
CASTELNUOVO–MUMFORD REGULARITY FOR 321-AVOIDING
KAZHDAN–LUSZTIG VARIETIES

COLLEEN ROBICHAUX

Abstract. We introduce an algorithm which combinatorially computes the Castelnuovo–
Mumford regularity of 321-avoiding Kazhdan–Lusztig varieties using excited diagrams. This
extends earlier work of Rajchgot, Weigandt, and the author (2022) which computes the
regularity of Grassmannian Kazhdan–Lusztig varieties. Our results specialize to compute
the regularity of all two-sided mixed ladder determinantal varieties in terms of lattice paths.

1. Introduction

Kazhdan–Lusztig varieties are generalized determinantal varieties introduced by A. Woo
and A. Yong [39] to study singularities of Schubert varieties. Matrix Schubert varieties,
introduced by W. Fulton [11], and ladder determinantal varieties, introduced by S. S. Ab-
hyankar [1], are well-studied families of Kazhdan–Lusztig varieties [24, 25, 6, 7, 8, 14, 15, 16,
20, 30]. Kazhdan–Lusztig varieties indexed by 321-avoiding permutations form a large class
of Kazhdan–Lusztig varieties with homogeneous defining ideals. As proven by L. Escobar,
A. Fink, J. Rajchgot, and A. Woo [10], all two-sided mixed ladder determinantal varieties
are 321-avoiding Kazhdan–Lusztig varieties.

The Castelnuovo–Mumford regularity of a graded module is an invariant used to measure
its complexity. In general, regularity may be computed using the minimal free resolution
of the module in terms of its Betti numbers. Since Kazhdan–Lusztig varieties are Cohen–
Macaulay, one may instead compute their regularities combinatorially in terms of degrees of
unspecialized Grothendieck polynomials, given by A. Woo and A. Yong [40].

We leverage this fact to provide a combinatorial algorithm that computes the regularity
of 321-avoiding Kazhdan–Lusztig varieties. This paper generalizes previous work of J. Ra-
jchgot, A. Weigandt, and the author [35] which gives a tableaux based formula to compute
the regularity of Kazhdan–Lusztig varieties indexed by Grassmannian permutations.

1.1. Summary of Results. We give an algorithm to determine the regularity of 321-
avoiding Kazhdan–Lusztig varieties using skew excited Young diagrams. We construct a dia-
gram Dzippv, wq Ă rnsˆ rns, which we decorate to form DK

zippv, wq. This diagram DK
zippv, wq

computes the regularities of 321-avoiding Kazhdan–Lusztig varieties:

Theorem 1.1. Suppose v ě w are 321-avoiding permutations. Then

regpCrzvs{Jv,wq “ #DK
zippv, wq ´ `pwq.
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Here `pwq denotes the Coxeter length of the permutation w. We define Dzippv, wq and
DK

zippv, wq in Section 4.1. Theorem 1.1 is proven in Section 4.3.

Example 1.2. Let v “ p5, 8, 9, 10, 1, 2, 11, 3, 4, 6, 7q and w “ p1, 4, 5, 8, 2, 3, 9, 6, 10, 11, 7q.
The left diagram below is Dzippv, wq. We decorate Dzippv, wq with bold blue pluses to
construct DK

zippv, wq, the right diagram.

``
` ``

` ``
`` `

`

``
` ``

` ``
`` `

`

Theorem 1.1 determines that regpCrzvs{Jv,wq “ 16 ´ 12 “ 4. Since #Dzippv, wq “ `pwq,
regpCrzvs{Jv,wq “ #pDK

zippv, wq ´Dzippv, wqq, the number of blue pluses. ♦

As with regularity, the a-invariant of a module is an invariant providing data that may
increase efficiency in computations, see [4] for discussion. Using Theorem 1.1, we compute
the a-invariant for 321-avoiding Kazhdan–Lusztig varieties:

Corollary 1.3. Suppose v ě w are 321-avoiding permutations. Then

apCrzvs{Jv,wq “ #DK
zippv, wq ´ `pvq.

Corollary 1.3 is proven in Section 4.3.

Example 1.4. Taking v, w as in Example 1.2, Corollary 1.3 computes

apCrzvs{Jv,wq “ 16´ 26 “ ´10.

By construction, `pvq is the number of boxes in DK
zippv, wq. Thus |apCrzvs{Jv,wq| counts the

empty boxes in DK
zippv, wq. ♦

In Section 5, we prove specializations of Theorem 1.1 and Corollary 1.3 for two-sided mixed
ladder determinantal varieties. These results continue work of J. Rajchgot, A. Weigandt,
and the author [35] which gives a combinatorial regularity formula for one-sided ladders.

1.2. Context in Literature. The regularity of matrix Schubert varieties is recently well-
understood. Initial work of Y. Ren, J. Rajchgot, A. St. Dizier, A. Weigandt, and the author
[34] gives a combinatorial formula for the regularity Grassmannian matrix Schubert varieties
in terms of integer partitions. The recent work of O. Pechenik, D. Speyer, and A. Weigandt
[33] uses poset-theoretic techniques to easily compute the regularity of arbitrary matrix
Schubert varieties in terms of permutation statistics.

J. Pan and T. Yu [32] use [33] to give a diagrammatic regularity formula for matrix
Schubert varieties. The results in [33] have been re-proven by M. Dreyer, K. Mészáros, and
A. St. Dizier [9] using saturated chains in Bruhat order. Formulas for regularities of matrix
Schubert varieties for particular cases [19, 35] as well as tangent cones of Schubert varieties
[41] have also been studied.

The results of J. Rajchgot, A. Weigandt, and the author [35] give a combinatorial formula
to compute the regularity of Grassmannian Kazhdan–Lusztig varieties. Due to a corre-
spondence with matrix Schubert varieties, these results in [35] may be recovered using [33].
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In general, 321-avoiding Kazhdan–Lusztig varieties are not isomorphic to matrix Schubert
varieties. Thus Theorem 1.1 generalizes [35] in a different direction than [33].

Combinatorial formulas to compute the a-invariant of families of one-sided ladder de-
terminantal varieties have been determined [4, 5, 13]. Additionally, S. R. Ghorpade and
C. Krattenthaler [13] give an algorithm to compute the a-invariant for a family of two-sided
ladder determinantal varieties in terms of lattice paths. Forthcoming work of L. Escobar,
A. Fink, J. Rajchgot, and A. Woo [10] shows two-sided ladder determinantal varieties are
321-avoiding Kazhdan–Lusztig varieties. Using this fact in Section 5, we apply Theorem 1.1
and Corollary 1.3 to compute the regularity and a-invariant for two-sided ladder determi-
nantal varieties in terms of lattice paths. To do this, we generalize a bijection of V. Kreiman
[26] between lattice paths and excited Young diagrams.

1.3. Outline. In Section 2 we establish the combinatorial background. We give the geo-
metric and commutative algebraic background in Section 3. In Section 4 we construct the
diagram DK

zippv, wq and prove our main results, Theorem 1.1 and Corollary 1.3. In Section 5
we specialize our results to two-sided mixed ladder determinantal varieties using lattice paths.

2. Combinatorial Background

For n P Z, let rns :“ ti P Zą0 | i ď nu.

2.1. Pipe complexes. Let Sn denote the symmetric group on n letters. We write u P Sn
in one-line notation and let ui :“ upiq for i P rns. The rank function of u P Sn is defined as

rankupi, jq :“ #tpk, ukq | k P ris, uk P rjsu

for pi, jq P rns ˆ rns. The Rothe diagram of u P Sn is the set

Dpuq :“ tpi, jq P rns ˆ rns |ui ą j and u´1j ą iu.

We illustrate Dpuq as the blank cells in the n ˆ n grid after placing points in cells pi, uiq
and drawing a line through cells which appear weakly south or weakly east of pi, uiq for each
i P rns. Let `puq :“ #Dpuq denote the Coxeter length of u. The Lehmer code of u is the
tuple codepuq “ pc1, . . . , cnq where ci counts the number of boxes in row i of Dpuq. Further,
codepuq uniquely encodes u [28, Proposition 2.1.2].

Example 2.1. Below are Dpvq and Dpwq for v “ 46128935p10q7 and w “ 412368597p10q,
respectively.

Here `pwq “ 7 ă `pvq “ 14 and codepvq “ p3, 4, 0, 0, 2, 2, 2, 0, 0, 1, 0q. ♦
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Define the algebra over Z generated by teu |u P Snu with multiplication such that

euesi “

#

eusi if `pusiq ą `puq, and

eu otherwise.

Here si is the simple transposition which permutes i and i` 1.
For u P Sn label the boxes of Dpuq along rows so that kth leftmost box in row i is assigned

the label i ` k ´ 1. Given P Ď Dpuq, let wordpP q in Dpuq be the sequence formed by
reading the labels of P in this labeling of Dpuq, scanning right to left across rows, from top
to bottom. The Demazure product δpP q of P is the permutation that satisfies

esi1 ¨ ¨ ¨ esik “ eδpP q,

where wordpP q “ pi1, i2, . . . , ikq in Dpuq.
Take v, w P Sn where v ě w, i.e., v covers w in Bruhat order. Define

Pipespv, wq :“ tP Ď Dpvq | δpP q “ wu, and

Pipespv, wq :“ tP P Pipespv, wq |#P “ `pwqu.

We illustrate P Ď Dpvq by filling each pi, jq P P with a ` in Dpvq.

Example 2.2. The left two diagrams are labeled diagrams Dpvq and Dpwq for v, w as in
Example 2.1. This gives wordpDpwqq “ p3, 2, 1, 5, 7, 6, 8q in Dpwq. The third diagram is
P P Pipespv, wq, and the fourth is some P 1 P Pipespv, wq.

1 2 3
2 3 4 5

5 6 7
6 7 8

9

1 2 3

5
6 7

8

```
`

` `
`

`
```

`
`

`
`

♦

Defined by A. Woo and A. Yong [40], the unspecialized Grothendieck polynomial is

(2.1) Gv,wptq :“
ÿ

PPPipespv,wq

p´1q#P´`pwq
ź

pi,jqPP

tij.

By setting v “ w0 P Sn and specializing variables tij, these unspecialized Grothendieck
polynomials recover the double Grothendieck polynomials of [27]. Note that we follow the
conventions of [35] for Gv,wptq, which differ from those in [40].

2.2. Skew Excited Young Diagrams. A permutation u P Sn is 321-avoiding if there
does not exist a 321 pattern in u, i.e., indices i ă j ă k such that uk ă uj ă ui. For
example, u “ 17258346 is not 321-avoiding; the underlined entries form a 321 pattern in
u. Let Unp321q :“ tu P Sn |u is 321-avoidingu. A permutation u P Sn is Grassmannian if
there exists at most one i P rn ´ 1s such that ui ą ui`1. Grassmannian permutations form
a subset of 321-avoiding permutations.
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For u P Unp321q, let

φu : tP Ď Dpuqu Ñ tS Ă rns ˆ rnsu

be the map which deletes all empty rows and columns of Dpuq from P Ď Dpuq, shifting
remaining columns left and remaining rows up.

Proposition 2.3. [28, Proposition 2.2.13] For u P Unp321q, Ru :“ φupDpuqq is a skew
Young diagram λ{µ for some partitions µ Ď λ.

Our conventions for drawing Young diagrams reflect diagrams in English notation across
the y-axis. Throughout this subsection, assume v ě w, where v, w P Unp321q.

Let DNEpv, wq Ď Dpvq be the boxes corresponding to the earliest subsequence wordpP q of
wordpDpvqq in Dpvq for P P Pipespv, wq. Since w P Unp321q, no braid moves are required to
connect reduced words of w, so it is clear DNEpv, wq exists.

Define Dtoppv, wq :“ φvpD
NEpv, wqq. We visualize D Ď Rv by filling pi, jq P D with `’s

and call D a diagram in Rv.

Example 2.4. Recall v, w as well as P, P 1 from in Example 2.2. The left picture below is
Rv. Note that P “ DNEpv, wq, so the middle diagram below is φvpP q “ Dtoppv, wq. The
rightmost diagram is φvpP

1q:

```
`
``
`

```
`

` `
` `

.

♦

An excited move on D Ď Rv is the operation on a 2ˆ 2 subsquare of D such that

` ÞÑ
`

.

For this move to occur, the subsquare must be contained in Rv. Let SEYDpv, wq denote the
set of D Ď Rv which can be computed through sequential applications of excited moves on
Dtoppv, wq. We call a diagram D P SEYDpv, wq a skew excited Young diagram for v, w.
For v, w P Sn Grassmannian, SEYDpv, wq are ordinary excited Young diagrams, which arise
in the study vexillary matrix Schubert varieties [25] as well as the equivariant cohomology
and K-theory of the Grassmannian [18, 21, 26].

A K-theoretic excited move on D Ď Rv is the operation on a 2ˆ 2 subsquare of D

` ÞÑ `
`

,

where all cells pictured are contained in Rv. Write SEYDpv, wq for the set of diagrams obtain-
able through sequential applications of excited and K-theoretic excited moves on Dtoppv, wq

in Rv. We say a diagram D P SEYDpv, wq is a K-theoretic skew excited Young diagram
for v, w. Let #D denote the number of pluses in D. We say D P SEYDpv, wq is maximal if
D1 P SEYDpv, wq implies #D1 ď #D.
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Example 2.5. Continuing Example 2.4, the left two diagrams are in SEYDpv, wq. The right
two diagrams are maximal diagrams in SEYDpv, wq.

```

` `
` `

```
`
`

` `

```
`
``

` `

```
`

` `
` `

♦

Proposition 2.6. For v ě w where v, w P Unp321q, the map φv restricted to Pipespv, wq
gives a bijection

rφv : Pipespv, wq Ñ SEYDpv, wq

such that for P P Pipespv, wq, #P “ # rφvpP q.

Proof. For D Ď rns ˆ rns, a ladder move is the operation on a 2ˆ k strip in D such that

` ¨ ¨ ¨ ` `

` ¨ ¨ ¨ `
ÞÑ

` ¨ ¨ ¨ `

` ` ¨ ¨ ¨ `
Y ` ¨ ¨ ¨ ` `

` ` ¨ ¨ ¨ `
.

All cells above are contained in rns ˆ rns and k ě 2. Let

S “ tD Ď Dpvq | D obtained by applying ladder moves starting from DNE
pv, wqu.

Using [3] and the subword complex interpretation of Pipespv, wq as given in [40, Section 3],
S “ Pipespv, wq. By [12, Theorem 4.1] since w P Unp321q, all ladder moves in this case are
of the form

`
ÞÑ

`
Y `

`
.

Thus the statement follows by the definition of φv. �

Corollary 2.7. Suppose v ě w where v, w P Unp321q. Then

degpGv,wptqq “ maxt#D |D P SEYDpv, wqu.

Proof. This follows by Proposition 2.6 and Equation (2.1). �

Example 2.8. For v, w as in Example 2.5, Corollary 2.7 determines degpGv,wptqq “ 8. ♦

3. Castelnuovo–Mumford Regularity of Kazhdan–Lusztig varieties

In this section, we define Castelnuovo–Mumford regularity, a-invariants, and Kazhdan–
Lusztig varieties. We then recall results of [35] which relate the Castelnuovo–Mumford
regularity of Kazhdan–Lusztig varieties to unspecialized Grothendieck polynomials.

3.1. Castelnuovo–Mumford Regularity. Let S “ Crx1, . . . , xns be a polynomial ring
with the standard grading, and let I Ď S be a homogeneous ideal. The Hilbert series of
S{I is a formal power series

HpS{I; tq “
ÿ

kPZ

dimCppS{Iqkqt
k
“
KpS{I; tq

p1´ tqn
.
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The K-polynomial of S{I is the numerator KpS{I; tq P Crt˘1s. A minimal free resolution
of S{I is the complex

0 Ñ
à

j

Sp´jqβl,jpS{Iq Ñ
à

j

Sp´jqβl´1,jpS{Iq Ñ ¨ ¨ ¨ Ñ
à

j

Sp´jqβ0,jpS{Iq Ñ S{I Ñ 0,

where l ď n and Sp´jq is the free S-module with degree shifted by j. The Castelnuovo–
Mumford regularity of S{I, written regpS{Iq, is the statistic

regpS{Iq :“ maxtj ´ i | βi,jpS{Iq ‰ 0u.

For S{I Cohen–Macaulay,

(3.1) regpS{Iq “ deg KpS{I; tq ´ htSI,

where htSI denotes the height of the ideal I. For more context, consult [2, Lemma 2.5].
The a-invariant of S{I, written apS{Iq, is the negative of the least degree of a generator

of the graded canonical module of S{I, as defined by S. Goto and K. Watanabe [17]. When
S{I is Cohen–Macaulay,

(3.2) apS{Iq “ regpS{Iq ´ d,

where d is the Krull dimension of S{I.

3.2. Kazhdan–Lusztig varieties. We follow the conventions used in [35]. For v P Sn,
define M pvq “ pmijq to be the nˆ n matrix such that for i, j P rns,

mij :“

$

’

&

’

%

1 if vi “ j,

zij if pi, jq P Dpvq,

0 otherwise.

Let Crzvs :“ Crzij | pi, jq P Dpvqs. For v ě w where v, w P Sn, the Kazhdan–Lusztig ideal
Jv,w Ď Crzvs is defined by

Jv,w :“ xrankwpi, jq ` 1´minors in M
pvq
ris,rjs | pi, jq P Dpwqy,

where MI,J denotes the submatrix of M with row indices in I and column indices in J for
I, J Ď rns. When v P Unp321q Jv,w is homogeneous, see [23, Footnote on pg. 25]. Additional
cases for which Jv,w is homogeneous can be found in [31, Propositions 6.3 and 6.4], but no
full characterization is known.

Let B`, B´ Ă GLnpCq denote the Borel and opposite Borel subgroups, respectively. As
defined in [39], the Kazhdan–Lusztig variety is the intersection of the Schubert variety
B´zB´wB` Ď B´zGLnpCq with the opposite Schubert cell B´zB´vB´. The coordinate
ring of this Kazhdan–Lusztig variety is Crzvs{Jv,w. Using [22, Lemma A.4] and the fact that
Schubert varieties are Cohen–Macaulay [11, 24, 36], Crzvs{Jv,w is Cohen–Macaulay.

As reformulated in [35, Lemma 6.3],

Lemma 3.1. [40, Theorem 4.5] Let v, w P Unp321q where v ě w. Then

KpCrzvs{Jv,w; tq “
ÿ

PPPipespv,wq

p´1q#P´`pwqp1´ tq#P .

Combining Lemma 3.1 with Equation (3.1) produces the following:
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Proposition 3.2. [35, Proposition 6.4] Let v, w P Unp321q where v ě w. Then

degKpCrzvs{Jv,w; tq “ degGv,wptq.

Furthermore, the Castelnuovo–Mumford regularity of Crzvs{Jv,w is given by

regpCrzvs{Jv,wq “ degGv,wptq ´ `pwq.

Applying this to a-invariants:

Corollary 3.3. Let v, w P Unp321q where v ě w. The a-invariant of Crzvs{Jv,w is given by

apCrzvs{Jv,wq “ degGv,wptq ´ `pvq.

Proof. This follows by Proposition 3.2 combined with Equation (3.2) since Crzvs{Jv,w has
dimension d “ `pvq ´ `pwq. �

For S{I Cohen–Macaulay, the a-invariant is the lower bound for when its Hilbert function
and Hilbert polynomial agree. Using Equations (3.1) and (3.2), A. Stelzer and A. Yong
[37] prove that all homogeneous Kazhdan–Lusztig varieties are Hilbertian, i.e., the Hilbert
function and Hilbert polynomial of a Kazhdan–Lusztig variety agree at all non-negative
integer values, excepting the v “ w case.

4. Main Construction and Proof of Theorem 1.1

Assume v ě w where v, w P Unp321q. In Section 4.1 we define the diagram DK
zippv, wq

appearing in Theorem 1.1. Section 4.2 relates DK
zippv, wq to degGv,wptq. Section 4.3 contains

the proofs of Theorem 1.1 and Corollary 1.3.

4.1. Main Construction. We index Rv using matrix indexing, where its northwest most
box corresponds to p1, 1q. Suppose Dtoppv, wq has connected components tCquqPrms. Order
components Cq such that the indices increase when scanning components from northwest to
southeast. Two boxes sharing only a corner point belong to different components. For a box
b P Rv, we write b “ pbp1q, bp2qq.

Let q P rms. Define ψE : Cq Ñ Cq such that ψEpbq “ pbp1q, c
1q for b P Cq, where

c1 “ maxtk P rns | pbp1q, kq P Cqu.

Example 4.1. Consider Dtoppv, wq below where v, w P U16p321q1. Then Dtoppv, wq has
connected components C1 and C2.

````
`` ``
`` ``
``
``

Here C1 “ p1, 2q Y p1, 3q Y
Ť5
i“1

`

pi, 4q Y pi, 5q
˘

and C2 “ tp2, 8q, p2, 9q, p3, 8q, p3, 9qu. We see
ψEpp2, 8qq “ p2, 9q “ ψEpp2, 9qq. ♦

1Here v “ p6, 11, 12, 13, 14, 15, 1, 16, 2, 3, 4, 5, 7, 8, 9, 10q, w “ p1, 6, 2, 3, 7, 8, 11, 12, 4, 5, 9, 10, 13, 14, 15, 16q.
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Construction 4.2 (Computing DK
zippv, wq). Assume Dtoppv, wq has connected components

tCquqPrms. For each q P rms, define Diagv,wpCqq “ tb
q
kukPr`qs to be the westmost then south-

most diagonal of boxes in Cq of maximal length `q. Boxes in Diagv,wpCqq are ordered increas-
ingly northwest to southeast.

For q P rms in decreasing order, compute mdpCqq “ td
q
kukPr`qs Ď Cq such that mdpCqq is the

westmost then southmost diagonal of length `q that minimizes

#
`

r}ψEpd
q
`q
q} ` 1s X t}dq

1

k1}uq1ąq,k1Pr`q1 s
˘

.

Here }b} :“ bp1q`bp2q for b P Dtoppv, wq. Boxes in mdpCqq are ordered increasingly northwest
to southeast.

We define D
pqq
zippv, wq iteratively for q P rms. Set D

p0q
zippv, wq :“ Dtoppv, wq. Then in

D
pq´1q
zip pv, wq, set

S “ tb P Cq ´ mdpCqq weakly southwest of mdpCqqu.

To each in b P S, working in order from left to right and bottom to top, let b1 be the new
position of b after applying as many excited moves as possible to b. Let

D
pqq
zippv, wq :“ D

pq´1q
zip pv, wq ´ S Y tb1 | b P Su.

Define Dzippv, wq :“ D
pmq
zip pv, wq. By construction, #Dzippv, wq “ #Dtoppv, wq “ `pwq and

#Rv “ `pvq. Let DK
zippv, wq be the diagram after applying a maximal number of K-theoretic

excited moves to each b P mdpCqq, for each q P rms.
For b P mdpCqq, define trailv,wpbq such that

trailv,wpbq :“ maxtk P t0, 1, . . . , nu | b` pk1,´k1q, b` pk1, 1´ k1q,

b` pk1 ´ 1,´k1q P Rv ´Dzippv, wq for each k1 P rksu.

As proven in Section 4.2,

Theorem 4.3. Suppose v ě w, where v, w P Unp321q. Then

degpGv,wptqq “ #DK
zippv, wq “ `pwq `

ÿ

qPrms

ÿ

bPmdpCqq

trailv,wpbq.

Thus DK
zippv, wq is maximal in SEYDpv, wq.

Example 4.4. We continue with v, w as in Example 4.1. The leftmost diagram is Dtoppv, wq
with Diagv,wpCqq bolded and mdpCqq shaded for q P t1, 2u. The middle diagram is Dzippv, wq

and the right diagram is DK
zippv, wq. The pluses in DK

zippv, wq´Dzippv, wq are drawn bolded

in blue in DK
zippv, wq.

```
`` `
`` `
`

`

````
`` ``
` `

`
``
```

````
`` ``
` `

`
``
```
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We then compute
ÿ

bPmdpC1q

trailv,wpbq “ 1` 2` 2 “ 5 and
ÿ

bPmdpC2q

trailv,wpbq “ 4` 4 “ 8.

Theorem 4.3 determines

degpGv,wptqq “ #DK
zippv, wq “ 16` 5` 8 “ 29.

Theorem 1.1 and Corollary 1.3 imply

regpCrzvs{Jv,wq “ #DK
zippv, wq ´ `pwq “ 29´ 16 “ 13, and

apCrzvs{Jv,wq “ #DK
zippv, wq ´ `pvq “ 29´ 58 “ ´29.

We see regpCrzvs{Jv,wq counts the blue pluses in DK
zippv, wq and |apCrzvs{Jv,wq| counts the

empty boxes in DK
zippv, wq. ♦

In Section 5 we discuss cases in which Diagv,wpCqq “ mdpCqq for each q P rms, simplifying
computations of regpCrzvs{Jv,wq.

4.2. Proof of Theorem 4.3. We first prove some key lemmas.
Assume v ě w and v, w P Unp321q. Let z be the box containing the northmost then

eastmost plus in Dtoppv, wq. Take z1 to be the northmost then eastmost box in Rv. Set
i “ wordpφ´1v ptzuqq and i1 “ wordpφ´1v ptz

1uqq in Dpvq. Define the following:

wP :“ siw wC :“ w

vP :“ si1v vC :“ vP .

Lemma 4.5. For v ě w such that v, w P Unp321q, tvP , wP , vC , wCu Ď Unp321q.

Proof. Since z and z1 are northeast most choices, this follows from Proposition 2.3. �

Example 4.6. Let v, w be as in Example 4.1. Below we have Dtoppv
1, wq on the left and

Dtoppv
1
C , wCq on the right, where v1 “ s6v. In this case, z “ p1, 5q and z1 “ p1, 6q.

````
`` ``
`` ``
``
``

````
`` ``
`` ``
``
``

Below are Dtoppv, wq, DtoppvC , wCq, and DtoppvP , wP q, listed from left to right. In this case,
z “ p1, 5q “ z1.

````
`` ``
`` ``
``
``

```` ``
`` ``
``
``

```
`` ``
`` ``
``
``

♦
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By construction, RvC is formed by deleting z1 from Rv, up to removing one empty row
and column. For simplicity in indexing, we view RvC as φvpDpvCqq rather than φvC pDpvCqq.
Since vP “ vC , we do the same for RvP .

Lemma 4.7. Let v ě w and v, w P Unp321q. Suppose z is the box containing the northmost
then eastmost plus in Dtoppv, wq and z1 is the northmost then eastmost box in Rv. The
following hold:

(1) If z ‰ z1,
SEYDpv, wq “ SEYDpvC , wCq.

(2) If z “ z1,

SEYDpv, wq “ SEYDpvC , wCq
ğ

!

D Y tzu |D P SEYDpvC , wCq Y SEYDpvP , wP q
)

.

Proof. First suppose z ‰ z1. By the definition of Dtoppv, wq, z
1 R D for any D P SEYDpv, wq.

Therefore, Dtoppv, wq “ DtoppvC , wCq, so since z1 is northeast most, the result follows.

Now suppose z “ z1. Note SEYDpvC , wCq may be empty in this case.
pĎq Fix D P SEYDpv, wq. If z R D, then D Ă RvC and δpφv

´1
pDqq “ w “ wC . Thus

D P SEYDpvC , wCq by Proposition 2.6.
Now assume z P D. If δpφv

´1
pD ´ tzuqq “ δpφv

´1
pDqq, then

δpφv
´1
pD ´ tzuqq “ δpφv

´1
pDqq “ w “ wC ,

so D ´ tzu P SEYDpvC , wCq. Alternatively when δpφv
´1
pD ´ tzuqq ‰ δpφv

´1
pDqq, then since

z is northeast most
δpφv

´1
pD ´ tzuqq “ siw “ wP

so D ´ tzu P SEYDpvP , wP q. Thus the result follows by Proposition 2.6.
pĚq Fix D1 in RHS. If D1 P SEYDpvC , wCq, then w “ wC and D1 Ď RvC Ă Rv. Thus by
Proposition 2.6, D P SEYDpv, wq. Otherwise suppose D1 “ D Y tzu. Since z is northeast
most and z “ z1, i is the first letter of wordpDpwqq in Dpvq. Thus if D P SEYDpvP , wP q, the
fact that siwP “ w implies

eδpφv´1pD1qq “ eδpφv´1ptzuqqeδpφv´1pDqq “ esiewP “ ew.

Then D P SEYDpv, wq by Proposition 2.6. Alternatively if D P SEYDpvC , wCq,

eδpφv´1pD1qq “ eδpφv´1ptzuqqeδpφv´1pDqq “ esiew “ ew.

Thus D P SEYDpv, wq, so the result follows by Proposition 2.6. �

We apply Lemma 4.7 to obtain a recurrence for degrees of unspecialized Grothendieck
polynomials.

Corollary 4.8. Let v ě w and v, w P Unp321q. Suppose z is the box containing the northmost
then eastmost plus in Dtoppv, wq and z1 is the northmost then eastmost box in Rv. The
following hold:

(1) If z ‰ z1, degpGv,wptqq “ degpGvC ,wC ptqq.
(2) If z “ z1, degpGv,wptqq “ 1`maxpdegpGvP ,wP ptqq, degpGvC ,wC ptqqq.

Proof. This follows by combining Corollary 2.7 with Lemma 4.7. �
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Lastly we establish some technical lemmas for the z “ z1 case.

Lemma 4.9. Let v ě w and v, w P Unp321q. Suppose z is the northmost then eastmost box
in Rv and z P Cq, where Cq is a connected component in Dtoppv, wq. Then the following
hold:

(1) DtoppvP , wP q “ Dtoppv, wq ´ tzu, and

(2) DtoppvC , wCq “ Dtoppv, wq ´R Y rR when SEYDpvC , wCq ‰ H,

where R “ td P Cq | d weakly southwest of zu and rR “ td` p1,´1q | d P Ru.

Proof. (1) follows from the definitions of vP and wP since z lies on the northeast boundary
of Rv. Assuming SEYDpvC , wCq ‰ H, DtoppvC , wCq P SEYDpv, wq. By construction

δpφv
´1
pDtoppv, wq ´R Y rRqq “ w “ wC .

Since SEYDpvC , wCq ‰ H, it follows that Dtoppv, wq ´R Y rR Ă RvC . Then

Dtoppv, wq ´R Y rR P SEYDpvC , wCq.

No reverse excited moves can be applied in RvC , so (2) follows. �

For brevity, if σ, ρ P Unp321q such that σ ě ρ, where Dtoppσ, ρq has components tCquqPrms
write

∆σ,ρpqq :“
ÿ

bPmdpCqq

trailσ,ρpbq and dpσ, ρq :“
ÿ

qPrms

∆σ,ρpqq.

Lemma 4.10. Let v ě w and v, w P Unp321q. Suppose z is the northmost then eastmost
box in Rv and z P Cq, where Cq is a connected component in Dtoppv, wq. Then the following
hold:

(1) dpv, wq ě dpvP , wP q, and
(2) dpv, wq “ dpvP , wP q if z R mdpCqq or if z P mdpCqq where trailv,wpzqq “ 0.

Proof. Let tCquqPrms and t pCquqPrm1s denote the components of Dtoppv, wq and DtoppvP , wP q
respectively. Suppose z P Cq. We assume z Ĺ Cq. If tzu “ Cq the result follows similarly, so
we omit the proof. By Lemma 4.9 if z Ĺ Cq, m “ m1. Using Lemma 4.9 and the definition

of mdp¨q, mdpCq1q “ mdp pCq1q for q1 ą q.

Suppose z R mdpCqq. Then mdpCq1q “ mdp pCq1q for q1 ď q. Since z is northeast most,
trailv,wpbq “ trailvP ,wP pbq for each b P mdpCq1q, q

1 P rms. Thus ∆v,wpq
1q “ ∆vP ,wP pq

1q for each
q1 P rms, so dpv, wq “ dpvP , wP q.

Now assume z P mdpCqq. Then since z is northeast most and mdpCqq is a westmost diagonal,

mdpCqq “ mdp pCqq Y tzu. Since z is a northmost plus and z P mdpCqq, mdpCq1q “ mdp pCq1q for
q1 ă q. Thus trailv,wpbq “ trailvP ,wP pbq for each b P mdpCq1q, q P rms where b ‰ z. Therefore

∆v,wpq
1
q “ ∆vP ,wP pq

1
q for q1 P rms ´ tqu, and

∆v,wpqq “ ∆vP ,wP pqq ` trailv,wpzq.

Thus dpv, wq “ dpvP , wP q ` trailv,wpzq, so (1) and (2) follow. �
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Lemma 4.11. Let v ě w and v, w P Unp321q. Suppose z is the northmost then east-
most box in Rv and z P Cq, where Cq is a connected component in Dtoppv, wq. Assume
SEYDpvC , wCq ‰ H. Then the following hold:

(1) dpv, wq ě dpvC , wCq ` 1, and
(2) dpv, wq “ dpvC , wCq ` 1 if z P mdpCqq.

Proof. Let tCquqPrms and t rCquqPrm1s denote the components of Dtoppv, wq and DtoppvC , wCq

respectively. Suppose z P Cq. By Lemma 4.9, DtoppvC , wCq “ Dtoppv, wq ´ R Y rR. We

assume rR Ď rCq´1 and R Ĺ Cq. The other cases follow similarly, so we omit their proofs.

When rR Ď rCq´1 and R Ĺ Cq, m “ m1. By Lemma 4.9 and the definition of mdp¨q,

mdpCq1q “ mdp rCq1q for q1 ą q. Partition mdpCqq “ tbiuiPrks Y tbiuiPtk`1,...,`qu where

tbiuiPrks “ tbi P mdpCqq XR | bi lies strictly north of Cq ´Ru.

Let mdp rCqq “ tciuiPrr`qs. Since mdpCqq has maximal length, r`q ď `q ´ k. Then since mdp rCqq

and mdpCqq are southmost choices, c
r`q´i`1

and b`q´i`1 lie in the same rows for i P rr`qs. This

ensures trailv,wpbq “ trailvC ,wC pbq for each b P Cq1 , q
1 ą q. Thus

∆v,wpq
1
q “ ∆vC ,wC pq

1
q for q1 ą q.

Since z is northeast most, by the definition of mdp¨q, mdpCq´1q “ mdp rCq´1q ´ rR. Then

mdpCq1q “ mdp rCq1q for q1 ă q ´ 1, so trailv,wpbq “ trailvC ,wC pbq for each b P Cq1 , q
1 ă q ´ 1.

Therefore

∆v,wpq
1
q “ ∆vC ,wC pq

1
q for q1 ă q ´ 1.

To prove (1) it remains to show

(4.1) ∆v,wpq ´ 1q `∆v,wpqq ě ∆vC ,wC pq ´ 1q `∆vC ,wC pqq ` 1.

Partition mdp rCq´1q X rR “ taiuiPI1 Y taiuiPI2 , where

I2 :“ ti P r#pmdp rCq´1q X rRqs | there exists cj P mdp rCqq strictly north of ai where j P rr`qsu.

Thus we find:

∆vC ,wC pq ´ 1q `∆vC ,wC pqq “
ÿ

bPmdp rCq´1q

trailvC ,wC pbq `
ÿ

iPrr`qs

trailvC ,wC pciq

“ ∆v,wpq ´ 1q `
ÿ

iPI1YI2

trailvC ,wC paiq `
ÿ

iPrr`qs

trailvC ,wC pciq.

Since c
r`q´i`1

and b`q´i`1 lie in the same rows for i P rr`qs, by the definition of I2 and trail we

obtain the first inequality below. Note that tai`p´1, 1quiPI1YI2 lies weakly south of tbiuiPrks,

and |I1 Y I2| ď k by the definition of mdp¨q. Combining these with the fact that r`q ď `q ´ k,
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we obtain the second inequality.

(4.2)

ÿ

iPI1YI2

trailvC ,wC paiq `
ÿ

iPrr`qs

trailvC ,wC pciq ď
ÿ

iPI1

trailvC ,wC paiq `
ÿ

iPrr`qs

trailv,wpb`q´i`1q

ď
ÿ

iPrks

ptrailv,wpbiq ´ 1q `
ÿ

iPtk`1,...,`qu

trailv,wpbiq

ď ∆v,wpqq ´ 1.

Thus Equation (4.1) is proven, so (1) follows.
Now suppose z P mdpCqq. Then (2) follows once we show equality is attained in Equa-

tion (4.1). Since rR Ď rCq´1, trailv,wpzq “ 1.
There are no pluses in rows j ă a since z is a northmost plus. Since mdpCqq is westmost

in Cq, z` p0,´1q R Dtoppv, wq. If z` pj,´1q P Cq for some j ą 0,

z` pj1,´1q, z` pj1, 0q P Cq for all j1 P rj ´ 1s.

Therefore d P R implies dp2q “ zp2q. Thus #pI1 Y I2q ď 1.
By the definition of mdp¨q, z P mdpCqq implies

mdp rCqq “ mdpCqq ´R “ mdpCqq ´ tzu,

so ci “ bi`1 for i P r`q ´ 1s. Since mdp¨q is a southmost choice and R Ĺ Cq, z ` p1, 1q P Cq.
Since mdp¨q is a southwest most choice and z P mdpCqq, z`p1, 1q P mdpCqq. Therefore I1 “ H.
Then we refine Equation (4.2) to find

ÿ

iPI1YI2

trailvC ,wC paiq `
ÿ

iPrr`qs

trailvC ,wC pciq “
ÿ

iPI2

trailvC ,wC paiq `
ÿ

iPt2,...,`qu

trailvC ,wC pbiq

“ trailvC ,wC pa1q `
ÿ

iPt2,...,`qu

trailvC ,wC pbiq

“
ÿ

iPt2,...,`qu

trailv,wpbiq

“ ∆v,wpqq ´ trailv,wpzq “ ∆v,wpqq ´ 1.

Here if a1 does not exist, we say trailvC ,wC pa1q “ 0. Thus (2) is proven. �

Proof of Theorem 4.3: The second equality follows by the definition of trailv,wpbq where
b P tmdpCqquqPrms and the fact that #Dzippv, wq “ `pwq. If `pwq “ 0, SEYDpv, wq “ H, so
by Corollary 2.7, the first equality follows.

We prove the remainder of cases for the first equality by induction on `pvq. For `pvq “ 0,
the assumption v ě w implies `pwq “ 0, which is proven. Suppose the statement holds for v
such that `pvq “ k ´ 1 for k ě 1.

Consider v such that `pvq “ k and assume `pwq ą 0. Suppose z is the northmost then
eastmost plus in Dtoppv, wq and z1 is the northmost then eastmost box in Rv.

If z ‰ z1, Lemma 4.7 implies Dtoppv, wq “ DtoppvC , wCq. Since z1 is the northeast most
box, Dzippv, wq “ DzippvC , wCq, so DK

zippv, wq “ DK
zippvC , wCq again since z1 is northeast

most. Therefore #DK
zippv, wq “ #DK

zippvC , wCq. By the inductive assumption, we have

#DK
zippvC , wCq “ degpGvC ,wC ptqq, so the result follows by Corollary 4.8.
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Now assume z “ z1. Since w “ wC “ siwP where i P rn ´ 1s, `pwq “ `pwCq and
`pwq “ `pwP q ` 1. Then by the inductive assumption and Corollary 4.8,

degpGv,wptqq “ `pwq `maxpdpvP , wP q, dpvC , wCq ` 1q.

Applying the second equality, it suffices to prove

dpv, wq “ maxpdpvP , wP q, dpvC , wCq ` 1q.

Suppose z P Cq, where Cq is a connected component in Dtoppv, wq. Note that when
z P mdpCqq, SEYDpvC , wCq ‰ H if and only if trailv,wpzqq ą 0. Then the result follows from
Lemmas 4.10 and 4.11. �

4.3. Proof of Theorem 1.1 and Corollary 1.3. Using the results of the previous sub-
section, we can prove our main result.
Proof of Theorem 1.1: This follows from combining Proposition 3.2 and Theorem 4.3. �
Proof of Corollary 1.3: This follows from Corollary 3.3 combined with Theorem 4.3. �

5. Regularity of Ladder Determinantal Varieties

In this section we use the result of L. Escobar, A. Fink, J. Rajchgot, and A. Woo [10]
which states two-sided ladder determinantal varieties are Kazhdan–Lusztig varieties indexed
by particular v, w P Unp321q. In this setting, Construction 4.2 is simplified. We give special-
izations of Theorem 1.1 and Corollary 1.3 accordingly.

Lastly in this two-sided ladder case, we reformulate Theorem 1.1 and Corollary 1.3 in
terms of lattice paths. This generalizes work of S. R. Ghorpade and C. Krattenthaler [13].

5.1. Ladder Determinantal Varieties. A ladder region L is a skew Young diagram λ{µ.
We assume λ and µ have `pλq non-negative parts. For L “ λ{µ, we define the perimeter
of L as 2n, where n “ λ1 ` λ

1
1, i.e., the number of boxes in the first row plus the number of

boxes in the first column of λ.
A ladder region L is equivalently determined by its southwest corners LSW “ tαiuiPrss

and northeast corners LNE “ tβiuiPrts, with points ordered northwest to southeast. Define
α0 “ p0, 0q to be the northwest most corner of L and let αs`1 denote the southeast most
corner of L. For a point γ in L write γ “ pγp1q, γp2qq. A box b in L inherits the label of its
southeast corner.

Let M “ tppi, riquiPrs1s denote a set of marked points along the southwest border of L
where ri P Zą0. Points in M are ordered northwest to southeast.

Define Lpzq as the filling of each pi, jq P L with indeterminate zij. Take CrLpzqs the
polynomial ring generated by entries in Lpzq. Define the two-sided mixed ladder deter-
minantal ideal IL,M:

IL,M :“ xri ´minors in Lrpip1qs,rpip2q`1,αs`1p2qspzq | ppi, riq PMy Ď CrLpzqs,
where LI,Jpzq denotes the submatrix of Lpzq with row indices in I and column indices in J
for I, J Ď rns. The two-sided mixed ladder determinantal variety has coordinate ring
XL,M :“ CrLpzqs{IL,M. Taking L “ λ, i.e., when µ “ H, produces a one-sided mixed
ladder determinantal variety. Define pL,Mq to be minimal ladder if

(1) each zij P Lpzq appears in a monomial of a generator in IL,M,
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(2) 0 ă p1p1q ´ r1 ă p2p1q ´ r2 ă ¨ ¨ ¨ ă ps1p1q ´ rs1 , and
(3) 0 ă p1p2q ´ r1 ă p2p2q ´ r2 ă ¨ ¨ ¨ ă ps1p2q ´ rs1 .

It is straightforward to reduce any two-sided ladder to a minimal two-sided ladder.

Example 5.1. Let L “ λ{µ, where λ “ p5, 5, 5, 5, 2, 2q and µ “ p2, 1, 0, 0, 0, 0q. Then
LSW “ tp4, 0q, p6, 3qu and LNE “ tp0, 3q, p1, 4q, p2, 5qu. Below is Lpzq with marked points
M “ tpp4, 0q, 3q, pp4, 2q, 2q, pp6, 3q, 2qu drawn in red.

z11z12 z13

z21z22 z23 z24

z31z32 z33 z34 z35

z41 z42z43 z44 z45

z54 z55

z64 z65

3 2

2

Then IL,M “ x3´minors of Lr4s,r5spzq, 2´minors of Lr4s,t3,4,5upzq, 2´minors of Lr6s,t4,5upzqy.
♦

5.2. Two-sided ladders and Kazhdan–Lusztig Varieties. Let pL,Mq be a minimal
two-sided ladder where L “ λ{µ, M “ tppi, riquiPrs1s, and L has perimeter 2n. Define
sv P Zně0 as the sequence

sv :“ pλ1 ´ µ1, 0
λ1´λ2 , λ2 ´ µ2, 0

λ2´λ3 , . . . , λ`pλq ´ µ`pλq, 0
λ`pλqq.

Let v P Sn be the unique permutation such that codepvq “ sv. Suppose LNE “ tβjujPrts.
Then take w P Sn to be the minimal length permutation satisfying

rankwpp}pi}, }βj}qq “ min
`

t}pi}, }βj}, rankvpp}pi}, }βj}qq ` ri ´ 1u
˘

for each i P rs1s, j P rts. Here }γ} “ γp1q`γp2q for a point γ. We define permpL,Mq “ pv, wq.
This formula to compute permpL,Mq refines the formula in [15, Theorem 4.7.3] for the

one-sided ladder case.

Example 5.2. Let L and M be as in Example 5.1. Below are Dpvq and Dpwq such that
pv, wq “ permpL,Mq. In Dpwq, the positions tp}pi}, }βj}quiPrs1s,jPrts are shaded.

♦

One-sided ladder determinantal varieties are isomorphic to vexillary matrix Schubert va-
rieties, see [15, 25]. In general, two-sided ladder determinantal varieties are not isomorphic
to matrix Schubert varieties. For example, if pL,Mq is as in Example 5.1, XpL,Mq is not
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isomorphic to a matrix Schubert variety. As proven by L. Escobar, A. Fink, J. Rajchgot,
and A. Woo, all two-sided ladders can realized as Kazhdan–Lusztig varieties:

Theorem 5.3. [10] Given pL,Mq minimal, suppose permpL,Mq “ pv, wq and L has perime-
ter 2n. Then the following hold:

(1) v, w P Unp321q where v ě w, and
(2) IL,M and Jv,w have the same set of generators.

5.3. Specializing Theorem 1.1. When pv, wq “ permpL,Mq for pL,Mq minimal, dia-
grams in SEYDpv, wq exhibit additional structure. This allows us to re-frame Theorem 1.1
and Corollary 1.3 in terms of lattice paths in L.

Construction 5.4 (Computing boundary points). Take a minimal two-sided ladder pL,Mq

where M “ tppi, riquiPrs1s and LSW “ tαiuiPrss. For each i P rs´ 1s let

rHi :“ mintrij | ppij , rijq “ ppαip1q, yqq, rijq PMu, and

rVi :“ mintrij | ppij , rijq “ px, αip2qq, rijq PMu.

Initialize M1 “M. For each i P rs´ 1s, if ppαip1q, αi`1p2qq, rq RM1 for any r P Zą0, append

`

pαip1q, αi`1p2qq,minprHi , r
V
i`1q

˘

to M1. Lastly append pα0, 1q and pαs`1, 1q to M1. Partition M1 “
Ť

iPrssMV
i YMH

i , where

MV
i :“ tppij , rijq | pij “ px, αip2qqu, and

MH
i :“ tppij , rijq | pij “ pαip1q, yqu.

Points in MV
i are ordered north to south and those in MH

i are ordered east to west.
Initialize V pMq “ H and HpMq “ H. Then iterate the following for each i P rss:

- For each j P r#MV
i ´ 1s, take ppij , rijq P MV

i . If rij`1
´ rij “ k ě 1, append

pij ` pk
1 ´ 1

2
, 0q to V pMq for each k1 P rks.

- For each j P r#MH
i ´ 1s, take ppij , rijq P MH

i . If rij`1
´ rij “ k ě 1, append

pij ` p0,´k
1 ` 1

2
q to HpMq for each k1 P rks.

This gives boundary points V pMq and HpMq.
Suppose #V pMq “ ` P Zě0. Then #HpMq “ ` by construction. For i P r`s, label points

Hi P HpMq in increasing order from east to west. For i P r`s in decreasing order, assign
label Vi to be the southmost point in V pMq ´ tVj | ` ě j ą iu that lies northwest of Hi.

Example 5.5. We illustrate Construction 5.4 below. The left diagram draws a ladder L
with the original marked points M bolded in red and M1 ´M in light gray. The middle
diagram adds V pMq and HpMq in bold black. The right diagram labels V pMq and HpMq.
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3
4 3

4

2

1

3

2

1
H1

H2H3

H4
V3

V4

V2

V1

♦

A lattice path from Hi to Vi in the region L is a path from Hi to Vi in L consisting north
and west steps in L. We visualize lattice paths in L with tiles

.

We call the leftmost tile a SE-elbow tile and the rightmost tile a blank tile. For a box
b P L, let tpbq denote the tile occupying b.

For a minimal two-sided ladder pL,Mq where L “ λ{µ, define NILPpL,Mq to be the set
of non-intersecting lattice paths P “ pP1, . . . , P`q where Pi is a lattice path in L from Hi to
Vi, for Hi P HpMq, Vi P V pMq. A path Pi may occupy box px, yq P µ only if:

(1) tpx, yq ‰ , and

(2) tpx` k, y ´ kq ‰ for any px` k, y ´ kq P λ where k P Zą0.

Example 5.6. For pL,Mq as in Example 5.5, the leftmost two diagrams are in NILPpL,Mq.

The rightmost diagram is not since P1 occupies p2, 9q P µ but tp2` 1, 9´ 1q “ tp3, 8q “ .

♦

For P P NILPpL,Mq, define

blankspP q :“
!

pi, jq P L | tpi, jq “
)

.

Let wtpL,Mq “ #L ´ #blankspP q, where #L denotes the number of boxes in L and
P P NILPpL,Mq. By the definition of NILPpL,Mq, #blankspP q is constant across all
P P NILPpL,Mq. For P P NILPpL,Mq, define the unforced elbows of P as the set

elbowspP q :“ tpi, jq P L | tpi, jq “ and tpi´ k, j ` kq P blankspP q for some k ě 0u.
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Define the map

ψ : NILPpL,Mq Ñ rns ˆ rns

P ÞÑ blankspP q.

For a minimal two-sided ladder pL,Mq, take PbotpL,Mq P NILPpL,Mq to be the non-
intersecting lattice path in which each path lies maximally southwest in L.

Ordinary excited Young diagrams naturally biject with non-intersecting lattice paths when
L “ λ, as shown by V. Kreiman [26]. We prove the corresponding bijection for skew excited
Young diagrams.

Proposition 5.7. Let pL,Mq be a minimal two-sided ladder. Then for pv, wq “ permpL,Mq,

ψ : NILPpL,Mq Ñ SEYDpv, wq

P ÞÑ blankspP q

is a bijective map, where ψpPbotpL,Mqq “ Dtoppv, wq.

Proof. We first show ψpPbotpL,Mqq “ Dtoppv, wq. Suppose L “ λ{µ. Without loss of
generality, assume λ, µ are such that connected components in λ{µ share corners.

We proceed by induction on |µ|. When |µ| “ 0, L is a one-sided ladder. This implies v, w
are Grassmannian, as proven in [15, Theorem 4.7.3]. This case is proven in [26, Section 5].
See [29] and [38, Section 7.3] for additional discussion.

Suppose the result holds for |µ| “ k ´ 1 ě 0. Consider L “ λ{µ such that |µ| “ k. Take
pa, bq P L to the northmost box in L such that pa ` 1, b ` 1q P L and pa, b ` 1q R L. Let
L1 :“ LY pa, b` 1q.

By the inductive assumption since pL1,Mq is also minimal, the result holds for pL1,Mq.
Let pv1, w1q “ permpL1,Mq. Since L1 “ LY pa, b` 1q, this determines

(5.1) pL1qNE “ LNE
´ tpa´ 1, bq, pa, b` 1qu Y tpa´ 1, b` 1qu.

Then by definition of v and choice of pa, bq, v “ siv
1, where i “ wordppa, b` 1qq in Dpv1q.

Suppose tpa, b ` 1q “ in PbotpL
1,Mq. Using the inductive assumption, we know

that pa, b ` 1q P Dtoppv
1, w1q. By the definition of permpL,Mq and Equation (5.1), it is

straightforward to check through case analysis on LNEXtpa´ 1, bq, pa, b` 1qu that w “ siw
1.

Thus Dtoppv, wq “ Dtoppv
1, w1q ´ tpa, b` 1qu. Since

blankspPbotpL,Mqq “ blankspPbotpL
1,Mqq ´ tpa, b` 1qu,

we find ψpPbotpL,Mqq “ Dtoppv, wq.

Otherwise tpa, b ` 1q ‰ in PbotpL
1,Mq. By the inductive assumption, we know

that pa, b ` 1q R Dtoppv
1, w1q. By the definition of permpL,Mq and Equation (5.1), it is

straightforward to check through case analysis on LNE X tpa´ 1, bq, pa, b` 1qu that w “ w1.
Thus Dtoppv, wq “ Dtoppv

1, w1q. Since blankspPbotpL,Mqq “ blankspPbotpL
1,Mqq, we have

ψpPbotpL,Mqq “ Dtoppv, wq.
We see excited moves and droops of lattice paths biject with each other:

`
ÞÑ

`
ÞÑ .
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Therefore since Rv “ λ{µ, the result follows. �

Then for pv, wq “ permpL,Mq, let PzippL,Mq :“ ψ´1pDzippv, wqq.

Example 5.8. Take pL,Mq as in Example 5.5. To the left are PbotpL,Mq and Dtoppv, wq.
To the right we have PzippL,Mq and DK

zippv, wq where pluses in DK
zippv, wq ´Dzippv, wq are

drawn in bold blue. Note that elbowspPzippL,Mqq coincides with DK
zippv, wq ´Dzippv, wq.

``````
``````

``
`
`
`
`
`
`

``````
`````

``
` `

`
`
`
`
`

♦

Lemma 5.9. Let pL,Mq be a minimal two-sided ladder. Suppose permpL,Mq “ pv, wq and
Dtoppv, wq has connected components tCquqPrms. Then for q P rms, mdpCqq “ Diagv,wpCqq.

Proof. Define wpqq “ δpφ´1v pCqqq for q P rms. Then wpqq P Unp321q by Proposition 2.3.
We claim the following:

SEYDpv, wq “ SEYDpv, wp1qq ˆ SEYDpv, wp2qq ˆ ¨ ¨ ¨ ˆ SEYDpv, wpmqq.

If this fails, there exists px, yq P Cq and px, y ` kq P Cq`1 for some q P rm ´ 1s, k ą 1
such that px, y ` k ´ 1q R Dtoppv, wq. By Proposition 5.7, ψpPbotpL,Mqq “ Dtoppv, wq, so

in PbotpL,Mq, tpx, y ` k ´ 1q ‰ . Since Dtoppv, wq is northeast most, this implies that
some path Pj in PbotpL,Mq occupies tile px, y ` k ´ 1q. This forces Pj to pass north of Cq,
violating condition (2) for lattice paths, a contradiction. Therefore the result follows by the
definition of mdp¨q. �

This gives the following:

Corollary 5.10. Suppose pL,Mq is a minimal two-sided ladder where permpL,Mq “ pv, wq.
Then if Dtoppv, wq has connected components tCquqPrms,

regpXpL,Mqq “ #DK
zippv, wq ´ `pwq “

ÿ

qPrms

ÿ

bPDiagv,wpCqq

trailv,wpbq, and

apXpL,Mqq “ #DK
zippv, wq ´ `pvq “

´

ÿ

qPrms

ÿ

bPDiagv,wpCqq

trailv,wpbq
¯

´ `pvq ` `pwq.

Proof. By Theorem 1.1 and Corollary 1.3 combined with Proposition 5.3 and Theorem 4.3:

regpXpL,Mqq “
ÿ

qPrms

ÿ

bPmdpCqq

trailv,wpbq, and

apXpL,Mqq “ `pwq ´ `pvq `
ÿ

qPrms

ÿ

bPmdpCqq

trailv,wpbq.

Then the result follows by the above equation combined with Lemma 5.9. �
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In [13, Lemma 14] S. R. Ghorpade and C. Krattenthaler give an algorithm to compute
apXpL,Mqq for two-sided ladders generated by k-minors with additional marked points
pp, rq, where r P rks and p lies on the northmost vertical edge or eastmost horizontal edge of
L. This algorithm computes apXpL,Mqq by maximizing #elbowspP q for P P NILPpL,Mq.
We extend this to all minimal two-sided ladders:

Corollary 5.11. Let pL,Mq be a minimal two-sided ladder. Then

regpXpL,Mqq “ #elbowspPzippL,Mqq, and

apXpL,Mqq “ #elbowspPzippL,Mqq ´ wtpL,Mq.

Proof. From Proposition 5.7 and the definition of elbowspP q where P P NILPpL,Mq, it is
straightforward to see

elbowspPzippL,Mqq “ elbowspψ´1pDzippv, wqqq “ DK
zippv, wq ´Dzippv, wq.

Since `pwq “ #Dzippv, wq, the first result follows. By combining this with Corollary 5.10
and the fact that wtpL,Mq “ `pvq ´ `pwq, the second result follows. �

Example 5.12. Let pL,Mq be as in Example 5.8. By Corollary 5.11,

regpXpL,Mqq “ #elbowspPzippL,Mqq “ 7, and
apXpL,Mqq “ #elbowspPzippL,Mqq ´ wtpL,Mq “ 7´ p60´ 20q “ ´33. ♦

In general, the lattice path constructed for Corollary 5.11 differs from the outputted lattice
path in [13, Lemma 14] that maximizes unforced elbows. Applying Construction 5.4, it is
straightforward to extend [13] to all minimal two-sided ladders.
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