling the connection between the Castelnuovo-Mumford reg-
ularity in the Cohen-Macaulay setting and the degree of a K-polynomial (Subsection .
We then provide some background on Schubert determinantal ideals, explain how to ex-
press Castelnuovo-Mumford regularity of Schubert determinantal ideals in terms of degrees
of Grothendieck polynomials, and prove Theorems and (Subsection .

5.1. Castelnuovo-Mumford regularity and connections to K-polynomials. Let S =
k[z1,...,T,] be a polynomial ring over the field k, and assume that S is positively Z¢-graded
so that degyS = k. Let M be a finitely generated graded S-module. The multigraded
Hilbert series of M is a formal power series in indeterminates t1,...,t4:

- a K(M;t)
t) = dimy (Mu)t? = —————, deg(x;) = a;.
) aéd <L) [T (1 —t2) &)

The numerator K(M;t) € k[t™'] is called the K-polynomial of M. When S has the
standard grading, that is deg(x;) = 1, the K-polynomial is a Laurent polynomial in a single
indeterminate ¢.

For the rest of this subsection, assume that S has the standard grading, and let I < S be
a homogeneous ideal. There is a minimal free resolution

O_)C_BS ﬁzgs/f_,@s /BlljS/I _><_BS 503(5/1)_,5’/[_,()

where [ < n and S(—j) is the free S-module obtained by shlftlng the degrees of S by j. The
Castelnuovo-Mumford regularity of S/I, denoted reg(S/I), is defined as

reg(S/I) := max{j —i : B;,;(S/I) # 0}.
When S/I is Cohen-Macaulay, we have that
(5.1) reg(S/I) = deg K(S/I;t) — htsl,

where htgI denotes the height of the ideal I. See, for example, [2, Lemma 2.5] for justification
of this formula. In this paper, we use Equation to compute Castelnuovo-Mumford
regularity of coordinate rings of certain matrix Schubert varieties and certain standard-
graded Kazhdan-Lusztig varieties.

5.2. Regularity of Schubert determinantal ideals and proofs of Theorems and
We begin by recalling basic facts about Schubert determinantal ideals. Fix an n x n
permutation matrix w. Let X = (z;;) be an n x n matrix of distinct indeterminates, and let
X[p),[q denote the matrix formed by intersecting the first p rows of X and the first ¢ columns
of X. Let k[x] := k[x;; : 1 <4,7 < n]. The Schubert determinantal ideal /,, < k[x] is
the ideal

= (minors of size r,(4,7) + 1 in Xp ) ¢ (4,7) € Ess(w)).
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By [10], I,, is a prime ideal, and k[x]/I,, is Cohen-Macaulay. Recall that k[x]/I,, is the
coordinate ring of the matrix Schubert variety B_wB, < Maty(n,n) where B_ < GL, (k)
is the Borel subgroup of invertible lower triangular matrices, By < GL,(k) is the Borel
subgroup of invertible upper triangular matrices, and Maty(n, n) is the affine space of n x n
matrices with entries in k. Schubert determinantal ideals are homogeneous with respect to
the standard grading of k|[x].

Proof of Theorems[1.1] and [1.5. We first recall how to express the regularity of k[x]/I, in
terms of the degree of a Grothendieck polynomial. This was originally discussed in [32]. By
[10], we have htypx [y = #D(w). It then follows by ({5.1]) that

reg(k[x]/L,) = deg K (k[x]/L,) — #D(w).
By [3, Theorem 2.1] (see also [21, Theorem A]), K(S/I,;t) = &, (1 —t,...,1 —1t). Further-

more,

deg B, (1 —t,...,1 —t) =deg & (x1,...,2,)

since the the coefficients in the homogeneous components &,,(z1, ..., x,) all have the same
sign (see, for example, [21]). Thus,

(5.2 reg(k[x]/1,) = deg ®,(z1, . .., z) — #D(w)

Theorems [LL1] and [L. are now immediate from Theorems [L.3] and [L.7 O

6. REGULARITY OF HOMOGENEOUS KAZHDAN-LUSZTIG IDEALS

In this section, we recall the basics of Kazhdan-Lusztig ideals J,,, (Section and pro-
vide preliminary combinatorial formulas for regularity of Kazhdan-Lusztig ideals J, ,, when
v is a 321-avoiding permutation (Section . We then provide an easily-computable com-
binatorial formula for the regularity of open patches of Schubert varieties in Grassmannians
(Section [6.3). This proves a (generalization of a) conjecture from [32] giving a correction to
a conjecture of [23].

6.1. Kazhdan-Lusztig ideals. We next recall Kazhdan-Lusztig ideals, which were intro-
duced by A. Woo and A. Yong in [35] to study singularities of Schubert varieties. Given a
permutation matrix v € S,,, consider the matrix M) which has 1’s at locations (4, v;), inde-
terminate z;; in location (4, j) € D(v), and 0’s elsewhere. Let k[z"] := k[z;; : (i,7) € D(v)].
Given w € S,,, define the Kazhdan-Lusztig ideal J,,, < k[z"] to be

Jyw = (minors of size 1,(i,7) + 1 in M[(;]’)[j] : (4,7) € Ess(w)),

which is not the unit ideal precisely when w < v in Bruhat order. The Kazhdan-Lusztig ideal
Jyw 1s the prime defining ideal of the intersection of the Schubert variety B_\B_wB, <
B_\GL, (k) with the opposite Schubert cell B_\B_vB_ (see [35, Corollary 3.3] and the
preceding discussion). Furthermore, k[z"]/J,. is Cohen-Macaulay. This follows by [19)
Lemma A.4] together with the Cohen-Macaulayness of Schubert varieties [33]. See [35],
Section 3.2] for further discussion.

Kahzdan-Lusztig ideals are not always homogeneous with respect to the standard grading
on k[z"]. However, when v is 321-avoiding, and hence when v is a Grassmannian permu-
tation, J,, is homogeneous with respect to the standard grading, see e.g., [20, Footnote on
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pg. 25]. Some further partial results on the problem of when Kazhdan-Lusztig ideals are
homogeneous with respect to the standard grading [35, Problem 5.5] can be found in the
recent preprint [30].

6.2. Preliminaries on regularity of Kazhdan-Lusztig ideals J,, where v is 321-
avoiding. We next describe a formula for the regularity of k[z"]|/J,. where J,, is a
standard-graded Kazhdan-Lusztig ideal. This formula will be in terms of &, (x;y), a double
Grothendieck polynomial. Let G, (x;y) denote the double Grothendieck polynomials in [21],
so that G, (x;y) = B, (1 —x;1 — %) We also let Gy, (t) = B, (1 —t).

The torus 7" acts on the opposite Schubert cell B_\B_vB_ by right multiplication. This
induces a grading on k[z"] where variable z;; in the matrix M () has degree ey(i) — €5, Where
e; € Z"™ denotes the i*" standard basis vector. By [36, Theorem 4.5], the K-polynomial of
k[z"]/Jy . for this Z™-grading is given by

(61) K(k[z“]/Juw; t) = Gw(tv(l)a ce 7tv(n); tl, e ,tn) = G%w(ti]’ > tv(z)/t])

Note that the conventions in [36] differ from ours.

In the case where v is 321-avoiding, there is a coarsening of the grading f : Z" — Z which
gives each z;; € k[z;;] degree 1. Specifically, take f(e;) = 1 if there exists & > ¢ such that
v (k) <v7(i) and f(e;) = 0 otherwise (see e.g., the footnote on page 25 of [20]). Then the
K-polynomial of k[z"]/J, ., with respect to the standard grading, is

K(K[2"]) Ty t) = Go(t/ &) gl o)y g=Flen) o y=flen))
_ va(tij N tf(ev(i))""f(ej))'

Example 6.1. Let v = 34512 and w = 21435. Using Equation (2.1), we may compute
Gyw(t) = tintsy + tiites — t1itasts. For the Z'-grading, the substitution provided in Equa-

tion (6.1)) yields

(6.2)

t3 ts t3 17} t3 ts ty

K2/ Jywit) = (1 - 212y 4 1-3a-H - a-Ba -5 -1y
() i) = (L= )0 B+ (0= 0 - 2 - 0= 0 - -1

Using Theorem [3.2] we may compute
G (x;y) = fiZs  nifz Difi TiniTz Hifidy TiTads il Tz ls

Y1 Y1 Yo Y1 Y3 Y1 Ys Y2 Y1 Ys 1 Y1 Y2 Y1 Y1 Ys Y2 1
Combining this with Equation (6.2)) yields

K(k[z"]/Jpw;t) = Go(1,1, 1,85t 71 1,1,1) = 2(1 — ) — (1 —t)°

under the Z-grading. &
Lemma 6.2. Let v € S, such that v is 321-avoiding. If (i,j) € D(v), then f(e;) = 1 and
f(ey;) =0.

Proof. Since (i,j) € D(v), there is k = v; such that v; > j and i < v;', thus f(e;) = 1. If
f(es,) = 1, then there is k > v; such that v;' < i. This would then imply that there is a
321-pattern in v. In particular, we would have vk_l <1< vj_l, with 7 < v; < k. As v is

321-avoiding, we conclude that f(e,,) = 0. O
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Lemma 6.3. Let v,w € S,, such that v is 321-avoiding and w < v. Then

(6.3) K(K[2"]/Jowit) = Goulty — 1) = > (=)# (1 —p#P,

PePipes(v,w)

Proof. The coarsening of the grading f : Z" — Z combined with Lemma ensures that
tfleo) 7€) = ¢ for (i,7) € D(v). Thus, the result follows by Equatlons and ( .
together with the fact that G, ,(t) = @U’w(l —t).

We will use the following to prove the main result of this section (Theorem [6.5]).

Proposition 6.4. Let v,w € S, such that v is 321-avoiding and w < v. Then,
(6.4) deg K (k[z"]/Jyw;t) = deg B, ().
Furthermore, the Castelnuovo-Mumford reqularity of k[z"]/Jy. is given by

(6.5)  reg(k[z']/Jyw) = deg &, ., (t) — #D(w) = max{#P | P € Pipes(v,w)} — #D(w).

Proof. Equation (6.4)) is immediate from Lemma . Equation (6.5]) follows from Equations
. and the fact that htypeJyw = #D(w). O

6.3. Castelnuovo-Mumford regularity of patches of Grassmannian Schubert va-
rieties. In [32], we gave a counterexample to a conjecture of Kummini-Lakshmibai-Sastry-
Seshadri from [23] on the Castelnuovo-Mumford regularity of coordinate rings of standard
open patches of certain Schubert varieties in Grassmannians. We then gave a conjecture of
a correct formula [32, Conjecture 5.6]. In this short subsection, we prove a generalization of
this conjecture.

Identify the Grassmannian Gr(k,n) with P\GL,(k) where P < GL, (k) is the parabolic
subgroup of block lower triangular matrices with block sizes k and n — k down the diagonal.
Let v and g be a pair of Grassmannian permutations with descent at k. The Kazhdan-
Lusztig ideal J,, is the prime defining ideal of the intersection of the Schubert variety
P\PgB, < P\GL,(k) with the open set P\PuB_ < P\GL, (k). The following theorem
gives the regularity of the coordinate rings of these open sets of Grassmannian Schubert
varieties.

Theorem 6.5. Fiz Grassmannian permutations g and u with descent at position k so that
A(g) € A(u). Let v be the vezillary permutation such that D(v) = Dyoy(A(u), A(g)). Then,

reg(k[z"]/Juq) = deg(®,(x) !—Zpa 7i(v

Proof. The first equality follows due to Equation , Theorem [2.5] and the fact that
htypzu)Ju,g = |A(g)|. The second equality is then immedlate by Theorem [1.7|and the fact that

IA(g)| = #D(v) by construction of v.

We note that [32, Conjecture 5.6] concerned the special case of the above theorem where
u=nm—-k+1)(n—k+2)...n12...(n— k), written in one line notation.
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7. REGULARITY OF LADDER DETERMINANTAL IDEALS

Our next goal is to provide a formula for the Castelnuovo-Mumford regularity of any
one-sided ladder determinantal ideal. Ladder determinantal ideals are generalized determi-
nantal ideals which were introduced by S. S. Abhyankar [I] to study singularities of Schu-
bert varieties. There has since been substantial interest in their properties. For example,
see [29, 18, B 6 [7, 12, 13, 22, 14, 15, [I1] and references therein. The work of Ghorpade
and Krattenthaler [I1] on a-invariants of certain ladder determinantal ideals is most closely
related to our results. This is discussed in more detail at the end of Section [Z.1]

7.1. One-sided ladder determinantal ideals. A ladder L is a Young diagram (in English
notation) filled with distinct indeterminates. Observe that a ladder is determined by a
collection of southeast corners L = {(a;,b;)}ie[s) ordered northeast to southwest. Label
the northwest corner of L to be (0,0). Take (as41,bs41) to be the southwestmost corner of
the ladder and take (ay,b;) be the northeastmost corner of the ladder.

Let P denote the lattice path from (as. 1, bs11) to (a1, by) which travels along the boundary
of the ladder, so that cells weakly northwest of the P are in L and boxes weakly southeast
of P are not in L. Let P = {(c;,d;)}e[+] denote a collection of distinguished points along
P. To each (c¢;,d;) € P, assign a value r; € Z~q. Let Ly ; denote the subset of L with row
indices in I and column indices in J for I, J < [n].

Let k[L] denote the polynomial ring generated by these indeterminate entries. Define the
one-sided mized ladder determinantal ideal Iy, :

It r = (minors of size r; in Ly, 14, : J € [5']) S K[L].

Letting [; denote the ideal of 7; x r; minors of L) 4,1, one observes that
I.= > I,
jels']

Following [21], we assume
(71) O<cr—TM<cpg—T9g< - <cCyg—Tg and 0 < dy — 1 <d2—T2<"'<dS/—TS/

so that I; < I for any j # k, j,k € [s']. As outlined in [10, Proposition 9.6], L can be
identified with a vexillary matrix Schubert variety X, where Ess(v) are the boxes indexed
by P and the ranks satisty r,(c;,d;) = r; — L.

Example 7.1. To the left is a ladder L. Then L% = {(5,3), (3,5)} with marked points and
corresponding ranks given in red. To the right is the associated permutation v.

211|212|%213|%14|%15
L _ |?21|%22|223|%24|225
- L
231|%232|%233|234|235
@ ® 3
241|242 | 243 2 D
251|252 | 253
3 1
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Then
Ir,» = (3 —minors of Lis)3],2 — minors of L) 3], 3 — minors of Lz [5))
= <det(L[3]7{3,4,5}), 2 — minors of L[3]7[3], det(L{3,4,5},[3])>- ¢

For certain one-sided mixed ladder determinantal ideals, regularity formulas can be de-
duced through a-invariant formulas of Ghorpade-Krattenthaler [11]. Their formulas give
results in the case in which (ry,r9, ..., ry) = (1,2,...,t,t—1,...,1) for some t € Z~, where
Equation is not imposed. Thus, for example, L as in Example is not in the class
of ladders considered in [11]. We note that an algorithm for a-invariant formulas is given in
[T1] for two-sided mixed ladder determinantal ideals with the same restriction on ranks.

7.2. One-sided ladder determinantal ideals via Grassmannian Kazhdan-Lusztig
ideals. We now recall that each one-sided ladder determinantal ideal is a Kazhdan-Lusztig
ideal N, , where u and g are Grassmannian permutations. This was first shown by Gonciulea-
Miller [I3, Theorem 4.7.3]; we include it here for completeness.

Take a ladder L with L€ = {(a;, b;) }ie[s], and marked points P = {(c;,d;)}je[s] assigning

ranks r;. Define u € S,4, as the concatenation of partial permutations w;, where for i € [s]
+ b; + ap — a;, and

U; = Idai—aH—l

Ust1 = [23 + y]\ Uie[s] WUi-

Set (Co,do) = ((lo,bo) with o = 1 and (Cs/+17ds/+1) = ((ls+1,bs+1) with Tsip1 = 1. Define
g € Sy4+y as the concatenation of partial permutations g;, where for i € [s' + 1],

(7.2)

g; = idki_ki—l + ki—l + hi—h and
got2 = [ + Y]\ Vie[sr+1] Gi-

where k; =cg—c; +r; — 1 and h; = d; — r;.

Note that Equation and the assumption that each indeterminate appears in at least
one minor ensure that L(code(u)) = L(code(g)) and u; > g, for each j € [z + y|. Then by
[13, Theorem 4.7.3] we have the following:

(7.3)

Proposition 7.2. Given a one-sided ladder determinantal ideal I, and u, g as above, J, 4
and Iy, , share the same generators.

Example 7.3. For L as in Example [7.1] below are D(u) and D(g) for the u, g as defined in
Equations (7.2)) and (7.3)).

[ | @BD
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As a consequence to Proposition [7.2] the K-polynomial of each one-sided ladder determi-
nantal ideal can be expressed both as a single Grothendieck polynomial and as a specialized
double Grothendieck polynomial. Combining this with [10], we have:

Corollary 7.4. Given a one-sided ladder L with marked points P = {(c;, d;)}je[s] assigning
ranks 1,

reg(S/[L) = reg S/']ug = Zn:

where u, g are as defined in Equations (| and (-) Here v is the vexillary permutation
such that Ess(v) are the bozes indexed by P and r,(c;,d;) = r; — 1.
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