CASTELNUOVO-MUMFORD REGULARITY FOR 321-AVOIDING
KAZHDAN-LUSZTIG VARIETIES

COLLEEN ROBICHAUX

ABSTRACT. We introduce an algorithm which combinatorially computes the Castelnuovo—
Mumford regularity of 321-avoiding Kazhdan—Lusztig varieties using excited diagrams. This
extends earlier work of Rajchgot, Weigandt, and the author (2022) which computes the
regularity of Grassmannian Kazhdan—Lusztig varieties. Our results specialize to compute
the regularity of all two-sided mixed ladder determinantal varieties in terms of lattice paths.

1. INTRODUCTION

Kazhdan—Lusztig varieties are generalized determinantal varieties introduced by A. Woo
and A. Yong [39] to study singularities of Schubert varieties. Matriz Schubert varieties,
introduced by W. Fulton [I1], and ladder determinantal varieties, introduced by S. S. Ab-
hyankar [I], are well-studied families of Kazhdan—Lusztig varieties [24], 25| [6] [7, 8, T4}, (15, 16,
20, 30]. Kazhdan—Lusztig varieties indexed by 321-avoiding permutations form a large class
of Kazhdan—Lusztig varieties with homogeneous defining ideals. As proven by L. Escobar,
A. Fink, J. Rajchgot, and A. Woo [10], all two-sided mized ladder determinantal varieties
are 321-avoiding Kazhdan—Lusztig varieties.

The Castelnuovo—Mumford regqularity of a graded module is an invariant used to measure
its complexity. In general, regularity may be computed using the minimal free resolution
of the module in terms of its Betti numbers. Since Kazhdan—Lusztig varieties are Cohen—
Macaulay, one may instead compute their regularities combinatorially in terms of degrees of
unspecialized Grothendieck polynomials, given by A. Woo and A. Yong [40].

We leverage this fact to provide a combinatorial algorithm that computes the regularity
of 321-avoiding Kazhdan-Lusztig varieties. This paper generalizes previous work of J. Ra-
jchgot, A. Weigandt, and the author [35] which gives a tableaux based formula to compute
the regularity of Kazhdan—Lusztig varieties indexed by Grassmannian permutations.

1.1. Summary of Results. We give an algorithm to determine the regularity of 321-
avoiding Kazhdan-Lusztig varieties using skew excited Young diagrams. We construct a dia-
gram Do (v, w) < [n] x [n], which we decorate to form DJ (v, w). This diagram D (v, w)

computes the regularities of 321-avoiding Kazhdan—Lusztig varieties:

Theorem 1.1. Suppose v = w are 321-avoiding permutations. Then
reg(C[z"]/Jow) = #Dg, (v, w) — £(w).
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Here ¢(w) denotes the Coxeter length of the permutation w. We define D,;,(v, w) and

D, (v, w) in Section Theorem [1.1{is proven in Section .

Example 1.2. Let v = (5,8,9,10,1,2,11,3,4,6,7) and w = (1,4,5,8,2,3,9,6,10,11,7).
The left diagram below is D,ip(v,w). We decorate D,;,(v,w) with bold blue pluses to
construct DE (v, w), the right diagram.

zip
T F T
¥ REE T
TF + T
+ F T+
Theorem determines that reg(C[z"]/J,w) = 16 — 12 = 4. Since #D,i,(v,w) = {(w),
reg(Clz"]/ Juw) = #(DE, (v, w) = Dysp(v, w)), the number of blue pluses. O

As with regularity, the a-invariant of a module is an invariant providing data that may
increase efficiency in computations, see [4] for discussion. Using Theorem we compute
the a-invariant for 321-avoiding Kazhdan-Lusztig varieties:

Corollary 1.3. Suppose v = w are 321-avoiding permutations. Then
a(C[2"]/Juw) = #Dz5, (v, w) — £(v).
Corollary is proven in Section [4.3|
Example 1.4. Taking v, w as in Example Corollary [1.3] computes
a(C[z"]/Jypw) = 16 — 26 = —10.
By construction, ¢(v) is the number of boxes in Dfip(v, w). Thus |a(C[z"]/Jyw)| counts the
zKip(v, w). &

In Section[5], we prove specializations of Theorem [I.1]and Corollary [I.3|for two-sided mixed
ladder determinantal varieties. These results continue work of J. Rajchgot, A. Weigandt,
and the author [35] which gives a combinatorial regularity formula for one-sided ladders.

empty boxes in D

1.2. Context in Literature. The regularity of matrix Schubert varieties is recently well-
understood. Initial work of Y. Ren, J. Rajchgot, A. St. Dizier, A. Weigandt, and the author
[34] gives a combinatorial formula for the regularity Grassmannian matrix Schubert varieties
in terms of integer partitions. The recent work of O. Pechenik, D. Speyer, and A. Weigandt
[33] uses poset-theoretic techniques to easily compute the regularity of arbitrary matrix
Schubert varieties in terms of permutation statistics.

J. Pan and T. Yu [32] use [33] to give a diagrammatic regularity formula for matrix
Schubert varieties. The results in [33] have been re-proven by M. Dreyer, K. Mészaros, and
A. St. Dizier [9] using saturated chains in Bruhat order. Formulas for regularities of matrix
Schubert varieties for particular cases [19, B5] as well as tangent cones of Schubert varieties
[41] have also been studied.

The results of J. Rajchgot, A. Weigandt, and the author [35] give a combinatorial formula
to compute the regularity of Grassmannian Kazhdan—Lusztig varieties. Due to a corre-
spondence with matrix Schubert varieties, these results in [35] may be recovered using [33].
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In general, 321-avoiding Kazhdan-Lusztig varieties are not isomorphic to matrix Schubert
varieties. Thus Theorem [1.1| generalizes [35] in a different direction than [33].

Combinatorial formulas to compute the a-invariant of families of one-sided ladder de-
terminantal varieties have been determined [4, Bl 13]. Additionally, S. R. Ghorpade and
C. Krattenthaler [I3] give an algorithm to compute the a-invariant for a family of two-sided
ladder determinantal varieties in terms of lattice paths. Forthcoming work of L. Escobar,
A. Fink, J. Rajchgot, and A. Woo [10] shows two-sided ladder determinantal varieties are
321-avoiding Kazhdan—Lusztig varieties. Using this fact in Section [5], we apply Theorem
and Corollary to compute the regularity and a-invariant for two-sided ladder determi-
nantal varieties in terms of lattice paths. To do this, we generalize a bijection of V. Kreiman
[26] between lattice paths and excited Young diagrams.

1.3. Outline. In Section [2| we establish the combinatorial background. We give the geo-
metric and commutative algebraic background in Section |3, In Section 4| we construct the
diagram DX (v, w) and prove our main results, Theorem and Corollary In Section

zip
we specialize our results to two-sided mixed ladder determinantal varieties using lattice paths.
2. COMBINATORIAL BACKGROUND
ForneZ, let [n] :={i€eZ-o | i <n}.

2.1. Pipe complexes. Let S,, denote the symmetric group on n letters. We write u € S,
in one-line notation and let u; := u(i) for i € [n]. The rank function of u € S, is defined as

rank, (i, 7) := #{(k,ux) | k € [i],ur € [j]}
for (i,7) € [n] x [n]. The Rothe diagram of u € S, is the set
D(u) := {(i,j) € [n] x [n]|u; > j and ;" > i}.

We illustrate D(u) as the blank cells in the n x n grid after placing points in cells (i, u;)
and drawing a line through cells which appear weakly south or weakly east of (i, u;) for each
i € [n]. Let {(u) := #D(u) denote the Coxeter length of u. The Lehmer code of u is the
tuple code(u) = (c1, ..., c,) where ¢; counts the number of boxes in row ¢ of D(u). Further,
code(u) uniquely encodes u [28, Proposition 2.1.2].

Example 2.1. Below are D(v) and D(w) for v = 46128935(10)7 and w = 412368597(10),
respectively.
L1
1100

][] (Rl = =

D_
2 |

'

Here {(w) = 7 < {(v) = 14 and code(v) = (3,4,0,0,2,2,2,0,0,1,0). O
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Define the algebra over Z generated by {e, |u € S,} with multiplication such that
us; f € 7 g y d
eer — {e o if l(us;) > L(u), an

€u otherwise.

Here s; is the simple transposition which permutes ¢« and 7 + 1.

For u € S,, label the boxes of D(u) along rows so that kth leftmost box in row ¢ is assigned
the label i + k — 1. Given P < D(u), let word(P) in D(u) be the sequence formed by
reading the labels of P in this labeling of D(u), scanning right to left across rows, from top
to bottom. The Demazure product §(P) of P is the permutation that satisfies

€5,y " Csy, = €6(P)s
where word(P) = (iy, s, ...,i) in D(u).
Take v, w € S,, where v = w, i.e., v covers w in Bruhat order. Define
Pipes(v,w) := {P < D(v)|d(P) = w}, and
Pipes(v, w) := {P € Pipes(v,w) | #P = {(w)}.
We illustrate P < D(v) by filling each (7,j) € P with a + in D(v).
Example 2.2. The left two diagrams are labeled diagrams D(v) and D(w) for v,w as in

Example 2.1l This gives word(D(w)) = (3,2,1,5,7,6,8) in D(w). The third diagram is
P € Pipes(v,w), and the fourth is some P’ € Pipes(v, w).

1123 112(3 +++ +[+|+
2]3]4]]1[5]
E : EB
6] 7| 8l [6] | [7] L L H | [+ |
_
[9] i I [] i [] 1
1 | | 1 | T |
%

Defined by A. Woo and A. Yong [40], the unspecialized Grothendieck polynomial is

(2.1) Guu(t) = > D#FP 1T .

PePipes(v,w) (3,7)eP

By setting v = wy € S, and specializing variables t;;, these unspecialized Grothendieck
polynomials recover the double Grothendieck polynomials of [27]. Note that we follow the
conventions of [35] for &, ,(t), which differ from those in [40].

2.2. Skew Excited Young Diagrams. A permutation u € S, is 321-avoiding if there
does not exist a 321 pattern in w, i.e., indices ¢ < j < k such that u; < u; < w;. For
example, u = 17258346 is not 321-avoiding; the underlined entries form a 321 pattern in
u. Let U,(321) := {u € S, | u is 321-avoiding}. A permutation u € S,, is Grassmannian if
there exists at most one i € [n — 1] such that u; > u;41. Grassmannian permutations form
a subset of 321-avoiding permutations.
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For u € U,(321), let
¢u : {P < D(u)} — {5 = [n] x [n]}

be the map which deletes all empty rows and columns of D(u) from P < D(u), shifting
remaining columns left and remaining rows up.

Proposition 2.3. [28, Proposition 2.2.13] For u € U,(321), R, = ¢u(D(u)) is a skew
Young diagram \/u for some partitions p < X.

Our conventions for drawing Young diagrams reflect diagrams in English notation across
the y-axis. Throughout this subsection, assume v > w, where v, w € U,(321).

Let DNE(y,w) < D(v) be the boxes corresponding to the earliest subsequence word(P) of
word(D(v)) in D(v) for P € Pipes(v,w). Since w € U,(321), no braid moves are required to
connect reduced words of w, so it is clear DV (v, w) exists.

Define Dyop(v, w) := ¢, (DVF(v,w)). We visualize D = R, by filling (i,j) € D with +’s
and call D a diagram in R,.

Example 2.4. Recall v,w as well as P, P’ from in Example [2.2| The left picture below is
R,. Note that P = DV®(v,w), so the middle diagram below is ¢,(P) = Dyop(v,w). The
rightmost diagram is ¢, (P’):

A+ T+
- -
H
+ H
= | | o
An excited move on D € R, is the operation on a 2 x 2 subsquare of D such that
+
_|_

For this move to occur, the subsquare must be contained in R,. Let SEYD(v, w) denote the
set of D € R, which can be computed through sequential applications of excited moves on
Dyop(v,w). We call a diagram D € SEYD(v, w) a skew excited Young diagram for v, w.
For v, w € S,, Grassmannian, SEYD(v, w) are ordinary excited Young diagrams, which arise
in the study vexillary matrix Schubert varieties [25] as well as the equivariant cohomology
and K-theory of the Grassmannian [18] 211, 26].

A K-theoretic excited move on D € R, is the operation on a 2 x 2 subsquare of D

¥ o [F
_|_

Y

where all cells pictured are contained in R,,. Write SEYD(v, w) for the set of diagrams obtain-
able through sequential applications of excited and K-theoretic excited moves on Dyop(v, w)
in R,. We say a diagram D € SEYD(v, w) is a K-theoretic skew excited Young diagram
for v,w. Let #D denote the number of pluses in D. We say D € SEYD(v, w) is maximal if
D’ € SEYD(v,w) implies #D’ < #D.
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Example 2.5. Continuing Example , the left two diagrams are in SEYD(v, w). The right
two diagrams are maximal diagrams in SEYD (v, w).

[+ [+ [+ T+
- - -
T - Sl
[+ [+ H I+ H
. . . . o

Proposition 2.6. For v > w where v,w € U,(321), the map ¢, restricted to Pipes(v,w)
gives a bijection

51, : Pipes(v, w) — SEYD(v, w)
such that for P € Pipes(v,w), #P = #&;(P)

Proof. For D < [n] x [n], a ladder move is the operation on a 2 x k strip in D such that

+[ - T+[+ +[ T+ g +[-J+]+]

—

+| T+ ++] |+ ++] ]+

All cells above are contained in [n] x [n] and k > 2. Let
S ={D < D(v) | D obtained by applying ladder moves starting from D"* (v, w)}.

Using [3] and the subword complex interpretation of Pipes(v, w) as given in 40, Section 3],
S = Pipes(v,w). By [12, Theorem 4.1] since w € U, (321), all ladder moves in this case are
of the form

o U +|.
¥ ¥
Thus the statement follows by the definition of ¢,. 0

Corollary 2.7. Suppose v = w where v,w € U,(321). Then

deg(®,,,(t)) = max{#D | D € SEYD(v, w)}.
Proof. This follows by Proposition and Equation . O
Example 2.8. For v, w as in Example 2.5, Corollary 2.7 determines deg(®,,.,(t)) =8. ¢

3. CASTELNUOVO—MUMFORD REGULARITY OF KAZHDAN-LUSZTIG VARIETIES

In this section, we define Castelnuovo-Mumford regularity, a-invariants, and Kazhdan—
Lusztig varieties. We then recall results of [35] which relate the Castelnuovo-Mumford
regularity of Kazhdan—Lusztig varieties to unspecialized Grothendieck polynomials.

3.1. Castelnuovo-Mumford Regularity. Let S = C|zy,...,2,] be a polynomial ring
with the standard grading, and let I < S be a homogeneous ideal. The Hilbert series of
S/I is a formal power series
. K(S/I;t)
H(S/I;t)= ) d S/Dp)tF = ————~.
(/1) = 3, dime((S/ D = 1250

keZ
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The K-polynomial of S/I is the numerator K(S/I;t) € C[t*']. A minimal free resolution
of S/I is the complex

0= @SENME = @ S() " = > @SN - S/ -0,
J J J

where | < n and S(—j) is the free S-module with degree shifted by j. The Castelnuovo—
Mumford regularity of S/I, written reg(S/I), is the statistic
veg(S/1) = max{j — i | Bi;(S/1) # 0},
For S/I Cohen-Macaulay,
(3.1) reg(S/I) = deg K(S/I;t) — htsl,

where htgl denotes the height of the ideal I. For more context, consult [2, Lemma 2.5].

The a-invariant of S/I, written a(S/I), is the negative of the least degree of a generator
of the graded canonical module of S/I, as defined by S. Goto and K. Watanabe [17]. When
S/I is Cohen—Macaulay,

(3.2) a(S/I) =reg(S/I) —d,
where d is the Krull dimension of S/I.

3.2. Kazhdan—Lusztig varieties. We follow the conventions used in [35]. For v € S,
define M™ = (m;;) to be the n x n matrix such that for i, j € [n],

1 if v =7,
mij = 4 2z if (4,7) € D(v),
otherwise.

0
Let C[z"] := C[z; | (¢,7) € D(v)]. For v > w where v, w € 5, the Kazhdan—Lusztig ideal
Jyw S C[2z"] is defined by

Joaw 1= ranky, (i, ) + 1 — minors in M{) [ (i, j) € D(w)),

where M; ; denotes the submatrix of M with row indices in I and column indices in J for
I,J < [n]. When v e U,(321) J,,, is homogeneous, see [23, Footnote on pg. 25]. Additional
cases for which .J,, is homogeneous can be found in [31], Propositions 6.3 and 6.4], but no
full characterization is known.

Let B, B_ < GL,(C) denote the Borel and opposite Borel subgroups, respectively. As
defined in [39], the Kazhdan—Lusztig variety is the intersection of the Schubert variety
B \B_wB, < B_\GL,(C) with the opposite Schubert cell B_\B_vB_. The coordinate
ring of this Kazhdan-Lusztig variety is C[z"]/J, . Using [22, Lemma A.4] and the fact that
Schubert varieties are Cohen-Macaulay [11], 24], B6], C[z"]/J,. is Cohen-Macaulay.

As reformulated in [35, Lemma 6.3],

Lemma 3.1. [40, Theorem 4.5] Let v, w € U, (321) where v = w. Then
K(Cl2)/Jowit) = ), (FD)F—#”.

PePipes(v,w)
Combining Lemma [3.1| with Equation (3.1]) produces the following:
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Proposition 3.2. [35, Proposition 6.4] Let v,w € U, (321) where v = w. Then
deg K(C[2"]/Jyw; t) = deg B, 4 (t).

Furthermore, the Castelnuovo—Mumford regularity of C|z"]/Jy. is given by

reg(Clz"]/Ju,w) = deg By u(t) — £(w).
Applying this to a-invariants:

Corollary 3.3. Let v,w € U,(321) where v = w. The a-invariant of C[z"]/Jy. is given by
a(C[z"]/Jpw) = deg &, (t) — £(v).

Proof. This follows by Proposition combined with Equation since C[z"]/Jy has

dimension d = £(v) — £(w). O

For S/I Cohen-Macaulay, the a-invariant is the lower bound for when its Hilbert function
and Hilbert polynomial agree. Using Equations and , A. Stelzer and A. Yong
[37] prove that all homogeneous Kazhdan—Lusztig varieties are Hilbertian, i.e., the Hilbert
function and Hilbert polynomial of a Kazhdan—Lusztig variety agree at all non-negative
integer values, excepting the v = w case.

4. MAIN CONSTRUCTION AND PROOF OF THEOREM [1.1]

Assume v = w where v,w € U,(321). In Section we define the diagram DzKip(v,w)

appearing in Theorem (1.1 Section {4.2|relates DX (v, w) to deg &,,,(t). Section {4.3 contains
the proofs of Theorem and Corollary [L.3]

4.1. Main Construction. We index R, using matrix indexing, where its northwest most
box corresponds to (1,1). Suppose Diop(v,w) has connected components {C}qefm]- Order
components C, such that the indices increase when scanning components from northwest to
southeast. Two boxes sharing only a corner point belong to different components. For a box
be R,, we write b = (b(1),b(2)).

Let g € [m]. Define ¢ : C; — C, such that ¢g(b) = (b(1), ) for b € C,, where

¢ =max{k € [n] | (b(1),k) € C,}.

Example 4.1. Consider Diop(v,w) below where v, w € U16(321)E|. Then Dsop(v, w) has
connected components C7 and Cs.

Eabs
1+

FHFHE
A

Here Cy = (1,2) u (1,3) u U>_, ((i,4) U (i,5)) and Cy = {(2,8),(2,9),(3,8),(3,9)}. We see
¢E((278)) = (279) = wE((ng)) <>

"Here v = (6,11,12,13,14,15,1,16,2,3,4,5,7,8,9,10), w = (1,6,2,3,7,8,11,12,4,5,9, 10, 13,14, 15, 16).
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Construction 4.2 (Computing DJ (v, w)). Assume Diop(v, w) has connected components
{Cq}geim)- For each g € [m], define D|agv7w(C’q) = {b]}refe,] to be the westmost then south-
most diagonal of boxes in €, of maximal length /,. Boxes in Diag, ,(C,) are ordered increas-
ingly northwest to southeast.

For g € [m] in decreasing order, compute md(Cy) = {d} }sefe,] S Cy such that md(Cy) is the
westmost then southmost dlagonal of length ¢, that minimizes

#([p(d)] + 1] 0 (1D = qiee,1)-

Here |b| := b(1)+b(2) for b € Dyop(v, w). Boxes in md(Cy) are ordered increasingly northwest
to southeast.

We define D (y

21p(
DY (0, w), set

zip

w) iteratively for ¢ € [m]. Set D (v, w) = Dsop(v,w). Then in

zip

S = {be C, —md(C,) weakly southwest of md(C))}.

To each in b € S, working in order from left to right and bottom to top, let b’ be the new
position of b after applying as many excited moves as possible to b. Let

D (v,w) := DYV (w,w)— S u{b | be S}

zip zip

Define D,;p(v, w) := DU (v, w). By construction, #D,15(v,w) = #Diop(v,w) = £(w) and

zip

#R, = {(v). Let DE_(v,w) be the diagram after applying a maximal number of K-theoretic

zip
excited moves to each b € md(C,), for each ¢ € [m].

For b € md(C,), define trail, ,,(b) such that
trail, ,,(b) := max{k € {0,1,...,n} | b+ (K, —k"),b+ (K, 1 — k'),
b+ (K —1,—k') € Ry — Dyip(v,w) for each k' € [k]}.
As proven in Section [£.2]
Theorem 4.3. Suppose v = w, where v,w € U, (321). Then

deg(®,,(t)) = #DE (v,w) = Lw) + >° > traily (b

ge[m] bemd(Cy)

Thus DX (v, w) is maximal in SEYD(v, w).

zip
Example 4.4. We continue with v, w as in Example[d.1] The leftmost diagram is Dyop(v, w)
with Diag, ,,(Cy) bolded and md(C,) shaded for ¢ € {1,2}. The middle diagram is D, (v, w)
and the right diagram is D w). The pluses in D (v, w) — Dysp(v, w) are drawn bolded
in blue in DL _(v,w).

21(

p

21<
p

[ [ [
T[T |1 [
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We then compute
> trail(b) =1+2+2=5 and ) traily,(b) =4+4 =8
bemd(Cl) bEmd(CQ)
Theorem [4.3] determines

deg(®,.,(t)) = #DE (v,w) =16 +5+ 8 = 29.

zip
Theorem [I.1] and Corollary [1.3]|imply
reg(Clz°]/Jpw) = #Dfip(v, w) —l(w) =29 —16 = 13, and

a(C[2"]/Jyw) = #DE (v,w) — (v) = 29 — 58 = —29.

zip
We see reg(C[z"]/J,.w) counts the blue pluses in DE_(v,w) and |a(C[z"]/J,.)| counts the
zip(V, ). ¢

zip
In Section [5| we discuss cases in which Diag, ,,(C,) = md(C,) for each ¢ € [m], simplifying
computations of reg(C[z"]/Jyw)-

empty boxes in D

4.2. Proof of Theorem [4.3] We first prove some key lemmas.
Assume v > w and v,w € U,(321). Let z be the box containing the northmost then
eastmost plus in Diep(v, w). Take z' to be the northmost then eastmost box in R,. Set

i = word(¢,'({z})) and 7' = word(¢, ' ({'})) in D(v). Define the following:
wp = $;W We = w

Vp = SV Vo = Up.
Lemma 4.5. For v = w such that v,w € U,(321), {vp, wp,vc, wc} < U,(321).
Proof. Since z and z' are northeast most choices, this follows from Proposition [2.3] OJ

Example 4.6. Let v,w be as in Example 4.1 Below we have Dyop(v',w) on the left and
Dyop(vg, we) on the right, where o' = sgv. In this case, z = (1,5) and 2’ = (1,6).

+|+

T

_{
_{
_{
_{
_{

_{
_{
_{
_{
_{

}_
}_
)_
)_
)_

T
|
1
+

Below are Diop(v, w), Diop(ve, we), and Dyop(vp, wp), listed from left to right. In this case,
z=(1,5)=72.
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By construction, R, is formed by deleting z' from R,, up to removing one empty row
and column. For simplicity in indexing, we view R, as ¢,(D(v¢)) rather than ¢, (D(ve)).
Since vp = v¢, we do the same for R, .

Lemma 4.7. Let v = w and v,w € U,(321). Suppose z is the box containing the northmost
then eastmost plus in Diop(v,w) and Z' is the northmost then eastmost box in R,. The
following hold:

(1) Ifz# 2,
SEYD(v,w) = SEYD(ve, we).
(2) If z =7,

SEYD(v, w) = SEYD(ve, we) | | {D U {z}| D € SEYD(ve, we) U SEYD (vp, wp)}.

Proof. First suppose z # z'. By the definition of Dyop(v, w), z' ¢ D for any D € SEYD(v, w).
Therefore, Diop(v, w) = Dyop(ve, we), so since z' is northeast most, the result follows.

Now suppose z = Z'. Note SEYD(v¢, we) may be empty in this case.
(<) Fix D € SEYD(v,w). If z ¢ D, then D = R,. and §(¢, (D)) = w = we. Thus
D e SEYD(ve, we) by Proposition .

Now assume z € D. If §(¢,” (D — {z})) = §(¢, *(D)), then

3(¢0 (D —{z})) = 8(¢, (D)) = w = we,

so D — {z} € SEYD(v¢, we). Alternatively when (¢, (D — {z})) # d(¢, ' (D)), then since
z is northeast most

§(dy (D — {z})) = s;w = wp
so D — {z} € SEYD(vp, wp). Thus the result follows by Proposition .
(2) Fix D’ in RHS. If D" € SEYD(v¢, we), then w = we and D' € R,, € R,. Thus by
Proposition D e SEYD(v,w). Otherwise suppose D' = D u {z}. Since z is northeast
most and z = 7/, 7 is the first letter of word(D(w)) in D(v). Thus if D € SEYD(vp,wp), the
fact that s;wp = w implies

€5(pu=1 (D)) = Co(¢w 1 ({2})C8(¢0H(D)) = CsiCup = Cw-
Then D € SEYD(v, w) by Proposition . Alternatively if D € SEYD(ve, we),

Co(d™ (D) T G800 ({2) (00 (D)) T Cuibu T Cu
Thus D € SEYD(v, w), so the result follows by Proposition [2.6] O

We apply Lemma [4.7] to obtain a recurrence for degrees of unspecialized Grothendieck
polynomials.

Corollary 4.8. Letv > w and v, w € U,(321). Suppose z is the box containing the northmost
then eastmost plus in Diop(v,w) and Z' is the northmost then eastmost box in R,. The
following hold:

(1) If 2 # 2, deg(&yu(t)) = deg(Byeuc (t)).
(2) If z =7, deg(&yu(t)) = 1 + max(deg(Bup up (t)), deg(Gue ue (t))).

Proof. This follows by combining Corollary 2.7] with Lemma [4.7] O
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Lastly we establish some technical lemmas for the z = z’ case.

Lemma 4.9. Let v > w and v,w € U,(321). Suppose z is the northmost then eastmost box
in Ry, and z € Cy, where Cy is a connected component in Diop(v,w). Then the following
hold:

(1) Dtop(UPawP) = Dtop(v7w) - {2}7 q:ﬂd

(2) Dyiop(ve, we) = Diop(v, w) — R U R when SEYD(ve, we) # &,

where R = {d € C, | d weakly southwest of z} and R={d+(1,-1) | de R}.

Proof. (1) follows from the definitions of vp and wp since z lies on the northeast boundary
of R,. Assuming SEYD(ve, we) # &, Diop(ve, we) € SEYD(v,w). By construction

5(¢U_1(Dtop(vaw) - Ru ﬁ)) =W = We.
Since SEYD(ve, we) # &, it follows that Diop(v, w) — R U Rc Ry Then
Diop(v,w) — R U R € SEYD(ve, we).

No reverse excited moves can be applied in R,., so (2) follows. 0

(oB)

For brevity, if o, p € U, (321) such that o > p, where Diop(0, p) has components {Cy}gefm]
write

Ay ,(q) = Z trail, ,(b) and d(o,p) Z A, ,(q)

bemd(Cy)

Lemma 4.10. Let v > w and v,w € U,(321). Suppose z is the northmost then eastmost
box in R, and z € C,, where Cy is a connected component in Dyop(v,w). Then the following
hold:

(1) d(v,w) = d(vp,wp), and

(2) d(v,w) = d(vp,wp) if z¢ md(C,) or if ze md(C,) where trail,,,(z)) = 0.

Proof. Let {Cy}qerm) and {C’ }qerm) denote the components of Deop(v, w) and Dyop(vp, wp)
respectively. Suppose ze C,. We assume z < C,. If {z} = C, the result follows similarly, so
we omit the proof. By Lemma ifz¢ C;, m=m'. Using Lemma and the definition

of md(-), md(Cy) = md(CA*qr) for ¢ > q.

Suppose z ¢ md(C,). Then md(Cy) = m (C ) for ¢ < ¢. Since z is northeast most,
trail, ., (b) = trail,, 4, (b) for each b e md(Cy), ¢’ € [m]. Thus Ayw(qd) = Aypwp(q) for each
q € [m], so d(v,w) = d(vp,wp).

Now assume z € md(C,). Then since z is northeast most and md(C,) is a westmost diagonal,
md(C,) = md(CA’q) U {z}. Since z is a northmost plus and z € md(C,), md(Cy) = md(CA’q/) for
¢' < ¢. Thus trail, ,(b) = trail,, 4, (b) for each b € md(Cy), g € [m] where b # z. Therefore

ANpw(q) = Dypwp(q) for ¢' € [m] — {q}, and
Ayw(q) = Avpowp(q) + trail, ,(2).

Thus d(v, w) = d(vp,wp) + trail, ,(z), so (1) and (2) follow. O
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Lemma 4.11. Let v > w and v,w € U,(321). Suppose z is the northmost then east-
most box in R, and z € Cy, where Cy is a connected component in Dyop(v, w). Assume

SEYD(ve,we) # &. Then the following hold:
(1) d(v,w) = d(ve,we) + 1, and
(2) d(v,w) = d(ve,we) + 1 if ze md(Cy).

Proof. Let {Cy}qerm) and {5 }qepm) denote the components of Dyiop(v,w) and Dyop(ve, we)

respectlvely Suppose ze C, By Lemma 4.9 Diop(ve, we) = Diop(v,w) — R U R. We

assume R C Cq 1 and R < C,. The other cases follow similarly, so we omit their proofs.
When R < C’q 1 and R ¢ C;;, m = m/. By Lemma and the definition of md(-),

md(Cy) = md(C ) for ¢’ > q. Partition md(Cy) = {b;}icfr) U {bi}icfit1,...r,} Where

-----

{b;}icfr) = {bi € md(Cy) N R | b; lies strictly north of C; — R}.

Let md(C,) = {ci}iciz,)- Since md(Cy) has maximal length, l, < l, — k. Then since md(C,)

and md(C,) are southmost choices, o it and by, ;41 lie in the same rows for i € [Zq]. This
ensures trail, ,,(b) = trail, . (b) for each b e Cy, ¢ > ¢. Thus

Apuw(q) = Appwe(¢) for ¢ > q.

Since z is northeast most, by the definition of md(-), md(C,_;) = md(C,_;) — B. Then
md(Cy) = md(Cy) for ¢ < ¢ — 1, so trail, ,(b) = trail,, . (b) for each be Cyp, ¢ < ¢— 1.
Therefore

ANpw(q) = Dppwe(q) for ¢ < qg—1.

To prove (1) it remains to show
(4'1) Av,w<q - 1) + Av,w(q> = Avcﬂﬂc (q - 1) + Avc,wc(Q) + 1.
Partition md(CN'q_l) A R = {a;}ier, U {a;}ier,, Where

I == {i € [#(md(Cy_1) N R)] | there exists c; € md(C,) strictly north of a; where j € [Zq]}

Thus we find:
Avowe(@—1) + Apgwe(q) = Z trail,., e (b Z traily. we (¢;)
bemd(Cy—1) i€[ly]
=A,w(g—1) Z trail,e we ( Z traily. we (C)-
ieliuls 26 ]

Since it and by, ;11 lie in the same rows for 7 € [E ], by the definition of 5 and trail we
obtain the first inequality below. Note that {a; + (=1, 1)}ier, or, lies weakly south of {b;}icpy
and |I; U Io| < k by the definition of md(-). Combining these with the fact that ¢, < ¢, — k,
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we obtain the second inequality

Z trail,e we Z trailye we (¢;) Ztrallvc we ( Z trail, . (be,—i+1)

ielyuls i€ Zq] iely 7*e[ell]
(4.2) < Y (traily (b)) = 1)+ > trail,,(b;)
i€[k] te{k+1,....04}
<A, w(g) — 1.

Thus Equation (4.1]) is proven, so (1) follows.
Now suppose z € md(C,). Then (2) follows once we show equality is attained in Equa-
tion ([4.1]). Since Rc Cw‘q,l, trail, ., (z) = 1.
There are no pluses in rows j < a since z is a northmost plus. Since md(C,) is westmost
in Cy, z+ (0,—1) ¢ Dyop(v,w). If z+ (j, —1) € C, for some j > 0,
z+(5,-1),z+ (j/,0) e C, for all j' € [j —1].

Therefore d € R implies d(2) = z(2). Thus #([; u I5) < 1.
By the definition of md(-), z € md(C,) implies

md<éq) =mnd(Cy) — R = md(Cy) — {z},
so ¢; = b4y for i € [¢, — 1]. Since md(-) is a southmost choice and R < C,, z + (1,1) € C,.

Since md(-) is a southwest most choice and z € md(Cy), z+ (1, 1) € md(C,). Therefore I, = &.
Then we refine Equation . to find

Z trail,. we Z trailyg we ( Z trail, we Z trail,. we (b;)

ieliuls ] iels 1€{2,....0¢}

= Ay w(q) —traily (z) = Ay u(q) — 1.
vewe(@1) = 0. Thus (2) is proven. m

Proof of Theorem : The second equality follows by the definition of trail, ,(b) where
b € {md(C;)}4epm) and the fact that #D,:p(v, w) = f(w). If £(w) = 0, SEYD(v,w) = &, so
by Corollary [2.7] the first equality follows.

We prove the remainder of cases for the first equality by induction on ¢(v). For ¢(v) = 0,
the assumption v > w implies ¢(w) = 0, which is proven. Suppose the statement holds for v
such that {(v) = k — 1 for k > 1.

Consider v such that ¢(v) = k and assume ¢(w) > 0. Suppose z is the northmost then
eastmost plus in Do, (v, w) and 2z’ is the northmost then eastmost box in R,

If z # 7/, Lemma implies Dyop(v, w) = Dyop(ve, we). Since Z' is the northeast most
box, Daip(v,w) = Dasp(ve, we), so Dy (v,w) = DX (ve,we) again since 2’ is northeast
most. Therefore #DJ (v,w) = #DJ (ve,we). By the inductive assumption, we have
#DzKip(vc, we) = deg (B, we (b)), so the result follows by Corollary .

Here if a; does not exist, we say trail
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Now assume z = Z/. Since w = we = s;wp where i € [n — 1], {(w) = l(we) and
{(w) = l(wp) + 1. Then by the inductive assumption and Corollary [4.8]

deg(®, ., (t)) = {(w) + max(d(vp,wp), d(ve, we) + 1).
Applying the second equality, it suffices to prove
d(v,w) = max(d(vp,wp),d(ve,we) + 1).

Suppose z € C,, where C; is a connected component in Dyo(v,w). Note that when
z e md(C,), SEYD(ve, we) # & if and only if trail,,(z)) > 0. Then the result follows from
Lemmas and 4111 O

4.3. Proof of Theorem and Corollary Using the results of the previous sub-
section, we can prove our main result.

Proof of Theorem[I1.1: This follows from combining Proposition and Theorem [4.3] O
Proof of Corollary[I1.5: This follows from Corollary combined with Theorem O

5. REGULARITY OF LADDER DETERMINANTAL VARIETIES

In this section we use the result of L. Escobar, A. Fink, J. Rajchgot, and A. Woo [10]
which states two-sided ladder determinantal varieties are Kazhdan—Lusztig varieties indexed
by particular v, w € U,(321). In this setting, Construction [4.2]is simplified. We give special-
izations of Theorem and Corollary accordingly.

Lastly in this two-sided ladder case, we reformulate Theorem and Corollary in
terms of lattice paths. This generalizes work of S. R. Ghorpade and C. Krattenthaler [13].

5.1. Ladder Determinantal Varieties. A ladder region L is a skew Young diagram \/p.
We assume A and p have ¢(\) non-negative parts. For L = \/u, we define the perimeter
of L as 2n, where n = Ay + A, i.e., the number of boxes in the first row plus the number of
boxes in the first column of \.

A ladder region L is equivalently determined by its southwest corners {0 bie[s]
and northeast corners LNE = {Bi}icrq, with points ordered northwest to southeast. Define
ap = (0,0) to be the northwest most corner of L and let a,y; denote the southeast most
corner of L. For a point v in L write v = (y(1),7(2)). A box b in L inherits the label of its
southeast corner.

Let M = {(pi,7i)}ic[+] denote a set of marked points along the southwest border of L
where r; € Z~q. Points in M are ordered northwest to southeast.

Define L(z) as the filling of each (¢,j) € L with indeterminate z;;. Take C[L(z)] the
polynomial ring generated by entries in L(z). Define the two-sided mixed ladder deter-
minantal ideal I

LSW —

Ip pm = {ri —minors in Lip,1)),[p; 2)+1,ae:1(2)] (2) | (Ps,75) € M) < C[L(2)],

where Ly ;j(z) denotes the submatrix of L(z) with row indices in I and column indices in .J
for I, J < [n]. The two-sided mixed ladder determinantal variety has coordinate ring
Xom = C[L(2)]/Ipm. Taking L = A, i.e., when p = &, produces a one-sided mixed
ladder determinantal variety. Define (L, M) to be minimal ladder if

(1) each z;; € L(z) appears in a monomial of a generator in Iy a4,
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(2) 0< pl(l) - < pg(].) — Ty < - < psl(l) — Ty, and

(3) 0 <p1(2) =11 <p2(2) =1y < -+ < pg(2) — ryg.
It is straightforward to reduce any two-sided ladder to a minimal two-sided ladder.
Example 5.1. Let L = A\/u, where A\ = (5,5,5,5,2,2) and g = (2,1,0,0,0,0). Then

LW = {(4,0),(6,3)} and LNE = {(0,3),(1,4),(2,5)}. Below is L(z) with marked points
M ={((4,0),3),((4,2),2),((6,3),2)} drawn in red.

Z11%12|213

221|222 (223|224

231|232 (233|234 |235

.241 242|743 |244 |%45
3 2 |#54l255

264|265

26
Then I,y = (3 — minors of Ly 51(2), 2 — minors of Ly 34,5(2),2 — minors of Lig) a5y (2))-

5.2. Two-sided ladders and Kazhdan—Lusztig Varieties. Let (L, M) be a minimal
two-sided ladder where L = A/, M = {(p;,7i)}ic[+], and L has perimeter 2n. Define
s, € 2%, as the sequence

Sp = (A — 1, OM7A2 X9 — 119, 02730 Ny — peny, OMO).

Let v € S, be the unique permutation such that code(v) = s,. Suppose LNE = {f;} e
Then take w € S, to be the minimal length permutation satisfying

ranku, (([p:l, 3;1)) = min ({Ipi], 1851, rank, (Pl [185])) + i = 1})

for each i € [s'],j € [t]. Here ||| = v(1)+~(2) for a point 7. We define perm(L, M) = (v, w).
This formula to compute perm(L, M) refines the formula in [15, Theorem 4.7.3] for the
one-sided ladder case.

Example 5.2. Let L and M be as in Example [5.1] Below are D(v) and D(w) such that
(v,w) = perm(L, M). In D(w), the positions {(|p;|, [5;|)}ic[s1,je[g are shaded.

| (@

5[
ir F .

One-sided ladder determinantal varieties are isomorphic to vexillary matrix Schubert va-
rieties, see [15, 25]. In general, two-sided ladder determinantal varieties are not isomorphic
to matrix Schubert varieties. For example, if (L, M) is as in Example X (L, M) is not
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isomorphic to a matrix Schubert variety. As proven by L. Escobar, A. Fink, J. Rajchgot,
and A. Woo, all two-sided ladders can realized as Kazhdan—Lusztig varieties:

Theorem 5.3. [10] Given (L, M) minimal, suppose perm(L, M) = (v, w) and L has perime-
ter 2n. Then the following hold:

(1) v,w e U,(321) where v = w, and
(2) Ip m and J,, have the same set of generators.

5.3. Specializing Theorem [1.1, When (v,w) = perm(L, M) for (L, M) minimal, dia-
grams in SEYD(v,w) exhibit additional structure. This allows us to re-frame Theorem
and Corollary [1.3]in terms of lattice paths in L.

Construction 5.4 (Computing boundary points). Take a minimal two-sided ladder (L, M)
where M = {(p;, 1) }ic[s] and LW = {ai}ie[s). For each i e [s — 1] let

ri = min{r;, | (pi,,7i,) = ((as(1),9)),7i,) € M}, and
rZV = min{ry, | (pi;,7i;) = (2, :(2)),73,) € M}.

Initialize M’ = M. For each i € [s — 1], if ((a;(1), 2i11(2)),7) ¢ M’ for any r € Z~q, append
((Oéi<1)7 @i+1(2)), min(rX, rxrl))

to M. Lastly append (ao, 1) and (as+1,1) to M'. Partition M = [, MY O M| where

M = A{(pi;,7i,) | pi; = (z,04(2))}, and
M= {(piyomi;) | Py = (ci(1), )}

Points in M} are ordered north to south and those in M¥ are ordered east to west.
Initialize V(M) = & and H(M) = &. Then iterate the following for each i € [s]:

- For each j € [#M]) — 1], take (p;,,r;;) € M. If r;,,, —r;, = k > 1, append
pi, + (K — 3,0) to V(M) for each k' € [k].

- For each j € [#MI — 1], take (p;,,7;;) € MI. I i, — 1
pi, + (0, —k" + 3) to H(M) for cach k' € [k].

This gives boundary points V(M) and H(M).

Suppose #V (M) = £ € Z=o. Then #H (M) = ¢ by construction. For i € [¢], label points
H; € H(M) in increasing order from east to west. For ¢ € [¢] in decreasing order, assign
label V; to be the southmost point in V(M) — {V; | £ = j > i} that lies northwest of H;.

= k > 1, append

Example 5.5. We illustrate Construction below. The left diagram draws a ladder L
with the original marked points M bolded in red and M’ — M in light gray. The middle
diagram adds V(M) and H (M) in bold black. The right diagram labels V(M) and H(M).
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V1+
Vo ®

-0

e

Vi

Vs

.—

H
R
A lattice path from H; to V; in the region L is a path from H; to V; in L consisting north

and west steps in L. We visualize lattice paths in L with tiles

H B AU

We call the leftmost tile a SE-elbow tile and the rightmost tile a blank tile. For a box
be L, let t(b) denote the tile occupying b.

For a minimal two-sided ladder (L, M) where L = \/u, define NILP(L, M) to be the set
of non-intersecting lattice paths P = (Py,..., P;) where P, is a lattice path in L from H; to
Vi, for H; e H(M),V; € V(M). A path P, may occupy box (z,y) € p only if:

(1) t(x,y) # [H, and
(2) t(z + k,y — k) # [_] for any (x + k,y — k) € X where k € Z..

Example 5.6. For (L, M) as in Example[5.5] the leftmost two diagrams are in NlLP(L
The rightmost diagram is not since Py occupies (2,9) € p but ¢(2+1,9—1) = (3

M).
!

7 1
al D-I al
L

~—
|

—
|
1
|
—
|

For P € NILP(L, M), define

blanks(P) := {(i,j) e L|t(i,j) = D}.

Let wt(L, M) = #L — #blanks(P), where #L denotes the number of boxes in L and
P € NILP( ,M). By the definition of NILP(L, M), #blanks(P) is constant across all
P e NILP(L, M). For P e NILP(L, M), define the unforced elbows of P as the set

elbows(P) := {(i,5) € L | t(i,5) = [H and t(i — k, j + k) € blanks(P) for some k > 0}.
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Define the map
Y : NILP(L, M) — [n] x [n]
P — blanks(P).

For a minimal two-sided ladder (L, M), take Py (L, M) € NILP(L, M) to be the non-
intersecting lattice path in which each path lies maximally southwest in L.

Ordinary excited Young diagrams naturally biject with non-intersecting lattice paths when
L = ), as shown by V. Kreiman [26]. We prove the corresponding bijection for skew excited
Young diagrams.

Proposition 5.7. Let (L, M) be a minimal two-sided ladder. Then for (v, w) = perm(L, M),
¢ : NILP(L, M) — SEYD(v, w)
P +— blanks(P)
is a bijective map, where ¥(Poor (L, M)) = Dyop(v, w).
Proof. We first show ¢(BPyot(L, M)) = Diop(v,w). Suppose L = X/p. Without loss of

generality, assume A,y are such that connected components in A/u share corners.

We proceed by induction on |u|. When |u| = 0, L is a one-sided ladder. This implies v, w
are Grassmannian, as proven in |15, Theorem 4.7.3]. This case is proven in [26], Section 5].
See [29] and [38] Section 7.3] for additional discussion.

Suppose the result holds for |u| = k —1 > 0. Consider L = \/u such that |u| = k. Take
(a,b) € L to the northmost box in L such that (¢ + 1,b+ 1) € L and (a,b+ 1) ¢ L. Let
L':=Lu(a,b+1).

By the inductive assumption since (L', M) is also minimal, the result holds for (L', M).
Let (v/,w’) = perm(L’', M). Since L' = L U (a,b + 1), this determines

(5.1) (LYNE = LN —{(a — 1,0), (a,b+ 1)} U {(a—1,b+ 1)}.

Then by definition of v and choice of (a,b), v = s;v’, where i = word((a,b + 1)) in D(v).

Suppose t(a,b + 1) = [ ] in Pye(L/, M). Using the inductive assumption, we know
that (a,b + 1) € Dyop(v',w’). By the definition of perm(L, M) and Equation (5.1)), it is
straightforward to check through case analysis on LNE A {(a —1,b), (a,b+ 1)} that w = s;w’.
Thus Dyep(v, w) = Dyop(v',w') — {(a, b+ 1)}. Since

blanks( Poot (L, M)) = blanks(Ppes (L', M)) — {(a,b + 1)},

we find ¢(Poor (L, M)) = Diop(v, w).

Otherwise t(a,b + 1) # [ ] in Pye(L/, M). By the inductive assumption, we know
that (a,b + 1) ¢ Dyop(v',w’). By the definition of perm(L, M) and Equation (5.1)), it is
straightforward to check through case analysis on LNE A {(a — 1,0), (a,b + 1)} that w = w'.
Thus Dyop(v, w) = Diop(v',w'). Since blanks(Ppor (L, M)) = blanks(FPyor (L', M)), we have
Y(Poot (L, M)) = Deop(v, w).

We see excited moves and droops of lattice paths biject with each other:

T L 8
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Therefore since R, = A/u, the result follows. U
Then for (v, w) = perm(L, M), let P,i,(L, M) := ¢p™H(D,ip(v,w)).

Example 5.8. Take (L, M) as in Example [5.5, To the left are Pbot(L M) and Dy, (v, w).
To the right we have P,;,(L, M) and DX (v, w) where pluses in DE_(v,w) — D,ip(v, w) are

zip zip
drawn in bold blue. Note that elbows(P,;,(L, M)) coincides with D} (v, w) — D,ip(v, w).

21(
p

— ™ {

{ 5 H
I I"I + |
' . +

|

—
|
~—
|

—
|

1 - | as
%

Lemma 5.9. Let (L, M) be a minimal two-sided ladder. Suppose perm(L, M) = (v, w) and
Dyop(v,w) has connected components {Cy}qem)- Then for q € [m], md(C,) = Diag,,,(C,).

Proof. Define w'@ = §(¢;1(C,)) for g € [m]. Then w'? € U, (321) by Proposition [2.3|
We claim the followmg
SEYD(v,w) = SEYD(v, w™™) x SEYD(v,w®) x --- x SEYD(v, w™).
If this fails, there exists (z,y) € C, and (z,y + k) € Cyyq for some ¢ € [m — 1], k > 1
such that (z,y + k — 1) ¢ Dyop(v, w). By Proposition 5.7, ¢(Poot (L, M)) = Dyop(v,w), s0
in Poor(L,M), t(z,y +k—1) # [ ] Since Deop(v, w) is northeast most, this implies that
some path P; in Pe (L, M) occupies tile (x,y + k — 1). This forces P; to pass north of Cj,

violating condition (2) for lattice paths, a contradiction. Therefore the result follows by the
definition of md(-). O

This gives the following:

Corollary 5.10. Suppose (L, M) is a minimal two-sided ladder where perm(L, M) = (v, w).
Then if Dyop(v,w) has connected components {Cq}gefm]:

reg(X (L, M)) = #DE (v, w) —t(w) = Y| > trail,,(b), and

q€[m] beDiag,, ,,(Cq)

a(X (L, M)) = #DE (v, w (Z > trailu(b)) — £v) + C(w).

] beDlagv w(CQ)

Proof. By Theorem [I.1] and Corollary [I.3] combined with Proposition [5.3] and Theorem [4.3}

reg(X(L,M)) = >, > trail,,(b), and

ge[m] bemd(Cy)

a(X(L,M)) = Z Z trail,, ., (b

ge[m] bend(Cy)

Then the result follows by the above equation combined with Lemma U
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In [13, Lemma 14] S. R. Ghorpade and C. Krattenthaler give an algorithm to compute
a(X(L, M)) for two-sided ladders generated by k-minors with additional marked points
(p,7), where r € [k] and p lies on the northmost vertical edge or eastmost horizontal edge of
L. This algorithm computes a(X (L, M)) by maximizing #elbows(P) for P € NILP(L, M).
We extend this to all minimal two-sided ladders:

Corollary 5.11. Let (L, M) be a minimal two-sided ladder. Then
reg(X (L, M)) = #elbows(P,i,(L, M)), and
a(X(L, M)) = #elbows(P,i,(L, M)) —wt(L, M).

Proof. From Proposition and the definition of elbows(P) where P € NILP(L, M), it is
straightforward to see

elbows( P, (L, M)) = elbows(1) ' (D,ip(v, w))) = DE (v, w) — Dysp(v, w).

zip

Since {(w) = #D,ip(v, w), the first result follows. By combining this with Corollary [5.10 -
and the fact that wt(L, M) = {(v) — {(w), the second result follows.

Example 5.12. Let (L, M) be as in Example 5.8, By Corollary [5.11],
reg(X (L, M)) = #elbows(P,;,(L, M)) =7, and
a(X (L, M)) = #elbows(P,ip(L, M)) — wt(L, M) = 7 — (60 — 20) = —33. o

In general, the lattice path constructed for Corollary differs from the outputted lattice
path in [I3, Lemma 14] that maximizes unforced elbows. Applying Construction it is
straightforward to extend [I3] to all minimal two-sided ladders.
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