
COBORDISM OF DOMES OVER CURVES
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Abstract. An integral curve is a closed piecewise linear curve comprised of unit intervals. A dome
is a polyhedral surface whose faces are equilateral triangles and whose boundary is an integral curve.

Glazyrin and Pak showed that not every integral curve can be domed by analyzing the case of unit

rhombi, and conjectured that every integral curve is cobordant to a unit rhombus. We show that this
is false for oriented domes, but that every integral curve is cobordant to the union of finitely many unit

rhombi.

1. Introduction

Let γ be a closed piecewise linear curve in three dimensional Euclidean space E. We say that γ is
integral if all intervals have integer length. Note that we allow γ to have multiple connected components.
Now let S be a piecewise linear surface in E with boundary γ and whose facets are all unit triangles.
Note that S need not be embedded or immersed. We say that S is a dome over γ, that γ is spanned by
S, and that γ can be domed.

As early as 2005, Kenyon asked if every integral curve can be domed, see [5]. In 2021, this was shown
to be false by Glazyrin and Pak, who proved a necessary condition for a unit rhombus to be domed in [4].
Moreover, Glazyrin and Pak conjectured that this is in some sense the only restriction that prevents a
general integral curve from being domed.

Conjecture 1.1 ([4, Conj. 5.14]). For every integral curve γ, there is a unit rhombus ρ and a dome
over γ ∪ ρ.

Formally, we say that two integral curves γ and η are cobordant if there is a dome over γ ∪ η. The
dome will be called a cobordism between γ and η. When the cobordism is orientable, we say that γ and
η are orientably cobordant. Note that if γ and η are cobordant, then γ can be domed if and only if η
can be domed, but the converse is not necessarily true. In this context, Glazyrin and Pak asked if every
integral curve is cobordant to a unit rhombus. This is false for orientable cobordisms.

Theorem 1.2. There exist unit rhombi ρ1, ρ2 such that ρ1 ∪ ρ2 is not orientably cobordant to any unit
rhombus ρ3.

Our proof of this negative result is non-constructive, but shows that the statement is true for almost
all pairs of unit rhombi ρ1, ρ2. Our work builds upon techniques introduced by Anan’in and Korshunov,
who gave a second proof that Kenyon’s question is false in [1]. Their proof is also non-constructive, and
shows that almost all integral curves cannot be domed. They consider a boundary map from the moduli
space of domes to the moduli space of integral curves, and prove that its image has measure zero in the
orientable case. Our result extends their work by allowing integral curves with multiple components.

We also prove a weaker version of Conjecture 1.1, posed by Glazyrin and Pak in [4, Conj. 5.15], which
allows for finitely many rhombi.

Theorem 1.3. For every integral curve γ, there is a finite set of unit rhombi ρ1, . . . , ρk such that γ is
cobordant to ρ1 ∪ . . . ∪ ρk. Moreover, for |γ| = n, it suffices to take k = n2 + 2n− 12 rhombi.

Our proof is constructive, and uses rhombus pivots to reduce a generic integral curve to a planar
integral curve. That is, for consecutive vertices u, v, w in γ, we can replace v by some point v′ ∈
B1(u) ∩ B1(w) by attaching the rhombus [uvwv′]. Then we prove the theorem directly for planar
integral curves. Our approach is similar to ideas introduced in [4, §2].
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Outline of the paper. We prove Theorem 1.3 in Section 2 because it is mostly self-contained. Then
in Section 3 we introduce necessary notions to describe the moduli space of domes and curves. This
is a generalization of many of the definitions and results given in [1] to allow for domes to bound
integral curves with multiple connected components. Then we prove Theorem 1.2 in Section 4 with these
techniques. Final remarks are given in Section 5.

Notation. For a list of points v1, . . . , vn ∈ E, let [v1 . . . vn] be the integral curve γ with vertices at the
given points. For two points v, w, let (v, w) be the line containing the two points, let [v, w] be the line
segment connecting the two points, and let |v, w| be the distance between the two points. For an integral
curve γ, let |γ| be the sum of all edge lengths of γ. Let Mn denote the set of all integral curves of length
n. The set M4 is important in the proofs and is called the set of unit rhombi.

2. Every integral curve is cobordant to finitely many unit rhombi

In this section we prove Theorem 1.3, that every integral curve γ ∈ Mn is cobordant to a finite union
of rhombi ρ1 ∪ . . . ∪ ρk.

We say that two integral curves γ and η are rhombus equivalent if there exist finitely many unit
rhombi ρ1, . . . , ρk and a dome over γ ∪ η ∪ ρ1 ∪ . . . ∪ ρk. Here we say k is the number of rhombi used
in the rhombus equivalence. This is similar to the definition of flip equivalence. (See e.g. [4, § 2.4].) In
our definition, we do not need to assume that the added rhombi can be domed, which is necessary for
flip equivalence. Clearly if an integral curve γ is rhombus equivalent to an integral curve which can be
domed, then γ satisfies the existence condition of Theorem 1.3.

First, we show that every integral curve is rhombus equivalent to a planar integral curve. An integral
curve is planar if it lies in a plane H ⊂ E.

Lemma 2.1. Every integral curve γ is rhombus equivalent to a planar integral curve. Moreover, for
|γ| = n, it suffices to use k =

(
n
2

)
rhombi.

Proof. Choose two vertices v and w of γ that are a maximum distance apart, and take any plane H
containing the line (v, w). This gives a decomposition of γ as two integral paths containing v and w, and
we show that both can be made to lie entirely in H via rhombus equivalence.

Suppose η is an integral path with vertices v = v1, . . . , vm, vm+1 = w. Let hi denote the distance
from vi to the plane H. (See Figure 1.) Choose vi maximizing hi. If the same height is achieved by
multiple vi, choose the one with the smallest index i. Note that this means hi−1 < hi ≥ hi+1.

H

•

h1

•
h2

• h3

•

h4

• •

Figure 1. An integral path η above a plane H with heights hi.

Consider the circle B1(vi−1) ∩ B1(vi+1) which contains vi. For each point v′i ∈ B1(vi−1) ∩ B1(vi+1),
we can replace vi by v′i in η by rhombus equivalence via [vi−1vivi+1v

′
i]. (See Figure 2.) Choose v′i to

minimize h′
i, the new distance from v′i to H. If h′

i = 0, then v′i is in H. Otherwise if h′
i > 0, minimizing

h′
i corresponds to choosing v′i so that the slope of the line (vi−1, v

′
i) is parallel to the slope of the line

(vi, vi+1). Because hi+1 ≤ hi, we see that h′
i ≤ hi−1 < hi, so we can always decrease the maximum

height hi by a rhombus equivalence.

Each added rhombus will remove at least one inversion from the sequence h1, . . . , hm. I.e., hi−1 < hi

is replaced with hi−1 ≥ h′
i. Since there can be at most

(
m
2

)
inversions, after at most

(
m
2

)
flips we
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Figure 2. Adding a rhombus [vi−1vivi+1v
′
i].

guarantee the integral path η lies in H. Therefore, for the whole integral curve γ, we will need at most(
m
2

)
+
(
n−m

2

)
≤

(
n
2

)
flips. □

Now we prove the result of Theorem 1.3 for planar integral curves. Our proof is by induction on
n = |γ|, and divides the integral curves into smaller pieces. We say that an integral curve γ = [v1 . . . vn]
is ϵ-packing around vi if for all j, the length |vi, vj | < ϵ. In this case, we say that vi is the packing center
of γ, and when the packing center is understood we just say that γ is ϵ-packing.

Lemma 2.2. Every planar integral curve γ is rhombus equivalent to a planar integral curve which is
2-packing. Moreover, if |γ| = n, then it suffices to use k =

(
n
2

)
rhombi.

Proof. The existence of a rhombus equivalent 2-packing curve follows from the Steinitz Lemma, which
can be stated as follows. (See e.g. [2, Theorem 2.1].) For each dimension d > 0, there is a constant Bd

such that for unit vectors u1, . . . , un ∈ Rd satisfying u1 + . . . + un = 0, there is a permutation σ ∈ Sn

such that for each 1 ≤ i ≤ n,

|uσ(1) + . . .+ uσ(i)| ≤ Bd

For d = 2, Bergström showed the optimal value is B2 =
√
5/2 in [3]. However, we use the constant 2

because it is sufficient for the proof of Theorem 1.3 and gives clearer exposition.

Viewing the integral curve γ = [v1 . . . vn] as a set of vectors u1, . . . , un, with ui pointing from vi
to vi+1, we can swap a pair of consecutive vectors ui and ui+1. By adding a rhombus containing the
endpoints vi−1, vi, vi+1, and the point vi reflected across the line (vi−1, vi+1). This corresponds to the
simple transposition (i, i+1) ∈ Sn. And because we can achieve any permutation σ ∈ Sn by the product
of simple transpositions, there exists a rhombus equivalent 2-packing planar integral curve around v1.
(See e.g. [6].) Moreover, for every permutation σ ∈ Sn, the maximal length of σ in terms of simple
transpositions is

(
n
2

)
, so this number of rhombi is sufficient. □

Now we are ready to prove that every integral curve is cobordant to finitely many unit rhombi.

Theorem 1.3. Every integral curve γ is cobordant to ρ1 ∪ . . . ∪ ρk for a finite set of unit rhombi
ρ1, . . . , ρk ∈ M4. Moreover, for |γ| = n, it suffices to take k = n2 + 2n− 12 rhombi.

Proof. From Lemma 2.1 and Lemma 2.2, we may assume without loss of generality that γ is planar and
2-packing. This uses n(n− 1) rhombi. Our proof is by induction. The base case is when |γ| = 5.

Suppose γ = [v1 . . . v5]. If the circumradius of the triangle [v1v3v4] is less than 1, then there is a point
z ∈ B1(v1) ∩ B1(v3) ∩ B1(v4). (See Figure 3, left.) Adding the edges [z, v1], [z, v3] and [z, v4] gives a
cobodism between γ and two unit rhombi [v1v2v3z] and [v1zv4v5]. If the circumradius of the triangle
[v1v3v4] is greater than 1, then we can perform a rhombus equivalence to construct a new integral curve
γ′ with the desired circumradius. Note that at most 3 rhombi are used.

In the inductive step, for a planar, 2-packing integral curve γ = [v1 . . . vn] with n > 5, there is some
point z ∈ B1(v1)∩B1(v4)∩H, where H is the plane containing γ. (See Figure 3, right.) Now [v1v2v3v4z]
is a planar pentagon, so the base case applies, and [v1zv4 . . . vn] is a planar, 2-packing integral curve of
length n− 1, so the inductive hypothesis applies. This divides γ into n− 4 pentagons, each of which use
at most 3 rhombi. So in total at most n(n− 1) + 3(n− 4) = n2 + 2n− 12 rhombi are used. □
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Figure 3. The base case and inductive step.

3. Spaces of Polygons and Polyhedra

This section introduces definitions and proves technical results we need to prove Theorem 1.2, that not
all integral curves are cobordant to a unit rhombus. Our approach is inspired by techniques introduced
by Anan’in and Korshunov, who gave an altenate proof that Kenyon’s question is false for almost all
integral curves in [1]. Specifically, we generalize Anan’in and Korshunov’s results to graph surfaces with
multiple boundary components. We state our definitions here. For the original definitions and for a more
detailed introduction, see [1, §2, §3].

A sample polygon is a finite 1-complex P = (U,F ) whose underling space is homeomorphic to S1.
Here U is a set of vertices and F = {f1, . . . , fk} is a set of edges oriented and cyclically ordered with
respect to the orientation of the circle. F is equipped with an edge length function ℓ : F → R>0 which
satisfies a nondegeneracy condition 2ℓ(fi) < ℓ(f1) + . . .+ ℓ(fn) for all 1 ≤ i ≤ n.

For a sample polygon P , the space of polygons EP is the set of all continuous maps P → E that are
isometries on edges. That is, EP is the set of all realizations of P is Euclidean space. Let Isom+E be
the group of orientation preserving isometries of E. The moduli space of polygons EP /Isom+E is the set
of all realizations up to rigid motions. Let E be the subgroup of Isom+E of translations, and SO(3) be
the subgroup of rotations. Note that Isom+E ∼= E ⋊ SO(3). The scheme of polygons EP /E is the set of
all realizations up to translations, but not rotations. Ultimately, we need to consider EP /Isom+E, but
in our proof we first consider EP /E and then quotient by the action of SO(3).

For a vector of polygons P = (P1, . . . , Pn), let EP refer to the product EP1 × . . .× EPn . Similarly, let
EP/Isom+E and EP/E refer to the products EP1/Isom+E× . . .×EPn/Isom+E and EP1/E× . . .×EPn/E,
respectively. As an abuse of terminology, we still refer to these as the space of polygons, moduli space
of polygons and scheme of polygons respectively. Note that the group of isometries always acts on each
sample polygon separately, see § 5.1. To refer to the polygons explicity, we may write EP1,...,Pn rather
than EP. (See Lemma 4.2.) We refer to the sets of edges as F1, . . . , Fn, individual edges as f

i
j ∈ Fi, and

the edge length functions as ℓi : Fi → R>0.

As the name suggests, EP/E is indeed a scheme. Note, however, that it may contain singular points.
For a single polygon, p ∈ EP /E is singular if and only if all p(fi) are parallel. For multiple polygons,
p ∈ EP/E is singular if and only if some pi ∈ EPi/E is singular.

Lemma 3.1. Let p ∈ EP/E be a singular point. Then dimTp(EP/E) = m+dim(EP/E), where m is the
number of pi which are singular in EPi/E.

Proof. Since EP/E = EP1/E× . . .× EPn/E, we have

dimTp(EP/E) = dimTp1(EP1/E) + . . .+ dimTpn(EPn/E).
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Now for a single Pi, we have dimTpi(EPi/E) = 1+dim(EPi/E) from [1, Lemma 3.2]. Combining this for
all Pi in P gives us the result. □

Consider the following explicit description of the scheme of polygons EP/E for a list of polygons P. A
point p ∈ EP/E is a collection of maps pi : Fi → E which satisfy ⟨pi(f i

j), pi(f
i
j)⟩ = ℓi(f

i
j)

2 for all i, j and∑
j pi(f

i
j) = 0 for all i. Similarly, for p ∈ EP/E, a point t in the tangent space Tp(EP/E) is a collection

of maps ti : Fi → E satisfying ⟨ti(f i
j), pi(f

i
j)⟩ = 0 for all i, j and

∑
j ti(f

i
j) = 0 for all i.

We generalize the definition of a graph surface given in [1] to allow for multiple boundary components
as follows. A genus n graph surface S is a finite 2-dimensional simplicial complex with nondegenerate

triangles and edges contained in a closed surface Ŝ such that the complement D := Ŝ ∖ S is homeomor-
phic to the disjoint union of n disks. This has the following data: a set of vertices V , a set of edges
E with orientation, a set of triangles T , and a map Φ : E → E defined as Φ : e 7→ −e which reverses
orientation.

A graph surface of genus n has boundary ∂D = G1∪ . . .∪Gn, where each Gi is a boundary component
homeomorphic to S1. Each boundary component Gi can be decomposed into the union gi1 ∪ . . . ∪ giki

with a cyclic order of the edges gi1, . . . , g
i
ki

∈ E such that gij and gij+1 are consecutive for all i, j. Note

that the list gi1, . . . , g
i
ki

admits repetitions with the same or opposite orientation. As an important spe-

cial case, note that when a graph surface S ⊂ Ŝ is contained in an orientable surface and contains no
triangles, then every edge appears exactly twice, once with each orientation, in the boundary ∂D. See
[1, Remark 2.5], and note that each boundary component can be given the same orientation with respect

to the oriented surface Ŝ.

Similarly, we generalize the definition of a sample polyhedron to allow for a genus n graph surface
instead of just a genus 1 graph surface as in [1, Definition 2.1]. For us, a sample polyhedron will mean a
genus n graph surface S equipped with an edge length function ℓ : E → R>0 satisfying ℓ(e) = ℓ(−e) for
any edge e ∈ E and ℓ(e1) + ℓ(e2) > ℓ(e3) for any triangle T ∈ T with boundary ∂T = e1 + e2 + e3. For
a given sample polyhedron S, we also consider the space of polyhedra ES , the moduli space of polyhedra
ES/Isom+E and the scheme of polyhedra ES/E.

An explicit description for the scheme of polyhedra ES/E is given by the set of continuous maps
q : E → E satisfying

(i) ⟨q(e), q(e)⟩ = ℓ(e)2 for all e ∈ E,
(ii) q(−e) = −q(e) for all e ∈ E,
(iii) q(e1) + q(e2) + q(e3) = 0 for all triangles T ∈ T with boundary ∂T = e1 + e2 + e3,

(iv) for a set of generators H ⊂ H1(S,Z),
∑
e∈E

heq(e) = 0 for any generator
∑
e∈E

hee ∈ H.

Similarly, an explicit description for the tangent space Tq(ES/E) is given by the set of continuous
maps s : E → E satisfying

(i’) ⟨s(e), q(e)⟩ = 0 for all e ∈ E,

and the previous conditions (ii) - (iv). See [1, §§2.7-9].

There is a boundary map which connects sample polyhedra and sample polygons. Let S be a sample
polyhedron, with boundary components G1, . . . , Gn where Gi = gi1 ∪ . . . ∪ giki

in cyclic order. For each

i, j, define an oriented edge f i
j of length ℓ(gij) and glue the edges f i

1, . . . , f
i
ki

into a sample polygon Pi.
We call the polygons P the boundary polygons of S. This defines a map δ : F1 ∪ . . . ∪ Fn → E via
δ : f i

j 7→ gij , and extends to a continuous map δ : P1 ∪ . . . ∪ Pn → S. Thus δ(f i
j) = gij for all i, j and δ

is an isometry on edges. Now δ(Pi) = Gi, and δ(P1 ∪ . . . ∪ Pn) = ∂D. We call the map δ, or just δ, the
combinatorial boundary map of the sample polyhedron S.

The boundary map induces a continuous map on schemes δ : ES/E → EP/E and a derivative map on
the tangent spaces dδ : Tq(ES/E) → Tq◦δ(EP/E) for any point q : E → E in the scheme of polyhedra
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ES/E. These maps are from precomposition with δ, see [1, §2.10].

Lastly, we define the collapse of a genus n graph surface S. Let T ∈ T be a triangle whose boundary

∂T contains a boundary edge gij . We may collapse S at T . The resulting simplicial complex S′ ⊂ Ŝ

has the same vertices V ′ = V , one less pair of oriented edges E′ = E ∖ {gij ,−gij}, and one less triangle
T ′ = T ∖ {T}. Note that S′ is again a genus n graph surface. The boundary component Gi changes
from gi1 ∪ . . .∪ gij ∪ . . .∪ giki

to gi1 ∪ . . .∪−e′ ∪−e∪ . . .∪ giki
, where ∂T = gij + e+ e′. All other boundary

components are unchanged. In terms of a realization q : E → E in the scheme of polyhedra ES/E,
collapse corresponds to restriction.

Lemma 3.2. Let S′ be a sample polyhedra obtained from S by collapse of a triangle, and let q : E → E
be a realization in the scheme of polyhedra ES/E. Denote by q′ = q|E′ : E′ → E the restriction of q to

E′. Then q′ ∈ ES′
/E. Similarly, for s : E → E in Tq(ES/E), denote by s′ = s|E′ : E′ → E the restriction

of s to E′. Then s′ ∈ Tq′(ES′
/E).

Proof. This is exactly the statement of [1, Proposition 4.2 (i)]. The same proof follows exactly when we
allow for a genus n graph surface. □

Consider the group SO(3)×n acting on EP/E, where each copy of SO(3) acts on the corresponding
scheme of polygons EPi/E. For p ∈ EP/E, we need to describe the tangent space TpSO(3)×np. Recall
the Lie algebra so3 of the Lie group SO(3) with the following description.

so3 = {a ∈ HomR(E,E) | ⟨a(e), e′⟩+ ⟨e, a(e′)⟩ = 0 ∀e, e′ ∈ E}.

Let so×n
3 be the set of vectors a = (a1, . . . , an), where each ai ∈ so3. We have the following description

of the tangent space to the SO(3)×n orbit on EP/E.

Lemma 3.3. Let p ∈ EP/E. The tangent space TpSO(3)×np to the SO(3)×n-orbit of p is given by

TpSO(3)×np = Tp1
SO(3)p1 × . . .× Tpn

SO(3)pn

= {a ◦ p = {ai ◦ pi : Fi → E} | a ∈ so×n
3 }.

Proof. The first line is immediate because each copy of SO(3) acts independently on each copy of EPi/E.
Then for a single SO(3) acting on pi ∈ EPi/E, we know Tpi

SO(3)pi = {ai ◦ pi : Fi → E | ai ∈ so3} from
[1, §3.1]. □

The final ingredient is a symplectic form on the scheme of polygons EP/E. Consider the skew sym-
metric form ω given by the formula

ωp(t, t’) :=

n∑
i=1

ki∑
j=1

ti(f
i
j) ∧ t′i(f

i
j) ∧ pi(f

i
j)

ℓi(f i
j)

2ν
=

n∑
i=1

ωpi
(ti, t

′
i).

Here ν is the volume form on E, and t, t’ ∈ Tp(EP/E). ωpi refers to the sum containing all components
of Pi, and corresponds to [1, §3.3, Formula V]. We show that the kernel of this form is exactly the
tangent space to the SO(3)×n orbit of a point p ∈ EP/E. Note that by kernel we are considering ωp as
a map Tp(EP/E) → Tp(EP/E)∗. That is, the kernel is the set of points t ∈ Tp(EP/E) such that for all
t’ ∈ Tp(EP/E), we have ωp(t, t’) = 0.

Lemma 3.4. The tangent space Tp(SO(3)×np) to the SO(3)×n orbit of any point p ∈ EP/E coincides
with the kernel of the form ωp on Tp(EP/E).

Proof. For a single pi ∈ EPi/E, we know the kernel of the form ωpi
on Tpi

(EPi/E) corresponds to
Tpi

SO(3)pi from [1, Lemma 3.4]. This immediately shows that TpSO(3)×np ⊂ kerωp, as each term
in the sum will be 0. For the reverse inclusion, we repeat the dimension counting argument from
[1, Lemma 3.4] with our Lemma 3.1 in place of Lemma [1, Lemma 3.2]. This shows the spaces have the
same dimension, so they are equal. □



COBORDISM OF DOMES OVER CURVES 7

4. Not Every Integral Curve is Cobordant to a Unit Rhombus

This section proves that not every integral curve is orientably cobordant to a unit rhombus. Our
method is to generalize [1, Theorem 4.3] to allow for graph surfaces of arbitrary genus. We rephrase
a cobordism as a sample polyhedron with multiple boundary components, and project down to smaller
moduli space to account for any possible polygon to be chosen for the cobordism.

Theorem 4.1. Let S ⊂ Ŝ be a genus n graph surface, with boundary polygons P, where Ŝ is a closed
orientable surface. Then

δ : ES/Isom+E → EP/Isom+E,
is isotropic. In particular, the rank of dδ is at most half the dimension of the moduli space of polygons.

Note that the skew symmetric form on EP/Isom+E is induced by the skew symmetric form ω on EP/E
after taking the quotient by the action of SO(3)×n. We show that the pullback of this skew symmetric
form ω′ is null. Also note that the orientability hypothesis is necessary here, see § 5.3

Proof. The proof of [1, Theorem 4.3] follows word for word to show that δ : ES/E → EP/E is isotropic
by a series of collapses. To show that this survives to quotient by SO(3)×n, we use Lemma 3.4. Because
TpSO(3)×np = kerωp, taking the quotient by SO(3)×n on EP/E gives a new nondegenerate skew-

symmetric form ω′ on EP/Isom+E, and the pullback of the form to ES/Isom+E is still null. □

Now we can phrase the condition of being cobordant in terms of a sample polyhedron with multiple
boundary components.

Lemma 4.2. Let S ⊂ Ŝ be a sample polyhedron with boundary polygons P1, P2, P3 ∈ Mn, where Ŝ is
an orientable closed surface. Let π be the projection from EP1,P2,P3/Isom+E → EP1,P2/Isom+E. Then
π ◦ δ(ES/Isom+E) ⊂ EP1,P2/Isom+E has measure 0.

Proof. Take the reduction of the scheme ES/Isom+E because we are only interested in the set theoretical
image of the space of polyhedra up to sets of measure 0. Consider its smooth locus which is open and
of full measure. Now δ is a smooth map of smooth manifolds, and by Theorem 4.1 the rank of its
differential is at most half the dimension of the target manifold. Let dimEPi/Isom+E = m. Then
dimEP1,P2,P3/Isom+E = 3m, so dδ has rank ≤ 3

2m. But dimEP1,P2/Isom+E = 2m, and so the map

dπ ◦ dδ has rank ≤ 3
2m < 2m. By Sard’s theorem, the image π ◦ δ(ES/Isom+E) has measure 0 in

EP1,P2/Isom+E. □

We prove the main result of the section by showing that in general we cannot find a cobordism from
two unit rhombi down to one unit rhombus.

Theorem 1.2. The set of unit rhombi ρ1, ρ2 ∈ M4 such that ρ1 ∪ ρ2 is orientably cobordant to a third
unit rhombus ρ3 ∈ M4 has measure 0.

Proof. Any dome that forms a cobordism between two unit rhombi ρ1, ρ2 ∈ M4 and another unit rhom-
bus ρ3 ∈ M4 is exactly a genus 3 graph surface S whose boundary δ(ES/Isom+E) ⊂ Eρ1,ρ2,ρ3/Isom+E.
Since we can take any unit rhombus ρ3, we care about the projection π◦δ(ES/Isom+E) ⊂ Eρ1,ρ2/Isom+E.
This has measure 0 from Lemma 4.2, and there are only countably many domes, so we conclude that
the set of pairs of rhombi ρ1, ρ2 ∈ M4 such that ρ1 ∪ ρ2 is cobordant to a third unit rhombus ρ3 ∈ M4

has measure 0. □

Originally, Glazyrin and Pak only considered integral curves with one connected component. So
Theorem 1.2 is not an answer to Conjecture 1.1 in the orientable case, but we give one in the following
corollary.

Corollary 4.3. There exists an integral curve γ with one connected component that is not orientably
coboardant to any unit rhombus ρ.

Proof. Choose a pair of unit rhombi ρ, ρ′ ∈ M4 such that ρ ∪ ρ′ is not cobordant to any third unit
rhombus ρ′′ ∈ M4. Let ρ = [v1v2v3v4] and ρ′ = [v′1v

′
2v

′
3v

′
4]. Position ρ and ρ′ so that v1 = v′1, and the

distances |v2, v′2| = |v4, v′4| = 1. By adding the unit triangles [v1v2v
′
2] and [v1v4v

′
4], we see that ρ ∪ ρ′

is coboardant to the perimeter γ = [v4v3v2v
′
2v

′
3v

′
4]. Therefore, our choice of ρ, ρ′ implies that γ is not

cobordant to any unit rhombus, and γ has only one connected component. □
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Glazyrin and Pak conjectured that a positive answer to Conjecture 1.1 would involve showing a
cobordism between an integral curve and finitely many unit rhombi, and then a cobordism between two
unit rhombi and one unit rhombus, see [4, Conj. 5.15, Conj. 5.16]. Thus Theorem 1.2 is a negative
answer to [4, Conj. 5.16] and Corollary 4.3 is a negative answer to Conjecture 1.1, both in the orientable
case.

5. Final remarks

5.1. The proof of Theorem 1.2 does not account for the fact that the unit rhombi in question can be ori-
ented in some manner with respect to each other. That is, we have chosen to define EP/Isom+E with the
group of orientation preserving isometries Isom+E acting on each polygon separately. However, we could
consider Isom+E as acting on all of the spaces together, so instead of EP1/Isom+E× . . .× EPn/Isom+E
we would consider EP1/Isom+E×EP2 × . . .×EPn . This approach could answer more general questions.
For example, Glazyrin and Pak conjectured that there are two unit triangles ∆1,∆2 ⊂ E which are not
cobordant, see [4, Conjecture 5.13]. In this question, the relative translation and rotation of the triangles
is important, so our current techniques are insufficient.

Additionally, consider Steinhaus’ 1957 problem on tetrahedral chains, see [7]. A tetrahedral chain is a
polyhedra constructed by attaching regular tetrahedra along faces to form a chain. These can be viewed
as cobordisms between two triangles that satisfy stricter conditions than general domes. Steinhaus asked
if tetrahedral chains can be closed, and if they are dense in E. In contrast to general domes, the first
question was shown to be false by Swierczkowski in [9]. However, the second question remains open.
Recently, Stewart showed in [8] that the group generated by reflections across the faces of a regular
tetrahedra is dense in SO(3), but this does not resolve Steinhaus’ question because it does not consider
the translations in the full group SO(3)⋊E. I.e., Stewart’s approach considers only the relative rotation,
not the relative translation of the two triangles.

5.2. The minimal number k of unit rhombi needed for the cobordism in Theorem 1.3 gives a measure of
complexity for an integral curve γ. In contrast to Conjecture 1.1 which proposed that k = 1 for all γ, we
conjecture that k = Θ(|γ|). Theorem 1.3 gives a quadratic upper bound k = O(|γ|2). We do not believe
this is optimal. Pak proposes a modified proof of Theorem 1.3 which uses a reduction to generic integral
curves rather than planar integral curves to improve to a linear bound.1 (See [4, §2] for terminology.)
We also conjecture that the construction in Corollary 4.3 can be extended to arbitrarily many rhombi
to prove that k = Ω(|γ|).
5.3. The orientability hypothesis in Theorem 4.1 is necessary for the cancellation argument, see [1, Re-
mark 2.3] for more detail, and [1, Remark 4.4] for a counterexample with a non-orientable surface. This
limits the techniques used in this paper to the orientable case, and new techniques may be necessary to
study non-orientable cobordisms.
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reading of my drafts.
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