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Abstract. Planar linkages are a classicalal area of study motivated by practical applications in engi-
neering mechanisms. A central result is Kempe’s Universality Theorem, which states that polynomial

functions can be realized by planar linkages on a bounded set. However, these linkages are often not
planar graphs, and so it is not immediate if a physical mechanism modeling this functionality could

be built. In this paper, we introduce the notion of polyhedral linkages is n ě 2 dimensions, (which

correspond to existing notions when n “ 3 and n “ 2) and generalize Kempe’s Universality Theorem to
this linkages with an embedded construction when n ě 3.

1. Introduction

1.1. Previous Work. Recall the definition of a planar linkage as an edge weighted graph that is realized
in R2 such that the weight of each edge corresponds to the distance between the two adjacent vertices.
Planar linkages can be used to ‘compute’ functions in the following sense. Suppose U Ă R2 is an open
set and F : U Ñ R2 is a function. We say that a planar linkage defines F on the neighborhood U if the
linkage has an input vertex x and an output vertex y such that whenever x is realized in U , then y is
contrained to be realized at F pxq. (See [KM] for a complete definition.)

Remarkably, planar linkages are universal in the sense that they can realize any polynomial function in
any bounded region. This result is known as Kempe’s Universality Theorem after Kempe’s 1875 paper,
but the first correct proof was not published until 2002 by Kapovich and Milson. (See [KM], also [Kem].)
Alternatively, we may fix the output vertex to a specific point, which constrains the input vertex to
trace the zero locus of the defined function. Such linkages are called closed. Thus planar linkages can
trace any bounded region of an algebraic set, or as popularized by Thurston, they can “sign your name”.
(See [King].)

However, it is not immediate from Kempe’s Universality Theorem whether a physical machine which
can model the behavior of an arbitrary planar linkage could actually be built. Not all realizations of planar
linkages produce planar graphs, and so any physical implementation must necessarily utilize 3-dimensions
to allow for difference edges to cross each other, or different vertices to overlap.

In this paper, we generalize the definition of a planar linkage to a polyhedral linkage in n ě 2 dimensions.
In higher dimensions, a polyhedral complex satisfying certain conditions plays the role of an edge weighted
graph in planar linkages. (See § 2.) This recovers the definition of planar linkages when n “ 2, and
previous notions of polyhedral linkages which were only defined in the n “ 3 case. (See e.g. [Gol].) Our
main focus is in the n “ 3 case.

1.2. Main Results. We say that a realization of a polyhedral linkage is embedded if the interiors of the
maximal polytopes do not intersect. Embedded realizations correspond to configurations that could be
achieved by a physical mechanism. For n “ 2, most functional linkages cannot be embedded. One problem
is the Peaucellier inversor, a fundamental construction used to define inversion and multiplication. While
the Peaucellier inversor can be embedded, it uses an output vertex which is not adjacent to the exterior
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Figure 1. A polyhedral linkage.

face, so after any nontrivial composition the resulting linkage will not be a planar graph. (See § 5.)
However, in 3-dimensions and higher, we are able to extend Kempe’s Universality Theorem with embedded
polyhedral linkages.

Theorem 1.1. Let n ě 3, U Ă Rn be a bounded, open set, and F : U Ñ Rn be a polynomial function.
There exists an embedded, functional polyhedral linkage P which defines F on U .

We can also generalize the corollary of Kempe’s Universality Theorem for closed linkages to higher
dimensions. That is, to use Thurston’s phrasing, there exist embedded polyhedral linkages which can
“sign” any algebraic set in Rn.

Theorem 1.2. Let n ě 3, U Ă Rn be a bounded, open set, and S Ă Rn be an algebraic set. Then there
is an embedded polyhedral linkage which realizes S X U .

1.3. Embedded linkages with multiple inputs and outputs. Kempe’s Universality Theorem ex-
tends to a stronger result that any polynomial function F : pR2qm1 Ñ pR2qm2 can be realized by planar
linkages on an open bounded set. (See [KM].) However, allowing multiple inputs and outputs poses a
separate problem for embedded linkages. For example, consider a function with two inputs. If this were
simulated by a physical machine, then the two input vertices may be realized at the same point. This
would mean that the physical mechanisms should be able to ‘pass through each other’. A similar problem
can occur with output vertices.

To address this problem, we propose a modification to the definition of a functional linkage which
considers each input and output vertex relative to its own reference coordinate frame. Specifically, in the
forgetful maps defining the input and output vertices, we introduce a postcomposition which translates
each coordinate. (See § 2, and [KM] for comparison.) This allows us to extend the vector version of
Kempe’s Universality Theorem to n ě 3 dimensions in the embedded case.

1.4. Computation in polyhedral linkages. Our construction of functional polyhedral linkages centers
around an efficient way to generate linear motion in n ě 3 dimensions. Specifically, for any 0 ă a ă b,
we produce an embedded polyhedral linkage whose length in one dimension varies continuously in the
interval pa, bq, and which is arbitrarily small in all other dimensions. (See § 3.)

We set up an array of these extender linkages arranged parallel to each other in a fixed hyperplane.
The length of each extender encodes a scalar value, and the register of extenders allows us to encode a
vector value. Note that this differs fundamentally from registers used in digital computers because each
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extender stores a value with infinite precision, but the range of values an extender can hold is still limited
by its construction, i.e., by the chosen values of a and b.

Computations are decomposed into a sequence of elementary operations. Each elementary operation
uses an input register and an output register, which is a parallel translate of the input register. The output
of the operation is stored in an extender in the output register by attaching both the output extender,
and all input extenders, to a specific elementary linkage. (See § 4) These are generalizations of elementary
planar linkages to n-dimensions, sometimes with slight modifications so that they are embedded. (See §2
and [KM, §6] for comparison.) All other values in the original register are faithfully copied to the output
register by rigid linkages.

1.5. Structure of the paper. We prove our main results, Theorem 1.1 and Theorem 1.2, by showing
that all polynomial functions can be decomposed into elementary operations. Then we construct a
polyhedral linkage in Rn which has a point that can be moved freely in an n-dimensional region, and
which records the coordinates of this point in a register of n extenders. (See § 5.) We use this register as
the beginning of our computation, and attach a similar linkage to combine the final output register into
the coordinates of a single output vertex. The generalization to multiple inputs and outputs is simple
with our convention of separate reference frames. (See § 2.)

2. Polyhedral linkages

Our definition of a polyhedral linkage is a direct generalization of the definition of a planar linkage
to include an pn ´ 1q-dimensional polyhedral complex realized in Rn. See [KM] for motivation and full
details of the original definition for planar linkages.

2.1. Polyhedral linkages. Let P be a polyhedral complex in Rn. We say that P is pure if every
maximal polytope has the same dimension, and we say that P is proper if the intersection of any two
k-dimensional faces in P is either ∅, or a pk ´ 1q-dimensional face in P. An edge weighted graph is
exactly a 1-dimensional pure, proper polyhedral complex in R2.

A polyhedral linkage of dimension n is a pair pP,W q, where P is a n-dimensional pure, proper poly-
hedral complex in Rn`1, and W Ă VpPq is a subset of the vertices of P called the fixed vertices. When
clear by context, we will refer to the polyhedral linkage as P without reference to W .

A realization of P is a map ϕ : VpPq Ñ Rn`1 such that for each maximal face F P P, the vertices
tv P VpPq | v P F u form the vertices of a polytope congruent to F . I.e., the maximal polytopes can
be rearranged by individual rigid motions as long as they all fit together in the same structure. The
pn´ 1q-dimensional faces act as “hinges”, allowing the structure to flex. The set of all realization, CpPq,
is called the configuration space of P.

Given a set of points Z in Rn`1 in bijection with W , a realization ϕ : VpPq Ñ Rn`1 is said to be
relative to Z if ϕpwq “ z for each w P W and the corresponding z P Z. The set of all relative realizations
to Z, CpP, Zq, is called the relative configuration space.

We say that a realization ϕ P CpP, Zq is embedded if the interiors of all maximal faces are pairwise
disjoint. The set of all embedded realizations, CepP, Zq, forms an open subset of CpP, Zq. For example,
consider the 2-dimensional polyhedral linkage P formed by removing two opposite faces of a cube. (See
Figure 1.)

LetW be the vertices of one face of the cube, and let Z be the four points tp0, 0, 0q, p1, 0, 0q, p1, 1, 0q, p0, 1, 0qu

in the xy-plane. The relative configuration space CpP, Zq consists of three intersecting smooth curves
and is naturally identified with the moduli space of the square, [KM, §3]. However, the embedded real-
ization space CepP, Zq is identified with the set tx2 ` z2 “ 1; z ‰ 0u, where the location of the vertex



4 ROBERT MIRANDA

A determines the entire configuration when A is not on the xy-plane. The points where A is on the
xy-plane correspond to self-intersecting realizations of P, and are included in the other two curves in
CpP, Zq. Any physical model which is built to emulte the behavior of P can naturally move within a
single connected component of CepP, Zq.

2.2. Functional linkages. Next we define functional linkages. Let m1,m2 ě 1 and
F : Rpn`1qm1 Ñ Rpn`1qm2 be a function. A functional linkage is a polyhedral linkage P of dimension
n with two distinguished sets of vertices tP1, . . . , Pm1

u called input vertices and tQ1, . . . , Qm2
u called

output vertices. We also define two forgetful maps p : CpP, Zq Ñ Rpn`1qm1 and q : CpP, Zq Ñ Rpn`1qm2

as

ppϕq “ pϕpP1q ` X1, . . . , ϕpPm1
q ` Xm1

q,

qpϕq “ pϕpQ1q ` Y1, . . . , ϕpQm2q ` Ym2q,

for some choice of translations X1, . . . , Xm1
, Y1, . . . , Ym2

P Rn`1. We say that P defines the function F
at a point O P Rpn`1qm1 if there is a commutative diagram

CpP, Zq

Rpn`1qm1 Rpn`1qm2

p q

F

and p is a regular topological branched cover of a bounded open set U Ă Rpn`1qm1 containing the point
O. Alternatively, we say that P is a functional linkage for the germ pF,Oq. Moreover, we say that a
functional linkage P is embedded if there exists a connected component E Ă CepP, Zq such that the
restrictions p|E , q|E still form a commutative diagram.

E

Rpn`1qm1 Rpn`1qm2

p|E q|E

F

Finally, we say that a functional linkage P is closed if the output vertices are also fixed vertices. In
this case, the image of the input map corresponds to the zero set of the defined function, and we say the
P realizes U , where U :“ ppCpP, Zqq, or U :“ p|EpEq in the embedded case.

3. Linear motion in three dimensions

In R2, finding a linkage which produces linear motion was a fundamental problem in the field. (For
a history of the solution, see [KM, §14].) However, the construction in R3 is compartively simple. In
fact, in our current terminology a polyhedral linkage which achieves linear motion was first discovered
by Sarrus in 1853, several years before any solution in R2 has been published. (See [Sar], [Gol] and also
[WKA].) Here we give a construction which is a modification of Sarrus’ linkage. It has the added property
that the linkage is periodic, and remains periodic during flexion. This is important for scalability in the
construction of embedded polyhedral linkages.
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Figure 2. A planar linkage which achieves a 2-dimensional range of motion.

Figure 3. A polyhedral linkage which achieves a 2-dimensional range of motion.

3.1. Basic construction. Consider the following planar linkage. The vertices A and B are fixed at
p0, 0q and p1, 0q, respectively. All other vertices are allowed to move freely, and all edges have length 1.
See Figure 2.

The vertex E may move within the 2-dimensional region tx2 ` y2 ď 4u. However, when this planar
linkage is extruded to a polyhedral linkage in 3-dimensions, the domain of the corresponding vertex
remains 2-dimensional. It does not gain an extra dimension of flexibility.

This extruded linkage is shown in Figure 3. The linkage is marked by fixing the vertices A,B and A1

to be at p0, 0, 0q, p1, 0, 0q and p0, 0, 1q, respectively. All other vertices are allowed to move freely, and all
edges have length 1.

The vertex E may move within the region tx2 `y2 ď 4; z “ 0u, which is still 2-dimensional. Moreover,
we can constrain this linkage to restrict the motion to be 1-dimensional. Suppose we add two vertices,
X and Y , which form two squares ABYX and EFY X. See Figure 4.

The lengths of all the new edges are set to 1. The squares ABYX and EFY X constrain the vertices
E and A to have the same y-coordinate. Therefore, the vertex E may move in the 1-dimensional region
t0 ď x ď 2; y “ 0; z “ 0u. This is a notably simpler solution to linear motion in 3-dimensions than in
2-dimensions. Also note that Sarrus’ original linkage is obtained by removing the vertices D and D1, and
all edges and faces adjacent to them. (See [Sar].)

3.2. Periodic construction. We can extend this construction periodically as follows. Note that in any
realization of the previous linkage, the squares EFF 1E1 and ABB1A1 are parallel translates of each other
by a scalar multiple of the normal vector to each face. We attach multiple copies of the linkage together
by identifying the EFF 1E1 square on the ith copy with the ABB1A1 square of the i ` 1st copy.



6 ROBERT MIRANDA

Figure 4. A polyhedral linkage which achieves a 1-dimensional range of motion.

Figure 5. A portion of a periodic polyhedral linkage.

With n copies attached, the E-vertex of the nth copy can be moved within the region
t0 ď x ď 2n; y “ 0; z “ 0u. Moreover, note that if we also add ‘roofs’ connnecting the CD edge of the ith

copy to the CD edge of the i` 1st copy, then the y-coordinates of the C and D vertices of all constituent
linkages will be the same, so they all will flex at the same rate. See Figure 5.

Extending infinitely, we obtain a periodic polyhedral linkage whose configuration space is 1-dimensional,
and whose periodicity is preserved during flexion. The direction of the periodicity vector does not change,
only the magnitude. This construction can also be embbed by using parallelograms instead of rectangles
for the ‘roofs’, see Figure 6.

Restricting this linkage to a connected component of the embedded realization space CepP, Zq, we see
that the each link has a length in the range p0, 1q measured along the x-axis. To summarize our results
in this section, our construction has proved the following theorem:

Theorem 3.1. Let 0 ă a ă b and ϵ ą 0. There exists an embedded polyhedral linkage P with two
faces F1, F2 and a 1-dimensional flex such that F1 and F2 remain parallel translates of each other during
flexion while the distance between them varies continuously in the range pa, bq, and P can be contianed
in a cylinder of radius ϵ and length b ´ a under any realization.

Proof. We scale our given construction so that the side length of each of the squares is a number d such
that (1) under any flexion, each unit of the linkage is contained in a ball of radius ϵ, and (2) b´a “ N ¨2d
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Figure 6. A portion of an embedded periodic polyhedral linkage.

Figure 7. A set of extender linkages representing computational vertices.

for some integer N . Thus a linkage with N units, along with a rigid component of length a, will vary
continuously in length between a and b. □

We call this construction an extender linkage. To simplify future figures, we represent an extender
with a red rectangular prism which is understood to extend and contract in length. In constrast, blue
faces are rigid faces and cannot be extended. (See Figure 7.)

4. Scalar computation

Suppose we have an array of extender linkages, pointed parallel to the x-axis in the xy-plane, and
spaced at equal intervals so that the linkages never intersect under any realization. We fix one end of
each extender on the y-axis and allow the other end to move freely parallel to the x-axis in a set range.
Each linkage encodes a single real number represented by its length, and in this section we will describe
how to use these extenders to perform computations on these inputs via embedded polyhedral linkages.
(See Figure 7.)

Every extender linkage is taken to have the same range, pa, bq, for two real numbers 0 ăă a ă b
to be chosen later. The midpoint m “ 1

2 pa ` bq is taken to represent 0, and in general, an extender
linkage that is extended a distance x from the y-axis represents the value x ´ m. In this case we call the
extender a computational linkage and say that x´m is its value. We set N “ b´m, so a computational
linkage may represent any value in the range p´N,Nq. The array of n computational linkages will be
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Figure 8. Left: a computational linkage which simulates a swap operation. Right: a
computational linkage which simulates a copy operation.

called a register. We refer to the individual computational linkages as C1, . . . , Cn and their values as
|C1|, . . . , |Cn|, respectively.

Computations are decomposed into a sequence of elementary unary and binary operations which are
performed on registers. Each operation takes one or two computational linkages as inputs, and stores its
outputs in the values of another computational linkages. To embbed this operation, computations are
performed vertically. For a single operation, an output register is created, aligned in the xy-plane but
offset vertically in the z-axis with respect to the input register. The output of the operation is attached to
the output computational linkages in the output register. The values of all other original computational
linkages are preserved by attaching each to their offset counterpart with rigid linkages.

Let U Ă p´N,Nq be a connected set and f : U Ñ p´N,Nq be a function. We say that we can simulate
the function f on computational linkages if there is an embedded polyhedral linkage which connects input
computational linkage Ci to an output computational linkage C 1

i such that if |Ci| P U , then |C 1
i| “ fp|Ci|q.

This definition also naturally generalizes if U is a connected subset of p´N,Nqˆp´N,Nq using two input
computational linkages Ci, Cj .

In the following subsections, we describe constructions which simulate elementary operations, including
addition and multiplication by scalars, negation, addition, and multiplication. Together, these allow us
to simulate any polynomial function on any bounded set.

4.1. Swap and copy. Before constructing polyhedral linkages to perform actual computations, we need
to set up basic operations to manipulate memory stored in registers. We describe operations to swap two
values stored in different computational linkages, as well as copy the value of one computational linkage
to another.

If C1, . . . , Cn are the original computational linkages, and C 1
1, . . . , C

1
n are the updated computational

linkages, then the swap operation si sends |Ci| ÞÑ |C 1
i`1| and |Ci`1| ÞÑ |C 1

i|. For all j ‰ i, i ` 1,
si : |Cj | ÞÑ |C 1

j |. By composition, we can freely permute the computational linkages and so we will always
assume that the input and output computational linkages are in a desirable configuration.

First Ci is connected to C 1
i`1 by a simple set of parallelograms. However, the connection from Ci`1 to

C 1
i needs to be rerouted to avoid intersecting with the Ci to C 1

i`1 connection. Thus we add a rectangular
prism of length at least 2N before adding the parallelograms to ensure that, under any realization, the
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Figure 9. Left: a computational linkage for scalar addition. Middle: a 45˝ ´ 45˝ ´ 90˝

triangle linkage. Right: A polyhedral linkage for negation.

operation is embedded. All other computational linkages are attached vertically by rectangles. (See
Figure 8, left.)

A copy operation is comparatively simpler, because there is no need for rerouting. First, Ci is connected
to C 1

i by a set of rectangles, and then C 1
i is connected to C 1

i`1 by a rigid linkage. The entire construction
is rigid, and all other computational linkages are attached vertically. (See Figure 8, right.)

Thus we can always assume without loss of generality that our linkages are in a desirable configuration.
Usually, this means that input and output computational linkages are aligned vertically, or else are
offset by one of two linkages. Additionally, we will assume enough space between linkages so that our
constructions will always be embedded.

4.2. Scalar addition.

Lemma 4.1. For λ P p0, Nq, the functions p´N,N´λq Ñ p´N,Nq, x ÞÑ x`λ and pλ´N,Nq Ñ p´N,Nq,
x ÞÑ x ´ λ can be simulated on computational linkages.

Proof. For λ P p0, Nq, we can define the operation of scalar addition via the following linkage. (See
Figure 9, left.) A rigid structure is attached to the end of the computational linkage Ci, which adds an
offset of length λ before attaching to the end of the new computational linkage C 1

i.
□

4.3. Negation.

Lemma 4.2. The function p´ 1
2N, 1

2Nq Ñ p´N,Nq, x ÞÑ ´x can be simulated on computational linkages.

Proof. We can simulate the operation of negation p0, Nq Ñ p´N,Nq, x ÞÑ ´x, by using two copies of the
45˝ ´45˝ ´90˝ triangle linkage. (Figure 9, middle.) Extender linkages are attached at 90˝ and connected
by a third extended linkage, attached at 45˝ relative to both legs. This constrains all three linkages to
flex at the same rate, and the perpendicular sides will always be the same length. The negation linkage is
formed by joining two 45˝ ´ 45˝ ´ 90˝ triangle linkages along a common edge, enforcing the positive and
negative legs to have the same length during all realizations. (See Figure 9, right.) The offset induced by
the rigid central cube should be considered, but we can postcompose with a scalar addition operation.
We leave the details to the reader.

Further, we can adjust the simulated domain to include a neighborhood of 0 by precomposing and
postcomposing with scalar addition x ÞÑ x`µ. The largest domain centered at 0 is obtained by choosing
µ “ N{2, which lets us define a negation map p´N{2, N{2q Ñ p´N,Nq. □
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Figure 10. Left: a rigidifed pantograph. Middle: a computational linkage for scalar
multiplication. Right: a computational linkage for addition.

4.4. Scalar multiplication.

Lemma 4.3. For λ P p1, Nq, the functions p´ 1
2λN, 1

2λNq Ñ p´N,Nq, x ÞÑ λx can be simulated on

computational linkages. For λ P p0, 1q, the functions p´ 1
2N, 1

2Nq ÞÑ p´N,Nq, x ÞÑ λx can be simulated
on computational linkages.

Proof. We prove the case when λ P p1, Nq first. Consider the rigidified pantograph linkage used for scalar
multiplication (Figure 10, left) in planar linkages. We fix the lengths |AC| “ λ|AB| and |CF | “ λ|EF |.
Vertex A is fixed at the origin, D is used as an input vertex, and F is used as an output vertex. The struc-
ture is rigidified so that the pairs of edges AB,BC and CE,EF remain parallel. To preserve embedded-
ness, this is achieved by adding the auxilliary verticesX and Y along with the triangles ABX,BCX,CEY
and EFY . From the geometry of the construction, the linkage constrains |AF | “ λ|AD|, achieving scalar
multiplication. (See [KM, §6.2])

We take this construction and extrude it to three dimensions (Figure 10, middle.) The vertices
corresponding to D and F are offset vertically so that the corresponding computational linkages do not
intersect. (Note: for figure clarity, we do not include the extrusion of the auxilliary vertices corresponding
to X and Y , and the details of rigidifying are left to the reader.) This simulates the operation p0, 1

λ q Ñ

p´N,Nq, x ÞÑ λx, because nonpositive inputs would cause self intersections.

As with negation, we can adjust the simulated domain to include a neighborhood of 0 by precomposing
with x ÞÑ x` µ and then postcomposing with x ÞÑ x´ λµ. The largest domain centered at 0 is obtained
by choosing µ “ N

2λ , which lets us define scalar multiplication on p´ N
2λ ,

N
2λ q Ñ p´N,Nq. Lastly, we can

handle multiplication by λ P p0, 1q by switching the input and output computational linkages. This is
the same process as in planar linkages. (See [KM, §6.2].) □

4.5. Addition.

Lemma 4.4. The function p´ 1
4N, 1

4Nq ˆ p´ 1
4N, 1

4Nq Ñ p´N,Nq, px, yq ÞÑ x ` y can be simulated on
computational linkages.

Proof. For planar linkages, we can use the pantograph to simulate the function x, y ÞÑ 1
2 px`yq. (Figure 10,

left.) Here we fix λ “ 2 and take the vertices A and F to be inputs and the vertex D to be the output.
(See [KM, §6.3]) As with scalar multiplication, we extrude the linkage to three dimensions and offset the
input and outputs vertically. (See Figure 10, right.)

We can simulate the operation x, y ÞÑ x ` y by postcomposition with x ÞÑ 2x. Multiplication by
2 is defined on the domain D :“ tx, y P p´N,Nq | 1

2 px ` yq P p´N{4, N{4qu. The largest square
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Figure 11. Left: a Peaucellier inversor. Right: a computational linkage for inversion.

domain containing p0, 0q is p´N{4, N{4q ˆ p´N{4, N{4q Ă D, which gives the simulation of the function
p´N{4, N{4q ˆ p´N{4, N{4q Ñ p´N,Nq, px, yq ÞÑ x ` y. □

Remark: This proves the stronger statement that we can simulate D Ñ p´N,Nq, px, yq ÞÑ x ` y.
However, we want a definition of the operation whose domain is not dependent on its output, and the
choice is inconsequential because we will later choose N large enough to neglect this potential inefficiency.

4.6. Inversion.

Lemma 4.5. The function p 1
N , Nq Ñ p´N,Nq, x ÞÑ 1

x can be simulated on computational linkages.

Proof. Consider the Peaucellier inversor which is used for inversion in planar linkages. (See Figure 11,
left.) The vertex E is fixed at the origin. The vertex C is used as an input vertex and the vertex A is used

as an output. From the geometry of the construction, we see that |EA| “ t2

|EC|
where t2 “ |DE|2´|DA|2.

We choose edge lengths such that t2 “ 1. Note that the classical Peaucillier inversor is subject to
degenerate configurations when the square ABCD collapses. (See Kapovich and Milson’s use of a ‘hook’
to prevent this in [KM, §6.4].) In our case, however, restricting to the embedded realizations prevents
this collapse, so no special treatment is needed. (See also §6.2.)

The edges extruded from the vertices A and C are offset vertically to attach to computational linkages.
(See Figure 11, right.) Choosing appropriate edge lengths, we can simulate the function x ÞÑ 1

x on

the domain p 1
N , Nq, where the bounds come from the possible values representable on computational

linkages. □

4.7. Multiplication. To simplify notation, let rN “ 1
2

´?
N ´

b

1 ` 1
N

¯

for the rest of this section.

Lemma 4.6. The function p´ rN, rNq Ñ p´N,Nq, x ÞÑ x2 can be simulated on compuational linkages.

Proof. We use the identity
1

2

ˆ

1

x ´ 1
´

1

x ` 1

˙

“
1

x2 ´ 1

Thus we can simulate the function x ÞÑ x2 by composing with scalar addition, inversion, negation,
and addition. The domain is only restricted by the scalar addition and inversion. Note that we only
use half-addition, x, y ÞÑ 1

2 px ` yq, which is defined on the domain p´N,Nq ˆ p´N,Nq. Also because

p 1
N , Nq Ñ p´N,Nq, x ÞÑ 1

x produces only positive outputs we can use inversion defined on the domain
p0, Nq. Thus no restrictions are imposed by addition and negation.

In total, we can simulate the function
´

b

1 ` 1
N ,

?
N

¯

Ñ p´N,Nq, x ÞÑ x2. To adjust this domain

to include 0, we can precompose by x ÞÑ x ` µ and postcompose with y ÞÑ y ´ 2xµ ´ µ2, where x is
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Figure 12. Left: an embedded polyhedral linkage with a 3-dimensional flexion. Mid-
dle/Right: a mechanism for translating 3 dimensional motion into computational link-
ages.

the original input to the function. The optimal µ is the average of the endpoints, giving the largest

domain containing 0 as p´ rN, rNq. With this value of µ, no additional restrictions come from the pre or
postcomposition. □

Lemma 4.7. The function p´ 1
2

rN, 1
2

rNq ˆ p´ 1
2

rN, 1
2

rNq Ñ p´N,Nq, px, yq ÞÑ xy can be simulated on
compuational linkages.

Proof. We use the identity
1

2

`

px ` yq2 ´ px ´ yq2
˘

“ xy

Thus we can simulate the function x, y ÞÑ xy by composing addition, negation, and squaring. The
composition of adding x and y and then squaring adds a new restriction on the domain, so we require

that x, y P p´ 1
2

rN, 1
2

rNq. The other operations do not impose any new restrictions, where again we note

that in the last step we use half-addition, x, y ÞÑ 1
2 px ` yq, which is defined everywhere. □

4.8. All polynomials can be simulated on computational linkages.

Theorem 4.8. Let f : Rn Ñ Rm be a polynomial function and U Ă Rn be a bounded set. Then for some
N , we can simulate pf, Uq on computational linkages.

Proof. A polynomial function comes from the composition of scalar addition, scalar multiplication, nega-
tion, addition and multiplication. Each operation can be simulated on computational linkages, and for
each operation, the domain is defined on some neighborhood of 0 whose size only depends on N . Thus
we can choose N large enough that each operation is always defined on every input from U . □

5. Vector computation

For 3 dimensional motion, we consider the 1-skeleton of a cube made of twelve extender linkages joined
by eight rigid cubes. (See Figure 12, left.) If one cube is fixed, the opposite cube has a 3-dimensional
range of motion. Moreover, note that if this cube records the position px, y, zq, then the three cubes
adjacent to the fixed cube record the coordinates px, 0, 0q, p0, y, 0q and p0, 0, zq.

By adding two 45˝ ´ 45˝ ´ 90˝ triangle linkage, we can transfer 3 dimensional motion to an array of
three computational linkages. By offsetting the linkages, this construction can be embedded. (See Figure
12 middle, right.)
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Figure 13. A skew pantograph that achieves a bounded flexible angle.

Conversly, we can also take three computational linkages C1, C2, C3 and simulate three dimensional
motion with a vertex aligned at p|C1|, |C2|, |C3|q. This allows us to generalize the result given in 1
dimension on computational linkages.

Theorem 1.1. Let F : R3m1 Ñ R3m2 be a polynomial function, and U Ă R3m1 be a bounded open set.
There exists an embedded polyhedral linkage which realizes F on U .

As a corollary, we can also restrict a polyhedral linkage to trace out a semialgebraic set.

Theorem 1.2. Let V Ă R3 be an algebraic set, and U Ă R3 be a bounded subset. There there is a fixed
embedded polyhedral linkage which realizes V X U .

Proof. An algebraic set V is defined as the vanishing locus of a set of polynomials f1, . . . , fn : R3 Ñ R.
Let F be the function R3 Ñ R3n defined by

F : px, y, zq ÞÑ

ˆ

pf1px, y, zq, 0, 0q, . . . , pfnpx, y, zq, 0, 0q

˙

In this linkage we fix all of the output vertices to be at their relative origins p0, 0, 0q, thus for each fi,
we have the constraint that fipx, y, zq “ 0. Thus the input vertex is constrained to be in the intersection
V X U , completing the proof. □

6. Final remarks

6.1. Higher dimensions. Note that our proofs for Theorem 1.1 and Theorem 1.2 naturally generalize
to all dimensions n ą 3. By extruding a polyhedral linkage into higher dimensions, no added flexibility
is gained. Thus by extruding our construction of extender linkages, we can generalize the results of
Theorem 3.1 into higher dimensions. Moreover, all of our techniques for performing scalar computation
will carry over as well. And finally we can modify our construction of translating 3-dimensional motion
into computational linkages by employing the 1-skeleton of an n-cube made of extender linkages to
translate n-dimensional motion into a register of n extender linkages, as in Figure 12. Thus our results
hold for embedded polyhedral linkages in dimension n ě 3.

6.2. Embedded linkages. In § 2.1, we chose the convention to only consider the subset of embedded
realizations so that the resulting linkages could be realized as physical mechanisms. An alternate approach
is to constrain the linkages so that only embedded realizations are possible. Consider a rigified pantograph,
with |BD| “ |DE| ă |CB| “ |CE|. (See Figure 13.)

If t “
|BD|

|BC|
, then the angle =ACF can open to a maximum measure of 2 sin´1

ptq ă π. Thus another

way to prevent degenerate realizations of the square planar linkage is to replace each corner of the square
with a copy of the skew pantograph. Then no degenerate realization is possible because every angle of the
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original square is strictly less than 2π. Extruding to a 3-dimensional polyhedral linkage gives a linkage
whose entire configuration space is embedded. So one could provide an alternate proof of Theorem 3.1
based on this construction and produce an extender linkage whose entire realization space is embedded.
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