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Unlike other vertebrates, humans cooperate in large groups with unrelated individuals. Many authors have
argued that the evolution of such cooperation has resulted from reciprocity and other forms of contingent
cooperation. This argument is not well supported by existing theory. The theory of contingent cooperation in
pairs is well developed: reciprocating strategies are stable when common, and can increase when rare as long
as population structure leads to modest levels of relatedness. In larger groups, however, it is not clear whether
contingent cooperation can increase when rare. Existing work suggests that contingent strategies cannot
increase unless relatedness is high, but depends on unrealistic assumptions about the effects of population
structure. Here we develop and analyze a model incorporating a two level population structure that captures
important features of human hunter–gatherer societies. This model suggests that previous work
underestimates the range of conditions under which contingent cooperation can evolve, but also predicts
that cooperation will not evolve unless (1) social groups are small, and (2) the relatedness within
ethnolinguistic groups is at the high end of the range of empirical estimates.
l rights reserved.
© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Humans cooperate in large groups of unrelated individuals. This
is obviously true in modern societies in which complex institutions
allow the mobilization of millions of individuals in cooperative
enterprises. However, ethnographic and historical evidence in-
dicates that foragers and people living in other acephalous societies
that lack such institutions often cooperate in groups of hundreds of
individuals. Examples include warfare (Mathew & Boyd, 2011), the
construction of capital facilities (Swezey & Heizer, 1977), and large
scale cooperative foraging (Nuligak, 1971). The received view is that
such cooperation is explained by reciprocity and other forms of
contingent behavior.

This view is not theoretically well-supported. It is true that
contingent strategies can stabilize cooperation and the punishment of
noncooperators. Because people can recognize individuals and
remember past behavior, selection can favor a psychology that
motivates actors to help only those who have helped them in the
past, or punish those who don’t cooperate in mutually beneficial
activities. If, in the long run, benefits of sustained cooperation exceed
the short term benefits of defection, then such a psychology can be
evolutionarily stable. However, this is not a sufficient account of
human cooperation because it does not explain how strategies
supporting contingent cooperation can increase when rare. This
lacuna is important for two reasons: first contingent cooperation
appears to be very rare among primates (Clutton-Brock, 2009), and
thus it is very likely that the ancestral condition in the human lineage
is noncooperative. Second, the combination of repeated interactions
and contingent rewards and punishment can stabilize virtually any
behavior—prosocial helping, ruthless spite, and everything in be-
tween (Boyd & Richerson, 1992). This means it is not enough to
explain the stability of contingent cooperation. We must also explain
why mutually beneficial strategies are likely evolutionary outcomes.
This is a problem because rare contingent cooperators are altruists
who pay the cost of initial cooperation but do not gain any long
run benefit.

In theory low levels of relatedness can allow a psychology
supporting cooperation between pairs of individuals to increase
when rare (e.g. Axelrod & Hamilton, 1981; McElreath & Boyd, 2007). If
interactions are repeated many times, the benefits to cooperation can
be very large, and as a result cooperators can increase even if they
have only a small chance of interacting with another cooperator.
Population structure often leads to low but positive background levels
of relatedness, and this provides a possible explanation for the
evolution of pairwise reciprocity. We do not know if this is the correct
explanation for the evolution of pairwise reciprocity in humans. First,
it would seem to apply to many group living vertebrate species, yet
reciprocity is very rare. Second, pairwise reciprocity in humans is
frequently regulated by social norms enforced by third parties, a
mechanism usually invoked only to explain large scale cooperation
(Mathew, Boyd, & vanVeelen, 2013).
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It is not clear whether low levels of genetic assortment resulting
from population structure can play a similar role in the evolution
of contingent cooperation in larger groups. Genetic data provide
estimates of relatedness within human foraging groups (Bowles,
2006, Langergraber et al., 2011). However knowing relatedness and
the costs and benefits of alternative behaviors is not enough to predict
evolutionary outcomes. Cooperative strategies can increase when they
have higher expected fitness than noncooperative ones. Because
contingent cooperation leads to non-linear fitness functions, knowing
r, the expected frequency of rare cooperators in a group with the focal
cooperator, is not enough to calculate expected fitness of a focal
cooperator or noncooperator (vanVeelen, 2009; Schonmann, Vicente, &
Caticha, 2013). Instead, you have to know the conditional probability of
each different group composition given the strategy of the focal. (Using
the version of Hamilton's rule advocated by Gardner, West, and Wild
(2011) requires exactly the same probability distributions to compute
the multiple regression coefficients which replace marginal fitness
effects). This probability distribution can be calculated from empirical
estimates of r only if assumptions are made about how population
structure gives rise to genetic assortment. Previous work (Boyd &
Richerson, 1988; Boyd, Gintis, & Bowles, 2010) assumed that groups are
formed by sampling individuals with a constant relatedness to each
other. This assumption is not plausible because the biological processes
that generate relatedness lead to interdependencies so that knowing
that two individuals share a gene by common descent increases the
probability that other members of the group also share that gene by
common descent.

Here we derive a simple recursive expression for this probability
distribution for a population structure that captures important features
of some human foraging populations. Like other primates, human
foragers live in residential groups. These “bands” typically number
between 10 and 100 people (Hill et al., 2011), but can sometimes be
larger in particularly provident environments. Unlike other primates,
however, there ismuchpeaceful social interaction betweenmembers of
different bands, and people frequently change bands (Hill et al., 2011).
Many authors believe that forager populations are usually subdivided
into ethnolinguistic groups numbering from several hundred to several
thousand people in which individuals are identified by language and
other culturally transmitted markers of group membership, and that
rates of social interaction and rates of marriage between members of
different ethnolinguistic groups are much lower than between
members of the same ethnolinguistic group (Tindale, 1974). Other
authors (Berndt, 1959) have argued that there are no sharp linguistic or
cultural boundaries. The question is difficult to resolve because well-
studied modern hunter–gatherers usually live among agricultural
populations, and thuswemust rely onhistorical and early ethnographic
materials, especially fromAustralia andNorthAmerica. In this paper,we
assumea two level structurewith bands nested inside of ethnolinguistic
groups. Elsewhere we will present a model that is better suited to a
world in which bounded ethnolinguistic groups do not exist.

To create an analytically tractable model, we assume that
ethnolinguistic groups are linked through island model migration
meaning that each ethnolinguistic group draws immigrants from all
other groups with equal probability. Assuming that migration rates
are modest and that selection is weak, we derive an expression
describing the pattern of genetic assortment among ethnolinguistic
groups. We then assume that social interaction takes place in bands
whose members are randomly sampled from the ethnolinguistic
group. With these assumptions we derive a very simple rule for the
probability distribution of numbers of cooperators across bands. We
will show that this simplifiedmodel provides a good approximation to
more realistic calculations which assume large but limited gene flow
among bands within ethnolinguistic groups.

We then use this rule to determine when contingent cooperation
and punishment can increase when rare, and, given that they can, the
frequency of cooperators at equilibrium. This analysis suggests that
tolerant strategies that cooperate when a minority of others in their
band also cooperate can increase when rare if relatedness within
ethnolinguistic groups conforms to the higher estimates reported in
Bowles (2006) but not the lower estimates reported in Langergraber
et al. (2011). Such tolerant strategies evolve to a mixed equilibrium at
which a minority of cooperators coexists with a majority of non-
cooperators. Less tolerant strategies that require most other in-
dividuals in the band to cooperate are very unlikely to increase when
rare. These results suggest that observed high frequency cooperation
is better explained by contingent punishment of non-cooperators
than contingent cooperation.

2. Population structure and assortment

Consider a population split into a large number of ethnolinguis-
tic groups that are maintained close to size ne by density dependent
population regulation. We assume that ne ranges between several
hundred and a few thousand individuals. Each generation a fraction
m of each ethnolinguistic group is replaced by immigrants drawn at
random from the population as a whole. We assume that inter-
ethnic migration rates are less than 10%. Ethnolinguistic groups are
subdivided into bands of size ne (that can be between 10 and 50) in
which social interaction occurs. Each generation band members are
drawn at random from the ethnolinguistic group. There are two
genotypes that affect social behavior, a cooperative type labeled A,
and a noncooperative type, N. The reproductive success of each
individual will depend on her/his own genotype and on the
genotypes of the other members of her/his band. The fitness (i.e.,
the expected number of offspring that reach adult age) of an
individual of type A, or N, in a band with a total number k of types A,
is given by

wA
k ¼ 1þ δvAk ;w

N
k ¼ 1þ δvNk ; ð1Þ

with the conventions v0N = 0 and δ N 0. We will refer to vk
A and vk

N as
the marginal fitnesses.

We assume that selection is weak so that δ is small. This means
that selection changes the frequency of types more slowly than drift
and migration change the composition of groups, and, therefore,
that the distribution of types across groups can be calculated
assuming there is no selection. We also assume that there is enough
elasticity in group size that natural selection increases the
frequency of the type with higher expected fitness across groups.
There are at least two ways that this can happen. First, groups can
grow by budding (Goodnight, 1992; Gardner & West, 2006;
Schonmann et al., 2013) so that descendants do not compete.
Second, density dependent regulation of the size of ethnolinguistic
groups maintains their size close to ne, but is elastic enough to
accommodate group average fitness larger than 1. This requires that
the absolute value of the effect of a change in group size on the
fitness of individuals in the group is much larger than δ but smaller
than m (Schonmann et al., in prep). As the effect of a change in
group size on fitness increases in comparison to m, it becomes more
difficult for altruistic strategies to increase, and in the limit the
model produces the same effects as the inelastic island model
(Taylor, 1992) which assumes fixed group sizes. In this model,
groups make equal contributions to the population independent of
the number of A types, and thus altruistic behavior cannot evolve.
This means that the results presented below represent a best case
for the evolution of contingent cooperation.

With these assumptions the frequency of A types in the population
will increasewhen they have higher expected fitness across groups, or

Xn
k¼1

Prðk A; pj ÞvAkN
Xn−1

k¼0

Pr k N;pj ÞvNk ;
�

ð2Þ
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where Pr(k|A, p) and Pr(k|N, p) are the conditional probabilities
that focal A and N types find themselves in a band with k A types.
Since δ is small, these probabilities can be calculated assuming
that the frequency of A is fixed at p and the distribution of A and
N types across ethnolinguistic groups is determined only by drift
and migration.

Due to limited migration, members of the same ethnolinguistic
group will be related. Because selection is weak, ethnolinguistic
groups are large, and migration rates among ethnolinguistic groups
are low, the relatedness within ethnolinguistic groups, re,
is approximately

re ¼
1

1þ 2nem
: ð3Þ

(e.g. Hartl and Clark, 2007). Since bands are formed randomly
this is also the relatedness among pairs of band members. This
means that the expected number of A types in a band containing
a focal A type is 1 + (n − 1)re because the focal is A and a
fractionre of the other n − 1 individuals are also A on average.
However, knowing the expected number of A types is not enough
to calculate expected fitnesses unless wk

A and wk
N are linear

functions of k. For example, in the linear public goods game vk
A =

kb/n − c, where b/n is the benefit to each individual produced by
a cooperative act that costs c. Then the expected marginal fitness
of an A type individual is b(1 + (n − 1)re)/n −c. However
contingent strategies typically cause fitness to be a highly
nonlinear function of k. For example, an n-person analog of tit-
for-tat is “cooperate on the first interaction, and continue to
cooperate if Θ or more individuals cooperated on the previous
interaction”. If k b Θ cooperation ceases after the first interaction,
but if k ≥ Θ it is sustained for many periods, and this leads to a
fitness function with a sharp kink at Θ. Just knowing the average
value of k is not enough; you also need to know the probability
that k ≥ eta. For such nonlinear fitness functions, the complete
conditional probability distributions Pr(k|A, p) and Pr(k|N, p) are
needed to calculate expected fitnesses.

To calculate these distributions we assume that ne is large, m is
small and nem = ‘. Then the distribution of the frequency of A types
in the ethnolinguistic group of a focal cooperator is approximately
given by a beta probability density with parameters ‘p + 1 and
‘(1 − p). This follows from the fact that for the island model, the
probability density for the fraction x of cooperators in a randomly
chosen group is f(x) = beta(x|‘p, ‘q) = Cx‘p − 1(1 − x)‘q − 1,
where q = 1 − p and C is a normalization constant (Wright,
1931; Crow & Kimura, 1970; Wakeley, 2003, Schonmann et al in
prep). The joint density that the focal is an A type and the fraction of
A types in the ethnolinguistic group is x is xf(x). Therefore, the
conditional probability density that the focal is in an ethnolinguistic
group with a fraction x of A types, given that the focal is an A
type is proportional to xf(x) = Cx‘p(1 − x)‘q − 1 and hence it is
beta(x|‘p + 1, ‘q).

Since bands are formed by randomly selecting individuals from
their ethnic group, the conditional probability that there are k − 1
A types among the other n − 1 individuals in a band of a focal A
type given the frequency of A in the focal's ethnolinguistic group is x
is given by a binomial probability distribution with parameters x
and n − 1. Thus Pr(k|A, p) averaged over all ethnolinguistic groups
is given by

Pr k A; pj Þ ¼ ∫1
0 bin k−1 n−1; xj Þbeta x ‘pþ 1; ‘qj Þdx;ðð

�
ð4Þ

where bin(k − 1|n − 1, x) is the binomial probability of draw-
ing k − 1 hits each with probability x in n − 1 trials and beta
(x|‘p + 1, ‘q) is the probability distribution of x over ethnolin-
guistic groups containing a focal A type. Then substituting
the expressions for the binomial distribution and the beta
density yields

Prðk A; pj Þ¼∫1
0

n−1
k−1

� �
xk−1 1−xð Þn−k Γ ‘þ 1ð Þ

Γ ‘pþ 1ð ÞΓ ‘; qð Þ x
‘p 1−xð Þ‘q−1dx

ð5Þ

Now collect terms that involve x

Prðk A;pj Þ

¼ n−1ð Þ!
k−1ð Þ! n−kð Þ!

Γ ‘þ 1ð Þ
Γ ‘pþ 1ð ÞΓ ‘; qð Þ ∫1

0 x‘pþk−1 1−xð Þ‘q−1þn−k dx; ð6Þ

where Γ is the gamma function. Then, using the fact that

∫1
0 dxx

α−1 1−xð Þβ−1 ¼ Γ αð ÞΓ βð Þ
Γ α þ βð Þ ; ð7Þ

we can write (6) as

Prðk A;pj Þ ¼ n−1ð Þ!
k−1ð Þ! n−kð Þ!

Γ ‘þ 1ð Þ
Γ ‘pþ 1ð ÞΓ ‘; qð Þ

Γ ‘pþ kð ÞΓ ‘qþ n−kð Þ
Γ ‘þ nð Þ :

ð8Þ

Then using the identity Γ(z) = (z − 1)Γ(z − 1) and setting k = 1,
we obtain

Prð1 A;pj Þ ¼ Γ ‘þ 1ð Þ Γ ‘qþ n−1ð Þ
Γ ‘þ nð Þ Γ ‘; qð Þ

¼ ‘qþ n−2ð Þ ‘qþ n−3ð Þ⋯ ‘; qð Þ
‘þ n−1ð Þ ‘þ n−2ð Þ⋯ ‘þ 1ð Þ : ð9Þ

And, for k = 2, …, n, we obtain

Prðk A; pj Þ
Prðk−1 A; pj Þ ¼

k−2ð Þ! n−kþ 1ð Þ!
k−1ð Þ! n−kð Þ!

Γ ‘pþ kð ÞΓ ‘qþ n−kð Þ
Γ ‘pþ k−1ð ÞΓ ‘qþ n−kþ 1ð Þ ; ð10Þ

which, using again the fact that Γ(z) = (z − 1)Γ(z − 1) simplifies to
the recursion

Prðk A; pj Þ ¼ Prðk−1 A; pj Þ n−kþ 1ð Þ ‘pþ k−1ð Þ
k−1ð Þ ‘qþ n−kð Þ : ð11Þ

The probability that the focal is the only A type in its group, Pr(1|
A, p), can be calculated using (9). Then the conditional probabilities
that there are k = 2, …, n A types Pr(k|A, p) can be calculated very
easily using (11), for example, a spreadsheet.

To compute the expected fitness of N types, we need to calculate
the conditional probability that N types find themselves in a group
with k A types, Pr(k|N, p). However, since the labels A and N are
arbitrary it follows that

Pr k N;pj Þ ¼ Pr n−k A; qj Þ;ðð ð12Þ

for k = 0, …, n − 1, and thus we can use (9) and (11) to calculate the
expected fitnesses of both A and N types.

2.1. When can contingent cooperation invade?

Now consider a population in which A types are rare. If the
focal is type N, virtually everyone in her/his ethnolinguistic group
is type N, and her/his band will consist of no A types and n N
types. Since the marginal fitness of an N type in a band of all N
types is zero, the expected fitness of N types is 1. But if the focal
is type A, then the expected fraction of types A in her/his
ethnolinguistic group is close to re = 1/(1 + 2nem), and the
probability that she/he is in a group with a total of k types A is



222 R. Boyd et al. / Evolution and Human Behavior 35 (2014) 219–227
given by Pr(k|A) = limp → 0 Pr(k|A, p). When p → 0, (9) and (11)
simplify to become

Prð1 Aj Þ ¼ ‘

nþ ‘−1
; Prðk Aj Þ ¼ Prðk−1 Aj Þ n−kþ 1

n−kþ ‘

� �
: ð13Þ

Types A will proliferate if their expected fitness is greater than that
of types N, which is 1, or in terms of marginal fitnesses,

∑
k
Prðk Aj ÞvAk N 0: ð14Þ

We consider fitness functions that represent two different
types of contingent social behavior. The iterated public goods
game captures the payoffs that result from contingent
cooperation (Joshi, 1987; Boyd & Richerson, 1988; Doebeli &
Hauert, 2005). Interactions last T periods on average. Each
period individuals can either cooperate (C) or defect (D). Each
person cooperating increases the fitness of members of its
group by b/n at a cost c. Defection has no effect on fitness.
Behavior is controlled by one of two strategies. A types
cooperate during the first period, and during subsequent periods
they cooperate if Θ or more group members cooperated during
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the previous period. Otherwise they defect. N types always
defect. Then

vAk ¼
kb
n
−c

� �
if k bΘ;

T
kb
n
−c

� �
if k≥Θ;

8>><
>>:

ð15Þ

and

vNk ¼
kb
n

� �
if k bΘ;

T
kb
n

� �
if k≥Θ;

8>><
>>:

ð16Þ

When A is rare, N types are in groups with n − 1 other N types,
and thus they receive no benefits from the cooperative activities of A
types and their marginal fitness is zero.

The threshold punishment game provides a simple model of the
payoffs from contingent punishment of non-cooperators. Again
individuals interact for T periods during which they can either
cooperate or defect with the same payoffs as in the iterated public
goods game. Everyone defects during the first period, and then A types
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punish defectors at a cost. In general we would expect this cost to
increase with group size, but also decrease with the number of
punishers. Wewould also expect economies of scale so that the cost of
punishment declines nonlinearly as the number of punishers in-
creases. N types do not punish. If the number of punishers exceeds a
threshold Θ, all individuals attempt to cooperate on subsequent
periods, but occasionally defect due to errors or random individual
circumstances that make defection attractive even if punishment is
anticipated. A simple model of this situation is

vAk ¼ −κ if k bΘ;
−κ þ T−1ð Þ β−χð Þ if k≥Θ;

�
ð17Þ

and

vNk ¼ 0 if k bΘ;
T−1ð Þβ if k≥Θ;

�
ð18Þ

where κ gives the cost of punishing noncooperators and being
punished during the first period, β gives the benefits due to induced
cooperation and χ is the cost of cooperating, monitoring, and
punishing occasional defectors. We expect that β ≤ b due to
occasional defections, and that χ ≥ c due to the costs of monitoring
and enforcement. A more realistic model of contingent punishment
in which the effects of group size, economies of scale and errors are
made explicit requires an increase in the number of parameters (Boyd
et al., 2010). Once again the expected fitness of defectors is zero.

Using (13) to calculate expected fitnesses indicates that the
evolution of contingent cooperation is sensitive to the level of
relatedness within ethnolinguistic groups, to band size, and to the
threshold necessary for cooperation to persist in a band. Fig. 1 plots
the minimum value of T necessary for A types to increase as a function
of this relatedness, re in the iterated public goods game and the
threshold punishment game. In both cases Θ, the minimum number of
A types in a band necessary to sustain cooperation is 0.25n. This
means that A types cooperate or punish as long as a quarter of their
group also does the same. The top two panels plot values for the
iterated public goods game and the lower two plot values for the
threshold punishment game. The range of re values plotted encom-
passes a number of empirical estimates of this parameter. The classic
Birdsell (1973) model of hunter–gatherer population structure (ne =
500, m = 0.05) implies that at equilibrium re ≈ 0.02. Birdsell's
original calculation was based on little data but is roughly consistent
with more recent estimates of group size (≈ 1000 and intermarriage
rates ≈ 0.05) for three central Inuit groups, the Copper Inuit, the
Netsilik, and the Iglulik (Damas, 1975). Variable population sizes,
unequal sex ratios, deviations from the assumptions of the island
model, and a number of other factors might increase these estimates
of re. There are two published empirical estimates of re for
contemporary human foragers based on genetic data, a low value
(r ≈ 0.01) from Langergraber et al. (2011) and a higher value
(r ≈ 0.07) from Bowles (2006). When n = 10 and Θ = 3, coopera-
tive strategies increase when rare even when re is fairly low as long as
T N 100, a value that seems reasonable for common interactions like
food sharing but less plausible for rare interactions like participation
in warfare. For values of re at the higher end of the range, contingent
cooperation can increase even when individuals only interact a few
times. This should not be surprising because when Θ = 3 cooperation
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Fig. 3. The top panel plots the difference in expected fitness for A and N types, in units of
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conditioned on the focal being either A or N. An A type is more likely to be in a band
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A types suffer more than N types when cooperation is not sustained.
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(or punishment) is, in essence, a three person interaction. When n
is larger, the evolution of contingent cooperation is extraordinarily
sensitive to the relatedness within ethnolinguistic groups. Contin-
gent cooperation cannot increase when re is at the low end of the
range, but increases under plausible conditions at the high end of
the range.

Less tolerant contingent strategies increase only when relatedness
within ethnolinguistic groups is high and bands are small. Fig. 2 plots
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Fig. 4. Equilibrium frequency of A types in the IPG plotted against Θ, the number of A types n
set at 10% above the minimum number for A types to increase, re = 0.07, and b/c = 4. In the
small invasion is not possible no matter how large T is.
the minimum value of T necessary for A types to increase as a function
of this relatedness, but now assuming that Θ, the minimum number of
A types in a band necessary to sustain cooperation, is 0.8n. This means
that A type cooperates or punishes as long as 80% of their group also
does the same. When bands are small (n = 10) cooperation can
increase if re is at the upper end of the range and individuals interact
many times. Otherwise there are no plausible conditions which allow
A types to increase.

3. Equilibrium frequencies of cooperation

Even when they can invade when rare, contingent cooperators
typically do not eliminate non-cooperative types. Instead the popula-
tion usually evolves to a stable equilibrium at which both types coexist
and have the same expected fitness. When A types are rare, N types
virtually alwaysfind themselves in bandswith n − 1 other N types, and
so reap virtually no benefit from cooperative behavior. In contrast, A
types are occasionally in groups with a sufficient number of A types to
sustain cooperation, and as long as the expected fitness benefits from
such groups compensates for the losses in bands that do not sustain
cooperation, A types can increase. As they do, however, more andmore
N types find themselves in bands in which cooperation is sustained.
N types are less likely to be in such bands than A types, but they also
don’t pay the cost of cooperation (or punishment). Eventually, these
two fitness components balance, and the population reaches a stable
mixed equilibrium. See Fig. 3 for an illustration.

The equilibrium frequency of contingent cooperators depends on
the threshold number required for cooperation (Fig. 4). When the
threshold is low, so too is the frequency of cooperators at
equilibrium; when the threshold is high, the frequency of co-
operators at equilibrium is high. This means that the strategies that
can invade at lower levels of relatedness within ethnolinguistic
groups reach a low frequency at equilibrium. Low equilibrium
frequencies of cooperation mean that a substantial fraction of bands
do not sustain cooperation because there are no sufficient numbers
of A types.

4. Robustness of the model

The model analyzed in this paper incorporates a number of
assumptions that make it possible to derive a simple recursion for the
distribution of types across bands. We think that the three most
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ecessary for cooperation or punishment to be sustained. The number of repetitions, T, is
left panel n = 10 and in the right n = 40. As explained in Fig. 1, when the threshold is
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important are: (1) random formation of bands, (2) weak selection,
and (3) island model migration among ethnolinguistic groups. In this
section we consider whether violations of these simplifying assump-
tions are likely to have a large effect on the results.

4.1. Random formation of bands

While foragers often move from one band to another during
their lives, it is unlikely that bands are random samples from the
ethnolinguistic group to which they belong. Instead, people live
with a mix of relatives and non-relatives, and this will lead to
greater relatedness within bands. To test the sensitivity of the
model to non-random band formation, we constructed a two level
model in which every generation bands exchange a fraction mb of
migrants with other bands in their ethnolinguistic group. Ethno-
linguistic groups are linked in an island model as before, and the
distribution of frequencies of the two types across ethnolinguistic
groups is well approximated by a beta distribution. However,
because bands are small and migration rates between bands are
substantial, the beta distribution does not provide a good
approximation for the probability distribution of the number of
A types across bands. Instead we used the matrix methods
described in Wakeley (2003) eqn 4 to calculate the exact
distribution of the number of A types in bands given the type of
a focal and the frequency x in the ethnolinguistic group, ν(k|
A, x) = kν(k|x)/(nx) and ν(k|N, x) = (n − k)ν(k|x)/(n(1 − x)),
where ν(k|x) is the probability that a band chosen at random in
an ethnolinguistic group in which A types have frequency x has k A
types. Then the probability that a type A focal is in a band with k A
types is

Prðk A;pj Þ ¼ ∫1
0 ν k A; xj Þbeta x ℓpþ 1;ℓqj Þdx:ðð ð19Þ

The integral on the right hand side of (19) can be evaluated
numerically and compared to the simpler model of band formation
used above. As is illustrated in Fig. 5, when themigration rate between
bands is greater than 0.5 the distributions assuming random band
formation and limited between band migration are very similar, even
when re is small. Given that the fraction of first degree relatives in
bands is typically less than 10% (Hill et al., 2011) this result suggests
that the random band model provides an adequate approximation to
the more realistic model.

4.2. Weak selection

The model analyzed above assumes that selection is sufficiently
weak that the time scale on which it changes gene frequencies is
much longer than the time scale on which migration and drift adjust
the distribution of types across ethnolinguistic units. Put another way,
selection responds to the long run average distribution of behavioral
strategies across the entire population. The data suggest that
migration rates among ethnolinguistic groups are fairly small, and
this means that the model applies only if selection is fairly weak.

It is difficult to analyze models with strong selection, and so it is
not clear what is the effect of this assumption. However, we
conjecture that stronger selection will lead to less contingent
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cooperation. Suppose selection is strong enough that the time scale of
selection is shorter than that of drift and migration. This means that
ethnolinguistic units are demes, and genes will compete only with
genes in their ethnolinguistic units. Since bands are formed at
random, there is no assortment within ethnolinguistic units, and
therefore contingently cooperative strategies that are altruistic when
rare will not increase in frequency.

4.3. Island model migration among ethnolinguistic units

Ethnolinguistic groups are large and may often occupy sizable
territories. This suggests that the island model in which ethnolinguis-
tic groups exchange migrants with all other ethnolinguistic groups in
the population is unlikely to be correct, and a model with local
migration would be more accurate. Such a model would be difficult to
analyze analytically. Remember, however, that our estimates of re do
not depend on the assumption of island model migration; they are
empirical. It is only the beta distribution that depends on the
assumption of island model migration. So as long as a model with
limited migration generates a distribution with the same general
shape as the beta, we conjecture that the island model will be an
adequate approximation.

5. Discussion

In this paper we have derived a simple recursive set of formulas,
(9), (11) and (12) (simplified to (13), when one type is rare) that
gives the distribution of genotypes across bands in a two level model
that captures important aspects of population structure observed in
Holocene hunter–gatherers. It is easy to use this distribution to
calculate expected fitness of strategies that support contingent
cooperation within hunter–gatherer bands.

Assuming that this two level population structure also character-
ized Pleistocene foragers, these results have a number of implications
for the evolution of contingent cooperation in human societies:

1. Using the two level model predicts that the strategies that
cooperate contingent on past cooperation by a minority can
increase when rare only if groups are quite small and
relatedness is fairly high (r N 0.05). The expected payoff of
contingent cooperators is very sensitive to the relatedness
within ethnolinguistic groups. When this is on the order of 0.01
as estimated by Langergraber et al. (2011), cooperative
strategies can increase only if the bands are quite small and
long run payoffs very substantial. On the other hand, when this
is larger as estimated by Bowles (2006) contingent cooperators
can increase under a wider range of conditions, although these
conditions are still very sensitive to group size.

2. Strategies that cooperate contingent on past cooperation by a
minority of individuals can increase under plausible conditions.
Strategies that require the cooperation of a majority cannot.

3. If cooperative strategies can invade and relatedness within
ethnolinguistic groups is not too high, the population evolves to
a stable equilibrium at which both types are present. The
frequency of cooperative types at such equilibria depends on
their degree of tolerance. Highly tolerant strategies that
cooperate even if only a small number of others cooperated in
the past occur at low frequency at equilibrium, while less
tolerant strategies can achieve high frequency.
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4. Since intolerant strategies cannot invade under plausible
conditions, this result suggests that wide spread cooperation
in sizable groups is unlikely to be supported by contingent
cooperation. However, if a minority of punishers are sufficient
to motivate all band members to cooperate, contingent
punishment strategies that can invade under plausible condi-
tions can also support widespread cooperation.

5. Existing work (Boyd & Richerson, 1988; Boyd et al., 2010)
overestimates the amount of relatedness necessary for contingent
cooperation to increasewhenrare. In thesemodels, bandmembers
are assumed to be sampled fromwithin a population with a fixed
level of relatedness. Because this assumption ignores variation
between ethnolinguistic groups it also underestimates the
strength of selection that favors cooperative strategies which are
altruisticwhen rare. Themagnitude of theunderestimate depends
strongly on the relatedness within ethnolinguistic groups and
therefore the amount of variation among ethnolinguistic groups.
When this is small (i.e. relatednesswithin ethnolinguistic groups is
low), there is little qualitative difference, but when it is large
(relatedness within ethnolinguistic groups is higher), previous
work substantially underestimates the probability that groups
with a significant number of cooperators will be formed (Fig. 6).
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