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Abstract. We give degree formulas for Grothendieck polynomials indexed by vexillary
permutations and 1432-avoiding permutations via tableau combinatorics. These formulas
generalize a formula for degrees of symmetric Grothendieck polynomials which appeared in
previous joint work of the authors with Y. Ren and A. St. Dizier.

We apply our formulas to compute Castelnuovo-Mumford regularity of classes of gener-
alized determinantal ideals. In particular, we give combinatorial formulas for the regular-
ities of all one-sided mixed ladder determinantal ideals. We also derive formulas for the
regularities of certain Kazhdan-Lusztig ideals, including those coming from open patches of
Schubert varieties in Grassmannians. This provides a correction to a conjecture of Kummini-
Lakshmibai-Sastry-Seshadri (2015).

1. Introduction

Castelnuovo-Mumford regularity is a fundamental measure of the complexity of a graded
module. In this paper, we use Schubert calculus techniques to provide explicit, easy-to-
compute, combinatorial formulas for the Castelnuovo-Mumford regularity of classes of gen-
eralized determinantal ideals. The classes we treat include one-sided mixed ladder determi-
nantal ideals and ideals defining patches of Schubert varieties in Grassmannians. These two
classes of ideals are connected by work of N. Gonciulea and C. Miller [13].

Let k be a field. Let S “ krx1, . . . , xns be a polynomial ring with the standard grading,
degpxiq “ 1, and let I Ď S be a homogeneous ideal. When S{I is Cohen-Macaulay, as is the
case throughout this paper, the regularity of S{I is known to satisfy

(1.1) regpS{Iq “ degKpS{I; tq ´ htSpIq,

where KpS{I; tq is the K-polynomial of S{I and htSpIq is the height of I in S. Using this
fact, the authors, in joint work with Y. Ren and A. St. Dizier [32], gave a combinatorial
formula which computes the regularity of coordinate rings of Grassmannian matrix Schubert
varieties. The key technical ingredient was a formula of C. Lenart [26] regarding symmetric
Grothendieck polynomials. In the present paper, we extend our work from [32].
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1.1. Summary of results. We give a combinatorial formula for degrees of Grothendieck
polynomials indexed by 1432-avoiding permutations (see Theorem 1.3) and vexillary (2143-
avoiding) permutations (see Theorem 1.7). These formulas in turn, allow us to compute the
regularity of the corresponding matrix Schubert varieties. In particular, our formula in the
vexillary setting provides a formula for Castelnuovo-Mumford regularity of one-sided mixed
ladder determinantal varieties (see Section 7 for details). Our formulas naturally generalize
the Grassmannian formula of [32] (see Section 2.5 for details).

Theorem 1.1. Given w P Sn so that w is 1432-avoiding,

regpS{Iwq “
n

ÿ

k“1

ρdpσkpwqq.

Defined in Section 2, these σkpwq are certain subsets of the Rothe diagram Dpwq of w, and
ρdpσkpwqq denotes the size of the largest diagonal in σkpwq.

Example 1.2. Let w “ 1462375. In the images below, the elements of σkpwq are shaded,
with a maximal diagonal path in σkpwq marked with ˆ for k P r5s. For k “ 6, 7, we have
σkpwq “ H, and so we omit the figures.

k “ 1

ˆ
ˆ

ˆ

k “ 2

ˆ

k “ 3 k “ 4

ˆ

k “ 5

ˆ

Theorem 1.1 computes regpS{Iwq “ 3` 1` 0` 1` 1 “ 6. ♦

Theorem 1.1 is a direct consequence of the following:

Theorem 1.3. If w P Sn is 1432-avoiding, then

degpGwq “ #Dpwq `
n

ÿ

k“1

ρdpσkpwqq.

For w P Sn, #Dpwq is the Coxeter length of w. See Section 2 for the definitions of
Grothendieck polynomials Gw and Rothe diagrams Dpwq. The proof of Theorem 1.3 appears
in Section 4.

Example 1.4. Returning to w as in Example 1.2, Theorem 1.3 with Theorem 1.1 give that

degpGwq “ #Dpwq ` regpS{Iwq “ 6` p3` 1` 0` 1` 1q “ 12. ♦

We have similar diagrammatic regularity and degree formulas in the vexillary setting.

Theorem 1.5. Given v P Sn so that v is vexillary,

regpS{Ivq “
n

ÿ

k“1

ρapτkpvqq.
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Here, the τkpvq are certain subsets of the Young diagram λpvq associated to v and ρapτkpvqq
denotes the size of the largest antidiagonal in τkpvq. See Section 2 for details.

Example 1.6. Let v “ 169247358. In the diagrams below, the elements of τipvq are shaded
for i “ 1, 2, 3 in λpvq. In particular, a maximal size antidiagonal path contained in τipvq has
been marked with ˆ’s.

ˆ
ˆ

ˆ
ˆ

ˆ

ˆ
ˆ

ˆ

Applying Theorem 1.5, we have regpS{Ivq “ 4` 3` 1 “ 8. ♦

Theorem 1.5 is a direct consequence of the following:

Theorem 1.7. Suppose v P Sn is vexillary. Then

degpGvq “ #Dpvq `
n

ÿ

i“1

ρapτkpvqq.

The proof of Theorem 1.7 appears in Section 4.

Example 1.8. Returning to v as in Example 1.6, Theorem 1.7 with Theorem 1.5 give that

degpGvq “ #Dpvq ` regpS{Ivq “ 13` p4` 3` 1q “ 21. ♦

We also provide formulas for the regularity of certain homogeneous Kazhdan-Lusztig ideals
Jv,w. When v is a 321-avoiding permutation, we provide a formula in terms of pipe dreams
(see Proposition 6.4). When v and w are both Grassmannian, we provide an easily com-
putable formula by computing the degree of the corresponding K-polynomial in terms of a
vexillary Grothendieck polynomial.

1.2. Connections to the literature. Concurrently with this work the third author, with
O. Pechenik and D. Speyer [31], derived a combinatorial formula for the regularity of matrix
Schubert varieties indexed by arbitrary permutations. In contrast with our diagrammatic
combinatorics, the formula in [31] is phrased in terms of a new statistic on permutations.
In work released around the same time as the present paper, E. Hafner [17] obtained a new
proof of the vexillary case of [31] in terms of bumpless pipe dreams. Her results illustrate the
connection from the formula in [31] to our vexillary formula through bumpless pipe dreams.
A. Yong also has recent work related to the present paper, where he studies regularities of
tangent cones of Schubert varieties [37].

For certain mixed ladder determinantal ideals, regularity formulas can be deduced through
a-invariant formulas of S. Ghorpade and C. Krattenthaler [11]. The ladder determinantal
ideals they consider have certain restrictions on their rank conditions. Consequently, their
one-sided ideals are special cases of the ideals that we consider. See Section 7 for further
discussion.

Our formula for regularity of patches of Grassmannian Schubert varieties (Theorem 6.5)
provides a correction to a conjecture of M. Kummini, V. Lakshmibai, P. Sastry, and C. S.
Seshadri (see [23, Conjecture 7.5]). This correction was conjectured in our previous paper
(see [32, Conjecture 5.6]).
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1.3. Outline of the paper. In Section 2, we introduce the necessary combinatorial back-
ground. In Section 3, we give tableau interpretations of our Grothendieck degree formulas.
We provide proofs of our degree formulas for vexillary and 1432-avoiding permutations in
Section 4. Section 5 describes the connection between Grothendieck polynomials and regu-
larity and proves our main theorems. Section 6 applies these regularity formulas to correct
the conjecture of [23]. Section 7 further applies our main theorems to give combinatorial
formulas for the regularity of one-sided ladder determinantal ideals.

Acknowledgements. We would like to thank Philippe Nadeau and Alexander Yong for
helpful comments and conversations. We would also like to thank Elisa Gorla for helpful
communications about the literature. Finally, we would like to thank the anonymous referee
for their helpful comments.

2. Combinatorial degree formulas

2.1. Grothendieck polynomials. We start by defining Grothendieck polynomials, intro-
duced by A. Lascoux and M. P. Schützenberger [25] in their study of the K-theory of the
complete flag variety. Let Sn denote the symmetric group on n letters, i.e., the set of
bijections from rns :“ t1, 2, . . . , nu to itself. We write permutations in one-line notation
unless otherwise specified and define wi :“ wpiq for i P rns. The symmetric group Sn acts
on Zrx1, . . . , xns by w ¨ fpx1, . . . , xnq “ fpxw1 , xw2 , . . . , xwnq. Let si P Sn be the simple
transposition pi i` 1q, written here in cycle notation. For f P Zrx1, x2, . . . , xns, define

Bif “
f ´ sif

xi ´ xi`1
, and πif “ Bip1´ xi`1qf.

We recursively define Grothendieck polynomials as follows. Let w0 “ nn´ 1 . . . 1 be the
longest permutation in Sn. Define

Gw0pxq “ Gw0px1, x2, . . . , xnq “ xn´11 xn´22 ¨ ¨ ¨ xn´1.

For w ‰ w0 there exists some i P rn ´ 1s such that wi ą wi`1. Then we define Gwsipxq “
πipGwpxqq. Since the πi satisfy the same braid and commutation relations as the simple
transpositions, Gwpxq is well defined.

Write x‘ y :“ x` y´xy. We define the double Grothendieck polynomials using the
same recurrence, starting from the initial condition

Gw0px; yq “
ź

1ăi`jďn

pxi ‘ yjq.

Here, the Bi’s only act on the xi’s, leaving the yj’s fixed.

2.2. Permutations. First we recall some background on the symmetric group with [27] as
a reference. The permutation matrix of w, which we also denote by w, is the 0, 1-matrix
with 1’s at pi, wiq for all i P rns and 0’s elsewhere. To each permutation we associate a rank
function defined by

rwpi, jq “ #tpk, wkq : k ď i, wk ď ju.

The Rothe diagram of w P Sn is the subset

Dpwq “ tpi, jq P rns ˆ rns : wi ą j and w´1j ą iu.
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Visually, Dpwq is the set of cells remaining in the nˆ n grid after plotting the points pi, wiq
for each i P rns and striking out any cells which appear weakly below or weakly to the right
of these points, as shown in Example 2.1.

Let `pwq :“ #Dpwq denote the Coxeter length of w. The code of w is the tuple
codepwq “ pc1, . . . , cnq where ci records the number of cells in the ith row of Dpwq. Let

Lpcodepwqq :“ maxti P rns : ci ą 0u.

The essential set of w is the subset of Dpwq

Esspwq “ tpi, jq P Dpwq : pi` 1, jq, pi, j ` 1q R Dpwqu.

The dominant component Dompwq is the connected component of Dpwq containing p1, 1q.

Example 2.1. For w “ 72416835 P S8, Dpwq is the following:

.

Here, we have Esspwq “ tp1, 6q, p3, 1q, p3, 3q, p6, 3q, p6, 5qu, codepwq “ p6, 1, 2, 0, 2, 2, 0, 0q, and
Dompwq “ tp1, iq : i P r6su Y tp2, 1q, p3, 1qu. ♦

A subset D Ď rns ˆ rns is a diagonal path if

D “ tpi1, j1q, . . . , pik, jkq : i1 ă i2 ă ¨ ¨ ¨ ă ik and j1 ă j2 ă ¨ ¨ ¨ ă jku.

Given S Ď rns ˆ rns write ρdpSq for the size of the largest diagonal path in contained S.
A permutation w P Sn is 1432-avoiding if there does not exist a 1432 pattern, i.e., indices

h ă i ă j ă k such that w has the pattern wh ă wk ă wj ă wi. For example, w “ 23715846
is not 1432-avoiding; we underlined the positions of a 1432 pattern. For w 1432-avoiding, let

σkpwq “ tpi, jq P Dpwq : i ą k and j ą wku,

i.e., σkpwq is the set of cells in Dpwq which are strictly southeast of pk, wkq. Example 1.2
gives an example of diagonal paths in σkpwq.

A partition λ “ pλ1, . . . , λkq is a weakly decreasing sequence of non negative integers.
We write |λ| “ λ1 ` ¨ ¨ ¨ ` λk. The Young diagram of a partition λ is the set tpi, jq P
Zą0 ˆ Zą0 : 1 ď j ď λiu. We often conflate Young diagrams with their partitions. Given
partitions λ and µ, we write λ Ď µ to mean that the Young diagram of λ is contained in the
Young diagram of µ.

Given w P Sn, let µpwq be the partition whose Young diagram is
ď

pi,jqPDpwq

r1, is ˆ r1, js,

i.e., µpwq is the smallest partition whose Young diagram contains Dpwq.
A permutation v P Sn is vexillary if it does not contain a 2143 pattern, i.e., indices

i ă j ă k ă l such that vj ă vi ă vl ă vk. For example, v “ 72581364 is not vexillary
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Figure 1. Let v “ 169247358. Pictured on the left is the filling of the cells
pi, jq P Dpvq with rvpi, jq. On the right is λpvq filled with Fv.

since the underlined indices form a 2143 pattern. A vexillary permutation v has shape λpvq,
where λpvq is codepvq “ pc1, . . . , cnq sorted into decreasing order. A vexillary permutation v
has flag

φpvq “ pφ1 ď φ2 ď ¨ ¨ ¨ ď φmq,where

φi “ maxtj : pj, kq P µpvq lies in the same diagonal as pi, λipvqqu.

Note that we can think of λpvq as the partition with the property that each of the diagonals
of its Young diagram has the same number of cells as the corresponding diagonal of Dpvq.
Observe that φpvq tells us how the positions of these boxes changed between Dpvq to λpvq.

Fill the diagonals of λpvq with rvpi, jq for the corresponding cells pi, jq P Dpvq, so that the
entries are (weakly) increasing along diagonals. Write Fv for this filling (see Figure 1 for an
example). Let

τkpvq “ tpi, jq P λpvq : Fvpi, jq ě ku.

A subset A Ď rns ˆ rns is an antidiagonal path if

A “ tpi1, j1q, . . . , pik, jkq : i1 ă i2 ă ¨ ¨ ¨ ă ik and j1 ą j2 ą ¨ ¨ ¨ ą jku.

Given S Ď rns ˆ rns write ρapSq for the largest antidiagonal path in S. See Example 1.6 for
an example of antidiagonal paths in τkpvq.

A permutation g P Sn is Grassmannian if it has a unique descent, i.e. a unique k P rn´1s
such that gk ą gk`1.

2.3. Pipe complexes. Let a “ pa1, . . . , akq be a word on the alphabet rn´ 1s. We say a is
a reduced word for w if w “ sa1 ¨ ¨ ¨ sak and `pwq “ k.

Define an algebra over Z with generators tew : w P Snu and multiplication given by

ewesi “

#

ewsi if `pwsiq ą `pwq

ew if `pwsiq ă `pwq.

The Demazure product δpaq of a word a “ pa1, . . . , akq is defined by computing

esa1 ¨ ¨ ¨ esak “ eδpaq.

Label cells in Dpvq along rows so that the first cell in row i is labeled i, the next i`1, and
so on. Given P Ď Dpvq let aP be the word obtained by reading the labels of the elements in



REGULARITY OF LADDER DETERMINANTAL IDEALS 7

P within rows from right to left, starting at the top row and working downwards. Let

Pipespv, wq “ tP Ď Dpvq : aP is a reduced word for wu.

Likewise, let

Pipespv, wq “ tP Ď Dpvq : δpaP q “ wu.

For any P Ď rns ˆ rns, we assign it the t-weight

wttpP q “
ź

pi,jqPP

tij.

Pictorially, we represent P Ď Dpvq by marking pi, jq P Dpvq with a ` whenever pi, jq P P .
We define the unspecialized Grothendieck polynomial to be

(2.1) Gv,wptq “
ÿ

PPPipespv,wq

p´1q#P´`pwqwttpP q.

Note that by setting v “ w0, we can recover double Grothendieck polynomials by special-
izing the variables in Gw0,wptq:

Gwpx; yq “ Gw0,wpx1 ‘ y1, x2 ‘ y2, . . . , xn ‘ ynq.

2.4. Excited Young Diagrams. Fix partitions λ Ď µ. Let

Dtoppµ, λq “ tpi, jq : i P rks and j P rλisu.

We call D Ď µ a diagram, represented graphically by marking these cells in D with `’s.
An excited move is a mutation of a local 2ˆ 2 subsquare of the form

(2.2) `
ÞÑ

`
.

Here, the mutated subsquare must be entirely contained within µ.
We write ExcitedYDpµ, λq for the set of D Ď µ which can be obtained by a sequence of

excited moves starting fromDtoppµ, λq. Such diagrams are called excited Young diagrams.
There is a unique element of ExcitedYDpµ, λq to which no excited moves may be applied, see
e.g., [34, Lemma 7.4]. Call this Dbotpµ, λq.

We also consider K-theoretic excited moves of the form

(2.3) `
ÞÑ

`
`
,

again, where all cells pictured are contained in µ. Write KExcitedYDpµ, λq for the set of
diagrams which can be obtained from Dtoppµ, λq by a sequence of excited and K-theoretic
excited moves. We weight D P KExcitedYDpµ, λq by

wtpDq “
ź

pi,jqPD

pxi ‘ yjq.

Proposition 2.2. If v P Sn is vexillary, then

Gvpx; yq “
ÿ

DPKExcitedYDpµpvq,λpvqq

p´1q#D´|λpvq| wtpDq.
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Proof. This follows by noting the flagged set-valued tableaux (and diagonal pipe dreams)
of [22] can be identified with KExcitedYDpµpvq, λpvqq. See e.g., [16] and [34] for further
details. �

Lemma 2.3. Fix partitions λ Ď µ. There exists a unique permutation v P S8 so that
Dpvq “ Dbotpµ, λq. In particular, v is vexillary.

Proof. That Dbotpµ, λq P ExcitedYDpµ, λq is the diagram of a vexillary permutation follows
from [34, Proposition 7.6]. �

Example 2.4. Let λ “ p5, 4, 2, 1, 0q and µ “ p6, 6, 4, 4, 4q. Then v “ 5713624 is the unique
vexillary permutation so that Dpvq “ Dbotpµ, λq.

`````
````
``
`

````
```` `

`
` `

Above are Dtoppµ, λq, Dbotpµ, λq, and Dpvq, respectively. ♦

Theorem 2.5. Fix Grassmannian permutations g and u with descent at position k so that
λpgq Ď λpuq. Let v be the vexillary permutation such that Dpvq “ Dbotpλpuq, λpgqq. Then

degpGu,gptqq “ degpGvpxqq.

Proof. Write codepuq “ pc1, . . . , cnq. Since u is Grassmannian with descent at position k,
λpuq “ pck, ck´1, . . . , c1q (see [27, Section 2.2]). In particular, this means we can identify each
cell in Dpuq with cells in Dλpuq “ tpi, jq : 1 ď j ď ciu by left justifying cells in Dpuq within
rows.

Under this identification, we map each element of Pipespu, gq to a subset of Dλpuq. Call

this set of diagrams L. It is immediate that L Ď Pipespw0, gq. In particular, this implies
elements of L are connected by (flipped) K-theoretic moves, i.e., replacements of the form:

`
ÞÑ `

and

`
ÞÑ `

`
.

By flipping the first k rows vertically, we see that elements of L are in bijection with elements
of KExcitedYDpλpuq, λpgqq. Thus, we have a (degree preserving) bijection between elements
of Pipespu, gq and KExcitedYDpλpuq, λpgqq.

Then by Equation (2.1) and Proposition 2.2, we conclude degpGu,gptqq “ degpGvpxqq. �
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Example 2.6. Let g “ 1247356 and u “ 1457236. An element of Pipespu, gq and its
corresponding K-theoretic excited Young diagram are pictured below.

`` `
`
` ` ` `

`

`

♦

2.5. Connections to the Grassmannian degree formula. In previous work with Ren
and St. Dizier [32], the authors presented a formula to compute the degree of symmetric
Grothendieck polynomials. If u P Sn is Grassmannian with descent k, then the symmetric
Grothendieck polynomial is Gupλqpx1, . . . , xkq :“ Gupx1, . . . , xnq. Since Grassmannian per-
mutations are both 1432-avoiding and vexillary, our new degree formulas are two different
generalizations of this formula. We illustrate these connections here.

Write δpkq “ pk, k ´ 1, . . . , 1q. Let svpλq “ maxtk : δpkq Ď λu. Given a partition λ “
pλ1, . . . , λkq, let truncpiqpλq be the partition obtained by removing the first i columns of the
Young diagram of λ. Then:

Theorem 2.7 ([32]). If λ “ pλ1, . . . , λkq, then

degpGλpx1, . . . , xkqq “ |λ| `
k

ÿ

i“1

svptruncpλiqpλqq.

Theorem 2.7 can be recovered using Theorem 1.3 or Theorem 1.7. We illustrate this in
the example below.

Example 2.8. Let λ “ p3, 2, 2, 0q and k “ 4. The Grassmannian permutation associated to
the pair pλ, kq is w “ 1457236. The first line below computes the formula in Theorem 2.7
where the ith Young diagram has truncpλiqpλq shaded, with δpkq marked with ˆ’s for k “
svptruncpλiqpλqq.

Ñ

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ
ˆ

Below, we demonstrate the rule given in Theorem 1.3. Here, we have σkpwq shaded, with
the longest diagonal marked with ˆ’s.

Ñ

ˆ
ˆ

ˆ ˆ ˆ
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Now, we use the formula from Theorem 1.7. In each Young diagram, we have shaded τkpwq,
with the longest antidiagonals marked with ˆ’s.

1 1 3
1 1
1 1

Ñ

ˆ
ˆ

ˆ

ˆ ˆ

Thus we see all three formulas compute degpGλpx1, . . . , xkqq “ |λ| ` 3` 1` 1 “ 12. ♦

3. Tableau formulas for Grothendieck polynomials

Since their introduction, Grothendieck polynomials have been studied with a number of
combinatorial formulas ([9, 26, 4]). For our degree formulas, we will focus on two tableau
formulas in the special cases of 1432-avoiding permutations and vexillary permutations.
Furthermore, in each of these cases, we construct a tableau whose weight contributes to the
top degree terms of the corresponding Grothendieck polynomial.

3.1. Set-valued Rothe tableaux. A set-valued Rothe tableau T of shape Dpwq is a
filling of Dpwq with nonempty subsets of Zą0 such that for boxes a, b P Dpwq:

‚ if a lies north of b in the same column, then maxT paq ă minT pbq, and
‚ if a lies west of b in the same row, then minT paq ě maxT pbq,

where T paq denotes the set of entries of T in box a. Let SVTpDpwqq be the collection of such
tableaux. We say a tableau T P SVTpDpwqq is flagged by φ “ pφ1, φ2, . . . , φnq if for each
box b in row i of Dpwq, maxT pbq ď φi for all i. For a 1432-avoiding w P Sn, let

FSVDpwq “ tT P SVTpDpwqq : T is flagged by p1, 2, . . . , nqu.

Example 3.1. Below is some T P FSVDpwq for w “ 1462375.

21 1
3 32 21

65
43

♦

Theorem 3.2. [8, Theorem 1.1] For w P Sn 1432-avoiding, Gw has the following expansion:

(3.1) Gwpx,yq “
ÿ

TPFSVDpwq

p´1q#T´#Dpwq
ź

ePT

xvalpeq ‘ yλrpeq`φrpeq´cpeq´valpeq`1.

where the product is over entries e in T whose value is valpeq and cpeq, rpeq are the column
and row indices of e.
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For T P FSVDpwq, let #T denote the number of entries in T . We say T P FSVDpwq is
maximal if T 1 P FSVDpwq implies #T 1 ď #T . Now we give a construction of Tw P FSVDpwq
for a given 1432-avoiding w. Theorem 1.3 proves Tw is maximal. Let mdpDq denote the
northmost then westmost maximal diagonal path of D Ď rns2. For mdpσkpwqq ‰ H, let

NEpmdpσkpwqqq “ tpi, jq P Dpwq ´ mdpσkpwqq : pi, jq lies northeast of mdpσkpwqqu.

Take T0 P SVTpDpwqq such that T0pi, jq “ i for i P rLpcodepwqqs. For k P rLpcodepwqq ´ 1s,
let Tk P SVTpDpwqq such that for pi, jq P Dpwq:

Tkpi, jq :“

$

’

&

’

%

Tk´1pi, jq Y tminTk´1pi, jq ´ 1u if pi, jq P mdpσkpwqq,

Tk´1pi, jq ´ 1 if pi, jq P NEpmdpσkpwqqq,

Tk´1pi, jq otherwise,

where T pi, jq ´ 1 is entrywise subtraction. Let Tw :“ TLpcodepwqq.

Example 3.3. Below we construct Tw for w “ 1462375.

k“0:

2 2
3 3 3

6

k“1
ÝÝÑ

21 1
3 32 2

65

k“2
ÝÝÑ

21 1
3 32 21

65

k“3
ÝÝÑ

21 1
3 32 21

65

k“4
ÝÝÑ

21 1
3 32 21

65
4

k“5
ÝÝÑ

21 1
3 32 21

65
43

♦

Lemma 3.4. Suppose w in Sn is 1432-avoiding. Then Tw P FSVDpwq.

Proof. We proceed by showing Tk P FSVDpwq for k P rLpcodepwqqs by induction on k. By
construction, T0 P FSVDpwq. Suppose Tk´1 P FSVDpwq for some k P rLpcodepwqqs. If
mdpσkpwqq “ H, the result follows the inductive assumption since Tk “ Tk´1.

Otherwise, since Tk´1 P FSVDpwq by construction of Tk,

maxTkpi, jq ď maxTk´1pi, jq ď i.

Similarly since Tk´1 is decreasing along rows, Tk is clearly decreasing along rows. By def-
inition of Tk, any pi, jq can be decremented no more than i ´ 1 times, so no entry can be
decremented to 0. Thus it remains to show Tk increases down columns. Consider some
pi, jq P mdpσkpwqq. Let

i1 “ maxtx ă i : px, jq P Dpwqu.
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1 1 1 1 123 3

2 2 23 3

34 45

56

Figure 2. Let v be as in Figure 2.2. Then λpvq “ p6, 4, 2, 1q and µpvq “
p8, 8, 8, 5, 5, 5q. Pictured on the left is λpvq Ă µpvq with the diagonals used to
compute φpvq “ p3, 3, 6, 6q drawn in red. To the right is an element of FSVTpvq.

Since Tk´1 is increasing down columns, it suffices to show that maxTkpi
1, jq ă minTkpi, jq.

If pi1, jq P NEpmdpσkpwqqq or does not exist, the result follows by the construction of Tk.
Otherwise, by the definition of mdpσkpwqq, it follows that i “ i1 ` h for some h ą 1. Then

for s P ri1s, by the definitions of Ts and mdpσspwqq,

(3.2) maxTspi
1, jq ` h ď minTspi, jq.

Thus if k ď i1, we are done. If k ą i1, it follows that maxTkpi
1, jq “ maxTi1pi

1, jq and
minTkpi, jq ě minTi1pi, jq ´ h` 1, so by Equation (3.2),

maxTkpi
1, jq ď minTkpi, jq ´ 1.

Thus Tk P FSVDpwq. �

3.2. Set-valued Young tableaux. A set-valued tableau T of shape λ “ pλ1, λ2, . . . , λnq
is a filling of λ with nonempty subsets of Zą0 such that for boxes pa, bq P λ:

‚ if a lies north of b, then maxT paq ă minT pbq, and
‚ if a lies west of b, then maxT paq ď minT pbq,

where T paq denotes the set of entries of T in box a. Let SVTpλq be the collection of such
tableaux. We say a tableau T P SVTpλq is flagged by φ “ pφ1, φ2, . . . , φnq if for each box b
in row i of λ, we have maxT pbq ď φi. For a vexillary permutation v, let

FSVTpvq “ tT P SVTpλpvqq : T is flagged by φpvqu.

An example of some T P FSVTp169247358q is given in Figure 2. We note that many different
choices of flagging can result in the same underlying set of tableaux. See [28, Remark 3.10]
for further commentary.

Theorem 3.5. [22, Theorem 5.8] If v P Sn is vexillary, the double Grothendieck polynomial
Gvpx; yq has the following expansion:

(3.3) Gvpx; yq “
ÿ

TPFSVTpvq

p´1q#T´|λ|
ź

ePT

xvalpeq ‘ yvalpeq`cpeq´rpeq,

where the product is over entries in T whose value is valpeq and cpeq, rpeq are the column
and row indices of e.
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For T P FSVTpvq let #T denote the number of entries in T . We say T P FSVTpvq is
maximal if #T “ maxt#U : U P FSVTpvqu. Now we give a construction of Uv P SVTpvq
for a given vexillary v. Theorem 1.7 proves Uv is maximal.

Let mapλq denote the northmost then westmost maximal antidiagonal path of
Ť

i µi Ď λ.
For mapτkpvqq ‰ H, let

SEpmapτkpvqqq “ tpi, jq P λ´ mapτkpvqq : pi, jq lies southeast of mapτkpvqqu.

Take U0 P SVTpλq such that U0pi, jq “ i for i P r`pλqs. For k P r`pλq ´ 1s, let Uk P SVTpλq
such that for pi, jq P λ :

Ukpi, jq :“

$

’

&

’

%

Uk´1pi, jq Y tmaxUk´1pi, jq ` 1u if pi, jq P mapτkpvqq,

Uk´1pi, jq ` 1 if pi, jq P SEpmapτkpvqqq,

Uk´1pi, jq otherwise,

where Upi, jq ` 1 is entrywise addition. Let Uv :“ U`pλq.

Remark 3.6. By a similar argument to Lemma 3.4, it follows that Uv P FSVTpvq. By
Theorem 1.7, it follows that Uv is maximal.

Example 3.7. Let v “ 169247358. From Figure 2.2, we saw λpvq “ p6, 4, 2, 1q. Furthermore,
φpvq “ p3, 3, 6, 6q. Below is the construction of Uv from U0.

1 1 1 1 1 1

2 2 2 2

3 3

4

k“1
ÝÝÑ

1 1 1 12 2 2

2 2 23 3

3 34

45

k“2
ÝÝÑ

1 1 1 12 2 23

2 2 23 3

3 345

456

k“3
ÝÝÑ

1 1 1 12 2 23

2 2 23 3

3

456

34
56

♦

4. Proofs of degree formulas

In this section, we prove our Grothendieck degree formulas for 1432-avoiding permutations
and vexillary permutations to deduce our main theorems.

4.1. Proof of Theorem 1.3. Recall, mdpDq is the northmost then westmost diagonal path
of D Ď rns2 and

σkpwq “ tpi, jq P Dpwq : i ą k, j ą wpkqu.

For brevity, define fdpwq “ #Dpwq `
řn
k“1 ρdpσkpwqq.

We start by recalling a lemma from [8].

Lemma 4.1 ([8, Lemma 2.4]). Let w ‰ w0 be a 1432-avoiding permutation. If r is the first
ascent of w, then wsr is also 1432-avoiding.

Proposition 4.2. If w is 1432-avoiding, there exists T P FSVDpwq such that

#T “ fdpwq.

In particular, degpGwq ě fdpwq.

Proof. This follows by Lemma 3.4 since #Tw “ fdpwq by construction. �
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Lemma 4.3. Let w ‰ w0 be a 1432-avoiding permutation and suppose r is the first ascent
of w. If there is a maximal diagonal path in σrpwq which has no cells in row r`1, then there
exists a maximal set-valued Rothe tableau for w such that the entries in row r ` 1 restricted
to σrpwq are all strictly less than r ` 1.

Proof. Suppose w is such that there is a maximal diagonal path in σrpwq which has no cells
in row r` 1. Consider maximal T P FSVDpwq such that T has boxes containing r` 1 in row
r ` 1 restricted to σrpwq. We will construct T 1 P FSVDpwq such that #T 1 “ #T and such
that the entries in row r ` 1 restricted to σrpwq are all strictly less than r ` 1.

Let b1 denote the box containing the eastmost occurrence of r ` 1 in row r ` 1 in T .
For 1 ă i ď #mdpσrpwqq, we define bi P σrpwq as the box containing the northmost, then
eastmost occurrence of r ` i in T , in the region strictly east of bi´1. Thus tbiuiPrσrpwqs forms
a diagonal path.

Let ci denote the northmost box of σrpwq lying directly south of bi for each i P r#mdpσrpwqqs.
By the assumption that there is a maximal diagonal path in σrpwq which has no cells in row
r ` 1 and the definition of bi, tciuiPrks exists for some 1 ď k ď #mdpσrpwqq. Let P be
constructed as follows:

P “ tb1u Y tbi : bi´1 P P and ci´1 lies in the same row as biu.

Let P 1 “ tci : bi P P u. By maximality of T , it follows that tr` i, r` i´ 1u Ď T pbiq for each
i P r#P s. Take T 1 such that

T 1px, yq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

T pbiqztr ` iu if px, yq “ bi,

T pciq Y tr ` iu if px, yq “ ci,

T px, yq ´ 1 if px, yq lies directly between ci and bi`1,

T px, yq ´ 1 if px, yq “ pr ` 1, yq P σrpwq, lying west of b1,

T px, yq otherwise.

It is straightforward to check T 1 P FSVDpwq. Since #T “ #T 1, T 1 is of the desired form. �

Proposition 4.4. Suppose w P Sn is 1432-avoiding. Let r denote the position of the first
ascent of w and tcm ă ¨ ¨ ¨ ă c0u “ twr ď i ď wr`1 : pr ` 1, iq P Dpwqu. Then

Dpw ¨ srq “ pDpwq ´ tpr ` 1, ciq : 0 ď i ď muq Y tpr, ciq : 0 ď i ď mu Y tpr, wrqu.

Proof. This follows by the definition of Dpwq, since r is the first ascent of w. �

Lemma 4.5. Let w ‰ w0 be a 1432-avoiding permutation, and suppose r is the first ascent
of w. If there is a maximal diagonal path in σrpwq which has no cells in row r ` 1, then

fdpwq ` 1 “ fdpwsrq.

Otherwise,

fdpwq “ fdpwsrq.

Proof. By Proposition 4.4, #Dpwsrq “ #Dpwq ` 1. Further, since r was the first ascent of
w, pr, wrq P Dompwsrq. Further we see

ρdpσkpwqq “ ρdpσkpwsrqq for k ‰ r, r ` 1
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by Proposition 4.4. By definition of r,

ρdpσr`1pwqq “ ρdpσrpwsrqq.

Finally, by Proposition 4.4, σr`1pwsrq “ σrpwq´
Ť`
i“0pr, ciq. Thus ρdpσrpwqq “ ρdpσr`1pwsrqq

if there is a maximal diagonal path in σrpwq which has no cells in row r ` 1. Otherwise,
ρdpσrpwqq “ ρdpσr`1pwsrqq ` 1, so the result follows by the definition of fd. �

Proof of Theorem 1.3. We proceed by induction on `pw0q ´ `pwq. In the base case, w “ w0

and the formula is immediate since degpw0q “ `pw0q “ #Dpw0q “ fdpw0q.
Now pick w P Sn so that w ‰ w0. Assume the formula holds for all w1 P Sn so that

`pw1q ą `pwq. Let r be the first ascent of w. Let R denote the set of boxes in σrpwq lying in
row r ` 1. By Proposition 4.4, one obtains Dpwsrq from Dpwq by shifting all cells in R up
one row and then placing a new cell in position pr, wrq.

Consider T P FSVDpwq. We will construct T 1 P FSVDpwsrq from T by the following:

T 1px´ 1, yq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

r if px´ 1, yq “ pr, wrq,

T px, yq ´ tr ` 1u Y tru if px, yq P R, r ` 1 P T px, yq, and r R T px, yq,

T px, yq ´ tr ` 1u if px, yq P R, r ` 1 P T px, yq, and r P T px, yq,

T px, yq if px, yq P R, r ` 1 R T px, yq,

T px´ 1, yq otherwise.

Thus T 1 P FSVDpwsrq and #T 1 ě #T , giving degpGwq ď degpGwsrq. We have two cases
to check.
Case 1: Suppose all maximal diagonal paths in σrpwq have a cell in row r ` 1.

We have

fdpwq ď degpGwq (by Proposition 4.2)

ď degpGwsrq

“ fdpwsrq (by inductive hypothesis).

By Lemma 4.5, fdpwq “ fdpwsrq. Thus, fdpwq “ degpGwq.
Case 2: Suppose there exists a maximal diagonal path in σrpwq which has no cells in row
r ` 1. By Lemma 4.3, there exists a maximal tableau T for w so that boxes in R have
entries less than r ` 1. Using the above construction for T 1 P FSVDpwsrq, it follows that
#T 1 “ #T ` 1. As a consequence, degpGwq ă degpGwsrq.

Thus,

fdpwq ď degpGwq (by Proposition 4.2)

ă degpGwsrq

“ fdpwsrq (by inductive hypothesis)

“ fdpwq ` 1 (by Lemma 4.5).

Thus fdpwq “ degpGwq. �
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4.2. Proof of Theorem 1.7. If v is vexillary, we associate to v the following statistic:

(4.1) fapvq “ #Dpvq `
n

ÿ

i“1

ρapτipvqq.

Note that by definition, #Dpvq “ |λpvq|. The goal of this section is to prove Theorem 1.7,
i.e., to show if v is vexillary, then degpGvq “ fapvq. We start with some lemmas.

We follow [22] for combinatorial background. The maximal corner pr, sq of w is the
position of the right most cell in the last row of Dpwq. Let ti,j denote the transposition pi jq.
Define wP :“ wtr,w´1psq. Then wP is the unique permutation such that

(4.2) DpwP q “ Dpwq ´ tpr, squ.

Grothendieck polynomials satisfy a recurrence known as transition. Recall ti,j denotes the
transposition pi, jq. Let wP :“ wtr,w´1psq. Let i1 ă i2 ă ¨ ¨ ¨ ă ik be the list of those indices
i ă r for which `pwP q ` 1 “ `pwP ti,rq.

Theorem 4.6 ([24]). Given w P Sn, with maximal corner pr, sq and tij ,r’s as above,

Gw “ GwP
` pxr ´ 1qpGwP

‹ p1´ ti1,rqp1´ ti2,rq ¨ ¨ ¨ p1´ tik,rqq,

where Gv ‹ u :“ Gvu.

When v is vexillary, there is at most one index i ă r for which `pvP q`1 “ `pvP ti,rq. When
such an index exists, we define vC “ vP ti,r. In this case, Theorem 4.6 specializes to

Gv “ GvP ` pxr ´ 1qpGvP ‹ p1´ ti,rqq

“ GvP ` pxr ´ 1qpGvP ´GvC q

“ xrGvP ` p1´ xrqGvC .

(4.3)

If no such index exists, then necessarily pr, sq P Dompvq and we have

Gv “ GvP ` pxr ´ 1qpGvP q

“ xrGvP .
(4.4)

Lemma 4.7. Fix any permutation w and suppose the maximal corner pr, sq P Dompwq. Then
degpGwq “ degpGwP

q ` 1.

Proof. This is an immediate consequence of Equation (4.4) since multiplying any nonzero
polynomial by xr increases the degree by 1. �

Given a permutation w, the cell pr, sq P Dpwq is called accessible if

(1) pr, sq R Dompwq and
(2) there are no other cells which occur weakly southeast of pr, sq in Dpwq.

The maximal corner is an accessible box if and only if there exists i ă r such that `pwP q`1 “
`pwP ti,rq. For vexillary permutations, there can be at most one such i, so we define vC “ vP ti,r
in this case. We may construct vC graphically as follows. Consider the cells in Dpvq which
sit weakly northwest of the accessible box in its connected component. Move each of these
diagonally one step in the northwest direction. This new diagram is the DpvCq.
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Lemma 4.8. Fix v vexillary, where the maximal corner pr, sq is an accessible box. Then
degpGvq “ maxtdegpGvP q, degpGvC qu ` 1.

Proof. The monomials of Grothendieck polynomials alternate in sign based on degree. As
such, Equation (4.3) is cancellation free. Therefore, the top degree monomials in Gv must
come from xrGvP or xrGvC . �

Lemma 4.9. For v vexillary, if the maximal corner pr, sq P Dompvq, then fapvq “ fapvP q`1.

Proof. By Equation (4.2), λpvP q is obtained by removing the corresponding (boundary) cell
from λpvq. The label of this cell in Fv is zero since pr, sq P Dompvq. At all other positions,
Fv matches FvP . As such, τipvq “ τipvP q for all i ą 0. Therefore,

dpvq “ |λpvq| `
n

ÿ

i“1

ρapτipvqq

“ |λpvP q| ` 1`
n

ÿ

i“1

ρapτipvP qq

“ fapvP q ` 1. �

Lemma 4.10. Fix v vexillary and suppose the maximal corner pr, sq is an accessible box.

(1) fapvq ě fapvCq ` 1.
(2) If pr, sq is the only cell in its row within its connected component in Dpvq, then

fapvq “ fapvCq ` 1.
(3) fapvq ě fapvP q ` 1.
(4) If pr, sq is not the only cell in its row within its connected component in Dpvq, then

fapvq “ fapvP q ` 1.

Proof. Throughout, let pa, bq denote the position of the box in λpvq which corresponds to
pr, sq. Write k “ Fvpa, bq. By assumption since pr, sq R Dompvq, k ě 1.
(1) To get FvC from Fv, take all labels weakly northwest of pa, bq with label k and decrease
the value of these labels by 1. As such, τipvq Ě τipvCq for all i. Furthermore, since pr, sq
has label k, τkpvq Ľ τkpvCq. In particular, τkpvCq is obtained from τkpvq by removing a
rectangular strip. Since this strip contains pr, sq, removing this rectangle removes the last
row of τkpvq entirely (and anything north of this row) by the definition of pr, sq. Therefore,
any antidiagonal path in τkpvCq can be completed to a larger antidiagonal path in τkpvq by
adding a box row r. As such, ρapτkpvqq ą ρapτkpvCqq and so

fapvq “ |λpvq| `
n

ÿ

i“1

ρapτipvqq

ą |λpvCq| `
n

ÿ

i“1

ρapτipvCqq

“ fapvCq.

Since these are all integers, fapvq ě fapvCq ` 1.
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(2) Since there is a single box in the same row as pa, bq in τkpvq and this box is not in τkpvCq
(nor any boxes in its same column) we claim ρapτkpvqq “ ρapτkpvCqq ` 1. For all other i, we
have τipvq “ τipvCq and so ρapτipvqq “ ρapτipvCqq. Therefore, fapvq “ fapvCq ` 1.
(3) Using Equation (4.2), FvP pi, jq “ Fvpi, jq for all pi, jq P λpvP q. As such,

(4.5) τipvP q “

#

τipvq if i ă k

τipvq ´ tpa, bqu otherwise.

In particular, τipvq Ě τipvP q for all i. Therefore,

n
ÿ

i“1

ρapτipvqq ě
n

ÿ

i“1

ρapτipvP qq.

Then

fapvq “ |λpvq| `
n

ÿ

i“1

ρapτipvqq

ě |λpvP q| ` 1`
n

ÿ

i“1

ρapτipvP qq

“ fapvP q ` 1.

(4) By assumption, pr, s ´ 1q P Dpvq. As such, if pa, bq P τipvq then pa, b ´ 1q P τipvq as
well. Fix an antidiagonal path of cells in τipvq. If it does not use pa, bq, then it is also
an antidiagonal path of cells in τipvP q. If it does use pa, bq, then we can construct a new
antidiagonal path of cells of the same size by replacing pa, bq with pa, b ´ 1q. By (4.5), we
see that this new antidiagonal path is also in τipvP q. As such, ρapτipvqq “ ρapτipvqq. Then
we conclude fapvq “ fapvP q ` 1. �

Proof. Fix v vexillary. The statement is trivial for the identity, so assume `pvq ě 1. We will
proceed by induction on the position of the maximal corner pr, sq (ordering cells of the grid
lexicographically). In the base case, v “ 21, we confirm degpGvq “ 1 “ fapvq.

Assume the formula holds for any vexillary v1 whose maximal corner occurs before pr, sq,
i.e., degpGv1q “ fapv

1q.
Case 1: pr, sq P Dompvq. By Equation (4.2), the maximal corner of vP occurs before pr, sq.
Furthermore, vP is vexillary. As such,

degpGvq “ degpGvP q ` 1 (by Lemma 4.7)

“ fapvP q ` 1 (by induction hypothesis)

“ fapvq (by Lemma 4.9).

Case 2: pr, sq R Dompvq (i.e., it is an accessible box).
Both vP and vC are vexillary and their maximal corners (when defined) occur before pr, sq.

We know by Lemma 4.8 and the induction hypothesis that

(4.6) degpGvq “ maxtdegpGvP q, degpGvC qu ` 1 “ maxtfapvP q, fapvCqu ` 1.
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In particular, 1 ` fapvP q ď degpGvq and 1 ` fapvCq ď degpGvq. Applying Lemma 4.10 to
(4.6), we see that degpGvq ď fapvq. By parts (2) and (4) of Lemma 4.10, since pr, sq is an
accessible box, 1` fapvP q “ fapvq or 1` fapvCq “ fapvq. Then fapvq “ degpGvq. �

5. Castelnuovo-Mumford regularity of Schubert determinantal ideals

We begin this section by recalling the connection between the Castelnuovo-Mumford reg-
ularity in the Cohen-Macaulay setting and the degree of a K-polynomial (Subsection 5.1).
We then provide some background on Schubert determinantal ideals, explain how to ex-
press Castelnuovo-Mumford regularity of Schubert determinantal ideals in terms of degrees
of Grothendieck polynomials, and prove Theorems 1.1 and 1.5 (Subsection 5.2).

5.1. Castelnuovo-Mumford regularity and connections to K-polynomials. Let S “
krx1, . . . , xns be a polynomial ring over the field k, and assume that S is positively Zd-graded
so that deg0S “ k. Let M be a finitely generated graded S-module. The multigraded
Hilbert series of M is a formal power series in indeterminates t1, . . . , td:

HpM ; tq “
ÿ

aPZd

dimkpMaqt
a
“

KpM ; tq
śn

i“1p1´ taiq
, degpxiq “ ai.

The numerator KpM ; tq P krt˘1s is called the K-polynomial of M . When S has the
standard grading, that is degpxiq “ 1, the K-polynomial is a Laurent polynomial in a single
indeterminate t.

For the rest of this subsection, assume that S has the standard grading, and let I Ď S be
a homogeneous ideal. There is a minimal free resolution

0 Ñ
à

j

Sp´jqβl,jpS{Iq Ñ
à

j

Sp´jqβl´1,jpS{Iq Ñ ¨ ¨ ¨ Ñ
à

j

Sp´jqβ0,jpS{Iq Ñ S{I Ñ 0

where l ď n and Sp´jq is the free S-module obtained by shifting the degrees of S by j. The
Castelnuovo-Mumford regularity of S{I, denoted regpS{Iq, is defined as

regpS{Iq :“ maxtj ´ i : βi,jpS{Iq ‰ 0u.

When S{I is Cohen-Macaulay, we have that

(5.1) regpS{Iq “ deg KpS{I; tq ´ htSI,

where htSI denotes the height of the ideal I. See, for example, [2, Lemma 2.5] for justification
of this formula. In this paper, we use Equation (5.1) to compute Castelnuovo-Mumford
regularity of coordinate rings of certain matrix Schubert varieties and certain standard-
graded Kazhdan-Lusztig varieties.

5.2. Regularity of Schubert determinantal ideals and proofs of Theorems 1.1 and
1.5. We begin by recalling basic facts about Schubert determinantal ideals. Fix an n ˆ n
permutation matrix w. Let X “ pxijq be an nˆn matrix of distinct indeterminates, and let
Xrps,rqs denote the matrix formed by intersecting the first p rows of X and the first q columns
of X. Let krxs :“ krxij : 1 ď i, j ď ns. The Schubert determinantal ideal Iw Ď krxs is
the ideal

Iw “ xminors of size rwpi, jq ` 1 in Xris,rjs : pi, jq P Esspwqy.
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By [10], Iw is a prime ideal, and krxs{Iw is Cohen-Macaulay. Recall that krxs{Iw is the
coordinate ring of the matrix Schubert variety B´wB` Ď Matkpn, nq where B´ ď GLnpkq
is the Borel subgroup of invertible lower triangular matrices, B` ď GLnpkq is the Borel
subgroup of invertible upper triangular matrices, and Matkpn, nq is the affine space of nˆ n
matrices with entries in k. Schubert determinantal ideals are homogeneous with respect to
the standard grading of krxs.

Proof of Theorems 1.1 and 1.5. We first recall how to express the regularity of krxs{Iw in
terms of the degree of a Grothendieck polynomial. This was originally discussed in [32]. By
[10], we have htkrxsIw “ #Dpwq. It then follows by (5.1) that

regpkrxs{Iwq “ deg Kpkrxs{Iwq ´#Dpwq.

By [3, Theorem 2.1] (see also [21, Theorem A]), KpS{Iw; tq “ Gwp1´ t, . . . , 1´ tq. Further-
more,

deg Gwp1´ t, . . . , 1´ tq “ deg Gwpx1, . . . , xnq

since the the coefficients in the homogeneous components Gwpx1, . . . , xnq all have the same
sign (see, for example, [21]). Thus,

(5.2) regpkrxs{Iwq “ deg Gwpx1, . . . , xnq ´#Dpwq.

Theorems 1.1 and 1.5 are now immediate from Theorems 1.3 and 1.7. �

6. Regularity of homogeneous Kazhdan-Lusztig ideals

In this section, we recall the basics of Kazhdan-Lusztig ideals Jv,w (Section 6.1) and pro-
vide preliminary combinatorial formulas for regularity of Kazhdan-Lusztig ideals Jv,w when
v is a 321-avoiding permutation (Section 6.2). We then provide an easily-computable com-
binatorial formula for the regularity of open patches of Schubert varieties in Grassmannians
(Section 6.3). This proves a (generalization of a) conjecture from [32] giving a correction to
a conjecture of [23].

6.1. Kazhdan-Lusztig ideals. We next recall Kazhdan-Lusztig ideals, which were intro-
duced by A. Woo and A. Yong in [35] to study singularities of Schubert varieties. Given a
permutation matrix v P Sn, consider the matrix M pvq which has 1’s at locations pi, viq, inde-
terminate zij in location pi, jq P Dpvq, and 0’s elsewhere. Let krzvs :“ krzij : pi, jq P Dpvqs.
Given w P Sn, define the Kazhdan-Lusztig ideal Jv,w Ď krzvs to be

Jv,w “ xminors of size rwpi, jq ` 1 in M
pvq
ris,rjs : pi, jq P Esspwqy,

which is not the unit ideal precisely when w ď v in Bruhat order. The Kazhdan-Lusztig ideal
Jv,w is the prime defining ideal of the intersection of the Schubert variety B´zB´wB` Ď
B´zGLnpkq with the opposite Schubert cell B´zB´vB´ (see [35, Corollary 3.3] and the
preceding discussion). Furthermore, krzvs{Jv,w is Cohen-Macaulay. This follows by [19,
Lemma A.4] together with the Cohen-Macaulayness of Schubert varieties [33]. See [35,
Section 3.2] for further discussion.

Kahzdan-Lusztig ideals are not always homogeneous with respect to the standard grading
on krzpvqs. However, when v is 321-avoiding, and hence when v is a Grassmannian permu-
tation, Jv,w is homogeneous with respect to the standard grading, see e.g., [20, Footnote on
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pg. 25]. Some further partial results on the problem of when Kazhdan-Lusztig ideals are
homogeneous with respect to the standard grading [35, Problem 5.5] can be found in the
recent preprint [30].

6.2. Preliminaries on regularity of Kazhdan-Lusztig ideals Jv,w where v is 321-
avoiding. We next describe a formula for the regularity of krzvs{Jv,w where Jv,w is a
standard-graded Kazhdan-Lusztig ideal. This formula will be in terms of Gwpx; yq, a double
Grothendieck polynomial. Let Gwpx; yq denote the double Grothendieck polynomials in [21],
so that Gwpx; yq “ Gwp1´ x; 1´ 1

y
q. We also let Gv,wptq “ Gv,wp1´ tq.

The torus T n acts on the opposite Schubert cell B´zB´vB´ by right multiplication. This
induces a grading on krzvs where variable zij in the matrix M pvq has degree evpiq´ ej, where
ei P Zn denotes the ith standard basis vector. By [36, Theorem 4.5], the K-polynomial of
krzvs{Jv,w for this Zn-grading is given by

(6.1) Kpkrzvs{Jv,w; tq “ Gwptvp1q, . . . , tvpnq; t1, . . . , tnq “ Gv,wptij ÞÑ tvpiq{tjq.

Note that the conventions in [36] differ from ours.
In the case where v is 321-avoiding, there is a coarsening of the grading f : Zn Ñ Z which

gives each zij P krzijs degree 1. Specifically, take fpeiq “ 1 if there exists k ą i such that
v´1pkq ă v´1piq and fpeiq “ 0 otherwise (see e.g., the footnote on page 25 of [20]). Then the
K-polynomial of krzvs{Jv,w, with respect to the standard grading, is

Kpkrzvs{Jv,w; tq “ Gwpt
fpevp1qq, . . . , tfpevpnqq; t´fpe1q, . . . , t´fpenqq

“ Gv,wptij ÞÑ tfpevpiqq`fpejqq.
(6.2)

Example 6.1. Let v “ 34512 and w “ 21435. Using Equation (2.1), we may compute
Gv,wptq “ t11t31 ` t11t22 ´ t11t22t31. For the Zn-grading, the substitution provided in Equa-
tion (6.1) yields

Kpkrzvs{Jv,w; tq “ p1´
t3
t1
qp1´

t5
t1
q ` p1´

t3
t1
qp1´

t4
t2
q ´ p1´

t3
t1
qp1´

t5
t1
qp1´

t4
t2
q.

Using Theorem 3.2, we may compute

Gwpx; yq “
x1
y1

x3
y1
`
x1
y1

x2
y2
`
x1
y1

x1
y3
´
x1
y1

x1
y3

x2
y2
´
x1
y1

x1
y3

x3
y1
´
x1
y1

x2
y2

x3
y1
`
x1
y1

x1
y3

x2
y2

x3
y1
.

Combining this with Equation (6.2) yields

Kpkrzvs{Jv,w; tq “ Gwp1, 1, 1, t, t; t
´1, t´1, 1, 1, 1q “ 2p1´ tq2 ´ p1´ tq3

under the Z-grading. ♦

Lemma 6.2. Let v P Sn such that v is 321-avoiding. If pi, jq P Dpvq, then fpejq “ 1 and
fpeviq “ 0.

Proof. Since pi, jq P Dpvq, there is k “ vi such that vi ą j and i ă v´1j , thus fpejq “ 1. If

fpeviq “ 1, then there is k ą vi such that v´1k ă i. This would then imply that there is a
321-pattern in v. In particular, we would have v´1k ă i ă v´1j , with j ă vi ă k. As v is
321-avoiding, we conclude that fpeviq “ 0. �
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Lemma 6.3. Let v, w P Sn such that v is 321-avoiding and w ď v. Then

(6.3) Kpkrzvs{Jv,w; tq “ Gv,wptij ÞÑ tq “
ÿ

PPPipespv,wq

p´1q#P´`pwqp1´ tq#P .

Proof. The coarsening of the grading f : Zn Ñ Z combined with Lemma 6.2 ensures that
tfpevpiqq`fpejq “ t for pi, jq P Dpvq. Thus, the result follows by Equations (2.1) and (6.2)
together with the fact that Gv,wptq “ Gv,wp1´ tq. �

We will use the following to prove the main result of this section (Theorem 6.5).

Proposition 6.4. Let v, w P Sn such that v is 321-avoiding and w ď v. Then,

(6.4) degKpkrzvs{Jv,w; tq “ degGv,wptq.

Furthermore, the Castelnuovo-Mumford regularity of krzvs{Jv,w is given by

(6.5) regpkrzvs{Jv,wq “ degGv,wptq ´#Dpwq “ maxt#P | P P Pipespv, wqu ´#Dpwq.

Proof. Equation (6.4) is immediate from Lemma 6.3. Equation (6.5) follows from Equations
(6.4), (5.1) and the fact that htkrzvsJv,w “ #Dpwq. �

6.3. Castelnuovo-Mumford regularity of patches of Grassmannian Schubert va-
rieties. In [32], we gave a counterexample to a conjecture of Kummini-Lakshmibai-Sastry-
Seshadri from [23] on the Castelnuovo-Mumford regularity of coordinate rings of standard
open patches of certain Schubert varieties in Grassmannians. We then gave a conjecture of
a correct formula [32, Conjecture 5.6]. In this short subsection, we prove a generalization of
this conjecture.

Identify the Grassmannian Grpk, nq with P zGLnpkq where P Ď GLnpkq is the parabolic
subgroup of block lower triangular matrices with block sizes k and n´ k down the diagonal.
Let u and g be a pair of Grassmannian permutations with descent at k. The Kazhdan-
Lusztig ideal Ju,g is the prime defining ideal of the intersection of the Schubert variety
P zPgB` Ď P zGLnpkq with the open set P zPuB´ Ď P zGLnpkq. The following theorem
gives the regularity of the coordinate rings of these open sets of Grassmannian Schubert
varieties.

Theorem 6.5. Fix Grassmannian permutations g and u with descent at position k so that
λpgq Ď λpuq. Let v be the vexillary permutation such that Dpvq “ Dbotpλpuq, λpgqq. Then,

regpkrzus{Ju,gq “ degpGvpxqq ´ |λpgq| “
n

ÿ

i“1

ρapτipvqq.

Proof. The first equality follows due to Equation (6.5), Theorem 2.5, and the fact that
htkrzusJu,g “ |λpgq|. The second equality is then immediate by Theorem 1.7 and the fact that
|λpgq| “ #Dpvq by construction of v. �

We note that [32, Conjecture 5.6] concerned the special case of the above theorem where
u “ pn´ k ` 1q pn´ k ` 2q . . . n 1 2 . . . pn´ kq, written in one line notation.
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7. Regularity of ladder determinantal ideals

Our next goal is to provide a formula for the Castelnuovo-Mumford regularity of any
one-sided ladder determinantal ideal. Ladder determinantal ideals are generalized determi-
nantal ideals which were introduced by S. S. Abhyankar [1] to study singularities of Schu-
bert varieties. There has since been substantial interest in their properties. For example,
see [29, 18, 5, 6, 7, 12, 13, 22, 14, 15, 11] and references therein. The work of Ghorpade
and Krattenthaler [11] on a-invariants of certain ladder determinantal ideals is most closely
related to our results. This is discussed in more detail at the end of Section 7.1.

7.1. One-sided ladder determinantal ideals. A ladder L is a Young diagram (in English
notation) filled with distinct indeterminates. Observe that a ladder is determined by a
collection of southeast corners LSE “ tpai, biquiPrss ordered northeast to southwest. Label
the northwest corner of L to be p0, 0q. Take pas`1, bs`1q to be the southwestmost corner of
the ladder and take pa1, b1q be the northeastmost corner of the ladder.

Let P denote the lattice path from pas`1, bs`1q to pa1, b1q which travels along the boundary
of the ladder, so that cells weakly northwest of the P are in L and boxes weakly southeast
of P are not in L. Let P “ tpcj, djqujPrs1s denote a collection of distinguished points along
P . To each pcj, djq P P , assign a value rj P Zą0. Let LI,J denote the subset of L with row
indices in I and column indices in J for I, J Ď rns.

Let krLs denote the polynomial ring generated by these indeterminate entries. Define the
one-sided mixed ladder determinantal ideal IL,r:

IL,r “ xminors of size rj in Lrcjs,rdjs : j P rs1sy Ď krLs.

Letting Ij denote the ideal of rj ˆ rj minors of Lrcjs,rdjs, one observes that

IL,r “
ÿ

jPrs1s

Ij.

Following [21], we assume

(7.1) 0 ă c1 ´ r1 ă c2 ´ r2 ă ¨ ¨ ¨ ă cs1 ´ rs1 and 0 ă d1 ´ r1 ă d2 ´ r2 ă ¨ ¨ ¨ ă ds1 ´ rs1

so that Ij Ĺ Ik for any j ‰ k, j, k P rs1s. As outlined in [10, Proposition 9.6], L can be
identified with a vexillary matrix Schubert variety Xv where Esspvq are the boxes indexed
by P and the ranks satisfy rvpcj, djq “ rj ´ 1.

Example 7.1. To the left is a ladder L. Then LSE “ tp5, 3q, p3, 5qu with marked points and
corresponding ranks given in red. To the right is the associated permutation v.

L “

z11 z12 z13 z14 z15

z21 z22 z23 z24 z25

z31 z32 z33 z34 z35

z41 z42 z43

z51 z52 z53

3
2

3
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Then

IL,r “ x3´minors of Lr5s,r3s, 2´minors of Lr3s,r3s, 3´minors of Lr3s,r5sy

“ xdetpLr3s,t3,4,5uq, 2´minors of Lr3s,r3s, detpLt3,4,5u,r3sqy. ♦

For certain one-sided mixed ladder determinantal ideals, regularity formulas can be de-
duced through a-invariant formulas of Ghorpade-Krattenthaler [11]. Their formulas give
results in the case in which pr1, r2, . . . , rs1q “ p1, 2, . . . , t, t´1, . . . , 1q for some t P Zą0, where
Equation (7.1) is not imposed. Thus, for example, L as in Example 7.1 is not in the class
of ladders considered in [11]. We note that an algorithm for a-invariant formulas is given in
[11] for two-sided mixed ladder determinantal ideals with the same restriction on ranks.

7.2. One-sided ladder determinantal ideals via Grassmannian Kazhdan-Lusztig
ideals. We now recall that each one-sided ladder determinantal ideal is a Kazhdan-Lusztig
ideal Nu,g where u and g are Grassmannian permutations. This was first shown by Gonciulea-
Miller [13, Theorem 4.7.3]; we include it here for completeness.

Take a ladder L with LSE “ tpai, biquiPrss, and marked points P “ tpcj, djqujPrs1s assigning
ranks rj. Define u P Sx`y as the concatenation of partial permutations ui, where for i P rss

ui “ idai´ai`1
` bi ` a0 ´ ai, and

us`1 “ rx` ysz YiPrss ui.
(7.2)

Set pc0, d0q :“ pa0, b0q with r0 “ 1 and pcs1`1, ds1`1q :“ pas`1, bs`1q with rs1`1 “ 1. Define
g P Sx`y as the concatenation of partial permutations gi, where for i P rs1 ` 1s,

gi “ idki´ki´1
` ki´1 ` hi´1, and

gs1`2 “ rx` ysz YiPrs1`1s gi.
(7.3)

where ki “ c0 ´ ci ` ri ´ 1 and hi “ di ´ ri.
Note that Equation (7.1) and the assumption that each indeterminate appears in at least

one minor ensure that Lpcodepuqq “ Lpcodepgqq and uj ě gj for each j P rx ` ys. Then by
[13, Theorem 4.7.3] we have the following:

Proposition 7.2. Given a one-sided ladder determinantal ideal IL,r and u, g as above, Ju,g
and IL,r share the same generators.

Example 7.3. For L as in Example 7.1, below are Dpuq and Dpgq for the u, g as defined in
Equations (7.2) and (7.3).

♦
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As a consequence to Proposition 7.2, the K-polynomial of each one-sided ladder determi-
nantal ideal can be expressed both as a single Grothendieck polynomial and as a specialized
double Grothendieck polynomial. Combining this with [10], we have:

Corollary 7.4. Given a one-sided ladder L with marked points P “ tpcj, djqujPrs1s assigning
ranks rj,

regpS{ILq “ regpS{Ju,gq “
n

ÿ

k“1

ρapτkpvqq,

where u, g are as defined in Equations (7.2) and (7.3). Here v is the vexillary permutation
such that Esspvq are the boxes indexed by P and rvpcj, djq “ rj ´ 1.
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